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Abstract

Motivation: The Unix ‘make’ program is widely used in bioinformatics pipelines, but suffers from

problems that limit its application to large analysis datasets. These include reliance on file modifi-

cation times to determine whether a target is stale, lack of support for parallel execution on clus-

ters, and restricted flexibility to extend the underlying logic program.

Results: We present BioMake, a make-like utility that is compatible with most features of GNU

Make and adds support for popular cluster-based job-queue engines, MD5 signatures as an alter-

native to timestamps, and logic programming extensions in Prolog.

Availability and implementation: BioMake is available for MacOSX and Linux systems from

https://github.com/evoldoers/biomake under the BSD3 license. The only dependency is SWI-Prolog

(version 7), available from http://www.swi-prolog.org/.

Contact: ihholmesþbiomake@gmail.com or cmungallþbiomake@gmail.com

Supplementary information: Feature table comparing BioMake to similar tools. Supplementary

data are available at Bioinformatics online.

1 Introduction

The familiar Unix GNU Make utility has become a favored tool for

‘bioinformatics in-the-large’ (Parker et al., 2003). Alongside more

elaborate workflow management systems, GNU Make holds its own

for several reasons. Besides being ubiquitous and easy to use, with a

simple syntax, it offers a powerful mix of declarative logic (the spe-

cification of target-dependency relationships from which Make de-

duces build chains) with Unix scripting (the lines of shell script that

are executed when the build chain runs). GNU Make combines these

elements with functional programming-inspired manipulation of file

and directory names, and includes Guile — GNU’s Scheme inter-

preter — as an extension language.

In our usage of GNU Make for data analysis, a common pattern is

to analyze one or two examples manually, building up a Makefile re-

cipe (or recipes), then scale the analysis up to the whole dataset.

Makefiles remain, in our opinion, unrivalled for this purpose.

However, GNU Make’s origins were as a tool for managing build

pipelines, not large-scale data analyses, and it has several flaws that im-

pede its use in bioinformatics. For example, its use of file timestamps as

a test of staleness can be fragile on networked filesystems; it lacks sup-

port for job-queueing systems; and its model of data type relies exclu-

sively on very limited filename pattern-matching.

2 Results

We have developed a new tool, BioMake, that keeps the best features of

GNU Make (including the ability to read most GNU Makefile syntax,

with a few exceptions documented on the project’s homepage) while ad-

dressing its shortcomings. Chief innovations of BioMake include:

1. MD5 signatures as an alternative to time-stamps. GNU Make

uses file modification times to determine when files need to be

rebuilt. This is fragile, especially on networked filesystems or

cloud storage, where file timestamps may not be preserved or
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synchronized. In projects where a big data analysis can take hours

or days, a spurious rebuild can be devastating, especially if it trig-

gers further rebuilding of downstream targets. Instead of using

timestamps, BioMake can be directed to use MD5 checksums:

whenever a target is built, the MD5 hashes of that file and its de-

pendents are recorded and stored. This can be used in combin-

ation with Makefile recipes that sort or canonicalize data to

guard against spurious rebuilds.

2. Support for cluster-based job queues. GNU Make can run mul-

tiple jobs in parallel, but only on one machine. It is possible to

write cluster support directly into the Makefile, wrapping each

recipe with a call to a job submission script, but this spoils GNU

Make’s otherwise clean separation of concerns and often pre-

vents it from tracking dependencies properly. BioMake has

built-in support for Sun Grid Engine, PBS, and SLURM job sub-

mission systems, including dependency tracking (ensuring a tar-

get is not built until all its dependents have been built). It also

(like GNU Make) offers built-in parallel execution on the same

machine that BioMake is being run on.

3. Multiple wildcards per filename. GNU Make only allows a single

wildcard (‘stems’) in a filename, represented by the percent symbol

(%) in the head of a recipe and by the automatic variable $* in the

body. In contrast, BioMake allows multiple wildcards: any un-

bound variable that appears in the head of a recipe can serve as a

wildcard, and can subsequently be used in the body of the recipe.

4. Easy integration with ontologies and description logics. GNU

Make’s domain-specific language extensions are based on

Scheme, which is a functional language, but the underlying struc-

ture of a Makefile (rules such as ‘to build A, you must first build

B’ and ‘to build B, you must first build C and D’) is a logic pro-

gram. BioMake’s domain-specific language is Prolog, making it

easy to incorporate ontologies and description logics such as the

Gene Ontology (Blake, 2015) or the Sequence Feature Ontology

(Eilbeck et al., 2005). For example, we can create BioMake

recipes for targets such as ‘the whole-genome alignment for spe-

cies X and Y, where X is a mammal and Y is a vertebrate’ or ‘the

GFF file containing co-ordinates of every human genomic feature

of type T, where T is a term descended from ‘biological-region’ in

the Sequence Ontology’. In a Scheme program, we would have to

write, test, and debug functions that explicitly generated these lists

of terms and taxa; in a Prolog database, logical conditions such as

‘X is a mammal’ or ‘T is descended from biological-region’ are

easy to model directly, and the Prolog interpreter itself searches

for all variable bindings that fit the model.

The Makefile in Figure 1 illustrates multi-wildcard pattern-match-

ing (point 3, above) and Prolog extensions (point 4). This could be

used to build all alignment files whose names match the pattern

align-X-Y where X and Y are recognized species names.

3 Discussion

We can contrast BioMake with other solutions for bioinformatics work-

flow management. Systems such as CWL1 or Galaxy2 have many useful

features such as web interfaces and cloud support, but they do not de-

duce the workflow from a graph of dependencies: rather, they require

explicit specification of connections between tasks. Other GNU Make

derivatives, offering features such as functional extension languages

(Erlang make3), MD5 signatures (omake4, makepp5), multiple wild-

cards (SnakeMake6) or cluster-based parallelism (e.g. Oracle Grid

Engine’s qmake7), partially overlap with BioMake, but none offers the

same feature set. A comparison table is included in the Supplementary

Information.

BioMake is complementary to other applications of Prolog in

bioinformatics: Blipkit is a Prolog toolkit for logic programming on

ontologies (Mungall, 2009). PRISM is a probabilistic dialect of

Prolog used to implement graphical models for sequence annotation

(Have and Mørk, 2014; Mørk and Holmes, 2012).

A natural future direction would be to develop BioMake for vir-

tualized cloud environments, complementing its current cluster-

oriented batch-processing approach to parallelism.
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