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Photosynthetic responses to temperature across the tropics: a meta-analytic approach

Thank you for agreeing to review this paper for Annals of Botany. The Annals of Botany aims to be among the very top of plant science journals and
as we receive over 1000 submissions every year we need to be very selective in deciding which papers we can publish. In making your assessment of
the manuscript's suitability for publication in the journal please consider the following points.

Scientific Scope

Annals of Botany welcomes papers in all areas of plant science. Papers may address questions at any level of biological organization ranging from
molecular through cells and organs, to whole organisms, species, communities and ecosystems. Its scope extends to all flowering and non-flowering
taxa, and to evolutionary and pathology research. Many questions are addressed using comparative studies, genetics, genomics, molecular tools, and
modeling.

To merit publication in Annals of Botany, contributions should be substantial, concise, written in clear English and combine originality of content with
potential general interest.

We want to publish papers where our reviewers are enthusiastic about the science: is this a paper that you would keep for reference, or pass on
to your colleagues? If the answer is “no” then please enter a low priority score when you submit your report.

We want to publish papers with novel and original content that move the subject forward, not papers that report incremental advances or
findings that are already well known in other species. Please consider this when you enter a score for originality when you submit your report.

Notes on categories of papers:

All review-type articles should be novel, rigorous, substantial and “make a difference” to plant science. The purpose is to summarise, clearly
and succinctly, the “cutting edge” of the subject and how future research would best be directed. Reviews should be relevant to a broad audience and
all should have a strong conclusion and illustrations including diagrams.

 

Primary Research articles should report on original research relevant to the scope of the journal, demonstrating an important advance in the
subject area, and the results should be clearly presented, novel and supported by appropriate experimental approaches. The Introduction
should clearly set the context for the work and the Discussion should demonstrate the importance of the results within that context. Concise
speculation, models and hypotheses are encouraged, but must be informed by the results and by the authors' expert knowledge of the subject.

Reviews should place the subject in context, add significantly to previous reviews in the subject area and moving forward research in the subject
area. Reviews should be selective, including the most important and best, up-to-date, references, not a blow-by-blow and exhaustive listing.

Research in Context should combine a review/overview of a subject area with original research, often leading to new ideas or models; they
present a hybrid of review and research. Typically a Research in Context article contains an extended Introduction that provides a general
overview of the topic before incorporating new research results with a Discussion proposing general models and the impact of the research.

Viewpoints are shorter reviews, presenting clear, concise and logical arguments supporting the authors' opinions, and in doing so help to
stimulate discussions within the topic.

Botanical Briefings are concise, perhaps more specialised reviews and usually cover topical issues, maybe involving some controversy.
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Abstract 66 
 67 
Background and Aims 68 

Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other 69 

terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is 70 

roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of 71 

tropical plant physiological responses, including photosynthetic, to climate change is a 72 

substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.  73 

 74 

Methods 75 

We used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to 76 

address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-77 

level light saturated photosynthetic (Asat) temperature responses from 108 woody species, with 78 

additional temperature parameters (35 species) and rates (250 species) of both maximum rates of 79 

electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these 80 

parameters responded to mean annual temperature (MAT), temperature variability, aridity, and 81 

elevation, as well as also how responses differed among successional strategy, leaf habit, and 82 

light environment.  83 

 84 

Key Results 85 

Optimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax 86 

(ToptV). Although photosynthetic rates were higher for “light” than “shaded” leaves, light 87 

conditions did not generate differences in temperature response parameters. ToptA did not differ 88 

with successional strategy, but early successional species had ~4 C wider thermal niches than 89 



 4 

mid/late species. Semi-deciduous species had ~1 C higher ToptA than broadleaf evergreen. Most 90 

global modeling efforts consider all tropical forests as a single “broadleaf evergreen” functional 91 

type, but our data show that tropical species with different leaf habits display distinct 92 

temperature responses that should be included in modeling efforts. 93 

 94 

Conclusions 95 

 This novel research will inform modeling efforts to quantify tropical ecosystem carbon cycling 96 

and provide more accurate representations of how these key ecosystems will respond to altered 97 

temperature patterns in the face of climate warming. 98 

 99 

 100 

 101 

Key Words: A-Ci curves; Maximum rate of photosynthetic electron transport (Jmax); Maximum 102 

rate of Rubisco carboxylation (Vcmax); Meta-analysis; Photosynthesis; Temperature Response; 103 

Tropics 104 

 105 

Introduction  106 

Tropical forests have been characterized as one of the biomes with the greatest 107 

uncertainty regarding the accuracy of large-scale models in estimating carbon fluxes (Booth et 108 

al. 2012; Cavaleri et al. 2015; Lombardozzi et al. 2015; Mercado et al. 2018). Addressing this 109 

information gap is critical because tropical forests have high biomass and cycle large amounts of 110 

carbon (Dixon et al. 1994; Pan et al. 2013; Tagesson et al. 2020), thus alterations in tropical 111 

forest carbon uptake would likely significantly affect global carbon cycling (Anderegg et al. 112 
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2015). In addition, these forests are projected to surpass their historical climate margin, entering 113 

into novel climate conditions within the next quarter century (Williams et al. 2007; but see 114 

Jaramillo et al. 2010), a trend anticipated to occur sooner for the tropics than other global regions 115 

(Diffenbaugh and Scherer 2011; Mora et al. 2013; Doughty et al. 2023). Some tropical forests 116 

are already believed to be operating near or beyond their photosynthetic thermal optima 117 

(Doughty and Goulden 2008; Vårhammar et al. 2015; Mau et al. 2018; Dusenge et al. 2021; 118 

Doughty et al. 2023), making them particularly vulnerable to the effects of climate warming on 119 

carbon uptake.  120 

Due to the significant uncertainties around how the tropical forest biome will respond to 121 

continued global change, better representation of vegetation processes is needed to more 122 

accurately inform Earth system and dynamic vegetation models (Friedlingstein et al. 2006; 123 

Matthews et al. 2007; Booth et al. 2012; Rogers et al. 2017; Fisher et al. 2018). In particular, 124 

quantifying photosynthetic temperature responses of tropical species will help to reduce model 125 

uncertainty (Matthews et al. 2007; Booth et al. 2012). Photosynthesis has a peaked response to 126 

temperature, where the rate of photosynthesis increases and then declines after the optimum 127 

temperature (ToptA; Table 1) is reached. The components of photosynthetic decline beyond the 128 

thermal optimum can be examined by exploring stomatal conductance and the underlying 129 

biochemical processes that control photosynthesis. These biochemical processes include the 130 

maximum rate of carbon dioxide (CO2) fixation by Rubisco (Vcmax) and the maximum rate of 131 

photosynthetic electron transport (Jmax), both of which are derived by a well-established 132 

biochemical model (Farquhar et al. 1980; von Caemmerer and Farquhar 1981). Global 133 

vegetation models use the temperature response parameters of these biochemical processes 134 
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controlling photosynthesis to predict carbon uptake at wider scales (Kattge et al. 2009; Lin et al. 135 

2012; Smith and Dukes 2013; Mercado et al. 2018; Oliver et al. 2022). 136 

Considerable efforts have been made to quantify these photosynthetic response 137 

parameters at the global scale (Medlyn et al. 2002; Kattge and Knorr 2007; Yamori et al. 2014; 138 

Kumarathunge et al. 2019; Crous et al. 2022). These studies show that species can (but may not) 139 

acclimate to their growth environment, and algorithms developed in Kattge and Knorr (2007) 140 

have been implemented in some Earth system and vegetation models for more accurate 141 

representation of photosynthetic acclimation (e.g. Arneth et al. 2012; Lombardozzi et al. 2015; 142 

Smith et al. 2016; Mercado et al. 2018). However, Kattge and Knorr (2007) did not have enough 143 

data to represent tropical species in their meta-analysis. As a result, carbon models are likely 144 

biased in projecting tropical biome temperature responses. More recently, Kumarathunge et al. 145 

(2019) published updated algorithms including six datasets from tropical forests which will 146 

undoubtedly improve global carbon models (Zarakas et al. 2024). Even so, because tropical 147 

forests cycle a disproportionate amount of carbon, specific investigations of tropical 148 

photosynthetic responses to temperature based on plant function and growth strategy will further 149 

minimize uncertainty for this crucial biome (Booth et al. 2012).  150 

There is strong evidence suggesting that, across the globe, Topt is determined by the 151 

plant’s current growth temperature (Berry and Björkman 1980; Kattge and Knorr 2007; 152 

Kumarathunge et al. 2019). Genetic variation also plays an important role in determining 153 

species’ ability to acclimate and adjust to their growth temperatures (Berry and Björkman 1980; 154 

Yamori et al. 2014; Crous et al. 2022; but see Kumarathunge et al. 2019). However, it is still 155 

unclear whether this holds true within tropical ecosystems. Studies of photosynthetic temperature 156 

responses of tropical forest species provide evidence that Topt is either closely associated with 157 
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mean (Vargas and Cordero 2013, Kositsup et al. 2009, Tan et al. 2017) or maximum air 158 

temperature (Read 1990; Slot and Winter 2017a; Mau et al. 2018). Historically, these forests 159 

have been thought to have little capacity to acclimate to temperature changes because they have 160 

evolved under low variability in diurnal, seasonal, and inter-annual ambient air temperature 161 

(Janzen 1967; Read 1990; Battaglia et al. 1996; Cunningham and Read 2002). More recent 162 

studies have found evidence that tropical leaves are capable of acclimation to the temperature 163 

where they are grown (Scafaro et al. 2017; Slot and Winter 2017b; Choury et al. 2022; 164 

Wittemann et al. 2022; Cox et al. 2023), but not for all species (Cunningham and Read 2003; 165 

Slot et al. 2014; Varhammar et al. 2015; Carter et al. 2020, 2021; Dusenge et al. 2021; Crous et 166 

al. 2022; Kullberg et al. 2023) and successional strategy likely influences the response 167 

(Mujawamariya et al. 2023). The few studies investigating Jmax optimum temperature (ToptJ) and 168 

Vcmax optimum temperature (ToptV) on tropical species suggest that both traits are closely 169 

associated with their home climate and most are unable to adjust to warmer growth temperatures 170 

(Slot and Winter 2017b; Dusenge et al. 2021; but see Wittemann et al. 2022). Additionally, a 171 

common garden study by Vårhammar et al. (2015) found that tropical species that originate from 172 

areas with lower temperatures have lower optimum temperatures for Jmax than species that 173 

originate from warmer areas. This variation of photosynthetic temperature responses in tropical 174 

forests suggests that, in order to accurately model global carbon fluxes, we need to better 175 

understand the drivers of temperature responses for critical photosynthetic parameters in tropical 176 

systems.  177 

Growth conditions and ecological successions can also affect plant photosynthetic 178 

responses to temperature (Yamori et al. 2014; Dusenge et al. 2019), and these differences are 179 

rarely incorporated into vegetation models (Lombardozzi et al. 2015; Smith et al. 2016; Mercado 180 
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et al. 2018). Growth strategies are often characterized by their successional strategy, with some 181 

forms, such as early successional species and lianas, incorporating fast growth as juveniles, while 182 

late successional and evergreen species employ slower growth as juveniles (Bloom et al. 1985, 183 

Box et al. 1996; Wright et al. 2004; Michaletz et al. 2016). Due to higher radiation reaching 184 

deeper into the canopy, early successional forests have more variable land surface temperature 185 

fluxes than late successional forests (Cao and Sanchez-Azofeifa 2017), suggesting that seedlings 186 

adapted to this environment may have a greater plasticity to adjust Topt to their fluctuating growth 187 

environment. Studies of canopy species in Panama found that early successional seedlings had a 188 

higher Topt than late successional seedlings (Slot et al. 2016, Slot and Winter, 2018). However, 189 

those results were not replicated for mature canopy trees (Slot and Winter 2017a), suggesting 190 

that successional type Topt differences are primarily driven by trees at the immature seedling and 191 

sapling stages.  192 

 Tropical trees with differing leaf habits (i.e., evergreen vs. deciduous) may also employ 193 

different temperature responses. For example, species with shorter-lived leaves have a greater 194 

variability in leaf phenotypes, making them more responsive to seasonal changes (Kitajima et al. 195 

1997). Compared to longer-lived evergreen leaves, shorter-lived deciduous leaves are 196 

hypothesized to have broader photosynthetic temperature response curves (i.e., thermal niches; 197 

Michaletz et al. 2016). Broad- and needle-leaf evergreen species have been found less able to 198 

increase their growth rates in warmer temperatures than deciduous species (Way and Oren 2010; 199 

Way and Yamori 2014; Yamori et al. 2014; Reich et al. 2022). Recently, Crous et al. (2022) 200 

found that needleleaf evergreen species’ photosynthetic and respiration rates declined more with 201 

warming compared to broadleaf evergreen species. This, in addition to longer-lived leaves 202 

having lower photosynthetic capacity (Niinemets 2007), and lower rates of photosynthesis 203 
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(Wright et al. 2004), suggests that evergreen and deciduous species may have different 204 

capabilities to respond to their growth environment. 205 

Light availability may also play a role in modulating plant photosynthetic responses to 206 

temperature (Niinemets 2007). Models of canopy photosynthesis and global primary productivity 207 

often separate leaves into ‘sun’ and ‘shade’ leaves, as they have different photosynthetic 208 

responses to irradiance (Sinclair et al. 1976; De Pury and Farquhar 1997; Wang and Leuning 209 

1998; Ryu et al. 2011). Because leaf temperature is strongly influenced by irradiance (Rey-210 

Sánchez et al. 2016; Fauset et al. 2018; Miller et al. 2021; Crous et al. 2023), it should follow 211 

that sun leaves that have developed under higher irradiance are acclimated to operate at higher 212 

temperatures. However, comparisons of leaves growing in different light environments in 213 

tropical forests have found large differences in photosynthetic capacity but little to no differences 214 

in photosynthetic temperature response (Pearcy 1987; Hernández et al. 2020), or 215 

thermotolerance (Slot et al. 2019), between sun and shade leaves. The limited evidence that we 216 

have comparing tropical temperature responses of sun and shade leaves suggests that light may 217 

play a large role in determining overall carbon gain but only a minor role for leaves’ 218 

photosynthetic temperature responses. 219 

Rainfall and moisture regimes also play a role in controlling plant photosynthesis, which 220 

can lead to restrictions on temperature response parameters. In general, drier conditions can 221 

induce stomatal closure, slowing the rate of photosynthesis and decreasing tropical forest 222 

productivity (Cavaleri et al. 2017; Santos et al. 2018; Van Schaik et al. 2018; Kumarathunge et 223 

al. 2020; Mujawamariya et al. 2023). However, drier conditions are also associated with less 224 

rainfall and cloud cover, and a higher light environment can directly increase ecosystem 225 

productivity (Carswell et al. 2002). Ecosystem scale studies show gross primary productivity 226 
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(GPP) can either increase in the dry season (Goulden et al. 2004; Yan et al. 2013; Wu et al. 227 

2016; Green et al. 2020) or remain constant between seasons (Carswell et al. 2002; Yan et al. 228 

2013; Guan et al. 2015), suggesting that tropical forests can sustain higher GPP during the higher 229 

dry-season atmospheric water stress if they are not stomatal conductance limited. Across two 230 

Panamanian tropical systems, a leaf level study showed that, when compared to a wet forest, 231 

seasonally dry forests can have higher rates of photosynthesis and higher optimum temperatures 232 

that correspond to their higher growth temperatures (Slot and Winter 2017a). Within a Puerto 233 

Rican tropical forest, drier soil was associated with higher optimum temperatures but lower rates 234 

of photosynthesis (Carter et al. 2020). These studies suggest that optimum temperatures could be 235 

positively correlated with drier tropical systems. 236 

In order to better understand tropical net photosynthetic and biochemical responses to 237 

temperature, we used a meta-analytic approach to quantify how photosynthetic temperature 238 

response parameters respond to different climate and growth environment factors using already 239 

established temperature response functions (Medlyn et al. 2002; June et al. 2004). We 240 

hypothesize that (1) light saturated photosynthetic optimum temperatures (ToptA) will be 241 

positively correlated with mean annual temperatures (MAT) due to positive shifts in Vcmax 242 

temperature response parameters. We similarly hypothesize that, due to indirect environmental 243 

effects of higher light availability, (2) temperature optima will decrease with rising aridity index 244 

(AI) (decrease in wetter ecosystems). We also compare temperature response variables of leaves 245 

grown in different light environments (sun vs. shade), growth environments (in situ vs. ex situ or 246 

field vs chamber/glasshouse), leaf habits (evergreen vs. drought semi-deciduous), and 247 

successional strategy (early vs. mid-late). We predicted that (3) sun leaves would have higher 248 

photosynthetic rates than shade leaves; but that Topt would not differ between different light 249 
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environments. Additionally, we predicted that (4) early successional species Topt will not differ 250 

from late successional species and (5) broadleaf evergreen leaves would have a narrower thermal 251 

niche and lower Topt than semi-deciduous species. Lastly, we aimed to estimate the most 252 

important individual environmental drivers to best predict the temperature parameters of both net 253 

photosynthesis and the biochemical reactions driving photosynthesis.  254 

 255 

Methods 256 

 257 

Meta-analysis data collection and selection 258 

For this meta-analysis, we gathered datasets where photosynthetic measurements were 259 

collected at different leaf temperatures on woody (trees, shrubs, and lianas) tropical species. 260 

These data come in the form of net photosynthesis measured at saturating light conditions (Asat) 261 

vs. leaf temperature (Tleaf) response curves, Asat vs. Tleaf estimated from photosynthetic light 262 

response curves at different temperatures, biochemical parameters (Vcmax and Jmax) vs. Tleaf 263 

response curves (estimated from net assimilation response to different leaf internal CO2 264 

concentrations, A-Ci curves, measured at different temperatures), and measurements of Asat and 265 

A-Ci curves at multiple ambient temperatures through time. Data were gathered from woody 266 

species in forested systems within the tropical latitudes (2326’10.6” N, 2326’10.6” S), 267 

including tropical montane systems. We obtained our data by approaching research groups for 268 

unpublished data and searching “photosynthesis” “tropical” “temperature” on Web of Science 269 

(Fig S1). This resulted in 18 datasets with representation in Africa (2), Oceana (6), North 270 

America (8), and South America (3). No studies were identified from the Asian continent. Site-271 

specific climate data from the years 1970-2000 were collected from the WorldClim database 272 
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(Fick and Hijmans, 2017) using provided latitude and longitudinal data. Latitude and longitude 273 

were designated as the location where plants grew, except for data from Read (1990), which 274 

were obtained with plants that were grown in a chamber. In this specific case, seeding source 275 

location was used for latitude and longitude and mean annual temperature (MAT) was 276 

designated as the growth chamber temperature. Data were extracted from the WorldClim 277 

database using the ‘getData’ function in the ‘raster’ package in R version 3.5.0 (R Core Team 278 

2020). Aridity index (AI) was calculated as mean annual precipitation divided by mean annual 279 

potential evapotranspiration (Greve and Seneviratne 2015), where both variables were collected 280 

from WorldClim. Higher AI indicates a less arid system. AI was only used from in situ datasets, 281 

i.e., we excluded greenhouse, growth chamber, and arboretum grown individuals from this 282 

analysis. Successional stage and leaf habit (raingreen semi-deciduous or evergreen; Poulter et al. 283 

(2015)) were either provided by the contributing data author or extracted from the literature. 284 

Species that were classified as “pioneer” and “shade-intolerant” were designated as “early 285 

successional”. If the species was classified as “shade-tolerant” the species was considered 286 

“mid/late successional”. When light environment information was available, we used author 287 

designations or classified ourselves; where growth chamber, greenhouse, “open” or “upper” 288 

canopy was considered “sun,” and “understory” was considered shade. All samples grown in 289 

growth chambers, greenhouses, or transplant studies in arboretums were considered “ex situ”. All 290 

other growth environments (i.e., “field collected”) were designated as “in situ”. We gathered 291 

photosynthetic data in two ways: 1) raw data in the form of photosynthetic response curves or 2) 292 

extraction from published articles. Data were digitized from published articles using Digitize It 293 

2016 version 4.2.0 software (Alcasa). Raw data were provided from both published and 294 
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unpublished sources. Some of the datasets that were shared with us also included a ‘warming’ 295 

treatment. For these data, we only used leaves grown in the ‘control’ environment. 296 

 297 

Net photosynthesis parameter extraction 298 

Within individual datasets, means of different species and canopy class (shaded or sun) 299 

from the same study were treated as separate, independent samples (Curtis and Wang 1998).  300 

The net photosynthetic temperature optimum of each sample was extracted from a peaked 301 

curve (June et al. 2004): 302 

𝐴𝑠𝑎𝑡 = 𝐴𝑜𝑝𝑡 × 𝑒
−(

𝑇𝑙𝑒𝑎𝑓− 𝑇𝑜𝑝𝑡𝐴

Ω
) 

2

       (1) 303 

 304 

where Asat (mol m
-2

 s
-1

) is the rate of net assimilation at the leaf temperature (Tleaf) in C, ToptA 305 

(C) is the optimum temperature for photosynthesis, and Aopt (mol m
-2

 s
-1

) is the rate of 306 

photosynthesis at ToptA. , or net photosynthetic thermal niche, is the temperature difference 307 

from ToptA where photosynthesis declines to 37% of Aopt.   ( C) describes the width of the 308 

response curve peak, where wide curves have a higher  and narrower curves have a lower . 309 

Prior to fitting Equation 1, Asat from each dataset was individually inspected for outliers. Outliers 310 

were removed only when they were clearly erroneous, such as Asat < 0 mol m
-2

 s
-1 

that were not 311 

clearly caused by high temperatures. In addition, data points with Ci < 0 were removed as they 312 

were considered bad measurements. In total, we removed 402 data points, 2.79% of our Asat data.  313 

To compare the rates of net photosynthesis across studies, we extracted the rate at 25 °C 314 

(A25) by allowing Tleaf to equal 25 in Equation 1 for each set of extracted temperature parameters. 315 

This standard temperature was selected because it is similar to the average MAT (25.5 C) in our 316 

dataset and is often used as a standard so photosynthetic rates are widely comparable across 317 
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studies. Using similar methods as Kumarathunge et al. (2019), we further increased the size of 318 

our dataset by extracting Asat values from photosynthetic response to internal CO2 concentration 319 

(A-Ci) curves. For these data, we extracted the first data point taken at ambient CO2 320 

concentrations and saturating irradiance. Values of Asat were kept only if the Ci values were 321 

between 275 and 410 ppm. 40 additional curves were added to the Asat dataset using this method. 322 

One dataset measured light response curves at different temperatures. Asat was estimated by 323 

extracting the light saturated photosynthetic rate from light response curves using a non-324 

rectangular curve (Marshall and Biscoe 1980), and fitting Asat to Equation 1. A total of 111 Asat 325 

temperature response curve samples were successfully fit using Equation 1. 326 

 327 

Biochemical parameter extraction 328 

 Biochemical rates, Jmax and Vcmax, were estimated from A-Ci curves. Most datasets 329 

collected A-Ci curves starting at an ambient CO2 concentration, 360-410 ppm. A-Ci curves were 330 

obtained by gradually decreasing the CO2 below ambient concentrations (to as low as zero ppm). 331 

CO2 concentrations were then brought back up to ambient levels and then gradually increased to 332 

saturating concentrations (up to 2100 ppm). Prior to fitting the A-Ci curves, data points outside 0 333 

< Ci < 2200 ppm were removed from the dataset as they were beyond the range of CO2 334 

concentration given to the leaf. We further removed datapoints where Asat was smaller than -10 335 

and greater than 70 mol m
-2

 s
-1

 as they were not considered reasonable Asat rates. In total we 336 

removed less than 0.5% of total A-Ci datapoints. Jmax and Vcmax were obtained using the default 337 

fit method with “Tcorrect = FALSE”  in the ‘fitaci’ function from the ‘plantecophys’ package 338 

(Duursma 2015) in R version 3.5.0 (R Core Team, 2020), which extracts parameters using the 339 

Farquhar, von Caemmerer, and Berry model (FvCB model;  (Farquhar et al. 1980, von 340 
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Caemmerer and Farquhar 1981). We further looked at the fitted A-Ci curves and individually 341 

removed curves with poor fits. We further removed curves where fitted Jmax and Vcmax values 342 

were less than 0 µmol m
-2

 s
-1

, as this is not possible for correctly fit curves. After the initial data 343 

exclusion, we removed outliers where Jmax or Vcmax were clearly erroneous by looking at qqplots 344 

and histograms of each dataset. In total, 7.8% or 102 A-Ci curves were removed from the initial 345 

dataset. 346 

 Biochemical temperature response parameters for Jmax and Vcmax were extracted using the 347 

peaked Arrhenius function (Medlyn et al. 2002): 348 

 349 

                  (𝑇𝑘) = (𝑘𝑜𝑝𝑡)
𝐻𝑑exp(

𝐸𝑎(𝑇𝑘−𝑇𝑜𝑝𝑡)

(𝑇𝑘R𝑇𝑜𝑝𝑡)
)

𝐻𝑑− 𝐸𝑎[1−exp(
𝐻𝑑(𝑇𝑘−𝑇𝑜𝑝𝑡)

(𝑇𝑘R𝑇𝑜𝑝𝑡)
)]

                       (2) 350 

 351 

where Tk is the measured leaf temperature in Kelvin, (kopt) is the value of Jmax or Vcmax at the 352 

optimum temperature (µmol m
-2

 s
-1

), Ea is the activation energy in the Arrhenius function (kJ 353 

mol
-1

), or exponential increase in Jmax or Vcmax before Topt, Hd is the deactivation energy of Jmax or 354 

Vcmax after Topt (kJ mol
-1

), and R is the universal gas constant (8.314 JK
-1

mol
-1

). To avoid over-355 

parameterization of the temperature response function, we set Hd = 200 kJ mol
-1 

and estimated 356 

Topt, kopt, and Ea from Equation 2. Each individual curve was examined and curves were removed 357 

if Topt, kopt, or Ea values were over or underestimated, e.g. visually estimated Topt was clearly 358 

higher or lower than model estimations which was often due to too few temperatures used to 359 

produce the curve, resulting in 35 Vcmax and 35 Jmax temperature response curves.  360 

We extracted the rate of Vcmax (V25) and Jmax (J25) at 25 °C from A-Ci curves measured from 361 

temperatures ranging from 20-30 °C by setting Tcorrect = “TRUE” in the “fitaci” function. The 362 
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ratio between J25 and V25 (J:V) was calculated by dividing J25 by V25 for each individual sample.  363 

This resulted in 295 samples in our V25 and J25 datasets. Version 1.4 of the “plantecophys” 364 

package defaults to using temperature fitting parameters estimated from a global analysis of 365 

photosynthetic temperature responses that estimated values using (Medlyn et al. 2002):  366 

 367 

 𝑇𝑘  =  𝑘25𝑒𝑥𝑝 [
𝐸𝑎(𝑇𝑘−298)

(298𝑅𝑇𝑘)
]

1 +𝑒𝑥𝑝(
298∆𝑆 − 𝐻𝑑

298𝑅
)

1+𝑒𝑥𝑝(
𝑇𝑘∆𝑆− 𝐻𝑑

𝑇𝑘𝑅
)

                            (3) 368 

 369 

Where S is an entropy term. We estimated J25 and V25 using the default “global” parameters 370 

and this study’s tropical estimations of Ea and S (Table S3) and made comparisons of the two 371 

fitting estimations. 372 

 373 

Meta-analytic statistical analyses 374 

Biases for sample size were accounted for by weighting each extracted parameter with 375 

the number of observations that were used in each temperature response curve. The weighting 376 

factor was calculated as (Hedges and Olkin 1985; Gurevitch et al. 1992):  377 

 378 

    𝐽 =  1 −  (
3

4(𝑛−1)
)      (4) 379 

 380 

where J is the weighting factor and n is the number of data points used to fit each temperature 381 

response curve (Fig. S2). The weighted mean was incorporated into the linear model by adding J 382 

into the ‘weights’ weighting factor component of the ‘lmer’ function the ‘lme4’ package in R 383 

(Bates et al. 2015). All data analyses were performed in R version 3.5.0 (R Core Team, 2021).  384 
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Mixed effects models were used to compare global and tropical Vcmax and Jmax activation 385 

energies (EaV and EaJ, respectively) and entropy terms (SV and SJ, respectively), where data 386 

source was used as the random intercept. Mixed effects models were also used to investigate 387 

relationships between Asat and biochemical parameters (Topt, ToptJ, ToptV, A25, V25, J25, , EaV, and 388 

EaJ) and individual climate variables.  We found high collinearity between MAT and elevation 389 

(Fig. S3); therefore, elevation was removed from the individual bivariate regression models. We 390 

removed elevation as a continuous variable and grouped the data into four elevational groups (0-391 

500m, 501-1000m, 1001-2000m, and >2000m) to visually show the role that elevation played in 392 

our climate range for all bivariate regressions. Mixed effect models were also used to compare 393 

leaf habit, successional type, and growth conditions, using an  < 0.05. Due to available 394 

characterizations for our dataset, light environment (sun or shade) and leaf habit (deciduous or 395 

evergreen) were compared only for Asat parameters. Successional type (early or late) and growth 396 

environment (in or ex situ) were compared for both Asat and biochemical parameters (summary of 397 

samples used in each categorical analysis included in Table S2). Estimated J25 and V25 were 398 

compared between the default “plantecophys” package and our parameter estimates using a 399 

mixed effects model as described above. 400 

High variance inflation factors (VIF), a means of identifying potential collinearity, were 401 

assessed when we included both MAT and elevation in the same multivariate model, where full 402 

models that included all four climate variables (MAT, AI, Trange, elevation) had at least one 403 

variable VIF > 2 (VIF range 2.02-648.53). VIF on the full model was calculated using “vif” 404 

function in base R. Therefore, we used hierarchical partitioning to quantify which climate 405 

variable had the highest explanatory power on parameter (Topt, ToptJ, ToptV, A25, V25, J25, , EaV, 406 

and EaJ) variance using the “rdacca.hp” package in R (Lai et al. 2022). Hierarchical partitioning 407 
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is used in instances of high VIF because it estimates individual importance of predictors in all 408 

model subsets, where the subsets also include the full model (Lai et al. 2022). The individual 409 

effects were estimated via hierarchical partitioning and were calculated from the sum of the 410 

calculated unique and shared contribution to the overall model’s adjusted R
2
, where the model 411 

includes all individual variables of interest. The individual effect can be negative if the unique or 412 

shared contribution is negative due to high multicollinearity. In this calculation, the individual 413 

effects were added to equal the total adjusted R
2
.  414 

 415 

Results 416 

Comparisons of biochemical estimations from global and tropical parameters 417 

Global estimates of biochemical activation energies and entropy terms yielded higher 418 

biochemical parameter rates compared to tropical data derived estimates, suggesting that studies 419 

in tropical systems would overestimate V25 and J25 if using global values. V25 and J25 estimated 420 

from global datasets were both approximately 7% higher than those from tropical parameters 421 

(Table S3; Fig. S4A-B), resulting in no discernible difference in JV between parameter estimates 422 

(Fig. S4C). 423 

 424 

Primary climate variable influences on temperature parameters 425 

In bivariate regressions, the net photosynthetic and electron transport optimum 426 

temperature increased with increasing temperature, while the maximum Rubisco carboxylation 427 

optimum temperature did not. ToptA was positively related with MAT, with MAT alone 428 

explaining 37% of ToptA variance (Fig. 1A; Table 2). ToptA did not strongly respond to AI or Trange 429 

(Figs. 2B, S5A). ToptV did not respond to any of the three climate variables (Figs. 1C-D, S5B; 430 
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Table 2). ToptJ increased with rising MAT, which explained 14% variation, and ToptJ did not 431 

respond to AI or Trange (Figs. 1E-F, S5C). 432 

While net photosynthetic rate did not show clear relationships with climate variables, the 433 

rates of photosynthetic biochemical reactions decreased with a warmer climate. A25 did not 434 

respond to with MAT, AI, or Trange (Figs. 2A-B, S6A; Table 2). V25 decreased as MAT rose 435 

(marginal R
2
 = 0.20; Fig. 2C), did not respond to AI (Fig. 2D), and decreased with wider Trange 436 

(marginal R
2
 = 0.18; Fig. S6B). Similarly, J25 decreased as MAT increased (marginal R

2
 = 0.41; 437 

Fig. 2E), did not respond to AI (Fig. 2F), and increased as Trange increased (marginal R
2
 = 0.28; 438 

Fig. S6C). The ratio between Jmax and Vcmax at 25 C (J:V) decreased with rising MAT (marginal 439 

R
2
 = 0.28; Fig. 3A), did not respond to AI (Fig. 3B; Table 2), and slightly increased with a wider 440 

Trange (marginal R
2
 = 0.06; Fig. 3C). Neither net photosynthetic thermal niche (Ω) nor the 441 

activation energy for Vcmax and Jmax responded to any climate variables (Fig. S7; Table 2).  442 

 443 

Growth environment influences on temperature response parameters 444 

Variables describing the rate of a photosynthetic process were higher in sun compared to 445 

shade leaves, but temperature response parameters did not differ. Sun and shade leaf ToptA were 446 

not significantly different from one another (Satterthwaite’s method; p = 0.786; Fig. 4A). A25 of 447 

sun leaves was 1.5 times higher than shade leaves (p = 0.008; Fig. 4B). Similar to ToptA, there 448 

was no difference in Ω between the two light environments (p = 0.210; Fig. 4C). V25 and J25 of 449 

sun leaves were 88% and 63% higher than the rate of shade leaves, respectively, (both p < 0.001; 450 

Fig. 4D-E), and J:V was slightly (~10%) higher in shade than sun leaves (p = 0.022; Fig. 4F).  451 

Plants grown in situ had higher biochemical response rates than ex situ grown plants, but 452 

that did not lead to differences in Asat rates or parameters. There were no clear differences 453 
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between plants grown in or ex situ for Asat parameters and rates ToptA (p = 0.085), A25 (p = 0.096), 454 

or Ω (p = 0.313; Figs. S8A-C). ToptV (p = 0.974; Figs. S7D) and EaV (p = 0.102; Figs. S8F) did 455 

not differ between in and ex situ, but plants grown ex situ had 40% higher V25 (p = 0.030; Figs. 456 

S8E). ToptJ did not differ between growth environments (p = 0.802; Fig. S8G), J25 for plants 457 

grown ex situ trended 48% higher than those grown in situ (p = 0.054; Fig. S8H), and EaJ was 458 

around double in in situ than ex situ grown plants (p =0.002; Fig. S8I). Lastly, J:V also was not 459 

different between the two growth environments (p = 0.696; Fig. S8J). 460 

 461 

Effects of plant functional type on temperature response parameters 462 

ToptA was higher in drought (semi-) deciduous, or raingreen, species compared to 463 

broadleaf evergreen species, but other net photosynthetic temperature response rates and 464 

variables did not differ between the two leaf habits. ToptA was ~1 °C higher in drought (semi-) 465 

deciduous compared to evergreen species (p = 0.009; Fig. 5A). There were no differences 466 

between evergreen and deciduous species for A25 (p = 0.347; Fig. 5B) or Ω (p = 0.197; Fig. 5C). 467 

Optimum temperatures of photosynthesis did not vary between successional types, but 468 

rates of photosynthetic responses and the width of the photosynthetic responses were higher in 469 

early compared to mid/late successional species. Early and mid/late successional species did not 470 

differ in ToptA (p = 0.955; Fig 6A). A25 and Ω (both p < 0.001; Fig. 6B-C) in early successional 471 

species were ~83% and 32% higher than in mid/late successional species, respectively. ToptV did 472 

not differ between successional types (p = 0.502; 6D) but, in terms of rates, mean early 473 

successional V25 was 61% higher than late successional species (p < 0.001; Fig. 6E). There were 474 

no differences between successional types for J:V (p = 0.936; Fig. 6F). ToptJ did not differ 475 
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between successional types (p = 0.644; Fig 6G) but early successional species J25 was around 476 

double that of late successional species (p < 0.001; Fig. 6H).  477 

 478 

Hierarchical Partitioning 479 

Except for ToptA, hierarchical partitioning revealed that no single climate or growth 480 

environment variable explained a high amount of variation in our photosynthetic parameters. The 481 

strongest predictor for ToptA variation was the elevation (individual adj R
2
 = 0.159; Fig 7A). With 482 

a full model R
2
 = 0.018, climate was not a strong predictor for A25; however, MAT (adj R

2
 = 483 

0.017) had a slightly stronger individual effect on A25 than other predictors (Fig. 7B).  was 484 

more strongly predicted by Trange (adj R
2
 = 0.170; Fig. 7C). ToptV was most strongly predicted by 485 

AI (adj R
2
 = 0.032; Fig. 7D), V25 was slightly more predicted by MAT (adj R

2
 = 0.053; Fig. 7E), 486 

and EaV was most strongly predicted by MAT (adj R
2
 = 0.128, Fig. 7F). ToptJ was not well 487 

predicted by any climate variables; however, Trange explained slightly higher variation than other 488 

variables (adj R
2
 = -0.040; Fig. 7G). Variance of J25 was more strongly explained by MAT (adj 489 

R
2
 = 0.125; Fig. 6H). EaJ was more strongly driven by MAT (adj R

2
 = 0.068; Fig. 7I). J:V was 490 

best explained by elevation (adj R
2
 = 0.060; Fig. 7J). 491 

 492 

Discussion 493 

Climate drivers of the optimum temperature of photosynthesis 494 

Globally (Kattge and Knorr 2007; Kumarathunge et al. 2019; Crous et al. 2022) and in 495 

tropical ecosystems (Tan et al. 2017), studies have found that the photosynthetic optimum 496 

temperature of net photosynthesis increases as growth temperatures increase. In partial support 497 

of our first hypothesis, the optimum temperatures of net photosynthesis (ToptA) and 498 
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photosynthetic electron transport (ToptJ) rose with increasing mean annual temperature (MAT; 499 

Fig. 1A,E); however, the optimum temperature of Rubisco carboxylation (ToptV) did not (Fig 1C). 500 

The slope of our tropical species responses to MAT (ToptA slope: 0.59  0.15 C C
-1

; Table 3), is 501 

similar to and has overlapping standard error with a global analysis of ToptA response to growth 502 

temperature (ToptA slope: 0.62  0.1 C per increase in growth temperature; Kumarathunge et al. 503 

2019), providing no evidence that different algorithms should be used to model tropical and 504 

global ToptA responses. ToptJ in our study also had a similar positive response as the global 505 

analysis (current study: ToptJ slope: 0.38  0.17MAT; Kumarathunge: ToptJ slope: 0.63  506 

0.2Tgrowth; Kumarathunge et al. 2019). Our results for the optimum temperatures of Vcmax were 507 

not as consistent with Kumarathunge et al. (2019), where our ToptV did not respond to MAT (ToptV 508 

slope: 0.26  0.21MAT; Table 3), but the global analysis showed a positive relationship with 509 

increasing growth temperature (ToptV slope: 0.71   0.2Tgrowth: Kumarathunge et al. 2019). We 510 

note, however, that our meta-analysis of tropical species’ biochemical parameters (19.6 – 27.5 511 

C) has narrower temperature range than the global meta-analysis (~3.0 – 30.0 C; 512 

Kumarathunge et al. 2019) which, along with the high variation in parameter values at each point 513 

along the MAT axis, might limit our ability to detect data trends. Additionally, the lower ToptV 514 

MAT slope response provides some support for the common hypothesis that tropical species 515 

have adapted to more narrow climate envelopes and do not strongly respond to variations in 516 

growth temperature, potentially resulting in a reduced capability to acclimate to warmer 517 

temperatures (Janzen 1967; Cunningham and Read 2003; Dusenge et al. 2021). This idea is 518 

further supported by Kumarathunge et al. (2019) which found optimum temperature responses to 519 

growth temperature were more strongly driven by acclimation to growth temperature than 520 

adaptation to climate of origin. In a recent analysis across latitudes, Crous et al. (2022) found 521 
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more negative photosynthetic responses to warmer temperatures in the tropics compared to 522 

cooler climates, suggesting constrained acclimation. Our Jmax and Vcmax temperature response 523 

datasets cover MAT across a reduced range (19.6 – 27.5 C) than our Asat dataset (11.8 – 30.0 524 

C).  Additional studies investigating these biochemical parameters would enable the assessment 525 

of whether tropical forest species have systematically different temperature responses of these 526 

parameters than extra-tropical species.  527 

Contrary to our hypothesis, aridity index alone was not a strong predictor of 528 

photosynthetic temperature responses. None of our photosynthetic parameters or rates responded 529 

to aridity index (Figs. 1, 2, 3, S7). Compared with trees in temperate zones, fewer studies in the 530 

tropics have investigated how rainfall affects Topt. ToptA was found to increase as soils dry in a 531 

Puerto Rican tropical forest (Carter et al. 2020) and a savanna grassland ecosystem (Ma et al. 532 

2017). However, Kumarathunge et al. (2020) found that the optimum temperature for tropical 533 

tree growth increases with water addition. Hierarchical partitioning showed aridity index as the 534 

most important measured climate component controlling ToptV; however, the individual aridity 535 

index effect on ToptV was very low (Fig. 7D). To date, the few studies that have investigated 536 

large-scale environmental controls on the biochemical components of photosynthesis focus 537 

solely on how temperature controls these important model parameters (Kattge and Knorr 2007; 538 

Tan et al. 2017; Kumarathunge et al. 2019; Crous et al. 2022). Even though these results suggest 539 

that aridity does not play a key role in controlling photosynthetic temperature responses, both 540 

temperature and rainfall play significant roles in modeled reductions in carbon gain in the 541 

Amazon rainforest (Galbraith et al. 2010). Future studies should investigate how other climate 542 

factors, such as aridity, influence photosynthetic optimum temperatures, as we know that a key 543 
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constraint on photosynthetic optimization is the balance of carbon gain against water loss 544 

(Bloom et al. 1985; Wang et al. 2017). 545 

 546 

Biochemical limitations at high temperatures 547 

Limitations to the optimum temperature of net photosynthesis at moderate growth 548 

temperatures are often attributed to limitations of Rubisco carboxylation temperature response 549 

parameters (Lin et al. 2012; Yamaguchi et al. 2016), although not always (Wise et al. 2004; Cen 550 

and Sage 2005). When plants are grown at elevated temperatures, measured photosynthesis is 551 

increasingly limited by carboxylation as temperature rises, a trend that is driven both by stomatal 552 

limitations on CO2 substrate and by the high temperature sensitivity of Rubisco carboxylation 553 

(Brooks and Farquhar 1985; Hikosaka et al. 2006). However, optimality theory of photosynthetic 554 

capacity suggests that resources allocated to Jmax and Vcmax at 25 C are disproportionally reduced 555 

under warmer temperatures, resulting in reduced J:V (Smith and Keenan 2020; Wang et al. 556 

2020). The limitation to Jmax is due to high temperatures reducing electron transport through PSII 557 

(Havaux 1996), and a greater investment in Rubisco carboxylation relative to electron transport 558 

to counteract the increased photorespiration at higher temperatures (Smith and Keenan 2020). 559 

This is supported by global meta-analyses showing declining J:V with increasing growth 560 

temperature (Kumarathunge et al. 2019; Crous et al. 2022). Our results support this, where both 561 

V25 and J25 decreased with increasing MAT but J25 declined at a steeper rate (Fig. 2), resulting in 562 

a decreasing J:V with rising MAT (Fig. 3). Across our temperature range, our results are not 563 

consistent with those of previous global meta-analyses (Medlyn et al. 2002; Hikosaka et al. 564 

2006; Kattge and Knorr 2007; Kumarathunge et al. 2019), where neither of our activation energy 565 

terms of Jmax (EaJ) or Vcmax (EaV) responded to temperature (Fig S8). EaV activation energy is a 566 
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driver of Vcmax adjustment and is consistently found to increase with warmer growth temperatures 567 

(Yamori et al. 2005; Hikosaka et al. 2006). The rate of EaV rise declines at temperatures that 568 

exceed mid 30 C, limiting Vcmax at higher temperatures (Scafaro et al. 2023). The disparity 569 

between our results of no EaV response to growth temperature and J:V results that are in line with 570 

global analyses could be due to the narrower temperature in our EaV dataset. Also, of note, this 571 

study does not consider effects of rising CO2 concentrations on photosynthetic temperature 572 

responses. Elevated CO2 can result in a positive shift in Topt (Long 1991; Šigut et al. 2015), and 573 

this has been supported in studies on a subtropical tree species (Sheu and Lin 1999) and a 574 

tropical mangrove species (Reef et al. 2016). This response occurs because higher CO2 575 

concentrations can counteract the increased photorespiration rates that occur at higher 576 

temperatures, resulting in decreased J:V (Long 1991; Hikosaka et al. 2006; but see Fauset et al. 577 

2019 in a tropical species). More CO2 fertilization studies should be conducted in tropical forests 578 

to further elucidate interactions between tropical species CO2 and temperature interaction 579 

responses.  580 

 581 

Photosynthetic differences between growth conditions, deciduousness, and successional types  582 

We found that the rate of photosynthesis was higher in sun leaves but there were no Topt 583 

differences between sun and shade leaves (Fig. 4), similar to the few studies that have 584 

investigated differences in in situ tropical photosynthetic responses to different canopy light 585 

conditions (Pearcy 1987; Slot et al. 2019; Hernández et al. 2020; but see Carter et al. 2021). 586 

Other biomes show similar results, and studies investigating differences in ToptA between upper 587 

canopy and understory leaves have found that ToptA either does not differ (Carter and Cavaleri 588 

2018), or ToptA is higher in the upper canopy leaves (Jurik et al. 1988). Niinemets et al. (1999) 589 
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showed that the optimum temperature of electron transport is higher in the upper canopy (higher 590 

incident radiation on average) compared to lower canopy leaves (lower spectral quality, lower 591 

average incident radiation), suggesting that the biochemical process of photosynthesis associated 592 

with light can adjust to different light conditions and higher temperatures. Within the tropics, 593 

Carter et al. (2021) found that ToptA decreased as canopy height and light increased, likely due to 594 

VPD induced stomatal limitations. Hernández et al. (2020) found trends toward higher ToptV in 595 

Panamanian sun leaves, yet ToptJ did not differ between light conditions. We did not have enough 596 

Vcmax or Jmax data classified as “shaded” and were unable to make a robust sun-shade comparison 597 

within our dataset. Even though we were able to make a comparison between Asat sun and shade 598 

leaves, we only had eight samples where shade leaves were measured (Table S2), suggesting we 599 

need much more temperature response measurements comparing sun and shade leaves in tropical 600 

forests. Even so, the growing evidence in tropical forests suggests that light conditions do not 601 

strongly control tropical Topt, and we may not need to distinguish between sun and shade leaves 602 

when modeling temperature responses in tropical forest canopies. 603 

Even though leaf habits, such as evergreen and deciduous species, often have different 604 

photosynthetic temperature responses (Yamori et al. 2014), global vegetation models usually do 605 

not implement separate temperature response parameters for different plant functional types due 606 

to insufficient data (Lombardozzi et al. 2015; Smith et al. 2016; Mercado et al. 2018). In the 607 

current study, A25 did not differ but evergreen leaves had a slightly lower ToptA than semi-drought 608 

deciduous leaves (Fig. 5A,B). This suggests that global models should differentiate between 609 

“broadleaf evergreen tropical” and “semi-deciduous raingreen tropical” forests (Poulter et al. 610 

2015), rather than considering all tropical regions as “broadleaf evergreen tropical. Although we 611 

did find a trend toward higher ToptA in semi-deciduous species, we note that all species labeled as 612 
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‘semi-deciduous’ came from the same study (Slot and Winter 2017a), which had the highest 613 

MAT (26.6 °C) of all the study sites included in the Asat dataset. No species in our A-Ci dataset 614 

was characterized as either ‘deciduous’ or ‘semi-deciduous’ (Table S1), preventing any analysis 615 

on differences between leaf habit for Jmax and Vcmax data. Greater efforts should be made to better 616 

characterize differences between different plant functional types within the tropics and these data 617 

should be used to assess how vegetation models define tropical forest plant functional types. 618 

Generally, fast growing, early successional species have higher rates of photosynthesis 619 

(Wright et al. 2004). Our results agreed with this theory and, similar to Ziegler et al. (2020) and 620 

Mujawamariya et al. (2023), we found higher A25, V25, and J25 in early successional species. 621 

Additionally, early successional species in a tropical dry forest were found to reside in higher 622 

temperature environments due to the higher light environment and more open forest structure in 623 

an early successional forest (Cao and Sanchez-Azofeifa 2017), suggesting that early successional 624 

seedlings and saplings might have higher optimum temperatures. However, our study that 625 

combined all species growth stages found no differences between successional types for ToptA 626 

(Fig. 6). Our results support a lack of clear differences between canopy species of different 627 

successional types in Slot and Winter (2017b) but differ from the results of Slot et al. (2016), 628 

which found higher optimum temperatures in early successional seedlings. Here, we highlight 629 

that Slot et al. (2016) was conducted on seedlings instead of canopy trees (Slot and Winter, 630 

2017b). Future work should investigate differences in early successional seedling vs mature 631 

canopy tree optimum temperatures. We did find that the net photosynthetic thermal niche (Ω) 632 

was broader for early successional species than late successional species (Fig 6C). This is 633 

consistent with theory on ‘fast’ species with high rates of photosynthesis, as these species tend to 634 

invest in traits that allow productivity under a wide range of temperatures (Michaletz et al. 635 
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2016). A wider thermal niche is likely beneficial to early successional forests that experience a 636 

wider, more dynamic range of temperatures (Holbo and Luvall 1989).  637 

 638 

Opportunities for better parameterized functions 639 

We present trends for the temperature parameters of net photosynthetic and biochemical 640 

processes of net photosynthesis in tropical regions. However, both stomatal conductance and 641 

daytime respiration can also play large roles in controlling photosynthetic temperature responses 642 

(Lin et al. 2012). Stomatal conductance, or vapor pressure deficit (VPD) which is the primary 643 

climate variable controlling stomatal conductance (Farquhar and Sharkey 1982), have been 644 

estimated to be the strongest predictors of photosynthetic decline with climate warming in the 645 

tropics (Lloyd and Farquhar 2008; Wu et al. 2017; Smith et al. 2020; Slot et al. 2024). This 646 

relationship between temperature, moisture, and stomatal conductance should also be 647 

investigated across tropical forests and is critical to understand photosynthetic responses to 648 

temperature as tropical forests become hotter and drier (Malhi et al. 2008). Further, our 649 

hierarchical partitioning could be further improved if we had included leaf functional traits. Most 650 

of our photosynthetic parameters were not well explained by any environmental factors. A meta-651 

analysis by Atkin et al. (2015) found that plant functional types (broadleaf, conifer, grass type, 652 

shrubs) had the most explanatory power for predicting the rate of respiration globally. In 653 

addition, other plant trait factors, such as leaf nitrogen and leaf mass per area also improved their 654 

predictive models (Atkin et al. 2015). Including other factors, such as leaf habit or growth type 655 

(e.g., evergreen or deciduous; successional type) could provide valuable information for tropical 656 

biome photosynthesis modeling, and substantial efforts should be made to collect a larger 657 

variation of these data types, which were not available for many of the studies we analyzed. We 658 
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also note that this study presents results that under-represent African and Asian tropical forests. 659 

Data from these regions could improve photosynthetic temperature response models. 660 

 661 

Conclusions 662 

This study reports new predictive equations that describe photosynthetic temperature responses 663 

of tropical trees to different climate factors and describes pan-tropic differences related to plant 664 

growth conditions, growth habits, and successional strategies. Our novel analysis focusing on 665 

tropical woody species shows that ToptA and ToptJ responses to mean temperatures tended to align 666 

with global meta-analyses; however, the optimum temperature of ToptV did not align with results 667 

found globally. A lower slope of photosynthetic biochemical parameter’s Topt against MAT for 668 

tropical ecosystems suggests a lower capacity for these ecosystems to keep apace of climate 669 

change. While global carbon models should consider acclimation of the temperature response of 670 

photosynthetic parameters in order to allow for plant plasticity, the lower capacity for this 671 

response in tropical ecosystems should also be considered when making projections of 672 

ecosystem responses to climate change. Importantly, we did not find different temperature 673 

optimums between sun/shade leaves or successional types, but we did find differences between 674 

evergreen and semi-deciduous species’ optimum temperatures. Vegetation models often define 675 

these systems solely as “broadleaf evergreen tropical”, but functional types within tropical 676 

biomes have distinct temperature responses between “broadleaf evergreen tropical” and “semi-677 

deciduous raingreen tropical” that should be considered to accurately represent tropical or global 678 

carbon dynamics.  679 
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Figure 1 The optimum temperature of net photosynthesis and biochemical responses to mean 1056 

annual growth temperature and aridity index. ToptA response to A) MAT and B) aridity index. 1057 

ToptV response to C) MAT and D) aridity index. ToptJ response to E) MAT and F) aridity index. 1058 

Regression equations are weighted by number of observations that are used to calculate each 1059 

temperature response mean. Size of data point depicts weight of each mean where larger data 1060 

points carry a greater weight. Line represents linear regression fits (Table 2). Shaded area around 1061 

line represents confidence intervals. Color represents altitude groupings of < 500m (blue-green), 1062 

500-999m (turquoise), 1000-2000m (beige), NA (gray).  1063 

 1064 

Figure 2 The rate of net and the biochemical components of photosynthesis at 25 °C responses 1065 

to three primary climate variables. A25 response to A) MAT, B) aridity index where higher 1066 

aridity index indicates wetter conditions. V25 response to D) MAT, E) aridity index. J25 response 1067 

to G) MAT, H) aridity index. Regression equations are weighted by number of observations used 1068 

to calculate each temperature response mean. Size of data point depicts weight of each mean 1069 

where larger data points carry a greater weight. Solid line represents significant linear regression 1070 

fits (Table 2). Shaded area around line represents confidence intervals. Color represents altitude 1071 

groupings of < 500m (blue-green), 500-999m (turquoise), 1000-2000m (beige), >2000m (black), 1072 

NA (gray).  1073 

 1074 

Figure 3 The ratio between rate of Jmax and Vcmax responses to three primary climate variables. 1075 

The ratio between the rate of Jmax at 25 °C and Vcmax at 25 °C (JV) responses to A) mean annual 1076 

temperature (MAT), B) aridity index, and C) mean annual temperature range (Trange). Regression 1077 

equations are weighted by number of observations that are used to calculate each temperature 1078 
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response mean. Size of data point depicts the sample size used to weight each mean where larger 1079 

data points carry a greater weight. Shaded area around line represents confident intervals. Color 1080 

represents altitude groupings of < 500m (blue green), 500-999m (turquoise), 1000-2000m 1081 

(beige), >2000m (black), NA (gray).  1082 

 1083 

Figure 4 Boxplots displaying the net photosynthetic and biochemistry at 25 °C parameter 1084 

differences with leaf light environment. The distribution of shade and sun growth leaves for A) 1085 

ToptA, B) A25, C) Ω, D) V25, E) J25, and F) the ratio of Jmax to Vcmax. Ω indicates the difference in 1086 

Topt and the temperature where the rate of photosynthesis is 37% of Topt. The boxes display 1087 

median and interquartile range. The whiskers represent 1.5 times the interquartile range. Data 1088 

beyond the whiskers are outside of 1.5 times the interquartile range. Asterisks denotes significant 1089 

differences between treatments based on a Satterthwaite test, * p < 0.05, ** p < 0.01, *** p < 1090 

0.001. Amax: sun n = 89 shade n = 6; k25: sun n = 248, shade n = 23. 1091 

 1092 

Figure 5 Boxplots displaying the net photosynthetic parameter differences between species of 1093 

different leaf habit. The distribution of evergreen and semi-deciduous species for A) ToptA, B) 1094 

A25, and C) Ω. The boxes display median and interquartile range. The whiskers represent 1.5 1095 

times the interquartile range. Data beyond the whiskers are outside of 1.5 times the interquartile 1096 

range. Asterisks denotes significant differences between treatments based on a Satterthwaite test, 1097 

** p < 0.01. evergreen n = 45, semideciduous n = 23. 1098 

 1099 

Figure 6 Boxplots displaying the net photosynthetic parameter differences between successional 1100 

stratus. The distribution of early and late successional species for A) ToptA, B) A25, and C) Ω, D) 1101 
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ToptV, E) V25, F) JV, G) ToptJ, H) J25. The boxes display median and interquartile range. The 1102 

whiskers represent 1.5 times the interquartile range. Data beyond the whiskers are outside of 1.5 1103 

times the interquartile range. Asterisks denotes significant differences between treatments based 1104 

on a Satterthwaite test, * p < 0.05, ** p < 0.01, *** p < 0.001. Amax:  early n = 20, mid/late n = 1105 

22; k25: early n = 14, shade n = 17; A-Ci: early n = 8, shade n = 7. 1106 

 1107 

Figure 7 Hierarchical partitioning results for relative individual importance of individual climate 1108 

variables on ToptA (A), A25 (B), Ω (C), ToptV (D), V25 (E), HaV (F), ToptJ (G), J25 (H), HaJ (I), JV 1109 

(J). Individual effects sums to the calculated total explained variation (adj R
2
). 1110 
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Tables 1111 

Table 1 Abbreviations and descriptions 1112 

Variable Description Units 

ACi Refers to the net photosynthetic assimilation at a range of leaf 

internal CO2 concentrations 

unitless 

AI Aridity Index, calculated as the mean annual precipitation 

divided by the mean annual evaoptranspiration 

unitless 

Asat Light saturated photosynthesis, estimated from light response 

curves 

µmol m
-2 

s
-1

 

Aopt The value of Anet at the optimum temperature µmol m
-2 

s
-1

 

A25 Rate of net photosynthesis at 25 ºC µmol m
-2 

s
-1

 

EaV The activation energy of the Vcmax temperature response curve kJ mol
-1

 

EaJ The activation energy of the Jmax temperature response curve kJ mol
-1

 

gs Stomatal conductance mol m
-2 

s
-1

 

Jmax The maximum rate of photosynthetic electron transport µmol m
-2 

s
-1

 

J25 The rate of Jmax at 25 ºC µmol m
-2 

s
-1

 

J:V The ratio between J25 and V25 unitless 

kopt The value of Jmax or Vcmax at the optimum temperature µmol m
-2 

s
-1

 

MAT Mean annual temperature ºC 

Tleaf Leaf temperature ºC 

ToptA The optimum temperature for net photosynthesis ºC 

ToptJ Optimum temperature of photosynthetic electron transport ºC 

ToptV Optimum temperature for Rubisco carboxylation ºC 

Trange Mean annual temperature range ºC 

Vcmax Maximum rate of Rubisco carboxylation µmol m
-2 

s
-1

 

VPD Vapor pressure deficit kPa 

V25 The rate of Vcmax at 25 ºC µmol m
-2 

s
-1

 

 The difference in Topt and the temperature where the rate of 

photosynthesis is 37% of Topt 

ºC 

 1113 
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 1114 

Table 2 Regression equations for each photosynthetic parameter response to individual climate variables.  1115 

      Coefficients   
   

  Intercept MAT Slope Aridity Index Slope Trange Slope 
marginal 

r
2
 

conditional 

r
2
 

p-value 

Topt 13.62 ± 3.79 0.59 ± 0.15     0.37 0.78 <0.001 

  30.39  ± 1.04   -0.82 ± 0.45   0.02 0.62 0.066 

  24.72 ± 2.45     0.25 ± 0.17 0.03 0.82 0.396 

A25 1.67 ± 4.61 0.28 ± 0.19     0.05 0.27 0.139 

  8.35 ± 1.58   -0.46 ± 0.82   0.00 0.13 0.573 

  9.38 ± 3.11     
-8.02 × 10

-2 
± 24.24 × 

10
-2

 
0.00 0.26 0.741 

Ω 11.15 ± 7.77 0.14 ± 0.31     0.01 0.70 0.651 

  15.35 ± 2.35   0.91 ± 0.82   0.01 0.80 0.268 

  11.30 ± 4.00     0.26 ± 0.29 0.01 0.69 0.380 

ToptV 32.83 ± 5.26 0.26 ± 0.21     0.08 0.18 0.216 

  34.76 
 
± 3.68   2.36 ± 1.86   0.08 0.14 0.203 

  35.91 ± 2.15     0.35 ± 0.24 0.10 0.25 0.156 

V25 75.26 ± 6.67 -1.36 ± 0.25     0.20 0.55 <0.001 

  42.75 ± 3.78   -1.02 ± 1.33   0.01 0.26 0.443 

  13.82 ± 6.76     2.16 ± 0.40 0.18 0.62 <0.001 

EaV 57.22 ± 89.50 1.54 ± 3.57     0.01 0.45 0.668 

  139.82 ± 69.15   -17.14 ± 33.39   0.02 0.44 0.608 

  145.29 ± 45.95     -3.87 ± 3.47 0.09 0.45 0.264 

ToptJ 26.56 ± 4.32 0.38 ± 0.17     0.14 0.14 0.025 

  36.63 ± 2.86   0.95 ± 1.49x   0.02 0.02 0.520 

  31.73 ± 3.33     0.35 ± 0.26 0.09 0.24 0.170 

J25 182.95 ± 13.12 -4.37 ± 0.49     0.41 0.64 <0.001 

  76.39 ± 9.46   -0.91 ± 2.91   0.00 0.39 0.755 
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  -8.29 ± 14.68     6.43 ± 0.82 0.28 0.73 <0.001 

EaJ -0.82 ± 91.11 3.08 ± 3.63     0.06 0.40 0.396 

  108.84 ± 40.26   -11.00 ± 20.61   0.02 0.13 0.594 

  130.67 ± 48.49     -4.20 ± 3.64 0.08 0.41 0.249 

J:V 2.41 ± 0.16 -0.02 ± 0.01     0.10 0.53 <0.001 

  1.85 ± 0.14   7.64 × 10
-3

 ± 3.14 × 10
-2

   0.00 0.62 0.808 

  1.50 ± 0.16     2.84 × 10
-2

 ± 9.34 × 10
-3

 0.06 0.60 0.002 

Photosynthetic parameters are: the optimum temperatures of net photosynthesis (ToptA; °C), the rate of net photosynthesis at 25 °C 1116 

(A25; µmol m
-2

 s
-1

) at 25 °C, photosynthetic thermal niche or width of the temperature response curve (Ω; °C), the optimum 1117 

temperatures of the maximum rate of Rubisco carboxylation (Vcmax) and photosynthetic electron transport (Jmax) (ToptV, ToptJ 1118 

respectively; °C), the rate of Vcmax (V25; µmol m
-2

 s
-1

) and Jmax (J25; µmol m
-2

 s
-1

) at 25 °C, and the activation energy term for Vcmax 1119 

(EaV; kJ mol
-1

)and Jmax (EaJ; kJ mol
-1

). Climate variables are mean annual temperature (MAT; °C), aridity index, and the mean annual 1120 

temperature range from the maximum temperature of the warmest month and the minimum temperature of the coldest month. 1121 

Intercepts and slopes are given as means ± standard error. Bolded values indicate regression results with p-values < 0.05.  Marginal r
2
 1122 

provides the model variance of only the model fixed effect, whereas, conditional r
2
 provides variance of the model with both the fixed 1123 

and random effects.    1124 
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 1125 
The following supplemental information is available for this article. 1126 
 1127 
Supplemental Figure 1 PRISMA diagraph outlining meta-analysis data selection and exclusion. 1128 
 1129 
Supplemental Figure 2 Depiction of weighting factor “J” at each mean annual temperature 1130 
 1131 
Supplemental Figure 3 Scatterplots of the Asat, A-Ci, and k25 dataset mean annual temperature (MAT) correlation with elevation. 1132 
 1133 
Supplemental Figure 4 Boxplots displaying differences when photosynthetic biochemical parameters are estimated using 1134 
temperature response variables estimated from global or only tropical studies. 1135 
 1136 
Supplemental Figure 5 The optimum temperature of net photosynthesis and biochemical responses to mean annual temperature range 1137 
of the average warmest day to the average coldest day. 1138 
 1139 
Supplemental Figure 6 The rate of net photosynthesis and biochemical responses at 25 C to mean annual temperature range of the 1140 
average warmest day to the average coldest day. 1141 
 1142 
Supplemental Figure 7 The net photosynthetic thermal niche and the activation energies of the biochemical components of 1143 
photosynthesis responses to three primary climate variables. 1144 
 1145 
Supplemental Figure 8 Boxplots displaying the differences in biochemical parameters of photosynthesis between plants grown in or 1146 
ex situ. 1147 
 1148 
Supplemental Table 1 List of Anet and Jmax/Vcmax data sources.  1149 
 1150 
Supplemental Table 2 Count of samples used in each type of light, leaf habit, successional status, and growing environment.  1151 
 1152 
Supplemental Table 3 Parameter estimates used to calculate Vcmax and Jmax activation energies (EaV and EaJ, respectively), entropy 1153 
terms (SV and SJ, respectively), and deactivation terms (HdV, HdJ, respectively) for this study (tropical) and a global analysis.  1154 
 1155 
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