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Abstract

Medium-ring lactones are synthetically challenging due to unfavorable energetics involved in 

cyclization. We have discovered a thioesterase enzyme DcsB, from the decarestrictine C1 (1) 

biosynthetic pathway, that efficiently performs medium-ring lactonizations. DcsB shows broad 

substrate promiscuity towards linear substrates that vary in lengths and substituents, and is a 

potential biocatalyst for lactonization. X-ray crystal structure and computational analyses provide 

insights into the molecular basis of catalysis.
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Lactones of all sizes are found widely in bioactive natural products. Synthetically, the 

preparation of medium-ring (8-11 membered) lactones is significantly more challenging 

compared to small- and large-ring compounds.1 The reactivity of intramolecular 

lactonization of medium-sized rings is estimated to be nearly six-orders of magnitude slower 

than that of a five-membered lactone.2 The steep increase in activation energy arises from 

both entropic and enthalpic penalties, with the latter playing a dominant role due to 

transannular strain.2–3 Developing efficient strategies to construct such rings systems by 

cyclization of hydroxyacids has been an ongoing effort, anchored by methods such as 

Corey-Nicolau,4 Yamaguchi5, Mitsunobo,6 and others.7 Biocatalytically, enzymes 

responsible for forming small lactones and macrocycles are found in biosynthetic pathways,
8 highlighted by the 12-membered and 14-membered forming pikromycin (Pik)9 and 

erythromycin (DEBS)10 thioestereases (TEs), respectively. However, there is no example of 

a natural enzyme that can promote lactonization to form 9- or 10-membered lactone rings.11 

Discovering and characterizing enzymes that can catalyze such reactions can therefore 

bridge this notable inventory and knowledge gap.

Toward this objective, we focused on the biosynthesis of nonanolides by filamentous fungi. 

Compounds in this family contain a 10-membered lactone core (Figure 1A). Decarestrictine 

C1 (1) isolated from Penicillium simplicissimum and other fungi,12 is a representative 

molecule. Lactone 1 shows inhibitory effects on cholesterol biosynthesis, and contains an 

(E)-alkene at C4 and C5 that is flanked by two allylic alcohols. The 10-membered ring with 

multiple chiral substituents has attracted several total synthesis efforts.13 Nonanolides such 

as 1 are also proposed to be biosynthetic precursors for pyridomacrolidin14 and opaliferin15 

(Figure 1B). Biosynthetically, the 10-membered ring in 1 is proposed to derive from a 

polyketide pathway:16 one would expect a highly-reducing polyketide synthase (HRPKS) to 

iteratively assemble the enzyme-bound linear polyketide, which is lactonized by a TE.17 

Additional oxidoreductases complete the biosynthesis. The proposed TE therefore represents 

a potential medium-ring lactonization biocatalyst.

Our search for the biosynthetic gene cluster (BGC) that encodes the enzymes for 1 started 

with genome scanning of Beauveria bassiana ARSEF 2860;18 a related fungus B. bassiana 
EPF-5 was reported to produce pyridomacrolidin.14 Guided by other fungal macrolide 

BGCs,17c, 17d we identified one BGC (dcs, Figure 2A) that encodes an HRPKS (DcsA), a 

TE (DcsB), a P450 (DcsC), a short-chain dehydrogenase/reductase (SDR, DcsD) and a 

flavin-dependent monooxygenase (FMO, DcsE) (Table S1). Close homologues of this five-

gene cassette are found in two other fungi, including Cordyceps species that are known 

producers of nonanolides.19

The functions of the dcs enzymes were examined through heterologous expression in 

Aspergillus nidulans A1145 (Figures 2C and S1).20 Coexpression of DcsA and DcsB led to 

the production of 2a (~ 250 mg/L), which was confirmed to be the 10-membered lactone 

diplodialide-B (Table S5, Figures S50–S54). This implies DcsA and DcsB together are 

sufficient to synthesize the nonanolide. Coexpression of the P450 DcsC led to disappearance 

of 2a, but no accumulation of new metabolites. Additional coexpression of the SDR DcsD 

led to formation of a new metabolite that has the same molecular weight as 1. NMR and X-

ray crystallography characterization confirmed the compound to be identical to 
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decarestricitine C1 (Figure 2B, Table S6, Figures S45–S49). As shown in Figure 2B, we 

propose DcsC oxidizes the allylic C6 position of 2a to the ketone 3, which can be modified 

or metabolized in vivo as a Michael acceptor. The SDR DcsD stereoselectively reduces the 

ketone to the C6 alcohol to form 1. The FMO DcsE is not required in the biosynthesis of 1, 

and its role is not evident from heterologous expression.

We synthesized a panel of thioesters (4, Figure 2D) that mimic the proposed HRPKS-

tethered pentaketide, and assayed with recombinant DcsB (Figure S2). Thioesters with the 

natural acyl chain were prepared through hydrolysis of 2a followed by reacting with 

different thiols (Supporting Methods). As shown in Figure 2D and Table S4, Acyl-S-N-

acetylcysteamine 4a-1 was a poor substrate and gave low yield of 2a. Using more lipophilic 

acyl thioesters, such as acyl-S-MMP 4a-2,21 acyl-S-EMP 4a-3, and acyl-S-BMP 4a led to 

significant increases in yield and total turnover numbers (TTNs). Lowering the enzyme 

loading to 0.5 μM led to maximum observed TTN of 1258 (Table S4) with 4a. The kinetic 

parameters of DcsB towards 4a was determined to be kcat = 11.5 min−1 and KM = 298 μM 

(Figure S3). Sequence comparison of DcsB to other TEs showed the presence of the 

catalytic triad, S114, H276 and D247, that performs catalysis in a well-established reaction 

mechanism (Figure S14).22 While the S114A mutant cannot be solubly obtained, both the 

S114T and the S114C mutants retained <5% of the catalytic activity using 4a as the 

substrate (Figure S2).

To examine how substitutions in the substrate affect cyclization, we synthesized modified 

pentaketide-S-BMP substrates 4b-4e by using semisynthetically modified 2a (Supporting 

methods). Products from the enzymatic reactions were isolated and characterized by NMR 

(Figures S55–S60). The C3-methoxy-containing substrate 4b was efficiently converted to 

the lactone 2b with 53% isolated yield (Figure 3A). The saturated pentaketide 4c was 

converted to lactone 2c, indicating that the olefin is not essential. The C3 epimer of 4c, 4d, 

was cyclized to 2d with 43% isolated yield, further indicating substitutions on the ring do 

not affect catalysis. In contrast, DcsB failed to lactonize substrate 4e containing an 

epimerized nucleophilic alcohol into 2e. Instead only the hydrolyzed byproduct was 

observed by LCMS analysis (Figure S5). This suggests that the proper spatial orientation of 

the nucleophile is required for attacking the Ser114-bound acyl chain in the lactonization 

reaction, in contrast to the stereotolerance of other macrolactonizing TE enzymes.17e

We next explored the substrate tolerance of DcsB towards linear substrates of different sizes 

by using simplified acyl-S-BMP compounds 4f-4l (Figure 3B). These compounds, once 

cyclized, would afford lactones 2f-2l ranging in ring sizes from 7- to 13-membered. In cases 

where synthetic standards of the lactones were available such as in 2f-2h, formation of 

products and yields were measured from GCMS analysis (Figure S4). In other cases, all 

putative lactone products were purified and spectroscopically characterized (Figures S61–

S72). Gratifyingly, all of the substrates can be cyclized using DcsB in yields ranging from 

49% to 82%. Using DcsB, odd-membered lactones, which are rarely found in nature, can be 

readily accessed. These examples illustrate that DcsB has broad substrate scope and is a 

biocatalyst for constructing lactones of assorted ring-sizes.
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We determined the crystal structure of DcsB by single anomalous diffraction at 1.56 Å 

resolution (PDB ID: 7D78; Figure S6 and Table S7). DcsB exists as a homodimer in the 

asymmetric unit, consistent with sedimentation velocity experiment results (Figure S7). 

DcsB possesses a canonical α/β-hydrolase fold with an eight-stranded β-sheet and a lid 

region inserted between β6 and β7 with three helices (αL1, αL2, αL3) (Figures 4A and S8). 

Although DcsB has less than 10% sequence identity to the well-characterized DEBS TE10 

and Pik TE9a domains, the core regions have structural similarities with an RMSD of 2.5 Å 

and 2.7 Å, respectively (Figure S9). The catalytic triad is located in the loops of the core 

domain, and adopts the same relative conformations as in other TEs (Figure S9).

We then attempted crystallization of DcsB with the substrate 4a-2. Unexpectedly, we 

obtained a 2.11 Å resolution structure of DcsB complexed with the substrate analogue 4a-2’, 
the 3R-epimer of 4a-2 (PDB ID: 7D79; Figures 4A and S10). Epimerization of the allylic 

and β-alcohol appears to take place nonenzymatically under crystallization conditions. The 

overall structure of DcsB-4a-2’ complex is essentially identical to the DcsB structure, with 

RMSD of 0.146 Å (Figure S10A). However, the conformation of 4a-2’ is a nonproductive 

one, as the nucleophilic alcohol that undergoes lactonization is hydrogen bonded to the 

catalytic Ser114. This pushes the thioester 7.9 Å away from the catalytic triad (Figure S10C) 

and gives a conformation that is unproductive towards lactonization. Nevertheless, the 

presence of 4a-2’ allowed us to visualize the active site cavity, which is an ~151 Å3 

hydrophobic chamber calculated using POCASA.23 The active site is significantly different 

from those of the DEBS10 and Pik9a TEs, both of which have a substrate channel passing 

through the entire dimer (Figure S11). In these structures, the catalytic triad is located in the 

middle of channel to catalyze cyclization of the substrate that enters from one side and exits 

from the other side. The reaction chamber of DcsB is only open on one side, because the 

other side is blocked by the residues of I139 and F142 located in the loop between β6-αL1 

connecting the lid and the TE core (Figure S11).

We computationally removed the 4a-2’ ligand and docked 4a-2 into the crystal structure 

(Figure 4B). 4a-2 docks into the enzyme in a conformation more consistent with catalysis. 

Now, the secondary alcohol is positioned at the entrance of active site and hydrogen bonds 

with Ser281. This conformation places the thioester 5.6 Å from the catalytic triad. We then 

performed covalent docking of the Ser114-bound acyl-intermediate (Figure 4C). The 

Ser114-bound acyl-intermediate adopts a folded conformation with the secondary alcohol ~ 

4 Å from the catalytic His276 and the oxyester carbonyl where cyclization occurs. The 

backbone amides of F40 and F115 hydrogen bond to the alcohol and organize the substrate 

into a folded conformation ready for cyclization. This suggests that if the acyl-intermediate 

is formed, it will readily cyclize.

Quantum mechanical calculations on cyclization transition states with “theozyme” models 

of the active site further corroborated this mechanism; the computed transition states are 

very similar to the docked acyl-intermediate (Figure S12). The hydrogen bonding 

interactions between the substrate and F40 and F115 backbone amides distort the reactant 

towards a transition state-like geometry. Also of note is that the alkene and allylic alcohol do 

not form any stabilizing interactions with nearby residues, which is consistent with the fact 

that these substituents are not required for catalysis.
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We performed covalent docking on Ser114-bound intermediates from the substrate 4f-4l and 

found that many structures produced a folded conformation as the best predicted docked 

pose (Figure S13). All structures except 4g produced folded conformations in the docked 

ensembles, but the lowest energy docked poses for substrates 4f, g, h, and i (n = 1–4) have 

extended conformations. The transannular strain associated with cyclizing these small to 

medium-ring substrates is unavoidable, but in the enzyme pocket these substrates can 

overcome this barrier by forming stabilized folded conformations. We propose that the broad 

substrate scope arises from the nature of the active site. One end of the substrate is bound to 

Ser114 and the other end hydrogen bonds with the backbone amides of F40 and F115. 

Positioning the termini in close proximity to each other with strong electrostatic interactions 

counteracts entropic and enthalpic barriers to cyclization. The active site residues that hug 

the alkyl chain are flexible methionines, bulky non-polar leucines and a phenylalanine that 

afford hydrophobic binding. These residues make up a large non-polar cavity with the 

Ser114-bound acyl-intermediate 4a-2. As the alkyl chain increases in length, the non-polar 

cavity can flex and accommodate the extra carbons. This general arrangement, in which the 

tails of the substrate are anchored by covalent modification and hydrogen bonds within a 

hydrophobic pocket, facilitates the promiscuity of DcsB.

In conclusion, we have identified the enzymes involved in forming the 10-membered lactone 

1. DcsB is shown to have broad substrate promiscuity to form medium-ring lactones that are 

challenging to prepare chemically. DcsB adds to the collection of thioesterases discovered 

from biosynthetic pathways that are useful in chemoenzymatic preparation of lactones.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nonanolides and related natural products. (A) Compounds with 10-membered lactones. (B) 

Compounds that are proposed to be derived from 10-membered lactones.
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Figure 2. 
Fungal nonanolide biosynthesis. (A) The dcs and homologous biosynthetic gene clusters. 

The % sequence identities are shown in parenthesis; (B) Proposed biosynthetic pathway of 

1. (C) LC-MS analysis of metabolites produced from expression of dcs genes in A. nidulans. 

(D) Assaying activity of DcsB using small molecule thioesters.
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Figure 3. 
Assaying the substrate promiscuity of DcsB. (A) Analogs 4b-4e used to probe functional 

group requirements; (B) simple alcohol-terminated substrates 4f-4l. a Isolated yield; b The 

cyclized product was not formed and only substrate hydrolysis was observed; c Yield 

determined by GC-MS analysis. Reaction conditions: 1 mM substrate, 0.5 μM DcsB except 

for 2k in which 2.4 μM DcsB was used.
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Figure 4. 
Crystal structures of DcsB with bound and modeled substrate complexes. (A) Overall 

structure of DcsB-substrate analogue 4a-2’ complex. The active site catalytic triad residues 

(S114, H276, and D247) are shown in blue sticks while the substrate analog 4a-2’ is shown 

in yellow. The β-hydroxyl group in 4a-2’ is epimerized compared to the natural substrate 

4a-2 and is bound in an unproductive conformation; (B) Active site of DcsB with docked 

substrate 4a-2 that is shown in grey sticks. The thioester is 5.6 Å from the catalytic S114 

residue; (C) Covalent docking of the Ser114-bound acyl-intermediate of 4a-2 shown in teal.
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