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Abstract

Quantum Representations of MCGs and Their Applications to Quantum Computing

by

Wade Bloomquist

We explore how skein theoretic techniques can be applied to the study of quantum

representations of mapping class groups. Of particular interest will be looking into the

asymptotic faithfulness property of quantum representations coming from unimodal ver-

sions of representation categories of quantum groups. We then introduce a combinatorial

property on the graphical calculus of these representation categories which implies asymp-

totic faithfulness. We proceed to show that this property is satisfied in some specific cases,

in short we provide support for the conjecture that these quantum representations will

always be asymptotically faithful. This will lead into a discussion of other applications

within low dimensional topology. Finally applications to topological quantum computing

will be given, introducing a potential encoding of qudits making use of these quantum

representations.
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Chapter 1

Introduction

In its relatively short lifespan quantum topology has emerged as a rich and exciting

corner of mathematics. This raises an opening question: what is quantum topology?

This question is not particularly well formulated. What one mathematician views as

an acceptable answer may fall short in the eyes of another. Rather than attempting

to resolve this debate we will instead provide a start to the story. Then we will take

quantum topology to be any mathematics that can be linked with this core originating

work.

The rediscovery of the Temperley-Lieb algebras by Jones [22], and in turn the intro-

duction of the Jones polynomial, [24, 25] will be what we consider the birth of quantum

topology. This concept was reformulated into a diagrammatic language by Kauffman

[26], which is in many ways the path the work discussed here will follow. From a seem-

ingly different direction the introduction of “quantum groups” or 1−parameter families

of deformations of semisimple complex Lie algebras by Drinfeld and Jimbo could be seen

as an alternative starting point [21, 16]. An observation due to Witten saw how this

newly introduced knot polynomial of Jones sat inside of a much more intricate and deep

mathematical structure, namely a topological quantum field theory [50]. This framework,
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Introduction Chapter 1

brought more rigorously into the mathematical world by Atiyah [3], in many ways opens

the door to seeing is how these two starting points are intimately related.

We proceed with an analogy. Utilizing the work of Kirby it is possible to view framed

link invariants and oriented closed 3−manifold invariants as one in the same. This

connection arises from link invariants which are invariant under the famous Kirby moves

on the corresponding diagrams and performing surgery on the link in question sitting

inside of S3 [29]. The power of Kirby’s work is in finding the moves on a link diagram

which correspond to changing the link in a way that is not seen by the surgery. Coloring

framed links by a weighted sum of algebraic data is one way to force the necessary

invariance under Kirby moves. In summary (omitting some adjectives):

Framed Link Invariants→ 3−Manifold Invariants.

This was only the start, or first half, of our analogy. From here we make the shift from

framed link invariants to colored ribbon graph invariants. In fact, this analogy can be

thought of a generalization or extension as a framed link is simply a ribbon graph with

no vertices. We avoid any technical details here, but by a coloring of a ribbon graph we

mean a certain assignment of algebraic data to a ribbon graph. The required algebraic

data happens to be equivalent to an algebraic object called a ribbon tensor category

[39, 40]. Then from a ribbon graph sitting inside of a 3−manifold we can construct

operator valued invariants. Now that we have the appropriate generalization of framed

link invariants, we can look at what 3−manifold invariants should generalize to. That

answer is a (2 + 1) TQFT. In particular, this analogy is a quick and rough description

of the Reshetikhin Turaev construction associated to a modular tensor category [45]. In

summary,

Colored Ribbon Graph Invariant→ (2 + 1)TQFT.

2



Introduction Chapter 1

Now of particular interest to us will be one small aspect of a (2 + 1) TQFT, and that

is the afforded tower of mapping class group representations. In particular, this tells

us that given a TQFT we have a mapping class group representation for any possible

surface.

Sitting inside this tower of mapping class group representations are braid group rep-

resentations on any number of strands. This family of braid group representations is

the genesis of mathematically describing the physical theory of anyons. This amounts to

describing exchange statistics. When two indistinguishable bosons are exchanged there

is no change to the underlying vector, or state, describing the physical system. When

two indistinguishable fermions are exchanged the underlying state is negated. In certain

situations, here meaning confining to a 2−dimensional system, quasi-particles can emerge

which have the potential to exhibit exotic exchange statistics. For an abelian anyon this

means picking up an overall phase, say eiθ. Of incredible interest are non-abelian anyons,

these quasi-particles exhibit exchange statistics that not only change the state vector

by a phase, but can act by a non-trivial unitary operator on the entire system. In par-

ticular, when indistinguishable non-abelian anyons are exchanged the state vector can

be changed by some unitary representation of the braid group on the number of anyons

in question. This remarkable property is at the center of the field of topological quan-

tum computing [31, 20]. These unitary braid group representations are used to encode

logic gates, and then a computation is performed through successive interchangings of

non-abelian anyons. This is a very rough overview and further details can be found in

[48].

We look to explore some mathematical properties of these mapping class group rep-

resentations, not limited to braid group representations, as well as look into some pos-

sibilities of incorporating the entire mapping class group representation into topological

quantum computing.

3



Chapter 2

Quantum Representations

Preliminaries

Definition 2.0.1 A quantum representation of a mapping class group will refer to

the projective representation of a mapping class group afforded by a (2 + 1) TQFT. In

particular, these representations arise from the map induced on the state space via the

mapping cylinder construction.

2.1 (2 + 1) TQFTs

We will now give a brief overview of axiomatic (2 + 1) TQFTs, similar to that given

in [48]. We will avoid a complete description of the list of all axioms here and instead

refer to the reference above. We will often make an effort to mention implications on the

quantum representations in a hope to increase understanding and provide grounding in

the context we will be working in.

4
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2.1.1 Framing Anomaly

There is an overall ambiguity that must be dealt with throughout the following con-

struction. Reducing to the level of quantum representations this should be thought of as

the driving force in quantum representations being projective rather than honest linear

representations. We have a few potential routes to make sense of this ambiguity, each

with various benefits and disadvantages. We will refer to a surface with any of the follow-

ing additional structure as an extended surface, and will often pass between the various

notions to what is most useful in context.

Parametrization

One method of incorporating the above ambiguity is by looking at not only sur-

faces, but surfaces equipped with a parametrization into R3 such that the surface bounds

the standardly embedded handlebody. Then an extended 3−manifold will be one with

parametrized boundary. We refer readers to chapter IV of Turaev’s book for additional

details [45]. We will often uitilize this particular approach as it is very concrete and

perhaps easier to think about. The disadvantage of this approach is this parametrization

is a much stronger condition added to the surface than is actually needed.

Lagrangian Subspaces

Definition 2.1.1 A Lagrangian subspace of a surface Σ is a maximal isotropic sub-

space of H1(Σ;R) with respect to the intersection pairing of H1(Σ;R).

Then an extended surface will be a pair (Σ, λ) where λ is a Lagrangian subspace of

H1(Σ;R). Similarly extended 3−manifolds will be 3−manifolds where the boundary is

given a Lagrangian subspace. This approach has the advantage of being particularly

concrete when describing the projective ambiguity in composing mapping classes, and so
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we will adopt it in most contexts. We refer to the chapter VI of Turaev’s book for an

overview of how to reduce parametrizations to the weaker structure of just Lagrangian

subspaces [45].

Other Options

Various weakenings can be applied to the extra structure given to 3−manifolds. A

2−framing, meaning a trivialization of the double of the tangent bundle, is one example.

This structure is equivalent to choosing the signature of a bounding 4−manifold and is in

particular very useful for descriptions of constructions requiring surgery. Often this will

amount to just assuming the canonical 2−framing has been taken [4]. A p1−structure,

the first Pontryagin class, is another example, but this one will not be discussed here [8].

2.1.2 A Summary of Axiomatic TQFTs

A (2 + 1) TQFT will be a modular functor from the category of extended cobordisms

to the category of finite dimensional vector spaces. In particular this means we will assign

to an extended surface (Σ, λ) a finite dimensional vector space. We will also assign an

oriented 3−manifold with extended boundary to a linear map between the vector space

associated to the extended boundary surfaces. In order to fix notation we will will say

V (Σ) is the vector space assigned to Σ and Z(M) will be the vector in V (∂M) determined

by viewing it as a linear map form V (∅) ∼= C to V (∂M).

2.2 Mapping Cylinder Construction

The axioms, which were omitted, in the above definition are enough to deduce the

following construction. Let Σ be an extended surface, with V (Σ) the associated vector

space. We claim that V (Σ) admits a (projective) action of MCG(Σ). Let f ∈ MCG(Σ)

6
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be an orientation preserving homeomorphism of Σ. Then we can construct the mapping

cylinder

Mf := (([0, 1]× Σ))/ ∼

where

(0, x) ∼ f(x) x ∈ Σ.

We observe that Mf is a cobordism from Σ to Σ and thus induces a map V (f) : V (Σ)→

V (Σ). Moreover if Σ is extended by the Lagrangian subspace λ, then using the TQFT

axioms omitted above

V (f ◦ g) = κµ(g∗(λ),λ,f
−1
∗ (λ))V (f)V (g),

where µ is the Maslov index and κ = eπic/4 is called the anomaly with central charge

c. In particular we note that not only is the projective ambiguity able to be described

explicitly, but is also only projective up to particular roots of unity. This allows for linear

representations to arise for central extensions of mapping class groups [35].

2.3 Modular Tensor Categories

This section will focus entirely on the algebraic formalism of modular tensor cate-

gories. The disinterested reader is welcome to skip to the next section where a more

“hands on” approach where the focus is on ribbon graph invariants is taken. We only

provide a brief overview of modular tensor categories, and direct the reader to find details

in the following accounts [34, 45, 48, 17], our presentation will most closely follow that

given in [17].

Definition 2.3.1 A modular tensor category is an abelian C−linear, which is bilin-

7
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ear on morphisms, semisimple rigid monoidal category with a simple unit object 1, finite

dimensional Hom spaces, finitely many isomorphism classes of simple objects, spherical

structure, and a non-degenerate braiding which is compatible with the spherical structure.

We look to individually make sense of each of these terms with a strong emphasis on the

graphical calculus which is introduced by each level of additional structure.

2.3.1 Categorical Prerequisites

Definition 2.3.2 An additive category, C, is a category such that the set HomC(X, Y )

is an abelian group with composition being bi-additive for every pair of objects X and

Y . There is also a distinguished object 0 such that Hom(0, 0) = 0. Finally for every

pair of objects X and Y there exists an object X ⊕ Y and morphisms p1 : X ⊕ Y → X,

p2 : X⊕Y → Y , i1 : X → X⊕Y , and i2 : Y → X⊕Y such that p1◦i1 = idX , p2◦i2 = idY ,

and i1p1 + i2p2 = idX⊕Y .

Definition 2.3.3 Let F be a field. An additive category, C, is said to be F−linear if

for any objects X and Y of C we have that HomC(X, Y ) is equipped with the structure of

a vector space over F, such that composing morphisms is F−linear.

Definition 2.3.4 An F−algebroid is a small F−linear category. Where small means

that the collection of all objects forms a set rather than a class.

We will rarely use this notation, but it serves a purpose in influencing how to think about

linear categories. For every object X of C we have that

End(X) := HomC(X,X)

is an F−algebra. In addition we have that Hom(X, Y is an End(X)−End(Y ) bimodule.

8
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Then an algebroid, and really a linear category in general, can be thought of as a family

of parametrized algebras related to each other via parametrized bimodules.

Definition 2.3.5 An abelian category is an additive category such that for every mor-

phism f ∈ Hom(X, Y ) there exists a sequence

K
k−→ X

i−→ I
j−→ Y

c−→ C

such that j ◦ i = f , K = Ker(f), C = Coker(f), I = Coker(k) = Ker(c), where the object

I is called the image of f , denoted Im(f).

Definition 2.3.6 Let C be an abelian F−linear category. A nonzero object X is simple

if End(X) = F. Then C is semisimple if every object is a direct sum of simple objects.

2.3.2 Monoidal Categories

Definition 2.3.7 A monoidal category is a collection (C,⊗, a, 1, i) where C is a cate-

gory, ⊗ : C×C → C is a bifunctor called the tensor product, for every collection of objects

X, Y and Z of C we have the component of a natural isomorphism

aX,Y,Z : (X ⊗ Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z),

called the associativity constraint or associator, 1 is a distinguished object of C and i :

1 ⊗ 1
∼−→ 1 is an isomorphism. This collection must satisfy the following compatibility

9
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conditions: First we have

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗idZ aW⊗X,Y,Z

aW,X⊗Y,Z aW,X,Y⊗Z

idW⊗aX,Y,Z

referred to as the pentagon axiom. Second the left and right “tensor by 1” functors are

autoequivalences of C. Meaning

L : X → 1⊗X

and

R : X → X ⊗ 1

are both autoequivalences of C.

Definition 2.3.8 Let (C,⊗, 1, a, i) be a monoidal category, which through an abuse of

notational we will call C. Then C is rigid if every object has both a left and right

dual. An object X∗ is said to be a left dual of X if there exist an evaluation morphism

evX ∈ Hom(X∗⊗X, 1) and a coevaluation morphism coevX ∈ Hom(1, X⊗X∗) such that

X
coevX⊗idx−−−−−−→ (X ⊗X∗)⊗X

aX,X∗,X−−−−−→ X ⊗ (X∗ ⊗X)
idX⊗evX−−−−−→ X

and

X∗
idX∗⊗coevX−−−−−−−→ X∗ ⊗ (X ⊗X∗

a−1
X∗,X,X∗−−−−−→ (X∗ ⊗X)⊗X∗ evX⊗idX∗−−−−−−→ X∗

are both the identity morphism. Similarly an object ∗X is said to be a right dual of X if

there exist an evaluation morphism ev′X ∈ Hom(X⊗∗X, 1) and a coevaluation morphism

10
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coev′X ∈ Hom(1,∗X ⊗X) such that

X
idX⊗coev′X−−−−−−→ X ⊗ (∗X ⊗X)

a−1
X,∗X,X−−−−−→ (X ⊗∗ X)⊗X

ev′X⊗idX−−−−−→ X

and

(∗X)
coev′X⊗id∗X−−−−−−−→ (∗X ⊗X)⊗ (∗X)

a∗X,X,∗X−−−−−→ (∗X)⊗ (X ⊗∗ X)
id∗X⊗ev′X−−−−−−→ (∗X)

are both the identity morphism.

Definition 2.3.9 A fusion category is a C−linear abelian rigid semisimple monoidal

category with only finitely many simple objects where the monoidal unit must be simple,

such that the tensor product is bilinear on morphisms.

2.3.3 Quantum Traces

Definition 2.3.10 Let C be a rigid monoidal category and X an object of C, and a ∈

Hom(X,X∗∗), then the left quantum trace is defined as

TrL(a) : 1
coevX−−−→ X ⊗X∗ a⊗idX∗−−−−→ X∗∗ ⊗X∗ evX∗−−−→ 1.

Similarly the right quantum trace can be defined for a ∈ Hom(X,∗∗ V ), as

TrR(a) : 1
coev∗X−−−−→ (∗X ⊗X)

id∗X⊗a−−−−→ (∗X ⊗∗∗ X)
ev∗∗X−−−→ 1.

Definition 2.3.11 A pivotal structure on a rigid monoidal category is a collection of

isomorphisms

φX : X
∼−→ X∗∗

11
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for all objects X, that is natural in X and

φX⊗Y = φX ⊗ φY

for all X and Y . A rigid monoidal category with pivotal structure is called pivotal.

Definition 2.3.12 A rigid monoidal category with pivotal structure φ is called spherical

if for all objects X

TrL(φX) = TrR(φ−1X ).

In this case the pivotal structure φ is called the spherical structure.

2.3.4 Ribbon Monoidal Categories

Definition 2.3.13 A monoidal category C is braided if it is given a family of natural

isomorphisms cX,Y : X ⊗ Y ∼−→ Y ⊗X such that the following diagrams are commutative

for all objects X, Y, and Z:

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y⊗Z

aY,Z,XaX,Y,Z

cX,Y ⊗idZ

aY,X,Z

idY ⊗cX,Z

12
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and

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

cX⊗Y,Z

a−1
Z,X,Ya−1

X,Y,Z

idX⊗cY,Z

a−1
X,Z,Y

cX,Z⊗idY

Definition 2.3.14 A twist on a braided rigid monoidal category C is a natural trans-

formation from the identity functor on C to itself. In terms of components this gives us

a morphism θX ∈ Hom(X,X) for all objects X. We also have the additional condition

that

θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y .

Definition 2.3.15 A twist, θ, on a braided rigid monoidal category is called a ribbon

structure if

(θX)∗ = θX∗ .

This notion of ribbon structure is exactly the compatibility between the spherical struc-

ture and the braiding which was mentioned in the original definition of a modular tensor

category.

Definition 2.3.16 A ribbon fusion category is a braided fusion category with a ribbon

structure structure.

We note that a ribbon fusion category is often called a premodular category. A ribbon

fusion category satisfies all of the definitions of a modular category aside from the final

non-degeneracy condition.

13
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2.3.5 Modularity

Definition 2.3.17 Let C be a ribbon fusion category with spherical structure φ and finite

set of isomorphism classes of simple objects L. Let Tr be the quantum trace induced on

morphisms using φ, noting that we do not need to specify R or L. Then C is modular if

S = [sij]i,j∈L

where

sij = Tr(cj,i ◦ ci,j)

is non-degenerate.

2.4 Ribbon Graphs and Graphical Calculus

This section will repeat much of the above information given in the algebraic formality

of the previous section. In particular we hope to ground ourselves in the graphical calculus

of these categories while keeping an outlook toward developing ribbon graph invariants.

This jump to an entirely graphical interpretation is completely rigorous. In fact this

stems from the category of framed tangles serving as a “universal ribbon category”. In

particular given any ribbon tensor category, C, and any object, X, there is a uniquely

determined monoidal functor from the category of framed tangles to C which sends the

generating object of the framed tangles to X and preserves the ribbon structure coming

from the double twist of a ribbon tangle [45].

Definition 2.4.1 A ribbon graph is a graph equipped with a cyclic ordering on the half

edges incident to each vertex.

To each ribbon graph one can associate an oriented surface with boundary by replacing

14



Quantum Representations Preliminaries Chapter 2

edges by thin oriented rectangles (or ribbons), replacing vertices by disks, and pasting

rectangles to disks according to the chosen cyclic orders at the vertices. Then we will

extend the relationship of framed tangles to embedded ribbon graphs in a rectangle. Here

the edges will be colored with objects of C and vertices will be colored by morphisms in

Hom(
⊗

α Vα, 1) where Vα are the labels of the incident edges and the order of the tensor

product is determined by the cyclic order of the ribbon graph.

For the rest of this section let C be a modular tensor category. We will explain the

various structures of C in terms of the graphical calculus.

2.4.1 Graphical Calculus

This alternative description of modular tensor categories, based on on performing

graphical calculus on basis elements of diagrams closely follows that of [45, 13] We will

start with a finite label set L. This is coming from the finite set of isomorphism classes

of simple objects of C. This set L is equipped with an involutionˆ: L→ L called duality.

This duality is coming exactly from the spherical structure on C. In terms of the graphical

calculus the elements of L will correspond to oriented edge labels of an oriented ribbon

tangle, withˆgiving a reversal of the orientation. We say that (L,+,⊗) is the underlying

fusion algebra of C where

a⊗ b =
∑
c∈L

N c
abc.

and

N c
ab = dim(Hom(a⊗ b, c)).

In terms of the graphical calculus we have trivalent vertices corresponding to each of the

N c
ab basis vectors. In particular we have in figure 2.1:

Where the normalization factor is included so that we are consistent with an isotopy
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Figure 2.1: A basis element of Hom(a⊗ b, c)

invariant convention and the values of da, db, and dc will be explained below. From the

associativity of the underlying fusion algebra we have

(a⊗ b)⊗ c = a⊗ (b⊗ c)

and this then gives rise to isomorphisms on the splitting spaces as seen in the language

of the graphical calculus in figure 2.2.

Figure 2.2: Associativy lifted to vector spaces

We call this diagrammatic equivalence an F-move. We note that this F−move is

exactly the associativity constraint given in the definition of a monoidal category, defini-

tion 2.3.7. As such we have a diagrammatic version of the pentagon axiom commutative

diagram as well, as seen in figure 2.3.
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F F

F

F

F

Figure 2.3: A diagrammatic version of the pentagon axiom

We can also utilize a notion of inner products on these vector spaces to introduce

the move seen in figure 2.4. We will sometimes call this diagrammatic equivalence a

Figure 2.4: A diagrammatic interpretation of the inner product

Schur’s Lemma-move, for obvious reasons. We note that this diagrammatic move is a

direct consequence of the definition of a simple object, definition 2.3.6. Combining these

two moves we are able to deduce the values used in our normalization, called quantum

dimensions, seen in figure 2.5.

We see how this is exactly coming from the quantum trace of the identity morphisms
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Figure 2.5: Quantum Dimension

in C, referring to 2.3.3. From the above we also have the factorization of the identity on

two element seen in figure 2.6.

Figure 2.6: Factoring the identity

So far all of the graphical calculus discussed has been strictly planar, this changes

as a braiding is introduced. The R-move as seen in figure 2.7 is our first and most

powerful example. In particular this introduces invariance under the second and third

Reidemeister moves to our graphical calculus coming from the definition of a braided

monoidal category, this follows from the natural isomorphism requirement given to cX,Y

in definition 2.3.13 . We also have a diagrammatic description of the hexagon axioms

given the same definition of a braiding as seen in figure 2.8 for a positive crossing, noting

again that the F moves correspond to the associativity constraints in C.
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Figure 2.7: Introducing a braiding

Figure 2.8: Compatibility of a braiding

19



Quantum Representations Preliminaries Chapter 2

This leads to looking at the first Reidemeister move. This is taken care of by the

move seen in figure 2.9, which is exactly the twist in C.

Figure 2.9: The twist

We also mention one consistency equation, as it will slightly simplify a future com-

putation. We have that the R-moves and twists satisfy the following relation

∑
λ

[Rab
c ]µλ[R

ba
c ]λν =

θc
θaθb

δµ,ν .

Finally as describe the modularity condition. This is seen in the non-degeneracy of the

matrix having entries defined in in figure 2.10, where D2 =
∑

a∈L d
2
a

Figure 2.10: The S−matrix

We will refer to the full collection of these moves in the graphical calculus as evaluation

moves.
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2.4.2 Isotopy Invariance

We note that this section is based on and uses the majority of the conventions given

in [13]. As we are looking to build a ribbon graph invariant, we hope to have ambient

isotopy invariance built into our graphical calculus. As discussed above we need both

R-moves and twists to account for all three Rediemiester moves. This leads us to explore

further consistency between these two moves. The diagram seen in figure 2.11 brings this

issue to light.

Figure 2.11: A potential issue with isotopy invariance
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This then allow us to define

νa := [F aâa
a ]1,1 ∗ da,

called the Frobenius-Schur indicator. We have that when a is not self-dual that νa = 1,

but when a = â we have that νa = ±1. This leads to a potential inconsistency in isotopy

invariance for edges labeled with a where νa = −1.

This leads us to introduce the following convention. When removing a trivially la-

belled edge a right directed flag is introduced as seen in figure 2.12. Then cap-cup pairs

Figure 2.12: The addition of flags

with opposite flags cancel, as seen in figure 2.13. These flags will almost always be left

implicit unless they are explicitly needed.
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Figure 2.13: The canceling of flags

In particular, we have found our consistency between R-moves and twists in the

relation

θa = νa[R
âa
1 ]−1,

and so with this above convention we have isotopy invariance built into our graphical

calculus. We note that this is essentially the flag convention originally used by Kirby

and Melvin, [30], to compute the Jones polynomial and generalized in [18].

Now we can continue our discussion of how this isotopy convention manifests on the

vertices of the ribbon graphs. In particular we are not able to freely rotate vertices as

this would introduce flags. We have the following maps introduced when rotating one of

the half incident edges to a vertex, seen in figure 2.14 and we have that

[Aabc ]µ,ν =

√
dadb
dc

1

νa
[F âab
b ]−1(c,µ,ν),1

and

[Bab
c ]µ,ν =

√
dadb
dc

[F abb̂
b ](c,µ,ν),1

23



Quantum Representations Preliminaries Chapter 2

Figure 2.14: The bending map

Now the “H = I” form of the F-move can be written down. As can be seen in figure

2.15 this is simply an F-move with certain vertices rotated. where

Figure 2.15: An F-move performed on rotated vertices, or “H = I”

[F ab
cd ](e,α,β),(f,µ,ν) =

∑
α′,ν′

[Aĉae ]−1α,α′ [F
ĉab
d ](e,α,β),(f,µ,ν′)[A

ĉf
d ]ν′,ν .
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We also have through further computation that

[F ab
cd ](e,α,β),(f,µ,ν) =

√
dedf
dadd

[F ceb
f ]−1(a,α,µ),(d,β,ν).

Just as we have taken the convention that we omit flags in our computations, we

will also take (the potentially confusing notation) where we use the described F-moves

and omit our A and B maps. For the reader uncomfortable with this notation that

can imagine we are in the case of a unimodal category (meaning all Frobenius-Schur

indicators are trivial).

2.5 The Reshetikhin-Turaev Construction

2.5.1 An Overview

Here we follow much of the exposition of Turaev as described in his book [45]. The

most striking result to take away is that every modular tensor category, denoted C, gives

rise to an anomaly-free 2 + 1 dimensional TQFT:

Modular Tensor Category 7→ (2 + 1) TQFT.

The approach taken is to first define an invariant of framed links, which can be extended

to an invariant of colored ribbon graphs in R3, or R2 × [0, 1]. Here a coloring means

that each edge of the graph is given a simple object in C and each vertex is given an

appropriate morphism. This is then extended to define an invariant of 3−manifolds,

making use of a surgery description of that 3−manifold on a link in S3. This can then

be adapted to an invariant of a pair of (M,Ω) where Ω is a colored graph in M . From

this type of invariant the jump to a TQFT is made. First a TQFT is found, which
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has parametrized bases, meaning that surfaces have a homeomorphism to the standard

closed surface of the same genus bounding a standard unknotted handlebody in R3. This

is eventually lighted to weaker structures, like a Langrangian subspace of the H1(Σ;R).

2.5.2 Coloring a Ribbon Graph

Let C be a modular tensor category and G a ribbon graph.

Definition 2.5.1 A C-coloring of G is an assignment of a simple object to each edge

of G and an assignment to each vertex a vector in Hom(
⊗

i ai, 1), where ai are the labels

of the edges incident to the vertex and the cyclic order is followed.

Turaev has shown how the evaluation moves of a modular tensor category allow for the

construction of a colored ribbon graph invariant in R3 or R2 × [0, 1]. In fact when the

category is modular this ribbon graph invariant can be used to construct an entire 2 + 1

(parametrized) topological quantum field theory. We won’t go into the details of this

construction and instead will use the relevant consequences.

2.5.3 3-Manifold Invariants

Of particular interest is the Kirby coloring ω, defined as seen in figure 2.16. This

Figure 2.16: The definition of the Kirby Color

element allows for the construction of 3−manifold invariatns using the surgery description
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of the 3−manifold on a link in S3 (Recall that a framed link is a special case of a ribbon

graph). Then invariance under Kirby moves comes from special properties of coloring

the link in question with ω, the proof of which can be seen in [48]. We will use the

handle-slide invariance of ω in our later computations, which is illustrated in figure 2.17.

Figure 2.17: The handle slide invariance of ω

This 3−manifold invariant can be adapted further to give an invariant of pairs (M,Ω),

where M is a 3−manifold, potentially with boundary, and Ω is a ribbon graph in M .

2.5.4 Module of States

Following the construction of Reshitikhin and Turaev we will describe the module of

states, or TQFT vector space, V (Σg) to any closed oriented surface of genus g [39, 40, 45].

Up to some homeomorphism into R3 we can take Σg to be in standard position in R3,

meaning it bounds the standardly embedded handlebody Hg in R3. Then to Σg we assign

a spine, S, of Hg, graph whose regular neighborhood is Hg. Then we take V (Σg) to be

the complex vector space having as a basis the C-colorings of S.
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The rose basis

The first basis we will describe is the basis corresponding to colorings of the rose on

g petals. In particular, this graph has a single vertex. This allows for a description of

the state space as a direct sum of these (potentially complicated) vertex Hom spaces,

where the sum is over the edge labels. We see this basis in figure 2.18 and note that we

abandon the labeling of vertices by greek indices in favor of a capital F to remind us

that this Hom space is more complicated that those indexed by the structure constants

of a fusion algebra.

Figure 2.18: A basis element of V (Σg) coming from the rose on g petals

The comb basis

The following basis is intimately related to the rose basis. Specifically, this basis

comes from expanding the morphism F into the composition of the evaluation map

corresponding to the label of the introduced edge, and the composition of two morphisms

(corresponding to the two new vertex labels). This is seen in figure 2.19.
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Figure 2.19: A basis element of V (Σg) coming from expanding the vertex given in the
rose basis

The eye-glasses basis

The choice of basis that will use most often in the following work is is shown in figure

2.20. We see that this is obtained by applying F-moves along b2 through bg−1 in the comb

basis.

Figure 2.20: A basis element of V (Σg)
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We denote a basis element of this type as

~v = (~a,~b,~c, ~µ, ~ν)

= (a1, ..., ag−1, b1, .., bg, c1, ..., cg, µ2, ..., µg, ν1, ..., νg−1).

2.5.5 A Projective Action

This construction originates from the work description given in section 4 of [40]. Take

an orientation preserving homeomorphism

h : σ → Σ ∈ MCG(Σ).

Then we look at the cylinder, Σ× [0, 1]. We think of Σ×{0} as being parametrized by id

and Σ× {1} as being parametrized by h. Now let H be the handlebody bounded by Σ,

with colored spine S taken as a ribbon graph in H such that the colorings of S are the

basis of V (Σ). Then glue (H,S) to Σ × {1} along h and to Σ × {0} along the identity.

Then this gives a pair (M,Ω) of a closed 3−manifold and a ribbon graph. This is seen

in figure 2.21 for the case of a genus 2 surface and the rose basis.
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Figure 2.21: The mapping cylinder construction for the genus 2 surface
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Evaluation of the invariant for this pair gives an operator

Vh : V (Σ)→ V (Σ)

This gives a (projective) representation of MCG(Σ), called a quantum representation.

Our interest will be specifically in the case that h is a positive Dehn twist about a

simple closed curve γ. This amounts primarily to understanding the surgery description

of the mapping cylinder along a link L which is disjoint from the two spines. Then the

evaluation is performed in S3 of the invariant associated to L and the two ribbon graphs.

In the case of the positive Dehn twist about γ, this is given by labeling γ with ω and

giving it a −1 framing relative to the Σ, then evaluating the ribbon graph invariant, as

well as the linking of the components of the ribbon graphs. As an example we will show

how these computations can be realized for Dehn twists on the genus two surface in the

rose basis. These can be seen in figures 2.22, 2.23, 2.24.

Figure 2.22: The action of the Dehn twist about the left meridian
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Figure 2.23: The action of the Dehn twist about the left longitude

Figure 2.24: The action of the Dehn twist about the third Humphries generator

2.6 Spiders

Every pivotal tensor category gives rise to a Spider, in the sense of Kuperberg [33].

Following an approach that is closer to the world of planar algebras, [23], a single object
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X would be chosen, then we would look at the full subcategory whose objects are tensor

products of X and X∗. Diagrammatically this allows strands to labelled simply by an

orientation rather than a label set. If X was chosen such that it is symmetrically self-

dual, meaning X = X∗ and the frobenius-schur indicator associated to X is 1, then this

gives an unoiented unshaded planar algebra [37]. For our purposes we won’t choose a

single object X, but rather a set of objects {X, Y, Z, ...} along with their duals. This still

gives rise to a full subcategory and diagrammatically it is closer to planar algebra with

labeled strands. In some sense this is a middle ground between just using the graphical

calculus of the original modular tensor category and making the full jump to the planar

algebra approach.

2.6.1 Quantum Groups and Spiders

The spiders that we will be working with are built from the representation categories

of quantum groups, denoted Rep(Uq(g)). We will primarily be working with the unimodal

pivotal structure which can be put on this representation category, which we will denote

Repuni(Uq(g)). This pivotal structure can be seen to exist by looking at the representation

catgory as a subcategory of sV ec and taking the pivotal structure from the embedding.

This tell us which pivotal tensor category we will be working with, and so we only

need to specify a collection of simple objects to determine a spider. The fundamental

representations, denoted Vλi or just λi will serve this role. Diagrammatically, we have

objects are points on a line labeled with fundamental representations and morphisms are

diagrams in a rectangle having the appropriate objects on the top and bottom, as seen

in figures 2.25 and 2.26.
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Figure 2.25: An object in our spider

Figure 2.26: A morphism in our spider

Unfortunately, in the abstract there is very little control on what diagrams should

be used to desribe these morphisms, so a “coupon” or box is used to hide our lack of

understanding. There are some known combinatorial constructions of certain spiders

that allow for a full description of these spaces. We will return to those examples after

continuing our discussion in general.

2.6.2 What is lost in a Spider?

Our goal is to gain understanding of Repuni(Uq(g)) by working with the spider de-

scribed above. It is then natural to ask: What do we lose? At first glance it would seem

that in taking this subcategory we have lost nearly all of the irreducible representations of

Uq(g). We will be able to recover these “lost” objects by looking at particular morphisms

in our category. Let Vλ, where λ =
∑

i aiλi be the irreducible representation of Uq(g)

with highest weight λ. Then in particular we know that there exists morphisms

proj :
⊗

V ⊗aiλi
→ Vλ
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the equivariant projection onto Vλ and

inc : Vλ →
⊗

V ⊗aiλi

inclusion. Then composition of these morphisms, inc ◦ proj, is an idempotent morphism

in our spider since we have taken a full subcategory. In particular, this is a minimal

projection in the relevant endomorphism algebra. From here we can recover Vλ as a

simple object by taking an idempotent completion of our spider. We will refer to these

idempotents as clasps. When the spider at hand has a nice combinatorial description

these clasps have diagrammatic descriptions in terms of minimal cut paths. This recovers

the notion of a clasped-g spider introduced by Kuperberg in his original paper [33]. With

this idempotent completion in mind, it seems that we should have just taken the spider

coming from all irreducible representations to begin with. We show in an example that

when the combinatorial descriptions are available we can gain insight by taking this extra

step. In figure 2.27 we see an example of two ribbon graphs colored with representations

of Uq(sl(3,C)). We see that different morphisms label the vertex, but no information

about the multiplicity is provided.

Figure 2.27: Multiplicity in Repuni(Uq(sl(3,C)))
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In figures 2.28 and 2.29 we see these same coloring morphisms in the idempotent

completed, or clasped, sl(3,C) spider coming from the fundamental representations.

Figure 2.28: The morphism from the left of figure 2.27

Figure 2.29: The morphism from the right of figure 2.27
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2.6.3 Roots of Unity

As our goal is to examine the mapping class group representations coming from

the clasped-g spider we will need a modular tensor category. The first step from a

spider towards a modular category is a semisimplification. This involves modding out

the negligible morphisms, and in the language of clasped spiders this means modding out

the clasps which has trace zero. The trace is shown in figure 2.5. When an appropriate

root of unity is chosen reduces the number of simple objects to finitely many. Then

this fusion category is modular when the S−matrix is nondegenerate. This is can be

circumvented by showing that these categories satisfy certain modularization criteria. It

should be noted that this is the first step where our spiders really need to be given a

braiding. This is the rough outline of the procedure originating from work of Turaev and

Wenzl [46, 47]. The work of Blanchet, (for An) in [7], and then Blanchet and Beliakova,

(for Bn, Cn, and Dn) in [5], classifies the nonexceptional cases, meaning the categories

coming from link invariants of type An, Bn, Cn, and Dn. This is the framework of where

our clasped spiders will be used. For the remainder of our discussion a spider will mean a

semisimplified clasped-g spider evaluated at a root of unity, which is of type An, Bn, Cn,

or Dn meaning we are able to apply the Reshetikhin-Turaev construction of a TQFT.

We will take k to be the “level” of our construction. This means that q is a root of unity

whose order is a function of k. The exact expression is not important for us here.
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Explicit Computation of Quantum

Representations

Let C be a modular tensor category with “evaluation data” following the conventions

from sections 2.4 and 2.5. We will be explicitly computing the action of Dehn twists

on the eye-glasses basis. A description of these actions was given above for the specific

matrix entry given two basis elements in the rose basis. We instead will compute the

action on a basis element, and use that the pairing determined by the mapping cylinder

constructing of the identity makes our basis orthogonal. This computation can be found

in the work of the author in [12].

3.1 Mapping Class Group Generators

We will be working with the Humphries generators of the mapping class group of a

genus g surface as seen in Fig. 3.1.
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Figure 3.1: The Humphries generators

The actual generators of the mapping class group are positive Dehn Twists about

these 2g+ 1 curves. In particular we will fix the notation that Ti will stand for the image

under the quantum representation of a positive Dehn twist about the curve γi.

3.2 T0 and T1

The local computation seen in Fig. 3.2 can be applied to the computations of T0 and

T1.

Figure 3.2:
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In particular we see that

T0(~v) =
p−
D
θc2~v

and

T1(~v) =
p−
D
θc1~v,

where

p−
D

=
∑
a∈L

d2a
D
θ−1a

is a root of unity.
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3.3 T2i+1 for i = 1, ..., g − 1

The local computation shown in Fig. 3.3 and Fig. 3.4 can be applied to find T2i+1

for i = 1, ..., g − 1.

Figure 3.3: Steps 1 and 2
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Figure 3.4: Steps 3 and 4
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In particular we have

T2i+1(~v)

=
p−
D

∑
f,α,β,h,σ,ρ

[F
cibibi+1

ĉi+1
](âi,νi,µi+1),(f,α,β)θf [F

bibi+1ci+1

ĉi
](f,α,β),(h,σ,ρ)~v

′
h,ρ,σ,

where ~v′h,ρ,σ is defined by changing ~v by the following: ai to h, νi to ρ, and µi+1 to σ.

3.4 T2i for i = 1, ..., g

This computation is much more involved than the previous. This should be thought

of as the generalization of S−matrices from the genus 1 case where the previous examples

where more analogous to T matrices. To begin we look at the evaluation seen in Fig. 3.5

which will prove useful in our upcoming computation.

Figure 3.5: A useful computation
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With this in mind we see in Fig. 3.6 ,Fig. 3.7,Fig. 3.8, and Fig. 3.9, a local calculation

that allows us to realize the action of T2i.

Figure 3.6: Steps 1, 2, and 3
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Figure 3.7: Steps 4, 5, and 6
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Figure 3.8: Steps 7, 8, and 9
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Figure 3.9: Steps 10 and 11
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Then we see that

T2i(~v) = θ−1bi

∑
`,e,α

f,ρ,σ,η,τ
x,λ,δ

d`
D

√
dedbi
dfd`

θe
θ`θbi

[F b̂i ˆ̀̀

b̂i
](ê,α,α),(f,ρ,σ)[R

`ˆ̀

f ]ρη

[F
âi−1bib̂i
âi

](ci,µi,νi),(f,σ,τ)[F
ˆ̀̀ ai
ai−1

](f,η,τ),(x,λ,δ)~v
′
`,x,δ,λ,

where ~v′`,x,δ,λ is determined by changing bi to ˆ̀, ci to x̂, µi to δ, and νi to λ.

3.5 Future Directions

These computations are done at face value. In one sense they are complete as they

are in terms of only the defining data of a modular tensor category. They are also in

many ways unsatisfactory. For example, a careful computation in terms of only only

gauge invariant quantities would be more highly desired. Additionally there is much

to be said about performing these computations in different bases. Unfortunately, the

“interesting” basis is often tied to the specific modular tensor category being discussed.

For example, having explicit bases which exhibit reducibility or for which the action of

each Dehn twist is a monomial matrix. These types of properties are intimately related

to whether the image of the representations is finite or not.
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Asymptotic Faithfulness

Definition 4.0.1 The quantum representations, {ρk}, coming from a clasped g−spider

are asymptotically faithful if for every non-central element, h, of the mapping class

group, there exists an n such that for k > n we have ρk(h) 6= αId.

4.1 The AF Property

We begin to describe the AF property. This will be a niceness condition which we

will put on a clasped-g spider which will imply asymptotic faithfulness of the mapping

class group representation coming from the Reshetikhin-Turaev construction. This can

be thought of as combinatorial properties that are placed on the spider. In particular,

one first needs a combinatorial description of the spider, meaning a description of the

webs in terms of combinatorial generators and relations.
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4.1.1 AF1

We say that a spider has property AF1 if there exists λi such that for every λ =

aλi + bλ∗i we have

bPλ = αPλ, α 6= 0

for every braid b. The reader will notice that at first glance this equation is non-

sense. In particular these cannot be equal at face value as Pλ ∈ End
⊗

(Vλi), but

bPλ ∈ End
⊗

(Vσ(λi)), where σ is the permutation induced by the braid b on the boundary

points. What we truly mean by equality is there is an isomorphism between the appro-

priate 1−dimensional vector space of diagrams. This isomorphism can be thought of as

a choice of embedding into the disk, this will be rectified by the definition of segregated

clasps given below. Now we have the following simplification if the λi in the definition of

AF1 is self dual.

Theorem 1 Let Vλi be a self dual representation of g and λ = λ⊗ni , then

bPλ = αPλ, α 6= 0

for every braid b.

Proof: A braiding on our category tells us to recognize b as an element of End(
⊗

V ⊗aiλi
).

The definition of clasps coming from the idempotent completion of an unclasped spider

tells us that Pλ is an equivalence class of minimal idempotents. In particular we have

that

PλEnd(
⊗

Vλi)Pλ = CPλ

and that we are looking at equivalence up to the following relation

P1 ∼ P2
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if P1 = uv and P2 = vu for u, v ∈ End(
⊗

V ⊗aiλi
). Then letting u = bPλ and v = Pλ, we

have

bPλ = bPλPλ ∼ PλbPλ = αPλ

for some α 6= 0. This proof can be seen diagrammatically in figure 4.1.

Figure 4.1: Property AF1 for self dual λi

Corollary 1 Every spider with a self dual object has property AF1.

This is our first example of things being greatly simplified when the desired λi is self dual.

This will be a recurring theme and in showing a spider has the AF property finding a self

dual representation will always be preferred. In other cases we will need the following

definition adapted from Kim [28]:

Definition 4.1.1 A clasp of weight aλi + bλ∗i is segregated if all of the strands labeled

with λi are on the left of the “coupon” and strands labeled with λ∗i are on the right.

Then we can make sense of the above definition of bPλ by talking about non-segregated

clasps. Then we will look for a unique web connected to the top of a non-segregated clasp

which will make the clasp segregated. Thus when we say a spider has property AF1 we
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will be assuming the combinatorial description of the spider admits isomorphisms of all

clasps to segregated clasps. This will be illuminated more in the “pillow” constructions

used in the A2 spider in figure 5.7.

In spiders which have a concrete combinatorial description the minimal idempotent

property can be described in terms of annihilating diagrams with minimal cut paths of

lower weight. This property can then be proved by showing that a braid decomposes

as a sum of a multiple of the identity tangle and diagrams which introduce cut paths of

lower weight.

4.1.2 AF2

We say that a spider has property AF2 if there exists an m, such that for k > m there

is some fundamental representation λi for which the combinatorial diagrams are linearly

independent.

Definition 4.1.2 A combinatorial diagram is a diagram which only encodes the com-

binatorial data of which clasps the strand begins and ends at. In order to make sense of

linear independence, these diagrams have to exist, meaning there is a combinatorial model

for the webs of the spider in which these diagrams can be interpreted. These diagrams

for segregated clasps are shown in figure 4.2.

We note specifically that in the case that the λi in the definition of property AF2 is self

dual, then we are no longer keeping track of where a strand begins and ends, but only

which clasps it connects, as seen in figure 4.3.

As this is a single diagram the question of linear independence can be answered by

showing this diagram is nonzero. This can be done by showing this morphism is not

negligible. This comes down to calculating θ(Paλ, Pbλ, Pcλ) as seen in figure 4.4.
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Figure 4.2: Combinatorial Diagrams

Figure 4.3: The Combinatorial Diagram for a Self Dual Object

When a recursive description of Paλ this constant can be calculated using the recur-

sion.
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Figure 4.4: θ(Paλ, Pbλ, Pcλ)

4.1.3 The AF Property

We then say that a spider has the AF property if there exists a λi such that property

AF1 and property AF2 are satisfied using this λi

4.2 The State Space

Let Σ be a closed orientable surface. We specialize the construction of the state space

V (Σ) given in the introduction to the specific case of spiders. Up to a homeomorphism

into Euclidean space, we can think of Σ as bounding a standardly embedded handlebody

H. Then we associate to Σ a spine of H, namely a trivalent graph whose regular neigh-

borhood is H. The choice of a particular trivalent graph corresponds to choosing a pants

decomposition of Σ by looking at the disk dual to the edge. Now we define an admissible

labeling of this trivalent graph. At each edge of the graph we assign a clasp in our spider

and each vertex is given a web in the triple clasped space of the three incident edges.

Then we define Vk(Σ) as the free complex vector space having a basis of admissible labels.

We note that as k increases the order of q increases as well and more clasps are included

in this construction.
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4.3 Curve Operators

We look to define a class of operators on V (Σ) called curve operators. Let γ be an

oriented simple closed curve on Σ and Vλ be a fundamental representation of g. Then we

define

Cλ(γ) = Z(Σ× I, (γ)λ × {1/2} ∈ V (Σ)⊗ V (−Σ) = End(V (Σ))

where (γ)λ is defined to be the curve γ colored with the Pλ clasp. Where we often drop

the label λ is the choice is not relevant. If Vλ is self dual then we are able to ignore the

orientation given to γ. We have the following lemma:

Lemma 1 Let h : Σ→ Σ be an orientation preserving homemorphism. Then we have

VhC(γ)V −1h = C(h(γ))

Proof: WLOG we may assume that h is a positive Dehn twist about some curve α.

Then the description of the action from the introduction tells us we have the web made

of a framed α colored with ω stacked over the curve γ stacked over the curve α colored

with ω and frame with the opposite framing. This can be seen in the left-most column

of figure 4.5. Then as ω is specifically the color making this curve invariant under Kirby

moves we see that through a handleslide we can pass γ to the lowest level. This is seen

in column two of figure 4.5. Then finally the balanced stabilization property of ω allows

for the cancellation of the oppositely framed α curves.
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Figure 4.5: Conjugating Curve Operators

4.4 Graph Geodesic

We will need the following useful lemma.

Lemma 2 Let a and b be two non-trivial, non-isotopic simple closed curves on a closed

orientable surface Σ. Then there exists a pants decomposition of Σ such that a is one

of the decomposing curves and b is a non-trivial graph geodesic with respect to the de-

composition, meaning that b does not intersect any curve of the decomposition twice in a

row.

This is lemma 4.1 in [19]. This is illustrated in figure 4.6.
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Figure 4.6: An illustration of Lemma 2

4.5 Utilizing Semisimplicity

We observe how in a spider (as we have defined it) the identity tangle factors through

a sum of clasps of lower weight. This fact follows directly from the semisimplification

procedure. In particular we have

Lemma 3 ⊗
V ⊗aiλi

=
⊕

Vη

Looking at the weights of both sides we have that the sum on the RHS is taken over η

where of lower weight than the LHS and the coefficient in front of Vλ is 1.

This is seen in the graphical calculus in figure 4.7, where xλη and yηλ are just connecting

diagrams. This property can be proven inductively when a nice recursive description is

given for the clasps in the combinatorial setting.
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Figure 4.7: Factoring the identity tangle

4.6 Main Result: Asymptotic Faithfulness

This work is a generalization of that of the author in [11, 9]. As such many of the

figures, and wording of certain arguments are adapted from there. In summary, we will

construct a “comparison vector” from the combinatorial properties of the spider that will

allow us to show we will not be acting trivially.

Theorem 2 Let g be such that the g-spider satisfies the AF property. Let Σ be a closed,

oriented surface, h an orientation preserving homeomorphism, and Vh the action of h

on the vector space V (Σ) coming from the g-spider. Suppose there exists a simple closed

curve a ⊂ Σ such that h(a) is not isotopic (as a set) to a. Then Vh is a multiple of the

identity for at most finitely many k. That is, h is eventually detected as k increases.

Proof: Let Vλ be the fundamental representation used to satisfy the AF property

for g-spider. Then let C denote the curve operator coming from Vλ. Since

VhC(a)V −1h = C(h(a)),
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it suffices to show that for some k, C(a) 6= C(h(a)).

By the graph geodesic lemma above 2, there exists a handlebody H boudned by Σ

such that a bounds an embedded disk in H and h(a) is a non-trivial graph gedesic with

respect to a pants decomposition of Σ. Dual to this pants decomposition is a spine of H,

namely a trivalent graph whose tubular neighborhood is H.

Now let Z(H) ∈ V (Σ) be the vector determined by H with the empty labeling. We

also have Z(H, h(a)) is the vector determined by the pair (H, h(a)) where h(a) is pushed

into the interior of H and the labelings are determined by resolving webs. Then we have

C(a)(Z(H)) = Z(H, a) = dZ(H)

as a is taken to bound an embedded disk in H. It is also true that

C(h(a))(Z(H)) = Z(H, h(a)),

meaning it suffices to show that Z(H, h(a)) is not a multiple of Z(H).

We look to build comparison vectors that will be used against Z(H, h(a)). To each

edge e of the spine given by the graph geodesic lemma let pe be the number of times that

h(a) passes through the dual disk to e with orientation given by the right hand rule and

qe denote the number of times with the opposite orientation. Then locally, along each

edge we have an identity tangle of type (pe, qe). Now for our comparison vector w, let we

be labeled by the clasp P(pe,qe). Then at each vertex we assign the labeling arising from

the corresponding combinatorial diagram, all of which are nonzero by AF2, where we

are now assuming that k larger than the m furnished by property AF2. We can think of

h(a) pushed into the corresponding pair of paints to the vertex, then the graph geodesic

property tells us that any strand must attach two distinct boundary components. These
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are exactly the desired diagrams. When let the label given to the vertex be the diagram

determined by h(a). Let bw be the basis vector of V (Σ) corresponding to the label w.

Now we claim

Z(H, h(a)) = λbw + v,

where λ 6= 0 and v consists of multiples of bx where x is a label having (me, ne) � (pe, qe)

at each edge e of the spine, where (me, ne) is the labeling coming from x. Now applying

semisimplicity as in Lemma 4.5 to the local identity tangle along each edge we have

the desired factoring. Finally we have that λ is not zero as any additional braiding

contributes some nonzero scalar by property AF1. Thus we have

Z(H, h(a)) = λbw + v,

and so Z(H, h(a)) is not a multiple of Z(H), and our desired result is proven.

Corollary 2 Let σ be a closed connected oriented surface and MCG(Σ) its mapping

class group. For every non-central h ∈MCG(Σ), then there exists some k0(h) such that

for any k ≥ k0(h), the operator

Vh : Vk(Σ)→ Vk(Σ)

is not the identity, meaning

Vh 6= 1 ∈ PEnd(V (Σ)),

the projective endomorphisms. In particular, any infinite direct sum of these quantum

representations will faithfully represent these mapping class groups modulo their center.

Proof: If h fixes all simple closed curves then h must commute with all possible

61



Asymptotic Faithfulness Chapter 4

Dehn twists. As Dehn twists generate the mapping class group, then h must be in the

center. Thus for any non-central h ∈MCG(Σ) we have that h(a) is not isotopic to a for

some simple closed curve, and the main theorem can be applied.

4.7 Future Directions

The pressing direction is to prove that all g−spiders have the AF property, but this

will be discussed more in the next chapter and as such we will avoid it here. One potential

question leading towards this is whether or not asymptotic faithfulness implies the AF

property. At the current time it seems difficult to the author for asymptotic faithfulness

alone to allow for the construction of the necessary combinatorial model.
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Specializing to Low Rank Examples

We will introduce a change in notation. In particular we will often call refer to a clasped

g−spider by it’s classifying Dynkin diagram, for example the A2 spider is the clasped

sl(3,C)−spider.

Definition 5.0.1 A quantum integers is

[n] =
qn − q−n

q − q−1

and the quantum factorial is

[n+ 1]! = [n+ 1] · [n]!.

We note that this definition depends only on q, but when specializing to spiders we will

actually be choosing roots of q as we will see below.
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5.1 The A1 Spider

In this section we recover the results of Freedman Walker and Wang, in [19]. This is

nearly circular as our approach is heavily influenced by theirs, and even a generalization.

5.1.1 The Combinatorial Description

The A1 spider is the most studied of all spiders. This theory is also called the

Temperley-Lieb-Jones theory as described in [48]. There is a braided monoidal equiva-

lence

Repuni(Us(sl(2,C))) ∼= T L(−is),

as seen in [36]. Here the s is used rather than q as there are particular choices that

depend on which root of q is being taken. In particular we have s2 = q so

[n] =
s2n − s−2n

s2 − s−2
.

It is important to note that not only is the pivotal structure changing but also s 7→ −is

which changes the underlying fusion category. This immediately takes care of the question

of modularity for the semisimple categories we will be working with. The combinatorial

description of webs is given by non-crossing planar matchings called Temperley-Lieb

diagrams. Specifically Hom(m,n) is given by the non-crossing planar matchings in the

rectangle having m points on the bottom of the rectangle and n points on the top as seen

in figure 5.1.

5.1.2 The Clasped A1 Spider

The clasps in the A1 spider are very well understood. These are the Jones-Wenzl

projectors in the Temperley-Lieb algebras.
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Figure 5.1: An element of Hom(3, 5) in the A1 spider

Theorem 3 (Wenzl [49]) The Jones-Wenzl projectors satisfy the recurrence relation

shown in figure 5.2.

Figure 5.2: The Wenzl Recursion Formula

5.1.3 The AF Property For A1

As the fundamental representation for sl(2,C) is self dual this amounts to showing

θ(a, b, c) 6= 0 for some large enough k, for admissible a, b, c. Explicit formula for these θ

symbols can be found in [27], and in particular

θ(a, b, c) = (−1)(
1
2
a+b+c) [

1
2
(a+ b+ c) + 1]![1

2
(a+ c− b)]![1

2
(a+ b− c)]![1

2
(b+ c− a)]!

[a]![b]![c]!
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We additionally have that [n] 6= 0 when n ≤ k+1, and thus we need only find the largest

factor in the numerator. So we have

1

2
(a+ b+ c) + 1 ≤ k + 1

or

a+ b+ c ≤ 2k

which is the standard level k admissibility for the Temperley-Lieb-Jones theory. This

tells us that as long as m is larger than a+b+c
2

then θ(a, b, c) 6= 0. As we used a self dual

object we can apply 1 to guarantee AF1. Thus we have that the A1 has the AF property

and so:

Theorem 4 The Reshetikhin-Turaev quantum mapping class group representation com-

ing from the A1 spider is asymptotically faithful.

This recovers the results of Freedman, Walker, and Wang [19].

5.2 The A2 Spider

5.2.1 The Combinatorial A2 Spider

This section recovers work of the author in [11]. As such many of the figures are

taken from there. Kuperberg showed, in [33], the A2 spider is generated by the following

two webs seen in Figure 5.3
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Figure 5.3: Sinks and Sources

subject to the following relations in Figure 5.4.

Figure 5.4: SU(3) Relations

We recall what this means. We will be looking at disks where the boundary is some

sequence of +s and−s which correspond to V and V ∗ where V is the fundamental defining

representation of sl(3,C). Then our webs are trivalent graphs embedded into the disk

with an orientation where edges meet the boundary of the disk and the embedded graph

is subject to the listed local relations. An alternative interpretation is to take take the

sequences of +’s and −’s as objects in our category and looking at these embedded graphs

as corresponding to morphisms between the corresponding tensor products of V ’s and

V ∗’s.
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5.2.2 The Clasped A2 Spider

The work of Kim developed the theory of Jones-Wenzl idempotents for rank 2 Lie

algebras, and in particular for A2 [28]. These are the minimal projectors in the skein alge-

bra of the disk, alternatively the endomorphism algebras corresponding to the boundary

components. They satisfy the annihilation axiom as well, under both Y ′s and caps. We

introduce the notation (m,n) for the fundamental projector indexed by m and n.

Theorem 5 (Kim [28]) For a, b ≥ 1, the fundamental projectors satisfy the recursion

given in figure 5.5.

Figure 5.5: The fundamental projectors for A2

Where we note that the crossing is used for convenience and expanding into the

standard basis would and using the annihilation property of the projectors would yield

the unique maximal cut out from the hexagonal tiling with the appropriate boundary.

5.2.3 The AF Property of For A2

To build up the theory of the intertwiner spaces in the A2 web in the classic case, we

turn our attention to

I((m1, n1), (m2, n2), (m3, n3))

∼= Hom((m1, n1)⊗ (m2, n2)⊗ (m3, n3), (0, 0))
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∼= Hom((m1, n1)⊗ (m2, n2), (n3,m3)).

Corresponding to the disc with m1 + m2 + m3 entries and n1 + n2 + n3 exits, where

these boundary points are organized into three groups, the projector (mi, ni) is placed

on the corresponding grouping. Up to an invertible scalar from above, this construc-

tion gives us an isomorphism class of vector spaces, called the intertwiner space of

type ((m1, n1), (m2, n2), (m3, n3)), denoted I((m1, n1), (m2, n2), (m3, n3)), which will be

referred to as the fusion or triangle space ((mi, ni)).

A necessary condition for the intertwiner spaces to be nontrivial is

|(m1 +m2 +m3)− (n1 + n2 + n3)| = 3`

where ` is a parameter of the space. Suppose that m1 +m2 +n2 = n1 +n2 +m3 = s, and

let ` ≥ 0, then denote by I`(mi, ni) the triangle space I((mi + `, ni)), and by I`(mi, ni)

the triangle space I((mi, ni + `)). Define pi = s−mi − ni.

Theorem 6 (Suciu [43]) 1. I`((mi, ni)) is nontrivial if and only if pi ≥ 0

2. dim(I`((mi, ni))) = min(mi, ni, pi) + 1.

A proof of the theorem can be found in [43]. The proof revolves around computing theta

symbols through a fairly involved recursion. This is analogous to computing the theta

symbols in Temperley-Lieb recoupling theory.

An admissible 6−tuple (x, y, a, b, u, v) is an ordered set of six non-negative integers

such that the following holds

a+ v = m1, x+ u = n1

u+ b = m2, v + y = n2
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a+ b = m3, x+ y = n3

There are exactly min(mi, ni, pi) + 1 of these admissible 6−tuples, which form a basis for

I((mi, ni)), which are exactly the combinatorial diagrams as seen in figure 5.6.

u

v

 a              b          x          y

Figure 5.6: The Combinatorial Diagrams for A2

This particular representation of the intertwiner space has been chosen as it will be

most hopeful when applying to the construction described below. A second, potentially

more precise figure, utilizes the diagrammatic trick of “pillows”, as seen in figure 5.7.

Figure 5.7: A pillow changing the ordering of boundary points from (2, 3) to (3, 2)

A pillow allows for the reordering of boundary strands, and can be thought of as an
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isomorphism of the skein space of the disk depending on the realization we are using.

This is exactly the construction of segregating clasps described in the AF1 property.

Combining this we have a more precise picture for basis diagrams, as seen in figure 5.8.

Figure 5.8: A I(mi, ni) basis using a pillow construction

The case of ` 6= 0 can be seen by adding in an `−fold triple point in the skein space as

well. Then the annihilation property of “turn backs”, meaning cups/caps and Y s, along

with the segregation properties of the pillow property imply property AF1 for the A2

spider.

Fixing a Level

Let A be a 6rth primitive root of unity where r = k+3, with k the level of our theory.

In particular,

[n] =
A3n − A−3n

A3 − A−3
.

This leads to new identities in the level k instance

[3r] = 0, [3r − n] = [n], [3r + n] = −[n], [n+ 6r] = [n].

71



Specializing to Low Rank Examples Chapter 5

Recall that

Tr((m,n)) = 〈(m,n), (m,n)〉 =
[m+ 1][n+ 1][m+ n+ 2]

[2]

This implies that as long as m+ n ≤ k the fundamental projectors are not killed in the

semisimplification. Then further analysis detailed in chapter 6 of [43] implies that as

long as s+ ` ≤ k the triangle spaces unaffected by the semisimplification process. Thus

we have that the combinatorial diagrams and nonzero, when m > s+ `, and in particular

for the combinatorial diagrams where ` = 0 we have k > s = m1 +m2 + n3. So we have

that the A2 spider satisfies property AF2.

Asymptotic Faithfulness

Theorem 7 The Reshetikhin-Turaev quantum mapping class group representation com-

ing from the A2 spider is asymptotically faithful.

5.3 The C2 Spider

This section is closely related to the work of the author in [9], and the proof that

property AF2 holds is based on the work [10]. This was work completed through the

mentorship of Andres Mejia during the REU program at Santa Barbara in the summer

of 2017. As such many of the arguments and figures are adapted from there.

5.3.1 The Combinatorial C2 Spider

The combinatorial construction of this spider is in many ways closer to A1 than

A2. There are two strand types, one associated to each fundamental representation of

Uq(sp(4)). As in Kuperberg’s original work, [33], we will use a single strand and a double
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strand to diagrammatically represent these two strand types. Then we have that the C2

spider is generated by a single trivalent vertex type, as seen in figure 5.9.

Figure 5.9: The generator of the C2 spider

The relations seen in figure 5.10 then complete the description of the C2 spider. These

Figure 5.10: The relations in the C2 spider

webs admit the same description in the A2 case, but now rather than +’s and −’s we

have red and blue, or equivalently single and double, points on the boundary. These

correspond to the morphisms between the appropriate tensor products of V ’s and W ’s

(the two fundamental representations).
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5.3.2 Clasped C2 Spider

While the existence of these clasps was proven in Kuperberg’s original work, explicit

constructions of the clasps, making use of the combinatorial structure, were partially

given by Kim [28]. Partial results in this case mean that constructions are only found

for clasps of the type (p, 0) and (0, q). In order to best state these results the change of

basis seen in figure 5.11 is introduced.

Figure 5.11: Defining a tetravalent vertex formally

Theorem 8 (Kim [28]) The clasps of type (n, 0) satisfy the recursive relationship given

in Figure 5.12.

Figure 5.12: A recursive description of a (n, 0) clasp

The key property of these clasps is the annihilation of webs which create a cut path

with weight lower than the clasp. This should be thought of as the generalization of the

annihilation of “cups” and “caps” by Jones-Wenzl projectors.
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5.3.3 The AF Property For C2

We begin by immediately noting that either choice of fundamental representation is

self dual so we immediately see the C2 spider has property A1, applying 1. From here we

will choose the fundamental representation of type 1, meaning single strand or blue in our

above notation. Then we will also introduce the notation that a := (a, 0) for simplicity.

We will recall the definition of θ(a, b, c) specialized to our setting, seen in figure 5.13.

Figure 5.13: The Theta symbol in the C2 spider

We introduce the notation Net(m,n, p), based on figure 5.13, to help when we are

working with m,n, and p more than a, b, and c. From here we begin our start of the

calculation of Net(m,n, p). This is a generalization of the recoupling theory and recursion

done for the A1 case by Kauffman and Lins [27].

Lemma 4

Tr(Pp,0) =

(
[2p+ 4]

[4]

)(
[3 + p][p+ 1]

[3]

)
.

Proof: We proceed by induction, using the recursive definition given by Kim, in

Theorem 8.

75



Specializing to Low Rank Examples Chapter 5

The base case is clear, since the trace of P1 is nothing but a loop that evaluates to

−[6][2]
[3]

which agrees with the formula above. This can be calculated as follows, using

Kim’s double clasp expansion and taking the trace, as seen in figure 5.14.

Figure 5.14: The trace of a clasp in C2
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Wee see taking the trace amounts to the trace of the Pn−1,0 along with some factors:

we resolve the first summand by multiplying by the loop constant − [6][2]
3

; we resolve the

second by using idempotence, so it is merely Pn−1,0; we resolve the third by multiplying

[6][2]
3

(changing basis again, we see that one summand dies, and the second subtracts off

a loop constant.)

From this, we obtain that

Pn = Tr(Pn−1)

(
−[6][2]

[3]
+

[2n][n+ 1][n− 1]

[2n+ 2][n]
+

[n− 1][6][2]

[n][2][3]

)
=

(
[4 + n][n]

[3]
· [2n+ 2]

[3]

)
·
(
−[6][2]

[3]
+

[2n][n+ 1][n− 1]

[2n+ 2][n]2
+

[n− 1][6][2]

[n][2][3]

)
=

[2n+ 4]

[4]
· [3 + n][n+ 1]

[3]
,

as desired.

Theorem 9 Net(m,n, 0) = Tr(Pm+n)

Proof: This is given in figure 5.15

Figure 5.15: The proof of Theorem 9
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We will abbreviate the expansion coefficients for Pn by defining

αn :=
[2n][n+ 1][n− 1]

[2n+ 2][n]2
βn :=

[n− 1]

[n][2]
,

and for further convenience, we will define

Ai := − [6][2]

[3]
+ αm+i + αn+i +

[6][2]

[3]
(βn+i + βm+i)− [4][2]βn+i · βm+i Bi := αn+i · αm+i

definitions that will be made clear by the next few lemmas. The first step of our recursion

is easy:

Lemma 5 Net(m,n, 1) = A1 ·Net(m,n, 0)

Proof: Using the double clasp expansion we obtain the equation
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where the diagrams with sums are collected by symmetry. One can easily check

that the diagrams with αn+1αm+1 and βn+1 + βm+1 annihilate by the cut path property;

the diagram with αn+1 + αm+1 is just Net(m,n, 0); the diagram with βn+1 + βm+1 is

just [6][2]
[3]
Net(m,n, 0), and the first diagram is just − [6][2]

[3]
Net(m,n, 0). As for the last

diagram with βn+1βm+1, we use the following important trick (which we will continue to

use liberally without mention):
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where the final equality follows from expanding the diagram with the relation

and noting that the first summand dies by the cut path property.

Putting all of this together, we see that

Net(m,n, 1) = (− [6]

[2]
[3]+αn+1+αm+1+

[6]

[2]
[3](βn+1+βm+1)−[4][2]βn+1βm+1)Net(m,n, 0)

= A1Net(m,n, 0),

as desired.

Our next goal is to determine the value of Net(m,n, p) inductively. Unfortunately, it

is too hopeful that this can done directly and for this end we must define a slightly new

type of net shape
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Definition 5.3.1

Net(m,n, pe + 1, pi − 1) =

where pi + pe = p− 1.

Equipped with this, we can state and prove the next lemma, where we will care

especially about the case pi = 1 and pe = p− 2.

Lemma 6 Net(m,n, p) = ApNet(m,n, p− 1) +BpNet(m,n, 1, p− 2).

Proof: The proof method here is very similar, and we begin by isolating the outer-

most strands into p− 1 and 1 to obtain that
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We handle the first three summands precisely as before and notice that the last one

can also be handled with the “double cross trick.” Collecting terms, we see that we obtain

precisely ApNet(m,n, p− 1). The fourth summand is precisely Net(m,n, 1, p− 2) up to

isotopy, giving us the term BpNet(m,n, 1, p − 2) as claimed. Finally, the penultimate

summand dies by the cut path property, proving the claim.

Our idea will now be to calculate Net(m,n, p − 1, 0) and to reduce our calculation of

Net(m,n, 1, p − 2) to this case by recursively expressing Net(m,n, pe, pi) in terms of

Net(m,n, pe + 1, pi − 1). To this end, we prove the following two lemmas

Lemma 7 Net(m,n, p− 1, 0) = A1Net(m,n, p− 1)

Proof:

Net(m,n, p− 1, 0) =
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which all reduce exactly as claimed by the annihilation property and calculations

similar to those in previous lemmas.

We now arrive at the final lemma needed for our recursive evaluation:

Lemma 8 Net(m,n, pe, pi) = Api+1Net(m,n, p− 1) +Bpi+1Net(m,n, pe+1, pi+1)

Proof:

Net(m,n, pe, pi) =
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Putting the above formulas together, we can define the recursive evaluation:

Net(m,n, p) =

(
Ap +

p−1∑
i=1

Ai

p∏
k=i+1

Bk

)
Net(m,n, p− 1)

and by direct calculation, we see that

p∏
i+1

Bk =

(
[2m+ 2i+ 2][m+ i][n+ i][2n+ 2i+ 2]

[m+ i+ 1][n+ i+ 1]

)(
[m+ p+ 1][n+ p+ 1]

[2m+ 2p+ 2][2n+ 2p+ 2][n+ p][m+ p]

)
simplifying the expression further to

Ap +

(
[m+ p+ 1][n+ p+ 1]

[2m+ 2p+ 2][2n+ 2p+ 2][n+ p][m+ p]

)

·

(
p−1∑
i=1

Ai

(
[2m+ 2i+ 2][m+ i][n+ i][2n+ 2i+ 2]

[m+ i+ 1][n+ i+ 1]

))

when q is a sufficiently large root of unity (N = 4 · (m+ n+ p+ 1), the left factor is

always positive, as is the product, so it sufficient to check that Ai is nonnegative for all

1 ≤ i ≤ p. So, using the formulas

αn :=
[2n][n+ 1][n− 1]

[2n+ 2][n]2
βn :=

[n− 1]

[n][2]
,

and
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Ai := − [6][2]

[3]
+ αm+i + αn+i +

[6][2]

[3]
(βn+i + βm+i)− [4][2]βn+i · βm+i Bi := αn+i · αm+i

And by substitution, we see that

Ai = − [6][2]

[3]
+

[2(m+ i)][m+ i+ 1][m+ i− 1]

[2m+ 2i+ 2][m+ i]2
+

[2(n+ i)][n+ i+ 1][n+ i− 1]

[2n+ 2i+ 2][n+ i]2

+
[6][2]

[3]

(
[m+ i− 1]

[m+ i][2]
+

[n+ i− 1]

[n+ i][2]

)
− [4][2]

(
[m+ i− 1]

[m+ i][2]

[n+ i− 1]

[n+ i][2]

)
.

Theorem 10 When q is a root of unity of order greater than 2(a + b + c) + 4, we have

that θ(a, b, c) 6= 0.

Proof: Making the substitution q = e2πi/2(2k+6), we let N := 2(2k + 6) and replace

each quantum integer with

[s] =
sin(2πs/N)

sin(2π/N)

and collecting terms in the denominator, and using the fact that the denominator is

non-vanishing and positive, we see that it is sufficient to check

Ai = sin(4s · π/N) sin((s+ 1) · 2π/N) sin((s− 1) · 2π/N) sin((2j + 2) · 2π/N)

· sin2(j · 2π/N) sin(6π/N) sin(4π/N) sin(2π/N) + sin(4j · π/N) sin((j + 1) · 2π/N)

· sin((j − 1) · 2π/N) sin((2s+ 2) · 2π/N) sin2(s · 2π/N) sin(6π/N) sin(4π/N)

· sin(2π/N) + sin((s− 1) · 2π/N) sin((2s+ 2) · 2π/N) sin(k · 2π/N) · sin((2j + 2)
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·2π/N) sin2(j · 2π/N) · sin(12π/N) sin(4π/N) sin(2π/N) + sin((j − 1) · 2π/N)

· sin((2j + 2) · 2π/N) sin(j · 2π/N) sin((2s+ 2) · 2π/N) sin2(s) sin(12π/N) sin(4π/N)

· sin(2π/N)− sin((s− 1) · 2π/N) sin((j − 1) · 2π/N) sin((2s+ 2) · 2π/N)

· sin((2j + 2) · 2π/N) sin(s · 2π/N) sin(j · 2π/N) sin(6π/N) sin(2π/N) sin(8π/N)

sin(12π/N) sin2(4·pi/N) sin((2s+2)·2π/N) sin((2j+2)·2π/N) sin2(j ·2π/N) sin2(s·2π/N)

where s := n+ i while j := m+ i.

We claim that this is is nonzero for N > 4(m + n + i + 1). This computation seems

unwieldy, but is actually in a form that allows us to conclude our result. To see this, one

should note that the restriction that N > 4(m+n+ i+ 1) gives that for every value of x

as appears above, sin(x) ∈ (0, π/2). This implies that each among the sin are monotonic.

Then we see that the function is strictly negative, and thus along the discussion above

we have that θ(a, b, c) is strictly nonzero.

Corollary 3 The C2 spider satisfies property AF2.

Theorem 11 The Reshetikhin-Turaev quantum mapping class group representation com-

ing from the C2 spider is asymptotically faithful.

5.4 Future Directions

5.4.1 The G2 Spider

This is the final of the rank 2 spiders studied by Kuperberg [33]. There has also been

extended interest in the link invariant associated to this spider [32]. We quickly see that

the G2 spider satisfies property AF1 as both fundamental representations are self dual
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and applying 1. Without a concrete description of clasps it seems very difficult to prove

that property AF2 holds.

5.4.2 An

A combinatorial construction of the An spider has been completed by Cautis, Kam-

nitzer, and Morrison [14].

The AF Property of An

There is little progress hinting towards how to proceed to prove property AF1 or

property AF2. Although for n even there is a self-dual fundamental representation that

could be used to ensure property AF1.

5.4.3 Clasps

Work has been done on constructing the clasps for the An spider, but the focus has

been on their categorification and applications in knot homology [41]. Building these

clasps recursively could help in proving the AF property.

5.4.4 Changing Pivotal Structure and More

Parallel results on asymptotic faithfulness have been proven by Anderson for the

An case [1], using the underlying modular tensor category C = Rep(Uq(sl(N,C))). In

particular these parallel results come through not only the changing of pivotal structure,

but also a subsequent change of the underlying specialization. This can be seen in the

equivalence

Repuni(Us(sl(2,C) ∼= T L(−is).
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This change in the root of q being chosen actually results in an entirely different fu-

sion category with the same underlying fusion ring. This can be seen explicitly as the

Frobenius-Schur indicators differ, which are defined in terms of F−moves. While it seems

shocking that the pivotal structure would be able to affect the kernel of the quantum

representations the author is not aware of any proof given literature which this fact. We

also note that the underlying fusion rings are the same which implies the dimension of

the vector space being acted on is the same, so there is a possibility these representations

are equivalent.
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Applications

6.1 Applications to Topology

The results of this section recover the work of Andersen in [2]. His approach is

through geometric quantization, but it is mentioned at the end of [2] “One can translate

our proof of Theorem 4 into a BHMV-skein model proof of Theorem 8”. Perhaps this

could be considered some version of that translation, but the author cannot claim to be

comfortable enough with the details of geometric quantization to ensure this.

6.1.1 Nielsen-Thurston Type

The Nielsen-Thurston classification, [44], is a way of classifying the elements of the

mapping class group of a compact oriented surface. We have three types of elements.

Let φ be a mapping class then either

1. φ is periodic, meaning it is finite order, meaning some power of φ is the identity.

2. φ is reducible, meaning φ preserves some finite union of disjoint simple closed curves

on the surface.
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3. φ is pseudo-Anosov, meaning that there exists λ > 1, two transverse measured

foliations F s and F u on the surface and a diffeomorphism f of the surface, which

represents φ, such that

f∗(F
s) =

1

λ
F s

and

f∗(F
u) = λF u.

In the Pseudo-Anosov case we call λ the stretching factor and it is uniquely determined

by φ. The reducible case one continues the analysis of φ by cutting the surface along the

preserved simple closed curves to give a surface with boundary. Then we know there exists

a diffeomorphism f which represents φ and induces a diffeomorphism on the resulting

components after cutting, which on each peace is either finite order or Pseudo-Anosov.

6.1.2 Applying Asymptotic Faithfulness

If {ρk} is an asymptotically faithful family of quantum representations then φ is deter-

mined entirely by (ρk(φ))k∈N. This should tell us that the Nielsen-Thurston classification

can be determined by analyzing this sequence.

Theorem 12 For any mapping class φ of Σ we have that there exists an integer M such

that

(ρk(φ))M ∈ CId

for all k if an only if φM = 1.

Proof: First assume there exists an integer M such that

(ρk(φ))M ∈ CId
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for all k. Asymptotic faithfulness tells us that ρk(φ
M) being a multiple of the identity

for all k implies φM = 1.

Then assuming φM = 1, we have

ρk(φ)M = ρk(φ
M) = ρk(1) ∈ CId.

This deals with the case of φ being periodic. We are left to separate reducible elements

from Pseudo-Anosov elements. The key will be to determine when an element is reducible.

Theorem 13 For any mapping class φ and any non-trivial homotopy class γ of a simple

closed curve on Σ we have that φ is reducible along γ, meaning φ(γ) = γ if and only if

[ρk(φ), Ck(γ)] = 0

for all k. Where we know γ is a simple closed curve in Σ, and C(γ) ∈ End(Vk(Σ)) is

the curve operator associated the the fundamental representation Vλ the fulfills the AF

property. In particular we have

C(γ) = Z(Σ× I, γ × {1/2}) ∈ V (Σ)⊗ (V (−Σ)) = End(V (Σ))

where the k has been left out as it is fixed.

Proof: This fallows along the same line as the conjugation of curve operators seen

in Lemma 1. Assume

[ρk(φ), Ck(γ)] = 0,

meaning

VφC(γ) = C(γ)Vφ.
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Then we have

Vφ(C(γ)V −1φ = C(γ)

which implies

C(φ(γ)) = C(γ)

Now assume by way of contradiction that φ(γ) is not isotopic as a set to γ, meaning that

as homotopy classes we have φ(γ) 6= γ. Then we are able to follow through our argument

seen at the beginning of our proof for asymptotic faithfulness. To get that C(γ) is not a

multiple of C(φ(γ)), a contradiction. Thus we have that φ(γ) = γ and φ is reducible.

Now assuming that φ(γ) = γ then we can start from

C(φ(γ)) = C(γ)

and run the argument in reverse.

This is admittedly a disappointing recovery of the Nielson Thurston type. In prin-

ciple, asymptotic faithfulness implies that all properties of a mapping class should be

recoverable from the family of quantum representations, but the proof provided here

does nothing to show how the stretching factor can be obtained.

6.2 An Introduction to TQC

This section is based on the work of the author in [12]. As such the figures and

arguments have been adapted from there.
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6.2.1 Classical Computing

Definition 6.2.1 A bit string is a vector x ∈ Zn2 , where Z2 is the finite field of 2

elements.

In the world of classical computers, this has a very concrete description. In many ways

a bit string should be thought of as a piece of “information”. Each bit, or component,

of the bit string can be thought of as a clear “yes” or “no”, similarly “on” or “off”. The

most common implementation of this model is in the use of the use of transistors in

digital circuits as switch.

Definition 6.2.2 A computing problem is a family of Boolean functions, denoted

f : Zn2 → Zn2

or more precisely

{fi : Zn2 → Z2}ni=1.

There is a question of the computability of f , but we will assume all of our computing

problems are computable as this property is not changed even when jumping to quantum

computing. Thus our goal is to compute f(N) for any bit string N .

6.2.2 Quantum Computing

We will take the underlying principle of quantum computing to be “linearizing” clas-

sical computing. This means we will be lifting from Z2 to C, and really P1 as we will be

uninterested in overall phases.

Definition 6.2.3 A qubit is a non-zero vector in C2 = C[Z2]. Similarly an n−qubit is

a non-zero vector in (C2)⊗n = C[Zn2 ], which has as basis vectors the bit strings of length
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n.

So generally we have gone from bit strings to linear combinations of bit strings, these

can be thought of as superpositions of bit strings. This step of turning the classical

information of bit string N to a quantum state |N > will be called an encoding.

Definition 6.2.4 Let us take an encoding, x 7→ |x〉 ∈ (C2)n, and a computing problem

f . Then we say that Ux ∈ U(2n) is an implementation of f if Ux|x〉 is near |f(x)〉, in

(C2)n, alternatively we can think of

Ux|x〉 =
∑
j

aj|j〉.

Then |aj|2 is the probability of Ux|x〉 being |j〉, so Ux is an implementation of f if

|af(x)|2 >> 0.

Definition 6.2.5 An encoding of a computation model will consist of an encoding of

the the classical information as quantum states (as described above), as well as a collec-

tion of gates (unitary matrices), which are used to generate potential implementations of

computing problems.

Definition 6.2.6 If an encoding lies as a subspace inside of a larger Hilbert space, we

call our encoding the computational subspace.

Definition 6.2.7 We say that our encoding has leakage if the computation subspace is

not invariant under the gate set.

6.2.3 Introducing Topology

The main issue facing quantum computing is decoherence. In short, this means

interactions with the nearby environment introducing errors.
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Definition 6.2.8 We will say that an encoding is topological if for any given N , the

corresponding state |N〉 and potential gates correspond to some topologically invariant

structure.

The most common example of a topological encoding, will be isotopy classes. An example

of particular interest to us will be isotopy classes of ribbon graphs.

A Brief Historical Aside

The idea of topologically protected quantum computing should be attributed both to

Kitaev and Freedman independently. Kitaev proposed using anyons to encode quantum

memory and provided a collection of gates, coming from braids, that were exponentially

precise [31]. Freedman’s computational model was rooted in topological quantum field

theory. Freedman, Larsen, and Wang then provided a universal gate set from braiding,

and showed that this new proposal recovers the computational power of ordinary quantum

computing [20]. This is what is called topological quantum computing. One key insight

into Freedman’s approach is the hope of implementing this computational model using

topological matter.

This description of topological quantum computing is exactly the situation we are

working in. In particular, Unitary modular tensor categories are the mathematical foun-

dation for anyonic systems, and as we have seen the algebraic input of Unitary TQFTs.

6.3 Clifford Groups

We follow the exposition given in [6]. We begin by generalizing the qubit setting

described above. Let G be a finite abelian group, decomposed as

G = Z/m1Z× ...× Z/msZ.
104



Applications Chapter 6

We consider the complex vector space

HG = Cm1 ⊗ ...⊗ Cms .

We note that x ∈ HG is represented as some g ∈ G and so we have the notation:

HG = span{|g〉 : g ∈ G}.

We also have the following relationship

H⊗nG = HGn ,

where we are using the notation that

Gn :=
n⊕
i=1

G.

Thus rather than encoding bits, we are encoding a finite abelian group. When this finite

abelian group is Zd we call non-zero vectors in H, qudits.

6.3.1 Pauli Group over G

Let γ = e
πi
|G| .

Definition 6.3.1 A Pauli operator over G is any unitary operator on HG of the form

σ(a, g, h) := γaZgXh

where

Xg(|x〉) = |g + x〉
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Zh(|x〉) = χh(x)|x〉

where χh is a character of G.

Definition 6.3.2 The Pauli group over G is the subgroup of U(HG) generated by all

Pauli operators, denoted P1,G. Then we have

Pn,G := P⊗n1,G ⊂ U(H⊗nG ) = U(HGn)

called the nth Pauli Group over G

6.3.2 Clifford Group over G

Definition 6.3.3 The nth Clifford group over G, denoted as Cn,G, is the normalizer

of Pn,G in U(HGn), and actually as operators differing by only a phase will not contribute

to a conjugation PU(HGn).

6.3.3 Normalizer Circuits

Definition 6.3.4 A normalizer circuit over G is a member of the group, NG, gen-

erated by

• Group automorphism gates:

|g〉 7→ |ψ(g)〉

for ψ(g) a group automorphism.

• Quadratic phase gates:

|g〉 7→ ζ(g)|g〉
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where |ζ(g)| = 1 and

ζ(g + h) = ζ(g)ζ(h)B(g, h)

where

B(x+ y, g) = B(x, g)B(y, g)

B(g, x+ y) = B(g, x)B(y, g).

• Quantum Fourier Transforms:

F : |g〉 7→ 1

|G|
∑
x∈G

χx(g)|x〉

Where χx are characters of the group.

Theorem 14 [6]

NG ≤ C1,G

Conjecture 6.3.1 [6]

NG = C1,G

6.4 An Encoding for Quantum Representations of

MCGs

We propose a topological qudit encoding based on the Reshetikhin Turaev state space.

This should be thought of as generalizing the use of anyons with their exchange statistics

to the case of mapping class group representations. The difficulty lies in finding how to

encode qudits into the relevant Hilbert space.

Definition 6.4.1 Let C be a rank d modular tensor category, meaning C has d isomor-

phism classes of simple objects or anyon types, and Vg = V (Σg) be the Reshetikhin Turaev
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state space of the genus g closed surface. Then our encoding of qudits will refer to the

subspace of Vg in which every basis vector has only the longitudinal edges of the spine

colored by non-trivial labels. This can be seen in figure 6.1.

Figure 6.1:

The gate set will be formed by the image of the corresponding quantum representations

of the mapping class group. We immediately note that this construction is a topological

encoding.

Proposition 1 The longitudinal encoding will necessarily have leakage out of the com-

putational subspace unless

[F âdb
b̂

]1,(x,µ,ν)θx[F
ab̂b
a ](x,µ,ν),(y,α,β) = 0

for all y 6= 1.

Proof: This follows immediately from the action formula computed in section 3.3

specialized to the basis vectors used in the longitudinal encoding.

We note that this is very dependent on taking the entirety of ρ(MCG(Σg)) as the gate set.

It is a very interesting question to determine if there is a better choice of gate set, meaning

some subset of ρ(MCG(Σg)) which avoids leakage. A quick example which avoids leakage
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is to only take only the Dehn twists about longitudinal curves and meridinal curves. This

recovers the quantum representation of MCG(Σ1) = PSL(2,Z) on each tensor factor,

which is known to be finite in all cases due to Ng and Shauenburg [38]. This exhibits

the true question here. Can we find a better gate set such that our encoding is invariant,

but the gate set is universal.

6.5 Abelian Anyon Models

An abelian anyon model is one in which all quantum dimensions are 1, these corre-

spond to pointed modular tensor categories. The fusion rules of an abelian anyon model

form a finite abelian group, G. We list some of the relevant evaluation data [42]: Let

a, b, c ∈ G

[F a,b,c
a+b+c]a+b,b+c = f(a, b, c) ∈ H3(G,Q/Z)

da = 1

θa = e2πiq(a)

Where q is a quadratic form on G.

Sx,y =
1√
|G|

e2πib(x,y)

where

b(x, y) = q(x+ y)− q(x)− q(y)

is a bi-linear form associated to q.
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6.5.1 Specializing to Abelian Anyon Models

With these computations in mind we look to ground ourselves with the concrete

example discussed in the introduction. For the remainder of this section let our modular

tensor category C have fusion rules forming a group G = Z/m1Z × ... × Z/msZ with

mi|mi+1 and modular data determined by ~k.

Hilbert Spaces of States

Let Σg be a closed surface of genus g. We look to describe V (Σg) concretely. We note

that abelian MTCs are multiplicity free, meaning

a⊗ b = a+ b =
∑

Nab
c c

where Nab
c = δc,a+b, and in particular that the dimension of the Hom spaces are either

0 or 1, meaning we can ignore vertex labels. Now we also know â = −a, so we have

a+ â = 0 and a+ b = 0 exactly when b = â. Now we look at the following lemma.

Lemma 9 When looking at the trivalent graph seen in Fig. 6.2 colored by a finite abelian

group G. Then ai = 0 for all i.

Figure 6.2:

Proof: This is a simple proof by induction.
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Figure 6.3: •

Applying this lemma we have:

Proposition 2 We have V (Σg) ∼= H⊗gG , where the basis is given in Fig. 6.3.

Proof: This is an immediate application of the above lemma.

We will denote an element of the basis shown in Fig. 6.3 as ~a = (a1, ..., ag).

The MCG Action

T0 and T1

This computation is identical to that of the general setting. And so

T0(~a) =
p−
D
θa2~a =

p−
D
ωa

2
2~a

and

T1(~a) =
p−
D
θa1~a =

p−
D
ωa

2
1~a.

Now define

L : HG → HG
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defined by

L(|a〉) = θa|a〉

Then we have

T0 = L2(~a)

and

T1 = L1(~a)

where

Li = Id⊗ Id⊗ ...⊗ L⊗ Id⊗ ...⊗ Id

where L acts on the ith component.

T2i+1 for i = 1, ..., g − 1

This computation is also identical, but we are able to make use of the explicit F-moves.

In particular we have

T2i+1(~a)

=
p−
D

∑
f,h

[F
(−ai)ai(−ai+1)
−ai+1

](0,f)θf [F
ai(−ai+1)ai+1
ai

](f,h)~a
′
h,

but we have the only non-zero F-move is

[F a,b,c
a+b+c]a+b,b+c = f(a, b, c) ∈ H3(G,U(1))

Now we also note that we elected to describe all F-moves as positive powers, but actually

[F ai(−ai+1)ai+1
ai

] = [F
(−ai)ai(−ai+1)
−ai+1

]−1

T2i+1(~a) = f(ai,−ai+1, ai+1)θai−ai+1
f(ai,−ai+1, ai+1)~a = θai−ai+1

~a
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Now define

M : HG ⊗HG → HG ⊗HG,

defined by

M(|a〉 ⊗ |b〉) = θa−b|a〉 ⊗ |b〉.

The crucial observation here is that M can also be described as follows:

M : HG⊕G → HG⊕G,

where

M(|a+ b〉) = θa−b|a+ b〉

T2i+1(~a) = Mi,i+1(~a).

T2i for i = 1, ..., g

In Fig. 6.4 and Fig. 6.5 we provide an alternative version of this computation which

utilizes many of the specific properties of the fusion rules for abelian MTCs which allow

for the use of shortcuts.
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Figure 6.4: Steps 1, 2, and 3
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Figure 6.5: Steps 4, 5, and 6
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Then we can see that

T2i(~a) = θ−1ai

∑
b∈G

Saibθ
−1
b ~a

′
b

Where ~a′b = (a1, .., ai−1, b, ai+1, .., ag) is determined from ~a by replacing the ith coordinate

from ai to b. Now define

O : HG → HG

defined by

O(|a >) =
∑
b∈G

θ−1a Sa,bθ
−1
b |b > .

Then we have that

T2i(~a) = Oi(~a).

6.5.2 Clifford Operators

Theorem 15 Let Σg be the closed surface of genus g and

ρG : MCG(Σg)→ PU(HGg)

ρG be the quantum representation coming from an abelian MTC with fusion rules deter-

mined by a finite abelian group G. Then

ρG(MCG(Σg)) ≤ Cg,G,

meaning the image of the mapping class group under this representation lies entirely in the

gth Clifford group over G. Moreover, each Humphries generator is sent to a Normalizer

circuit over
⊕g

i=1G.

Corollary 4 The computational framework using mapping class group representations
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arising from abelian anyon models can be classically efficiently simulated in at most poly-

nomial time in the number of Dehn twists about Humphries generators of type γ2i (lon-

gitudinal), the number of gates in the circuit, the number of cyclic factors of the groups,

and the logarithm of the orders of the cyclic factors.

Proof: As only normalizer gates can be achieved this follows immediately from Van

Den Nest’s results on simulating normalizer circuits over finite abelian groups [15]. Note

that longitudinal Dehn Twists implement quantum Fourier transforms.

Lemma 10
√
|G|Sx,y is a bi-character, meaning

|
√
|G|Sx,y| = 1

√
|G|Sx+y,g =

√
|G|Sx,g

√
|G|Sy,g√

|G|Sg,x+y =
√
|G|Sg,x

√
|G|Sg,y

Proof: This follows immediately as

√
|G|Sx,y = exp(2πib(x, y))

where b(x, y) is bilinear.

Now we return to the proof of our theorem. Proof:

We see that based on the structure computed above we need only show that L, M ,

and O lie C1,N , C2,N , and C1,N respectively as tensoring with the identity operator will

preserve that result and the root of unity p−
D

can be ignored as these operators are only

considered projectively.
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L

Recall

L(|x >) = θx|x > .

We first look to show that L lies in C1,G, and in particular that L ∈ NG. In fact we will

show that L is a quadratic phase gate, meaning θx is a quadratic phase. We first note

that θx is a root of unity, thus we need only show that

θx+y = θxθyB(x, y)

In fact we have

θx+y
θxθy

=
√
|G|Sx,y

which as we have seen in Lemma 4.3 is a bicharacter. Thus L is a quadratic phase gate

and L ∈ NG.

M

Recall

M(|x > ⊗|y >) = θx−y|x > ⊗|y > .

We we look to show that M ∈ C2,G. More so we will show that M is a normalizer circuit

over G⊕G. We have

M(|x+ y〉) = θx−y|x+ y〉

The form of this operator should look very similar that of the previous section. As such

the computation is very similar. We must show that

θ(x+a)−(y+b) = thetax−yθa−bB((x, y), (a, b)),
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where B((x, y), (a, b)) is a bicharacter. We have

θ(x+a)−(y+b) = θ(x−y)+(a−b) = θx−yθa−b
√
|G|Sx−y,a−b.

Thus we need only show that
√
|G|Sx−y,a−b is a bicharacter. We have

B((x+ g, y + h), (a, b)) =
√
|G|S(x+g)−(y+h),a−b

=
√
|G|S(x−y)+(g−h),a−b =

√
|G|Sx−y,a−b

√
|G|Sg−h,a−b

= B((x, y), (a, b))B((g, h), (a, b)).

And similarly

B((x, y), (a+ g, b+ h)) = B((x, y), (a, b))B((x, y), (g, h)).

Thus we have M ∈ C2,G and in particular it is a normalizer gate over G⊕G.

O

Recall

O(|x >) =
∑
y∈G

θ−1x Sx,yθ
−1
y |y >

We look to show that O ∈ C1,G and in particular that O ∈ NG. We quickly see that we

are pre-composing and post-composing with θ−1z , which from above we have seen to a

quadratic phase in NG. Thus we need only show that

√
|G|S : |x >7→

∑
y∈G

Sx,y|y >
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is in NG. Utilizing our lemma which proved that Sx,y was a bicharacter we can in fact

write √
|G|Sx,y = χy(x)

where χy is a character. Then we have

S(|x >) =
1

|G|
∑
y∈g

χy(x)|y >

which is exactly the global quantum Fourier transform. Thus we have S ∈ NG and so

O ∈ NG.

Thus we have completed our proof of Theorem 1.

6.6 General Anyons

Though the 1-qudit gates in our scheme always form a finite group, they are not

always generalized Clifford gates as we show below for the Fibonacci anyon. For abelian

anyon models, though all mapping class gates are generalized Clifford gates, we do not

know if they can be efficiently simulated by classical computers.

6.6.1 Fib

The simple objects of Fib are 1 and τ . The only nontrivial fusion rule is

τ ⊗ τ = 1⊕ τ.

Let φ = 1+
√
5

2
be the golden ratio. Then we can write the evaluation moves explicitly as

[48]

d1 = 1, dτ = φ
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T =

 1 0

0 e4πi/5



S =
1√

2 + φ

 1 φ

φ −1


Rττ

1 = e
−4πi

5 Rττ
τ = e

3πi
5

F τττ
τ =

 φ−1 φ−1/2

φ−1/2 −φ−1


This case differs greatly from the previous case. The most striking of these differences

is the lack of a tensor product structure on VFib(Σ). One potential way of introducing

a tensor product structure into the picture is to embed V (Σ) into W⊗m, where W =⊕
a,b,c∈L Hom(a ⊗ b, c) and m is taken to be the number of pairs of pants in a pants

decomposition of Σ, meaning m = 2g − 2. Then we embed V (Σ) into W⊗m by sending

a basis vector to the tensor product of the vertex vector for each vertex of the basis

element. For Fib we see that W ∼= C5 as their are 5 admissible triples:

(1, 1, 1), (τ, τ, 0), (τ, 0, τ), (0, τ, τ), (τ, τ, τ).

Another possible thought would be to look at a computational subspace inside of

V (Σ). In particular the subspace (C2)⊗g restricting all of the ai labels to be 1. This

leaves each genus to be encircled by either a 1 or a τ . This computational subspace is

even invariant under T0, T1, and T2i for i = 1, ..., g. Unfortunately this subspace is not

invariant under T2i+1 for i = 1, ..., g − 1. This lack of invariance does imply that this

computational subspace will inherently lead to leakage, but that does not rule this out

as a promosing model.
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Theorem 16 There does not exist a basis for V (T 2) for which both S and T lie in the

associated Clifford group on the single qubit.

Proof: First we observe that T 5 = Id. Then as the order of the Clifford group is

24 we know that as 5 does not divide 24 the only possibility is that in our chosen basis

T is the identity matrix. So in our new “normalized” basis we have

T =

 1 0

0 1


and

S =
1√

2 + φ

 1 e−4πi/5φ

φe4πi/5 −1


By explicit computation we can show S is not a Clifford operator, even up to a global

phase. We quickly see that S has order 2. Then we have 9 matrices to compare this to,

up to global phase. Explicit computation (refer to Appendix A A.2) shows that of these

9 matrices, 4 have the property that their off diagonals are equal, 3 have the property

that their off diagonals sum to zero, and the remaining two have at least one zero entry.

All three of these properties are preserved under global phases, but our matrix S does

not have these properties. Thus in this computational basis S is not a Clifford operator.

Then as this is the only basis that allowed T to be a Clifford operator we have shown

that it is not possible for both S and T to be Clifford operators in the same basis.
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The Abstract Clifford Group

A.1 The Pauli Group on One Qubit

We start by looking at the Pauli Group on one qubit. This is a specialization of the

definition given at the beginning of this paper. In particular we have

P1 :=< X, Y, Z >= {±Id,±iId,±X,±iX,±Y,±iY,±Z,±iZ}

Abstractly this is a 16 element group. As we will only be working up to a global phase

it is convenient for us to define

P := {±Id,±X,±Y,±Z}.

Once a computational basis for the underlying 2 dimensional Hilbert space is chosen,

then we have a realization of this group as a matrix group. Here we have

X =

 0 1

1 0


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Y =

 0 −i

i 0



Z =

 1 0

0 −1


A.2 The Clifford Group on One Qubit

Now the Clifford group on one qubit can be viewed as the normalizer of the Pauli

group, up to overall global phases.

Definition A.2.1 The Clifford group on one qubit is

C1 := {U ∈ U(2) : UpU∗ ∈ P − {±Id}, p ∈ P − {±Id}}/U(1)

Proposition 3 The Clifford group on one qubit has order 24.

Proof: We first note that conjugation must preserve the group structure, and in

particular here we mean the multiplication of the Pauli matrices. Thus as Y = iXZ,

we will not need to specify the image of Y under the conjugation. Similarly −X and

−Z will be determined by where X and Z are sent as well. Thus we will only need to

specify where X and Z end up. We know that X and Z anti-commute and so UXU∗ and

UZU∗ will also need to anti-commute. This tells us that X can be sent to any element of

P −{±Id}, but Z can only be send to P −{±Id, UXU∗}. Thus there are 6 possibilities

for X to be sent to and 4 possibilities for Z, and so C1 has order 6 · 4 = 24.

Theorem 17 [?] Similar to above, once a computational basis is chosen for the Hilbert

space it is possible to describe C1 explicitly. In fact

C1 =< H,Q >
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where

H =
1√
2

 1 1

1 −1


and

Q =

 1 0

0 i


We note that our description of C1 is as a 24 element group. The usually order given

to the group generated by H and Q would be 192, but recall we have an equivalence

up to global phase of the words in H and Q. In particular the factor of 8 results in an

overcounting seen from (PQ)3 = e2πi/8Id which for our purposes is the identity.

Corollary 5 As 24 element groups

C1
∼= S4.

As a note, S4 is the symmetry group of the cube.

Proof: We see

S4 =< (1, 2), (1, 2, 3, 4) > .

Then using the description afforded by Theorem 3 we are done.

We now provide a table of representatives of the elements of C1 along with corre-

sponding elements of S4 coming from the isomorphism used in Corollary 1.
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C1 S4 C1 S4(
1 0

0 1

)
(1) 1√

2

(
1 i

−1 i

)
(132)

1√
2

(
1 1

1 −1

)
(12) 1√

2

(
1 −1

−1 −1

)
(34)(

1 0

0 i

)
(1234)

(
0 1

−1 0

)
(12)(34)(

1 0

0 −1

)
(13)(24)

(
0 1

i 0

)
(24)(

1 0

0 −i

)
(1432)

(
0 1

1 0

)
(14)(23)

1√
2

(
1 1

i −i

)
(134) 1√

2

(
1 i

−i −1

)
(14)

1√
2

(
1 1

−1 1

)
(1423) 1√

2

(
1 −1

−i −i

)
(123)

1√
2

(
1 1

−i i

)
(243) 1√

2

(
1 −i
−i 1

)
(1342)

1√
2

(
1 i

1 −i

)
(234) 1√

2

(
1 −i
−1 −i

)
(124)

1√
2

(
1 −1

1 1

)
(1324)

(
0 1

−i 0

)
(24)

1√
2

(
1 −i
1 i

)
(143) 1√

2

(
1 −i
i −1

)
(23)

1√
2

(
1 i

i 1

)
(1243) 1√

2

(
1 −1

i i

)
(142)
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