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ABSTRACT

Neural and Facial Correlates of Affective Disposition during Morally-Salient Narratives 

by

James Michael Mangus

The  recent  growth  of  the  neurophysiological  paradigm  has  re-defined  important

concepts in communication.  To better  understand of how fictional narratives operate at  a

neurophysiological level,  this  study employs  a combination of fMRI and face-tracking to

explore affective disposition theory (ADT), which predicts that viewers' affective responses

lead  them  to  prefer  narratives  in  which  virtuous  characters  are  rewarded  and  immoral

characters  are punished. Previous work has shown that inter-subject correlations  (ISC)  in

brain  activity  are  highest  when  viewing  disposition-consistent  narrative  outcomes  --

specifically,  the punishment  of  immoral  characters.  The present  study partially  replicates

these findings and  also uses psychophysiological interaction  (PPI)  analysis to augment the

notion that punishment of immoral characters yields discernibly different patterns of brain

connectivity  than other  narrative content.  To directly  address  the affective  component  of

ADT, further PPI analyses compared high- and low-empathy participants.  Results indicate

that the patterns of co-activation between brain regions revealed through PPI are moderated

by trait  empathy:  seeing good characters  rewarded yields  the same co-activation patterns

among  high-empathy  individuals  as  seeing  bad  characters  punished  does  among  low-
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empathy individuals. 

To provide another window into affective processing, automated face-tracking is used

to evaluate whether greater ISCs in brain activity also yield greater similarities in the time-

course of  emotive  facial expressions. Results indicate that correlations in facial expression

vary systematically by experimental condition, but, contrary to the pattern of neuronal ISC,

facial  expressions  exhibit  the  greatest  correlation  in  disposition-inconsistent  conditions.

Furthermore, unlike neuronal ISC, correlations in facial expressions are significantly higher

among high-empathy participants.  In sum, these results support the view that disposition-

consistent narrative content drives inter-subject correlation in brain activity, but that shared

brain activity does not yield correlated displays of emotion; instead, emotive displays are

moderated by empathy and may play a communicative role in expressing dissatisfaction with

disposition-inconsistent  narratives. The implications  of these findings for further research

into the affective component of ADT are discussed.
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Neural and Facial Correlates of Affective Disposition during Morally-Salient Narratives 

A  broad  framework  for  understanding  communication  as  interbrain  coupling  has

emerged in recent years, most notably in the work of Hasson and colleagues (Hasson et al.,

2004;  Hasson et  al.,  2008; Hasson et  al.,  2012).  According to  this  view, communication

aligns brain states across individuals. There is evidence consistent with this view for both

non-verbal and verbal communication. For instance, Goldman and Sripada (2005) promote a

simulation  model  for  emotional  processing  of  facial  expressions,  which  holds  that  an

observer  attempts  to  replicate  the  mental  state  of  another  person  based  on  their  facial

expression. This view is similar to the “unifying view” of  Gallese, Keysers,  & Rizzolatti

(2004), which argues that overlapping brain structures are engaged by both first-person and

third-person  experience.  Similarly,  Stephens,  Silbert,  and  Hasson  (2010)  find  that

communication  is  associated  with  synchronous  alignment  of  brain  activity  between  the

sender  and  receiver.  They  contend  that  stronger  temporal  coupling  of  the  brain  during

communication is evidence of greater comprehension. 

Communication involves many brain systems because a mental representation of a

certain  state  of affairs  integrates  diverse cognitive and affective components  (see Weber,

Sherry, & Mathiak, 2008). Narratives in particular present a fascinating case of multi-level

communication. They convey both literal and figurative meaning, and oftentimes the means

of  expression  matters  as  much  as  what  is  expressed.  Narratives  can  encode  characters,

conflicts,  moral  lessons,  and even abstract  aesthetic  performances  that  convey meta-level

messages  about  narratives  themselves.  They  are  polysemic,  amenable  to  multiple

interpretations  depending on individual  and cultural  context,  but  these interpretations  are
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always necessarily related to human capacities for encoding and decoding certain types of

information. 

Narrative structure itself appears to be deeply rooted in the brain. Ross (2007) goes so

far as to argue that narrative selfhood is the unique defining characteristic of being human.

According to his view, the organization of self-related information takes a narrative form

which draws on our capacity for language. Fictional narratives in particular serve important

socially-oriented functions as well. Literary fiction has been shown to improve performance

in  theory  of  mind  tasks,  for  instance  (Kidd  &  Castano,  2013).  Furthermore,  fictional

narratives allow individuals to consider counterfactual scenarios,  serving as a safe virtual

laboratory for considering how to react in dangerous or controversial situations. In fact, one

theory suggests that counterfactuals are represented as “structured event complexes” in the

medial prefrontal cortex (mPFC; Barbey, Krueger, & Grafman, 2009), supporting the idea

that the capacity for a narrative-like organization of events underlies humans’ capacity for

hypothetical reasoning. 

To  develop  the  brain-coupling  view,  communication  scholars  must  identify  the

neuronal systems that are coupled by specific communicative acts. For example, Hasson et

al.  (2008) manipulate  videos to  alter  the narrative  structure and measure  cortical  activity

through fMRI. The results indicate that different films induce different levels of whole-brain

inter-subject  correlation  (ISC):  when  viewing  an  episode  of  Alfred  Hitchcock  Presents,

participants showed  significant  levels  of  ISC  across  >65% of  cortex;  when  viewing  an

episode of  Curb Your Enthusiasim, only 18%. For videos with limited narrative structure,

ISC is even lower. They take ISC as a measure of collective engagement -- the extent to
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which  viewers  share  a  collective  experience  in  response  to  a  mediated  narrative  --  and

suggest that varying degrees of collective engagement can be induced by different media

genres and narrative structures. 

Communication scientists can lend important theoretical insight to guide interbrain

coupling research by developing well-founded predictions about the most relevant narrative

features. But this research paradigm is relatively new, and it is not yet well-established how

high-level  narrative  features  --  the  conceptual  building  blocks  of  key  theories  in

communication  science  --  modulate  ISC.  For  example,  Weber,  Eden,  & Mathiak  (2011)

manipulated  the valence  (moral/immoral)  and outcome (reward/punishment)  of  narratives

and  found  preliminary  evidence  that  ISC  in  relevant  brain  regions  was  highest  in  the

immoral-punishment condition. The high ISCs produced by those narratives suggests that the

punishment of immoral people evokes a shared response grounded in fundamental intuitions.

To re-interpret the findings of Hasson et al. (2008), it seems likely that Alfred Hitchcock’s

morally-laden narratives yield greater collective engagement because their content evokes

commonly- and deeply-held moral beliefs.

This  study  extends  and  complements  prior  work  by  using  neuroimaging  and

automated face-tracking to explore the emotional groundwork of disposition theory. It will

proceed in three steps. First, I attempt to replicate the preliminary findings of Weber et al.

(2011)  by  conducting  an  exploratory  whole-brain  analysis,  as  well  as  specific  region  of

interest  (ROI) analyses.  Second, I use psychophysiological interaction analysis  to  explore

how  viewers’  preferences  for  specific  narrative  content  may  be  driven  by  functional

connectivity between theoretically-relevant ROIs. Finally, computer-automated face-tracking
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is  used to  test  whether  correlations  in the emotiveness  of participants’  facial  expressions

track correlations in their brain activity.

Disposition, Emotion, and the Cognitive Neuroscience of Morality

Narratives  are  especially  remarkable  for  their  emotional  evocativeness.  Since

classical antiquity, philosophers have recognized the importance of emotional evocativeness

in narratives. One traditional explanation for the evocative power of a narrative is willful

suspension  of  disbelief  --  the  notion  that  individuals  voluntarily  opt  to  be  mentally

transported to the fictional world of the narrative. However, Zillmann (2006, 2013) critiques

this view. Under his account, the representation in media of an emotion-inducing stimulus

can  activate  the  same  adaptive  brain  structures  as  the  actual  (i.e.,  nonfictional  and

nonmediated) experience of that same stimulus, particularly if the mediated representation is

iconic (as in film) rather than symbolic (as in literature). 

The instinctive reactions of other animals to lifelike mediated stimuli illustrate this

point clearly. If you place a screen with video of moving insects in the visual field of a frog,

the frog will try to snag the insects with its tongue as though they were actually present in the

environment. It makes more sense, under this evolutionary account, to say that our disbelief

of  mediated  stimuli  is  likely  more  willful  than  our  belief  of  them,  since  mediated

environments still activate instinctual responses. Understanding that the stimulus is mediated

seems to be governed by executive-level processes in other brain structures, such that the

autonomic emotional reaction is distinct from volitional regulation of behavioral response. 

To elaborate the conceptual groundwork for his view, Zillmann (2006) argues that
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emotional  responses  to  media  should  be understood along three  dimensions:  disposition,

excitation,  and experience.  Disposition captures the hedonic valence of the emotion  (e.g.

positive or negative); excitation is the level of arousal induced by an emotion; the experience

of an emotion emerges from cognitive elaboration. In his account, the extent to which we

desire  to  see  a  character  rewarded  or  punished  depends  on  our  disposition  toward  that

character, which is based on a moral judgment of that character's acts. Disposition theory has

classical roots in Aristotle, who advised that in a narrative “a good man must not be seen

passing from happiness into misery” (quoted in Zillmann, 2006). Zillmann's approach largely

accords with the Aristotelian formulation: he holds that preference for a certain outcome is

driven by emotion because viewers empathize with morally virtuous characters and expect

that they will be rewarded (i.e.  that empathizing with the character will  produce positive

hedonic valence).

Emotions seem to provide the basis for the complex moral rules that govern human

culture.  Emotions  are  “specific  and  consistent  collections  of  physiological  responses

triggered by certain brain systems when the organism represents certain objects or situations”

(Damasio, 2000, p. 15). In popular use, emotion and reason are seen as opposing forces –

rational  thought  is  contrasted  with  emotional  intuition.  However,  the  somatic  marker

hypothesis  advanced  by  Damasio  (2000)  maintains  that  both  conscious  reasoning  and

preconscious emotional processes play an important role in decision-making. In Damasio’s

terms, an emotion is a basic intuition, whereas a feeling is a more elaborated evaluation of

that  intuition.  In  line  with  that  distinction,  it  appears  that  basic  emotions  interface  with

deliberate reasoning to produce complex moral evaluations. For example, the limbic system
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facilitates  basic  emotions  like anger  and disgust,  and considering moral  violations  yields

increased  connectivity  between the limbic  system and the prefrontal  cortex,  orbitofrontal

cortex, precuneus and superior temporal sulcus (Moll, Zahn, de Oliveira-Souza, Krueger, &

Grafman,  2005).  Other  work  has  found  that  both  socially-oriented  moral  disgust  and

pathogen  disgust  produce  limbic  system  activation,  but  sociomoral  disgust  yields

significantly stronger activation in medial prefrontal cortex and near the temporal-parietal

junction than pathogen-related disgust (Schaich-Borg, Lieberman, & Kiehl, 2008).

Disentangling the multiplicity of processing systems involved in moral reasoning is

an  ongoing  area  of  research  in  moral  psychology  (Dinh  &  Lord,  2013).  For  instance,

emotionally-laden deontic moral intuitions frequently override a more reasoned utilitarian

cost-benefit analysis, and under circumstances where cost-benefit analysis is complicated by

unknown outcomes, the strict application of deontic rules may in fact be superior to a purely

consequentialist analysis (Bennis, Medin, & Bartels, 2010). In order to evoke these moral

conflicts in participants, studies frequently present hypothetical moral scenarios based on the

famous “trolley problem” (Thomson, 1976). This problem takes many forms, but generally

brings deontic intuitions in conflict with consequentialism. For instance: 

Edward is the driver of a trolley, whose brakes have just failed. On the track

ahead of him are five people; the banks are so steep that they will not be able

to get off the track in time. The track has a spur leading off to the right, and

Edward can turn the trolley onto it. Unfortunately there is one person on the

right-hand track. Edward can turn the trolley, killing the one; or he can refrain

from turning the trolley, killing the five. (Thomson, 1976).
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Different  formulations  of  the  trolley  problem  and  differences  in  its  contextual

presentation often lead to divergent responses. Mikhail (2007) argues that different responses

to the trolley problem are the product of different mental representations of the problem.

Drawing on neuroimaging  studies,  Greene  and colleagues  have  attributed  those  different

mental  representations  primarily  to  differences  in  emotional  processing  (Greene,

Sommerville, Nystrom, Darley, & Cohen, 2001). Moral scenarios evoke emotional responses

that  are  subject  to  selective  cognitive  elaboration  to  reach a  final  judgment,  and deontic

judgments indicate that emotional intuitions have overwhelmed consequentialist reasoning. 

Most recently, Shenhav & Greene (2014) have found that integrative moral judgment

depends  specifically  on  connectivity  between  the  amygdala,  which  drives  the  affective

response, and ventromedial prefrontal cortex (vmPFC), which supports executive processing

and emotion  inhibition.  Specifically,  they conclude that  amygdala-vmPFC connectivity is

highest when participants are asked to evaluate their emotional response to a moral scenario,

and  connectivity  is  lowest  when  participants  are  asked  to  assess  a  scenario  in  purely

calculative,  utilitarian  terms.  The  two  regions  work  in  concert  to  yield  an  all-things-

considered moral judgment.

Neurocinematics of Moral Psychology

From  a  communication  science  perspective,  the  incorporation  of  neuroimaging

provides  an  observational  measure  of  the  emotional  component  of  moral  processing  to

further  develop  disposition  theory.  As  summarized  above,  Zillmann  (2006)  explains

disposition theory as an extension of emotional processing. Fictional narratives frequently

depict  dangerous  and  morally-controversial  situations  which  evoke  automatic  emotional
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responses.  Viewers'  dispositions  toward  characters  influence  preferences  for  narratives  –

people prefer narratives in which liked characters are rewarded and disliked characters are

punished (Raney & Bryant,  2002;  Weber,  Tamborini,  Lee,  & Stipp,  2008;  Zillmann and

Cantor,  1977).  Based  on  initial  evidence  from  Weber  et  al.  (2011),  it  seems  that  this

preference is reflected in the brain: ISC should be highest in disposition-consistent scenarios,

and  lowest  in  disposition-inconsistent  scenarios.  The  negatively-valenced  disposition-

consistent scenes – wherein immoral characters are punished for their wrongdoing – are of

particular  interest  given  the  preference  for  altruistic  punishment  demonstrated  in  prior

research:  individuals  readily  punish  others,  including  third-parties,  for  their  misdeeds

(Buckholtz et al., 2008), even if doing so comes at a cost to the punisher (Fehr & Gachter,

2002).

H1: Inter-subject correlation (ISC) in ROIs associated with moral reasoning

will be higher when viewing disposition-consistent scenes than disposition-

inconsistent  scenes,  with  the  greatest  ISC  when  immoral  characters  are

punished.

It is also worthwhile to consider a more narrowly-tailored test. If Shenhav and Greene

are  correct  that  the  amygdala  and  vmPFC  work  together  to  produce  integrative  moral

judgment, then their shared activation across subjects should be linked to moral content in

the  narrative.  Additionally,  while  Weber  et  al.  considered  several  ROIs  associated  with

various  aspects  of  moral  psychology,  amygdala  and vmPFC were  not  among  them.  The

current  study therefore  attempts  to  replicate  Weber  et  al.’s  findings  using  these  specific

ROIs. 
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H2: Inter-subject correlation (ISC) in (a) amygdala and (b) vmPFC will be

higher  when  viewing  in  disposition-consistent  scenes  than  disposition-

inconsistent  scenes,  with  the  greatest  ISC  when  immoral  characters  are

punished.

Although there are reasons to be bullish about the future of fMRI studies in this vein,

it is only fair to consider alternative measures of emotionality. Even if the brain is ultimately

the  seat  of  cognition,  brain  imaging  is  not  always  the  most  efficient  way  to  gather

information  about  individuals’  cognitive  states.  Consequently,  this  study  considers  an

alternative to brain activity which can convey emotional disposition: facial expressions. A

substantial body of research supports the view that facial expressions are crucial means of

emotional communication to which humans are innately sensitive (see Adolphs, 2002 for a

review of  neurophysiological  evidence).  For  more  than  a  decade,  researchers  have  been

refining computational techniques to measure these features as indicators of emotion (e.g.,

Busso et al., 2004). This study uses automated content-analysis of facial expressions during

think-aloud sessions to triangulate the emotional state of participants. 

Given that facial expressions convey emotion, and that fictional narratives stimulate

and entertain by virtue of their emotional evocativeness, the most intuitive prediction would

be that the disposition-consistent narratives, which yield both greater enjoyment and greater

neuronal ISC, will also yield the greatest inter-subject similarities in the time-course of facial

expressions.  Thus, mirroring the previous hypotheses: 

H3: Correlations of the facial expressions between individuals will be higher

when  viewing  disposition-consistent  scenes  than  disposition-inconsistent
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scenes, with the greatest correlations when immoral characters are punished. 

Predicting Individual Preferences

One shortcoming in the cognitive neuroscience of morality is the use of contrived,

forced-choice  moral  scenarios.  In  a  recent  review,  Avramova  and  Inbar  (2013)  observe

strong  evidence  that  emotions  sway  moral  judgment,  but  suggest  caution  regarding  the

automaticity  of  moral  judgment;  it  has  not  yet  been  firmly  established  to  what  extent

emotional intuitions “moralize” the world or, conversely, to what extent moral reasoning is a

motivated process (Haidt, 2003; Pizarro & Bloom, 2003). Studying the automaticity of moral

judgment is complicated by operational and theoretical problems (Avramova & Inbar, 2013;

Moll et al., 2005; Narvaez, 2010), but these problems can be somewhat ameliorated by using

more naturalistic stimuli.  While Shenhav and Greene are interested in using forced moral

evaluations  to  map  the  resultant  patterns  of  brain  activity,  the  study proposed here  also

concerns  the  extent  to  which  variations  in  those  functional  connectivity  patterns  predict

viewers’ preferences for naturalistic fictional narratives. The brain-as-predictor approach has

shown great promise in studies of persuasion using naturalistic stimuli (Berkman & Falk,

2013), and it may be equally useful in neurocinematics (Hasson, 2008). 

Dispositions  depend  on  moral  judgments  regarding  characters'  actions,  and  those

judgments will vary across individuals (Tamborini, 2011). If disposition theory is correct that

emotional  inputs  drive  the  preference  for  disposition-consistent  content,  then  between-

subjects  differences  in amygdala-vmPFC connectivity  – reflecting the integration of both

emotional input and executive judgment  – may  correspond with differences in preferences

for disposition-consistent outcomes.  Specifically,  higher connectivity should be associated
10



with a stronger preference for disposition-consistent outcomes, whereas lower connectivity

should indicate more deliberative processing that attenuates the emotional effects of narrative

content. 

In  other  words,  functional  connectivity  between  the  amygdala  and  vmPFC  may

accentuate  both  how much individuals  like  disposition-consistent  narrative  outcomes  and

how much they dislike disposition-inconsistent narrative outcomes. 

H4: Individuals  with greater  functional  connectivity  between the amygdala

and  vmPFC  will  have  a  stronger  preference  for  disposition-consistent

outcomes than individuals with less amygdala-vmPFC connectivity. 

If this relationship is borne out, it can serve as stepping stone for a broader re-analysis

of the experiential  aspect of Zillmann’s  theoretical  framework,  using a brain-as-predictor

approach to model dramaturgical preferences. Although, in the aggregate, people generally

prefer  narrative  content  where  virtuous  characters  are  rewarded  and  evil  characters  are

punished, there are many notable exceptions to this principle. Various narrative features or

individual  differences  could  yield  lower  amygdala-vmPFC  connectivity  and,  in  turn,

attenuate  the  impact  of  emotional  disposition  on  the  viewer’s  overall  experience  of  the

narrative. 

Finally, as an exploratory research question, additional analyses will consider whether

trait empathy underlies individual differences in moral processing. Research frequently links

moral judgment with empathic concern (e.g. Decety, Michalska, & Kinzler, 2012; Moll & de

Oliveira-Souza,  2007;  Singer  et  al.,  2006).  Previous  research  has  shown that  lower  trait

empathy modulates moral judgment  – for instance, it attenuates moral engagement (Detert,
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Trevino, & Sweitzer, 2008) and is associated with more utilitarian reasoning (Gleichgerrcht

&  Young,  2013). Participants'  self-reported  trait  empathy  is  therefore  considered  as  a

potential moderating variable.

Method

The data for this study were collected by the Media Neuroscience Lab and comprise

fMRI imaging and think-aloud sessions to gauge the participants’ reactions to the narratives

using multiple measures. Participants (original n = 28, excluding subjects with unusable or

missing data, final n = 22; 100% female) watched professionally edited, 180s clips from the

soap opera Days of Our Lives. Clips were manipulated to vary in their moral content - both

valence  (moral/immoral)  and  outcome  (reward/punishment)  -  as  well  as  a  fifth  neutral,

amoral condition. Each participant watched the same set of scenes in a randomized sequence

during  fMRI scanning,  with  a  30-second resting  baseline  period  between scenes.  BOLD

contrast  was obtained with a gradient-echo echo-planar imaging (EPI) sequence (General

Electric scanner; field strength of 3 Tesla; whole brain coverage with 30 interleaved slices;

slice size 4mm with 0.4mm gap; TR = 2000ms; TE = 27.2 ms; flip angle = 77°, field of view

22 × 22 cm2, matrix size 64 × 64). The same participants watched the same scenes outside

the scanner in think-aloud sessions, which were videotaped with the participant’s face and

the stimulus video visible. Participants also rated their perceptions of  characters' morality,

outcome,  and  importance   for  each  stimulus  video,  which  were  used  to  calculate  an

individual  ADT index by summing the squared differences between morality and outcome

valence for all characters, weighted by character importance (see Weber et al., 2008, which

validates this index by predicting television ratings). Participants also completed a self-report
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battery to measure their level of trait empathy (Davis, 1983).

Analytical Procedure and Results

fMRI Analysis

Preprocessing. Raw DICOM data for each functional run were assembled into 

NIFTI-format files and preprocessed using the tools provided by FSL 5.0 

(http://fsl.fmrib.ox.ac.uk/). Slice-timing correction and brain-extraction were applied to the 

functional data, as well as high-pass temporal filtering (210s cutoff) and spatial smoothing 

(FWHM 5mm). Motion correction was performed with MCFLIRT, and excess-motion 

parameters were saved for each subject to be used as confound EVs in subsequent analyses. 

Registration was carried out in two steps: first, linear registration was used to fit the 

functional data to the subject’s own high-resolution anatomical scan (T1-weighted SPGR) 

using the boundary-based registration (BBR) algorithm (Greve & Fischl, 2009), and then 

non-linear registration was performed to register each subject’s brain to the Montreal 

Neurological Institute  152 (MNI-152) template (2mm resolution).

ROI masks. Masks for ROI analysis were created using FSL’s command line tools. 

Masks for left and right amygdala were anatomically defined using the Harvard-Oxford 

structural atlas. Additionally, 5mm spherical masks were created around the 4 sets of vmPFC

coordinates reported by Shenhav and Greene (2014). These 4 regions consist of a pair of 

lateralized masks for each of their two analytical contrasts: integrative > utilitarian moral 

judgment, and integrative > emotional moral judgment. These two pairs of masks therefore 

represent different estimates of the vmPFC region activated by an all-things-considered  

integrative moral judgment, evoked when participants consider which action they “would 
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find more morally acceptable” in a forced-choice moral scenario. The former pair of masks 

was generated from the peak coordinates identified when contrasting integrative judgment 

with a utilitarian prompt: which action “would produce better results.” The latter pair was 

generated from the peak coordinates identified by contrasting integrative judgment with an 

emotional prompt: which action the participant would “feel worse about doing.” Since the 

participants in the current study are engaged in naturalistic viewing that does not explicitly 

elicit either utilitarian or emotional judgment, and because it seems unlikely that these 

regions would be clearly functionally differentiated anyway, both pair of masks are used as 

seed regions for this analysis.

Finally, for exploratory analyses, masks were downloaded for each region in the 

theory of mind (ToM) network identified by MIT’s Saxelab (Dufour et al., 2013; masks 

available at http://saxelab.mit.edu). The ToM network overlaps extensively with networks 

identified in prior studies of moral judgment, as is to be expected given the theoretical 

overlap between the two: understanding the moral content of a narrative requires the viewer 

to consider the beliefs and intentions of characters (Bzdok et al., 2012). The ToM regions of 

particular interest given their consistent association with moral judgment are the superior 

temporal sulcus (STS), temporal-parietal junction (TPJ), precuneus (PC), and medial PFC; 

specific masks are provided for left and right TPJ, as well as for right STS, dmPFC, mmPFC,

and vmPFC.

For each mask, a functional time-series was extracted from each subject’s 

preprocessed data using the fslmeans command. The values extracted from anatomically-

defined masks were weighted based on the atlas-given probability map for the ROI; 

14



functionally-defined masks from prior studies were treated as binary and thus not weighted. 

The resultant time-series were then used for the connectivity analyses described below. 

ISC analysis. Preprocessed functional data for each subject was spliced by condition 

using FSL, and these inputs were used for a whole-brain ISC analysis with contrasts between 

conditions. Inter-subject correlation in cortical activity was calculated using the Matlab 

analysis toolbox provided by Kauppi, Pajula, and Tohka (2014), which implements a novel 

ISC significance-testing procedure based on the Pearson-Filon statistic. 

This analysis revealed numerous regions with significant inter-subject correlation 

across all conditions (see Figure 1). These regions include some obvious structures - for 

instance, the significant ISC in occipital cortex near the calcarine sulcus (max r = 0.15, FDR-

corrected p<0.001, MNI-152 coordinates 8,-86,0) is no surprise because subjects all watched 

the same stimulus videos and this region is well-known for its role in processing visual 

stimuli. The same reasoning explains the area of highly-significant ISC in the vicinity of 

auditory cortex (max r = 0.17, FDR-corrected p < 0.001, MNI-152 coordinates -56, -18, 6). 

Yet some theoretically-interesting regions of ISC emerge as well. Inter-subject 

activity in the cingulate gyrus, a component of the limbic system associated with emotion 

regulation (Ochsner & Gross, 2005), is significantly correlated across all experimental 

conditions (max r = 0.063, FDR-corrected p < 0.001, MNI-152 coordinates 0, -22, 30). 

Additionally, there is a region of significant ISC across all conditions in vmPFC (max r = 

0.067, FDR-corrected p < 0.001, MNI-152 coordinates 0, 60, 0). Although in each case these 

correlations are relatively low in absolute terms, it is important to bear in mind that they 

reflect the average correlation across all experimental conditions – even those expected to
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Figure 1. Axial image series showing areas of significant inter-subject correlation across

all conditions, thresholded at p < 0.05, FDR corrected.
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 yield comparatively low ISC – and they are nonetheless significantly higher than ISC in 

other regions by even the most stringent standard (p<0.001).

However, no statistically-significant differences in whole-brain ISC maps were found

between conditions using the procedure provided by the Matlab toolbox (sum ZPF = 25000; 

see Kauppi, Pajula, & Tohka, 2014). The ADT-driven differences in overall ISC reported by 

Weber et al. (2011) were therefore not directly replicated by this analysis, contrary to the 

prediction made in H1. 

Nonetheless, the inferential statistics for ISC comparison are not yet fully understood,

and it is important to note that this first analysis was an indirect replication – the whole-brain 

permutation test devised by Kauppi, Pajula, and Tohka (2014) differs substantially from the 

ROI-based statistical procedure used by Weber et al. (2011). Moreover, the motivation for 

the current study is not to look for whole-brain differences in ISC, but rather to see whether 

ISC in particular ROIs differs systematically in response to disposition-consistent or 

-inconsistent moral content. To more closely approximate the procedure of Weber et al. 

(2011), a ROI-driven approach was applied by computing subject-pairwise correlations in the

mean time-series data from the pre-identified regions of interest, rather than conducting a 

voxel-wise whole-brain search for significant correlations. 

First, analysis of variance (ANOVA) was used to assess how the broad ADT 

categories (disposition-consistent, disposition-inconsistent, or amoral control stimuli) 

influenced ISC in each ROI. Results are summarized in Tables 1a and 1b. Strongly 

significant differences were found for the left amygdala (F(2,3462) = 7.107, p = 0.001), right 

STS (F(2,3462) = 10.896, p < 0.001), right TPJ (F(2,3462) = 16.428, p < 0.001), and left TPJ
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Table 1a
ANOVA for ISC by Disposition Level (Consistent/Inconsistent/Amoral)

ROI F(2,3462) Sig.

dmPFC ISC .310 .734

lTPJ ISC 5.415* .004*

mmPFC ISC 1.923 .146

PC ISC 1.262 .283

rSTS ISC 10.896* .000*

rTPJ ISC 16.428* .000*

vmPFC (Saxe) ISC 1.407 .245

lAMYG ISC 7.107* .001*

lvmPFC (S&G, integrative>utilitarian) ISC 1.464 .232

lvmPFC (S&G, integrative>emotional) ISC 0.02 .985

rAMYG ISC 1.407 .245

rvmPFC (S&G, integrative>utilitarian) ISC .067 .935

rvmPFC (S&G, integrative>emotional) ISC .200 .819

* The F value is significant at the 0.01 level.
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Table 1b
Post-hoc tests (Tukey HSD) for regions with a significant F value

ROI
Disposition

Level (I)
Disposition

Level (J)

Mean Value Mean
Difference

(I-J)
Std.
Err. Sig.(I) (J)

lTPJ ISC amoral inconsistent .176 .148 .028* .009 .003*

consistent .176 .159 .017 .009 .135

inconsistent amoral .148 .176 -.028* .009 .003*

consistent .148 .159 -.012 .007 .220

consistent amoral .159 .176 -.017 .009 .135

inconsistent .159 .147 .012 .007 .220

rSTS ISC amoral inconsistent .225 .190 .034* .009 .001*

consistent .225 .183 .042* .009 .000*

inconsistent amoral .190 .225 -.034* .009 .001*

consistent .190 .183 .008 .008 .507

consistent amoral .183 .225 -.042* .009 .000*

inconsistent .183 .190 -.008 .008 .507

rTPJ ISC amoral inconsistent .217 .201 .016 .009 .193

consistent .217 .243 -.026* .009 .010*

inconsistent amoral .201 .217 -.016 .009 .193

consistent .201 .243 -.042* .007 .000*

consistent amoral .243 .217 .026* .009 .010*

inconsistent .243 .201 .042* .007 .000*

lAMYG 
ISC

amoral inconsistent .029 .027 -.004 .008 .872

consistent .029 .049 -.025* .008 .005*

inconsistent amoral .027 .029 .004 .008 .872

consistent .027 .049 -.021* .007 .004*

consistent amoral .049 .029 .025* .008 .005*

inconsistent .049 .027 .021* .007 .004*

* The mean difference is significant at the 0.01 level.
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 (F(2,3462) = 5.415, p = 0.004). Contrary to H2b, no significant differences were found in 

vmPFC ISC. Because there are fewer amoral controls than stimulus videos, post-hoc analysis

to determine the nature of these differences was conducted using the Tukey method, which is

conservative when group sizes are unequal. As predicted in H2a, left amygdala ISC is 

significantly higher in disposition-consistent conditions compared to both disposition-

inconsistent conditions (mean difference = 0.021, p = 0.004) and amoral controls (mean 

difference = 0.025, p = 0.005), although ISC does not significantly differ between 

disposition-inconsistent and amoral scenes (mean difference = 0.004, p = 0.872). 

Consistent with H1, right TPJ ISC is also significantly higher in disposition-

consistent conditions compared to disposition-inconsistent conditions (mean difference = 

0.042, p < 0.001) as well as amoral controls (mean difference = 0.026, p = 0.010); rTPJ ISC 

is lowest in disposition-inconsistent scenes, although the difference between disposition-

inconsistent and amoral scenes again falls short of statistical significance (mean difference = 

0.015, p = .223). 

Conversely, contrary to H1, left TPJ ISC is highest during amoral control scenes and 

lowest in disposition-inconsistent ones. The pairwise difference between amoral and 

disposition-inconsistent scenes reaches significance (mean difference = 0.028, p = 0.003), 

while the difference between amoral and disposition-consistent scenes falls short (mean 

difference = 0.016, p = 0.135). Disposition-consistent scenes also do not differ significantly 

from disposition-inconsistent ones (mean difference = 0.011, p = 0.220). 

ISCs in right STS have a similar pattern to those in left TPJ: amoral scenes yield 

significantly higher ISC than disposition-consistent (mean difference = 0.042, p < 0.001) and
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disposition-inconsistent scenes (mean difference = 0.033, p = 0.001), but ISCs do not differ 

significantly between disposition-consistent and disposition-inconsistent scenes (mean 

difference = 0.008, p = 0.507). 

A second ANOVA was conducted to distinguish between the valence of disposition-

consistent or -inconsistent conduct (e.g. good-positive vs. bad-negative). These results 

implicate a wider array of brain regions. Mean ISCs in left amygdala (F(4,3460) = 3.960, p = 

0.003), right STS (F(4,3460) = 10.010, p < 0.001),  right TPJ (F(4,3460) = 52.296, p < 0.001)

and left TPJ (F(4,3460) = 29.399, p < 0.001) again differ significantly across conditions, but 

so too do ISCs in dmPFC (F(4,3460) = 8.471, p < 0.001), mmPFC (F(4,3460) = 5.269, p < 

0.001), and precuneus (F(4,3460) = 24.465, p < 0.001). Consistent with H1, in every case 

except for rSTS, greatest ISC is observed in the negatively-valenced disposition-consistent 

condition -- the punishment of wrongdoers generally maximizes ISC, consistent with the 

results of Weber et al. (2011). In particular, the negatively-valenced disposition-consistent 

condition (bad-negative) consistently produces higher ISC than its positively-valenced 

(good-positive) counterpart, with mean differences that are strongly significant, in every ROI

except the amygdala. Although the general trend in amygdala ISC follows the expected 

pattern, there is no significant difference between the good-positive and bad-negative 

conditions (mean difference = 0.009, p = 0.867). Overall, these results largely support H1 but

not H2.  See Tables 2a and 2b for a full summary of mean differences by condition.

A final test was conducted to determine whether the strength of ISC varies by 

participants’ self-reported trait empathy levels. None of the regions tested showed significant
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Table 2a

ANOVA for ISC by Experimental Condition (good-positive, bad-negative, good-negative, 
bad-positive, amoral)

ROI F(4,3460) Sig.

dmPFC ISC 8.471* .000*

lTPJ ISC 29.399* .000*

mmPFC ISC 5.269* .000*

PC ISC 24.465* .000*

rSTS ISC 10.010* .000*

rTPJ ISC 52.296* .000*

vmPFC (Saxe) ISC 1.111 .349

lAMYG ISC 3.960* .003*

lvmPFC (S&G, integrative>utilitarian) ISC 1.120 .345

lvmPFC (S&G, integrative>emotional) ISC .212 .932

rAMYG ISC .928 .447

rvmPFC (S&G, integrative>utilitarian) ISC .781 .537

rvmPFC (S&G, integrative>emotional) ISC .471 .757

* The F value is significant at the 0.01 level.
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Table 2b

Post-hoc tests (Tukey HSD) for regions with a significant F value.

ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

dmPFC ISC good-positive bad-negative .026 .083 -.057* .011 .000*
good-negative .026 .037 -.011 .011 .838
bad-positive .026 .063 -.037* .011 .007*
amoral .026 .048 -.022 .011 .258

bad-negative good-positive .083 .026 .057* .011 .000*
good-negative .083 .037 .046* .011 .000*
bad-positive .083 .063 .020 .011 .324
amoral .083 .048 .035* .011 .010*

good-negative good-positive .037 .026 .011 .011 .838
bad-negative .037 .083 -.046* .011 .000*
bad-positive .037 .063 -.025 .011 .132
amoral .037 .048 -.011 .011 .865

bad-positive good-positive .063 .026 .037* .011 .007*
bad-negative .063 .083 -.020 .011 .324
good-negative .063 .037 .025 .011 .132
amoral .063 .048 .015 .011 .650

amoral good-positive .048 .026 .022 .011 .258
bad-negative .048 .083 -.035* .011 .010*
good-negative .048 .037 .011 .011 .865
bad-positive .048 .063 -.015 .011 0.65
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ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

lTPJ ISC good-
positive

bad-negative .111 .208 -.097* .010 .000*
good-negative .111 .133 -.022 .010 .167
bad-positive .111 .162 -.052* .010 .000*
amoral .111 .176 -.065* .010 .000*

bad-negative good-positive .208 .111 .097* .010 .000*
good-negative .208 .133 .075* .010 .000*
bad-positive .208 .162 .046* .010 .000*
amoral .208 .176 .032* .010 .010*

good-negative good-positive .133 .111 .022 .010 .167
bad-negative .133 .208 -.075* .010 .000*
bad-positive .133 .162 -.030* .010 .022*
amoral .133 .176 -.043* .010 .000*

bad-positive good-positive .162 .111 .052* .010 .000*
bad-negative .162 .208 -.046* .010 .000*
good-negative .162 .133 .030* .010 .022*
amoral .162 .176 -.013 .010 .647

amoral good-positive .176 .111 .065* .010 .000*
bad-negative .176 .208 -.032* .010 .010*
good-negative .176 .133 .043* .010 .000*
bad-positive .176 .162 .013 .010 .647
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ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

mmPFC ISC good-positive bad-negative .031 .075 -.043* .011 .000*
good-negative .031 .046 -.015 .011 .612
bad-positive .031 .040 -.009 .011 .918
amoral .031 .036 -.005 .011 .993

bad-negative good-positive .075 .031 .043* .011 .000*
good-negative .075 .046 .028 .011 .057
bad-positive .075 .040 .034* .011 .010*
amoral .075 .036 .039* .011 .002*

good-negative good-positive .046 .031 .015 .011 .612
bad-negative .046 .075 -.028 .011 .057
bad-positive .046 .040 .006 .011 .977
amoral .046 .036 .010 .011 .858

bad-positive good-positive .040 .031 .009 .011 .918
bad-negative .040 .075 -.034* .011 .010*
good-negative .040 .046 -.006 .011 .977
amoral .040 .036 .004 .011 .994

amoral good-positive .036 .031 .005 .011 0.99
bad-negative .036 .075 -.039* .011 .002*
good-negative .036 .046 -.010 .011 .858
bad-positive .036 .040 -.004 .011 .994
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ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

PC ISC good-positive bad-negative .082 .180 -.098* .010 .000*
good-negative .082 .139 -.056* .010 .000*
bad-positive .082 .145 -.063* .010 .000*
amoral .082 .131 -.049* .010 .000*

bad-negative good-positive .180 .082 .098* .010 .000*
good-negative .180 .139 .041* .010 .000*
bad-positive .180 .145 .035* .010 .004*
amoral .180 .131 .048* .010 .000*

good-negative good-positive .139 .082 .056* .010 .000*
bad-negative .139 .180 -.041* .010 .000*

bad-positive .139 .145 -.006 .010 .972
amoral .139 .131 .007 .010 .956

bad-positive good-positive .145 .082 .063* .010 .000*
bad-negative .145 .180 -.035* .010 .004*
good-negative .145 .139 .006 .010 .972
amoral .145 .131 .013 .010 .677

amoral good-positive .131 .082 .049* .010 .000*
bad-negative .131 .180 -.048* .010 .000*
good-negative .131 .139 -.007 .010 .956
bad-positive .131 .145 -.013 .010 .677

26



ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

rSTS ISC good-positive bad-negative .166 .199 -.033* .011 .017*
good-negative .166 .175 -.009 .011 .906
bad-positive .166 .215 -.040* .011 .001*
amoral .166 .217 -.059* .011 .000*

bad-negative good-positive .199 .166 .033* .011 .017*
good-negative .199 .175 .024 .011 .171
bad-positive .199 .215 -.007 .011 .957
amoral .199 .217 -.026 .011 .106

good-negative good-positive .175 .166 .009 .011 .906
bad-negative .175 .199 -.024 .011 .171
bad-positive .175 .215 -.031* .011 .029*
amoral .175 .217 -.050* .011 .000*

bad-positive good-positive .215 .166 .040* .011 .001*
bad-negative .215 .199 .007 .011 .957
good-negative .215 .175 .031* .011 .029*
amoral .215 .217 -.018 .011 .411

amoral good-positive .217 .166 .059* .011 .000*
bad-negative .217 .199 .026 .011 .106
good-negative .217 .175 .050* .011 .000*
bad-positive .217 .215 .018 .011 .411
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ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

rTPJ ISC good-positive bad-negative .177 .309 -.132* .010 .000*
good-negative 177 .188 -.010 .010 .844
bad-positive 177 .215 -.037* .010 .002*
amoral 177 .217 -.040* .010 .001*

bad-negative good-positive .309 177 .132* .010 .000*
good-negative .309 .188 .121* .010 .000*
bad-positive .309 .215 .095* .010 .000*
amoral .309 .217 .092* .010 .000*

good-negative good-positive .188 177 .010 .010 .844
bad-negative .188 .309 -.121* .010 .000*
bad-positive .188 .215 -.027 .010 .062
amoral .188 .217 -.029* .010 .034*

bad-positive good-positive .215 177 .037* .010 .002*
bad-negative .215 .309 -.095* .010 .000*
good-negative .215 .188 .027 .010 .062
amoral .215 .217 -.002 .010 1.000

amoral good-positive .217 177 .040* .010 .001*
bad-negative .217 .309 -.092* .010 .000*
good-negative .217 .188 .029* .010 .034*
bad-positive .217 .215 .002 .010 1.000
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ROI Condition (I)  Condition (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.

Error Sig.

lAMYG ISC good-positive bad-negative .044 .053 -.009 .009 .867
good-negative .044 .031 .013 .009 .647
bad-positive .044 .024 .021 .009 .183
amoral .044 .023 .021 .009 .175

bad-negative good-positive .053 .044 .009 .009 .867
good-negative .053 .031 .022 .009 .131
bad-positive .053 .024 .030* .009 .013*
amoral .053 .023 .030* .009 .013*

good-negative good-positive .031 .044 -.013 .009 .647
bad-negative .031 .053 -.022 .009 .131
bad-positive .031 .024 .008 .009 .924
amoral .031 .023 .008 .009 .917

bad-positive good-positive .024 .044 -.021 .009 .183
bad-negative .024 .053 -.030* .009 .013*
good-negative .024 .031 -.008 .009 .924
amoral .024 .023 .000 .009 1.000

amoral good-positive .023 .044 -.021 .009 .175
bad-negative .023 .053 -.030* .009 .013*
good-negative .023 .031 -.008 .009 .917
bad-positive .023 .024 .000 .009 1.000

* The mean difference is significant at the 0.05 level. All mean and difference values have 
been rounded.
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differences in ISC among empathy-matched pairs compared to empathy-mismatched pairs, 

suggesting that differences in empathy do not drive differences in ISC. 

PPI analysis.  While the simple subtraction logic of brain mapping studies can offer 

insight into how the brain segregates information, functional connectivity analysis is 

interested in how the brain integrates information (Friston, 1994). Functional connectivity 

was evaluated using psychophysiological interaction (PPI) analysis. For each participant, an 

interaction regressor is created by taking the product of the time-course in a physiological 

seed region and the time-course of the psychological task, and this regressor is used as an 

explanatory variable in GLM analysis (O’Reilly et al., 2012). The resulting parameter 

estimates indicate which voxels are co-activated with the seed region under one experimental

condition but not another. 

In order to examine how connectivity among brain regions varies in response to 

narrative content, a multi-level PPI analysis was conducted through FEAT in accordance 

with standard guidelines provided in the FSL documentation. On the first level, data from all 

functional runs for each subject were modeled using three explanatory variables (EVs): a 

psychological regressor representing the experimental condition, a physiological regressor 

representing the time-series of BOLD signal within a particular ROI, and the interaction of 

physiological and psychological regressors (the PPI EV). This procedure was completed for 

each ROI mask (see above). To facilitate a finely-grained analysis of disposition-consistent 

content, separate analyses were used to distinguish between disposition-consistent contrasts: 

positive-valence (good-positive > good-negative) and negative-valence (bad-negative > bad-

positive). Second-level analyses were conducted to combine each subject’s data across all 
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functional runs. Finally, third-level analyses assessed the PPI across subjects using a mixed-

effects model (FLAME 1+2). All results reported here are family-wise error-rate corrected 

using cluster-extent thresholding with a Z-threshold of 2.3 and a cluster p-threshold of 0.05. 

First, all participants were combined into an aggregate mean third-level image. There 

were no significant results for the left or right amygdala seed regions in either psychological 

contrast (good-positive > good-negative or bad-negative > bad-positive). Among the seed 

regions derived from Shenhav and Greene (2014), only the right vmPFC (5mm sphere 

around MNI-152 coordinates 2, 42, -14) yielded significant results. When contrasting bad-

negative > bad-positive scenes, the right vmPFC exhibited greater functional connectivity in 

a region near the left temporal pole (cluster p = 0.039, max-Z = 3.43 at MNI-152 coordinates 

-30, 4, -34). The temporal pole is adjacent to and strongly interconnected with the amygdala, 

and meta-analysis indicates good evidence that the temporal pole plays a role in integrating 

perception and emotion (Olson, Plotzker, & Ezzyat, 2007). 

However, H4 assumes that participants may vary in the extent to which the moral 

scenarios presented will elicit emotional responses. An additional set of exploratory third-

level PPI analyses were conducted by dividing subject by self-reported trait empathy levels. 

When using the right amygdala as a seed region, an interesting pattern emerges 

(Figure 2): the connectivity pattern for the empathy high > low contrast when good 

characters are rewarded is strikingly similar to the pattern for the empathy low > high 

contrast when bad characters are punished. When comparing positively-valenced content 

(good-positive scenes > good-negative scenes), the right amygdala shows greater 

connectivity with the inferior portion of parietal cortex on both the left (cluster p = 0.043, 
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max-Z = 3.88 at MNI-152 coordinates -40, -36, 28) and right (cluster p = 0.002, max-Z = 

4.14 at MNI-152 coordinates 24, -44, 30) in high-empathy individuals compared to low-

empathy individuals. Yet when comparing negatively-valenced content (bad-negative scenes 

> bad-positive scenes), a very similar connectivity pattern emerges for low-empathy 

individuals compared to high-empathy ones (left: cluster p =  0.026, max-Z = 3.33 at MNI-

152 coordinates -22, -18, 38; right: cluster p = 0.031, max-Z = 4.04 at MNI-152 coordinates 

22, -36, 18). 

The inferior parietal lobule was selectively activated with the same pattern of results 

when using the left vmPFC mask derived from Shenhav and Greene’s (2014) integrative > 

utilitarian moral judgment contrast as the seed region (5mm sphere around MNI-152 

coordinates -6, 26, -16). For the underlying psychological contrast good-positive > good-

negative, high empathy participants show greater co-activation of left vmPFC with several 

regions in occipital, parietal, and frontal cortex when compared to low-empathy participants 

(see Table 3 for full results). The largest of these clusters overlaps substantially with the 

inferior parietal region identified by the amygdala-seed analysis (cluster p < 0.001, left-side 

max-Z = 4.29 at MNI-152 coordinates -36, -14, 26; right-side max-Z = 4.29 at MNI-152 

coordinates 30, -34, 30). Conversely, when the underlying psychological contrast for the PPI 

is bad-negative > bad-positive, it is instead low-empathy participants who exhibit greater co-

activation of vmPFC with the inferior parietal lobule when compared to high-empathy 

participants (cluster p = 0.008, max-Z = 3.37 at 36, -26, 22). The overlap in thresholded 

activation maps for the left vmPFC seed region is depicted in Figure 3.
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Table 3 

Activation Table for PPI Analysis (Shenhav & Greene ROIs)

Third-Level
PPI Contrast

First-Level
Psychological

Contrast Seed Region
Cluster
Index Voxels

Cluster
p-value

Max
Z

Coordinates
(mm)

Mean (All 
Participants)

Good-positive > 
good-negative

rvmPFC 
(S&G, 
integrative > 
utilitarian)

1 280 0.044 3.20 (32, -66, 58)

Bad-negative > 
bad-positive

rvmpFC 
(S&G, 
integrative >
utilitarian)

1 319 0.039 3.42 (4, -34, -37)

Empathy 
High > Low

Good-positive >
good-negative

rAMYG 1 402 0.043 3.88 (-40, -36, 28)

2 691 0.002 4.14 (24, -44, 30)

lvmPFC 
(S&G, 
integrative >
utilitarian)

1 339 0.035 3.61 (-20, 28, 14)

2 364 0.024 3.31 (12, -98, 8)
3 604 < 0.001 3.52 (8, -76, 14)
4 5181 < 0.001 4.29 (-36, -14, 26)

lvmPFC 
(S&G, 
integrative > 
emotional)

1 289 0.036 3.41 (-8, 20, 66)

2 311 0.024 3.34 (-40, -12, 54)
3 346 0.013 3.88 (-56, -72, 18)
4 819 < 0.001 3.62 (0, -46, 68)
5 1057 < 0.001 3.89 (26, -6, 12)

rvmPFC 
(S&G, 
integrative > 
utilitarian)

1 296 0.031 3.86 (-58, -2, -12)

2 320 0.020 4.00 (12, -16, -14)
3 333 0.016 3.37 (62, -6, 12)

33



4 403 0.005 4.18 (-10, 50, 14)
5 620 < 0.001 3.52 (-8, 24, 2)

rvmPFC 
(S&G, 
integrative > 
emotional)

1 375 0.008 3.71 (-54, -70, 18)

2 499 0.001 3.45 (10, -28, -4)
3 640 < 0.001 3.75 (0, -46, 68)
4 1401 < 0.001 4.05 (26, -8, 4)

Empathy Low
> High

Bad-negative > 
bad-positive

rAMYG 1 398 0.031 4.04 (22, -36, 18)

2 411 0.026 3.33 (-22, -18, 38)
lvmPFC 
(S&G, 
integrative > 
utilitarian)

1 477 0.008 3.73 (36, -26, 22)

Combinations of contrasts and seed regions not listed here yield no significant clusters.
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Figure 2. Overlap in PPI results with right amygdala as the seed region. Red is the 

group difference for the empathy high > low contrast with good-positive > good-

negative as the underlying psychological regressor; blue is the group difference for 

empathy low > high with bad-negative > bad-positive as the underlying psychological 

regressor. 
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Figure 3. Overlap in PPI results with left vmPFC as the seed region. Red is the group 

difference for the empathy high > low contrast with good-positive > good-negative as 

the underlying psychological regressor; blue is the group difference for empathy low > 

high with bad-negative > bad-positive as the underlying psychological regressor. 
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Exploratory PPI analyses were also conducted using the ToM ROIs as seeds. Results 

for these seed regions are in Table 4. The mean PPI across all subjects in mmPFC, PC, and 

bilateral TPJ displays an interesting difference between the psychological contrasts. For the 

positively-valenced (good-positive > good-negative) contrast, these regions yield either no 

significant clusters in the mean PPI, or a few spatially-compact clusters. On the other hand, 

in each case, the negatively-valenced (bad-negative > bad-positive) contrast yields a 

substantially larger and more diverse connectivity pattern.  See Figures 4 and 5 for examples.

This trend suggests that negatively-valenced content modulates the coactivation of these seed

ROIs with other regions more than positively-valenced content.

Effect of connectivity on affective disposition. Within subject coactivation of 

amygdala and vmPFC is not significantly predictive of participants’ ADT index, which 

measures the participants’ perception of disposition-consistent or -inconsistent content. In a 

linear regression model with ADT rating as the DV and coactivation between the amygdala 

and vmPFC seed regions as predictors, no variance in ADT rating is explained (R = 0.182, 

adjusted R2 = -0.006). In an ANOVA, none of these coactivations vary significantly across 

experimental condition, although coactivation of left amygdala and vmPFC (5mm sphere 

around MNI-152 coordinates 0, 36, -10) comes the closest (F(4,325) = 2.162, p = 0.073; 

mean difference between bad-negative and control condition = 0.099, p = 0.105). A follow-

up regression model using self-reported enjoyment as the dependent variable also yielded no 

meaningful predictive power (R = 0.172, adjusted R2 = -0.009). 
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Table 4

Activation Table for PPI Analysis (Saxelab ToM ROIs)

Third-Level
Contrast

First-Level
Contrast Seed ROI

Cluster
Index

Voxel
s

Cluster
p-value

Max
Z

Coordinates
(mm)

Mean (All 
Participants)

Good-positive > 
good-negative

PC 1 510 0.044 3.12 (34, -64, -48)

2 703 0.008 3.38 (14, 6, 16)

dmPFC 1 606 0.013 3.42 (-50, -8, -12)
2 1238 < 0.001 3.42 (60, -18, -10)

rTPJ 1 524 0.033 3.51 (8, -6, 76)
2 755 0.004 3.65 (42, -36, 14)
3 919 0.001 3.51 (42, -82, -4)

rSTS 1 814 0.006 3.31 (52, 0, 22)
2 7862 < 0.001 3.95 (34, -54, 14)

Bad-negative > 
bad-positive

PC 1 588 0.039 3.82 (24, 38, -22)

2 621 0.030 3.89 (-40, 32, 10)
3 667 0.021 3.50 (-40, 6, 26)
4 1254 < 0.001 3.48 (8, 20, 22)
5 1479 < 0.001 3.59 (38, 32, 18)
6 1989 < 0.001 3.88 (52, -66, -10)
7 19954 < 0.001 4.66 (-48, -62, -20)

dmPFC 1 501 0.038 3.78 (38, 48, 24)
2 634 0.011 3.80 (-34, -86, -10)
3 860 0.001 3.45 (64, -56, -14)
4 1757 < 0.001 3.98 (-58, -32, 40)

mmPFC 1 501 0.025 3.59 (-40, 4, 18)
2 511 0.022 3.30 (38, 44, 24)
3 517 0.021 3.25 (56, 8, 34)
4 673 0.004 3.91 (-34, 46, 20)
5 888 0.001 3.66 (-50, -36, -22)
6 1021 < 0.001 3.73 (6, -70, -50)
7 1197 < 0.001 4.36 (34, 0, 60)
8 1719 < 0.001 4.04 (-58, -32, 40)
9 5111 < 0.001 4.11 (52, -58, -28)

10 5985 < 0.001 4.10 (30, -46, 64)

rTPJ 1 526 0.039 4.12 (8, -38, 42)
2 534 0.036 3.86 (66, -32, 34)
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3 1370 < 0.001 4.00 (-38, 4, 22)
4 2360 < 0.001 4.15 (40, 44, 24)
5 2687 < 0.001 4.25 (-28, 32, 30)
6 5395 < 0.001 4.14 (6, 30, 42)
7 8727 < 0.001 4.58 (-54. -60, -20)

lTPJ 1 520 0.039 3.31 (38, 38, 30)
2 706 0.007 3.41 (-30, -58, 60)
3 1050 < 0.001 3.77 (-12, -70, -6)
4 1684 < 0.001 3.86 (-36, -32, -22)

Empathy 
High > Low

Good-positive >
good-negative

PC 1 668 0.009 3.44 (38, -12, -12)

dmPFC 1 530 0.024 3.49 (8, -72, -6)
2 592 0.013 3.35 (46, 4, -2)

mmPFC 1 719 0.002 3.82 (32, -26, 24)

vmPFC 
(Saxe)

1 798 0.001 3.64 (-4, -40, 20)

2 3426 < 0.001 4.21 (-10, -24, -36)

rSTS 1 1792 < 0.001 4.11 (-2, -30, 54)
2 1823 < 0.001 4.10 (56, -50, 18)
3 3135 < 0.001 3.92 (18, -54, 0)

Empathy 
Low > High

Bad-negative > 
bad-positive

PC 1 793 0.006 3.75 (-16, -48, -30)

2 1353 < 0.001 3.74 (12, -74, -4)
3 1361 < 0.001 3.60 (30, -12, 0)
4 2036 < 0.001 4.09 (-18, -4, -12)

mmPFC 1 461 0.035 3.77 (-16, 4, -10)

vmPFC 
(Saxe)

1 854 < 0.001 3.50 (-34, -8, 62)

rSTS 1 886 0.004 4.02 (4, -74, 10)

rTPJ 1 1323 < 0.001 3.63 (10, -74, -4)
2 1498 < 0.001 4.39 (-22, -4, -12)

lTPJ 1 607 0.017 3.67 (8, -76, -4)

Combinations of contrasts and seed regions not listed here yield no significant clusters.
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Figure 4. Mean PPI results (all participants) when using PC as a seed region; the 

positively-valenced contrast (good-positive > good-negative, in red) yields more limited 

differences in connectivity than the negatively-valenced contrast (bad-negative > bad-

positive, in blue).
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Figure 5. Mean PPI results (all participants) when using rTPJ as a seed region; the 

positively-valenced contrast (good-positive > good-negative, in red) yields more limited 

differences in connectivity than the negatively-valenced contrast (bad-negative > bad-

positive, in blue).
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Subsequent analysis revealed that when using enjoyment as the DV, model fit can be 

somewhat improved by only examining high-empathy participants (R = 0.349, adjusted R2 = 

0.045). In this exploratory model, within-subject coactivation of right amygdala and the 

vmPFC region identified by the Saxelab has a negative effect on enjoyment (standardized β =

-0.361, t = -2.007, p = 0.047), while coactivation of left amygdala and vmPFC has a slightly 

weaker positive effect on enjoyment (standardized β = 0.334, t = 1.883 p = 0.062). When 

examining only low-empathy participants, a linear regression model again fails to explain 

variation in enjoyment (R = 0.183, adjusted R2 = -0.043). In sum, these results fail to support 

the prediction made in H4. 

Face-tracking Analysis

Data-collection pipeline. A facial movement time-series was extracted for each 

stimulus video from the recordings of a participant’s think-aloud session. Face recognition 

and tracking was performed using the Clmtrackr library (https://github.com/auduno/ 

clmtrackr) which uses the constrained local model technique for tracking facial features 

(Saragih, Lucey, & Cohn, 2009). The output from Clmtrackr is an array of 71 coordinate 

pairs identifying the location of specific facial landmarks. It also includes an SVM classifier 

that uses these features to provide automatic emotion detection in four dimensions (happy, 

sad, angry, surprised). The models provided by Clmtrackr were trained using sample images 

from the MUCT face database (http://www.milbo.org/muct/). 

Because Clmtrackr is implemented in JavaScript, a somewhat unusual processing 

pipeline was necessary for automatic extraction of the facial time-series. First, the recordings 

for each participant were trimmed such that each think-aloud video begins when the stimulus 
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video appears on screen for the participant and continues for 3 minutes (i.e., the length of the 

stimulus video). The trimmed recordings were then converted to the Theora format to 

facilitate use of the HTML5 ‘video’ element. Trimming and re-encoding were carried out 

using Mencoder (http://www.mplayerhq.hu) and Ffmpeg (http://www.ffmpeg.org) 

respectively, and both processes were automated with Python. 

Next, a template page was created using HTML5 and JavaScript to run Clmtrackr on 

an arbitrary video. A Python script was then used to convert the template page into a series of

unique HTML files - one for each think-aloud video. When opened in a Web browser, the 

HTML file for a particular video will automatically play that video and record the Clmtrackr 

output. The position and emotion parameters are updated every 500ms and the resultant time-

series is packed into a JavaScript object. When the video is complete, a callback function 

submits the resultant data in JavaScript object notation (JSON) to an ad-hoc local HTTP 

server, and a Python common gateway interface (CGI) script saves the data for later analysis.

The process of starting the ad-hoc server, opening each video, waiting for output, and then 

closing the browser was also automated in Python. All videos were processed in the 

Chromium Web browser, an open-source variant of Google Chrome for Linux. See Appendix

A for source code for this pipeline.

Preprocessing. This procedure generated a substantial amount of raw data: each 

time-point consists of a 71x2x2 array of facial landmark coordinates in addition to the 1x4 

emotion classifier output, and the output file for a single video contains more than 350 time-

points, yielding nearly 400MB of data in total. In order to consolidate this information, 

several facial features of interest were computed, such as brow-to-brow distance, mouth 
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width, eye height, and nose-to-brow distance. These features, in addition to the emotion 

classifier output, are the variables used in subsequent analyses. See Table 5 and Figure 6 for 

a full description of each feature and its underlying reference points. 

Facial feature time-series were pre-processed using the Pandas data analysis library 

(http://pandas.pydata.org). First, the raw time-series data was read from the JSON file for 

each video. To account for minor variations in the length of the raw data, all series were 

trimmed to contain exactly 320 time-points (160s). Then, the facial features described above 

were computed for each time-point. The resultant time-series was smoothed using a 2s 

moving average and missing time-points were estimated using linear interpolation. To 

account for differences in magnitude across features, the time-series for each feature was 

standardized. A plot of a representative time-series from the emotion classifier is provided in 

Figure 7. 

Statistical tests. Mirroring the procedure used for brain ISC above, subject-pairwise 

correlation in the time-series of each facial feature was computed by video. This data was 

first evaluated using ANOVA to compare mean facial correlation across ADT level 

(disposition-consistent, disposition-inconsistent, or amoral). Post-hoc tests of mean 

differences were computed using the Tukey method. The subject-pairwise correlation in 

mean emotion level (the average of all emotion scores in the Clmtrackr classifier) differs 

significantly between disposition levels (F(2,3462) = 9.360, p < 0.001). Pairwise correlation 

in mean emotion is greater
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Figure 6. Facial anchor points tracked by clmtracker (from http://github.com/auduno/ 

clmtrackr).
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Table 5

Definition of computed facial features where m is a function that takes the mean of its 
operands, d is a function that takes the Euclidean distance of its operands, and integer 
values are anchor point indices (see Figure 6).

Feature Calculation

Brow-to-Brow Distance (from center) d(20, 16)

Brow-to-Brow Distance (from edge) d(22, 18)

Mouth-to-nose distance m(d(35,44), d(39,50))

Mouth height d(47, 53)

Mouth width d(44, 50)

Nose-to-brow distance d(33, 62)

Eye height m(d(24, 26), d(29, 31))

Eye width m(d(23, 25), d(28, 30))
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Figure 7. Sample emotion classifier time-series for one subject during one scene. 
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 in disposition-inconsistent conditions than disposition-consistent ones (mean difference = 

0.022, p = 0.019); in fact, while disposition-inconsistent conditions produce significantly 

higher facial correlations than amoral controls (mean difference = 0.043, p < 0.001), the 

difference between disposition-consistent conditions and amoral controls is not significant 

(mean difference = 0.020, p = 0.116). Likewise, subject-pairwise correlation in sadness level 

(as classified by Clmtrackr) displays the same pattern (F(2,3462) = 4.997, p = 0.007), with 

higher correlations in disposition-inconsistent conditions than disposition-consistent ones 

(mean difference = 0.018, p = 0.077) and amoral controls (mean difference = 0.031, p = 

0.008). The anger dimension of the emotion classifier also displays the same trend but does 

not reach statistical significance (F(2,3462) = 2.215, p = 0.109).   It seems that, as predicted 

by ADT, subjects react negatively to disposition-inconsistent outcomes; it is negative 

emotions (sadness, anger) which  show condition-wise differences in between-subject facial 

correlations. Conversely, no corresponding increase in positive emotion (happiness) was 

found in disposition-consistent conditions. None of the lower-level facial features measured 

were found to be significant in this test, although eye height (how “open” the eyes are) was 

near the threshold (F(2,3462) = 2.827, p = 0.059). See Tables 6a and 6b for full results.

To investigate whether subject pairs differ systematically in the similarity of their 

facial expressions, a second ANOVA was conducted to determine if subject-pairwise 

correlations in facial expression vary by empathy level. Pairwise correlation in the mean 

emotion time-series differs significantly in this analysis (F(2,3462) = 104.037, p < 0.001) 

with higher correlations in pairs where both participants are high-empathy compared to pairs 

where both participants are low-empathy (mean difference = 0.151, p < 0.001) or where 
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Table 6a

ANOVA for mean pairwise facial expression correlation by disposition level (disposition-
consistent, disposition-inconsistent, amoral)

Feature F(2,3462) Sig.

Anger 2.215 .109

Brow-to-Brow Distance (from center) .383 .682

Brow-to-Brow Distance (from edge) .191 .826

Eye height 2.827 .059

Eye width .601 .548

Happiness 1.285 .277

Mean emotion 9.360* .000*

Mouth-to-nose distance .138 .871

Mouth height 1.862 .156

Mouth width .709 .492

Nose-to-brow distance 1.053 .349

Sadness 4.997* .007*

Surprise 1.954 .142

* The F-test is significant at the 0.01 level.
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Table 6b

Post-hoc tests (Tukey HSD) for classified emotional features.

Feature
Disposition 
Level (I)

Disposition 
Level (J)

Mean Value

(I) (J)

Mean
Difference

(I-J)
Std.
Err. Sig.

Anger amoral inconsistent .146 .145 .001 .009 .989
consistent .146 .131 .016 .009 .221

inconsistent amoral .145 .146 -.001 .009 .989
consistent .145 .131 .014 .008 .151

consistent amoral .131 .146 -.016 .009 .221
inconsistent .131 .145 -.014 .008 .151

Happiness amoral inconsistent .130 .144 -.015 .009 .264
consistent .130 .142 -.013 .009 .384

inconsistent amoral .144 .130 .015 .009 .264
consistent .144 .142 .002 .008 .954

consistent amoral .142 .130 .013 .009 .384
inconsistent .142 .144 -.002 .008 .954

Mean 
Emotion

amoral inconsistent .362 .405 -.043* .010 .000*
consistent .362 .382 -.020 .010 .116

inconsistent amoral .405 .362 .043* .010 .000*
consistent .405 .382 .022* .008 .019*

consistent amoral .382 .362 .020 .010 .116
inconsistent .382 .405 -.022* .008 .019*

Sadness amoral inconsistent .175 .206 -.031* .010 .008*
consistent .175 .188 -.013 .010 .443

inconsistent amoral .206 .175 .031* .010 .008
consistent .206 .188 .018 .008 .077

consistent amoral .188 .175 .013 .010 .443
inconsistent .188 .206 -.018 .008 .077

Surprise amoral inconsistent .194 .212 -.018 .012 .266
consistent .194 .195 -.001 .012 .991

inconsistent amoral .212 .194 .018 .012 .266
consistent .212 .195 .016 .009 .187

consistent amoral .195 .194 .001 .012 .991
inconsistent .195 .212 -.016 .009 .187

* The mean difference is significant at the 0.05 level.
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participants are mis-matched in empathy level (mean difference = 0.076, p < 0.001). 

Correlations in the level of classified sadness (F(2,3462) = 41.052, p < 0.001) and surprise 

(F(2,3462) = 126.072, p < 0.001) obey the same trend, with the highest subject-pairwise 

correlations when both subjects are more empathic and the lowest subject-pairwise 

correlations when both subjects are less empathic (all mean differences between 

high/low/mismatched groups are significant, p < 0.001). Correlations in anger and happiness 

levels were not significantly different in this model, although happiness displays the same 

trend at a near-significant level (F(2,3462) = 2.775, p = 0.062; both-high vs. both-low mean 

difference = 0.023, p = 0.051).

A linear regression analysis was also conducted to examine the relationship between 

intersubject correlations in the brain and in the face. Although intersubject correlations in 

both brain and face differ systematically by condition, they do not correlate strongly with 

each other. Contrary to H3, neuronal ISC predicts only a very small amount of correlation in 

facial mean emotion level (R = 0.101, adjusted R2 = 0.007). None of the vmPFC seed regions

are significant predictors in this model. The amygdala is weakly predictive and does not 

reach significance (standardized β = 0.036, t = 1.696, p = 0.090). Several of Saxe’s ToM 

regions are weak negative predictors: mmPFC (standardized β = -0.043, t = 1.967, p = 

0.049), right STS (standardized β = -0.061, t = -2.829, p = 0.005), and right TPJ 

(standardized β = -0.065, t = -2.699, p = 0.007). The only significant positively-signed 

predictor was left TPJ (standardized β = 0.061, t = 2.451, p = 0.014). In other words, 

generally speaking, the more similar subject-pairs are in the time-course of their facial 

displays of emotion, the less similar they are in the time-course of coactivation in these ROIs.
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However, given the extremely low amount of overall variance explained by this model, that 

trend must be interpreted very cautiously. Collectively, the findings do not bear out the 

prediction made in H3.   

Discussion

The hypothesized effects receive mixed support in this study. In keeping with the 

finding of Weber et al. (2011), ISCs in many of the morally-relevant ROIs examined here are

higher in disposition-consistent conditions and highest when immoral characters are 

punished. The greater correlations in brain activity under these conditions supports the view 

that disposition-consistent moral content operates on commonly-held intuitive preferences, 

with individuals exhibiting a particular shared sensitivity to the punishment of norm-

violators. Conversely, disposition-inconsistent content shows greater between-subject 

variability in brain activity, suggesting that individuals differ in how they process these 

counter-intuitive outcomes. Under this interpretation, the especially strong ISC when 

immoral characters are punished stems from the importance of altruistic punishment as a 

mechanism for encouraging norm-adherence; correcting the undesirable behavior of norm-

violators improves collective outcomes more than encouraging the desirable behavior of 

norm-adherents. A strong intuition that wrongdoers must be punished is crucial to 

cooperation in human social groups, particularly in modern societies where group sizes are 

large and social ties are comparatively weak (Fehr & Gachter, 2002). 

However, while inter-subject correlations in facial expression do vary systematically 

between disposition-consistent and disposition-inconsistent conditions, they do not match the

pattern of neuronal ISC. Instead, facial displays of emotion are most similar across 
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participants during disposition-inconsistent conditions. Consistent with ADT, these 

expectation-violating scenes produce a negatively-valenced emotional reaction which is 

reflected in participants’ faces. However, previous research has demonstrated that facial 

expressions are not simply a neutral window into one's emotional state, but a means to 

communicate emotional information to others (Firth, 2009). For example, when observing 

someone else in pain, individuals empathically mirror pained facial expressions, but this 

mirroring is exaggerated when the empathizer is observed by the person in pain (Bavelas, 

Black, Lemery, & Mullet, 1986).  Moreover, meta-analysis has shown that the facial 

expressions theorized by the widely-studied affect program theory (Eckman, 1993) generally 

are not reliably elicited by the mere experience of a particular emotion (Reisenzein, 

Studtmann, & Horstmann, 2013). Rather than directly conveying an emotional state, facial 

expressions may instead serve primarily as a means of conveying one's motivations to others 

(Parkinson, 2005). Drawing on this view, one explanation for the findings in this study is that

facial expressions serve as a way for people to convey their rejection of morally-

unacceptable disposition-inconsistent outcomes (e.g. rewarding a wrongdoer) moreso than to 

convey their acceptance of morally-laudable outcomes, which may be less communicatively 

salient because it is taken for granted. It is important to note that participants in this study 

were seated next to a research assistant during collection of the think-aloud data used for 

facial analysis. Further research might be conducted to determine if these emotional displays 

in response to moral narrative content are modulated by the presence of others. It may be, for

example, that negative facial expressions signal the rejection of inequitable outcomes to 

others and thereby encourage punishment of norm-violators. 
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While the functional connectivity analyses did not support the hypothesized 

relationship between amygdala-vmPFC connectivity and affective disposition, they 

nonetheless reveal intriguing patterns to guide future research. The results indicate a complex

systematic pattern of functional connectivity for both amygdala and vmPFC seed regions. 

Both regions exhibit significantly higher connectivity with the inferior parietal lobule during 

disposition-consistent conditions, but this relationship is moderated by trait empathy: the 

pattern of connectivity is the same for high-empathic individuals watching positively-

valenced disposition-consistent content as it is for low-empathic individuals watching 

negatively-valenced disposition-consistent content. Although the inferior parietal lobule was 

not an a priori ROI, it forms the upper boundary of the TPJ and has been identified in other 

research as playing a role in automatic emotional processing (Lichev et al,, 2015; Radua et 

al., 2010). 

Speculatively, if these connectivity patterns are taken to reflect the differential 

activity of an emotional judgment network, then a plausible explanation might be that more 

empathic people more readily share in the joy of others (while judging wrongdoers less 

harshly), whereas less empathic people find particular affective satisfaction in the 

punishment of wrongdoers (while taking no particular pleasure in the joy of others). 

However, empirical support for this idea remains sparse, since most studies linking morality 

with empathy generally examine how different moral scenarios elicit varying levels of 

empathic concern (e.g. Decety, Michalska, & Kinzler, 2012), or, alternatively, examine how 

trait empathy influences the propensity for moral judgment (e.g., Detert, Trevino, & 

Sweitzer, 2008). In building a philosophical argument, Prinz (2011) draws on altruistic 
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punishment research to advance the claim that negatively-valenced affect is more motivating 

than empathy per se. Yet to my knowledge, no study has yet empirically studied the 

relationship between trait empathy and differing valences of moral content. The striking 

similarity of low-empathy participants during negatively-valenced conditions with high-

empathy participants during positively-valenced conditions indicates that individual 

differences can moderate the effects of morally-salient content on brain activity, even though,

in the aggregate, disposition-consistent outcomes increase ISC regardless of empathy level. 

The findings in this study support the idea that patterns of functional connectivity vary 

considerably between high- and low-empathy participants and thereby suggest that trait 

empathy is an important covariate for future research.

Additionally, the exploratory PPI analyses using ToM seed regions support the notion

that negatively-valenced disposition-consistent content tends to recruit a more diverse 

network of brain regions than positively-valenced disposition-consistent content. An 

illustrative example is functional connectivity of the rTPJ in this data. In the positively-

valenced contrast (good-positive > good-negative), PPI analysis yields 3 relatively small 

clusters in occiptal, temporal, and precentral frontal cortex. On the other hand, in the 

negatively-valenced contrast (bad-negative > bad-positive), there are 7 large clusters with 

uniformly-higher max-Z values spanning occipital, temporal, parietal, and frontal cortex. Of 

particular interest in the negatively-valenced condition is the apparent coactivation of rTPJ 

with brain regions widely-associated with executive decision-making such as the anterior 

cingulate cortex (ACC) and bilateral frontal pole. Likewise, using the precuneus as a seed 

region, the positively-valenced contrast yields 2 small clusters, whereas the negatively-
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valenced contrast yields 7 wider-reaching areas of activation with higher max-Z values, 

including regions in the ACC and bilateral frontal pole which are non-significant in the 

positively-valenced contrast. These results show that when immoral characters are punished, 

the between-subject mean functional connectivity patterns for rTPJ and PC are significantly 

different from when immoral characters are rewarded. But, on the other hand, when morally-

upstanding characters are rewarded, the between-subject mean functional connectivity 

patterns are only marginally different from when moral characters are punished. This finding 

is theoretically consistent with the view outlined above (as well as in Weber et al., 2011) that 

people possess a particular innate sensitivity to the punishment of immoral characters. Given 

the results of the ISC analysis, it could be the case, for instance, that functional connectivity 

patterns are more individually-variant under positively-valenced conditions (yielding a null 

result when aggregated across all subjects), whereas negatively-valenced conditions brings 

these connectivity patterns into alignment across individuals by tapping into deeply-rooted 

intuitions (thereby producing many highly-significant results when aggregated across all 

subjects). Future research might be conducted to more clearly delineate the difference in 

these networks and generate more accurate predictions about how functional connectivity 

influences disposition preferences and narrative enjoyment.   

In summary, the overarching purpose of this study was to examine the affective 

underpinnings of ADT using observational measures derived from brain activity and facial 

expressions. Consistent with prior research, ISC in brain activity is higher in disposition-

consistent conditions than disposition-inconsistent conditions, and highest when immoral 

characters are punished. However, contrary to what was predicted, the affective component 
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of ADT does not seem to be explicable on the basis of amygdala-vmPFC connectivity. The 

conceptual framework underlying Shenhav & Greene's (2014) work is that limbic and 

executive systems interact to produce an integrative moral judgment, and that higher 

connectivity between amygdala and vmPFC therefore represents the integration of affective 

response with reasoned judgment. Theory would suggest that stronger affective involvement 

should accentuate disposition-driven preferences; however, on an individual level, the co-

activation of these particular seed regions did not predict the strength of affective disposition 

as measured by the ADT index (Weber et al., 2008). Future research may be well-served to 

consider the spatially-proximate and functionally-similar temporal pole, rather than the 

amygdala, given that PPI analysis revealed greater vmPFC-temporal pole connectivity 

(aggregated across all subjects) in the negatively-valenced contrast. Additionally, although 

the ISC results suggest the ability of negatively-valenced disposition-consistent content to 

align brain activity across individuals, the moderating role of trait empathy in the PPI 

analyses suggests that individual differences in empathy do affect functional connectivity 

patterns and should be accounted for in future models. The tension between these two 

findings is worthy of further study.

These results refute the prediction that correlations in facial expressions can serve as 

an indicator of ISCs in the brain. On the contrary, these results suggest that, if anything, 

higher facial correlations are associated with lower levels of ISC in relevant brain ROIs. 

While disposition-consistent content engages common patterns of brain activity across 

individuals, it is instead disposition-inconsistent content that engages common patterns of 

facial activity across individuals. As argued above, the most reasonable explanation for this 
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effect seems to be that facial expressions do not serve as a direct window into a person's 

emotional state, but rather serve as a means to communicate salient information to others. 

Although it runs contrary to what was predicted, this finding leads to an intriguing direction 

for research into how this subtle form of nonverbal communication influences others 

watching the same narrative.

References

Adolphs, R. (2002). Recognizing emotion from facial expressions: psychological and 

neurological mechanisms. Behavioral Cognitive Neuroscience Review, 1(1), 21—62.

Aramova, Y. R. & Inbar, Y. (2013). Emotion and moral judgment. WIREs Cognitive Science,

4, 169—178.

Barbey, A. K., Krueger, F., & Grafman, J. (2009). Structured event complexes in the medial 

prefrontal cortex support counterfactual representations for future planning. 

Philosophical Transactions of the Royal Society B, 364, 1291—1300.

Bavelas, J. B., Black, A.,  Lemery, C. R., & Mullett, J. (1986). “I show how you feel”: Motor

mimicry as a communicative act. Journal of Personality and Social Psychology, 

50(2), 322—329.

Bennis, W. M., Medin, D. L., & Bartels, D. M. (2010). The costs and benefits of calculation 

and moral rules. Perspectives on Psychological Science, 5, 187—202.

Berkman, E. T. & Falk, E. B. (2013) Beyond brain mapping: Using neural measures to 

predict real-world outcomes. Current Directions in Psychological Science, 22(1), 45

—50.

58



Buckholtz, J. W., Asplund, C. L., Dux, P. E., Zald, D. H., Gore, J.C., Jones, O. D., & Marois,

R. (2008). The neural correlates of third-party punishment. Neuron, 60(5), 930—940.

Busso, C., Deng, Z., Yildirim, S., Bulut, M., Lee, C. M., Kazemzadeh, A., Lee, S., Neumann,

U., & Narayanan, S. (2004). Analysis of emotion recognition using facial 

expressions, speech and multimodal information. In Proceedings of the 6th 

international conference on Multimodal interfaces, 205—2011. New York: ACM.

Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, 

S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on 

morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783—

796.

Damasio, A. (2000). A second chance for emotion. In R.D. Lane & L. Nadel (Eds.), 

Cognitive Neuroscience of Emotion (pp. 12—23). New York, NY: Oxford University 

Press.

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a 

multidimensional approach. Journal of Personality and Social Psychology, 44(1), 

113-126.

Detert, J. R., Trevino, L. K., & Sweitzer, V. L. (2008). Moral disengagement in ethical 

decision making: A study of antecedents and outcomes. Journal of Applied 

Psychology, 93(2), 374—391.

Dinh, J. E. and Lord, R. G. (2013). Current trends in moral research: What we know and 

where to go from here. Current Directions in Psychological Science 22(5), 380—385.

59



Dufour, N., Redcay, E., Young, L., Mavros, P. L., Moran, J. M, Triantafyllou, C., … Saxe, 

R. (2013). Similar brain activation during false belief tasks in a large sample of adults

with and without autism. PLOSOne, 8(9), e75468. 

Eckman, P. (1993). Facial expression and emotion. American Psychologist, 48, 384—392.ew

Fehr, E. & Gachter, S. (2002). Altruistic punishment in humans. Nature, 415, 137—140.

Firth, C. (2009). Role of facial expressions in social interactions. Philosophical Transactions

B, 364(1535), 3453—3458. 

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. 

Human Brain Mapping, 2, 56—78.

Gallese, V., Keysers, C., and Rizzolatti, G. (2004). A unifying view of the basis of social 

cognition. Trends in Cognitive Sciences, 8(9), 396—403. 

Gleichgerrcht, E. & Young, L. (2013). Low levels of empathic concern predict utilitarian 

moral judgment. PLoS One, 8(4), e60418.

Goldman, A. I. and  Sripada, C. S., (2005). Simulationist models of face-based emotion 

recognition. Cognition, 94(3), 193—213. 

Green, J. D., Sommerville, R. B., Nystrom, L. E, Darley, J. M., & Cohen, J. D. (2001). An 

fMRI investigation of emotional engagement in moral judgment. Science, 293, 2105

—2108.

Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based 

recognition. Neuroimage, 48(1), 63-72.

Haidt, J. (2003). The emotional dog does learn new tricks: A reply to Pizarro and Bloom 

60



(2003). Psychological Review, 110, 197—198.

Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., Keysers, C. (2012). Brain-to-brain 

coupling: mechanism for creating and sharing a social world. Trends in Cognitive 

Science, 16(2):114—121.

Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008).

Neurocinematics: The neuroscience of film. Projections, 2(1), 1—26.

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject 

synchronization of cortical activity during natural vision. Science, 303, 1634—1640.

Kauppi, J.P., Pajula, J., & Tohka, J. (2014). A versatile software package for inter-subject 

correlation based analyses of fMRI. Frontiers in Neuroinformatics, 8, 2.

Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science,

342(6), 377—380. 

Lichev, V, Sacher, J., Ihme, K., Rosenberg, N., Quirin, M., Lepsein, J., … Suslow, T. (2015).

Automatic emotion processing as a function of train emotion awareness: a fMRI 

study. SCAN, 10, 680-689.

Mikhail, J. (2007). Universal moral grammar: Theory, evidence, and the future. Trends in 

Cognitive Sciences, 11(4), 143—152.

Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). The neural basis

of human moral cognition. Nature Reviews Neuroscience, 6, 799—809. 

Moll, J. & de Oliveira-Souza, R. (2007). Moral judgments, emotions and the utilitarian brain.

Trends in Cognitive Sciences, 11(8), 319—321.

61



Narvaez, D. (2010). Moral complexity: The fatal attraction of truthiness and the importance 

of mature moral functioning. Perspectives on Psychological Science 5(2), 163—181.

Ochsner, K. N. & Gross, J.  J. (2005). The cognitive control of emotion. Trends in Cognitive 

Sciences, 9, 242–249.

O'Donnell, M. B., & Falk, E. B. (2015). Linking neuroimaging with functional linguistic 

analysis to understand processes of successful communication. Communication 

Methods and Measures, 9(1-2), 55—77.

Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of 

findings on social and emotional processing. Brain, 130, 1718-1731. 

O’Reilly, J. X., Woolrich, M. W., Behrens, T. E., Smith, S. M., & Johansen-Berg, H. (2012). 

Tools of the trade: Psychophysiological interactions and functional connectivity. 

Social Cognitive and Affective Neuroscience, 7(5), 604—609.

Parkinson, B. (2005). Do facial movements express emotions or communicate motives? 

Personality and Social Psychology Review, 9(4), 278—311.

Pizarro, D. A. & Bloom, P. (2003). The intelligence of moral intuitions: Comment on Haidt 

(2001). Psychological Review, 110, 193—196.

Prinz, J. J. (2011). Is empathy necessary for morality? In A. Coplan & P. Goldie (Eds.), 

Empathy: Philosophical and Psychological Perspectives (pp. 211—229). Oxford: 

Oxford University Press.

Raney, A. A. & Bryant, J. (2002). Moral judgment and crime drama: An integrated theory of 

enjoyment. Journal of Communication, 52, 402—415. 

Reisenzein, R., Studtmann, M., & Horstmann, G. (2013). Coherence between emotion and 
62



facial expression: Evidence from laboratory experiments. Emotion Review, 5(1), 16—

23.

Ross, D. (2007). H. sapiens as ecologically special: what does language contribute? 

Language Sciences, 29, 710—731.

Saragih, J. M., Lucey, S., & Cohn, J. (2009). Face alignment through subspace constrained 

mean-shifts. IEEE International Conference on Computer Vision. Retrieved from 

https://www.ri.cmu.edu/pub_files/2009/9/CameraReady-6.pdf.

Schaich-Borg, J., Lieberman, D., and Kiehl, K. A. (2008). Infection, incest, and 

iniquity: Investigating the neural correlates of disgust and morality. Journal of

Cognitive Neuroscience, 20, 1529—1546. 

Shenhav, A. & Greene, J. D. (2014). Integrative moral judgment: Dissociating the 

roles of the amygdala and ventromedial prefrontal cortex. Journal of 

Neuroscience, 34, 4741—4749.

Singer, T., Seymour, B., O’Doherty, J. P., Klass, S. E., Dolan, R. J., & Firth, C. D. 

(2006). Empathic neural responses are modulated by the perceived fairness of 

others. Nature, 439(7075), 466—469.

Stephens, G. J., Silbert, L. J., Hasson, U. (2010). Speaker-listener neural coupling underlies 

successful communication. Proceeding National Academy of Science USA, 107(32) 

14425—14430.

Tamborini, R. (2011). Moral intuition and media entertainment. Journal of Media 

Psychology: Theories, Methods, and Applications 23(1), 39—45.

63



Thomson, J. J. (1976). Killing, letting die, and the trolley problem. The Monist, 59, 

204—217.

Vogt, T., André, E., & Bee, N. (2008). EmoVoice: A framework for online 

recognition of emotions from voice. Lecture Notes in Computer Science, 

5078, 188—199.

Weber, R., Eden, A., & Mathiak K. (2011). Seeing bad people punished makes us think alike:

Social norm violations in television drama elicit cortical synchronization in viewers. 

Paper presented at the annual meeting of the International Communication 

Association, Boston, MA.

Weber, R., Sherry, J., & Mathiak, K. (2008). The neurophysiological perspective in mass 

communication research: Theoretical rationale, methods, and applications. In M. J. 

Beatty, J. C. McCroskey, & K. Floyd (Eds.), Biological Dimensions of 

Communication: Perspectives, Methods, and Research (pp. 41—71). Cresskill, NJ: 

Hampton Press.

Weber, R., Tamborini, R., Lee, H. E., & Stipp, H. (2008). Soap opera exposure and 

enjoyment: A longitudinal test of disposition theory. Media Psychology, 11, 462—

487.

Zillmann. D. (2006). Dramaturgy for emotions from fictional narration. In J. Bryant & P. 

Vorderer, Psychology of Entertainment. Mahwah, NJ: Erlbaum.

Zillmann, D. (2013). Moral monitoring and emotionality in responding to fiction, sports, and 

the news. In R. Tamborini, (Ed.), Media and the Moral Mind. New York: Routledge. 

64



Zillmann, D. & Cantor, J. R., (1977). Affective responses to the emotions of a protagonist.

Journal of Experimental Social Psychology, 13(2), 155—165. 

65



APPENDIX A

FACE-TRACKING SOURCE CODE

Main script, process_video.py:

#!/usr/bin/env python
import json,os,subprocess,sys,time,threading,subprocess
from collections import OrderedDict,deque
from partool import cluster_list,queue_list
from constants import *
from CGIHTTPServer import CGIHTTPRequestHandler
from BaseHTTPServer import HTTPServer

CHROMECALL = 'chromium http://localhost:9999/{i} &'
TEMPLATE = VIDEOPATH+'process_template.html'

# run http server as thread
os.chdir(VIDEOPATH)
adr = ('',9999)
httpd = HTTPServer(adr, CGIHTTPRequestHandler)
threading.Thread(target=httpd.serve_forever).start()

with open(JSONPATH+'order_data.json','r') as jsonfile:
    order_data = 
json.load(jsonfile,object_pairs_hook=OrderedDict)

with open(TEMPLATE) as templatefile:
    template = templatefile.read()

cmdlist = deque()
for subj in order_data.keys():
    for video in range(1,16):
        vid = str(video).zfill(2)
        uid = subj.zfill(2)
        # make the html file
        of = template.format(s=uid,v=vid)
        ofile = '{}html/{}_{}.html'.format(VIDEOPATH,uid,vid)
        with open(ofile,'w') as outfile:
            outfile.writelines(of)
        # run the html file
        i = 'html/{}_{}.html'.format(uid,vid)
        cmd = CHROMECALL.format(i=i)
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        cmdlist.append(cmd)

while len(cmdlist) > 0:
    subprocess.call(cmdlist.popleft(),shell=True)
    # wait awhile so they don't pile up
    time.sleep(195)
    # kill it
    subprocess.call('pkill chromium',shell=True)
    time.sleep(5)
httpd.shutdown()

Contents of process_template.html:

<html>
  <head>
    <script src="http://localhost:9999/clmtrackr.js"></script>
    <script 
src="http://localhost:9999/model_pca_20_svm_emotionDetection.j
s"></script>
    <script 
src="http://localhost:9999/emotionmodel.js"></script>
    <script 
src="http://localhost:9999/emotion_classifier.js"></script>
  </head>
  <body>
    <div>
    <video id="inputVideo" width="720" height="480">
      <source src="http://localhost:9999/thinkaloud/trimmed/
{s}_{v}.ogv" type="video/ogg"/>
    </video>
    <canvas id="drawCanvas" width="720" height="480" 
position="float"></canvas>
    </div>
    <div id="data1"></div>
    <div id="data2"></div>
    <div id="data3"></div>
    <script 
src="http://localhost:9999/process_video.js"></script>
    <form action="http://localhost:9999/cgi-bin/write.py" 
method="POST" id="subform">
      <input type="text" name="video" id="video" 
value="{s}_{v}"/>
      <textarea name="jsondata" id="jsondata"></textarea>
    </form>
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  </body>
</html>

Contents of process_video.js:

var input = document.getElementById('inputVideo');
var data1 = document.getElementById('data1');
var data2 = document.getElementById('data2');
var data3 = document.getElementById('data3');
function finished(e) {
    clearTimeout(dataloop);
    ctracker.stop();
    outfield = document.getElementById('jsondata');
    outfield.value = '['+outdata.toString()+']';
    document.getElementById('subform').submit();
}
var outdata = [];
function log_data() {
    position = ctracker.getCurrentPosition();
    params = ctracker.getCurrentParameters();
    emotion = ec.meanPredict(params);
    data1.innerHTML = position;
    data2.innerHTML = params;
    if (emotion) {
        emotion_string = 
emotion[0].emotion+emotion[0].value.toString()
+emotion[1].emotion+emotion[1].value.toString()
+emotion[2].emotion+emotion[2].value.toString()
+emotion[3].emotion+emotion[3].value.toString();
        data3.innerHTML = emotion_string;
    }
    
outdata.push(JSON.stringify({"position":position,"parameters":
params,"emotions":emotion}));
}
input.addEventListener('ended',finished,false);
var ctracker = new clm.tracker();
ctracker.init(pModel);
ec = new emotionClassifier();
ec.init(emotionModel);
input.play();
ctracker.start(input);
dataloop = setInterval(log_data,500);
var canvasInput = document.getElementById("drawCanvas");
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var cc = canvasInput.getContext('2d');
function drawLoop() {
    requestAnimationFrame(drawLoop);
    cc.clearRect(0,0,canvasInput.width,canvasInput.height);
    ctracker.draw(canvasInput);
}
drawLoop();

Contents of write.py (CGI script to save output):

#!/usr/bin/env python
import cgi

FACEPATH = '/mnt/diss/predict/face/'

form = cgi.FieldStorage()
vid = form.getvalue('video')
filename = '{}{}'.format(FACEPATH,vid)

with open(filename,'w') as outfile:
    outfile.write('{}\n'.format(form.getvalue('jsondata')))

print 'Content-type:text/html\n\n'
print '<html><body>Wrote data to 
<strong>{}</strong></body></html>'.format(filename)

Video pre-processing script trim_video.py:

#!/usr/bin/env python

from collections import defaultdict, OrderedDict
from partool import queue_list

INVIDEODIR = 
'/home/jmm/diss_videos/thinkaloud/InterviewVideos/'
OUTVIDEODIR = '/home/jmm/diss_videos/thinkaloud/trimmed/'
MENCODERCALL = 'mencoder -ss 00:00:{start} -endpos 00:03:00 
-oac copy -ovc copy {idir}{subj}_{video}_original.mpg -o 
{odir}{subj}_{video}.mpg'
MAPFILE = '/home/jmm/diss_videos/video_timing.txt'

vdata = defaultdict(OrderedDict)

with open(MAPFILE,'r') as mapfile:
    for ln in mapfile:
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        arr = ln.rstrip().split('\t')
        if len(arr) < 3:
            continue
        subj = arr[0]
        video = arr[1]
        start = arr[2]
        if start.endswith('*'):
            start = start[0]
        vdata[subj][video] = start

cmdlist = []
for subj,data in vdata.items():
    for video,start in data.items():
        s = subj.zfill(2)
        v = video.zfill(2)
        t = start.zfill(2)
        cmd = 
MENCODERCALL.format(idir=INVIDEODIR,odir=OUTVIDEODIR,start=t,s
ubj=s,video=v)
        cmdlist.append(cmd)

queue_list(cmdlist,threadcount=4)

Video conversion script convert_video.py:

#!/usr/bin/env python

import json
from constants import *
from partool import queue_list
from collections import OrderedDict

CONVERTER = 'ffmpeg -i {s}_{v}.mpg {s}_{v}.ogv'

with open(JSONPATH+'order_data.json','r') as jsonfile:
    order_data = 
json.load(jsonfile,object_pairs_hook=OrderedDict)

cmdlist = []
for subj in order_data.keys():
    for i in range(1,16):
        subz = subj.zfill(2)
        iz = str(i).zfill(2)
        cmd = CONVERTER.format(s=subz,v=iz)
        cmdlist.append(cmd)
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queue_list(cmdlist,threadcount=4)
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