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Transposable elements (TEs) can drive evolution by creating
genetic and epigenetic variation. Although examples of adaptive
TE insertions are accumulating, proof that epigenetic information
carried by such “domesticated” TEs has been coopted to control
host gene function is still limited. We show that COPIA-R7, a TE
inserted into the Arabidopsis thaliana disease resistance gene RPP7
recruited the histone mark H3K9me2 to this locus. H3K9me2 levels
at COPIA-R7 affect the choice between two alternative RPP7 poly-
adenylation sites in the pre-mRNA and, thereby, influence the critical
balance between RPP7-coding and non–RPP7-coding transcript iso-
forms. Function of RPP7 is fully dependent on high levels of H3K9me2
at COPIA-R7. We present a direct in vivo demonstration for cooption
of a TE-associated histone mark to the epigenetic control of pre-
mRNA processing and establish a unique mechanism for regulation
of plant immune surveillance gene expression. Our results function-
ally link a histone mark to alternative polyadenylation and the bal-
ance between distinct transcript isoforms from a single gene.

post translational histone modification | EDM2 | Hyaloperonospora
arabidopsidis | PHD finger

As transposition of transposable elements (TEs) can cause
detrimental mutations, TE expression must be tightly sup-

pressed by host silencing mechanisms. In plants, besides meth-
ylation of the DNA base cytosine, the posttranslational histone
modifications (PHMs) H3K9me2 (dimethylated lysine 9 of his-
tone H3) and H3K27me1 (monomethylated lysine 27 of H3) are
closely associated with transcriptional silencing of TEs (1). In
Arabidopsis thaliana (Arabidopsis), H3K9me2 is mainly catalyzed
by the partially functionally redundant Su(var)3–9 family histone
methyltransferases SUVH4/KRYPTONITE, SUVH5, and SUVH6
(2-5). ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5
and 6 (ATXR5 and ATXR6) have overlapping roles in mediating
H3K27me1 (6).
Despite their detrimental potenial, TEs can also be beneficial

for adaptive evolution of host genome structure and expression
control (7–10). For example, TEs have been shown to influence
expression of nearby genes by altering local epigenetic states or
providing cis-regulatory promoter elements. In eukaryotes, the
expression of protein-encoding genes is typically regulated at
multiple levels including RNA polymerase II (RNAPII)-mediated
transcription, pre-mRNA processing, translation, and transcript or
protein turnover (11). Alternative polyadenylation (APA) has re-
cently emerged as an important contributor to global gene regu-
lation (12). Differential choice of APA sites (APAS) can affect the
protein-coding potential of a given mRNA and/or its stability, lo-
calization, or translation efficiency (13).
APA has been thought to be predominantly regulated by pol-

yadenylation factors binding to cis elements within pre-mRNAs
(14). However, such interactions seem not sufficient to explain all
APA-related events observed in vivo. Importantly, RNA pro-
cessing factors are recruited to pre-mRNA cotranscriptionally
when the nascent transcript is still being synthesized at the tem-
plate genomic DNA (15–17). The physical proximity of the DNA
template and transcript-processing events provides opportunities

for molecular interactions between chromatin and the pre-mRNA
processing machinery. Indeed, recent observations suggested that
pre-mRNA processing including polyadenylation and splicing is
regulated also at the chromatin level (13, 18, 19). Intriguingly,
polyadenylation sites were shown to be depleted of nucleosomes
in Saccharomyces cerevisiae (20). In addition, differential distri-
bution of PHMs along genes possibly marking distinct architec-
tural features of their sequence has been reported in humans (21).
Plant disease resistance genes encode NLR (nucleotide-binding

domain leucine-rich repeat containing)-type immune receptors
that trigger defense reactions upon molecular recognition of
pathogen-derived molecules (22). We previously reported on the
Arabidopsis gene EDM2 (enhanced downy mildew 2), which has
a promoting effect on transcript levels of the NLR gene resistance
to Peronospora parasitica (RPP7) (23). Although we also showed
EDM2 to contribute to transcriptional TE silencing by modulating
levels of the repressive PHM H3K9me2 (24), it has been unclear
how EDM2 affects RPP7. Here, we show that EDM2 affects levels
of RPP7-coding transcripts by modulating APA. We further
demonstrate that this APA mechanism results from cooption of
epigenetic information at a TE insertion locus. Besides mechanistic
insight on chromatin-level control of APA, we provide an example
for biologically relevant effects of TE insertions on gene function.

Results
EDM2 Controls COPIA-R7–Associated H3K9me2 and Co- or Post-
transcriptionally Affects RPP7-Coding Transcript Levels. NLR expres-
sion and activity is known to be tightly controlled, as certain
minimal receptor activity levels are required for efficient pathogen
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recognition whereas NLR activity levels above a certain threshold
can trigger autoimmunity and spontaneous cell death (25–29).
We found levels of RPP7-coding transcripts to be well-correlated
with levels of immunity conferred by this disease resistance gene,
indicating that proper control of these transcripts is critical for
RPP7 function (30) (Fig. S1).
RPP7 (AT1G58602) in the Arabidopsis Col-0 accession is a

complex gene with three noncoding exons upstream from its start
codon, followed by three coding exons and three noncoding exons
(Fig. 1A). The first RPP7 intron contains a Ty-1 COPIA-type ret-

rotransposon in sense orientation that we termed COPIA-R7 (Fig.
1A). COPIA-R7 has long terminal repeats (LTRs) at both ends.
By RT-PCR, we previously found levels of RPP7-coding tran-

scripts to be strongly reduced in edm2 mutants compared with
their parental wild-type background Col-0 (23). We confirmed
the reduction of spliced RPP7-coding transcript levels in three
independent edm2 mutants by real-time quantitative (q) RT-PCR
(primer combination c in Fig. 1B). By chromatin immunopre-
cipitation (ChIP) coupled with qPCR, we found H3K9me2 levels
in COPIA-R7 to be high in Col-0 and strongly reduced in edm2
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Fig. 1. Effects of EDM2 on transcripts and H3K9me2 at the RPP7 locus. (A) Schematic representation of the RPP7 locus in the Arabidopsis Col-0 accession.
RPP7 exons are shown as gray-filled boxes. Two LTRs flanking the body of COPIA-R7 are represented as gray-filled arrowheads. Horizontal bars (I, II, III, IV, and
V) denote regions analyzed by ChIP shown in B and F. Black arrows indicate positions of PCR primers used for analyses shown in B, D, and E. (B) Levels of RPP7-
coding transcripts (spliced mature transcripts) measured by qRT-PCR using primer combination c annealing to sequences in exon4 and exon5. Error bars
represent SD for three independent experiments. (C) ChIP-qPCR to measure H3K9me2 levels at RPP7/COPIA-R7. The y axis represents H3K9me2 levels nor-
malized to histone H3 occupancy. ACTIN8 (ACT8) serves as a control locus. Error bars represent SEM for two biological replicates with three technical replicates
each. (D) COPIA-R7 transcript levels determined by qRT-PCR with primer combination b annealing to sequences within the transposon. Error bars represent SD
for three independent experiments. (E) Levels of nascent (unspliced) RPP7 transcripts determined by qRT-PCR with primer combination a annealing to
sequences in exon1 and intron1. Error bars represent SD for three independent experiments. (F) ChIP-qPCR to measure RNAPII occupancy at three RPP7
regions surrounding the transcription start site. The y axis represents RNAPII levels normalized to total input. Error bars represent SEM for two biological
replicates with three technical replicates each.
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mutants (Fig. 1C). Levels of this histone mark were low and not
influenced by EDM2 in regions of RPP7 remote from the TE.
Levels of other well-characterized PHMs, such as H3K4me3,
H3K27me1, and H3K27me3 are not or only slightly affected at
RPP7/COPIA-R7 in edm2 mutants (Fig. S2). Despite the re-
duction of H3K9me2 levels at COPIA-R7, qRT-PCR analysis
showed transcript levels of this TE not to be altered in edm2
plants (Fig. 1D).
To understand whether reduced RPP7-coding transcript levels

in edm2 mutants can be accounted for by a change of the rate of
transcription, we measured unspliced pre-mRNA transcripts in
a population of total RNA by qRT-PCR (primer combination
a in Fig. 1 A and E). This PCR technique of nascent RNA de-

termination was successfully used previously (31). Unlike mature
RPP7-coding mRNA, levels of nascent (unspliced) RPP7 tran-
scripts are not reduced in edm2 mutants. Consistently, RNAPII
occupancy at RPP7 regions surrounding the transcription start
site, as determined by ChIP-qPCR, was also not significantly
altered in edm2 mutants (Fig. 1F). These data demonstrate that
EDM2 promotes high H3K9me2 levels at COPIA-R7 and
positively affects levels of RPP7-coding transcripts in a co- or
posttranscriptional manner.

EDM2 Affects the Ratio Between Two Distinct RPP7 RNA Transcript
Isoforms. We separately measured by qRT-PCR levels of tran-
scripts containing each RPP7 exon (exon1–exon4; Fig. 2A, Upper).
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Fig. 2. Effects of EDM2 on the ratio of RPP7 RNA transcript isoforms. (A) Schematic representation of RPP7 with the RNA transcript isoform ECL. Black
horizontal lines above each exon represent regions amplified by qRT-PCR in the experiment shown in B. Black horizontal arrows represent PCR primers used
for 3′RACE (i and ii) or qRT-PCR (a–c) in C or E, respectively. The alternative polyadenylation site (APAS) preferentially used in edm2 mutants is marked by
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marked with white arrows were further analyzed by sequencing. M1, GeneRuler 1 kb Plus DNA ladder (Fermentas). M2, GeneRuler 100 bp DNA ladder
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were measured using primers a and c (A). Error bars represent SD for three independent experiments.
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Levels of transcripts containing exon1 of RPP7 did not differ
between Col-0 and edm2 plants whereas levels of transcripts
containing the later RPP7 exons are clearly reduced in these
mutants (Fig. 2B). This effect was reverted to the wild-type
Col-0 level in a transgenic complementation line expressing
N-terminally HA-tagged EDM2 driven by the native EDM2
promoter in the edm2-2 background (E2pro:HA-E2c). This line also
exhibited fully restored RPP7-mediated immunity and wild-type
levels of RPP7-coding transcripts (Fig. S1). These observations
strongly suggested that an EDM2-dependent regulatory mech-
anism targets intron1 of RPP7.
We further analyzed RPP7 transcripts by 3′RACE (rapid am-

plification of cDNA ends) with RNA from Col-0 and edm2-2
plants (Fig. 2A, primers i and ii). Similar band patterns were ob-
served between 3′RACE runs with Col-0 and edm2-2 RNA using
primers ii, after agarose gel electrophoresis. However, band pat-
terns obtained with primer i clearly differed between Col-0 and
edm2-2 (Fig. 2C). By sequencing a differential 3′RACE product
generated from edm2-2 RNA with primer i (indicated by an arrow
in Fig. 2C), we identified one spliced RPP7 transcript species that
is initiated at the primer annealing site in exon1, extends until
a regular splice donor site at the end of the exon1, and continues
from an alternative splice acceptor site (ASAS) within intron1
until it is terminated in the 5′-LTR of COPIA-R7 (Fig. 2A, Lower).
We termed this shorter non–RPP7-coding transcript ECL (exon 1-
containing LTR-terminated transcript). Sequencing the 3′RACE
product for Col-0 with primer ii (Fig. 2C, highlighted by an arrow)
revealed the polyadenylation site of COPIA-R7 transcripts to be
located in the 3′-LTR of this TE. The 5′-LTRs of retrotransposons
often act as promoters whereas 3′-LTRs function as terminators
although their nucleotide sequences of 5′- and 3′-LTRs are near-
identical (32) (Fig. S3). The region harboring the poly-
adenylation site for ECL in the 5′-LTR is identical to that for
COPIA-R7 in the 3′-LTR (Fig. 2D).
By 5′RACE, we found a cluster of common transcription start

sites (TSSs) for ECL and RPP7-coding transcripts spreading
over a very short genomic stretch (Fig. S4) surrounding the
predicted RPP7 TSS (www.arabidopsis.org/). Thus, both types
of transcripts must be controlled by the same promoter. ECL is
unlikely to encode any functional protein as the polypeptide
potentially encoded by the longest ECL ORF consists of only 129
amino acids, does not start from an ATG codon, and does not
have obvious homology (E > 1.8) to any protein from Arabidopsis
or other organisms in protein databases (http://blast.ncbi.nlm.nih.
gov/Blast.cgi). Taken together, these data revealed the presence
of alternative polyadenylation (APAS) and splice acceptor sites
(ASAS) in intron1 of RPP7.
By qRT-PCR, we found the fraction of ECL transcripts within

the pool of exon1-containing transcripts to be substantially
higher in edm2-2 plants compared with Col-0 (Fig. 2 A and E).
The balance between these two transcript types was reverted to
that observed in Col-0 in the E2pro:HA-EDM2c line (Fig. 2E).
Together with the fact that the rate of de novo RPP7 transcript
synthesis is not affected by EDM2mutations, this observation shows
the APAS to be more strongly used in edm2 mutants compared
with Col-0. In edm2 plants, preferential use of this promoter-
proximal APAS results in enhanced levels of non–RPP7-coding
ECL transcripts among all exon1-containing transcripts and, con-
sequently, reduced levels of RPP7-coding transcripts.

EDM2 Physically Associates with EDM2-Dependent H3K9me2-Marked
Areas at ECL/COPIA-R7. A high-resolution analysis of H3K9me2
levels at RPP7 by ChIP-qPCR showed high levels of this mark to
be present from exon2 of ECL until exon2 of RPP7 including the
body of COPIA-R7 (Fig. 3 A and B, regions 4–10). RPP7 regions
upstream from the splice acceptor site of ECL exon2 exhibit only
low levels of H3K9me2 (Fig. 3B, regions 1–3). Intriguingly, the
extent of H3K9me2 in ECL exon2 and COPIA-R7 is clearly

dependent on EDM2. In this region, levels of this PHM are
substantially lower in edm2 plants compared with Col-0 whereas
near wild-type levels are restored in the E2pro:HA-EDM2c line.
By ChIP-qPCR with the E2pro:HA-EDM2c line and a commer-

cially available anti-HA antibody, we observed clear HA-EDM2
enrichment at regions 5–10 (Fig. 3C), indicating that EDM2 is
physically recruited to an area, stretching from ECL exon2 into
COPIA-R7, that carries EDM2-dependent H3K9me2 marks.

A Triple Mutant of H3K9 Methyltransferases Phenocopies edm2
Mutants. EDM2 affects H3K9me2 levels at ECL/COPIA-R7
and balances the ratio between ECL and RPP7-coding tran-
scripts. If the effect of EDM2 on H3K9me2 is causal for the
ECL/RPP7 coding transcript balance, the suvh456 triple mutant,
which is deficient in all three major Arabidopsis H3K9 methyl-
transferases, should phenocopy all RPP7-related phenotypes of
edm2 mutants. As expected, the suvh456 mutant exhibited
strongly reduced H3K9me2 levels in exon2 of ECL and COPIA-
R7 compared with Col-0 (Fig. 4A). We also observed in this
triple mutant reduced levels of RPP7-coding transcripts (Fig.
4B), enhanced ECL transcript levels (Fig. 4C), and complete loss
of RPP7-dependent Hyaloperonospora arabidopsidis resistance
(Fig. 4E). As seen in edm2 mutants, reduction of H3K9me2
levels in suvh456 did not affect the rate of RPP7 transcription
(Fig. 4D). Thus, reduced H3K9me2 levels are indeed causal for
the altered balance between ECL and RPP7-coding transcripts
and the loss-of-immunity phenotype of edm2 mutants.

Insertion of COPIA-R7 Coopted the H3K9me2-Dependent Regulatory
Mechanism to RPP7 Expression Control. Inspection of the genomes
of 80 wild inbred Arabidopsis accessions (http://1001genomes.
org/index.html) (33) indicated that most natural variants of this
species contain COPIA-R7 in RPP7. However, six Arabidopsis
accessions—Krazo-2, Koch-1, Cdm-1, Istisu-1, ICE75, and
ICE134—appeared to lack this TE in intron1 of RPP7. Se-
quencing of cloned genomic sequences from Krazo-2 and Koch-1
confirmed the lack of COPIA-R7 in the respective regions. Based
on cDNAs we cloned from Krazo-2 and Koch-1, the exon/intron
structures of their RPP7-like genes and Col-0 RPP7 are clearly
conserved. However, COPIA-R7 and fragments of other trans-
poson in intron2 (Fig. S5) are lacking in the RPP7-like genes
from Krazo-2 and Koch-1 (Fig. 5A). Because of their high sim-
ilarity to Col-0 RPP7 both at the nucleotide and deduced amino
acid sequence levels, we concluded that these genes are ortho-
logs of Col-0 RPP7 and were therefore named RPP7Krazo-2 or
RPP7Koch-1, respectively (Fig. 5A). Detailed sequence analyses of
RPP7Krazo-2 or RPP7Koch-1 are described in SI Text.
Intriguingly, we found insertional sequence blocks at the po-

sition corresponding to the stretch immediately downstream to
Col-0 COPIA-R7 in both RPP7Krazo-2 and RPP7Koch-1. This se-
quence is neither related to transposons nor homologous to any
Col-0 genomic sequences. We term it NIC (not in Col-0) (Fig.
5A). Surprisingly, by 3′RACE (Fig. S6), we found ECL-like
transcripts also to be generated at RPP7Krazo-2 and RPP7Koch-1.
Sequencing of the 3′RACE products revealed that the ASAS for
ECL-like transcripts in RPP7Krazo-2 and RPP7Koch-1 are conserved
compared with that in Col-0 RPP7 (Fig. 5B) whereas their APAS
are located in the middle of the NIC sequences (Fig. 5B).
We cloned cDNAs from Krazo-2 and Koch-1, which are

orthologous to that of EDM2 in Col-0. At the nucleotide level,
they are 99.4% and 100% identical to the Col-0 EDM2 cDNA,
respectively. Their deduced amino acid sequences are also
99.4% and 100% identical to that of Col-0 EDM2. Col-0, Krazo-
2, and Koch-1 plants expressing a common EDM2 mRNA si-
lencing trigger exhibited strongly reduced levels of EDM2-like
transcripts (Fig. 5C). These lines showed morphological changes
of leaves also seen in edm2 mutants (34). Therefore, the cloned
Krazo-2 and Koch-1 cDNAs clearly encode EDM2 orthologs.
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Therefore, we termed the respective genes EDM2Krazo-2 and
EDM2Koch-1.
Silencing of EDM2Krazo-2 and EDM2Koch-1 did not affect levels

of RPP7-coding transcripts whereas silencing of EDM2 in
Col-0 clearly reduced levels of these transcripts (Fig. 5D). In
addition, silencing of EDM2Krazo-2 and EDM2Koch-1 also did not
affect levels of ECLKrazo-2 and ECLKoch-1 (Fig. 5E). Therefore,
EDM2 does not control RPP7 expression in these accessions.
We also measured levels of H3K9me2 at ECLKrazo-2, ECLKoch-1,

and Col-0 ECL, respectively (Fig. 5F). Consistent with the data in
Fig. 3B, high levels of H3K9me2 were detected in exon2 of ECL in
Col-0 (regions 2–3 in Fig. 5B). This PHM is depleted at the cor-
responding ECL regions of Krazo-2 and Koch-1 (regions ii and iii
in Fig. 5B). Thus, high levels of H3K9me2 at ECL in Col-0 must
have originated from the COPIA-R7 insertion and EDM2 affects
RPP7 expression through COPIA-R7 in Col-0.

H3K9me2-Dependent APA Fine-Tunes RPP7-Coding Transcript Levels
in Response to HpaHiks1. We previously reported a transient up-
regulation of RPP7-coding transcripts following HpaHiks1 rec-
ognition in Col-0 (23). By qRT-PCR analysis in Col-0, we now

found this HpaHiks1-induced transient increase of RPP7-coding
transcript levels to be accompanied by up-regulation of all
exon1-containing transcripts including those of ECL (Fig. 6A).
Most importantly, measuring relative levels of RPP7-coding
transcript levels compared with those of ECL (R7/ECL), we
found the R7/ECL ratio to decline after HpaHiks recognition
(Fig. 6B). This trend was tightly correlated with a similarHpaHiks1-
induced decline of H3K9me2 at the APAS for ECL (Fig. 6C). Such
pathogen recognition-induced changes of the R7/ECL ratio,
H3K9me2 levels at the APAS for ECL, or RPP7-coding transcript
levels were not observed in edm2-2 (Fig. 6 B and C) (23). Multiple
mechanisms are likely to adjust levels of RPP7 coding transcripts
after HpaHiks1 infection. However, based on our observations,
dynamic changes of the R7/ECL balance caused by modulation of
H3K9me2 at the APAS for ECL clearly contribute to the fine-
tuning of RPP7 coding transcript levels.

Discussion
Here, we report a unique mechanism controlling expression of
the Arabidopsis disease resistance gene RPP7 that involves
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H3K9me2-mediated APA and determines the balance between two
distinct RPP7-derived transcript isoforms (Fig. 7). This mecha-
nism is a consequence of the insertion of the retrotransposon
COPIA-R7 in intron1 of RPP7 and is critical for the biological
function of RPP7. The plant homeodomain (PHD)-finger pro-
tein EDM2 that we previously showed to control H3K9me2 and
silencing states of the Arabidopsis TEs Mu1 and COPIA4 (24)
also affects this histone mark at COPIA-R7 and has been coop-
ted along with COPIA-R7 to the control of RPP7 expression.
COPIA-R7 has two key roles in this unique mechanism. Firstly,

the 5′-LTR of this TE provides an APAS. Secondly, this retro-
transposon carries epigenetic information that controls use of
this APAS. Lower levels of H3K9me2 at the COPIA-R7 region in
edm2 mutant plants correlate with increased use of this pro-
moter-proximal APAS in the 5′-LTR of COPIA-R7, resulting in
enhanced levels of ECL transcript and reduced levels of RPP7-
coding transcript.
The physical association of EDM2 with the genomic region of

ECL exon2 as well as COPIA-R7, where high levels of EDM2-

dependent H3K9me2 are observed, indicates direct participation
of this protein in this gene regulatory mechanism. It is well-
established in Arabidopsis that the repressive PHM H3K9me2
predominantly associates with TEs and contributes to hetero-
chromatic silencing (1). Furthermore, H3K9me2 appears to have
spread from the body of COPIA-R7 into RPP7 intron1.
Mutations of EDM2 do not affect the rate of RPP7 transcrip-

tion. The degree of immunity conferred by this disease resistance
gene is positively correlated with levels of the RPP7 RNA iso-
form, which encodes an immune receptor. Therefore, a regula-
tory mechanism in RPP7 expression through APA can act as
a switch to define levels of the biologically functional mRNA.
Indeed, we found this gene regulatory mechanism to fine-tune
RPP7-coding transcript levels in responses to pathogen.
In the suvh456 triple mutant, H3K9me2 is depleted at all of the

tested RPP7 regions, indicating that at least one of the SUVH4, -5,
and -6 methyltransferases is responsible for this histone mark
at RPP7. Similar to edm2 mutants, we observed, in suvh456
plants, enhanced use of the promoter-proximal APAS, resulting in
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enhanced ECL transcript and reduced RPP7-coding transcript
levels. These observations clearly show that H3K9me2 can trigger
this gene regulation mechanism and confirms the effects of EDM2
on RPP7 expression to be driven by changes in H3K9me2 levels.
In addition to histone modifications, nucleosome positioning

has been implicated as a determinant of the choice of alternative
polyadenylation sites in humans (19). However, we did not observe
any significant difference of total histone H3 levels at any of the
tested RPP7 regions in edm2mutants compared with those in Col-0
(Fig. S7). Thus, enhanced use of the promoter-proximal APAS in
edm2 mutants possibly is solely the consequence of reduced levels
of H3K9me2 and not due to changes in nucleosome density.
Only a small number of natural A. thaliana variants seem to lack

COPIA-R7 in their RPP7 orthologs. We experimentally confirmed
the absence of COPIA-R7 in the two Arabidopsis accessions Krazo-2

and Koch-1. Besides COPIA-R7, short fragments derived from
different types of TEs are present in intron1 and intron2 of
Col-0 RPP7 (Fig. S5). Their presence is most likely the consequence
of repeated TE insertions and their removal by illegitimate re-
combination (35). Thus, the COPIA-R7 insertion in intron1 is
likely beneficial for RPP7 and, therefore, got stabilized whereas
other TE insertions in intron1 and intron2 were not domesticated.
In Krazo-2 and Koch-1, expression control of RPP7 was shown

to be independent of EDM2, indicating that the COPIA-R7 in-
sertion in RPP7 is required for the influence of EDM2 on RPP7
expression. Surprisingly, we found ECL transcripts also to be
generated in Krazo-2 and Koch-1 although no TE-related DNA
sequences exist in intron1 of their respective RPP7 orthologs.
Instead, a sequence block that is not present in Col-0 RPP7 was
found to act as the terminator of ECL transcripts in Krazo-2 and
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Koch-1. Thus, Krazo-2 and Koch-1 also use a mechanism of APA-
mediated balance between ECL and full RPP7-coding transcripts.
In these accessions, however, this mechanism is not under EDM2-
mediated H3K9me2 control. Based on our observations, it is
plausible that the APA-mediated RPP7 expression mechanism was
developed in ancestral A. thaliana plants before Col-0 and Krazo-
2/Koch-1 evolutionally diverged. Thus, the insertion of COPIA-R7
carrying epigenetic information of H3K9me2 into RPP7 intron1
of Col-0 and utilization of this transposon’s 5′-LTR instead of
NIC as an alternative ECL terminator in Col-0 coopted an
EDM2-dependent epigenetic mechanism to the control of RPP7

expression. This epigenetic mechanism may have equipped its
hosts with a selective advantage, as it provided an additional
switch to fine-tune levels of RPP7-coding transcripts in response
to pathogen recognition.
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not subject to sophisticated co- or posttranscriptional expression control. An
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an alternative polyadenylation mechanism involving an alternative poly-
adenylation site (APAS) provided by the NIC sequence defines the balance
between RPP7-coding and ECL-like transcripts. An advanced state, that likely
has evolved from the intermediate state represented in Koch1 and Krazo2, is
the situation in Col-0 (and likely most other A. thaliana accessions) where,
due to the COPIA-R7 domestication event, an EDM2-controlled and
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dynamic regulation of the RPP7-coding transcript/ECL balance in response to
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APAS results in enhanced levels of ECL and reduced levels of RPP7-coding
transcripts. Function of EDM2 or SUVH4/5/6 counteracts this negative effect
on RPP7-coding transcript levels by enhancing H3K9me2 in the ECL/COPIA-R7
region. Increased H3K9me2 levels are possibly associated with changes of
the local chromatin structure or altered levels of other epigenetic marks. It is
unknown whether EDM2 directly affects H3K9me2 at RPP7/COPIA-R7 or
whether it acts via histone methyl transferases, such as SUVH4, -5, and/or -6.
ASAS, alternative splicing acceptor site. Dark gray boxes represent exons.
Transcript parts retained in the RPP7-coding and ECL–like transcripts are
represented by black horizontal lines.
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Materials and Methods
Arabidopsis Mutants and Natural Accessions. A. thaliana accessions Col-0
(CS70000), Krazo-2 (CS76422), and Koch-1 (CS76396) were obtained from
the Arabidopsis Biological Resource Center (ABRC, Ohio State University). The
edm2-2, edm2-3, and edm2-4 alleles have been described previously (23). The
suvh4 suvh5 suvh6 triple mutant (suvh456) was kindly provided by Judith
Bender (Brown University, Providence, RI). All mutant plants used are exclu-
sively in the Col-0 background.

Transgenic Lines. The transgenic complementation lines (E2pro:HA-E2) were
generated as described previously (24). To generate EDM2 silencing lines in
Arabidopsis natural variants, a DNA trigger sequence was cloned into the
pJawohl8-RNAi vector (GenBank AF408413; kindly provided by Imre E.
Somssich, Max Planck Institute for Plant Breeding Research, Cologne, Ger-
many), and plants were transformed with the resulting pJawohl8-EDM2
binary vector by the floral dipping method (36). Additional experimental
procedures are available in SI Materials and Methods.

qRT-PCR Analysis. Total RNA was isolated using TRIzol reagent (Life Tech-
nologies) and reverse-transcribed withMaxima reverse transcriptase (Thermo
Scientific) and oligo(dT)18 or gene-specific primers. Real-time PCR was per-
formed with the MyiQ detection system (Bio-Rad). The primers used for RT-
PCRs are listed in Table S1. Details are described in SI Materials and Methods.

Chromatin Immunoprecipitation. Details of ChIP procedures are described in SI
Materials and Methods. We used commercially available antibodies specific
to dimethyl H3K9 (Wako Pure Chemical Industries; 308–32361), monomethyl
and trimethyl H3K27 (Millipore; 07–448, lot no. 2019561; Abcam; ab6002),
trimethyl H3K4 (Millipore; 05–1339), HA-tag (Abcam; ab9110), Histone H3 C-
terminal (Active Motif; 61277), or RNAPII (Abcam; ab5408). The primers used
for ChIPs are listed in Table S1.

RACE. The 5′− and 3′RACE were performed using GeneRacer kit (Life Tech-
nologies), according to the manufacturer’s instruction. The primers used for
RACEs are listed in Table S1.

Genomic DNA and cDNA Cloning in Arabidopsis Natural Accessions. The ge-
nomic DNA fragments of RPP7krazo-2 and RPP7Koch-1 were PCR-amplified with
primers designed using the Col-0 RPP7 as the reference. These genomic
fragments were sequenced and assembled based on overlapping sequences.
The regions including junctions between the PCR fragments were then PCR-
amplified using genomic DNA as template to verify their continuity in the
genomes. cDNAs of RPP7krazo-2 and RPP7Koch-1 were cloned by PCR with pri-
mers designed with the revealed genomic sequences. cDNAs of EDM2krazo-2
and EDM2Koch-1 were PCR-amplified with primers designed using the cDNA
sequence of Col-0 EDM2 as the reference. The primers used for genomic DNA
and cDNA cloning are listed in Table S1.

Hyaloperonospora Arabidopsidis Infection. The H. arabidopsidis isolate Hiks1
(HpaHiks1) was described previously (37, 38). HpaHiks1 was grown, propa-
gated, and applied to Arabidopsis plants as described previously (39). Using
Preval sprayers, 1-wk-old seedlings were spray-inoculated with spore sus-
pensions of HpaHiks1 (5 × 104 spores per mL). Plants were scored at 7 d after
infection for severity of infection by lactophenol trypan blue staining (40).
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