
Lawrence Berkeley National Laboratory
Environ Genomics & Systems Bio

Title
BioMake: a GNU make-compatible utility for declarative workflow management.

Permalink
https://escholarship.org/uc/item/2cn5v9tj

Journal
Bioinformatics, 33(21)

ISSN
1367-4803

Authors
Holmes, Ian H
Mungall, Christopher J

Publication Date
2017-11-01

DOI
10.1093/bioinformatics/btx306

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2cn5v9tj
https://escholarship.org
http://www.cdlib.org/

Databases and ontologies

BioMake: a GNU make-compatible utility for

declarative workflow management

Ian H. Holmes1,2,* and Christopher J. Mungall3,*

1Department of Bioengineering, University of California, Berkeley, CA 94720, USA, 2Molecular Biophysics and Integrated

Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and 3Environmental Genomics

and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on December 12, 2016; revised on April 1, 2017; editorial decision on April 18, 2017; accepted on May 8, 2017

Abstract

Motivation: The Unix ‘make’ program is widely used in bioinformatics pipelines, but suffers from

problems that limit its application to large analysis datasets. These include reliance on file modifi-

cation times to determine whether a target is stale, lack of support for parallel execution on clus-

ters, and restricted flexibility to extend the underlying logic program.

Results: We present BioMake, a make-like utility that is compatible with most features of GNU

Make and adds support for popular cluster-based job-queue engines, MD5 signatures as an alter-

native to timestamps, and logic programming extensions in Prolog.

Availability and implementation: BioMake is available for MacOSX and Linux systems from

https://github.com/evoldoers/biomake under the BSD3 license. The only dependency is SWI-Prolog

(version 7), available from http://www.swi-prolog.org/.

Contact: ihholmesþbiomake@gmail.com or cmungallþbiomake@gmail.com

Supplementary information: Feature table comparing BioMake to similar tools. Supplementary

data are available at Bioinformatics online.

1 Introduction

The familiar Unix GNU Make utility has become a favored tool for

‘bioinformatics in-the-large’ (Parker et al., 2003). Alongside more

elaborate workflow management systems, GNU Make holds its own

for several reasons. Besides being ubiquitous and easy to use, with a

simple syntax, it offers a powerful mix of declarative logic (the spe-

cification of target-dependency relationships from which Make de-

duces build chains) with Unix scripting (the lines of shell script that

are executed when the build chain runs). GNU Make combines these

elements with functional programming-inspired manipulation of file

and directory names, and includes Guile — GNU’s Scheme inter-

preter — as an extension language.

In our usage of GNU Make for data analysis, a common pattern is

to analyze one or two examples manually, building up a Makefile re-

cipe (or recipes), then scale the analysis up to the whole dataset.

Makefiles remain, in our opinion, unrivalled for this purpose.

However, GNU Make’s origins were as a tool for managing build

pipelines, not large-scale data analyses, and it has several flaws that im-

pede its use in bioinformatics. For example, its use of file timestamps as

a test of staleness can be fragile on networked filesystems; it lacks sup-

port for job-queueing systems; and its model of data type relies exclu-

sively on very limited filename pattern-matching.

2 Results

We have developed a new tool, BioMake, that keeps the best features of

GNU Make (including the ability to read most GNU Makefile syntax,

with a few exceptions documented on the project’s homepage) while ad-

dressing its shortcomings. Chief innovations of BioMake include:

1. MD5 signatures as an alternative to time-stamps. GNU Make

uses file modification times to determine when files need to be

rebuilt. This is fragile, especially on networked filesystems or

cloud storage, where file timestamps may not be preserved or

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3502

Bioinformatics, 33(21), 2017, 3502–3504

doi: 10.1093/bioinformatics/btx306

Advance Access Publication Date: 9 May 2017

Applications Note

https://github.com/evoldoers/biomake
http://www.swi-prolog.org/
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://www.oxfordjournals.org/

synchronized. In projects where a big data analysis can take hours

or days, a spurious rebuild can be devastating, especially if it trig-

gers further rebuilding of downstream targets. Instead of using

timestamps, BioMake can be directed to use MD5 checksums:

whenever a target is built, the MD5 hashes of that file and its de-

pendents are recorded and stored. This can be used in combin-

ation with Makefile recipes that sort or canonicalize data to

guard against spurious rebuilds.

2. Support for cluster-based job queues. GNU Make can run mul-

tiple jobs in parallel, but only on one machine. It is possible to

write cluster support directly into the Makefile, wrapping each

recipe with a call to a job submission script, but this spoils GNU

Make’s otherwise clean separation of concerns and often pre-

vents it from tracking dependencies properly. BioMake has

built-in support for Sun Grid Engine, PBS, and SLURM job sub-

mission systems, including dependency tracking (ensuring a tar-

get is not built until all its dependents have been built). It also

(like GNU Make) offers built-in parallel execution on the same

machine that BioMake is being run on.

3. Multiple wildcards per filename. GNU Make only allows a single

wildcard (‘stems’) in a filename, represented by the percent symbol

(%) in the head of a recipe and by the automatic variable $* in the

body. In contrast, BioMake allows multiple wildcards: any un-

bound variable that appears in the head of a recipe can serve as a

wildcard, and can subsequently be used in the body of the recipe.

4. Easy integration with ontologies and description logics. GNU

Make’s domain-specific language extensions are based on

Scheme, which is a functional language, but the underlying struc-

ture of a Makefile (rules such as ‘to build A, you must first build

B’ and ‘to build B, you must first build C and D’) is a logic pro-

gram. BioMake’s domain-specific language is Prolog, making it

easy to incorporate ontologies and description logics such as the

Gene Ontology (Blake, 2015) or the Sequence Feature Ontology

(Eilbeck et al., 2005). For example, we can create BioMake

recipes for targets such as ‘the whole-genome alignment for spe-

cies X and Y, where X is a mammal and Y is a vertebrate’ or ‘the

GFF file containing co-ordinates of every human genomic feature

of type T, where T is a term descended from ‘biological-region’ in

the Sequence Ontology’. In a Scheme program, we would have to

write, test, and debug functions that explicitly generated these lists

of terms and taxa; in a Prolog database, logical conditions such as

‘X is a mammal’ or ‘T is descended from biological-region’ are

easy to model directly, and the Prolog interpreter itself searches

for all variable bindings that fit the model.

The Makefile in Figure 1 illustrates multi-wildcard pattern-match-

ing (point 3, above) and Prolog extensions (point 4). This could be

used to build all alignment files whose names match the pattern

align-X-Y where X and Y are recognized species names.

3 Discussion

We can contrast BioMake with other solutions for bioinformatics work-

flow management. Systems such as CWL1 or Galaxy2 have many useful

features such as web interfaces and cloud support, but they do not de-

duce the workflow from a graph of dependencies: rather, they require

explicit specification of connections between tasks. Other GNU Make

derivatives, offering features such as functional extension languages

(Erlang make3), MD5 signatures (omake4, makepp5), multiple wild-

cards (SnakeMake6) or cluster-based parallelism (e.g. Oracle Grid

Engine’s qmake7), partially overlap with BioMake, but none offers the

same feature set. A comparison table is included in the Supplementary

Information.

BioMake is complementary to other applications of Prolog in

bioinformatics: Blipkit is a Prolog toolkit for logic programming on

ontologies (Mungall, 2009). PRISM is a probabilistic dialect of

Prolog used to implement graphical models for sequence annotation

(Have and Mørk, 2014; Mørk and Holmes, 2012).

A natural future direction would be to develop BioMake for vir-

tualized cloud environments, complementing its current cluster-

oriented batch-processing approach to parallelism.

Funding

IHH was partially supported by NHGRI grant R01-HG004483. CJM was

partially supported by Office of the Director R24-OD011883 and by the

Director, Office of Science, Office of Basic Energy Sciences, of the US

Department of Energy under Contract No. DE-AC02-05CH11231.

Conflict of Interest: none declared.

References

Blake,J.A. et al. (2015) Gene Ontology Consortium: going forward. Nucleic

Acids Res., 43 (Database issue), D1049–D1056.

Fig. 1. A hypothetical BioMake Makefile that runs align on all ordered pairs

of files mouse.fa, human.fa and zebrafish.fa. The rule for file align-$X-

$Y creates an alignment (using the program align, assumed to exist on the

user’s PATH) from any two files $X.fa and $Y.fa. However, it only applied

for those $X and $Y which are flagged as being valid species, via the Prolog

facts sp(X) which appear between prolog and endprolog directives. The

top-level target all uses BioMake’s $(bagof. . .) function, a wrapper for the

Prolog predicate bagof/3, to find all ordered pairs of species that match the

rule. This example is dissected in the repository’s README.md

1 http://commonwl.org/, accessed Dec 9, 2016.

2 https://usegalaxy.org/, accessed Dec 9, 2016.

3 http://erlang.org/doc/man/make.html, accessed Dec 9, 2016.

4 http://omake.metaprl.org/, accessed Dec 9, 2016.

5 http://makepp.sourceforge.net/, accessed Dec 9, 2016.

6 https://snakemake.readthedocs.io/en/stable/, accessed

Dec 9, 2016.

7 http://gridscheduler.sourceforge.net/htmlman/

htmlman1/qmake.html, accessed Dec 9, 2016.

BioMake 3503

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: <xref ref-type=
http://commonwl.org/
https://usegalaxy.org/
http://erlang.org/doc/man/make.html
http://omake.metaprl.org/
http://makepp.sourceforge.net/
https://snakemake.readthedocs.io/en/stable/
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qmake.html
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qmake.html

Eilbeck,K. et al. (2005) The Sequence Ontology: a tool for the unification of

genome annotations. Genome Biol., 6, R44.

Have,C.T., and Mørk,S. (2014) A probabilistic genome-wide gene reading

frame sequence model. In: International Work-Conference on

Bioinformatics and Biomedical Engineering, pp.350–361. Granada, Spain.

Mørk,S., and Holmes,I. (2012) Evaluating bacterial gene-finding HMM struc-

tures as probabilistic logic programs. Bioinformatics, 28, 636–642.

Mungall,C.J. (2009) Experiences using logic programming in bioinformatics.

In P. M. Hill and D. S. Warren, editors, 25th International Conference on

Logic Programming, volume 5649 of Lecture Notes in Computer Science,

pages 1–21, Pasadena, CA, USA. Springer. DOI 10.1007/978-3-642-02846-

5, ISBN 978-3-642-02846-5.

Parker,D.S. et al. (2003) Evolving from bioinformatics in-the-small to bio-

informatics in-the-large. Omics, 7, 37–48.

3504 I.H.Holmes et al.

	btx306-FN1
	btx306-FN2
	btx306-FN3
	btx306-FN4
	btx306-FN5
	btx306-FN6
	btx306-FN7

