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ABSTRACT Brucella spp. are facultatively intracellular bacteria that can infect, survive,
and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has
markedly expanded in recent years with the identification of novel species and hosts,
which has revealed additional information about the cell and tissue tropism of these
pathogens. Classically, Brucella spp. are considered to have tropism for organs that
contain large populations of phagocytes such as lymph nodes, spleen, and liver, as
well as for organs of the genital system, including the uterus, epididymis, testis, and
placenta. However, experimental infections of several different cultured cell types indi-
cate that Brucella may actually have a broader cell tropism than previously thought.
Indeed, recent studies indicate that certain Brucella species in particular hosts may dis-
play a pantropic distribution in vivo. This review discusses the available knowledge on
cell and tissue tropism of Brucella spp. in natural infections of various host species, as
well as in experimental animal models and cultured cells.

KEYWORDS macrophage, trophoblast, Brucella, tropism

B rucella spp. are Gram-negative facultatively intracellular coccobacilli (1) that belong
to subclass alpha-2 of the class Proteobacteria (2, 3). Brucella spp. can infect several

host species (1). Historically, six species have been recognized as “classical” Brucella spe-
cies that were named according to their host preferences, including Brucella abortus (cat-
tle), Brucella melitensis (goats and sheep), Brucella ovis (sheep), Brucella suis (pigs),
Brucella canis (dogs), and Brucella neotomae (desert rats) (4, 5). The terminology “classi-
cal” refers to Brucella species that were originally identified in terrestrial mammalian
hosts, particularly domestic animal species, but this classification may be confusing since
in the recent past decades, the genus has expanded with the recognition of novel spe-
cies (6), including Brucella ceti (cetaceans), Brucella pinnipedialis (pinnipeds) (7), Brucella
microti (common vole) (8), Brucella inopinata (breast implant infection) (9), Brucella papio-
nis (baboon) (10, 11), Brucella vulpis (red fox) (12), and Brucella-like (amphibians) (13, 14).
However, in spite of this expanding number of species in this genus (15), Brucella species
have a low degree of genetic diversity, with approximately 97% similarity between spe-
cies (16, 17).

Brucellosis is a neglected and a re-emerging zoonosis with worldwide distribution (18).
The organism was first described in 1887 by David Bruce, when the microorganism was
isolated from military personnel that died after developing a disease that was known as
Malta fever (19). B. melitensis is the most pathogenic for humans, while B. abortus and
B. suis show intermediate zoonotic potential, and B. canis has a lower zoonotic potential
(20, 21). However, the number of new human cases is still unclear, and a lack of accurate
epidemiologic data suggests that published studies on the prevalence of brucellosis

Editor Karen M. Ottemann, University of
California at Santa Cruz Department of
Microbiology and Environmental Toxicology

Copyright © 2023 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Renato Lima
Santos, rls@ufmg.br.

The authors declare no conflict of interest.

Published 27 April 2023

May 2023 Volume 91 Issue 5 10.1128/iai.00062-23 1

MINIREVIEW

https://orcid.org/0000-0002-7158-8249
https://orcid.org/0000-0002-2357-5953
https://orcid.org/0000-0003-0666-8207
https://orcid.org/0000-0001-8284-9902
https://orcid.org/0000-0001-7720-5627
https://orcid.org/0000-0001-9131-6657
https://orcid.org/0000-0002-4830-0470
https://doi.org/10.1128/ASMCopyrightv2
https://doi.org/10.1128/iai.00062-23
https://crossmark.crossref.org/dialog/?doi=10.1128/iai.00062-23&domain=pdf&date_stamp=2023-4-27


underestimate the actual case numbers (22). Transmission occurs through contact with
contaminated animal secretions, by ingestion, or via aerosols. For humans, both inges-
tion of contaminated raw milk or nonpasteurized dairy products and occupational expo-
sure are important risk factors (1, 23, 24). Venereal transmission may occur in animals,
although it is considered to be an uncommon route of infection (25). However, infected
semen used in artificial insemination in cattle may be a source of transmission (26).

Brucellosis results in highly relevant economic losses for the animal industry as a
result of abortions, reduced fertility or infertility, and reduction in milk production (27,
28). Clinical signs and lesions include placentitis and retained placenta in females, and
orchitis and epididymitis in males, and, less commonly, arthritis (1, 23) or bursitis (29).
In human patients, brucellosis is associated with a chronic and debilitating disease,
although its mortality rate is low. Common clinical symptoms are intermittent or undu-
lating fever and fatigue. The initial symptoms may progress to other localized clinical
manifestations such as osteomyelitis, arthritis, spondylitis, neurobrucellosis, and endo-
carditis (1, 30–33).

Brucella is considered a facultative intracellular bacterium, and its ability to survive
in the environment is considered to be low (34). Therefore, Brucella spp. must interact
with various host cell types in order to establish infection (35–37). Our goal is to pro-
vide a comprehensive review of the literature on cell and tissue tropism of Brucella
spp. in various host species, in the context of both experimental conditions and natural
disease.

BRUCELLA SPP. TROPISM IN THEIR NATURAL PREFERENTIAL HOSTS

Over the past several decades, scientific data accumulated demonstrating the tissue
distribution of Brucella spp. by using various laboratory techniques such as bacterial isola-
tion, immunohistochemistry, electron microscopic, PCR, and in vivo imaging systems,
among others. Early studies demonstrated a tropism of B. abortus to the pregnant uterus
of cows (38), resulting in very high numbers of B. abortus CFU in cotyledons of infected
pregnant cows, up to 1.4 � 1013 CFU/gram of tissue (39). In the placental cotelydons, an
abundant cell type that is unique to pregnancy and key for Brucella infection is the tropho-
blast. The ability of Brucella spp. to infect and multiply in trophoblasts often results in ne-
crosis and abundant extracellular bacterial aggregates (Fig. 1) and is a key factor for trans-
mission to other animals and contamination of the environment (38). Ultrastructural
examination of tissues from experimentally infected pregnant goats, used as models for B.
abortus-induced placentitis in ruminants, revealed large numbers of intracellular bacteria
in trophoblasts, as well as within organelles having ultrastructural features of rough endo-
plasmic reticulum (40). In this caprine model of infection, there is fetal death as observed
in cattle. B. abortus is also isolated from infected goats’milk, uterine secretions, and several
different fetal tissues, particularly lymph nodes (41). These findings in experimentally
infected goats (40, 41) are quite similar to experimental infections of pregnant heifers with
B. abortus, in which the pathogen is frequently present in uterine and placental tissues,
lymph nodes, and mammary gland, (23). Indeed, in experimentally infected cows shedding
B. abortus in milk, the mammary gland was shown by immunostaining of B. abortus to be
a target organ, with B. abortus mostly associated with mammary gland macrophages (23).
In pregnant cattle, B. abortus infections usually are not associated with gross lesions in
mammary glands. However, in spite of the absence of grossly recognizable lesions, Xavier
et al. (23) demonstrated that 21 of 42 B. abortus-infected cows (50%) had a multifocal inter-
stitial lymphohistiocytic infiltrate, with neutrophils in the acinar lumen of mammary gland.
In addition, immunolabeling demonstrated B. abortus intracellularly in macrophages, as
well as in the acinar lumen, and these findings were associated with bacterial isolation
from mammary tissues. These findings are in good agreement with those described by
Meador et al. (42), in which tissues from goats experimentally infected with B. abortus had
abundant immunolabeling of B. abortus, especially in macrophages and neutrophils within
the mammary alveoli and ducts, as well as in the adjacent interstitium.
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Clinical manifestations of B. canis infection in dogs were also originally characterized
by abortion (43), which is common when a given group or population of naive dogs are
first exposed to this pathogen, although neonatal lethality is more common under
enzootic conditions (44). Therefore, B. canis has a tropism for the pregnant uterus, caus-
ing placentitis and fetal and/or neonatal lethality (44), which are clinical and pathological
features similar to those resulting from infection with B. abortus or B. melitensis in cattle
or in small ruminants, respectively (45). In contrast, pregnant sows infected with B. suis
tend to have higher rates of early embryonal or fetal losses, as well as stillbirths and

FIG 1 Placentitis in a cow with intralesional Brucella abortus. (A) Neutrophilic and necrotizing placentitis
with large colonies of B. abortus in a placentome from a cow experimentally infected as previously
described (23). (B) Immunolabeling of Brucella sp. with a polyclonal primary antibody anti-Brucella sp. in
trophoblasts of a bovine placenta from a naturally infected cow.
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neonatal mortality. Remarkably, infected pigs have a prolonged bacteremia, which favors
shedding of the pathogen in the urine and mucosal surfaces, thereby promoting trans-
mission in the absence of abortion, including venereal transmission, which is much less
common in bovine and canine brucellosis (46). Interestingly, although B. ovis may cause
abortion in pregnant ewes, in contrast to B. abortus and B. melitensis that also infect
ruminants, B. ovis induces lesions in males more often than in females. Although Brucella
spp. may cause lesions in the male genital system of various host species, B. ovis primar-
ily causes epididymitis and vesicular seminitis in rams (47).

The reproductive tract provides an environment where the abundance of bacteria
creates the conditions for key aspects of the transmission cycle of Brucella spp. (36). As
pointed out, early studies indicated that the bovine placenta was a privileged site for
B. abortus multiplication and hypothesized that erythritol was responsible for favoring
B. abortus multiplication in the placenta (38, 48, 49). Brucella spp. can colonize tropho-
blasts in naturally infected cows, does, ewes, sows, and bitches (40). Erythritol may
serve as a carbon source during the multiplication of Brucella spp. in the placenta and
genital organs of natural hosts. Erythritol is found in high concentrations in fetal fluids,
placenta, epididymis, and semen (48, 50, 51). In vitro experiments indicate that Brucella
spp. utilize erythritol as a source of carbon preferentially over glucose (49). However,
some strains and/or species of Brucella spp. do not metabolize erythritol but are still ca-
pable of colonizing the placenta, testis, and uterus. For instance, B. ovis has tropism for
genital tissues of sheep and may eventually cause abortion; yet, it is defective for the
oxidative metabolism of arabinose, galactose, ribose, xylose, glucose, and erythritol
(49). This defect is due to a stop codon in eryA (BOV_A0811) and a frameshift in eryD
(BOV_A0814) that render them pseudogenes in B. ovis, although erythritol does not in-
hibit B. ovis growth (52). In contrast, the vaccine strain S19, which may induce abortion
in cattle (53), is inhibited by erythritol in vitro (54). Importantly, other studies indicate
that not just erythritol but other suitable energy sources available in the genital organs
may have a relevant role in defining organ and tissue tropism of Brucella spp. (36, 55).

The tropism of Brucella spp. for the maternal-fetal barrier favors fetal infection. The
mechanism of fetal infection is still unclear. However, the presence of Brucella spp. in
amniotic liquid and placenta certainly exposes fetuses to infection (41). Therefore,
abortion is not just due to impairment of placental functions but also to fetal lesions
(23, 56). Brucella spp. can be found in the lungs, liver, spleen, and kidney of bovine and
caprine fetuses (45).

Animals may be infected through various routes of infection, although natural infec-
tions are commonly a consequence of exposure through ingestion (1). Experimental
inoculation of bovine ligated ileal loops with B. abortus demonstrated that the pathogen
invades primarily through M cells at the domed villi, which are associated with lymphoid
nodules of the Peyer’s patches. Once in the lamina propria, B. abortus is found within
macrophages and neutrophils (57). In contrast to most domestic animal species, venereal
transmission is a relevant route of natural infection for B. suis in pigs (46).

Although much less common, osteoarticular lesions are also observed in some pref-
erential animal host species in the context of natural infection with Brucella spp. (1).
For instance, B. abortus is often associated with bursitis in cattle (29).

Organs of the reticuloendothelial system have been recognized as target for Brucella
infection since brucellosis was first described (19). In a recent review, González-Espinoza
et al. (58) indicated that organs comprising the reticuloendothelial system or monocyte
phagocyte system, particularly spleen, liver, bone marrow, and lymph nodes, which con-
tain abundant populations of monocytes, macrophages, dendritic cells, and/or myeloid
cells, provides a favorable environment for Brucella spp. multiplication. In addition, organs
of the genital system, particularly the placenta in pregnant females and the epididymis in
males, also provide optimal conditions for multiplication of Brucella spp. In contrast, lymph
nodes, spleen, liver, and bone marrow may act as reservoir organs for Brucella spp., provid-
ing an environment that is suitable for persistence and long-term survival within the host
(58). In fact, the bone marrow is commonly affected by Brucella sp. infection in humans.
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Human patients diagnosed with brucellosis may develop granulomatous inflammation in
the bone marrow associated with hematological changes, including anemia, leukopenia,
and thrombocytopenia. The bone marrow has been considered a more sensitive site for
bacterial isolation compared to blood in patients with previous antibiotic treatment in
chronic cases of brucellosis (59).

TISSUE TROPISM OF BRUCELLA SPP. IN LABORATORY ANIMAL MODELS

In addition to infections in natural hosts, as well as experimental infection of small
ruminants (40, 41), some of the knowledge on tropism of Brucella spp. emerged from ex-
perimental models such as the mouse (60–62) and guinea pigs (63, 64). Particularly the
mouse has been extensively used as an animal model for Brucella spp., providing a signifi-
cant contribution to several aspects of brucellosis, including immunology, host-pathogen
interactions, pathogenesis, and vaccinology (65–67). The mouse model became even
more important due to technical difficulties such as biocontainment needs, for experimen-
tal infections in natural hosts. Mice may be challenged through various routes such as
oral, intragastric, intraperitoneal, intravenous, or intratracheal, and bacteria may be recov-
ered from the spleen and liver after 1 to 7 days of infection (35, 66, 68, 69). Interestingly, B.
melitensis can cause systemic infection in mice after intragastric inoculation without caus-
ing any intestinal lesion or inflammation in the intestinal mucosa, and there is evidence
that M cells are specifically targeted by B. melitensis to cross the intestinal epithelial layer
(35). These findings in the mouse model seem to parallel what has been described in cat-
tle infected with B. abortus (57).

The hepatic tissue of Brucella-infected mice presents areas with inflammatory infil-
trate composed of neutrophils during the early stages of infection (first 3 to 4 days
postinfection) followed by an inflammatory infiltrate composed predominantly of mac-
rophages and epithelioid macrophages, forming microgranulomas at the chronic
stages of infection (Fig. 2). Brucella can be detected in phagocytic cells, especially mac-
rophages (65, 66, 70). In the spleen of Brucella-infected mice, there is an increase in the
organ size and weight that is associated with an inflammatory reaction (splenitis). At
approximately 7 to 10 days postinfection, the number of intracellular Brucella spp. in
macrophages reaches its peak (65, 66).

Another tissue that has been investigated and considered important for Brucella per-
sistence is the bone marrow. Persistence of B. abortus or B. canis has been demonstrated
in the bone marrow of mice, coinciding with the chronicity of the disease in this animal
model (71, 72). In mice infected with B. abortus, histopathological changes in the bone
marrow include granulomas, as well as an increase of multipotent progenitor and active
hematopoietic stem cells, neutrophils, and CD41 T lymphocytes. The three types of cells
infected in bone marrow by B. abortus 2308 expressing red fluorescent protein were
monocytes, neutrophils, and granulocyte-macrophage progenitors (GMPs). At 8 days
postinfection, the proportion of neutrophils containing bacteria was greater than other
cells but significantly decreased after 30 days. Interestingly, B. abortus resists killing by
neutrophils and induces premature death of these cells, and B. abortus-infected neutro-
phils display phosphatidylserine on their cell membrane, which favors phagocytosis of
infected neutrophils by macrophages. Therefore, apparently B. abortus adopts a “Trojan
horse” strategy by using infected neutrophils as vehicles for dispersion throughout the
host mononuclear phagocytic system (72, 73).

Human patients with brucellosis frequently display symptoms arising from osteoar-
ticular complications (1, 30), which as pointed out above may also occur in naturally
infected animals (29). The use of bioluminescent B. melitensis in the mouse model of
infection enabled the evaluation of bacterial dissemination to osteoarticular tissues of
BALB/c mice, followed by histological characterization of the infection sites (74). In vivo
imaging demonstrated the rapid dispersion of bacterium to multiple sites in the skele-
tal structure. Mice infected for a period of 26 weeks exhibited multiple skeletal compli-
cations, including massive infiltration of inflammatory cells in synovial joints of the
hind paws, with pannus and bone lesions (74). A marked reduction of bacterial infection
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in joints was observed after 28 days of infection in mice deficient for CXCR2, which plays
an important role in neutrophil recruitment. The mechanism for arthritis in mice is de-
pendent on CXCR2, supporting the hypothesis that blocking CXCR2 ligands may be use-
ful as a complementary treatment for human osteoarthritis provoked by Brucella (75).

Brucella has an intense tropism for the reproductive tract of domestic animals.
Considering that the male genital tract is also affected in brucellosis, Izadjoo et al. (76)
developed a male mouse model to study the genitourinary pathogenesis of Brucella.
Testis, epididymis, or both were infected in 13 of 57 animals (22.8%) inoculated with B.
melitensis strain 16M, with a histiocytic inflammation in the testicular periarterial tissue
and the superficial lymph nodes. B. ovis, which causes lesions primarily in the male
genital system of sheep (47), is capable of infecting mice, in which it induces systemic
lesions that are similar to those induced by other Brucella species in the mouse, but it

FIG 2 Mouse model of Brucella spp. infection. (A) Microgranuloma in the liver of a mouse experimentally
infected with Brucella ovis. (B) Immunolabeling of intralesional Brucella sp. (brown) in a hepatic granuloma
of an experimentally infected mouse. The mice in panels A and B were inoculated with 106 CFU/mouse
immunoprecipitate and sampled at 7 days postinfection.
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does not consistently result in lesions in the genital system (68), indicating that in this
particular case, the mouse is a suitable model for infection but not necessarily a model
for the disease or tissue tropism.

The placenta is a complex and transient structure in the pregnant uterus of mammals.
It might be morphologically classified into various categories. The mouse placenta is
hemochorial and discoid, which is quite distinct from the placenta of domestic rumi-
nants, which are highly susceptible to Brucella-induced abortion and have synepithelio-
chorial and cotyledonary placentas (45, 77). Despite these morphologic differences, preg-
nant mice have been employed as a model for Brucella-induced placentitis and fetal loss
(62, 78–82). B. abortus colonizes and persists in the placenta and uterine tissues of preg-
nant mice. In the mouse placenta, B. abortus infects trophoblastic giant cells localized
mostly in periphery of the placenta, but it may also be found extracellularly, particularly
in association with necrosis (Fig. 3). Histologically, infected placentas develop marked ne-
crosis and mild infiltration of neutrophils in spongiotrophoblastic zone extending into
the decidua basalis (62). At the junctional zone of infected placenta, trophoblastic giant
cells may have a dark blue and granular cytoplasm because of the presence of intracellu-
lar bacteria. Brucellamay also present in the spongiotrophoblast, endodermal cells of the
visceral yolk sac adjacent to the remnants of Reichert’s membrane. Considering the im-
portance of placentitis and abortion in natural hosts (43, 56, 83) and the lack of mecha-
nistic studies in these species, the mouse model significantly contributed to the identifi-
cation of pathogen and host mechanisms involved in B. abortus-induced placentitis.
Indeed, in the mouse, the effector Brucella protein VceC triggers endoplasmic reticulum
(ER) stress response (79), which is linked to inflammation in B. abortus-infected placenta
(84). This results in trophoblast cell death, inflammation, and fetal loss (79). VceC-trig-
gered ER stress response is also associated with induction of tumor necrosis factor a

FIG 3 Placentitis in a mouse with intralesional B. abortus. (A) Neutrophilic and necrotizing placentitis with large
colonies of B. abortus. (B) Necrosis with neutrophilic infiltration in the junctional zone of the placenta with
large extracellular aggregates of B. abortus (arrowhead). The pregnant mice in panels A and B were inoculated
with105 CFU/mice immunoprecipitate at the fifth day of gestation and sampled at 13 days after infection. (C)
Immunolabeling of Brucella sp. (brown) in the decidua and junctional zone of the placenta from experimentally
infected mice as previously described (81). (D) Immunolabeling of Brucella sp. (brown) in the yolk sac from
experimentally infected mice as previously described (81).
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(TNF-a), which is associated with placentitis and fetal loss (80). Interestingly, smooth
Brucella species may have variable pathogenic potential for causing placentitis in preg-
nant mice, with B. melitensis displaying a more intense placental tropism compared to B.
suis biovar 2 (82). However, B. ovis that is primarily associated with epididymitis in rams
(47) is also capable of inducing placentitis and fetal loss in pregnant mice (81).
Interestingly, nonpregnant uteruses from experimentally infected mice yield markedly
lower numbers of B. abortus per gram of tissue (85) compared with placentas (86), dem-
onstrating the tropism for the placenta in the pregnant uterus in this model (62).

The mouse model may also be useful for studying the pathogenesis of Brucella spp.
in the mammary gland. In contrast to the placenta, the mammary gland is morphologi-
cally similar among all mammals (87). Brucella can survive and colonize the mammary
gland of lactating mice (81, 88). Macrophages and neutrophils are target cells for colo-
nization in the mammary gland and may carry the pathogen through the excreted
milk of mice, which may be a source of infection for the litter (88). These findings sug-
gest the mouse as a potential model for future studies to understand mechanisms of
vertical transmission in natural hosts since infection parallels what has been described
in the bovine mammary gland (23).

IN VITRO STUDIES OF CELL SUSCEPTIBILITY TO BRUCELLA SPP. INFECTION

Informed by information gleaned from animal infection studies, early studies eval-
uated the ability of B. abortus to infect various host cell types in culture (89). These
studies provided a foundation for studying the interaction of Brucella spp. with the cell
types identified during in vivo infection. In addition, immortalized cell lines of various
origins, such as HeLa and Vero cells, were then used as models for investigating fea-
tures of Brucella-host cell interaction, such as its intracellular trafficking and cellular ad-
hesion (90). Subsequent in vitro studies have verified a large spectrum of susceptible
cells to Brucella spp. infection and survival, enhancing our knowledge about intracellu-
lar pathways and pathogenesis.

It is well known that Brucella spp. target professional phagocytes such as macrophages
(91), dendritic cells (92), monocytes, and neutrophils (93, 94). Macrophages are considered
one of the most important target cells for Brucella infection (Fig. 4) (91). Brucella spp. is capa-
ble of modulating intracellular trafficking, excluding lysosomal markers from the Brucella-
containing vacuole, which progressively accumulates markers of the rough endoplasmic
reticulum, in which Brucella resides in its intracellular replicative niche that favors intracellu-
lar growth, and finally the Brucella-containing vacuole acquires features of an unconven-
tional autophagosome, which eventually promotes a controlled exit of the pathogen from
the cell. This pattern of intracellular trafficking is dependent on bacterial effector proteins
that are secreted through the virB operon-encoded type IV secretion system (95).
Neutrophils are also susceptible to Brucella spp. infection. Brucella resists the hostile intracel-
lular environment of neutrophils, but in contrast to macrophages, it does not multiply well
in these host cells, although the pathogen induces a neutrophil cell death. Importantly,
dying neutrophils generate signs for other phagocytic cells, such as macrophages, to
remove the dying infected neutrophils, via a process known as efferocytosis (96). This mech-
anism is thought to be important for dispersing Brucella to other organs while avoiding
innate immune system (93, 97). Further, in vitro, dying infected macrophages can be taken
up by neutrophils, which in the host may be a mechanism to promote cell-to-cell spread
while avoiding extracellular antibody-mediated responses (98). Monocytes may also be
infected with Brucella. In fact, B. abortus establish platelet-leukocyte complexes mainly
involving monocytes and neutrophils (99), which enhances infection. These interactions
may allow infected monocytes to cross the human brain microvascular endothelial cells,
making infected cells act as a “Trojan horse,” since under in vitro conditions, B. abortus is not
capable of crossing a brain endothelial monolayer, whereas previously infected monocytes
can traverse the endothelial layer carrying intracellular B. abortus (100).

During the course of infection, Brucella also targets nonphagocytic cells. A nonphago-
cytic cell line that has been extensively used for Brucella research is the HeLa (85, 101–103).
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In addition to assessment of invasion and intracellular survival, HeLa cells have been often
used as a model for Brucella spp. adhesion to epithelial cells (104–106). As mentioned
above, M cells serve as a port of entry for Brucella to infect through the gastrointestinal
route (35, 57). Cell culture experiments also provided valuable knowledge on the interac-
tion of Brucella with trophoblasts, which are highly relevant target cells in vivo. Brucella
spp. invades, survives, and multiplies in human trophoblasts (86, 107). Importantly, the
interaction of B. abortus with bovine trophoblasts has been investigated by using cultured
placental explants, demonstrating that B. abortus invades and multiplies within bovine
trophoblasts in cultured placental explants (108, 109).

During recent years, several studies addressed the interaction of Brucella spp. with
several different cultured cell types (Fig. 5). Table 1 has a comprehensive list of cul-
tured cells that have been experimentally infected with Brucella spp. However, in some

FIG 4 Infection of macrophages with Brucella sp. (A) Mouse macrophage cell line (J774) infected
with B. ovis expressing mCherry (red) at 24 h postinfection with a multiplicity of infection of 1:100.
(B) Transmission electron micrograph demonstrating the intracellular localization of B. abortus in
membrane-bound vacuoles in cultured bovine macrophages experimentally infected as previously
described (142).
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cases, how the interaction of Brucella spp. with cultured cells correlates with cell tro-
pism in vivo remains to be elucidated.

EVIDENCE OF A BROADER TROPISM OF BRUCELLA SPP. IN NATURAL HOSTS

In natural hosts, Brucella has tropism and ability to replicate in hemolymphopoietic
organs including spleen, liver, bone marrow, and lymph nodes, as well as reproductive
organs such as the placenta, testis, and epididymis (58). In these target organs, Brucella
resides especially within phagocytes but can invade and replicate in a range of non-
phagocytic cells. A previous study (110) demonstrated B. melitensis in erythrocytes of
intraperitoneally inoculated mice. Under those experimental conditions, B. melitensis
could persist for at least 2 weeks in the blood, being initially located extracellularly but
rapidly transitioning to an intracellular location in erythrocytes. While there was no evi-
dence that erythrocytes provide a suitable niche for Brucella replication (since each
infected cell contained only a single bacterium), and the role of these cells as a niche
for pathogen reservoir may be limited by the short life span of erythrocytes, targeting
these cells may be relevant for pathogen dissemination in the host, considering the
uptake of senescent erythrocytes by splenic macrophages. Although this study in the
mouse model could initially be seen as disconnected with the available knowledge on
tissue and cell distribution of Brucella spp., a more recent study demonstrated large
numbers of B. canis within intravascular erythrocytes of naturally infected newborn
dogs (37). Indeed, the study by Souza et al. (37) demonstrated a pantropic distribution
of B. canis in fetal and neonatal canine tissues (Fig. 6). In naturally infected fetuses or
neonatal dogs, as expected, B. canis was isolated from the placenta, spleen, liver, and
lung, but the pathogen was also identified in all organs subjected to analysis, including
the gastrointestinal tract, heart, kidney, urinary bladder, lymph nodes, adipose tissue,
blood, genital organs, umbilical cord, central nervous system, and the eye. Importantly,
although often located in cells morphologically compatible with macrophages, B. canis
was detected in several different cell types in neonatal dogs (Fig. 6), including cardio-
myocytes, adipocytes, enterocytes, renal tubular epithelia, and erythrocytes, among

FIG 5 Mouse endothelial cells experimentally infected with B. ovis expressing mCherry (red) at 24 h postinfection
with a multiplicity of infection of 1:1,000.
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other cells (37). B. abortus-infected bovine fetuses seem to develop a systemic infec-
tion, often with severe lesions in the lungs, among other organs (23, 56). These few
studies discussed above suggest that the tropism of B. abortus and B. canis in fetuses
and neonates is broader than previously appreciated; however, additional studies such
as the one with B. canis (37) will be needed to determine whether these observations
will hold true in B. abortus and in other Brucella-host combinations.

Most of the studies on cell or tissue tropism were based on “classical” Brucella spe-
cies, i.e., the ones that were originally identified in terrestrial mammalian species, par-
ticularly domestic animals. However, the genus Brucella had a marked expansion in
recent years (15). Brucellosis has emerged as an important disease in marine mammals

FIG 6 Distribution of Brucella canis in tissues of naturally infected neonatal dogs demonstrated by immunohistochemistry (3-amino-
9-ethylcarbazole [AEC]; red chromogen) as previously described (37). (A) In intravascular erythrocytes. (B) In erythrocytes in a
glomerulus. (C) In the small intestine. (D) In adipose tissue (adipocytes). (E) In the myocardium. (F) In the ependyma in the central
nervous system.
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since the first report of a Brucella species in an aborted fetus of a bottlenose dolphin
(111). B. ceti and B. pinnipedialis had been detected in various marine coastal regions
affecting cetaceans and pinnipeds, respectively (112). B. ceti was detected in various
organs and tissues, including blubber abscesses, subcutaneous lesion, skin lesions,
pleura (pleuritis), lymph node, meninges, brain, kidney, liver, and lung. In all these
organs and tissues, the bacteria was found inside macrophage, neutrophils and troph-
oblasts (113–121). Interestingly, B. ceti infection in many species of cetaceans, including
dolphins and whales, appears to result in neurologic disease much more often than
other Brucella spp. (118, 122–126). Although B. ceti may also cause genital or osteoar-
ticular lesions (118, 122, 123, 125, 127) similar to other Brucella spp., neurologic disease
attributable to Brucella is rare in domestic animals and occurs in only 5% of human
patients infected with B. melitensis, so although not common, neurobrucellosis is a seri-
ous complication of brucellosis (1). The mechanisms for this presumed neurotropism
of B. ceti remain to be investigated. In contrast, the pathogenic potential of B. pinnipe-
dialis is still unclear (128), although the organism has been isolated from various
organs of stranded or healthy pinnipeds (129, 130). Interestingly, B. pinnipedialis is of-
ten associated with parasitic pneumonia (129), whereas lungworms are susceptible to
infection with this pathogen (131–133), so it is thought to be a potential vector for
transmission of the organism among hosts. Alternatively, considering the pathogenic
potential of B. pinnipedialis to the lungworm Parafilaroides sp., including tropism for
the male and female genital organs of the parasite and evidence of sexual transmission
between these nematodes, the lungworm not the pinniped may hypothetically be
considered the preferential host for B. pinnipedialis (133).

Not much is known about tissue and cell tropism of other Brucella spp. identified in
recent years. B. microti, originally isolated from the common vole Microtus arvalis (8), or
B. microti-like organisms have ever since been isolated from many other host species,
including red foxes, wild boars, and frogs (134–136), so its pathogenic potential and
tissue tropism are still to be investigated. Similarly, B. inopinata, originally isolated from
an infected breast implant in a woman (9), had an expansion of its host range with the
identification of B. inopinata-like organisms in frogs (13, 137–140), from which the or-
ganism was detected in various organs and tissues (137, 141). B. papionis was isolated
from baboons that had delivered stillborn offspring (10), which supports the hypothe-
sis of a genital tropism for this particular species. Finally, B. vulpis was isolated from
mandibular lymph nodes of two red foxes (Vulpes vulpes) with insufficient data to indi-
cate any particular tissue tropism (12).

FUTURE PERSPECTIVES

Original studies focusing on “classical” Brucella species established a dogma about
the tissue and cell tropism of Brucella spp. Considering the various Brucella and host
species (i.e., brucellosis is not a single disease), solid knowledge in this field indicates
that Brucella spp. stealthily shelter in phagocytic cells in organs of the reticuloendothe-
lial system or monocyte phagocyte system, particularly spleen, liver, bone marrow, and
lymph nodes, with a particular tropism for genital organs, specially the placenta in
females and the epididymis and sexual glands in males (Fig. 7). However, recent stud-
ies have demonstrated the ability of Brucella to infect and multiply in a large variety of
cultured cell types (Table 1). Although the correlation between these findings in vitro
and actual clinical manifestations or Brucella-induced lesions is often not clear, in vivo
studies have challenged this dogma. As detailed in this review, B. canis has a pantropic
distribution in neonatal dogs (37). Furthermore, as-yet-unknown host factors may play
key roles in tissue tropism. For instance, although domestic animals usually do not
develop neurobrucellosis, approximately 5% of Brucella-infected human patients may
develop neurologic disease (1), whereas neurobrucellosis seems to be common in dol-
phins naturally infected with B. ceti (118). Obviously, bacterial factors may also play
important roles in tissue tropism, which may be illustrated by the fact that B. ovis fre-
quently causes lesions in males (47), whereas other Brucella spp. affects predominantly
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pregnant females (45). Furthermore, the expansion of the genus with the emergence
of novel Brucella species will require significant research effort to accurately establish
tissue tropism. Therefore, significant advances in this particular field of study are
expected in the foreseeable future.
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