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1.  Introduction
The high-energy tail of the plasma in near-Earth space is trapped by the geomagnetic field, forming the Van 
Allen radiation belts that encircle the Earth. Various physical processes can rapidly accelerate these charged 
particles to prodigious energies, in excess of one megaelectron volt (MeV), on timescales of 1 day or less (Li & 
Hudson, 2019, and references therein). Particles are removed from the belts on similar timescales via drift to the 
magnetopause and through interactions with the rich variety of plasma waves that populate the inner magneto-
sphere and precipitate the particles into the atmosphere (Ripoll et al., 2020, and references therein). The state 
of the belts at any instant in time is thus a balance between the numerous competing source and loss processes.

At the outset of strong geomagnetic disturbances and/or after the arrival of solar wind transient structures, both 
rapid source (e.g., in-situ local acceleration via whistler-mode chorus waves) and rapid loss (e.g., loss to the 
compressed magnetopause) processes become enhanced. These processes can dramatically alter the global 
configuration of the belts on timescales on the order of a few minutes or less. Outside of these rapid changes, 
the quiescent state of the belts is largely determined by two competing processes, inward radial transport, which 
acts as a source, and pitch-angle scattering, which removes particles from the belts and precipitates them into 
the Earth's upper atmosphere. Both of these processes are usually described with a quasilinear Fokker-Planck 
diffusion equation and are mediated by resonant wave-particle interactions. Ultralow frequency waves, ∼mHz 
fluctuations in the inner magnetospheric electric and magnetic fields, are the predominant driver of the inward 
radial diffusion (Lejosne & Kollmann, 2020). In this work, we focus our attention on the slow, steady particle 
decays that are the hallmark signature of pitch-angle diffusion.

In our previous work (Claudepierre et al., 2020b), we identified exponential decays in Van Allen Probe (Mauk 
et al., 2013) radiation belt electron flux measurements, from which we computed mean decay (e-folding) times-
cales as a function of the McIlwain L parameter (L ∼ 1−6) and energy (∼30 keV to 4 MeV). In a companion 
paper (Claudepierre et  al.,  2020a), we compared the observed decay timescales with theoretical expectations 
for pitch-angle diffusion from plasmaspheric hiss waves, ground-based very-low-frequency (VLF) transmitter 
waves, electromagnetic ion cyclotron (EMIC) waves, and Coulomb collisions with neutral particles in the Earth's 
upper atmosphere and charged particles in the ionosphere. Good qualitative agreement was found between the 
observed decay timescales and our theoretical estimates. However, quantitative agreement was lacking in some 
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portions of L-energy space, particularly in the inner zone (L < 2.5) where calculated lifetimes from pitch-angle 
diffusion were ∼1 order of magnitude larger than the observed decay timescales. Several known shortcomings 
in our treatment and approach were described in Claudepierre et al. (2020a), which we revisit in what follows.

The remainder of this paper is structured as follows. In Section 2, we describe the theory and methods that we 
use, along with the pitch-angle scattering processes that are included in our theoretical calculations. In particu-
lar, we provide an updated treatment of scattering via VLF and low-frequency (LF) transmitter waves based on 
recent work (Gu et al., 2021; Ma et al., 2022; Meredith et al., 2019). We also describe the explicit incorporation 
of lightning-generated whistler (LGW) waves into our scattering calculations, which was ad-hoc in our original 
treatment. We compare these revisions to our earlier work in Section 3.1, where we also provide a rough calcu-
lation of the effect that the drift loss cone has on electron decay timescales in the inner radiation belt region. In 
Section 3.2, we explore the sensitivity of the lifetime calculations to the choice of plasmaspheric density model. 
The importance of ionization energy loss, sometimes referred to as “Coulomb energy drag,” in producing loss in 
the inner belt has been emphasized recently by Albert et al. (2020) and we investigate this in Section 3.3. Here, 
2D (pitch angle and momentum) Fokker-Planck simulations are used as a tool for analysis. A brief discussion of 
the findings is presented in Section 4 and concluding remarks are given in Section 5.

2.  Theory and Methods
2.1.  1D Pitch-Angle Diffusion

Pitch-angle diffusion is described by the modified Fokker-Planck equation (e.g., Lyons & Thorne, 1973):

𝜕𝜕𝜕𝜕
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where f is the distribution function (phase space density), α is the equatorial pitch angle, and Dαα is the 
bounce-averaged pitch-angle diffusion coefficient. The Jacobian factor, G, for transforming from adiabatic 
invariant coordinates is given by G = T(α) sin(2α), where T ≈ 1.30–0.56 sin  α is a term that approximates the 
pitch-angle dependence of the normalized bounce time along a dipole field line.

Under the assumption that the solution to Equation 1 is separable, that is, that f(α, t) = g(α)h(t), and that the time 
dependence follows exponential decay (h(t) ∼ exp(−t/τ)), we obtain a 1D ordinary differential equation (ODE) 
for the evolution in pitch angle:
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When considered over the pitch-angle interval from the loss cone angle (αLC) up to 90° and formulated with the 
usual boundary conditions, for example:

𝑔𝑔 = 0 at 𝛼𝛼 = 𝛼𝛼𝐿𝐿𝐿𝐿 and
d𝑔𝑔

d𝛼𝛼
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this second-order linear ODE is of the “Sturm-Liouville” type (Powers,  1999). The family of solutions is 
described in terms of eigenfunctions, g(α), and the associated eigenvalues, λ = 1/τ. Under modest continuity 
assumptions on the diffusion coefficient, Dαα, Sturm-Liouville theory guarantees that the eigenvalues (λ1, λ2, λ3, 
…) that correspond to each eigenfunction (g1, g2, g3, …) are real and ordered, such that λ1 < λ2 < λ3 < ⋯. Initially, 
the solution to Equation 1 will consist of the superposition of multiple different eigenmodes. However, once this 
initial transient behavior subsides, the long-term evolution will be that of exponential decay of the lowest order 
eigenmode, g1(α), on the longest timescale τ1 = 1/λ1. In what follows, we will omit the subscript 1 and refer to 
this lowest-order solution, g(α) = g1(α), uniquely as the “slowest decaying eigenmode” (SDE) of the pitch-angle 
diffusion process, which decays with the e-folding timescale τ = τ1. An approximate solution for this decay times-
cale of the SDE, or “lifetime,” is given by the explicit integral (Albert & Shprits, 2009):
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2.2.  Pitch-Angle Diffusion Coefficients

One of the primary goals of this work is to consider several mechanisms that produce quasilinear pitch-angle 
diffusion, calculate the decay timescales associated with each process, and compare the results with observed 
decay timescales. Solving for the decay timescale, τ, from either Equation 2 (subject to the indicated boundary 
conditions) or Equation 4, requires the specification of the pitch-angle diffusion coefficient, Dαα.

We obtain these coefficients in the usual manner following the methods described in our previous work (Claudepierre 
et al., 2020a). Briefly, we use the Full Diffusion Code (Ni et al., 2008) to calculate the bounce-and-drift-averaged 
diffusion coefficients in a dipole field using the plasma density model of Ozhogin et al. (2012) at L < 4. For the 
scatterings due to wave-particle interactions, we specify the amplitudes, frequency spectra, and wave normal 
angle spectra from various empirical wave models (see below). The magnetic-latitudinal range for the interactions 
is assumed to be ±45° for hiss and EMIC waves, and from the equator to the altitude of 800 km for the transmit-
ter and LGW waves. Resonant harmonics between ±10 are considered and the calculations are performed on a 
grid in L from 1 to 4 (ΔL = 0.1), energy from 0.1 keV to 10 MeV (in 71 logarithmically spaced channels), and 
equatorial pitch angle from 1° to 89.5° (Δα = 2°). For the scatterings due to Coulomb collisions, we follow the 
methodology of Abel and Thorne (1998), obtaining the atmospheric neutral species (N2, O2, Ar, He, O, H, and N) 
from the MSIS90 empirical model (Hedin, 1991) and the charged species (e −, NO +, O +, 𝐴𝐴 O

+

2
 , H +, He +, and N +) 

from the IRI2016 model (Bilitza et al., 2017).

There are several wave modes that are known to be important for scattering electrons in pitch angle in the inner 
radiation belt and slot region (L < 4). Hiss is a broadband (f ≈ 100 Hz to 1 kHz), incoherent whistler mode wave 
that occurs primarily in the high-density plasmasphere. Wave amplitudes vary with geomagnetic activity, with 
typical values in the 10–100 pT range, and are most intense on the dayside. LGW waves are waves injected into the 
L < 4 region from the troposphere following lightning strikes. The waves reflect within the plasmaspheric cavity 
and eventually migrate to a preferred L-shell region dictated by the local lower-hybrid resonance frequency. LGW 
waves are typically discrete, impulsive events with wave frequencies on the order of a few kHz and amplitudes in 
the ∼1–10 pT range. VLF transmitter waves are whistler mode waves that are injected into the L < 3 region from 
high-powered, ground-based radio wave transmitters. These waves, with amplitudes of several pT, are essentially 
monochromatic and propagate at the transmitting frequency of the station (typically ∼15–25 kHz). Both LGW 
and VLF transmitter waves have a strong asymmetry in magnetic local time (MLT), with more intense amplitudes 
on the nightside due to collisional damping in the D-region ionosphere.

2.3.  Empirical Wave and Scattering Models

Table 1 organizes the scattering models and calculation characteristics that we will use in the present study. For 
example, “lifetime model 0” (LM0) represents the empirical wave models and assumptions that were used in 
Claudepierre et al. (2020a). Each subsequent row in the table corresponds to a different lifetime model that we 
will consider, making progressive refinements to the baseline model, LM0. The second column, “τ Method,” 
indicates whether the approximate formula (Equation 4) is used to compute the lifetime, or whether the exact 
solution is obtained. The exact calculation is performed by solving the 1D ODE (Equation  2) for τ and the 

Lifetime τ τ LC Hiss LGW VLF Coulomb EMIC

model (LM) method assumption model model model model model

LM0 a Approx. b Dipole A n/a d A A A

LM1 Exact c Dipole A n/a d A A A

LM2 Exact c Dipole A n/a d B A A

LM3 Exact c Dipole B B B A A

LM4 Exact c DLC/IGRF B B B B A

 aThe setup used in Claudepierre et  al.  (2020a).  bCalculated from Equation  4.  cObtained via shooting method on 
Equation 2.  dAd-hoc incorporation into hiss model A (see text).

Table 1 
Summary of Wave Models and Scattering Calculations Used to Define Each Lifetime Model
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equilibrium eigenfunction, g, via a shooting method (e.g., Albert,  1994; 
Albert et al., 2020). The third column in the table, “τ LC Assumption,” indi-
cates whether the dipole field loss cone (LC) angle is used when calculat-
ing τ from Equation 2 or Equation 4, or whether the drift-loss cone angle 
(DLC) from the International Geomagnetic Reference Field (IGRF; Alken 
et al. (2021)) model is used. The subsequent columns in Table 1 (Hiss, LGW, 
…) denote the scattering models as either “Model A,” our original baseline 
empirical wave and Coulomb models from Claudepierre et  al.  (2020a), or 
“Model B,” which represent refinements of each Model A.

Hiss model A is defined using the statistical wave frequency spectrum 
obtained by Li et al. (2015), along with the statistical amplitudes and their 
dependence on Kp from Spasojevic et al. (2015), and the wave normal angle 
spectrum from Ni et al. (2013). In Claudepierre et al. (2020b), we extrapo-
lated the hiss spectrum from 4 to 7 kHz as an approximate way to incorporate 
LGW waves into our calculations. Thus, there is no model A for LGW in 
Table 1. Model B for LGW waves uses the statistical wave database of Green 
et al. (2020), who parameterized LGW waves from Van Allen Probe meas-
urements at L < 4, carefully distinguishing them from hiss waves in the over-
lapping frequency range. Hiss model B is identical to hiss model A, except 
that the extrapolation of the spectrum from 4 to 7 kHz has been removed.

VLF model B represents a reformulation of the empirical VLF model A (Ma 
et al., 2017) and is described in greater detail in Ma et al. (2022). The most 
notable differences are that the statistical database was extended in time from 
2016 to the end of the Van Allen Probes mission in 2019, that the depend-
ence on geomagnetic activity was removed, and that the frequency range was 

extended from 30 kHz up to 200 kHz to account for non-negligible transmitter wave power observed at these 
higher frequencies. In addition, both the wave normal angle variation with latitude and the power ratio between 
ducted and unducted wave intensity were changed to follow recent work from Gu et al. (2021). This study found 
that unducted propagation dominates over ducted propagation in both the occurrence and intensity of the waves.

In the present study, the EMIC model is not changed from that used in Claudepierre et al. (2020b) and is only 
mentioned in passing since the focus of this work is on loss timescales at L < 4. In this region in the empirical 
wave model, the EMIC wave amplitudes are small and only reach appreciable levels for high geomagnetic activ-
ity. In addition, the EMIC waves from the empirical model mainly affect higher energy electrons than the energy 
range (30 keV to 4 MeV) under consideration in this study.

Finally, Coulomb model B is identical to Coulomb model A, except that the IGRF DLC angle is used instead of 
the dipole loss cone angle in the diffusion coefficient calculations. The bounce loss cone pitch angle is deter-
mined under the assumption that the electrons are lost at 100 km altitude using a dipole magnetic field model. The 
drift loss cone pitch angle is determined by computing the 100-km bounce loss cone angle at different longitudes 
from the IGRF model and selecting the largest of these pitch angles. Figure 1 compares these two angles (in red 
and cyan curves, respectively) indicating that there can be significant differences at L ≲ 2.5. Thus, we anticipate 
that this should have an effect on the lifetimes in this region.

For the dipole field model (Coulomb model A), our methods to calculate diffusion coefficients and Coulomb 
scattering are very similar to those of Albert et al. (2020) and Selesnick (2016) except for the ionospheric model 
used. For the IGRF model, the Coulomb scattering rates are calculated for field lines at different longitudes and 
then averaged to obtain the drift-averaged diffusion coefficients. After the diffusion coefficients are calculated, 
the loss cone pitch angles (either bounce or drift) are used to calculate the electron lifetimes. We note that, 
although the magnetic field lines at different longitudes in the IGRF model are considered in Coulomb model B, 
the neutral and charged particle density profiles are the same between Coulomb models A and B, because each 
field line in the IGRF model will pass through different MLTs over time.

We emphasize that the wave scattering models (hiss, LGW, VLF, and EMIC) are not changed when the DLC 
angle is used in place of the dipole angle since, when computing the diffusion coefficients, the choice of loss cone 

Figure 1.  A comparison of the equatorial loss cone angles obtained from two 
magnetic field models: A dipole model and the IGRF model. The cyan curve 
shows the bounce loss cone (BLC) angle in a dipole field. The black curve 
shows the BLC angles from the IGRF model averaged over all longitudes. The 
gray curve shows the minimum of the BLC angles from the IGRF model over 
all longitudes. The red curve shows the maximum of the BLC angles from the 
IGRF model over all longitudes, that is, the drift loss cone (DLC) angle.
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angle is only relevant for Coulomb scattering. Thus, there is no model C for hiss, LGW, VLF, or EMIC; model B 
can be used when the DLC effects are considered below.

3.  Results
In this section, we begin by comparing the observed lifetimes with the various revisions to our lifetime models 
under 1D pitch angle diffusion. In Section 3.2, we examine the role of the plasmaspheric density in controlling 
the lifetimes, and we compare our lifetimes with Albert et al. (2020), who present similar lifetime calculations but 
treat LGW and VLF waves using a different approach. Finally, in Section 3.3, we analyze the Coulomb energy 
drag process using 2D simulations.

3.1.  Comparison of the Different Lifetime Models Under 1D Pitch Angle Diffusion

Figure  2 compares the observed decay timescales obtained by Claudepierre et  al.  (2020b) with those calcu-
lated from the theoretical lifetime models (LMs) described above (i.e., Table 1). Before we make the compari-
sons, we remark on a couple apparent differences between the results present in Figure 2 and those presented in 
Claudepierre et al. (2020b). First, we note that the curves from the five LMs are less smooth than those shown in 
Claudepierre et al. (2020a) because in our previous work we interpolated the theoretical lifetimes to the observed 
energy and L bins. In the present study, there is no interpolation and the nearest energy bins are used (the L reso-
lution is the same, 0.1 L). The energy channel labels shown in the figure are taken from the observations, but the 
channels that were used in the diffusion coefficient/lifetime calculations are quite close, typically within <5% of 
the observed channel. Aside from these distinctions, the blue curve for LM0 and the observed lifetimes shown in 
Figure 2 are the same as presented in Claudepierre et al. (2020a).

As described in Claudepierre et al. (2020b), the qualitative trends in Figure 2 are consistent between the theoret-
ical calculation using LM0 and the observed lifetimes. For example, the longest lifetimes are found in the inner 
zone at L < 2, and the lifetimes generally decrease with increasing L at L > 2. At fixed L in the inner zone, say 

Figure 2.  Comparison of observed decay timescales (black/gray) with theoretical calculations (colors) for Kp = 0 and 5 different lifetime models (LMs; see Table 1). 
Each panel shows the lifetime profiles versus L at a fixed energy, and the five LMs are summarized as follows: LM0: Claudepierre et al. (2020a); LM1: Exact lifetime 
calculation (shooting method); LM2: Revision of VLF transmitter scattering; LM3: Explicit inclusion of scattering due to LGW waves; and LM4: Use of the IGRF 
drift-loss cone angle when computing the lifetime.
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L = 1.5, both the theoretical lifetimes from LM0 and the observed lifetimes increase with increasing energy. 
Similarly, in the slot region at fixed L, say L = 3, both the theoretical and observed lifetimes display a local mini-
mum near 500 keV. In contrast to this good qualitative agreement, the quantitative agreement between LM0 and 
the observed decay timescales is poor in many regions of L-energy space, where order-of-magnitude (or greater) 
differences are noted at L < 3 across all energies.

As a first iteration on our baseline calculation, LM0, we highlight LM1 as the orange curves in Figure 2. In 
LM1, the lifetimes are calculated exactly via a shooting method on Equation 2, rather than with the approximate 
formula (Equation 4) that was used for the calculations in LM0. Comparing LM0 with LM1, we see an overall 
reduction in lifetimes by a factor of ∼2 across all L and energy (E) bins. (Note that in some L/E bins, the orange 
curve is not always distinguishable from other curves that may overlap it.) This indicates that the approximate 
formula derived by Albert and Shprits  (2009) results in lifetimes larger than the exact calculation by a factor 
of ∼2×, on average. In all subsequent calculations, we use the exact formulation to compute lifetimes from the 
pitch-angle diffusion coefficients.

As an iteration on LM1, we now consider the revisions to our VLF transmitter wave empirical model described 
in Section 2.3. Comparing the theoretical lifetimes from LM1 (orange curves) with this iteration, LM2 (green 
curves), reveals that the impact of the revisions is minimal, especially at lower energy (E < 100 keV; panel (a)). 
The only appreciable differences are at higher energies (panel (b)) between L ≈ [1.3, 1.8], where the lifetimes in 
LM2 are reduced relative to LM1.

This reduction in electron lifetimes is mainly due to the more accurate wave normal angle distributions, and partly 
due to the inclusion of the LF (30–200 kHz) transmitter waves. We consider the L shell and latitude dependencies 
of wave normal angles for unducted transmitter waves in LM2 based on raytracing results (Gu et al., 2021; Ma 
et al., 2022). The LF transmitter waves could resonate with electrons at lower energies or higher pitch angles than 
the waves at frequencies below 30 kHz, although the LF transmitter wave power is much weaker.

More pronounced changes are seen when comparing LM2 (green curves) with LM3 (purple curves), where the 
LGW waves are explicitly incorporated into the scattering calculations. For example, at 102 keV, we see that the 
LGW waves reduce the lifetimes by nearly an order of magnitude at L ≈ 2.5 and generally reduce the lifetimes 
across a broad spatial region from L ≈ 2 to 3.5. Similar lifetime reductions relative to LM2 are seen at both lower 
and higher energies, with the spatial region of influence moving progressively earthward with increasing energy. 
This is in accordance with the roughly L −6 scaling of the minimum energy expected for cyclotron resonance with 
whistler mode waves for the magnetic field and plasma density models used here (Claudepierre et al., 2020a; Ma 
et al., 2016; Mourenas et al., 2012).

The incorporation of the LGW waves into LM3 produces another interesting effect relative to LM0. As described 
in Claudepierre et al. (2020a), the local minimum in the LM0 lifetimes near L ≈ 2 at the lower energies (panel 
(a)) is due to scattering from the VLF transmitter waves, which produces a bifurcation in the inner belt (see also 
Hua et al. (2020)). When the LGW waves are explicitly included in LM3, the second local maxima in the life-
times (the one at higher L) is reduced, so that the “valley” produced by the local minimum is less pronounced in 
LM3 relative to LM0. This leads to a better agreement between LM3 and the observed lifetimes, where the local 
minimum due to VLF wave scattering is observed but is less pronounced than in LM0. In general, the inclusion 
of the electron scattering from LGW waves has the largest impact of the effects considered in Figure 2 and brings 
our theoretical calculations into better agreement with the observed decay timescales.

As a final iteration, we consider the influence that the drift loss cone can have on the decay timescales in the low 
L region (i.e., Figure 1). By definition, an electron that is pitch-angle scattered into the bounce loss cone will be 
lost from the belts in one-quarter bounce time, whereas an electron that is scattered into the drift loss cone will be 
lost within one drift period. Since we are considering drift-and-bounce-averaged electron dynamics and decays 
that occur over multi-day timescales, the drift loss cone angle is the more relevant loss cone angle for scattering 
losses (i.e., the electron drift periods are much less than the multi-day timescales in question).

Lifetime model 4 (LM4) in Figure 2 shows the effect of using the IGRF drift loss cone angle in place of the dipole 
loss cone angle when computing the lifetimes. While the exact shooting calculation is used here, a consideration 
of the integral in Equation 4 immediately illustrates the effect: Using the DLC angle in place of the BLC angle in 
the integration limits will result in reduced lifetimes. Indeed, this is borne out in the calculated lifetimes shown 
in Figure 2. To examine this more closely, in Figure 3, we compare the lifetime ratios between LM3 and LM4 
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at three representative energies. The largest differences are at L ≲ 1.7, since 
this is where the BLC and DLC angles differ most significantly. Here, the 
lifetimes are reduced in LM4 relative to LM3 by a factor of ∼2–5 at L = [1.4, 
1.6], and by an order of magnitude or more at L < 1.3. At higher L > 1.7, 
the lifetimes are reduced by a smaller amount, ∼20%. The increase of the 
loss cone size when changing from the BLC to the DLC contributes to the 
reduction of these lifetimes. At low L shells (L ≤ 1.3), the minimum cyclotron 
resonance energy due to VLF transmitter waves is higher than ∼1 MeV, and 
the small pitch angle diffusion coefficients outside the BLC in the ∼100 keV 
to several MeV energy range have a large influence on the lifetimes (e.g., 
Equation 4). Increasing the loss cone pitch angle from the BLC to the DLC 
reduces the regime of the small pitch angle scattering rates, and significantly 
reduces the electron lifetimes at L ≤ 1.3.

It is interesting to note that while the differences between LM3 and LM4 trend 
with L as one might expect based on the differences between the DLC and 
BLC angles shown in Figure 1, this behavior is not seen consistently across 
all energies shown. For example, comparing LM3 and LM4 at 102 keV in 
Figure 2, there is little difference in the lifetimes at L > 3, while at 1.54 MeV, 
there are clear differences at L > 3. While the only distinction between LM3 
and LM4 is the choice of loss cone angle, there are other more subtle factors 
that may lead to this peculiarity. For example, the relative effectiveness of 
the various scattering mechanisms (e.g., hiss vs. LGW) near the loss cone is 
different at different energies.

It is clear that the lifetimes obtained from LM3 and LM4 represent an improvement on LM0, as we have obtained 
better quantitative agreement with the observations. Thus, we proceed with LM3 as our new “baseline” model 
for further analysis and comparisons. While the effect of the drift loss cone demonstrated in LM4 is important, 
particularly at L < 1.5, LM3 is most readily compared with previous works in this area since nearly all such efforts 
use the dipole-field loss cone angle when computing lifetimes. It is also important to acknowledge and emphasize 
that the improved agreement demonstrated between the observed decay timescales and those from LM3 should 

not be interpreted to mean that LGW waves are more important than the 
other scattering mechanisms in the L < 4 region. Their impact is obvious in 
Figure 2 relative to the other effects considered because LGW waves were 
absent from our earlier work.

3.2.  Lifetime Sensitivity to Plasma Density and Comparisons With 
Albert et al. (2020)

Albert et al. (2020) and Starks et al. (2020) have taken a different approach to 
analyze the role of LGW and VLF transmitter waves in inner zone lifetimes. 
Rather than use statistically averaged empirical wave models, as we have 
done here, they model the waves from their ground sources to 660 km alti-
tude using a full-wave code, and then use raytracing to propagate the waves 
into the L < 4 region. Given these contrasting techniques, it is instructive to 
compare the theoretical lifetimes from our approach with theirs, all relative 
to the observed decay timescales.

The Albert et  al./Starks et  al. calculation provides profiles of the LGW 
and VLF wave electric and magnetic fields organized by L, from which 
they compute diffusion coefficients using the single-wave formulation of 
Albert (2010). For the plasmaspheric density model, they use a relatively full 
(dens-high) and a relatively empty version (dens-low) of the diffusive equi-
librium model of Angerami and Thomas  (1964). Figure 4 compares these 
two density models with the one used in this study (Ozhogin et al., 2012), 
alongside the Hartley et  al.  (2018) model, which was constructed using 

Figure 3.  A comparison of lifetime ratios versus L using the lifetimes from 
LM3 (dipole/BLC) and LM4 (IGRF/DLC) for three representative energies 
(50 keV, 300 keV, and 1 MeV).

Figure 4.  Comparison of the electron density model used in this study 
(Ozhogin et al., 2012; red curve) with those used in Albert et al. (2020) 
(black/gray curves) and the hiss-inferred values from the empirical model of 
Hartley et al. (2018). The dashed portion of the Ozhogin et al. (2012) profile 
is an extrapolation of the model below its region of validity (to altitudes 
<2,000 km). The Hartley et al. (2018) curve is the median over all magnetic 
latitudes (their fig. 6d).
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plasmaspheric hiss measurements. Since the prevalence of ducting due to field-aligned plasmaspheric density 
enhancements/depletions is not well constrained (Gu et al., 2021), Albert et al.  (2020) calculate ducted solu-
tions by setting the wave normal angle to 0° and restricting to strict parallel propagation (unducted solutions are 
obtained without any restrictions on the propagation). Their models of hiss and Coulomb scattering are similar 
to what we have used.

Figure 5 compares the lifetimes obtained by Albert et al. (2020) (henceforth, “A20”) with our lifetime model 3 
(LM3). For the A20 lifetimes obtained using their dens-low plasmasphere model (left column, panels (a)-(d)), we 
see that our theoretical calculations are similar to theirs below L = 1.5, in terms of both the maximum lifetime 
and the shape of the profile in L. Note that the theoretical lifetimes calculated in this region disagree signifi-
cantly with the observed values, larger by factors ∼5–10 for both LM3 and A20. As L increases, we see that 
the agreement between our theoretical calculations and A20 begins to diverge, with the A20 values larger than 
our computed lifetimes in the L = 2–3 region. This disparity may be due to combination of effects, such as  the 
differences in how the LGW and VLF waves are treated and/or the use of different plasmaspheric models. For 
example, larger electron densities produce smaller lifetimes, all other effects being equal, and we see that the 
electron densities from the dens-low model are somewhat lower than those from the Ozhogin et al. (2012) model 
at L ≳ 1.5 (Figure 4). This may lead to larger lifetimes from the A20 calculations relative to ours in this region. 
At the higher L values (L > 3), where the hiss wave scattering begins to be the dominant scattering mechanism, 
the A20 lifetimes generally agree with ours since both approaches use the same hiss model. We emphasize that 
the boundaries of the L regions described here (i.e., L < 1.5, L = 2 − 3, and L > 3) are notional and in reality are 
energy-dependent, due to the L −6 dependence to the cyclotron resonance condition noted above.

Comparing the left and right columns in Figure 5 illustrates the sensitivity of the theoretical lifetime calcula-
tions to the assumed electron density model. First, above L = 1.5, note that the densities from the dens-low and 
dens-high models only differ from one another by a factor of ∼2–3 (Figure 4), yet the A20 lifetimes can differ 
by factors on the order of 5–10 depending on L. In particular, we see that at L < 1.5, where our LM3 disagrees 
significantly with the observed lifetimes, the A20 dens-high lifetimes are in much better agreement with the 
observed values (Figure 5, right column). It is clear that this improved agreement over dens-low (and LM3) is 
solely due to the choice of the density model, since this is the only thing that is different between the left and the 
right columns in Figure 5.

We emphasize that at L < 1.5, the electron densities from the dens-high model are considerably larger than the 
other density models shown in Figure 4. In particular, dens-high begins to diverge from the Ozhogin et al. (2012) 
empirical model near L = 2 and is similarly inconsistent with the model of Hartley et al. (2018) at L < 2. At 
L < 1.5, we see that the hiss-inferred densities from Hartley et al. (2018) are significantly lower than dens-high 
and are in much better agreement with dens-low. We thus argue that the dens-high model densities may be unre-
alistically large at L < 1.5 and could lead to inaccurate lifetime calculations in this region. While the dens-high 
versus dens-low differences could potentially be appropriate for accounting for day/night asymmetries in the 
density at low L due to the ionosphere, existing experimental evidence cannot confirm such a paradigm. Reli-
able electron density measurements are sparse in this region and there are very few data sources with which to 
compare. Future work using new observations will be necessary to fully characterize the appropriateness of the 
dens-high model at L < 2. Assuming that the dens-high plasmaspheric density model is indeed inaccurate at 
L < 2, we thus seek an alternative mechanism to reconcile the disagreement between the observed lifetimes near 
L = 1.5 and those calculated from theory.

3.3.  Coulomb Energy Drag Effects

In addition to their physics-based approach for modeling VLF and LGW wave propagation and scattering, Albert 
et al. (2020) also examined how ionization energy loss influences electron lifetimes at low L. This consideration 
necessarily requires the reformulation of the problem from pure (1D) pitch angle diffusion into a 2D diffusion 
equation in momentum and pitch angle, along with a term that models the Coulomb drag process. Following 
Albert et al. (2020), we write this equation as:
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where p is the relativistic momentum, γ is the relativistic factor, E is the electron kinetic energy, and all other 
variables have been previously defined. We note that the Jacobian factor, G, for the coordinate transformation in 
this equation is different from the one in the 1D pitch angle diffusion equation (Equation 1) by a factor of p 2 and 
its definition is omitted here for brevity. The Coulomb energy drag rate is first calculated at different longitudes 

Figure 5.  Comparisons with the lifetimes calculated in Albert et al. (2020) for their low plasmaspheric density model (“dens-low,” (a)–(d)) and their high-density 
model (“dens-high,” (e)–(h)) at four different energies plotted. The Albert et al. calculations are shown as colored curves with each of the four curves representing 
different combinations of ducted (d) and unducted (u) propagation for LGW (L) and VLF (T) waves. The observed lifetimes are shown with black circular symbols and 
our lifetime model 3 (LM3) is shown in gray with the shaded region indicating the range of lifetimes for different activity levels, Kp = 0–2.
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in the IGRF magnetic field model following the method in Albert et al. (2020). Then, the Coulomb energy drag, 
dE/dt, is obtained as the average of the drag rate over all longitudes.

To solve Equation 5, we follow the computational approach of Albert et al. (2020), using the same initial and 
boundary conditions, which were inferred from Van Allen Probe-measured energy spectra and angular distri-
butions. The bounce-and-drift averaged momentum (Dpp) and mixed (Dαp) diffusion coefficients are calculated 
in the same manner as described above for our pitch angle diffusion coefficients, Dαα. These coefficients are 
specified using lifetime model 3 (LM3) and we conduct a separate simulation at four different L values: 1.6, 
2.0, 2.4, and 3.1. The simulations are conducted using an energy grid with 151 logarithmically space values 
between 10 keV and 10 MeV, a pitch-angle grid with resolution of 1°, and a simulation time step of 30 s. The 
electron phase space densities are assumed to be constant at the lower- and upper-energy boundaries. The pitch 
angle boundary conditions are 𝐴𝐴 𝐴𝐴𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+𝐷𝐷𝛼𝛼𝛼𝛼

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 at α = 90°, and f = 0 inside the loss cone. The simulation is 

performed for 4,000 days, which is longer than the electron lifetimes of interest in this study.

To investigate the decay timescales associated with the combined effects of quasilinear diffusion and Coulomb 
energy drag, we carry out simulations as described above. Unlike in the 1D pitch angle diffusion case analyzed in 
Sections 3.1 and 3.2, the long-term particle dynamics described by Equation 5 are not that of exponential decay 
in a single eigenmode. Thus, we must use a different approach to define and characterize decay timescales the in 
the simulated fluxes, in order to make meaningful comparisons with the observed timescales.

3.3.1.  Calculating the Decay Timescales From the 1D Simulations

In the 1D pitch angle diffusion case, obtaining this decay timescale is well-defined and straightforward since, by 
definition, the phase space density will eventually settle into the slowest-decaying eigenmode. Figure 6a shows 
the solution to Equation 5 with only the pitch angle diffusion term (Dαα) retained. The simulated phase space 
density is converted to flux (=fp 2) and is plotted for the first 700 days of the 4,000 days simulation for 465 keV 

Figure 6.  Summary of the results from the 1D ((a)–(c)) and 2D ((d)–(i)) simulations for 465 keV electrons at L = 1.6. The top row shows the simulated flux plotted 
against time with different colored curves for each equatorial pitch angle ((a), (d), and (g)). The middle row shows the decay timescale, τn, at each time step, n, for all 
pitch angles ((b), (e), and (h)). The mean of τn over pitch angle is shown in black. The bottom row shows the mean relative error in τn expressed as a percentage ((c), 
(f), and (i)). This error is defined as the standard deviation of τn (σ(τn)) divided by the mean of τn over all pitch angles, with the 1% error level indicated in panel (c). In 
panels (b) and (c), the time in the simulation when the slowest decaying eigenmode has been reached, Tsde, is indicated. The right column is simply an expanded view of 
the time range shown in the middle column.
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electrons at L = 1.6. Aside from the transient behavior at the beginning of the simulation, it is clear that the fluxes 
are decaying exponentially at all pitch angles over the time interval shown.

We can calculate timescale of the slowest-decaying eigenmode from the simulation as follows. Following Ni 
et al. (2013), we define the decay timescale, τn, at each time step, tn, of the simulation as:

𝜏𝜏𝑛𝑛 = −
𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛

ln [𝑗𝑗𝑛𝑛+1(𝛼𝛼)] − ln [𝑗𝑗𝑛𝑛(𝛼𝛼)]
for𝑛𝑛 = 1, 2,… , 4000� (6)

where jn is the simulated flux at time tn. Panel (b) shows this quantity plotted versus simulation time for all equa-
torial pitch angles. Initially, different pitch angles are decaying at different rates over a wide range of timescales, 
∼200–600 days. Around day 300 in the simulation, we see that the decay timescales at each pitch angle start to 
converge to the single value of τn ≈ 380 days. We can determine the time it takes to reach this equilibrium state 
quantitatively by using the mean relative error of the τn values, which is plotted in panel (c). This quantity reaches 
the 1% level at day 439 in the simulation, which we define as “Tsde,” the time in the simulation when the slowest 
decaying eigenmode has been reached.

We use this 1% level on the mean relative error in τn to obtain the decay timescale (τ) and Tsde from the 1D 
simulations at all energies and at the four L values under investigation. These calculations are shown in Figure 7 
with the darker red curves. In panel (a), the decay timescale obtained from the simulation using this method is 
shown in dark red and labeled “1D sim (eigen)” to indicate that it is the eigenvalue of the pitch-angle diffusion 
operator. For comparison, we also show the values obtained from the shooting method on Equation 2 (i.e., the 
values plotted in Figure 2). These are labeled as “1D shoot (eigen)” and are shown with a dashed line in lighter 
red. The near perfect agreement between the result obtained from the simulation and the result obtained from the 
shooting method validates our technique of identifying the decay timescales by using the mean relative error on 
τn. Panel (e) shows Tsde in red, where we see that the time to reach the equilibrium eigenstate generally increases 
with increasing energy at this L. The subsequent columns in Figure 7 (panels (b) and (f), panels (c) and (g), and 
panels (d) and (h)) show the same calculations at the other three L values under consideration.

Figure 7.  (a)–(d) A comparison of the decay time scales computed from the 1D pitch-angle diffusion simulations (sim) and those computed directly from the diffusion 
coefficient via the shooting method (shoot). The curves labeled “eigen” represent the timescales for the slowest decaying eigenmode, while the curves labeled “initial” 
represent the timescales obtained during the initial part of the decay/simulation. (e)–(h) A comparison of the time step in the simulation at which each state has been 
reached, either the eigenstate, Tsde, or the end of the of the initial part of the decay, Tend.
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3.3.2.  Calculating the Decay Timescales From the 2D Simulations

We now return to Figure 6 and the question of how to compute decay timescales from the 2D simulations. Panel 
(d) shows the simulated fluxes from the 2D simulation without Coulomb energy drag, that is, the solution to 
Equation 5 with the last term on the right-hand side omitted. The fluxes are again plotted for the first 700 days 
of the simulation, as in panel (a), and we see similar behavior as in the 1D simulation. During the initial part of 
the simulation (up to day ∼100), the fluxes at different pitch angles are all decaying on different timescales. As 
the simulation progresses, the fluxes begin to settle into a single decay timescale of τn ≈ 500 days, reminiscent 
of the  eigenmode in panel (b). However, when viewed on a longer timescale (panels (g) and (h)), we see that, 
while all pitch-angles have collapsed into a single decay timescale, this value is time-dependent. Thus, one cannot 
assign a single timescale or lifetime to the decaying fluxes in the 2D simulations, as alluded to above. Also, note 
that in this 2D simulation at this L and energy, the flux decays proceed more slowly than in the 1D case subject 
only to pitch angle diffusion. The additional processes of momentum and cross-diffusion act to inhibit the decay.

At this point, we turn to the observations as a guide, since we are ultimately trying to use theory to understand 
what the measurements show. Deep in the inner zone near L ≈ 1.5, the decay timescales observed by the Van 
Allen Probes are long and the fluxes decay over long time intervals (∼100 days), since the decay dynamics are 
only interrupted by very strong events like the March 2015 and June 2015 geomagnetic storms. However, even 
with these caveats, it is rare for the fluxes measured in the inner zone to decay in isolation for ∼450 days, as the 
value of Tsde shown in Figure 7 suggests. It is really the timescale during the “initial” portion of the decay that 
we are interested in, since this is what is measured. Moreover, this initial portion of the decay is dominated by 
pitch angle diffusion, since this is the fastest process in the 2D simulation. Thus, we use this guidance from the 
observations and our theoretical expectations to extract the decay timescales during the initial portions of the 
simulation, as follows.

First, at each L and energy bin, we average the simulated flux over the equatorial pitch angle range from 70° to 
90°. We do so because the observed decay timescales were computed using fluxes averaged over roughly the 
same pitch angle range (Claudepierre et al., 2020b). (We note that the decay timescales obtained from the simu-
lations are not particularly sensitive to this choice of pitch-angle range; not shown here). Next, we find the first 
time in the simulation in which this averaged flux decreased for all subsequent days. This value, denoted T0, is 
typically within the first ∼10 days of the simulation and marks the beginning of the time interval that we use to 
calculate the decay timescale. If T0 is found to be less-than-or-equal to day 3, we impose T0 = 3 has a hard lower 
limit, so as to avoid the very initial part of the simulation. The end of this time interval, which we denote as Tend, 
is defined as T0 plus the observed decay timescale (rounded up to the next integer day). The reason for using the 
observed decay timescale to specify the upper limit of the time interval is to ensure that we are capturing the 
decay during the portion of the simulation that is most representative of the time interval over which the decay is 
observed. In the inner zone, the observed decay timescales are less than ∼200 days, so that the time interval that 
we use to calculate the decay timescale from the simulation, [T0, Tend], is some subinterval of the first ∼200 days 
of the simulation. If a value of Tend is found such that the length of [T0, Tend] is less than 5 days, we increase Tend 
so that the interval length is 5 days. Finally, we fit an exponential to the simulated flux over the time interval 
[T0, Tend] and retain the e-folding time as the decay timescale. If the r 2 of the fit is less than 0.95, we discard the 
decay timescale and deem it to be undefined. This situation is only encountered in a few bins of L-energy space. 
It usually arises when the flux is roughly constant and only slightly decaying during the initial part of the time 
interval, after which time the decay rate increases so that there are effectively two decay timescales within the 
time interval (and the fit is thus poor).

The technique just described will be used in what follows to calculate the decay timescales from the 2D simula-
tions. Before we do so, we use the 1D pitch angle diffusion simulations to evaluate how the timescales obtained 
with this technique compare to those of the equilibrium eigenstate. The top row in Figure 7 (panels (a)–(d)) 
shows the decay timescales obtained from the initial portion of the simulation [T0, Tend], with the label “1D sim 
(initial)” (green curves). We see that, although the fluxes have not settled into the slowest decaying eigenmode, 
the timescales obtained from the initial portion of the simulation are quite similar to the eigenstate timescales of 
pure pitch angle diffusion (the red curves labeled “eigen”). The bottom row in Figure 7 (panels (e)–(h)) compares 
the time in the simulation in which the eigenstate is reached (Tsde) with the end of the time interval over which 
the “initial” decay timescale is computed (Tend). We see that Tend is typically less than Tsde, confirming that the 
calculated decay timescales are obtained from a time interval before the eigenstate is reached. This “initial time 
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interval” method, demonstrated here on the 1D simulations, is used in what follows to compute the decay times-
cales from the 2D simulations.

3.3.3.  2D Simulation Results With and Without Coulomb Energy Drag

Figure 8 shows the electron decay timescales from the 2D simulations with and without Coulomb energy drag 
(magenta and purple curves, respectively). For comparison, the decay timescales from the 1D pitch angle diffu-
sion simulations are also shown (green curves), which are the same green curves shown in Figure 7. Note that, as 
demonstrated in Figures 7a–7d, these decay timescales obtained during the initial portion of the simulations are a 
good proxy for the pitch-angle diffusion eigenmode timescales. This allows us to link back and compare with the 
results shown in Sections 3.1 and 3.2 (i.e., the eigenmode timescales shown in Figure 2). The theoretical times-
cales shown in Figure 8 are calculated using the “initial time interval” method described above, with the diffusion 
coefficients from lifetime model 3 (LM3). The top row shows the timescales obtained using the Kp = 0 diffu-
sion  coefficients, while the bottom row shows those obtained from the Kp = 4 coefficients. The observed  decay 
timescales are shown in black in each panel, with gray shading to indicate the 1σ error bars on the means. We note 
that using the diffusion coefficients from LM4 does not significantly change the lifetimes obtained from the 2D 
simulation with Coulomb energy drag (not shown here).

At L = 1.6 in the top row (panel (a)), we see that the best agreement with the observed decay timescales is 
achieved in the 2D simulation where Coulomb energy drag is included. The timescales predicted from 1D 
pitch-angle diffusion (green) and from 2D momentum/pitch-angle diffusion (purple) are both much longer than 
the observed timescales. Note that this is the L region identified above where we found the most significant 
disagreement between the observed lifetimes and those from our 1D pitch angle diffusion lifetime models. The 
results with energy drag included match well with the observed lifetimes, both in terms of the absolute timescale 
and its energy dependence. At L = 2.0 (panel (b)), a similar result is found, where the incorporation of energy 
drag modifies the energy dependence such that it is in better agreement with the observed decay timescales. 

Figure 8.  Comparison of the electron decay timescales obtained from 2D simulations with and without Coulomb energy drag (magenta and purple, respectively). Each 
panel shows the timescales as a function of energy at a fixed L value. The top row shows timescales from simulations with Kp = 0 diffusion coefficients ((a)–(d)), while 
the bottom row shows timescales from simulations with Kp = 4 coefficients ((e)–(h)). The timescales from the 1D pitch-angle diffusion simulations are also shown, for 
comparison (green curves). The mean observed timescales are shown with dotted black curves and the gray-shaded regions indicate the 1σ error on the means.
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Specifically, by comparing the purple and magenta curves, we see that the influence of the energy drag is more 
pronounced at lower energies relative to higher energies. This brings the theoretical calculations with Coulomb 
drag into better agreement with the observed timescales at lower energy. This is consistent with our theoretical 
expectations, since lower energy electrons will participate in more interactions with free and bound electrons due 
to their lower velocities, and thus be subject to greater ionization energy loss in the inner region. Collectively, the 
results shown in panels (a) and (b) suggest that Coulomb energy drag is an important loss process in the L < 2 
region and should not be neglected in theoretical and numerical treatments of inner zone electrons.

At higher L (L = 2.4, panel (c)), we see that the influence that Coulomb energy drag has on the decay timescales 
is less important than at L ≤ 2, and only appreciable at energies less than ∼100 keV. At L = 3.1 (panel (d)), 
Coulomb energy drag is unimportant across nearly the entire energy range shown. We note that the timescales 
from the 2D simulations (purple and magenta) above 1.5 MeV fail the r 2 goodness-of-fit test described, which is 
why the curves abruptly end there. Also, in panel (d), the scale on the energy axis is extended to 4 MeV, beyond 
the ∼1 MeV value used for the upper limits in panels (a)–(c). This is because, at this L, there are valid observed 
decay timescales at energies in excess of 1 MeV with which we can compare.

While Coulomb energy drag clearly becomes less important at higher L, as expected, there are some unexpected 
features in the 2D simulations. For example, at L = 2.4 (panel (c)), we see that the lifetimes from 1D pitch 
angle diffusion are lower than those found in the 2D simulations across all energies shown. This suggests that 
there is enhanced momentum diffusion in the 2D simulations that opposes the losses from pitch angle diffu-
sion, which results in longer lifetimes. A similar result is noted at L = 3.1 (panel (d)) across most of the energy 
range displayed. Also, at this L, the decay timescales in the 2D simulations diverge significantly from both the 
observed values and those from pure pitch angle diffusion. One potential explanation for this behavior could be 
that enhanced hiss wave activity, such as that which occurs during more geomagnetically active times, is needed 
to counterbalance the momentum diffusion that suppresses the losses from pitch angle diffusion. For example, 
at L = 3.1 where hiss wave amplitudes reach their maximum values, the statistical hiss wave amplitudes used to 
calculate our diffusion coefficients are twice as large during active times (Kp = 4) versus quiet times (Kp = 0; 
Claudepierre et al., 2020a). Moreover, at this L, the observed decay timescales are in the ∼1–10 days range, and 
we find that these rapid decays generally occur during more active times (not shown here). Thus, one might argue 
that the Kp = 0 diffusion coefficients are not entirely applicable in this L region and that the observed decays are 
subject to a greater influence from enhanced hiss wave activity.

We can test this hypothesis by performing an additional set of simulations using the Kp = 4 diffusion coeffi-
cients. We note that, of the scattering mechanisms considered in this work, only the hiss wave scattering has a 
Kp dependence (our EMIC wave model also has geomagnetic activity dependence, but at L ≤ 3.1, the resonance 
energy of EMIC waves is generally higher than 4 MeV, and their statistical wave power is weak). The results 
from the new simulations are shown in the bottom row of Figure 8. At L = 1.6 (panel (e)), we see that the decay 
timescales from the Kp = 4 simulations are essentially unchanged relative to the Kp = 0 results shown in panel 
(a). This is expected since scattering from hiss waves is negligible at this L due to the small hiss wave amplitudes, 
and since other scattering processes are more effective here (i.e., Coulomb collisions and VLF transmitter waves). 
At L = 2.4 (panels (c) and (g)), we see that the Kp = 0 and Kp = 4 theoretical decay timescales are similar at lower 
energy, whereas at higher energy they are reduced in the Kp = 4 case, which brings them into better agreement 
with the observed. This is due to the enhanced hiss wave scattering, which preferentially affects the higher energy 
electrons at this L.

At L = 3.1 (panels (d) and (h)), the decay timescales at lower energy (<200 keV) are in better agreement with 
the observations in the Kp = 4 case. Again, this is due to the enhanced hiss wave scattering, which influences the 
entire range of energies at this L. However, the calculation of the decay timescales in the 2D simulations in  the 
Kp = 4 case is complicated by the fact that butterfly distributions begin to form early in the simulation at this 
L (not shown here), due to the presence of momentum diffusion (Albert et al., 2016). Our method to calculate 
the decay timescales from the simulated fluxes, which uses fluxes averaged over pitch angles from 70° to 90°, is 
not well suited for this case. In the initial portion of the simulation, the fluxes near 90° pitch angle are decaying, 
while the fluxes near 70° pitch angle are increasing, forming the butterfly distribution. Because of this, and the 
averaging over this pitch angle range, the decay timescales computed at energies >200 keV are likely not accu-
rate. Moreover, at energies >700 keV, the exponential fits fail the r 2 test because of how the butterfly distributions 
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complicate the analysis. Further work will be necessary to investigate this case, which will require comparisons 
with observed decay timescales at fixed pitch angle. This is beyond the scope of the current study.

The results from the simulations with the Kp = 4 diffusion coefficients suggest that enhanced wave scattering 
during more active times could potentially explain the anomalous features at L = 2.4 an L = 3.1 in the 2D simu-
lations. However, we emphasize that this argument is only intended to be suggestive, since it is unrealistic for Kp 
to be elevated to 4 for the duration of a decay that proceeds with a characteristic timescale of 10–100 days. In 
spite of these difficulties in interpreting the 2D simulation results at L > 2, we emphasize that the importance of 
Coulomb energy drag at L < 2 has clearly been demonstrated.

4.  Discussion
The results presented in the previous section are complementary and build upon the work of Albert et al. (2020). 
We have confirmed their result that Coulomb energy drag is an important scattering process at L < 2. An impor-
tant distinguishing feature between their work and ours is that we make direct comparisons with the observed 
decay timescales that were obtained by Claudepierre et al.  (2020b). In addition, we explicitly calculate decay 
timescales from the 2D simulations with and without Coulomb drag for comparisons with the observations. This 
allows for a more comprehensive evaluation of the influence that Coulomb energy drag has on inner belt electron 
loss timescales, with the observed timescales serving as the ground truth.

However, there are a number of important caveats in our approach to modeling Coulomb drag. For example, we 
did not simulate a specific event, and simple functional forms were chosen for the initial conditions: ∼sin 2α for 
the pitch angle distribution and an exponential for the energy dependence. While these are reasonable choices 
guided by observations, the Coulomb energy drag term in Equation 5 is sensitive to the parameters used to specify 
these functional forms. The initial condition on the angular distributions strongly affects the dynamics during 
the first several days of the simulation and how quickly the distribution approaches and evolves into the lowest 
eigenmode. Strong injections into the inner zone may be more isotropic than the sin 2α distribution used here and 
different dynamics will result. Similarly, the gradients in energy in the distribution function (∼∂f/∂E) control the 
overall strength of the Coulomb drag term and the efficiency of momentum diffusion in Equation 5. Future work 
will be necessary to explore this parameter space on the initial conditions and simulate specific events to fully 
quantify the role of Coulomb energy drag on inner zone electron dynamics. It is also important to acknowledge 
the differences in the methodology used here versus that used by Albert et al. (2020). The most notable differ-
ences are (a) that we use statistically averaged empirical models for the LGW and VLF waves, while they used 
a physics-based calculation, and (b) that we use a plasmasphere density model derived from observations, while 
they used one based on the theoretical consideration of diffusive equilibrium.

When comparing with the observed timescales, Figure 5 suggests that the unducted propagation mode may be 
a poor assumption for the LGW waves (for either density model). Albert et al. (2020)'s lifetimes obtained for 
ducted LGW propagation agree better with the observed lifetimes when their “dens-high” plasmaspheric model 
is used. At L > 2, this density model is in agreement with the Ozhogin et al. (2012) model that we used, and we 
find good agreement between the Albert et al. (2020) lifetimes, those obtained in our lifetime model 3 (LM3), and 
the observed lifetimes. This indicates that we obtained similar results for VLF and LGW wave scattering despite 
the two different approaches (empirical vs. physics-based), assuming ducted propagation for the LGW waves 
in  the  Albert et al. (2020) results.

At L < 2, where we find the largest disagreement between our theoretical calculations (LM3) and the observed 
decay timescales, we demonstrated that the Albert et  al.  (2020) lifetimes agree better with the observations. 
However, we showed that their “dens-high” plasmaspheric model is inconsistent with both the Ozhogin 
et al. (2012) density model and the model of Hartley et al. (2018) at L < 2. We thus argue that the agreement 
in lifetimes was solely due to the choice of plasmaspheric density model, which may be artificially large in this 
region. While the plasmasphere does not typically erode below L = 2, some variability in the electron density 
may be expected based on day/night asymmetries related to the ionosphere. Further work will be needed to fully 
characterize the electron densities at L < 2 and their very important role in controlling electron scattering loss.

It is also important to acknowledge that the equilibrium pitch-angle diffusion eigenmode state may never be 
reached in observed electron flux decays in the inner regions (L < 4). At lower L (L < 2), where the decay times-
cales are long (>100 days) and the decays often proceed uninterrupted, the results presented here suggest that the 
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eigenmode timescale is approached in the observations. However, in the slot region, the decays proceed rapidly, 
with characteristic timescales on the order of a few days. This may not be of sufficient duration to reach the lowest 
order eigenmode of the pitch-angle diffusion operator. We attempted to account for this when calculating the 
decay timescales from our simulations by only looking at the decay during the initial portion of the simulation. 
This again highlights the need to carry out event-specific simulations and compare the observed decay timescales 
with those simulated to fully assess whether true equilibrium eigenstates are ever realized in inner belt decays.

5.  Summary
We investigate the factors that contribute to electron precipitation loss in the Earth's radiation belts using the most 
up-to-date wave models and simulation techniques. In our previous work (Claudepierre et al., 2020a, 2020b), we 
examined electron decay timescales, or lifetimes, in the radiation belt region (L = 1.3 to 6). We demonstrated 
good qualitative agreement between the decay timescales observed by the Van Allen Probes and theoretical calcu-
lations based on quasilinear pitch-angle diffusion. We considered several waves and scattering mechanisms in our 
diffusion calculations: Scattering from hiss, EMIC, and VLF transmitter waves, and scattering from Coulomb 
collisions with neutral and charged particles in the atmosphere and ionosphere. While good qualitative agreement 
was found, quantitative agreement was lacking, particularly in the inner region (L < 2.5), where the theoretical 
decay timescales were found to be roughly an order of magnitude larger than the observed.

In the current study, we have incorporated LGW waves, revised our treatment of VLF transmitter wave scattering, 
considered the role of the drift loss cone, and evaluated the impact of Coulomb energy drag. The primary findings 
of this work are summarized as follows:

1.	 �Coulomb energy drag (ionization energy loss) is an important electron loss process in the L ≤ 2 region and 
should not be neglected in theoretical and numerical treatments of inner zone electrons. Including energy 
drag in our decay timescale calculations significantly improves the quantitative agreement with the observed 
timescales at L = 1.6 and L = 2.0.

2.	 �Electron decay timescales in the L < 4 region are very sensitive to the choice of plasmaspheric density model 
(e.g., Albert et al., 2020; Hartley et al., 2018; Ozhogin et al., 2012). For example, theoretical decay timescales 
at L < 1.5 can be brought into quantitative agreement with the observed timescales, without invoking an addi-
tional process like Coulomb energy drag, by using a model with electron densities that are a factor of 5–10 
larger than the Ozhogin et al. (2012) model at L < 1.5.

3.	 �Explicitly incorporating LGW waves into our theoretical lifetime calculations significantly improves the 
quantitative agreement with the observed electron lifetimes at L ≈ [1.8, 3.2], relative to what was presented 
in Claudepierre et al. (2020a).

4.	 �When the drift loss cone is taken into consideration, lifetimes are reduced by ∼20% at L = [1.7, 4.0], by a 
factor of ∼2–5 at L = [1.4, 1.6], and by an order of magnitude or more at L < 1.3. This was demonstrated with 
a simple calculation using the IGRF drift loss cone angle in place of the dipole bounce loss cone angle in our 
theoretical scattering and lifetime calculations.

5.	 �The lifetimes calculated from our statistically averaged empirical models of LGW and VLF transmitter waves 
are similar to those obtained using the physics-based approach of Albert et al. (2020) and Starks et al. (2020).

6.	 �The approximate formula derived by Albert and Shprits (2009) to calculate lifetimes from pitch angle diffu-
sion coefficients produces values ∼2× larger than the exact calculation.

7.	 �The inclusion of LF transmitter wave power in our VLF wave scattering calculations had a minimal impact 
on the theoretical lifetimes.

The work presented here furthers our understanding of the processes that are relevant for electron loss in the 
Earth's inner radiation belt region (L < 4). These findings will be relevant for future numerical modeling efforts 
and observations obtained in this important region of geospace.

Data Availability Statement
The data displayed in the figures in this manuscript are available at https://doi.org/10.5068/D1FT3H.
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Erratum
In the originally published version of this article, two URLs were provided in the Data Availability Statement. 
The second URL was temporary and has been removed. This version may be considered the authoritative version 
of record.
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