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Visual enhancement is concerned with problems to improve the visual quality and view-

ing experience for images and videos. Researchers have been actively working on this area

due to its theoretical and practical interest. However, obtaining high visual quality often

comes with a cost of computational efficiency. With the growth of mobile applications

and cloud services, it is crucial to develop effective and efficient algorithms for generating

visually attractive images and videos. In this thesis, we address the visual enhancement

problems in three aspects, including the spatial, temporal, and the joint spatial-temporal

domains. We propose efficient algorithms based on deep convolutional neural networks for

solving various visual enhancement problems.

First, we address the problem of spatial enhancement for single-image super-resolution.

We propose a deep Laplacian Pyramid Network to reconstruct a high-resolution image from

an input low-resolution input in a coarse-to-fine manner. Our model directly extracts fea-

tures from input LR images and progressively reconstructs the sub-band residuals. We train

the proposed model with a multi-scale training, deep supervision, and robust loss functions

to achieve the state-of-the-art performance. Furthermore, we exploit the recursive learning

technique to share parameters across and within pyramid levels to significantly reduce the

model parameters. As most of the operations are performed on a low-resolution space, our

model requires less memory and runs faster than state-of-the-art methods.

Second, we address the temporal enhancement problem by learning the temporal con-

sistency in videos. Given an input video and a per-frame processed video (processed by

an existing image-based algorithm), we learn a recurrent network to reduce the temporal

xvi



flickering and generate a temporally consistent video. We train the proposed network by

minimizing both short-term and long-term temporal losses as well as a perceptual loss to

strike a balance between temporal coherence and perceptual similarity with the processed

frames. At test time, our model does not require computing optical flow and thus runs

at 400+ FPS on GPU for high-resolution videos. Our model is task independent, where

a single model can handle multiple and unseen tasks, including but not limited to artistic

style transfer, enhancement, colorization, image-to-image translation and intrinsic image

decomposition.

Third, we address the spatial-temporal enhancement problem for video stitching. In-

spired by the pushbroom cameras, we cast the stitching as a spatial interpolation problem.

We propose a pushbroom stitching network to learn dense flow fields to smoothly align

the input videos. The stitched videos can be generated from an efficient pushbroom in-

terpolation layer. Our approach generates more temporally stable and visually pleasing

results than existing video stitching approaches and commercial software. Furthermore,

our algorithm has immediate applications in many areas such as virtual reality, immersive

telepresence, autonomous driving, and video surveillance.
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Chapter 1

Introduction

1.1 Overview

With the growth of mobile cameras (e.g., smart phones, GoPro, and 360◦ camera) and

the wide spread of social media (e.g., Facebook, Instagram, and YouTube), millions of

photos and videos are captured and uploaded to the Internet every day. However, many

photos may suffer from artifacts (i.e., blurriness, noise, low spatial resolutions, or temporal

flickering) or visual obstructions (i.e., limited field-of-view, reflection or occlusion). To

address these issues, several problems have been studied in the field of computer vision,

such as image super-resolution, motion deblurring, inpainting, video frame interpolation

and video stitching and stabilization.

Conventional algorithms typically rely on a variety of priors or assumptions, e.g., total

variation, sparse representation, self-similarity, brightness constancy and spatial smooth-

ness, and develop complex optimization frameworks to solve the visual enhancement prob-

lems. In recent years, data-driven approaches have been shown more effective to learn

priors from a large image or video datasets. In particular, the deep convolutional neural

networks (CNNs) have demonstrated great performance in many high-level as well as low-

level vision problems due to its strong learning capacity. In this thesis, we propose efficient

algorithms based on deep CNNs for solving visual enhancement problems in the following

three aspects.

1
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Spatial enhancement. Existing CNN-based single image super-resolution algorithms

typically require a large number of network parameters and entail heavy computational

loads for generating high-accuracy super-resolution results. Therefore, we propose a deep

Laplacian Pyramid Network which performs fast and accurate single-image super-resolution.

Temporal enhancement. Applying image-based algorithms independently to each frame

of a video often leads to temporally inconsistent results. On the other hand, task-specific

video-based algorithms usually cannot be applied or generalized to different applications.

Therefore, we propose a learning-based task-independent approach with a deep recurrent

network for enforcing temporal consistency in a video.

Spatial-temporal enhancement. Despite the long history of image and video stitching

research, existing academic and commercial solutions still produce strong artifacts due to

the challenges of handling parallax. To address these issues, we propose a pushbroom

stitching network by casting the stitching as a spatial interpolation problem.

1.2 Organization

In Chapter 2, we review and discuss the pros and cons of existing methods in the above

three aspects.

In Chapter 3, we propose a deep Laplacian Pyramid Super-Resolution Network (Lap-

SRN) that has both high reconstruction accuracy and fast execution speed to perform single-

image super-resolution. Our model directly extracts features from the input LR images and

progressively reconstructs the sub-band residuals of high-resolution images in a coarse-

to-fine manner. Furthermore, we adopt a multi-scale deep supervision and a robust loss

function to improve the reconstruction accuracy. As most of the operations are performed

on a low-resolution space, our LapSRN requires less memory and runs faster than state-of-

the-art methods. We further extend our LapSRN to incorporate recursive layers, local skip

connections and multi-scale training to significantly improve the performance. By sharing

parameters across and within pyramid levels, we reduce 73% of the network parameters

while achieving better reconstruction accuracy. Extensive quantitative and qualitative eval-

uations on benchmark datasets demonstrate that the proposed algorithm performs favorably
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against the state-of-the-art methods in terms of speed and accuracy.

In Chapter 4, we propose a generic approach with a deep recurrent network to reduce

the temporal flickering in a per-frame processed video. Our model takes as inputs the orig-

inal and per-frame processed videos (processed by an existing image-based algorithm) and

generate a temporally consistent video. We train the proposed network by minimizing both

short-term and long-term temporal losses as well as a perceptual loss to strike a balance

between temporal coherence and perceptual similarity with the processed frames. At test

time, our model does not require computing optical flow and thus runs at 400+ FPS on GPU

for high-resolution videos. The proposed method is agnostic to specific image processing

algorithms applied to the original video. Therefore, a single model can handle multiple and

unseen tasks, including but not limited to artistic style transfer, enhancement, colorization,

image-to-image translation and intrinsic image decomposition.

In Chapter 5, we propose a video stitching algorithm that is temporally stable and toler-

ant to strong parallax. Our key insight is that stitching can be cast as a problem of learning a

smooth spatial interpolation between the input videos, inspired by the pushbroom cameras.

We introduce a fast pushbroom interpolation layer and propose a novel pushbroom stitching

network, which learns a dense flow field to smoothly align the input videos. Our approach

generates more visually pleasing results than existing approaches and has immediate appli-

cations in many areas such as virtual reality, immersive telepresence, autonomous driving,

and video surveillance.

In Chapter 6, we conclude the contributions in this thesis and discuss several future re-

search directions, including the practical applications of low-level vision, semi-supervised

learning and domain adaptation, and learning-based computational photography.



Chapter 2

Literature Review

In this chapter, we review the literature related to the research work presented in the

following chapters.

2.1 Single Image Super-Resolution

Single-image super-resolution has been extensively studied in the literature [120]. Here

we focus our discussion on recent example-based and CNN-based approaches.

2.1.1 SR Using Internal Databases

Several methods [31, 119, 35] exploit the self-similarity property in natural images

and construct LR-HR patch pairs based on the scale-space pyramid of the LR input im-

age. While internal databases contain more relevant training patches than external image

datasets, the number of LR-HR patch pairs may not be sufficient to cover large textural ap-

pearance variations in an image. Singh et al. [100] decompose patches into directional fre-

quency sub-bands and determine better matches in each sub-band pyramid independently.

Huang et al. [47] extend the patch search space to accommodate the affine and perspective

deformation. The SR methods based on internal databases are typically slow due to the

heavy computational cost of patch searches in the scale-space pyramid. Such drawbacks

make these approaches less feasible for applications that require computational efficiency.

4
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2.1.2 SR Using External Databases

Numerous SR methods learn the LR-HR mapping with image pairs collected from ex-

ternal databases using supervised learning algorithms, such as nearest neighbor [32], man-

ifold embedding [8, 18], kernel ridge regression [59], and sparse representation [122, 123,

128]. Instead of directly modeling the complex patch space over the entire database, recent

methods partition the image set by K-means [121], sparse dictionary [106, 105] or random

forest [95], and learn locally linear regressors for each cluster. While these approaches

are effective and efficient, the extracted features and mapping functions are hand-designed,

which may not be optimal for generating high-quality SR images.

2.1.3 CNN-based SR

CNN-based SR methods have demonstrated state-of-the-art results by jointly optimiz-

ing the feature extraction, non-linear mapping, and image reconstruction stages in an end-

to-end manner. The VDSR network [57] shows significant improvement over the SRCNN

method [24] by increasing the network depth from 3 to 20 convolutional layers. To fa-

cilitate training a deeper model with a fast convergence speed, the VDSR method adopts

the global residual learning paradigm to predict the differences between the ground truth

HR image and the bicubic upsampled LR image instead of the actual pixel values. Wang

et al. [113] combine the domain knowledge of sparse coding with a deep CNN and train

a cascade network (SCN) to upsample images progressively. In [58], Kim et al. propose

a network with multiple recursive layers (DRCN) with up to 16 recursions. The DRRN

approach [103] further trains a 52-layer network by extending the local residual learning

approach of the ResNet [41] with deep recursion. We note that the above methods use bicu-

bic interpolation to pre-upsample input LR images before feeding into the deep networks,

which increases the computational cost and requires a large amount of memory.

To achieve real-time speed, the ESPCN method [98] extracts feature maps in the LR

space and replaces the bicubic upsampling operation with an efficient sub-pixel convolution

(i.e., pixel shuffling). The FSRCNN method [25] adopts a similar idea and uses a hourglass-

shaped CNN with transposed convolutional layers for upsampling. As a trade-off of speed,

both ESPCN [98] and FSRCNN [25] have limited network capacities for learning complex

mappings. Furthermore, these methods upsample images or features in one upsampling



6

step and use only one supervisory signal from the target upsampling scale. Such a design

often causes difficulties in training models for large upsampling scales (e.g., 4× or 8×). In

contrast, our model progressively upsamples input images on multiple pyramid levels and

use multiple losses to guide the prediction of sub-band residuals at each level, which leads

to accurate reconstruction, particularly for large upsampling scales.

All the above CNN-based SR methods optimize networks with the L2 loss function,

which often leads to over-smooth results that do not correlate well with human perception.

We demonstrate that the proposed deep network with the robust Charbonnier loss func-

tion better handles outliers and improves the SR performance over the L2 loss function.

Most recently, Lim et al. [75] propose a multi-scale deep SR model (MDSR) by extend-

ing ESPCN [98] with three branches for scale-specific upsampling but sharing most of

the parameters across different scales. The MDSR method is trained on a high-resolution

DIV2K [104] dataset (800 training images of 2k resolution), and achieves the state-of-the-

art performance. Table 2.1 shows the main components of the existing CNN-based SR

methods. The proposed LapSRN and MS-LapSRN are listed on the last two rows.

2.1.4 Laplacian Pyramid

The Laplacian pyramid has been widely used in several vision tasks, including image

blending [15], texture synthesis [43], edge-aware filtering [84] and semantic segmenta-

tion [34]. Denton et al. [23] propose a generative adversarial network based on a Laplacian

pyramid framework (LAPGAN) to generate realistic images, which is the most related to

our work. However, the proposed LapSRN differs from LAPGAN in two aspects.

First, the objectives of the two models are different. The LAPGAN is a generative

model which is designed to synthesize diverse natural images from random noise and sam-

ple inputs. On the contrary, the proposed LapSRN is a super-resolution model that predicts

a particular HR image based on the given LR image and upsampling scale factor. The LAP-

GAN uses a cross-entropy loss function to encourage the output images to respect the data

distribution of the training datasets. In contrast, we use the Charbonnier penalty function

to penalize the deviation of the SR prediction from the ground truth HR images.

Second, the differences in architecture designs result in disparate inference speed and

network capacities. The LAPGAN upsamples input images before applying convolution
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Table 2.1: Feature-by-feature comparisons of CNN-based SR algorithms. Methods

with direct reconstruction performs one-step upsampling from the LR to HR space, while

progressive reconstruction predicts HR images in multiple upsampling steps. Depth repre-

sents the number of convolutional and transposed convolutional layers in the longest path

from input to output for 4× SR. Global residual learning (GRL) indicates that the network

learns the difference between the ground truth HR image and the upsampled (i.e., using

bicubic interpolation or learned filters) LR images. Local residual learning (LRL) stands

for the local skip connections between intermediate convolutional layers.

Method Input Depth Filters Parameters GRL LRL
Multi-scale

Loss function
training

SRCNN [24] LR + bicubic 3 64 57k L2
FSRCNN [25] LR 8 56 12k L2

ESPCN [98] LR 3 64 20k L2
SCN [113] LR + bicubic 10 128 42k L2
VDSR [57] LR + bicubic 20 64 665k X X L2
DRCN [58] LR + bicubic 20 256 1775k X L2

DRRN [103] LR + bicubic 52 128 297k X X X L2
MDSR [75] LR 162 64 8000k X X Charbonnier

LapSRN (ours) LR 24 64 812k X Charbonnier

MS-LapSRN (ours) LR 84 64 222k X X X Charbonnier
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at each level, while our LapSRN extracts features directly from the LR space and upscales

images at the end of each level. Our network design effectively alleviates the computational

cost and increases the size of receptive fields. In addition, the convolutional layers at each

level in our LapSRN are connected through multi-channel transposed convolutional layers.

The residual images at a higher level are therefore predicted by a deeper network with

shared feature representations at lower levels. The shared features at lower levels increase

the non-linearity at finer convolutional layers to learn complex mappings.

2.1.5 Adversarial Training

The Generative Adversarial Networks (GANs) [36] have been applied to several im-

age reconstruction and synthesis problems, including image inpainting [86], face comple-

tion [74], and face super-resolution [126]. Ledig et al. [66] adopt the GAN framework

for learning natural image super-resolution. The ResNet [41] architecture is used as the

generative network and train the network using the combination of the L2 loss, percep-

tual loss [56], and adversarial loss. The SR results may have lower PSNR but are visually

plausible. Note that our LapSRN can be easily extended to incorporate adversarial training.

2.2 Video Temporal Consistency

We address the temporal consistency problem on a wide range of applications, includ-

ing automatic white balancing [44], harmonization [9], dehazing [39], image enhance-

ment [33], style transfer [48, 56, 72], colorization [50, 130], image-to-image translation [52,

132], and intrinsic image decomposition [7]. In the following, we discuss task-specific and

task-independent approaches that enforce temporal consistency on videos.

2.2.1 Task-Specific Approaches

A common solution to embed the temporal consistency constraint is to use optical flow

to propagate information between frames, e.g., colorization [71] and intrinsic decompo-

sition [125]. However, estimating optical flow is computationally expensive and thus is

impractical to apply on high-resolution and long sequences. Temporal filtering is an effi-

cient approach to extend image-based algorithms to videos, e.g., tone-mapping [5], color
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Table 2.2: Comparison of blind temporal consistency methods. Both the methods of

Bonneel et al. [11] and Yao et al. [124] require dense correspondences from optical flow

or PatchMatch [6], while the proposed method does not explicitly rely on these correspon-

dences at test time. The algorithm of Yao et al. [124] involves a key-frame selection from

the entire video and thus cannot generate output in an online manner.

Bonneel et al. [11] Yao et al. [124] Ours

Content constraint gradient local affine perceptual loss

Short-term temporal constraint X - X

Long-term temporal constraint - X X

Require dense correspondences at test time X X -

Online processing X - X

transfer [10], and visual saliency [65] to generate temporally consistent results. Neverthe-

less, these approaches assume a specific filter formulation and cannot be generalized to

other applications.

Recently, several approaches have been proposed to improve the temporal stability of

CNN-based image style transfer. Huang et al. [45] and Gupta et al. [37] train feed-forward

networks by jointly minimizing content, style and temporal warping losses. These methods,

however, are limited to the specific styles used during training. Chen et al. [19] learn flow

and mask networks to adaptively blend the intermediate features of the pre-trained style

network. While the architecture design is independent of the style network, it requires

the access to intermediate features and cannot be applied to non-differentiable tasks. In

contrast, the proposed model is entirely blind to specific algorithms applied to the input

frames and thus is applicable to optimization-based techniques, CNN-based algorithms,

and combinations of Photoshop filters.

2.2.2 Task-Independent Approaches

Several methods have been proposed to improve temporal consistency for multiple

tasks. Lang et al. [65] approximate global optimization of a class of energy formulation

(e.g., colorization, optical flow estimation) via temporal edge-aware filtering. In [26], Dong

et al. propose a segmentation-based algorithm and assume that the image transformation
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is spatially and temporally consistent. More general approaches assume gradient similar-

ity [11] or local affine transformation [124] between the input and the processed frames.

These methods, however, cannot handle more complicated tasks (e.g., artistic style trans-

fer). In contrast, we use the VGG perceptual loss [56] to impose high-level perceptual

similarity between the output and processed frames. We list the feature-by-feature compar-

isons between Bonneel et al. [11], Yao et al. [124] and the proposed method in Table 2.2.

2.3 Video Stitching

We first review the most relevant work on image and video stitching and then discuss

the conventional pushbroom camera, which inspires the proposed algorithm.

2.3.1 Image Stitching

Existing image stitching methods often build on the conventional pipeline of Brown and

Lowe et al. [13], which first estimates a 2D transformation (e.g., homography) for align-

ment and then stitches images using the seam-cutting [28] or multi-band blending [16].

However, ghosting artifacts and mis-alignment still exist, especially when input images

have large parallax. To account for parallax, several methods adopt spatially varying local

warping based on the affine [78] or projective [127] transformations. Zhang et al. [129]

integrate the content-preserving warping and seam-cutting algorithms to handle parallax

while avoiding local distortions. More recent methods combine the homography and simi-

larity transforms [17, 76] to reduce the projective distortion (i.e., stretched shapes) or adopt

a global similarity prior [22] to preserve the global shape of the whole stitched images.

While the above techniques are effective at creating a panorama from still images, ap-

plying these algorithms to stitch a video frame-by-frame results in a significant amount of

temporal instability. In contrast, the proposed algorithm stitches each frame individually

but is able to generate spatio-temporally coherent stitched videos due to the design of the

pushbroom interpolation layer.
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2.3.2 Video Stitching

Due to computational efficiency, it is not straightforward to enforce spatio-temporal

consistency in existing image stitching algorithms. Commercial software, e.g., VideoS-

titch Studio [110] or AutoPano Video [4], often finds a fixed transformation (with camera

calibration) to align all the frames, but cannot align local content well. Recent methods

integrate local warping and optical flow [89] or find a spatio-temporal content-preserving

warping [55] to stitch videos, which are computationally expensive. Lin et al. [77] stitch

videos captured from hand-held cameras based on 3D scene reconstruction, which is also

time-consuming. On the other hand, several approaches, e.g., Rich360 [69] and Google

Jump [2], create 360◦ videos from multiple videos captured on a structured rig. Recently,

NVIDIA provides a toolkit, VRWorks [83], to efficiently stitch videos based on depth and

motion estimation. Still several artifacts, e.g., broken objects and ghosting, are visible on

the stitched video.

Different from existing methods, the proposed algorithm learns locally adaptive warp-

ing based on a deep CNN to effectively and efficiently align the input views. The warping

is learned to optimize the quality of the stitched video in an end-to-end fashion.

2.3.3 Pushbroom Panorama

The linear pushbroom camera [38] is mounted on a moving platform, e.g., satellite, and

moves along a straight line. At each time stamp, the sensor captures 1D images of the

viewing plane, e.g., surface of the earth. The stack of these 1D images constitutes the 2D

panoramic image. The pushbroom camera has been widely used to create satellite images

or panorama for street scenes [96]. It works well when the scene is far from the sensor or

has nearly uniform depth. However, distortions (e.g., stretched or squashed objects) appear

when the captured scene has large depth variations or dynamic objects. Several methods

handle this issue by estimating scene depth [92], finding a cutting-seam on the space-time

volume [114], or optimizing the viewpoint for each pixel [1].

The proposed method is a software simulation of the pushbroom camera to create

panoramas and synthesizes the scan of a scene through spatial interpolation. We further

use a refinement network to reduce artifacts created by the interpolation process and learn

the entire model end-to-end to optimize the stitched view from a realistic synthetic dataset.



Chapter 3

Fast and Accurate Image

Super-Resolution with Deep Laplacian

Pyramid Networks

3.1 Introduction

Single image super-resolution (SR) aims to reconstruct a high-resolution (HR) im-

age from one single low-resolution (LR) input image. Example-based SR methods have

demonstrated the state-of-the-art performance by learning a mapping from LR to HR im-

age patches using large image datasets. Numerous learning algorithms have been applied

to learn such a mapping function, including dictionary learning [122, 123], local linear

regression [105, 121], and random forest [95], to name a few.

Convolutional Neural Networks (CNNs) have been widely used in vision tasks rang-

ing from object recognition [41], segmentation [79], optical flow [30], to super-resolution.

In [24], Dong et al. propose a Super-Resolution Convolutional Neural Network (SRCNN)

to learn a nonlinear LR-to-HR mapping function. This network architecture has been ex-

tended to embed a sparse coding model [113], increase network depth [57], or apply re-

cursive layers [58, 103]. While these models are able to generate high-quality SR images,

there remain three issues to be addressed. First, these methods use a pre-defined upsam-

pling operator, e.g.bicubic interpolation, to upscale an input LR image to the desired spatial

resolution before applying a network for predicting the details (Figure 3.1(a)). This pre-

12
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upsampling step increases unnecessary computational cost and does not provide additional

high-frequency information for reconstructing HR images. Several algorithms accelerate

the SRCNN by extracting features directly from the input LR images (Figure 3.1(b)) and re-

placing the pre-defined upsampling operator with sub-pixel convolution [98] or transposed

convolution [25] (also named as deconvolution in some literature). These methods, how-

ever, use relatively small networks and cannot learn complicated mappings well due to the

limited model capacity. Second, existing methods optimize the networks with an L2 loss

(i.e., mean squared error loss). Since the same LR patch may have multiple corresponding

HR patches and the L2 loss fails to capture the underlying multi-modal distributions of HR

patches, the reconstructed HR images are often over-smoothed and inconsistent to human

visual perception on natural images. Third, existing methods mainly reconstruct HR im-

ages in one upsampling step, which makes learning mapping functions for large scaling

factors (e.g., 8×) more difficult.

To address these issues, we propose the deep Laplacian Pyramid Super-Resolution Net-

work (LapSRN) to progressively reconstruct HR images in a coarse-to-fine fashion. As

shown in Figure 3.1(c), our model consists of a feature extraction branch and an image

reconstruction branch. The feature extraction branch uses a cascade of convolutional lay-

ers to extract non-linear feature maps from LR input images. We then apply a transposed

convolutional layer for upsampling the feature maps to a finer level and use a convolutional

layer to predict the sub-band residuals (i.e., the differences between the upsampled image

and the ground truth HR image at the respective pyramid level). The image reconstruc-

tion branch upsamples the LR images and takes the sub-band residuals from the feature

extraction branch to efficiently reconstruct HR images through element-wise addition. Our

network architecture naturally accommodates deep supervision (i.e., supervisory signals

can be applied simultaneously at each level of the pyramid) to guide the reconstruction of

HR images. Instead of using the L2 loss function, we propose to train the network with the

robust Charbonnier loss functions to better handle outliers and improve the performance.

While both feature extraction and image reconstruction branches have multiple levels, we

train the network in an end-to-end fashion without stage-wise optimization.

Our algorithm differs from existing CNN-based methods in the following three aspects:

1. Accuracy. Instead of using a pre-defined upsampling operation, our network jointly

optimizes the deep convolutional layers and upsampling filters for both images and
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bicubic interpolation

... ...

(a) Pre-upsampling (b) Post-upsampling

+

+

+
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Feature Extraction Branch

Image Reconstruction Branch

(c) Progressive upsampling (ours)

Figure 3.1: Comparisons of upsampling strategies in CNN-based SR algorithms. Red

arrows indicate convolutional layers. Blue arrows indicate transposed convolutions (up-

sampling), and green arrows denote element-wise addition operators. (a) Pre-upsampling

based approaches (e.g., SRCNN [24], VDSR [57], DRCN [58], DRRN [103]) typically

use the bicubic interpolation to upscale LR input images to the target spatial resolution be-

fore applying deep networks for prediction and reconstruction. (b) Post-upsampling based

methods directly extract features from LR input images and use sub-pixel convolution [98]

or transposed convolution [25] for upsampling. (c) Progressive upsampling approach us-

ing the proposed Laplacian pyramid network reconstructs HR images in a coarse-to-fine

manner.
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feature maps by minimizing the Charbonnier loss function. As a result, our model has

a large capacity to learn complicated mappings and effectively reduces the undesired

artifacts caused by spatial aliasing.

2. Speed. Our LapSRN accommodates both fast processing speed and high capac-

ity of deep networks. Experimental results demonstrate that our method is faster

than several CNN-based super-resolution models, e.g., VDSR [57], DRCN [58], and

DRRN [103]. The proposed model achieves real-time performance as FSRCNN [25]

while generating significantly better reconstruction accuracy.

3. Progressive reconstruction. Our model generates multiple intermediate SR predic-

tions in one feed-forward pass through progressive reconstruction. This characteristic

renders our method applicable to a wide range of tasks that require resource-aware

adaptability. For example, the same network can be used to enhance the spatial res-

olution of videos depending on the available computational resources. For scenarios

with limited computing resources, our 8× model can still perform 2× or 4× SR by

simply bypassing the computation of residuals at finer levels. Existing CNN-based

methods, however, do not offer such flexibility.

In addition, we exploit the following techniques to substantially improve our LapSRN:

1. Parameter sharing. We re-design our network architecture to share parameters

across pyramid levels and within the feature extraction sub-network via recursion.

Through parameter sharing, we reduce 73% of the network parameters while achiev-

ing better reconstruction accuracy on benchmark datasets.

2. Local skip connections. We systematically analyze three different approaches for

applying local skip connections in the proposed model. By leveraging proper skip

connections to alleviate the gradient vanishing and explosion problems, we are able

to train an 84-layer network to achieve the state-of-the-art performance.

3. Multi-scale training. Unlike in the preliminary work where we train three different

models for handling 2×, 4× and 8× SR, respectively, we train one single model

to handle multiple upsampling scales. The multi-scale model learns the inter-scale

correlation and improves the reconstruction accuracy against single-scale models.

We refer to our multi-scale model as MS-LapSRN.
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Figure 3.2: Detailed network architecture of the proposed LapSRN. At each pyramid

level, our model consists of a feature embedding sub-network for extracting non-linear

features, transposed convolutional layers for upsampling feature maps and images, and a

convolutional layer for predicting the sub-band residuals. As the network structure at each

level is highly similar, we share the weights of those components across pyramid levels to

reduce the number of network parameters.

3.2 Deep Laplacian Pyramid Network for SR

In this section, we describe the design methodology of the proposed LapSRN, including

the network architecture, parameter sharing, loss functions, multi-scale training strategy,

and details of implementation as well as network training.

3.2.1 Network Architecture

We construct our network based on the Laplacian pyramid framework. Our model takes

an LR image as input (rather than an upscaled version of the LR image) and progressively

predicts residual images on the log2 S pyramid levels, where S is the upsampling scale

factor. For example, our network consists of 3 pyramid levels for super-resolving an LR

image at a scale factor of 8. Our model consists of two branches: (1) feature extraction and

(2) image reconstruction.

Feature extraction branch. As illustrated in Figure 3.1(c) and Figure 3.2, the feature

extraction branch consists of (1) a feature embedding sub-network for transforming high-

dimensional non-linear feature maps, (2) a transposed convolutional layer for upsampling
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the extracted features by a scale of 2, and (3) a convolutional layer (Convres) for predicting

the sub-band residual image. The first pyramid level has an additional convolutional layer

(Convin) to extract high-dimensional feature maps from the input LR image. At other

levels, the feature embedding sub-network directly transforms features from the upscaled

feature maps at the previous pyramid level. Unlike the design of the LAPGAN, we do not

collapse the feature maps into an image before feeding into the next level. Therefore, the

feature representations at lower levels are connected to higher levels and thus can increase

the non-linearity of the network to learn complex mappings at the finer levels. Note that

we perform the feature extraction at the coarse resolution and generate feature maps at

the finer resolution with only one transposed convolutional layer. In contrast to existing

networks (e.g., [57, 103]) that perform all feature extraction and reconstruction at the finest

resolution, our network design significantly reduces the computational complexity.

Image reconstruction branch. At level s, the input image is upsampled by a scale of

2 with a transposed convolutional layer, which is initialized with a 4 × 4 bilinear kernel.

We then combine the upsampled image (using element-wise summation) with the predicted

residual image to generate a high-resolution output image. The reconstructed HR image at

level s is then used as an input for the image reconstruction branch at level s+1. The entire

network is a cascade of CNNs with the same structure at each level. We jointly optimize

the upsampling layer with all other layers to learn better a upsampling function.

3.2.2 Feature Embedding Sub-network

In our preliminary work [61], we use a stack of multiple convolutional layers as our fea-

ture embedding sub-network. In addition, we learn distinct sets of convolutional filters for

feature transforming and upsampling at different pyramid levels. Consequently, the num-

ber of network parameters increases with the depth of the feature embedding sub-network

and the upsampling scales, e.g., the 4× SR model has about twice number of parameters

than the 2× SR model. We explore two directions to reduce the network parameters of

LapSRN.

Parameter sharing across pyramid levels. Our first strategy is to share the network

parameters across pyramid levels as the network at each level shares the same structure
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and the task (i.e., predicting the residual images at 2× resolution). As shown in Figure 3.2,

we share the parameters of the feature embedding sub-network, upsampling layers, and the

residual prediction layers across all the pyramid levels. As a result, the number of network

parameters is independent of the upsampling scales. We can use a single set of parameters

to construct multi-level LapSRN models to handle different upsampling scales.

Parameter sharing within pyramid level. Our second strategy is to share the network

parameters within each pyramid level. Specifically, we extend the feature embedding sub-

network using deeply recursive layers to effectively increase the network depth without

increasing the number of parameters. The design of recursive layers has been adopted

by several recent CNN-based SR approaches. The DRCN method [58] applies a single

convolutional layer repeatedly up to 16 times. However, with a large number of filters

(i.e., 256 filters), the DRCN is memory-demanding and slow at runtime. Instead of reusing

the weights of a single convolutional layer, the DRRN [103] method shares the weights

of a block (2 convolutional layers with 128 filters). In addition, the DRRN introduces a

variant of local residual learning from the ResNet [41]. Specifically, the identity branch

of the ResNet comes from the output of the previous block, while the identity branch of

the DRRN comes from the input of the first block. Such a local skip connection in the

DRRN creates multiple short paths from input to output and thereby effectively alleviates

the gradient vanishing and exploding problems. Therefore, DRRN has 52 convolutional

layers with only 297k parameters.

In the proposed LapSRN, the feature embedding sub-network has R recursive blocks.

Each recursive block has D distinct convolutional layers, which controls the number of

parameters in the entire model. The weights of the D convolutional layers are shared

among the recursive blocks. Given an upsampling scale factor S, the depth of the LapSRN

can be computed by:

depth = (D ×R + 1)× L+ 2, (3.1)

where L = log2 S. The 1 within the parentheses represents the transposed convolutional

layers, and the 2 at the end of (3.1) represents the first convolutional layer applied on input

images and the last convolutional layer for predicting residuals. Here we define the depth

of a network as the longest path from input to output.
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Figure 3.3: Local residual learning. We explore three different ways of local skip con-

nection in the feature embedding sub-network for training deeper models.

Local residual learning. As the gradient vanishing and exploding problem are common

issues when training deep models, we explore three different methods of local residual

learning in our feature embedding sub-network to stabilize our training process:

1. No skip connection: A plain network without any local skip connection. We denote

our LapSRN without skip connections as LapSRNNS.

2. Distinct-source skip connection: The ResNet-style local skip connection. We de-

note our LapSRN with such skip connections as LapSRNDS.

3. Shared-source skip connection: The local skip connection introduced by DRRN [103].

We denote our LapSRN with such skip connections as LapSRNSS.

We illustrate the three local residual learning methods in Figure 3.3 and the detailed struc-

ture of our recursive block in Figure 3.4. We use the pre-activation structure [42] without

the batch normalization layer in our recursive block.

3.2.3 Loss Function

Let x be the input LR image and θ be the set of network parameters to be optimized.

Our goal is to learn a mapping function f for generating an HR image ŷ = f(x; θ) that is as
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Figure 3.4: Structure of our recursive block. There are D convolutional layers in a

recursive block. The weights of convolutional layers are distinct within the block but shared

among all recursive blocks.

similar to the ground truth HR image y as possible. We denote the residual image at level

l by r̂l, the upscaled LR image by xl and the corresponding HR images by ŷl. The desired

output HR images at level l is modeled by ŷl = xl + r̂l. We use the bicubic downsampling

to resize the ground truth HR image y to yl at each level. Instead of minimizing the mean

square errors between ŷl and yl, we use a robust loss function to handle outliers. The overall

loss function is defined as:

LS(y, ŷ; θ) =
1

N

N∑
i=1

L∑
l=1

ρ
(
y

(i)
l − ŷ

(i)
l

)
=

1

N

N∑
i=1

L∑
l=1

ρ
(

(y
(i)
l − x

(i)
l )− r̂(i)

l

)
, (3.2)

where ρ(x) =
√
x2 + ε2 is the Charbonnier penalty function (a differentiable variant of L1

norm) [14], N is the number of training samples in each batch, S is the target upsampling

scale factor, and L = log2 S is the number of pyramid levels in our model. We empirically

set ε to 1e− 3.

In the proposed LapSRN, each level s has its own loss function and the corresponding
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ground truth HR image ys. This multi-loss structure resembles the deeply-supervised net-

works for classification [67] and edge detection [115]. The deep multi-scale supervision

guides the network to reconstruct HR images in a coarse-to-fine fashion and reduce spatial

aliasing artifacts.

3.2.4 Multi-Scale Training

The multi-scales SR models (i.e., trained with samples from multiple upsampling scales

simultaneously) have been shown more effective than single-scale models as SR tasks

have inter-scale correlations. For pre-upsampling based SR methods (e.g., VDSR [57]

and DRRN [103]), the input and output of the network have the same spatial resolution,

and the outputs of different upsampling scales are generated from the same layer of the

network. In the proposed LapSRN, samples of different upsampling scales are generated

from different layers and have different spatial resolutions. We use 2×, 4×, and 8× SR

samples to train a multi-scale LapSRN model. We construct a 3-level LapSRN model and

minimize the combination of loss functions from three different scales:

L(y, ŷ; θ) =
∑

S∈{2,4,8}

LS(y, ŷ; θ). (3.3)

We note that the pre-upsampling based SR methods could apply scale augmentation for

arbitrary upsampling scales, while in our LapSRN, the upsampling scales for training are

limited to 2n× SR where n is an integer.

3.2.5 Implementation and Training Details

In the proposed LapSRN, we use 64 filters in all convolutional layers except the first

layer applied on the input LR image, the layers for predicting residuals, and the image

upsampling layer. The filter size of the convolutional and transposed convolutional layers

are 3 × 3 and 4 × 4, respectively. We pad zeros around the boundaries before applying

convolution to keep the size of all feature maps the same as the input of each level. We

initialize the convolutional filters using the method of He et al. [40] and use the leaky

rectified linear units (LReLUs) [80] with a negative slope of 0.2 as the non-linear activation

function.
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We use 91 images from Yang et al. [123] and 200 images from the training set of the

Berkeley Segmentation Dataset [3] as our training data. The training dataset of 291 images

is commonly used in the state-of-the-art SR methods [57, 95, 61, 103]. We use a batch

size of 64 and crop the size of HR patches to 128 × 128. An epoch has 1, 000 iterations

of back-propagation. We augment the training data in three ways: (1) Scaling: randomly

downscale images between [0.5, 1.0]; (2) Rotation: randomly rotate image by 90◦, 180◦, or

270◦; (3) Flipping: flip images horizontally with a probability of 0.5. Following the training

protocol of existing methods [24, 57, 103], we generate the LR training patches using the

bicubic downsampling. We use the MatConvNet toolbox [109] and train our model using

the Stochastic Gradient Descent (SGD) solver. In addition, we set the momentum to 0.9

and the weight decay to 1e− 4. The learning rate is initialized to 1e− 5 for all layers and

decreased by a factor of 2 for every 100 epochs.

3.3 Discussions and Analysis

In this section, we first validate the contributions of different components in the pro-

posed network. We then discuss the effect of local residual learning and parameter sharing

in our feature embedding sub-network. Finally, we analyze the performance of multi-scale

training strategy.

3.3.1 Model Design

We train a LapSRN model with 5 convolutional layers (without parameters sharing and

the recursive layers) at each pyramid level to analyze the performance of pyramid network

structure, global residual learning, robust loss functions, and multi-scale supervision.

Pyramid structure. By removing the pyramid structure, our model falls back to a net-

work similar to the FSRCNN but with the global residual learning. We train this network

using 10 convolutional layers in order to have the same depth as our LapSRN. Figure 3.5

shows the convergence curves in terms of PSNR on the SET14 for 4× SR. The quantitative

results in Table 3.1 and Figure 3.6 show that the pyramid structure leads to considerable

performance improvement (e.g., 0.7 dB on SET5 and 0.4 dB on SET14), which validates
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Figure 3.5: Convergence analysis. We analyze the contributions of the pyramid structures,

loss functions, and global residual learning by replacing each component with the one used

in existing methods. Our full model converges faster and achieves better performance.

Table 3.1: Ablation study of LapSRN. Our full model performs favorably against several

variants of the LapSRN on both SET5 and SET14 for 4× SR.

GRL Pyramid Loss SET5 SET14

X Charbonnier 30.58 27.61

X Charbonnier 31.10 27.94

X X L2 30.93 27.86

X X Charbonnier 31.28 28.04

the effectiveness of our Laplacian pyramid network design.

Global residual learning. To demonstrate the effectiveness of global residual learning,

we remove the image reconstruction branch and directly predict the HR images at each

level. In Figure 3.5, the performance of the non-residual network (blue curve) converges

slowly and fluctuates significantly during training. Our full LapSRN model (red curve), on

the other hand, outperforms SRCNN within 10 epochs.

Loss function. To validate the effectiveness of the Charbonnier loss function, we train

the proposed network with conventional L2 loss function. We use a larger learning rate

(1e− 4) since the gradient magnitude of the L2 loss is smaller. As illustrated in Figure 3.5,
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Figure 3.6: Contribution of different components in LapSRN. (a) Ground truth HR

image (b) without pyramid structure (c) without global residual learning (d) without robust

loss (e) full model (f) HR patch.

Ground-truth HR

LR 2× SR w/o M.S. 4× SR w/o M.S.

HR 2× SR w/ M.S. 4× SR w/ M.S.

Figure 3.7: Contribution of multi-scale supervision (M.S.). The multi-scale supervision

guides the network training to progressively reconstruct the HR images and help reduce the

spatial aliasing artifacts.
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the network optimized with the L2 loss (green curve) requires more iterations to achieve

comparable performance with SRCNN. In Figure 3.6, we show that the SR images recon-

struct by our full model contain relatively clean and sharp details.

Multi-scale supervision. As described in Section 3.2.3, we use the multiple loss func-

tions to supervise the intermediate output at each pyramid level. We show the intermediate

output images in Figure 3.7. The model without the multi-scale supervision (i.e., only ap-

plying supervision at the finest scale) cannot reduce the spatial aliasing artifacts well, while

our LapSRN progressively reconstructs clear and sharp straight lines.

3.3.2 Parameter Sharing

In this section, we reduce the network parameters in our LapSRN by sharing weights

across and within pyramid levels and discuss the performance contribution.

Parameter sharing across pyramid levels. Our LapSRN 4× model [61] has 812k pa-

rameters as each pyramid level has distinct convolutional and transposed convolutional

layers. By sharing the weights across pyramid levels as shown in Figure 3.2, we reduce the

number of parameters to 407k. Such model has 10 convolutional layers, 1 recursive block,

and does not use any local residual learning strategies. We denote this model by LapSRNNS-

D10R1. We compare the above models on the BSDS100 and URBAN100 datasets for 4×
SR. Table 3.2 shows that the LapSRNNS-D10R1 achieves comparable performance with

the LapSRN [61] while using only half of the network parameters.

Parameter sharing within pyramid levels. We further reduce the network parameters

by decreasing the number of convolutional layers (D) and increasing the number of recur-

sive blocks (R). We train another two models: LapSRNNS-D5R2 and LapSRNNS-D2R5,

which have 222k and 112k parameters, respectively. As shown in Table 3.2, while the

LapSRNNS-D5R2 and LapSRNNS-D2R5 have fewer parameters, we observe the perfor-

mance drop, particularly on the challenging URBAN100 dataset.
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Table 3.2: Parameter sharing in LapSRN. We reduce the number of network parameters

by sharing the weights between pyramid levels and applying recursive layers in the feature

embedding sub-network.

Model #Parameters BSDS100 URBAN100

LapSRN [61] 812k 27.32 25.21

LapSRNNS-D10R1 407k 27.32 25.20

LapSRNNS-D5R2 222k 27.30 25.16

LapSRNNS-D2R5 112k 27.26 25.10

3.3.3 Training Deeper Models

In Section 3.3.2, we show that we can achieve comparable performance to the prelim-

inary LapSRN by using only half or 27% of parameters. Next, we train deeper models to

improve the performance without increasing the number of the network parameters.

Local residual learning. We increase the number of recursive blocks in our feature em-

bedding sub-network to increase the depth of network but keep the number of parameters

the same. We test three LapSRN models: D5R2, D5R5, and D5R8, which have 5 distinct

convolutional layers with 2, 5 and 8 recursive blocks, respectively. We train the models with

three different local residual learning methods as described in Section 3.2.2. We plot the

convergence curves of the LapSRN-D5R5 in Figure 3.8 and present the quantitative eval-

uation in Table 3.3. Overall, the shared-source local skip connection method (LapSRNSS)

performs favorably against other alternatives, particularly for deeper models (i.e., more

recursive blocks).

Study of D and R. Our feature embedding sub-network consists of R recursive blocks,

and each recursive block hasD distinct convolutional layers which are shared among all the

recursive blocks. Here we extensively evaluate the contributions of R and D to the recon-

struction accuracy. We use D = 2, 4, 5, 10 to construct models with different network depth.

We use the shared-source local skip connection for all the evaluated models. We show the

quantitative evaluation in Table 3.4 and visualize the performance over the network depth

in Figure 3.9. While the D2R5, D5R2, and D10R1 models perform comparably, the D5R8
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Figure 3.8: Comparisons of local residual learning. We train our LapSRN-D5R5 model

with three different local residual learning methods as described in Section 3.2.2 and eval-

uate on the SET5 for 4× SR.

Table 3.3: Quantitative evaluation of local residual learning. We compare three dif-

ferent local residual learning methods on the URBAN100 dataset for 4× SR. Overall, the

shared local skip connection method (LapSRNSS) achieves superior performance for deeper

models.

Model Depth LapSRNNS LapSRNDS LapSRNSS

D5R2 24 25.16 25.22 25.23

D5R5 54 25.18 25.33 25.34

D5R8 84 25.26 25.33 25.38
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Table 3.4: Quantitative evaluation of the number of recursive blocks R and the num-

ber of convolutional layers D in our feature embedding sub-network. We build Lap-

SRN with different network depth by varying the values of D and R and evaluate on the

BSDS100 and URBAN100 datasets for 4× SR.

Model #Parameters Depth BSDS100 URBAN100

D2R5 112k 24 27.33 25.24

D2R12 112k 52 27.35 25.31

D2R20 112k 84 27.37 25.31

D4R3 185k 28 27.33 25.25

D4R6 185k 52 27.37 25.34

D4R10 185k 84 27.37 25.35

D5R2 222k 24 27.32 25.23

D5R5 222k 54 27.38 25.34

D5R8 222k 84 27.39 25.38

D10R1 407k 24 27.33 25.23

D10R2 407k 44 27.36 25.27

D10R4 407k 84 27.38 25.36

method achieves the best reconstruction accuracy when the network depth is more than 80.

3.3.4 Multi-Scale Training

We train our LapSRN using the multi-scale training strategy. As our pyramid net-

work design only accounts for training with 2n× samples, we train our LapSRNSS-D5R8

model with the following scale combinations: {2×}, {4×}, {8×}, {2×, 4×}, {2×, 8×},
{4×, 8×} and {2×, 4×, 8×}. During training, we equally split a batch of samples for every

upsampling scale. Note that all these models have the same numbers of parameters due to

parameter sharing. We evaluate the above models for 2×, 4× and 8× SR by constructing

LapSRN with the corresponding pyramid levels. We also evaluate 3× SR using our 2-level

LapSRN and resizing the network output to the desired spatial resolution. We present the

quantitative evaluation on the SET14, BSDS100 and URBAN100 datasets in Table 3.5 and

and visual comparisons in Figure 3.10. From our experimental results, the model trained
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Figure 3.9: PSNR versus network depth. We test the proposed model with different D

and R on the URBAN100 dataset for 4× SR.

with 2×, 4× and 8× samples has the capacity to handle multiple upsampling scales and

generalizes well to the unseen 3× SR examples. Furthermore, the multi-scale models per-

form favorably against the single-scale models, particularly on the URBAN100 dataset.

Note that our models do not use any 3× SR samples for training. Although our 4× model

is able to generate decent results for 3× SR, the multi-scale models, especially the models

trained on {2×, 4×} and {2×, 4×, 8×} SR, further improve the performance by 0.14 and

0.17 dB on the URBAN100 dataset, respectively.

3.4 Experimental Results

In this section, we compare the proposed LapSRN with several state-of-the-art SR

methods on benchmark datasets. We present the quantitative evaluation, qualitative com-

parison, runtime, and parameters comparisons. We then evaluate our method on real-world

photos, compare with the LAPGAN [23], and incorporate the adversarial training. In addi-

tion, we conduct a human subject study using the pairwise comparison to evaluate the sub-

jective preference on SR results. Finally, we discuss the limitation of the proposed method.

We provide our source code and SR results generated by all the evaluated methods on our

project website at http://vllab.ucmerced.edu/wlai24/LapSRN.
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Figure 3.10: Visual comparison of multi-scale training.
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Table 3.5: Quantitative evaluation of multi-scale training. We train the proposed model

with combinations of 2×, 4× and 8× SR samples and evaluate on the SET14, BSDS100

and URBAN100 datasets for 2×, 3×, 4× and 8× SR. The model trained with 2×, 4× and

8× SR samples together achieves better performance on all upsampling scales and can also

generalize to unseen 3× SR examples.

Train \ Test
SET14 BSDS100 URBAN100

2× 3× 4× 8× 2× 3× 4× 8× 2× 3× 4× 8×

2× 33.24 27.31 25.21 21.81 32.01 26.93 25.13 22.25 31.01 24.93 22.80 19.89

4× 32.96 29.90 28.21 23.97 31.80 28.89 27.39 24.26 30.53 27.30 25.38 21.61

8× 32.36 29.89 28.14 24.52 31.28 28.84 27.34 24.63 29.16 27.15 25.23 21.95

2×, 4× 33.25 29.96 28.27 24.15 32.04 28.93 27.42 24.32 31.17 27.44 25.49 21.81

2×, 8× 33.22 29.93 28.17 24.52 32.01 28.89 27.38 24.63 31.05 27.32 25.38 22.00

4×, 8× 32.88 29.90 28.20 24.48 31.76 28.89 27.40 24.62 30.42 27.37 25.43 22.01

2×, 4×, 8× 33.28 29.97 28.26 24.57 32.05 28.93 27.43 24.65 31.15 27.47 25.51 22.06

3.4.1 Comparisons with State-of-the-arts

We compare the proposed method with 10 state-of-the-art SR algorithms, including

dictionary-based methods (A+ [105] and RFL [95]), self-similarity based method (Self-

ExSR [47]), and CNN-based methods (SRCNN [24], FSRCNN [25], SCN [113], VDSR [57],

DRCN [58], DRRN [103] and our preliminary approach [61]). We carry out extensive ex-

periments on five public benchmark datasets: SET5 [8], SET14 [128], BSDS100 [3], UR-

BAN100 [47] and MANGA109 [82]. The SET5, SET14 and BSDS100 datasets consist of

natural scenes; the URBAN100 set contains challenging urban scenes images with details

in different frequency bands; and the MANGA109 is a dataset of Japanese manga.

We evaluate the SR results with three widely used image quality metrics: PSNR,

SSIM [112], and IFC [97] and compare performance on 2×, 3×, 4× and 8× SR. We re-

train existing methods for 8× SR using the source code (A+ [105], RFL [95], SRCNN [24],

FSRCNN [25], VDSR [57], and DRRN [103]) or our own implementation (DRCN). Both

the SelfExSR and SCN methods can naturally handle different scale factors using pro-

gressive reconstruction. We use 2×, 4× and 8× SR samples for training VDSR [57] and

DRRN [103] while use only 8× SR samples for other algorithms to follow the training

strategies of individual methods.
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Table 3.6: Quantitative evaluation of state-of-the-art SR algorithms. We report the av-

erage PSNR/SSIM/IFC for 2×, 3×, and 4× SR. Red and blue indicate the best and the

second best performance, respectively. Both LapSRN [61] and the proposed MS-LapSRN

do not use any 3× SR images for training. To generate the results of 3× SR, we first per-

form 4× SR on input LR images and then downsample the output to the target resolution.

Algorithm Scale
SET5 SET14 BSDS100 URBAN100 MANGA109

PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC

Bicubic

2×

33.69 / 0.931 / 6.166 30.25 / 0.870 / 6.126 29.57 / 0.844 / 5.695 26.89 / 0.841 / 6.319 30.86 / 0.936 / 6.214

A+ [105] 36.60 / 0.955 / 8.715 32.32 / 0.906 / 8.200 31.24 / 0.887 / 7.464 29.25 / 0.895 / 8.440 35.37 / 0.968 / 8.906

RFL [95] 36.59 / 0.954 / 8.741 32.29 / 0.905 / 8.224 31.18 / 0.885 / 7.473 29.14 / 0.891 / 8.439 35.12 / 0.966 / 8.921

SelfExSR [47] 36.60 / 0.955 / 8.404 32.24 / 0.904 / 8.018 31.20 / 0.887 / 7.239 29.55 / 0.898 / 8.414 35.82 / 0.969 / 8.721

SRCNN [24] 36.72 / 0.955 / 8.166 32.51 / 0.908 / 7.867 31.38 / 0.889 / 7.242 29.53 / 0.896 / 8.092 35.76 / 0.968 / 8.471

FSRCNN [25] 37.05 / 0.956 / 8.199 32.66 / 0.909 / 7.841 31.53 / 0.892 / 7.180 29.88 / 0.902 / 8.131 36.67 / 0.971 / 8.587

SCN [113] 36.58 / 0.954 / 7.358 32.35 / 0.905 / 7.085 31.26 / 0.885 / 6.500 29.52 / 0.897 / 7.324 35.51 / 0.967 / 7.601

VDSR [57] 37.53 / 0.959 / 8.190 33.05 / 0.913 / 7.878 31.90 / 0.896 / 7.169 30.77 / 0.914 / 8.270 37.22 / 0.975 / 9.120

DRCN [58] 37.63 / 0.959 / 8.326 33.06 / 0.912 / 8.025 31.85 / 0.895 / 7.220 30.76 / 0.914 / 8.527 37.63 / 0.974 / 9.541

LapSRN [61] 37.52 / 0.959 / 9.010 33.08 / 0.913 / 8.501 31.80 / 0.895 / 7.715 30.41 / 0.910 / 8.907 37.27 / 0.974 / 9.481

DRRN [103] 37.74 / 0.959 / 8.671 33.23 / 0.914 / 8.320 32.05 / 0.897 / 7.613 31.23 / 0.919 / 8.917 37.92 / 0.976 / 9.268

MS-LapSRN-D5R2 (ours) 37.62 / 0.960 / 9.038 33.13 / 0.913 / 8.539 31.93 / 0.897 / 7.776 30.82 / 0.915 / 9.081 37.38 / 0.975 / 9.434

MS-LapSRN-D5R5 (ours) 37.72 / 0.960 / 9.265 33.24 / 0.914 / 8.726 32.00 / 0.898 / 7.906 31.01 / 0.917 / 9.334 37.71 / 0.975 / 9.710

MS-LapSRN-D5R8 (ours) 37.78 / 0.960 / 9.305 33.28 / 0.915 / 8.748 32.05 / 0.898 / 7.927 31.15 / 0.919 / 9.406 37.78 / 0.976 / 9.765

Bicubic

3×

30.41 / 0.869 / 3.596 27.55 / 0.775 / 3.491 27.22 / 0.741 / 3.168 24.47 / 0.737 / 3.661 26.99 / 0.859 / 3.521

A+ [105] 32.62 / 0.909 / 4.979 29.15 / 0.820 / 4.545 28.31 / 0.785 / 4.028 26.05 / 0.799 / 4.883 29.93 / 0.912 / 4.880

RFL [95] 32.47 / 0.906 / 4.956 29.07 / 0.818 / 4.533 28.23 / 0.782 / 4.023 25.88 / 0.792 / 4.781 29.61 / 0.905 / 4.758

SelfExSR [47] 32.66 / 0.910 / 4.911 29.18 / 0.821 / 4.505 28.30 / 0.786 / 3.923 26.45 / 0.810 / 4.988 27.57 / 0.821 / 2.193

SRCNN [24] 32.78 / 0.909 / 4.682 29.32 / 0.823 / 4.372 28.42 / 0.788 / 3.879 26.25 / 0.801 / 4.630 30.59 / 0.914 / 4.698

FSRCNN [25] 33.18 / 0.914 / 4.970 29.37 / 0.824 / 4.569 28.53 / 0.791 / 4.061 26.43 / 0.808 / 4.878 31.10 / 0.921 / 4.912

SCN [113] 32.62 / 0.908 / 4.321 29.16 / 0.818 / 4.006 28.33 / 0.783 / 3.553 26.21 / 0.801 / 4.253 30.22 / 0.914 / 4.302

VDSR [57] 33.67 / 0.921 / 5.088 29.78 / 0.832 / 4.606 28.83 / 0.799 / 4.043 27.14 / 0.829 / 5.045 32.01 / 0.934 / 5.389

DRCN [58] 33.83 / 0.922 / 5.202 29.77 / 0.832 / 4.686 28.80 / 0.797 / 4.070 27.15 / 0.828 / 5.187 32.31 / 0.936 / 5.564

LapSRN [61] 33.82 / 0.922 / 5.194 29.87 / 0.832 / 4.662 28.82 / 0.798 / 4.057 27.07 / 0.828 / 5.168 32.21 / 0.935 / 5.406

DRRN [103] 34.03 / 0.924 / 5.397 29.96 / 0.835 / 4.878 28.95 / 0.800 / 4.269 27.53 / 0.764 / 5.456 32.74 / 0.939 / 5.659

MS-LapSRN-D5R2 (ours) 33.88 / 0.923 / 5.165 29.89 / 0.834 / 4.637 28.87 / 0.800 / 4.040 27.23 / 0.831 / 5.142 32.28 / 0.936 / 5.384

MS-LapSRN-D5R5 (ours) 34.01 / 0.924 / 5.307 29.96 / 0.836 / 4.758 28.92 / 0.801 / 4.127 27.39 / 0.835 / 5.333 32.60 / 0.938 / 5.559

MS-LapSRN-D5R8 (ours) 34.06 / 0.924 / 5.390 29.97 / 0.836 / 4.806 28.93 / 0.802 / 4.154 27.47 / 0.837 / 5.409 32.68 / 0.939 / 5.621

Bicubic

4×

28.43 / 0.811 / 2.337 26.01 / 0.704 / 2.246 25.97 / 0.670 / 1.993 23.15 / 0.660 / 2.386 24.93 / 0.790 / 2.289

A+ [105] 30.32 / 0.860 / 3.260 27.34 / 0.751 / 2.961 26.83 / 0.711 / 2.565 24.34 / 0.721 / 3.218 27.03 / 0.851 / 3.177

RFL [95] 30.17 / 0.855 / 3.205 27.24 / 0.747 / 2.924 26.76 / 0.708 / 2.538 24.20 / 0.712 / 3.101 26.80 / 0.841 / 3.055

SelfExSR [47] 30.34 / 0.862 / 3.249 27.41 / 0.753 / 2.952 26.84 / 0.713 / 2.512 24.83 / 0.740 / 3.381 27.83 / 0.866 / 3.358

SRCNN [24] 30.50 / 0.863 / 2.997 27.52 / 0.753 / 2.766 26.91 / 0.712 / 2.412 24.53 / 0.725 / 2.992 27.66 / 0.859 / 3.045

FSRCNN [25] 30.72 / 0.866 / 2.994 27.61 / 0.755 / 2.722 26.98 / 0.715 / 2.370 24.62 / 0.728 / 2.916 27.90 / 0.861 / 2.950

SCN [113] 30.41 / 0.863 / 2.911 27.39 / 0.751 / 2.651 26.88 / 0.711 / 2.309 24.52 / 0.726 / 2.860 27.39 / 0.857 / 2.889

VDSR [57] 31.35 / 0.883 / 3.496 28.02 / 0.768 / 3.071 27.29 / 0.726 / 2.627 25.18 / 0.754 / 3.405 28.83 / 0.887 / 3.664

DRCN [58] 31.54 / 0.884 / 3.502 28.03 / 0.768 / 3.066 27.24 / 0.725 / 2.587 25.14 / 0.752 / 3.412 28.98 / 0.887 / 3.674

LapSRN [61] 31.54 / 0.885 / 3.559 28.19 / 0.772 / 3.147 27.32 / 0.727 / 2.677 25.21 / 0.756 / 3.530 29.09 / 0.890 / 3.729

DRRN [103] 31.68 / 0.888 / 3.703 28.21 / 0.772 / 3.252 27.38 / 0.728 / 2.760 25.44 / 0.764 / 3.700 29.46 / 0.896 / 3.878

MS-LapSRN-D5R2 (ours) 31.62 / 0.887 / 3.585 28.16 / 0.772 / 3.151 27.36 / 0.729 / 2.684 25.32 / 0.760 / 3.537 29.18 / 0.892 / 3.750

MS-LapSRN-D5R5 (ours) 31.74 / 0.888 / 3.705 28.25 / 0.773 / 3.238 27.42 / 0.731 / 2.737 25.45 / 0.765 / 3.674 29.48 / 0.896 / 3.888

MS-LapSRN-D5R8 (ours) 31.74 / 0.889 / 3.749 28.26 / 0.774 / 3.261 27.43 / 0.731 / 2.755 25.51 / 0.768 / 3.727 29.54 / 0.897 / 3.928
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Table 3.7: Quantitative evaluation of state-of-the-art SR algorithms. We report the

average PSNR/SSIM/IFC for 8× SR. Red and blue indicate the best and the second best

performance, respectively.

Algorithm Scale
SET5 SET14 BSDS100 URBAN100 MANGA109

PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC

Bicubic

8×

24.40 / 0.658 / 0.836 23.10 / 0.566 / 0.784 23.67 / 0.548 / 0.646 20.74 / 0.516 / 0.858 21.47 / 0.650 / 0.810

A+ [105] 25.53 / 0.693 / 1.077 23.89 / 0.595 / 0.983 24.21 / 0.569 / 0.797 21.37 / 0.546 / 1.092 22.39 / 0.681 / 1.056

RFL [95] 25.38 / 0.679 / 0.991 23.79 / 0.587 / 0.916 24.13 / 0.563 / 0.749 21.27 / 0.536 / 0.992 22.28 / 0.669 / 0.968

SelfExSR [47] 25.49 / 0.703 / 1.121 23.92 / 0.601 / 1.005 24.19 / 0.568 / 0.773 21.81 / 0.577 / 1.283 22.99 / 0.719 / 1.244

SRCNN [24] 25.33 / 0.690 / 0.938 23.76 / 0.591 / 0.865 24.13 / 0.566 / 0.705 21.29 / 0.544 / 0.947 22.46 / 0.695 / 1.013

FSRCNN [25] 25.60 / 0.697 / 1.016 24.00 / 0.599 / 0.942 24.31 / 0.572 / 0.767 21.45 / 0.550 / 0.995 22.72 / 0.692 / 1.009

SCN [113] 25.59 / 0.706 / 1.063 24.02 / 0.603 / 0.967 24.30 / 0.573 / 0.777 21.52 / 0.560 / 1.074 22.68 / 0.701 / 1.073

VDSR [57] 25.93 / 0.724 / 1.199 24.26 / 0.614 / 1.067 24.49 / 0.583 / 0.859 21.70 / 0.571 / 1.199 23.16 / 0.725 / 1.263

DRCN [58] 25.93 / 0.723 / 1.192 24.25 / 0.614 / 1.057 24.49 / 0.582 / 0.854 21.71 / 0.571 / 1.197 23.20 / 0.724 / 1.257

LapSRN [61] 26.15 / 0.738 / 1.302 24.35 / 0.620 / 1.133 24.54 / 0.586 / 0.893 21.81 / 0.581 / 1.288 23.39 / 0.735 / 1.352

DRRN [103] 26.18 / 0.738 / 1.307 24.42 / 0.622 / 1.127 24.59 / 0.587 / 0.891 21.88 / 0.583 / 1.299 23.60 / 0.742 / 1.406

MS-LapSRN-D5R2 (ours) 26.20 / 0.747 / 1.366 24.45 / 0.626 / 1.170 24.61 / 0.590 / 0.920 21.95 / 0.592 / 1.364 23.70 / 0.751 / 1.470

MS-LapSRN-D5R5 (ours) 26.34 / 0.752 / 1.414 24.57 / 0.629 / 1.200 24.65 / 0.591 / 0.938 22.06 / 0.597 / 1.426 23.85 / 0.756 / 1.538

MS-LapSRN-D5R8 (ours) 26.34 / 0.753 / 1.435 24.57 / 0.629 / 1.209 24.65 / 0.592 / 0.943 22.06 / 0.598 / 1.446 23.90 / 0.759 / 1.564

We compare three variations of the proposed method: (1) LapSRNSS-D5R2, which

has similar depth as the VDSR [57], DRCN [58] and LapSRN [61], (2) LapSRNSS-D5R5,

which has the same depth as in the DRRN [103], and (3) LapSRNSS-D5R8, which has 84

layers for 4× SR. We train the above three models using the multi-scale training strategy

with 2×, 4× and 8× SR samples and denote our multi-scale models as MS-LapSRN.

We show the quantitative results in Table 3.6 and 3.7. Our LapSRN performs favorably

against existing methods especially on 4× and 8× SR. In particular, our algorithm achieves

higher IFC values, which has been shown to be correlated well with human perception of

image super-resolution [120]. We note that our method does not use any 3× SR samples

for training but still generates comparable results as the DRRN.

We show visual comparisons on the BSDS100, URBAN100 and MANGA109 datasets

for 4× and 8× SR in Figure 3.11. Our method accurately reconstructs parallel straight

lines, grid patterns, and texts. We observe that the results generated from pre-upsampling

based methods [24, 57, 103] still contain noticeable artifacts caused by spatial aliasing. In

contrast, our approach effectively suppresses such artifacts through progressive reconstruc-

tion and the robust loss function. For 8× SR, it is challenging to predict HR images from

bicubic-upsampled input [24, 57, 105] or using one-step upsampling [25]. The state-of-

the-art methods do not super-resolve the fine structures well. In contrast, our MS-LapSRN
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reconstructs high-quality HR images at a relatively fast speed.

3.4.2 Execution Time

We use the source codes of state-of-the-art methods to evaluate the runtime on the

same machine with 3.4 GHz Intel i7 CPU (32G RAM) and NVIDIA Titan Xp GPU (12G

Memory). Since the testing code of the SRCNN [24] and FSRCNN [25] is based on CPU

implementation, we rebuild these models in MatConvNet to measure the runtime on GPU.

Figure 3.12 shows the trade-offs between the runtime and performance (in terms of PSNR)

on the URBAN100 dataset for 4× SR. The speed of our MS-LapSRN-D5R2 is faster than

all the existing methods except the FSRCNN [25]. Our MS-LapSRN-D5R8 model outper-

forms the state-of-the-art DRRN [103] method and is an order of magnitude faster.

Next, we focus on comparisons between fast CNN-based methods: SRCNN [24], FS-

RCNN [25], VDSR [57], and LapSRN [61]. We take an LR image with a spatial resolution

of 128 × 128, and perform 2×, 4× and 8× SR, respectively. We evaluate each method

for 10 times and report the averaged runtime in Figure 3.13. The FSRCNN is the fastest

algorithm since it applies convolution on LR images and has less number of convolutional

layers and filters. The runtime of the SRCNN and VDSR depends on the size of output

images, while the speed of the FSRCNN and LapSRN is mainly determined by the size of

input images. As the proposed LapSRN progressively upscales images and applies more

convolutional layers for larger upsampling scales (i.e., require more pyramid levels), the

time complexity slightly increases with respect to the desired upsampling scales. However,

the speed of our LapSRN still performs favorably against the SRCNN, VDSR, and other

existing methods.

3.4.3 Model Parameters

We show the reconstruction performance versus the number of network parameters of

CNN-based SR methods in Figure 3.14. By sharing parameters and using recursive layers,

our MS-LapSRN has parameters about 73% less than the LapSRN [61], 66% less than the

VDSR [57], 87% less than the DRCN [58], and 25% less than the DRRN [103]. While

our model has a smaller footprint, we achieve the state-of-the-art performance among

these CNN-based methods. Comparing to the SRCNN [24] and FSRCNN [25], our MS-
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HR Bicubic A+ [105] SelfExSR [47] SRCNN [24] FSRCNN [25]

Ground-truth HR SCN [113] VDSR [57] DRCN [58] DRRN [103] LapSRN [61] MS-LapSRN

HR Bicubic A+ [105] SelfExSR [47] SRCNN [24] FSRCNN [25]

Ground-truth HR SCN [113] VDSR [57] DRCN [58] DRRN [103] LapSRN [61] MS-LapSRN

HR Bicubic A+ [105] SelfExSR [47] SRCNN [24] FSRCNN [25]

Ground-truth HR SCN [113] VDSR [57] DRCN [58] DRRN [103] LapSRN [61] MS-LapSRN

HR Bicubic A+ [105] SelfExSR [47] SRCNN [24] FSRCNN [25]

Ground-truth HR SCN [113] VDSR [57] DRCN [58] DRRN [103] LapSRN [61] MS-LapSRN

HR Bicubic A+ [105] SelfExSR [47] SRCNN [24] FSRCNN [25]

Ground-truth HR SCN [113] VDSR [57] DRCN [58] DRRN [103] LapSRN [61] MS-LapSRN

HR Bicubic A+ [105] SelfExSR [47] SRCNN [24] FSRCNN [25]

Ground-truth HR SCN [113] VDSR [57] DRCN [58] DRRN [103] LapSRN [61] MS-LapSRN

Figure 3.11: Visual comparison for 4× SR (top-3) and 8× SR (bottom-3) on the

BSDS100, URBAN100 and MANGA109 datasets.
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Figure 3.12: Runtime versus performance. The results are evaluated on the URBAN100

dataset for 4× SR. The proposed MS-LapSRN strides a balance between reconstruction

accuracy and execution time.
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Figure 3.13: Trade-off between runtime and upsampling scales. We fix the size of input

images to 128×128 and perform 2×, 4× and 8× SR with the SRCNN [24], FSRCNN [25],

VDSR [57] and three variations of MS-LapSRN, respectively.
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Figure 3.14: Number of network parameters versus performance. The results are eval-

uated on the URBAN100 dataset for 4× SR. The proposed MS-LapSRN strides a balance

between reconstruction accuracy and execution time.

LapSRN-D5R8 has about 0.9 to 1 dB improvement on the challenging URBAN100 dataset

for 4× SR.

3.4.4 Super-Resolving Real-World Photos

We demonstrate an application of super-resolving historical photographs with JPEG

compression artifacts. In these cases, neither the ground-truth images nor the downsam-

pling kernels are available. As shown in Figure 3.15, our method can reconstruct sharper

and more accurate images than the state-of-the-art approaches.

3.4.5 Comparison to LAPGAN

As described in Section 2.1.4, the target applications of the LAPGAN [23] and Lap-

SRN are different. Therefore, we focus on comparing the network architectures for image

super-resolution. We train the LAPGAN and LapSRN for 4× and 8× SR with the same

training data and settings. We use 5 convolutional layers at each level and optimize both

networks with the Charbonnier loss function. We note that in [23] the sub-networks are

independently trained. For fair comparisons, we jointly train the entire network for both
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Bicubic FSRCNN [25]

Input LR VDSR [57] MS-LapSRN

Bicubic DRCN [58]

Input LR LapSRN [61] MS-LapSRN

Figure 3.15: Comparison of real-world photos for 4× SR. The ground truth HR images

and the blur kernels are not available in these cases. On the top image, our method super-

resolves the letter “W” accurately while VDSR incorrectly connects the stroke with the

letter “O”. On the bottom image, our method reconstructs the rails without the artifacts.
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Table 3.8: Quantitative comparisons between the generative network of the LAP-

GAN [23] and our LapSRN. Our LapSRN achieves better reconstruction quality and

faster processing speed than the LAPGAN.

Method Scale
SET14 BSDS100

PSNR Seconds PSNR Seconds

LAPGAN 4 27.89 0.0446 27.09 0.0135

LapSRN 4 28.04 0.0395 27.22 0.0078

LAPGAN 8 24.30 0.0518 24.46 0.0110

LapSRN 8 24.42 0.0427 24.53 0.0107

(a) Ground Truth HR (b) LapSRN + adv. (c) LapSRN

Figure 3.16: Visual comparison for adversarial training. We compare the results trained

with and without the adversarial training on 4× SR.

LAPGAN and LapSRN. We present quantitative comparisons and runtime on the SET14

and BSDS100 datasets in Table 3.8. Under the same training setting, our method achieves

more accurate reconstruction and faster execution speed than that of the LAPGAN.

3.4.6 Adversarial Training

We demonstrate that our LapSRN can be extended to incorporate the adversarial train-

ing [36]. We treat our LapSRN as a generative network and build a discriminative network

using the discriminator of the DCGAN [90]. The discriminative network consists of four

convolutional layers with a stride of 2, two fully connected layers and one sigmoid layer to
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generate a scalar probability for distinguishing between real images and generated images

from the generative network. We find that it is difficult to obtain accurate SR images by

solely minimizing the cross-entropy loss. Therefore, we include the pixel-wise reconstruc-

tion loss (i.e., Charbonnier loss) to enforce the similarity between the input LR images and

the corresponding ground truth HR images.

We show a visual result in Figure 3.16 for 4× SR. The network with the adversarial

training generates more plausible details on regions of irregular structures, e.g., grass, and

feathers. However, the predicted results may not be faithfully reconstructed with respect

to the ground truth high-resolution images. As a result, the accuracy is not as good as the

model trained with the Charbonnier loss.

3.4.7 Human Subject Study

To measure the human perceptual preferences on super-resolved images, we conduct a

human subject study to evaluate several state-of-the-art SR algorithms. A straightforward

strategy is to ask users to give an absolute score (e.g., 1 to 5) or provide ranking on all SR

results for each test image. One can then compute the average score for each method. How-

ever, such scores might not be sufficiently reliable when there are a large number of images

to be compared. Furthermore, as super-resolved images from different algorithms often

have subtle differences, it is difficult for users to make comparisons on multiple images

simultaneously.

In light of this, we choose to conduct the paired comparison for our subject study.

Paired comparison is also adopted to evaluate the perceptual quality of image retarget-

ing [93] and image deblurring [62]. For each test, each user is asked to select the preferred

one from a pair of images. We design a web-based interface (Figure 3.17) for users to

switch back and forth between two given images. Users can easily see the differences

between the two images and make selections. Through the study, we obtain the relative

scores between every pair of evaluated methods. We conduct such paired comparison for

FSRCNN [25], VDSR [57], LapSRN [61], DRRN [103] and the proposed MS-LapSRN on

the BSDS100 [3] and Urban100 [47] datasets for 4× SR.

We ask each participant to compare 30 pairs of images. To detect casual or careless

users, we include 5 pairs of images as the sanity check. In these image pairs, we show the
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Switch button

Figure 3.17: Interface for our human subject study. Human subjects can switch back and

forth between two given images (results from two different super-resolution algorithms) to

see the differences.

ground truth HR and the bicubic upsampled images. The users must select the ground truth

HR image to pass the sanity check. We discard the results by a subject if the subject fails

the sanity check more than twice. Finally, we collect the results from 71 participants.

To obtain a global score for each method, we fit the results of paired comparisons to

the Bradley-Terry (BT) model [12]. We refer readers to [93, 62] for details of the BT

model. We normalize the BT scores to zero means and show the results in Table 3.9. The

proposed MS-LapSRN performs favorably against other approaches on both the BSDS100

and Urban100 datasets.

We further analyze the comparisons between our MS-LapSRN and other methods. We

compute the percentage that users choose our MS-LapSRN over FSRCNN, VDSR, DRRN,

and LapSRN and plot the results in Figure 3.18 (a) and (b). On average, our MS-LapSRN

is preferred by 75% of users on the BSDS100 dataset and 84% of users on the URBAN100
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Figure 3.18: Analysis on human subject study. Our MS-LapSRN is preferred by 75%

and 80% of users on the BSDS100 and URBAN100 datasets, respectively. The error bars

show the 95% confidence interval.
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Table 3.9: BT scores of SR algorithms in human subject study. Our MS-LapSRN per-

forms favorably against other compared methods.

Method BSDS100 URBAN100

FSRCNN [25] -1.1291 -1.8005

VDSR [57] 0.0357 0.0981

LapSRN [61] 0.1910 0.2415

DRRN [103] 0.3721 0.6521

MS-LapSRN 0.5304 0.8087

Ground-truth HR

HR Bicubic SelfExSR [47]

VDSR [57] DRRN [103] MS-LapSRN

Figure 3.19: Limitation. A failure case for 8× SR. Our method is not able to hallucinate

details if the LR input image does not consist of sufficient amount of structure.

dataset. When comparing with DRRN, our MS-LapSRN obtains around 60% of votes as

the performance is close to each other. The human subject study also shows that the results

of our MS-LapSRN have higher perceptual quality than existing methods.

3.4.8 Limitations

While our model is capable of generating clean and sharp HR images for large upsam-

pling scales, e.g., 8×, it does not “hallucinate” fine details. As shown in Figure 3.19, the

top of the building is significantly blurred in the 8× downscaled LR image. All SR algo-

rithms fail to recover the fine structure except the SelfExSR [47] method which explicitly

detects the 3D scene geometry and uses self-similarity to hallucinate the regular structure.

This is a common limitation shared by parametric SR methods [105, 24, 25, 57, 58, 103].
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3.5 Conclusions

In this work, we propose a deep convolutional network within a Laplacian pyramid

framework for fast and accurate image super-resolution. Our model progressively predicts

high-frequency residuals in a coarse-to-fine manner with deeply supervision from the ro-

bust Charbonnier loss functions. By sharing parameters across as well as within pyramid

levels, we use 73% fewer parameters than our preliminary method [61] and achieve im-

proved performance. We incorporate local skip connections in our network for training

deeper models. Furthermore, we adopt the multi-scale training strategy to train a single

model for handling multiple upsampling scales. We present a comprehensive evaluation on

various design choices and believe that the thorough analysis benefits our community. We

have shown the promise of the proposed LapSRN in the context of image super-resolution.

Yet, our network design is general and can potentially be applied to other image transfor-

mation and synthesis problems.



Chapter 4

Learning Blind Video Temporal

Consistency

4.1 Introduction

Recent advances of deep convolutional neural networks (CNNs) have led to the devel-

opment of many powerful image processing techniques including, image filtering [73, 117],

enhancement [33, 61, 118], style transfer [48, 56, 72], colorization [50, 130], and gen-

eral image-to-image translation tasks [52, 68, 132]. However, extending these CNN-based

methods to video is non-trivial due to memory and computational constraints, and the avail-

ability of training datasets. Applying image-based algorithms independently to each video

frame typically leads to temporal flickering due to the instability of global optimization

algorithms or highly non-linear deep networks. One approach for achieving temporally

coherent results is to explicitly embed flow-based temporal consistency loss in the design

and training of the networks. However, such an approach suffers from two drawbacks.

First, it requires domain knowledge to re-design the algorithm [5, 46], re-train a deep

model [37, 45], and video datasets for training. Second, due to the dependency of flow

computation at test time, these approaches tend to be slow.

Bonneel et al. [11] propose a general approach to achieve temporal coherent results

that is blind to specific image processing algorithms. The method takes the original video

and the per-frame processed video as inputs and solves a gradient-domain optimization

problem to minimize the temporal warping error between consecutive frames. Although the

45



46

Colorization Enhancement

Style transfer Intrinsic decomposition

Figure 4.1: Applications of the proposed method. Our algorithm takes per-frame pro-

cessed videos with serious temporal flickering as inputs (lower-left) and generates tempo-

rally stable videos (upper-right) while maintaining perceptual similarity to the processed

frames. Our method is blind to the specific image processing algorithm applied to input

videos and runs a high frame-rates. This figure contains animated videos, which are best

viewed using Adobe Acrobat.

results of Bonneel et al. [11] are temporally stable, their algorithm highly depends on the

quality of dense correspondence (e.g., optical flow or PatchMatch [6]) and may fail when

a severe occlusion occurs. Yao et al. [124] further extend the method of Bonneel et al. [11]

to account for occlusion by selecting a set of key-frames. However, the computational

cost increases linearly with the number of key-frames, and thus their approach cannot be

efficiently applied to long video sequences. Furthermore, both approaches assume that the

gradients of the original video are similar to the gradients of the processed video, which

restricts them from handling tasks that may generate new contents (e.g., stylization).

In this work, we formulate the problem of video temporal consistency as a learning

task. We propose to learn a deep recurrent network that takes the input and processed
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videos and generates temporally stable output videos. We minimize the short-term and

long-term temporal losses between output frames and impose a perceptual loss from the

pre-trained VGG network [99] to maintain the perceptual similarity between the output

and processed frames. In addition, we embed a convolutional LSTM (ConvLSTM) [116]

layer to capture the spatial-temporal correlation of natural videos. Our network processes

video frames sequentially and can be applied to videos with arbitrary lengths. Furthermore,

our model does not require computing optical flow at test time and thus can process videos

at real-time rates (400+ FPS on 1280× 720 videos).

As existing video datasets typically contain low-quality frames, we collect a high-

quality video dataset with 80 videos for training and 20 videos for evaluation. We train

our model on a wide range of applications, including colorization, image enhancement,

and artistic style transfer, and demonstrate that a single trained model generalizes well to

unseen applications (e.g., intrinsic image decomposition, image-to-image translation), as

shown in Figure 4.1. We evaluate the quality of the output videos using temporal warping

error and a learned perceptual metric [131]. We show that the proposed method strikes a

good balance between maintaining the temporal stability and perceptual similarity. Further-

more, we conduct a user study to evaluate the subjective preference between the proposed

method and state-of-the-art approaches.

We make the following contributions in this work:

1. We present an efficient solution to remove temporal flickering in videos via learning a

deep network with a ConvLSTM module. Our method does not require pre-computed

optical flow or frame correspondences at test time and thus can process videos in

real-time.

2. We propose to minimize the short-term and long-term temporal loss for improving

the temporal stability and adopt a perceptual loss to maintain the perceptual similar-

ity.

3. We provide a single model for handling multiple applications, including but not

limited to colorization, enhancement, artistic style transfer, image-to-image trans-

lation and intrinsic image decomposition. Extensive subject and objective evalua-

tions demonstrate that the proposed algorithm performs favorably against existing

approaches on various types of videos.
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4.2 Learning Temporal Consistency

In this section, we describe the proposed recurrent network and the design of the loss

functions for enforcing temporal consistency on videos.

4.2.1 Recurrent Network

Figure 4.2 shows an overview of the proposed recurrent network. Our model takes as

input the original (unprocessed) video {It|t = 1 · · ·T} and per-frame processed videos

{Pt|t = 1 · · ·T}, and produces temporally consistent output videos {Ot|t = 1 · · ·T}. In

order to efficiently process videos with arbitrary length, we develop an image transforma-

tion network as a recurrent convolutional network to generate output frames in an online

manner (i.e., sequentially from t = 1 to T ). Specifically, we set the first output frame

O1 = P1. In each time step, the network learns to generate an output frame Ot that is tem-

porally consistent with respect to Ot−1. The current output frame is then fed as the input

at the next time step. To capture the spatial-temporal correlation of videos, we integrate

a ConvLSTM layer [116] into our image transformation network. We discuss the detailed

design of our image transformation network in Section 4.2.3.

4.2.2 Loss Functions

Our goal is to reduce the temporal inconsistency in the output video while maintaining

the perceptual similarity with the processed frames. Therefore, we propose to train our

model with (1) a perceptual content loss between the output frame and the processed frame

and (2) short-term and long-term temporal losses between output frames.

Content perceptual loss. We compute the similarity betweenOt and Pt using the percep-

tual loss from a pre-trained VGG classification network [99], which is commonly adopted

in several applications (e.g., style transfer [56], super-resolution [66], and image inpaint-

ing [86]) and has been shown to correspond well to human perception [131]. The perceptual

loss is defined as:

Lp =
T∑
t=2

N∑
i=1

∑
l

∥∥∥φl(O
(i)
t )− φl(P

(i)
t )
∥∥∥

1
, (4.1)
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Figure 4.2: Overview of the proposed method. We train an image transformation network

that takes It−1, It, Ot−1 and processed frame Pt as inputs and generates the output frameOt

which is temporally consistent with the output frame at the previous time step Ot−1. The

output Ot at the current time step then becomes the input at the next time step. We train

the image transformation network with the VGG perceptual loss and the short-term and

long-term temporal losses.
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Figure 4.3: Temporal losses. We adopt the short-term temporal loss on neighbor frames

and long-term temporal loss between the first and all the output frames.

where O(i)
t represents a vector ∈ R3 with RGB pixel values of the output O at time t, N

is the total number of pixels in a frame, and φl(·) denotes the feature activation at the l-th

layer of the VGG-19 network φ. We choose the 4-th layer (i.e., relu4-3) to compute the

perceptual loss.

Short-term temporal loss. We formulate the temporal loss as the warping error between

the output frames:

Lst =
T∑
t=2

N∑
i=1

M
(i)
t⇒t−1

∥∥∥O(i)
t − Ô

(i)
t−1

∥∥∥
1
, (4.2)

where Ôt−1 is the frameOt−1 warped by the optical flowFt⇒t−1, andMt⇒t−1 = exp(−α‖It−
Ît−1‖2

2) is the visibility mask calculated from the warping error between input frames It and

warped input frame Ît−1. The optical flow Ft⇒t−1 is the backward flow between It−1 and

It. We use the FlowNet2 [51] to efficiently compute flow on-the-fly during training. We

use the bilinear sampling layer [53] to warp frames and empirically set α = 50 (with pixel

range between [0, 1]).
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Long-term temporal loss. While the short-term temporal loss (4.2) enforces the tempo-

ral consistency between consecutive frames, there is no guarantee for long-term (e.g., more

than 5 frames) coherence. A straightforward method to enforce long-term temporal consis-

tency is to apply the temporal loss on all pairs of output frames. However, such a strategy

requires significant computational costs (e.g., optical flow estimation) during training. Fur-

thermore, computing temporal loss between two intermediate outputs is not meaningful

before the network converges.

Instead, we propose to impose long-term temporal losses between the first output frame

and all of the output frames:

Llt =
T∑
t=2

N∑
i=1

M
(i)
t⇒1

∥∥∥O(i)
t − Ô

(i)
1

∥∥∥
1
. (4.3)

We illustrate an unrolled version of our recurrent network as well as the short-term and

long-term losses in Figure 4.3. During the training, we enforce the long-term temporal

coherence over a maximum of 10 frames (T = 10).

Overall loss. The overall loss function for training our image transformation network is

defined as:

L = λpLp + λstLst + λltLlt, (4.4)

where λp, λst and λlt are the weights for the content perceptual loss, short-term and long-

term losses, respectively.

4.2.3 Image Transformation Network

The input of our image transformation network is the concatenation of the currently

processed frame Pt, previous output frame Ot−1 as well as the current and previous un-

processed frames It, It−1. As the output frame typically looks similar to the currently

processed frame, we train the network to predict the residuals instead of actual pixel val-

ues, i.e., Ot = Pt +F(Pt), where F denotes the image transformation network. Our image

transformation network consists of two strided convolutional layers, B residual blocks, one

ConvLSTM layer, and two transposed convolutional layers.
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+

Concatenate

Concatenate

Concatenate
Conv
LSTMResBlocks

,

,
Figure 4.4: Architecture of our image transformation network. We split the input into

two streams to avoid transferring low-level information from the input frames to output.

We add skip connections from the encoder to the decoder to improve the reconstruction

quality. However, for some applications, the processed frames may have a dramatically

different appearance than the input frames (e.g., style transfer or intrinsic image decom-

position). We observe that the skip connections may transfer low-level information (e.g.,

color) to the output frames and produce visual artifacts. Therefore, we divide the input

into two streams: one for the processed frames Pt and Ot−1, and the other stream for input

frames It and It−1. As illustrated in Figure 4.4, the skip connections only add skip connec-

tions from the processed frames to avoid transferring the low-level information from the

input frames.

4.2.4 Implementation Details

We implement our model using PyTorch [85]. We use a kernel of size 7× 7 for the first

and the last convolutional layers and 3×3 for all other convolutional and transposed convo-

lutional layers. The number of filters is 32 and is multiplied by 2 when the feature maps are

downsampled. All the convolutional and transposed convolutional layers (except the last

layers) are followed by the instance normalization [108] and leaky ReLUs (LReLU) [80]

with a negative slope of 0.2. There are 5 residual blocks between the encoder and decoder.

At the end of the decoder, we use a Tanh layer to constrain the range of the output into

[−1, 1].

During training, we use a batch size of 4 (i.e., 4 sequences). For each sequence, we sam-
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ple 10 consecutive frames, which means that the long-term temporal coherence is enforced

over a maximum of 10 frames. We run the forward pass of all 10 frames before updating

the network parameters. We randomly crop video frames to 192 × 192 and apply the data

augmentation of random scaling between [1, 2]×, random rotation for 90◦, 180◦ or 270◦,

and horizontal flipping. The same geometric transform is applied to all the frames in the

same video. We also adopt a temporal augmentation by reversing the order of sequences.

The initial learning rate is set to 1e − 4 and decreased by a factor of 2 for every 20,000

iterations. We train our model with the ADAM solver [60] for 100,000 iterations. During

the training phase, only the image transformation network is updated while the FlowNet

and VGG are fixed.

4.3 Experimental Results

In this section, we first describe the employed datasets for training and testing, followed

by the applications of the proposed method and the metrics for evaluating the temporal sta-

bility and perceptual similarity. We then analyze the effect of each loss term in balancing

the temporal coherence and perceptual similarity, conduct quantitative and subjective com-

parisons with existing approaches, and finally discuss the limitations of our method. The

source code and datasets are publicly available at http://vllab.ucmerced.edu/

wlai24/video_consistency.

4.3.1 Datasets

We use the DAVIS-2017 dataset [88], which is designed for video segmentation and

contains a variety of moving objects and motion types. The DAVIS dataset has 60 videos

for training and 30 videos for validation. However, the lengths of the videos in the DAVIS

dataset are usually short (less than 3 seconds) with 4,209 training frames in total. Therefore,

we collect additional 100 high-quality videos from Videvo.net [111], where 80 videos are

used for training and 20 videos for testing. We scale the height of video frames to 480 and

keep the aspect ratio. We use both the DAVIS and VIDEVO training sets, which contains a

total of 25,735 frames, to train our network.
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4.3.2 Applications

As we do not make any assumptions on the underlying image-based algorithms, our

method is applicable for handling a wide variety of applications.

Artistic style transfer. The tasks of image style transfer have been shown to be sensitive

to minor changes in content images due to the non-convexity of the Gram matrix matching

objective [37]. We apply our method to the results from the state-of-the-art style transfer

approaches [56, 72].

Colorization. Single image colorization aims to hallucinate plausible colors from a given

grayscale input image. Recent algorithms [50, 130] learn deep CNNs from millions of

natural images. When applying colorization methods to a video frame-by-frame, those

approaches typically produce low-frequency flickering.

Image enhancement. Gharbi et al. [33] train deep networks to learn the user-created

action scripts of Adobe Photoshop for enhancing images. Their models produce high-

frequency flickering on most of the videos.

Intrinsic image decomposition. Intrinsic image decomposition aims to decompose an

image into a reflectance and a shading layer. The problem is highly ill-posed due to the

scale ambiguity. We apply the approach of Bell et al. [7] to our test videos. As expected,

the image-based algorithm produces serious temporal flickering artifacts when applied to

each frame in the video independently.

Image-to-image translation. In recent years, the image-to-image translation tasks at-

tract considerable attention due to the success of the Generative Adversarial Networks

(GAN) [36]. The CycleGAN model [132] aims to learn mappings from one image domain

to another domain without using paired training data. When the transformations generate

a new texture on images (e.g., photo→ painting, horse→ zebra) or the mapping contains

multiple plausible solutions (e.g., gray→ RGB), the resulting videos inevitably suffer from

temporal flickering artifacts.
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The above algorithms are general and can be applied to any type of videos. When

applied, they produce temporal flickering artifacts on most videos in our test sets. We use

the WCT [72] style transfer algorithm with three style images, one of the enhancement

models of Gharbi et al. [33], the colorization method of Zhang et al. [130] and the shading

layer of Bell et al. [7] as our training tasks, with the rest of the tasks being used for testing

purposes. We demonstrate that the proposed method learns a single model for multiple

applications and also generalizes to unseen tasks.

4.3.3 Evaluation Metrics

Our goal is to generate a temporally smooth video while maintaining the perceptual

similarity with the per-frame processed video. We use the following metrics to measure the

temporal stability and perceptual similarity on the output videos.

Temporal stability. We measure the temporal stability of a video based on the flow warp-

ing error between two frames:

Ewarp(Vt, Vt+1) =
1∑N

i=1M
(i)
t

N∑
i=1

M
(i)
t ‖V

(i)
t − V̂

(i)
t+1‖2

2, (4.5)

where V̂t+1 is the warped frame Vt+1 and Mt ∈ {0, 1} is a non-occlusion mask indicating

non-occluded regions. We use the occlusion detection method in [94] to estimate the mask

Mt. The warping error of a video is calculated as:

Ewarp(V ) =
1

T − 1

T−1∑
t=1

Ewarp(Vt, Vt+1), (4.6)

which is the average warping error over the entire sequence.

Perceptual similarity. Recently, the features of the pre-trained VGG network [99] have

been shown effective as a training loss to generate realistic images in several vision tasks [21,

66, 86]. Zhang et al. [131] further propose a perceptual metric by calibrating the deep fea-

tures of ImageNet classification networks. We adopt the calibrated model of the SqueezeNet [49]

(denote as G) to measure the perceptual distance of the processed video P and output video

O:

Dperceptual(P,O) =
1

T − 1

T∑
t=2

G(Ot, Pt). (4.7)
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We note that the first frame is fixed as a reference in both Bonneel [11] and our algorithm.

Therefore, we exclude the first frame from computing the perceptual distance in (4.7).

4.3.4 Analysis and Discussions

In this section, we first analyze the balance between the temporal stability and percep-

tual similarity. We then conduct experiments to understand the effect of the temporal loss,

perceptual loss, and the ConvLSTM layer. We also analyze the effect of using L1 and L2

norm and compare the results of multi-task and single-task training.

Temporal stability and perceptual similarity. An extremely blurred video may have

high temporal stability but with low perceptual similarity; in contrast, the processed video

itself has perfect perceptual similarity but is temporally unstable. Due to the trade-off

between the temporal stability and perceptual similarity, it is important to balance these

two properties and produce visually pleasing results.

To understand the relationship between the temporal and content losses, we train mod-

els with the several combinations of λp and λt (= λst = λlt). We use one of the styles

(i.e., udnie) from the fast neural style transfer method [56] for evaluation. We show the

quantitative evaluation on the DAVIS test set in Figure 4.5. We observe that the ratio

r = λt/λp plays an important role in balancing the temporal stability and perceptual sim-

ilarity. When the ratio r < 10, the perceptual loss dominates the optimization of the net-

work, and the temporal flickering remains in the output videos. When the ratio r > 10, the

output videos become overly blurred and therefore have a large perceptual distance to the

processed videos. When λt is sufficiently large (i.e., λt ≥ 100), the setting r = 10 strikes

a good balance to reduce temporal flickering while maintaining small perceptual distance.

Our results find similar observation on other applications as well.

Effect of temporal and perceptual losses. Our training objective function is a combi-

nation of the content perceptual loss Lp, short-term temporal Lst, and long-term temporal

losses Llt. To further analyze the effect of each loss function, we train three models by

setting the weights of each loss term, λp, λst, and λlt, to 0, respectively. We evaluate the

performance of the variants using the WCT method [72] on the DAVIS test set [88] and

provide quantitative comparisons in Figure 4.6.
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λt λp r = λt

λp
Ewarp Dperceptual

10 0.01 1000 0.0279 0.1744
10 0.1 100 0.0265 0.1354
10 1 10 0.0615 0.0071
10 10 1 0.0621 0.0072

100 1 100 0.0277 0.1324
100 10 10 0.0442 0.0170
100 100 1 0.0621 0.0072
1000 1 1000 0.0262 0.1848
1000 10 100 0.0275 0.1341
1000 100 10 0.0453 0.0158
1000 1000 1 0.0621 0.0072
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Figure 4.5: Analysis of parameters. (Left) When λt is large enough, choosing r = 10

(shown in red) achieves a good balance between reducing temporal warping error as well

as perceptual distance. (Right) The trade off between perceptual similarity and temporal

warping with different ratios r, as compared to Bonneel et al. [11], and the original pro-

cessed video, Vp.

Without the perceptual loss, the model generates blurry results. While a blurry video

tends to have a low temporal warping error, the perceptual distance is large, indicating that

the model cannot preserve the content of the processed video well.

Without the short-term temporal loss, the model cannot reduce the temporal flickering

well. The temporal warping error is close to that of the processed video in Figure 4.6.

When training without the long-term temporal loss, the model does not capture the

long-term temporal coherence well and thus is prone to error propagation and occlusion. As

shown in Figure 4.7(e), the blue regions on the ground suddenly change into different colors

after a man passing by. On the contrary, the model trained with all the losses produces

stable results without temporal flickering.

Effect of LSTM. To analyze the effect of the ConvLSTM layer, we train an image trans-

formation network without the ConvLSTM layer. To use the same amount of network

parameters, we increase the number of residual blocks from 5 to 9 in this model. We show

an example of stabilizing the results of a colorization method [50] on the VIDEVO dataset

in Figure 4.8. The model without the ConvLSTM layer produces propagation errors (as
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Method Ewarp Dperceptual

Vp 0.054 0
Bonneel et al. [11] 0.0312 0.0977

Ours w/o Lp 0.0222 0.1850
Ours w/o Lst 0.0518 0.0063
Ours w/o Llt 0.0427 0.0132

Our full model 0.0348 0.0194

Temporal Warping Error
0.02 0.03 0.04 0.05 0.06

Pe
rc

ep
tu

al
 D

is
ta

nc
e

0

0.05

0.1

0.15

0.2

lt st

Figure 4.6: Analysis on loss functions. (Left) We analyze the contribution of each loss by

setting the weight of each term to 0, respectively. (Right) The trade off between perceptual

similarity and temporal warping with different loss functions, as compared to Bonneel et

al. [11], and the original processed video, Vp.

shown on the ground of Figure 4.8(c)). Our model with the ConvLSTM layer successfully

captures the spatio-temporal correlation of the original input video and produces more vi-

sually pleasing videos.

L2 norm v.s. L1 norm. We choose to use the L1 loss as it is a robust loss function com-

monly used in several vision tasks, e.g., super-resolution [61] and inpainting [?]. However,

we find that the choice of the loss function is not crucial in the proposed model. Here we

train our model using the L2 loss for computing the content and temporal losses and show

the trade-off curve in Figure 4.9(a). When setting r = 100, the model using the L2 loss

performs similarly to that using the L1 loss function. The model optimized with the L2 loss

can achieve comparable performance as our current model with a proper weights setting,

i.e., adjusting r = λt/λp.

Multi-task vs. single-task training. We train three single-task models using one style

image for the WCT [72] (denoted by MWCT), one enhancement model of the DBL [2]

(denoted by MDBL), and the shading layer of the intrinsic decomposition algorithm [7]

(denoted by MI), respectively. We evaluate the temporal warping error and perceptual

distance on the DAVIS test set and plot the trade-off curve between the average warping

error and perceptual distance in Figure 4.9(b). It is interesting that the single-task models
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(a) Input video (b) Stylized video

(c) Without perceptual loss (d) Without short-term temporal loss

(e) Without long-term temporal loss (f) Ours

Figure 4.7: Effect of loss functions. Without the perceptual content loss, the results are

overly smooth and have a low perceptual similarity with the processed video. While the

short-term temporal loss is crucial to remove the high-frequency flickering, the long-term

temporal loss further reduces low-frequency jitter and avoids error propagation (e.g., the

lower-right corner in (e)). This figure contains animated videos, which are best viewed

using Adobe Acrobat.
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(a) Input video (b) Colorized video (frame-by-frame)

(c) Without ConvLSTM (d) With ConvLSTM

Figure 4.8: Effect of ConvLSTM layer. The model trained without the ConvLSTM layer

produces propagation errors, while our full model generates more visually pleasing videos.

This figure contains animated videos, which are best viewed using Adobe Acrobat.
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Figure 4.9: Analysis on loss function and multi-task training.
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do not always achieve the lowest temporal warping error and perceptual distance on the

same task used in training. As the single-task training is susceptible to overfitting for the

specific task, the single-task models may generate more artifacts and do not generalize well

to multiple tasks. In contrast, the multi-task model maintains small temporal warping error

and has the lowest perceptual distance.

4.3.5 Comparison with State-of-the-arts

We evaluate the temporal warping error (4.6) and perceptual distance (4.7) on the two

video test sets. We compare the proposed method with Bonneel et al. [11] on 16 appli-

cations: 2 styles of Johnson et al. [56], 6 styles of WCT [72], 2 enhancement models of

Gharbi et al. [33], reflectance and shading layers of Bell et al. [7], 2 photo-to-painting mod-

els of CycleGAN [132] and 2 colorization algorithms [50, 130]. We provide the average

temporal warping error and perceptual distance in Table 4.1 and Table 4.2, respectively. In

general, our results achieves lower perceptual distance while maintains comparable tempo-

ral warping error with the results of Bonneel et al. [11].

We show visual comparisons with Bonneel et al. [11] in Figure 4.10 and 4.11. Although

the method of Bonneel et al. [11] produces temporally stable results, the assumption of

identical gradients in the processed and original video leads to overly smoothed contents,

for example from stylization effects. Furthermore, when the occlusion occurs in a large

region, their method fails due to the lack of a long-term temporal constraint. In contrast,

the proposed method dramatically reduces the temporal flickering while maintaining the

perceptual similarity with the processed videos. We note that our approach is not limited

to the above applications but can also be applied to tasks such as automatic white balanc-

ing [44], image harmonization [9] and image dehazing [39]. Due to the space limit, we

provide more results and videos on our project website.

4.3.6 Subjective Evaluation

We conduct a user study to measure user preference on the quality of videos. We adopt

the pairwise comparison, i.e., we ask participants to choose from a pair of videos. In

each test, we provide the original and processed videos as references and show two results

(Bonneel et al. [11] and ours) for comparisons. We randomize the presenting order of the
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Table 4.1: Quantitative evaluation on temporal warping error. The “Trained” column

indicates the applications used for training our model. Our method achieves a similarly

reduced temporal warping error as Bonneel et al. [11], which is significantly less than the

original processed video (Vp).

Task Trained
DAVIS VIDEVO

Vp [11] Ours Vp [11] Ours

WCT [72]/antimono X 0.054 0.031 0.035 0.025 0.014 0.013

WCT [72]/asheville 0.088 0.047 0.055 0.045 0.025 0.023

WCT [72]/candy X 0.069 0.037 0.045 0.034 0.018 0.018

WCT [72]/feathers 0.052 0.029 0.029 0.027 0.016 0.012

WCT [72]/sketch X 0.046 0.028 0.023 0.022 0.015 0.009

WCT [72]/wave 0.049 0.030 0.027 0.026 0.015 0.011

Fast-neural-style [56]/princess 0.073 0.048 0.047 0.039 0.023 0.021

Fast-neural-style [56]/udnie 0.065 0.039 0.042 0.028 0.017 0.015

DBL [33]/expertA X 0.039 0.035 0.028 0.018 0.016 0.010

DBL [33]/expertB 0.034 0.031 0.025 0.015 0.014 0.008

Intrinsic [7]/reflectance 0.024 0.020 0.015 0.012 0.008 0.005

Intrinsic [7]/shading X 0.016 0.012 0.009 0.008 0.006 0.003

CycleGAN [132]/photo2ukiyoe 0.037 0.030 0.026 0.019 0.016 0.010

CycleGAN [132]/photo2vangogh 0.040 0.032 0.029 0.021 0.017 0.013

Colorization [130] X 0.030 0.028 0.024 0.012 0.011 0.008

Colorization [50] 0.030 0.028 0.023 0.012 0.011 0.008

Average 0.047 0.032 0.030 0.023 0.015 0.012
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Table 4.2: Quantitative evaluation on perceptual distance. Our method has lower per-

ceptual distance than Bonneel et al. [11].

Task Trained
DAVIS VIDEVO

[11] Ours [11] Ours

WCT [72]/antimono X 0.098 0.019 0.106 0.016

WCT [72]/asheville 0.090 0.019 0.098 0.015

WCT [72]/candy X 0.133 0.023 0.139 0.018

WCT [72]/feathers 0.093 0.016 0.100 0.011

WCT [72]/sketch X 0.042 0.021 0.046 0.014

WCT [72]/wave 0.065 0.015 0.072 0.013

Fast-neural-style [56]/princess 0.143 0.029 0.165 0.018

Fast-neural-style [56]/udnie 0.070 0.017 0.076 0.014

DBL [33]/expertA X 0.026 0.011 0.033 0.007

DBL [33]/expertB 0.023 0.011 0.030 0.007

Intrinsic [7]/reflectance 0.044 0.013 0.056 0.008

Intrinsic [7]/shading X 0.029 0.017 0.032 0.009

CycleGAN [132]/photo2ukiyoe 0.042 0.012 0.054 0.007

CycleGAN [132]/photo2vangogh 0.067 0.016 0.079 0.011

Colorization [130] X 0.062 0.013 0.055 0.009

Colorization [50] 0.033 0.011 0.034 0.008

Average 0.088 0.017 0.073 0.012

(a) Original frames (b) Processed frames (c) Bonneel et al. [11] (d) Ours

Figure 4.10: Visual comparisons on style transfer. We compare the proposed method

with Bonneel et al. [11] on smoothing the results of WCT [72]. Our approach maintains

the stylized effect of processed video and reduce the temporal flickering.
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(a) Original frames (b) Processed frames (c) Bonneel et al. [11] (d) Ours

Figure 4.11: Visual comparisons on colorization. We compare the proposed method with

Bonneel et al. [11] on smoothing the results of image colorization [50]. The method of

Bonneel et al. [11] cannot preserve the colorized effect when occlusion occurs.
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Figure 4.12: Subjective evaluation. On average, our method is preferred by 62% users.

The error bars show the 95% confidence interval.

result videos in each test. In addition, we ask participants to provide the reasons that they

prefer the selected video from the following options: (1) The video is less flickering. (2)

The video preserves the effect of the processed video well.

We evaluate all 50 test videos with the 10 test applications that were held out during

training. We ask each user to compare 20 video pairs and obtain results from a total of

60 subjects. Figure 4.12(a) shows the percentage of obtained votes, where our approach is

preferred on all 5 applications. In Figure 3.18(b), we show the reasons when a method is

selected. The results of Bonneel et al. [11] are selected due to temporal stability, while users

prefer our results as we preserve the effect of the processed video well. The observation in

the user study basically follows the quantitative evaluation in Section 4.3.5.
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4.3.7 Execution Time

We evaluate the execution time of the proposed method and Bonneel et al. [11] on a

machine with a 3.4 GHz Intel i7 CPU (64G RAM) and an Nvidia Titan X GPU. As the

proposed method does not require computing optical flow at test time, the execution speed

achieves 418 FPS on GPU for videos with a resolution of 1280×720. In contrast, the speed

of Bonneel et al. [11] is 0.25 FPS on CPU.

4.3.8 Limitations and Discussion

While our experimental results show that the proposed recurrent network performs well

on a variety of videos and generalizes well to multiple tasks, we do observe some failure

cases as shown in Figure 4.13, where the brown color in the mountain region is wrongly

propagated to the sky.

Our approach is not able to handle applications that generate entirely different image

content on each frame, e.g., image completion [?] or synthesis [21]. Extending those meth-

ods to videos would require incorporating strong video priors or temporal constraints, most

likely into the design of the specific algorithms themselves.

In addition, in the way the task is formulated there is always a trade-off between be-

ing temporally coherent or perceptually similar to the processed video. Depending on the

specific effect applied, there will be cases where flicker (temporal instability) is preferable

to blur, and vice versa. In our current method, the user can choose a model based on their

preference for flicker or blur, but an interesting area for future work would be to investigate

perceptual models for what is considered acceptable flicker and acceptable blur. Nonethe-

less, we use the same trained model (same parameters) for all our results and showed clear

viewer preference over prior methods for blind temporal stability.
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(a) Input frames (b) Processed frames

(c) Bonneel et al. [11] (d) Ours

Figure 4.13: Failure case. The brown color in the mountain region is wrongly propa-

gated to the sky. This figure contains animated videos, which are best viewed using Adobe

Acrobat.
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4.4 Conclusions

In this work, we propose a deep recurrent neural network to reduce the temporal flick-

ering problem in per-frame processed videos. We optimize both short-term and long-term

temporal loss as well as a perceptual loss to reduce temporal instability while preserving

the perceptual similarity to the processed videos. Our approach is agnostic to the underly-

ing image-based algorithms applied to the video and generalize to a wide range of unseen

applications. We demonstrate that the proposed algorithm performs favorably against ex-

isting blind temporal consistency method on a diverse set of applications and various types

of videos.



Chapter 5

Learning to Stitch Videos for Structured

Camera Arrays

5.1 Introduction

Due to sensor resolution and optics limitations, the field of view (FOV) of most cameras

is too narrow for applications such as autonomous driving and virtual reality. A common

solution is to stitch the outputs of multiple cameras into a panoramic video, effectively ex-

tending the FOV. When the optical centers of these cameras are nearly co-located, stitching

can be solved with a simple homography transformation. However, in many applications,

such as autonomous driving, remote video conference, and video surveillance, multiple

cameras have to be placed with wide baselines, either to increase view coverage or due to

some physical constraints. In these cases, even state-of-the-art methods [55, 89] and current

commercial solutions (e.g., VideoStitch Studio [110], AutoPano Video [4], and NVIDIA

VRWorks [83]) struggle to produce artifact-free videos, as shown in Figure 5.1.

One main challenge for video stitching with wide baselines is parallax, i.e., the appar-

ent displacement of an object in multiple input videos due to camera translation. Parallax

varies with object depth, which makes it impossible to properly align objects without know-

ing dense 3D information of the scene. In addition, occlusions, dis-occlusions, and small

FOV overlaps also cause a significant amount of stitching artifacts. To obtain better align-

ment, existing image stitching algorithms perform content-aware local warping [17, 127]

or find optimal seams around objects to mitigate artifacts at the transition from one view

68
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(a) Stitched video by the proposed method

(b) VRWorks [83] (c) AutoPano [4] (d) STCPW [55] (e) Ours

Figure 5.1: Examples of video stitching. Inspired by pushbroom cameras, we propose

a deep pushbroom stitching network to stitch multiple wide-baseline videos of dynamic

scenes into a single panoramic video. The proposed learning-based algorithm compares fa-

vorably against prior work with minimal mis-alignment artifacts (e.g., ghosting and broken

objects). More video results are presented in the supplementary material.
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to the other [28, 129]. Applying these strategies to process a video frame-by-frame in-

evitably produces noticeable jittering or wobbling artifacts. On the other hand, algorithms

that explicitly enforce temporal consistency, such as spatio-temporal mesh warping with

a large-scale optimization [55], are computationally expensive. In fact, commercial video

stitching software often adopts a simple seam cutting and multi-band blending [16] to ac-

count for efficiency. These methods, however, often cause severe artifacts, such as ghosting

or misalignment, as shown in Figure 5.1. Moreover, seams can cause objects to be cut off

or completely disappear from stitched images—particularly dangerous for use cases such

as autonomous driving.

We identify three desirable properties for a stitched panoramic video: (1) Artifacts,

such as ghosting, should not appear. (2) Objects may be distorted, but should not be cut off

or disappear in any frame. (3) The stitched video needs to be temporally stable. With the

three desiderata in mind, we formulate the video stitching as a spatial view interpolation

problem, inspired by the multi-perspective projection for panoramas [38, 87]. To this end,

we propose a pushbroom stitching network based on deep convolutional neural networks

(CNNs). Specifically, we first project the input views onto a common cylindrical surface.

We then estimate bi-directional optical flow, with which we simulate a pushbroom camera

by interpolating all the intermediate views between the input views. Instead of generating

all the intermediate views (which requires multiple bilinear warping steps on the entire

image), we develop a pushbroom interpolation layer to generate the interpolated view in a

single feed-forward pass. Finally, we adopt a refinement network to refine the interpolated

view with the residual learning. Figure 5.2 shows an overview of the conventional video

stitching pipeline and our proposed method.

Despite recent progress in optical flow estimation, the estimated flow by state-of-the-

art methods are of insufficient quality for stitching. We show that it is critical to learn

optical flow for stitching end-to-end, so that the flow network learns to reduce artifacts

for optimal stitching results. One particular difficulty is the lack of training data as it

is challenging to capture ground-truth pushbroom videos from real-world cameras. To

address this issue, we render a synthetic dataset from a driving simulator for training and

evaluation. This synthetic dataset enables us to develop the first learning-based approach

for stitching videos. The end-to-end trained model learns locally adaptive optical flow

to stitch the input videos, which significantly reduces visual artifacts and improves the
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(a) Conventional video stitching pipeline [55]
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(b) Proposed pushbroom stitching network

Figure 5.2: Algorithm overview. (a) Existing video stitching algorithm [55] solves spatio-

temporal local mesh warping and 3D graph cut to align the entire video, which are often

sensitive to scene content and computationally expensive. On the other hand, commercial

software often adopts a simple 2D seam cutting and multi-band blending, which lead to

ghosting and alignment artifacts. (b) The proposed pushbroom stitching network adopts

a pushbroom interpolation layer to gradually align the input views and obtain temporally

stable and artifact-free results.
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temporal stability.

Finally, we conduct a human subject study for evaluation, which demonstrates that

the proposed model performs favorably against existing video stitching algorithms and

commercial software.

5.2 Stitching as Spatial Interpolation

In this section, we first illustrate the problem setup using an example of automotive.

We then describe the formulation of the proposed pushbroom interpolation and the imple-

mentation details of our pushbroom stitching network.

5.2.1 Problem Setup

Our method produces a temporally stable stitched video from wide-baseline inputs of

dynamic scenes. While the proposed approach is suitable for a generic camera configura-

tion, here we describe it with reference to the automotive use case. Unlike other applica-

tions of structured camera arrays, in the automotive case, objects can come arbitrarily close

to the cameras, thus requiring the stitching algorithm to tolerate large parallax.

For the purpose of describing the method, we define the camera setup as shown in

Figure 5.3, which consists of three fisheye cameras whose baseline spans the entire car’s

width. Figure 5.4(a)-(c) show the typical images captured under this configuration, and

underscore some of the challenges we face: strong parallax, large exposure differences, as

well as geometric distortion.

To minimize the appearance change between the three views and to represent the wide

FOV of the stitched frames, we first adopt a camera pose transformation to warp Ci
L and

Ci
R to the position of Co

L and Co
R, respectively. Therefore, the new origin is set at the center

camera CM . Then, we apply a cylindrical projection (by approximating the scene to be at

infinity) to warp all the views onto a common viewing cylinder, as shown in Figure 5.3.

However, even after camera calibration, exposure compensation, fisheye distortion correc-

tion, and cylindrical projection, parallax still causes significant misalignment, which results

in severe ghosting, as shown in Figure 5.4(d).
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Figure 5.3: Camera setup. The input videos are captured from three fisheye cameras,

Ci
L, CM , and Ci

R. We align all the input views on a viewing cylinder centered at the same

position as CM .

5.2.2 Formulation

In this work, we cast the video stitching as a problem of spatial interpolation between

the side views and the center view. We denote the output view by O, and the input views

(projected onto the output cylinder) by IL, IM , and IR, respectively. Note that IL, IM , and

IR are in the same coordinate system and have the same resolution. We define a transition

region as part of the overlapping region between a pair of inputs (see the yellow regions

in Figure 5.5). Within the transition region, we progressively warp K vertical slices from

both images to create a smooth transition from one camera to another. Outside the transition

region, we directly take the pixel values from the input images without modifying them.

More formally, we take the stitching process between IL and IM as an example. We

first generate K intermediate frames, Î(k)
L , which smoothly transition between IL and IM .

Given the flow FL→M and FM→L, we can compute

Î
(k)
L = W(IL, αk · FL→M) (5.1)

Î
(k)
M = W(IM , (1− αk) · FM→L), (5.2)

whereW(I, F ) is a function that warps image I based on flow F , and αk = {k/K}k=1,..,K

scales the flow to create the smooth transition. We define the left stitching boundary bL as

the column of the leftmost valid pixel for IM on the output cylinder. Given the interpolation



74

(a) IL (b) IM (c) IR

(d) Overlay of input views on the output cylinder

(e) Result of the pushbroom interpolation

Figure 5.4: Example of input and stitched views. We first project the input views IL, IM ,

and IR onto the output cylinder. The projected views on the output cylinder do not align

well due to the parallax and scene depth variation. Our pushbroom interpolation method

effectively stitches the views and does not produce ghosting artifacts.
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Figure 5.5: Transition regions for stitching. Within the transition regions, our pushbroom

interpolation method progressively warps and blendsK vertical slices from the input views

to create a smooth transition. Outside the transition regions, we do not modify the content

from the inputs.
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Figure 5.6: Pushbroom interpolation layer. A straightforward implementation of the

pushbroom interpolation layer requires to generate all the intermediate flows and the in-

termediate views, which is time-consuming when the number of interpolated views K is

large. Therefore, we develop a fast pushbroom interpolation layer by a column-wise scal-

ing on optical flows, which only requires to generate one interpolated image for any given

K.



76

step size s, the left half part of the output view, OL, is constructed by

OL(x)=


IL(x), if 0 ≤ x < bL

Î
(k)
LM(x), if bL+(k−1)·s≤x<bL+k ·s

IM(x), if bL+K ·s≤x< W
2
,

(5.3)

where Î(k)
LM is obtained by appropriately fusing Î(k)

L and Î(k)
M , k=1,· · ·, K (see Section 5.2.3).

By construction, the output image is aligned with IL at bL, and aligned with IM at bL+K ·s.
Within the transition region, the output view gradually changes from IL to IM by taking

the corresponding columns from the intermediate views. The right half part of the out-

put, OR, is defined similarly to OL. We show a stitched view of the proposed pushbroom

interpolation approach in Figure 5.4(e).

We note that the finer the interpolation steps, the higher the quality of the stitched

results. We find K = 100 and s = 2, i.e., 100 slices with 2-pixel pushbroom columns,

to offer sufficient good quality. However, creating K images per side to generate a single

frame is both computationally expensive and memory intensive. To address this issue, we

propose an efficient and lightweight solution to generate OL and OR, which we implement

as a network layer, as detailed in Section 5.2.3.

5.2.3 Fast Pushbroom Interpolation Layer

Synthesizing the transition regions exactly as described in the previous section is com-

putationally expensive. For each side, it requires scaling the forward and backward optical

flow fields K times, and using them to warp the full-resolution images just as many times.

This results in 2×H×W ×K pixels to warp for each side. However, we only need a slice

of s = 2 pixels from each of them.

Instead of scaling each flow field in its entirety, we propose to generate a single flow

field in which entries corresponding to different slices are scaled differently. For instance,

from the flow field from IL to IM , we generate a new field

F̂L→M(x)=


0, if 0 ≤ x < bL

αkFL→M(x), if b(k)≤x<b(k+1)

FL→M(x), if bL+K ·s≤x< W
2
,

(5.4)
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where b(k) = bL + (k − 1) · s are the boundaries of each slice. We can then warp both

images by:

ÎL = W(IL, F̂L→M) (5.5)

ÎM = W(IM , F̂M→L), (5.6)

where F̂M→L is computed with (5.4) but with (1 − αk) in place of αk. Note that this

approach only warps each pixel in the input images once.

To deal with the unavoidable artifacts of optical flow estimation, we use a flow refine-

ment network to refine the scaled flows and predict a visibility map for blending. As shown

in Figure 5.6, the flow refinement network takes as input the scaled optical flows, F̂L→M

and F̂M→L, and the initial warped images, ÎL, and ÎM , and generates the refined flows,

F̃L→M and F̃M→L, and a visibility map V . The visibility map can be considered as a qual-

ity measure of the flow, which prevents any potential ghosting artifacts due to occlusions.

With the refined flows, we warp the input images again to obtain ĨL and ĨM . The final

interpolated image is then generated by a linear blending:

ĨLM = V · ĨL + (1− V ) · ĨM . (5.7)

Finally, the output view, OL, is constructed by replacing all the Î(k)
LM in (5.3) with ĨLM . We

generate ĨRM and construct OR by mirroring the process above.

Our fast pushbroom interpolation layer generates the results with similar quality but is

about 40× faster than the direct implementation for an output image with a resolution of

1000× 600 pixels.

5.2.4 Training Pushbroom Stitching Network

To further refine the interpolated frame from the pushbroom interpolation layer, we

introduce an image refinement network as shown in Figure 5.2(b). We name the whole

model as the pushbroom stitching network, which is end-to-end trainable. Here we provide

details about the training and implementation.

Training dataset. One particular challenge for learning to stitch is the lack of training

data. To capture the pushbroom panoramic videos, one needs to synchronize and calibrate
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hundred of cameras and move the cameras simultaneously. In practice, it is impossible to

capture the ground-truth videos with real cameras. Therefore, we render realistic synthetic

data using the urban driving simulator CARLA [27], which allows us to specify the location

and rotation of cameras. We follow the setting of our camera system to specify the input

cameras, CiL, CM , and CiR, in the simulator. In addition, we linearly set 100 cameras be-

tweenCiL andCM (also betweenCiR andCM ) to model the pushbroom camera. Therefore,

we are able to render “ground-truth” pushbroom interpolated videos by replacing the I(k)
LM

in (5.3) with the views captured from the intermediate cameras in the simulator. Finally,

we synthesize 152 videos with different weathers and routes for training.

We note that, due to the cylindrical projection, some pixels do not contain any informa-

tion on the ground-truth image. Thus, we also create a mask M to indicate valid pixels for

every ground truth image.

Training loss. To train our pushbroom interpolation network, we optimize the following

loss functions: (1) content loss, (2) perceptual loss, and (3) temporal warping loss.

We define the content loss as the L1 difference between the pixel values of the stitched

image O ∈ RH×W×3 and the ground-truth stitched image S ∈ RH×W×3:

LC =
∑
x,y

Mx,y · ‖Ox,y − Sx,y‖1, (5.8)

where Ox,y ∈ R3 is a vector with RGB pixel values, and |M | is the number of valid pixels.

We measure the perceptual loss from the features of the pre-trained VGG-19 net-

work [99]:

LP =
∑
i∈I

∑
x,y

M (i)
x,y · ‖φ(i)

x,y(O)− φ(i)
x,y(S)‖1, (5.9)

where φ(i)(·) denotes the feature activation at the i-th layer of the VGG-19 network and

M (i) is the valid mask downscaled to the size of the corresponding features. The set I
consists of the relu1-2, relu2-2, relu3-3, and relu4-3 layers.

To improve the temporal stability, we also optimize the temporal warping loss [63]

between frame t and t′:

LT =
∑
t′∈Ωt

∑
x,y

Mx,y · Ct⇒t′

x,y · ‖O(t)
x,y − Ô(t′)

x,y ‖1, (5.10)
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where Ωt is the set of neighbor frames at time t, C is a confidence map, and Ô(t′) =

W(O(t′), F t⇒t′) is the warped frame by the optical flow F t⇒t′ . We use the pre-trained

PWC-Net [101] to compute the optical flow. Note that the optical flow F t⇒t′ is only used

for training, and our model does not require the optical flow at the test phase. The confi-

dence map C ∈ [0, 1] is computed from the ground-truth frame S(t) and S(t′):

Ct⇒t′ = exp
(
−α‖S(t) − Ŝ(t′)‖2

2

)
. (5.11)

A smaller value of C indicates that the pixel is more likely to be occluded. We note that

(5.10) is a weighted L1 norm, where we set a larger weight for non-occluded pixels and a

smaller weight for occluded pixels.

The overall loss function is defined as:

L = λCLC + λPLP + λTLT , (5.12)

where λC , λP , and λT are the weights to balance the content loss, perceptual loss, and

temporal loss, respectively. We empirically set λC = 1, λP = 0.001, and λT = 1.

Implementation details. We implement our model using PyTorch [85]. As spatial and

temporal interpolation are highly-related, we use the SuperSloMo pre-trained for temporal

interpolation [54] to initialize the pushbroom interpolation layer. The image refinement net-

work is an encoder-decoder architecture with two strided convolutional layers, five residual

blocks [41], and two transposed convolutional layers. All the convolutional and transposed

convolutional layers (except the last layers) are followed by the leaky ReLUs [80] with a

negative slope of 0.1. As the initial stitched image from the pushbroom interpolation layer

is highly similar to the target output image, we add a skip connection between the input

and the output of the image refinement network (see Figure 5.2(b)). Therefore, the image

refinement network learns the residuals to refine the details of the stitched image.

During the training stage, we sample three consecutive frames from the same video in

each forward pass. We only compute the temporal loss for the center frame while comput-

ing the content and perceptual losses for all the sampled frames. We set the initial learning

rate to 10−4 and decrease by a factor of 2 for every 20,000 iterations. In total, we optimize

our network using the ADAM solver [60] for 100,000 iterations We train our model on an

NVIDIA Tesla P100 GPU, which takes 1 day to converge. At the test stage, it takes 0.12

second for our network to stitch a video frame with a resolution of 1000× 600.
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5.3 Experimental Results

In this section, we first analyze the contribution of each loss function and visualize the

intermediate results in the pushbroom interpolation layer. We then compare the proposed

model with existing methods and commercial software through a human subject study.

Finally, we discuss the limitations and future work of our method.

5.3.1 Model Analysis

To quantitatively evaluate the performance of the stitching quality, we use the CARLA

simulator to render a test set using a different town map from the training data. We render

10 test videos, where each video has 300 frames.

We measure the PSNR and SSIM between the stitched frames and the ground-truth

images for evaluating the image quality. In addition, we measure the temporal stability by

computing the temporal warping error:

Ewarp =
T−1∑
t=1

1

|M̃ (t)|

∑
x,y∈M̃(t)

‖O(t)
x,y − Ô(t+1)

x,y ‖2
2, (5.13)

where Ô(t+1) is the flow-warped frame O(t+1), M̃ (t) is a mask indicating the non-occluded

pixels, and |M̃ (t)| is the number of valid pixels in the mask. We use the occlusion detection

method in [94] to estimate the mask M̃ (t).

We first evaluate the baseline model, where the pushbroom interpolation layer is initial-

ized from the pre-trained SuperSloMo [54]. The baseline model does not have the image

refinement network and is not trained on our synthetic dataset. The baseline model provides

a visually plausible stitching result but causes object distortion and temporal flickering due

to inaccurate flow estimation. After finetuning the whole model, both the visual quality and

temporal stability are significantly improved. As shown in Table 5.1, all the loss functions,

LC , LP , and LT , improve the PSNR and SSIM and also reduce the temporal warping error.

In Figure 5.7, we show an example where our full model aligns the speed sign well and

avoids the ghosting artifacts.

In Figure 5.8 top, we show a stitched frame from the baseline model, where the pole

on the right is distorted and almost disappeared. After training, the pole remains intact

(Figure 5.8 bottom). We also visualize the optical flows before and after training the model.
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Table 5.1: Ablation study. The baseline model is initialized from the pre-trained Super-

SloMo [54]. After training the model with the content loss LC , perceptual loss LP , and the

temporal loss LT , the image quality and temporal stability are significantly improved.

Training loss PSNR ↑ SSIM ↑ Ewarp ↓

N.A. (baseline) 27.69 0.908 13.89 ×10−4

LC 30.95 0.925 11.57 ×10−4

LC + LP 31.09 0.926 11.49 ×10−4

LC + LP + LT 31.22 0.928 11.34 ×10−4

After training end-to-end, the flows are more smooth and warp the pole as a whole to avoid

distortion.
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(a) Stitched frame (Lc+Lp+Lt)

(b) GT (c) Baseline (d) Lc (e) Lc+Lp (f) Lc+Lp+Lt

Figure 5.7: Example of the synthetic video. After training on the synthetic data, our

model aligns the content well and reduce the ghosting artifacts.
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(a) (b) (c)

Figure 5.8: Visualization of the pushbroom interpolation layer. We show (a) the stitched

frame, (b) forward flow, and (c) backward flows from the pushbroom interpolation layer

before (top) and after (bottom) training the proposed model. The finetuned model generates

smooth flow fields to warp the input views while preserving the content (e.g., the pole on

the right) well.
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Table 5.2: Human subject study. We conduct pairwise comparisons on 20 real video.

We show the percentage that users prefer our method against other approaches and the

percentage of reasons when users select our method.

Ours vs. Preference
Fewer broken Less Similar

objects ghosting results

AutoPano [4] 90.74% 85.71% 20.41% 10.20%

VRWorks [83] 97.22% 80.00% 49.52% 1.90%

STCPW [55] 98.15% 87.74% 38.68% 0%

Overall 95.37% 84.74% 36.57% 3.88%

5.3.2 Comparisons with Existing Methods

We compare the proposed method with a commercial software, AutoPanoVideo [4],

and existing video stitching algorithms, STCPW [55] and NVIDIA VRWorks [83]. We

show two stitched frames from real videos in Figure 5.9 and 5.10, where the proposed

approach generally achieves better alignment quality with fewer broken objects and ghost-

ing artifacts. A video comparison is available in https://www.dropbox.com/s/

fa8ty6txplut45u/video_stitching_demo.mp4?dl=0.

As different methods may use different projection models, it is difficult to quantitatively

evaluate the performance of video stitching algorithms. Instead, we conduct a human sub-

ject study through pairwise comparisons. Specifically, we ask the participants to choose a

stitched video with fewer artifacts from a paired of videos. We evaluate a total of 20 real

videos. We ask each participant to compare 12 pairs of videos. In total, we collect the

results from 54 participants.

In Table 5.2, we show that our results are preferred by about 95% of users, which

demonstrates the effectiveness of the proposed method on generating high-quality stitching

results. In addition, we ask participants to provide the reasons that they prefer the selected

video from the following options: (1) the video has fewer broken lines or objects, (2) the

video has less ghosting artifacts, and (3) the two videos are similar. Overall, our results are

preferred due to a better alignment and fewer broken objects. Moreover, only 4% of users

feel that our result is comparable to others, which indicates that users generally have a clear

judgment when comparing our method with other approaches.
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(a) STCPW [55]

(b) AutoPano Video [4]

(c) NVIDIA VRWorks [83]

(d) Ours

Figure 5.9: Comparison with existing video stitching methods. The proposed method

achieves better alignment quality and thus preserves the shape of objects well and avoids

ghosting artifacts.
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(a) STCPW [55]

(b) AutoPano Video [4]

(c) NVIDIA VRWorks [83]

(d) Ours

Figure 5.10: Comparison with existing video stitching methods. The proposed method

achieves better alignment quality and thus preserves the shape of objects well and avoids

ghosting artifacts.
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Figure 5.11: Failure case. Our approach might produce mis-alignment or ghosting artifacts

when the flow estimation is not accurate enough.

5.3.3 Limitations and Discussion

While the proposed method performs favorably against existing video stitching ap-

proaches, there are still a few limitations.

First, the proposed pushbroom interpolation relies on optical flow for warping, which

inherits the common challenges of optical flow estimation. As shown in Figure 5.11, when

the flow is not estimated well, e.g., thin structure or objects, our method may generate

ghosting or temporal jittering.

Second, our method requires the camera calibration to obtain camera parameters for

pre-warping the input views. Directly applying the pushbroom interpolation on the input

videos may not produce acceptable results due to the huge perspective difference between

the input views. Further, although trained for a specific configuration, our model is robust

to a certain amount of deviations from the expected settings. To demonstrate the robustness

of our model, we render the same test video by changing the camera baseline, i.e., hori-

zontally shifting the side cameras inward or outward from the position used for training.

The blue curves in Figure 5.12(a) and (b) offer an insight on the analysis of the impact of

different baselines. Even when moving the side cameras inwards by up to 0.8m (62.5% of

the original baseline), the PSNR drops by less than 1dB. While moving the side cameras

outwards decreases the size of overlapped region, the PSNR drops less than 2dB when the

deviation is up to 0.4m. On the other hand, the temporal warping error remains small and

the video is still stable during playback. We show visual results from the default baseline

and an extreme baseline shift (+1.0m) in Figure 5.13(a) and (b). Note that despite the very
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1.0 0.5 0.0 0.5 1.0
Baseline shift (m)

27

28

29

30

31

32

33

single baseline
finetuned on multiple baselines

1.0 0.5 0.0 0.5 1.0
Baseline shift (m)

8.00e-04

9.00e-04

1.00e-03

1.10e-03

1.20e-03

1.30e-03

1.40e-03

single baseline
finetuned on multiple baselines

(a) PSNR (b) Temporal warping error

Figure 5.12: Analysis on different camera baselines.

large change in baseline, and even when the overlap is reduced by moving the cameras

outwards, the quality remains similar—see the lamp post, which is in a transition region.

However, minor artifacts can be seen in close-by regions, e.g., double yellow lines.

We further fine-tune our model (trained on a single baseline) with data that mixes mul-

tiple camera baselines. The fine-tuned model further improves the performance (red curves

in Figure 5.12) for a range of baseline shifts and improves the visual quality as shown

in Figure 5.13(c).
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(a) 1.28m (default)

(b) 2.28m (+1.0m)

(c) 2.28m (+1.0m) fine-tuned

Figure 5.13: Results on different camera baselines.
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5.4 Conclusions

In this work, we present an efficient algorithm to stitch videos with deep CNNs. We

propose a pushbroom interpolation layer to gradually align input views through the spatial

interpolation. Our model effectively aligns and stitches the content from different views

while preserving the object shape and avoiding ghosting artifacts. By training the proposed

model on a synthetic dataset, we significantly improve the stitching quality and temporal

stability. A human subject study demonstrates that the proposed method performs favorably

against existing video stitching algorithms and commercial software. To the best of our

knowledge, our approach is the first learning-based algorithm, which sheds light on future

research for developing CNN-based solutions for image and video stitching.



Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis studies the problems of visual enhancement. We have made several key

contributions toward effective and efficient visual enhancement in three aspects.

Spatial enhancement. In Chapter 3, we propose the deep Laplacian Pyramid Super-

Resolution Network for fast and accurate image super-resolution. The proposed network

progressively reconstructs the sub-band residuals of high-resolution images at multiple

pyramid levels. In contrast to existing methods that involve the bicubic interpolation for

pre-processing (which results in large feature maps), the proposed method directly extracts

features from the low-resolution input space and thereby entails low computational loads.

We train the proposed network with the deep supervision, multi-scale training, and robust

Charbonnier loss functions and achieve high-quality image reconstruction. Furthermore,

we utilize the recursive layers to share parameters across as well as within pyramid levels,

and thus drastically reduce the number of parameters. The proposed model is more effec-

tive, efficient, and compact than the state-of-the-art CNN-based super-resolution methods.

Temporal enhancement. In Chapter 4, we present an efficient approach based on a deep

recurrent network for enforcing temporal consistency in a video. We train the proposed net-

work by minimizing both short-term and long-term temporal losses as well as a perceptual

loss to strike a balance between temporal coherence and perceptual similarity with the pro-

91
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cessed frames. At test time, our model does not require computing optical flow and thus

achieves real-time speed even for high-resolution videos. Our model is agnostic to spe-

cific image-based algorithms applied on the original videos. Furthermore, a single model

can handle multiple and unseen tasks, including but not limited to artistic style transfer,

enhancement, colorization, image-to-image translation and intrinsic image decomposition.

Spatial-temporal enhancement. In Chapter 5, we propose a pushbroom stitching net-

work to stitch multiple wide-baseline videos into a single panoramic video. To tolerant to

strong parallax and achieve temporally stable results, we cast the video stitching as a spatial

interpolation problem, inspired by the pushbroom cameras. We introduce a fast pushbroom

interpolation layer to learn a dense flow field to smoothly align the input videos. Our ap-

proach generates more visually pleasing results than existing approaches and has immedi-

ate applications in many areas such as virtual reality, immersive telepresence, autonomous

driving, and video surveillance.

6.2 Future Work

Along the topic of visual enhancement, there are three interesting directions for future

investigation.

6.2.1 Practical Applications of Low-Level Vision

Most existing CNN-based SR models focus on simulated data (e.g., bicubic downsam-

pled images without noise), which is relatively simple compared to real-world data. It is

of great importance to improve existing methods to handle real-world low-resolution data,

which may be generated from unknown downsampling kernels or contain compression

artifacts and unknown sensor noise. On the other hand, with the advancement of cam-

era sensors, cameras on mobile phones can already capture photos with a 2K or 4K pixel

resolution. Applying existing CNN-based algorithms on such an ultra-resolution input in-

evitably raises the problem of memory usage and efficiency. The same issue is not only

applied to image super-resolution but also other low-level vision problems such as image

deblurring and video frame interpolation. Instead of learning a deep and complex model,
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one may need to adopt the model compression or knowledge distillation strategies to learn

compact models.

In addition, image super-resolution is highly related to the image compression tech-

nique. Some existing approaches [20, 70] focus on reducing the compression artifacts while

performing image super-resolution. It will be interesting to explore a joint optimization of

image downsampling, compression, and super-resolution to improve the compression rate

and reduce the loss of quality.

6.2.2 Semi-Supervised Learning and Domain Adaptation

Some fundamental computer vision problems, such as depth and optical flow estima-

tion, typically lack ground-truth data. Existing methods rely on synthetic data with dense

ground-truth for training. However, the models still need to be fine-tuned on different

datasets to achieve better performance. One of my previous work addresses the semi-

supervised learning of optical flow using both the synthetic (with ground-truth) and real

(without ground-truth) data [64]. Nevertheless, the synthetic and real data contain a do-

main gap, which may impede the model to learn from both two domains. Therefore, it is

important to explore the domain adaptation strategy [107] to effectively utilize data from

different domains and learn a more generalized model.

On the other hand, the flow and depth have a geometric relationship and consistency

that could be exploited for joint learning. Existing methods [91, 133] mainly focus on

unsupervised learning with unlabeled videos. It will also be an interesting direction to

explore the semi-supervised learning for such a joint learning problem.

6.2.3 Learning-Based Computational Photography

Several computational photography problems (e.g., image demosaicing [102] and HDR

reconstruction [81, 29]) could be cast as a learning problem if the input and output can

be well defined. However, learning a single end-to-end model does not always lead to

better performance. For instance, in the context of single-image HDR reconstruction, one

needs to restore 32-bit pixel information from the input 8-bit image, which is extremely

challenging. Therefore, it is important to exploit domain knowledge to mitigate the training

difficulty We can decompose the problem into several sub-tasks by modeling the LDR
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image formation pipeline as dynamic range clipping, sensor noise generation, non-linear

mapping, and quantization. We then learn CNNs to explicitly model the inverse function

of each step in the camera pipeline. The whole model can be further fine-tuned end-to-end

to reduce the error accumulation. By integrating the conventional domain knowledge into

deep CNNs, we can design better architectures and loss functions to regularize the network

training and achieve better performance.
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[14] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Com-
bining local and global optic flow methods. International Journal of Computer Vi-
sion, 61(3):211–231, 2005.

[15] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications, 31(4):532–540, 1983.

[16] P. J. Burt and E. H. Adelson. A multiresolution spline with application to image
mosaics. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2(4):217–
236, 1983.

[17] C.-H. Chang, Y. Sato, and Y.-Y. Chuang. Shape-preserving half-projective warps for
image stitching. In IEEE Conference on Computer Vision and Pattern Recognition,
2014.

[18] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embed-
ding. In IEEE Conference on Computer Vision and Pattern Recognition, 2004.

[19] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua. Coherent online video style transfer.
In IEEE International Conference on Computer Vision, 2017.

[20] H. Chen, X. He, C. Ren, L. Qing, and Q. Teng. CISRDCNN: super-resolution of
compressed images using deep convolutional neural networks. Arxiv, 2017.

[21] Q. Chen and V. Koltun. Photographic image synthesis with cascaded refinement
networks. In IEEE International Conference on Computer Vision, 2017.

[22] Y.-S. Chen and Y.-Y. Chuang. Natural image stitching with the global similarity
prior. In European Conference on Computer Vision, 2016.

[23] E. L. Denton, S. Chintala, and R. Fergus. Deep generative image models using a
laplacian pyramid of adversarial networks. In Neural Information Processing Sys-
tems, 2015.

[24] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convo-
lutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(2):295–307, 2015.

[25] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional
neural network. In European Conference on Computer Vision, 2016.

[26] X. Dong, B. Bonev, Y. Zhu, and A. L. Yuille. Region-based temporally consistent
video post-processing. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open
urban driving simulator. In Conference on Robot Learning, 2017.

[28] A. Eden, M. Uyttendaele, and R. Szeliski. Seamless image stitching of scenes with
large motions and exposure differences. In IEEE Conference on Computer Vision
and Pattern Recognition, 2006.



97

[29] G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger. HDR image
reconstruction from a single exposure using deep CNNs. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), 36(6):178:1–178:15, 2017.

[30] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. van der
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