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ABSTRACT OF THE THESIS 

 

Multi-Omic Analysis of COVID-19 Severity 

 

by 

 

Roza Lorin Kirmizi 

 

Master of Science in Physiological Science 

University of California, Los Angeles, 2023 

Professor Xia Yang, Chair 

 

The COVID-19 pandemic was caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS CoV-2) virus. COVID-19 has been associated with multiorgan 

dysfunctions, including pulmonary, cardiovascular, metabolic, neurological, and 

psychiatric disorders, some of which can last weeks or months after viral contagion. 

Individual genome-wide association study (GWAS) studies have revealed specific 

genetic risk loci for COVID-19 severity. However, the small sample sizes and limited 

replication of studies prevent a comprehensive understanding of the mechanisms 

underlying COVID-19 severity and complications. Here we integrated the summary 

statistics from European and Chinese GWAS with tissue-specific expression 

quantitative loci (eQTLs) from GTEx and molecular pathways using Mergeomics to 

identify the tissue-specific molecular networks and key drivers of COVID-19 severity. 
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We focused on tissues relevant to COVID complications, such as the lung, heart, blood, 

brain, intestine, and skin. Across the datasets, we discovered replicated pathways 

involved in viral transcription and activity, protein processing, and cell cycle and cancer. 

We also predicted regulatory genes such as RARRES3, MIF-AS1, CXCL3, RNASE3, 

LY86, LCP2, SLC11A1, PSMB8, GBP4, ISG15, UQCRC2, and NCKAP1L and those for 

the major histocompatibility complex (MHC) Class I and II molecules. These pathways 

have downstream effects related to pulmonary, cardiovascular, autoimmune, skin 

dysfunctions, and various cancers. Identifying the pathways and regulatory genes will 

guide the discovery of therapeutic and pharmacological treatments for the severe illness 

of COVID-19 and subsequent complications.  
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Introduction 

COVID-19 is a new coronavirus disease that led to a major worldwide outbreak in 2019. 

It is caused by the virus known as the severe acute respiratory syndrome coronavirus 

2 (SARS CoV-2) and has spread to pandemic levels. As of February 9, 2023, there have 

been 689,829,953 million cases worldwide and 6,885,930 million deaths. In the US, 

there have been 107,127,223 million cases and 1,165,538 million deaths (1). 

Although most COVID-19 cases involve mild symptoms, some patients experience 

severe respiratory dysfunction, dyspnea, hypoxia, and multiorgan failure, leading to 

hospitalization, intensive care unit (ICU) admission, invasive mechanical ventilation 

(IMV), and sometimes death. On average, severe and critical cases make up 14% and 

6%, respectively (2). The frequency of severe cases varies depending on age and 

comorbidities such as: age 65 or older, immunosuppression, diabetes, obesity, 

hypertension, as well as chronic kidney, cardiac, pulmonary, neurologic, and liver 

disease (2–5). 

COVID-19 has also been found to affect multiple organs or tissues both acutely and 

chronically, with certain symptoms ongoing for weeks or months after viral infection. The 

SARS CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) receptor, which is 

present in tissues including, but not limited to, the lungs, heart, brain, liver, kidneys, 

intestines, and vascular endothelial cells. Once the virus gains access to the body, it 

triggers the innate immune system, and in turn leads to the activation of inflammatory 

responses as part of the antiviral response. However, both severe cases and cases that 

lead to mortality from COVID-19 show an abnormal immune response where acute pro-

inflammatory cytokines (including IL-6, IL-1, TNF- αm, and interferon) lead to an 
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unchecked circulation of T-Cells, neutrophils, and macrophages. This is called the 

“cytokine storm” and eventually causes damage to the tissues in the vicinity of the 

immune response through the destruction of endothelial cell-to-cell interactions, and 

thereby the vascular barrier, capillaries, and situations of diffuse alveolar damage (DAD) 

(6). This extreme inflammatory response can lead to acute respiratory distress 

syndrome (ARDS), systemic inflammatory response syndrome, vasoconstriction, 

coagulation, edema, deep vein thrombosis (DVT), kidney injury, gastrointestinal issues, 

heart injury, stroke, multiorgan damage, and even death (3,7,8). 

Genome-wide association studies (GWAS) have been conducted in numerous 

human populations to search for genetic risk factors that may confer susceptibility to 

severe COVID. These genes play a wide range of roles in cilia dysfunction (TYK2, 

DNAH7), cardiovascular disease (DES, SPEG), thromboembolic disease (STXBP5), 

mitochondrial dysfunction (CLUAP1 and TOMM7 ), and the innate and adaptive immune 

system (IFNAR2, OAS1, OAS2, and OAS3)(9). These studies have brought insights 

into the genetically vulnerable populations and the associated mechanisms that the 

target genes typically work within, which may partially explain the determining factors in 

COVID-19 severity and the downstream complications. 

Despite the insights gained from GWAS, multiple limitations in these studies 

hinder the interpretation and translational use of the findings. First, the existing GWAS 

suffer from small sample size, the top loci and candidate genes identified from these 

studies have limited replication, and it is unclear through which tissues the top candidate 

genes act. We hypothesize that, like many other complex diseases, COVID-19 severity 

involves numerous genetic loci that are far beyond a few to 
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genome-wide significant loci in individual studies, and that these genetic risks converge 

on coherent pathways and networks in multiple tissues and organ systems to together 

confer disease severity. To test this hypothesis, we integrated independent GWAS from 

multiple populations with tissue-specific gene regulation data to identify the convergent 

and population-specific pathways or networks affected by genetic risks of COVID-19 

severity in individual tissues. We further utilize a network approach to identify key drivers 

that likely regulate the severity of COVID-19 illness. 

  

Material and Methods 

Overview of Study Design 

An integrative genomics approach, specifically Mergeomics, was utilized to analyze 

multiple large-scale human genetic and genomic datasets to highlight the genetic 

pathways, networks, and regulators of COVID-19 illness severity (Figure 1)(10–12). The 

datasets used included the summary statistics of four GWAS from Chinese, Italian and 

Spanish, UK, and multi-European populations taken from the NHGRI-EBI GWAS Catalog 

or the Human Genome Initiative (HGI) (13,14). Additionally, to provide functional 

relevance in a tissue-specific manner to the above GWAS datasets, functional genomic 

data in the form of expression quantitative trait loci (eQTLs) were utilized from 35 diverse 

human tissues and immune cell types, to map GWAS SNPs to genes in a tissue/cell 

specific manner (15,16). The step in the Mergeomics pipeline to achieve this mapping is 

called Marker Dependency Filtering (MDF), which in addition to SNP-gene mapping also 

filters and removes redundant SNPs from each GWAS dataset that has high linkage or a 

high level of redundancy (r2>0.7). To be able to gain high level functional insight to the 
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mapped genes, we utilized an array of canonical pathways derived from resources such 

as KEGG, Biocarta and Reactome, whereby we input tissue-specific genes mapped from 

each GWAS into the Marker Set Enrichment Analysis (MSEA), to identify the canonical 

pathways that are enriched for stronger genetic associations with COVID severity from a 

genetic standpoint in each tissue. After MSEA is conducted for each population, all four 

populations were meta-analyzed to conduct a Meta-MSEA, which informs on the shared 

pathways/modules that are significant to severity of COVID-19. Lastly, to pinpoint the key 

regulators of such biological pathways in a tissue-specific manner, we utilized tissue 

specific Bayesian gene regulatory networks, which we input along with our significant 

biological pathways (FDR<0.05), to highlight the what we term “key driver (KD) genes” in 

the Key Driver Analysis (KDA) step of Mergeomics. 

  

GWAS Data Collection 

Chinese GWAS 

This dataset was mined from the NHGRI-EBI GWAS Catalog (13) from study 

GCST90014052 (17). The reported trait being studied was severe COVID-19 infection, 

which was defined using the guidelines for COVID-19 diagnosis and treatment (Trial 

Version 7) released by the National Health Commission of the People’s Republic of China 

based on the course of illness (18). Participants ranged in age from 19 to 70 years old 

(mean ± SD, 46.7 ± 13.5) and selected based on exhibiting no comorbidities, which were 

classified as hypertension, coronary heart disease, diabetes, chronic obstructive 

pulmonary disease, malignancy, surgical history, chronic kidney 
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disease, cerebrovascular disease, immunodeficiency disease, chronic hepatitis, and 

tuberculosis. The population included 65 Chinese ancestry cases, and 138 Chinese 

ancestry controls from Wuhan, China. 

Whole Genome-wide sequencing of the 203 samples was conducted using the MGI2000 

PE100 platform with 100-bp paired-end reads. The data was processed using Sentieon 

Genomics and then mapped to the reference genome hg38 using the BWA algorithm. 

After duplicate marking, Indel realignment, and base quality score recalibration (BQSR), 

per-sample variants were called using the Haplotyper algorithm in genomic VCF (GVCF) 

mode. Cohort Variant Call Format (VCF) was produced with the GVCFtyper algorithm, 

followed by variant quality score recalibration utilizing Genome Analysis Toolkit by 

selecting the truth-sensitivity-filter-level to 99.0 for both SNPs and Indels. Variants used 

for further analysis were selected depending on a PASS flag and quality score ≥ 100.  

The summary statistics for the GWAS dataset was that of 5,056,041 SNPs. 

  

Italian and Spanish GWAS 

This dataset was mined from the NHGRI-EBI GWAS Catalog (13) and is the analysis of 

severe COVID-19 infection with respiratory failure taken from study GCST90000255 (19). 

The study recruited 1980 patients with severe COVID-19, defined as hospitalization with 

respiratory failure in the ICU, and confirmed COVID-19 across pandemic epicenters in 

Italy and Spain. Whole blood samples were taken for DNA extraction. 2381 control 

participants from Italy and Spain were recruited as controls. 

DNA extraction was performed using a Chemagic 360 (PerkinElmer). Global Screening 

Array (GSA), version 2.0 (Illumina), was used for genotyping. Imputation was performed 
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on genome build GRCh38 using the Michigan Imputation Server and 194,512 haplotypes 

generated by the Trans-Omics for Precision Medicine (TOPMed) program. After quality 

control, the final datasets consisted of 835 patients and 1255 control participants from 

Italy and 775 patients and 950 control participants from Spain. In total, there were 3815 

European individuals from Italy and Spain (1,610 European ancestry cases, 2,205 

European ancestry controls). A total of 8,965,091 SNPs were included in the Italian cohort 

and 9,140,716 SNPs in the Spanish cohort. Statistical analysis involved the use of the 

PLINK logistic-regression framework for dosage data (PLINK, version 1.9). Genome-wide 

association tests were conducted with adjustments to control for potential population 

stratification and an additional analysis that corrected for age and sex. The meta-analysis 

tool METAL was utilized to conduct a fixed-effects meta-analysis with the use of 

8,582,968 variants that were common to both the Italian and Spanish data sets. 

  

UK GWAS 

This dataset was mined from the NHGRI-EBI GWAS Catalog (13) and is taken from the 

study GCST90013414 (9). The dataset studied individuals from the UK with critical 

COVID-19 illnesses. The population included 10056 European (U.K.) with 1,676 

European ancestry cases and 8,380 European ancestry controls. Initially, the cohort 

included 2,636 COVID-19 patients recruited to the GenOMICC study. An additional 135 

patients were recruited through the International Severe Acute Respiratory Infection 

Comprehensive Clinical Characterisation Collaboration (ISARIC4C). Both studies had 

individuals with confirmed COVID-19 that were in the ICU requiring continuous 

cardiorespiratory monitoring. Genotyping was performed using the Illumina Global 
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Screening Array v.3.0 and Illumina NovaSeq 6000 whole-genome sequencing (WGS). 

Samples were aligned using the HG38 human reference genome and converted to GVCF 

using the DRAGEN pipeline. Variants were called with the GATK GenotypeGVCFs tool, 

filtered to minimum depth 8× (95% sensitivity for heterozygous variant detection) merged 

and annotated with allele frequency with bcftools. Quality control was conducted using 

PLINK and data were filtered using an exclusion of samples with a call rate of <95%, 

selection of variants with call rate of >99% and MAF > 1% and the final selection of 

samples using a call rate of >97%, leaving 2,790 individuals and 479,095 variants for 

further analyses. Kinship and ancestry inferences were calculated following the UK 

Biobank and 1 Million Veteran Program using GenomeStudio. This left 2,718 individuals 

considered unrelated up to the third degree. Unrelated individuals from the 1,000 Genome 

Project dataset were calculated using the same steps as the kinship analysis and both 

datasets were merged using the common SNPs. Next, the data was pruned using PLINK 

with a window of 1,000 markers, a step size of 50 and a r2 of 0.05, giving an output of 

92,017 markers. Imputation was calculated using the TOPMed reference panel. The 

imputed dataset was filtered for monogenic and low imputation quality scores (r2 < 0.4) 

using BCFtools 1.9. To perform GWAS analyses, files in VCF format were further filtered 

for r2 > 0.9 and converted to BGEN format using QCtools 1.358. UK Biobank imputed 

variants with imputation score >0.9 and overlapping the set of 5,981,137 variants were 

extracted and merged with GenOMICC data into a single BGEN file containing cases and 

controls using QCtools 1.3. The GWAS summary statistics include 4,700,000 SNPs. 

  

Multi-European GWAS 
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This data set was taken from the COVID-19-hg GWAS meta-analyses round 5 (A2 all) 

(14). The large dataset compromised a compilation of European datasets (Supplementary 

Table 1). This dataset also utilized GenOMICC, however, it only consisted of 1676 

participants with severe COVID-19 from a later date that wasn’t ancestry matched. The 

population included individuals with very severe respiratory confirmed COVID-19 from 

countries around Europe. Very severe respiratory confirmed COVID-19 was defined as 

hospitalized laboratory-confirmed SARS-CoV-2 infection with the primary reason for 

admission being COVID-19 and patients being on respiratory support, on either 

intubation, continuous positive airway pressure (CPAP), or bilevel positive airway 

pressure (BiPAP). The population included 5,101 individuals with severe COVID-19 and 

1,383,241 European ancestry controls. Processing of genotyping data used the Ricopili 

pipeline (14,20). GWAS analyses were run using Scalable and Accurate Implementation 

of GEneralized mixed model (SAIGE) on chromosomes 1–22 and X. Other software such 

as PLINK was also used. Study-specific summary statistics were processed for meta-

analysis. Each GWAS was examined for potential false positives, inflation, deflation, and 

allele frequency plots. Standard error values were utilized to find studies that deviated 

from the expected trend. These summary statistics that passed manual inspection were 

then utilized in the meta-analysis. Variants with an allele frequency of >0.1% and an 

imputation score of >0.6 were carried forward from each study. Variants and alleles were 

lifted over to genome build GRCh38 and adjusted to gnomAD 3.0 genomes by finding 

matching variants by strand flipping or switching the ordering of alleles. If multiple 

matching variants were included, the best match was chosen according to the minimum 

fold change in absolute allele frequency. Meta-analysis was performed using the inverse-
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variance-weighted (IVW) method on variants that were present in at least two-thirds of 

the studies contributing to the phenotype analysis. The GWAS summary statistics 

contained 9,856,860 SNPs. 

 

Marker Dependency Filtering (MDF) and Mapping SNPs to genes 

Summary statistics from each GWAS was reformatted using the chromosome and base 

pair information from the HG38 and HG19 reference genome to find SNP IDs (RSIDs). 

RSIDs and a -log10 of the P values were inputted into the Mergeomics pipeline to correct 

for linkage disequilibrium (LD) between GWAS SNPs using marker dependency filtering 

(MDF). A marker LD dependency file is selected depending on the population to correct 

for marker dependencies and remove redundant SNPs that had LD of r2>0.7 with a 

selected SNP. European populations are run with a marker LD dependency file of CEU 

LD70 (Utah residents with Northern and Western European ancestry from the CEPH 

collection), and the Chinese population with marker LD dependency file CHB LD70 

(Chinese Han, Beijing). This was completed by GWAS SNPs being compared against 

other SNPs for LD and COVID-19 Severity association. When SNPs with a LD of r2>0.7 

are compared with other SNPs, selection is dependent on the strongest association to 

COVID-19 Severity. A repetition of this step was conducted until the rest of the SNPs 

were no longer in LD based on the r2>0.7 cut-off. The output of the non-redundant SNPs 

was utilized for downstream analyses. To gain tissue specific insight to gene regulation, 

we used expression quantitative trait loci (eQTLs) curated from 35 tissues from the GTEx 

consortium version 9 eQTLs that were combined into one immune cells tissue from the 

DICE-DB 1 database (16). The immune cells used were B cells (naïve), monocytes 
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(classical and non-classical), NK cells (CD56dim CD16+), and T cells (CD4, memory 

TREGCD4; naïve; CD4, naïve [activated]; CD4, naïve TREG; CD4, TFH; CD4, TH1; CD4, 

TH1/17; CD4, TH17; CD4, TH2; CD8, naïve; CD8, naïve [activated])(16). Thirty-five 

different tissues were tested to induce tissue specificity. We mapped the SNPs from the 

different cohorts to all available tissue/cell-type eQTL sets to retrieve tissue/cell-specific 

SNP to gene mapping based on the regulatory associations between SNPs and genes in 

each tissue or cell type (Supplementary Table 2). Both LD filtering and eQTL mapping 

were completed within the MDF step of the analysis. 

  

Marker Set Enrichment Analysis (MSEA) 

To highlight pathways affected by SNPs associated with COVID-19 illness severity within 

each GWAS and each tissue/cell type, the output file from MDF was used as input into 

MSEA to assess the enrichment of the LD-filtered COVID-19 GWAS SNPs through MDF 

within each biological pathway for stronger association to COVID-19 severity compared 

to SNPs mapped to random sets of genes of equal gene number as the given pathway. 

The pathways used were from the KEGG, Reactome, and BioCarta databases (21–23). 

The results from MSEA informed on the critical biological processes of COVID-19 

severity. MSEA utilizes a chi-square-like enrichment statistic at multiple quantile 

thresholds and summarizes enrichment statistics across quantiles to ensure stability of 

the enrichment scores. Ten thousand  permuted  gene  sets  were  generated  for  each  

pathway. Enrichment statistics from the permutations step were used to approximate a 

Gaussian null distribution, and enrichment P-values for each pathway were determined 

based on the true enrichment statistics of the pathway against its corresponding null 
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distribution from permuted random gene sets. Benjamini-Hochberg (BH) false discovery 

rate (FDR) was then estimated across all pathways. Statistical significance was 

determined at an FDR < 5%.   

 

Meta-MSEA 

To search for consistent biological pathways across GWAS datasets we utilized the meta-

MSEA function of Mergeomics. Meta-P values were calculated using Stouffer’s Z score 

method and were based on the P-values from MSEA runs for individual GWAS cohorts. 

Meta-FDR was calculated using the Benjamini-Hochberg method. 

 

Key Driver Analysis (KDA)  

To identify potential regulators of disease-associated pathways and networks, a key 

driver analysis (KDA) was conducted. All of the significant pathways from the MSEA or 

Meta-MSEA were inputted into the KDA. MSEA results are overlaid with tissue-specific 

Bayesian Networks that were selected based on matching tissue type with that of the 

tissue used in the MDF. KDA utilizes a chi-square like statistic to find top key drivers which 

are linked to a significantly larger number of disease-associated pathway genes than 

compared to the expected number for a randomly selected gene within the Bayesian 

network. This was done by overlaying the tissue-specific severe COVID-19 associated 

genes with the corresponding tissue Bayesian molecular network to see if a particular 

subnetwork was enriched for the pathway genes associated with severe illness. The edge 

weights (representing the reliability measures of network edges) that linked a hub to its 

neighbors are summarized into node strengths within the vicinity excluding the hub itself. 
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Statistical significance of the disease-gene enriched hubs was estimated through 

permutation of the gene labels 10000 times and approximating the P-value dependent on 

the null distribution. An FDR < 5% was used to find top KDs. Bayesian tissue networks 

utilized were for adipose, blood, liver, brain, skin, colon, heart, and arteries (15,24–29). 

Network visualization was conducted using Cytoscape. 

  

Results 

Tissue-specific MSEA identified pathways enriched for COVID-19 severity SNPs 

within and across-tissues 

To understand the contribution of individual tissues to severe COVID-19 outcomes, we 

ran MSEA for each tissue and cell-type with available eQTLs to link GWAS SNPs to 

tissue-specific gene expression. We found pathways unique to specific tissues and 

pathways that are more system-wide in that they are commonly shared across tissues 

within each GWAS cohort. 

 

MSEA for the Chinese cohort identified the importance of adipose tissue  

The Chinese cohort had 593 enriched pathways (133 enriched pathways when 

/duplicates are removed) with an FDR<0.05 (Figure 2 and Figure 3). There were 

significant pathway results across all 35 tissues tested, highlighting a system-wide tissue 

contribution to COVID-19 severity, with the largest number of pathways (102) identified 

from the adipose subcutaneous tissue (Figure 3). Numerous pathways were consistently 

identified from adipose tissue (subcutaneous and visceral omentum), whole blood, artery 

tibial, and esophagus mucosa, tissues reflecting the immune system and endothelial 
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functions. These pathways ranged from cell signaling and processes to adaptive immune 

system, inflammatory response, protein synthesis, transcription/translation, autoimmune 

responses, and viral infection (Supplementary 3). The most consistent pathways across 

tissues in terms of significance were those relating to immune system activation and 

signaling, cell adhesion molecules (CAMs), and Type I diabetes mellitus (highlighting 

autoimmunity), with the pathway “adaptive immune system” appearing in 31 tissues 

(Figure 3).  

There were 34 unique tissue-specific pathways seen for 14 tissues. The most significant 

of these unique pathways was for the “the role of GTSE1 in G2/M progression after G2 

checkpoint” pathway (involved with the cell cycle) (FDR= 5.39E-05) and the “MAPK6 

MAPK4 signaling” pathway (involved in cell motility and tumor suppression) (5.35E-05), 

both from the adipose subcutaneous (Table 1). 

  

MSEA for the UK cohort identified the importance of  the esophagus and artery tissues 

The MSEA analysis of the UK dataset yielded 465 significantly enriched pathways across 

32 tissues (123 enriched pathways when duplicates are removed) (Figure 2 and 4). 

Overall, the pathways are involved in viral infection, leishmania infection, chemokine 

signaling, innate immune system, adaptive immune system, vesicle transport, RHO 

GTPase activity, cell signaling, cell death, reproductive processes, phototransduction 

pathway, neuronal/synaptic activity, and long-term depression (Supplementary 4). The 

most significant pathway was for “COPII mediated vesicle transport” identified when using 

the esophagus mucosa tissue (Table 2). 
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         There were 14 unique (only seen once and not including duplicated pathways) 

pathways seen in the artery (tibial), immune cells, brain (cerebral hemisphere and 

cerebellum), and cultured fibroblasts. These modules are for antimicrobial peptides, 

fertilization, glioma, HIV infection, the MEF2D pathway, peptide ligand binding receptors, 

reproduction, RHO GTPase effectors, immune response, the phototransduction cascade, 

and hormone, light, and neurotransmitter receptors. The most significant unique module 

was for the “phototransduction cascade” from cultured fibroblasts (FDR= 0.004280066) 

(Table 3). 

There were 49 consistent pathways across the enriched tissues, reaching 452 pathways 

in total for each tissue (when aren’t removed). The most consistent pathway was “Hats 

acetylate histones” identified when eQTLs from immune cells, brain (cerebellum and 

cerebral hemisphere), colon (sigmoid and transverse), lung, EBV transformed 

lymphocytes, small intestine terminal ileum, whole blood, cultured fibroblasts, artery tibial, 

adipose (visceral omentum and subcutaneous), and skin were used (Supplementary 4). 

  

MSEA for the Italian and Spanish GWAS implicated the importance of digestive, brain, 

and heart tissues  

The MSEA for the Italian and Spanish GWAS dataset identified 226 enriched pathways 

(92 enriched pathways when duplicates are removed) across 25 tissues (Figure 2 and 5). 

The top 5 tissues with the most enriched modules were the esophagus muscularis (31 

pathways), cerebellum (CER), heart atrial appendage (HAA), nucleus accumbens basal 

ganglia (NABG), and cerebellar hemisphere (CH) (Figure 5). Over all the tissues, there 

were 226 enriched pathways in total. These pathways involve cell processes, hormones, 
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neurotransmitters, transcription, translation, and immune processes (Supplementary 5). 

The most consistent pathways were the WNT signaling pathway, activation of NMDA 

receptors and postsynaptic events, GPCR ligand binding, melanogenesis, and chromatin 

modifying enzymes. The WNT signaling pathway and activation of NMDA receptors and 

postsynaptic events were seen across eight different tissues (Supplementary 5). There 

were 3 unique pathways, which included cargo concentration in the ER (skin exposed 

lower leg), phototransduction cascade (cells cultured fibroblasts), and cell cycle mitotic 

(substantia nigra) (Table 4). 

 

MSEA for the multi-European cohort showed the importance of synaptic signaling and 

brain and digestive tissues 

The MSEA analysis of the multi-European dataset yielded 467 enriched pathways (115 

enriched pathways when duplicates are removed) across 34 tissues (Figure 2 and 

Supplementary 6). These pathways were involved with the adaptive immune system, 

innate immune system, cytokine signaling, viral infection, Leishmania infection, 

neuronal/synaptic signaling, cell death, cell cycle, RHO GTPases, tumor suppression, 

DNA repair, vesicle transport, Alzheimer's disease, phototransduction pathways, and 

reproduction (Supplementary 6).  

There were 73 consistent pathways seen over multiple tissues (Supplementary 6). The 

top 5 most consistent pathways are those of GPCR ligand binding, HATs acetylate 

histones, neurotransmitter receptors and postsynaptic signal transmission, transmission 

across chemical synapses, and chromatin modifying enzymes. There were 44 unique 

enriched pathways observed for tissues including brain (amygdala and cerebellum), 
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esophagus (muscularis), cultured fibroblasts, skin (sun-exposed lower leg), adipose 

(visceral, omentum, and subcutaneous), whole blood, and EBV-transformed 

lymphocytes.  

 

Comparison across MSEA results for all cohorts highlights consistent and unique tissue 

and pathway involvement  

Across all populations and tissues, there were 20 tissues that exhibited pathway 

enrichment across all populations, including adipose (visceral omentum), artery (aorta, 

coronary, and tibial), brain (caudate basal ganglia, cerebellar hemisphere, cerebellum, 

hippocampus, and nucleus accumbens basal ganglia), cultured fibroblasts, EBV-

transformed lymphocytes, colon (sigmoid and transverse), esophagus (muscularis), heart 

(atrial appendage and left ventricle), lung, immune cells, skin (not sun exposed 

suprapubic and sun exposed lower leg), and small intestine terminal ileum. These results 

implicate the multi-tissue involvement in COVID-19 severity. The tissues that had the 

most pathways enriched were for esophagus muscularis (178 pathways), visceral 

omentum adipose tissues (149 pathways), and subcutaneous adipose tissue (142 

pathways). However, when using subcutaneous adipose eQTLs, no enriched pathways 

were identified for the Italian and Spanish population.  

Across all 4 populations, there were 9 consistent pathways for apoptosis, HIV infection, 

HIV life cycle, interferon signaling, Leishmania infection, neuronal system, programmed 

cell death, signaling by WNT, and TCF dependent signaling in response to WNT (Figure 

2), highlighting the importance of these pathways in COVID-19 severity across cohorts. 
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We also found 56 pathways unique to individual populations. There were 15 for the 

Chinese population, namely 5 pathways in adipose (subcutaneous and visceral 

omentum), 2 in brain (frontal cortex ba9 and cerebellum), 1 in esophagus mucosa, 1 in 

heart left venticle, 1 in skin not sun exposed suprapubic, 3 in whole blood, and 2 in lung. 

There were 11 unique enriched pathways for the Italian and Spanish dataset, namely 6 

in the brain (cerebellum, hypothalamus, nucleus accumbens basal ganglia, cerebellar 

hemisphere), 1 in artery aorta, 2 in heart (left ventricle and atrial appendage), and 2 in 

esophagus muscularis.  There were 18 unique enriched pathways for the UK dataset, 

including 1 in the adipose visceral omentum, 2 in the artery tibial, 13 in the esophagus 

(muscularis and mucosa), and 2 in immune cells. There were 12 unique enriched 

pathways for the multi-European dataset, including 1 in the adipose subcutaneous, 3 in 

the amygdala, 1 in cultured fibroblasts, 6 in esophagus muscularis, and 1 in whole blood 

(Table 7).  

 

Meta-MSEA identified pathways enriched for COVID-19 severity SNPs across 

cohorts 

Meta-MSEA was used to further assess consistencies across cohorts, yielding 741 

modules across 26 tissues that were significantly enriched when all cohorts were 

considered. The tissues with the most enriched pathways were the cerebellum, aorta, 

esophagus muscularis, and cultured fibroblasts (Figure 6). Enriched modules included 

SARS CoV 2 infection, HIV infection, adaptive and innate immune processes, anti-

immune response pathways, cytokine and interleukin signaling, auto-immune response, 

Alzheimer’s disease, asthma, cancer, cell adhesion molecules, cardiomyopathy, cell 



 18 

signaling, Leishmania infection, long term depression, neuronal processes and 

signaling, vesicular transport, cell membrane transport, cell death, fatty acid synthesis, 

DNA repair, tumor suppression, and phototransduction (Supplementary 7). 

The tissue eQTL with the most enriched pathways was the cerebellum, which exhibited 

58 enriched pathways involved in SARS CoV 2 infection, innate and adaptive immune 

response, and interferon and chemokine signaling, vesicle transport, synaptic signaling, 

cell life cycle and death, epigenetic processes, Alzheimer’s Disease, GTPases 

pathways, auto-immune processes, antigen processing and presentation, and neuronal 

processes (Figure 7). 

There were 103 consistent pathways across tissues. These pathways are involved in 

SARS CoV 2 Infection, HIV infection, antigen presenting pathways, autoimmune 

processes, intestinal immune network for IGA production, chemokine signaling,  

epigenetic processes, secretin-receptor processes, vesicle transport, synaptic signaling, 

neuronal activity, long-term depression, GTPase activity, phototransduction pathways, 

water homeostasis, sensory perception, DNA repair, recombination, cell death, cell 

signaling, tumor suppression, melanogenesis, and cancer (Supplementary 7).  The most 

consistent pathway was that of HATS acetylate histones, which was identified across 15 

tissues, with the digestive, brain, and immune tissues showing the highest significance 

(Figure 8). 

There were 35 significant pathways across tissues that were unique to individual tissues, 

such as the CCR3 pathway when the whole blood eQTLs were used, SLC transporter 

disorders from the esophagus muscularis eQTLs, post-translational protein modification, 

infectious disease, and asthma when using brain eQTLs (Figure 9). 
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Key driver analysis (KDA) identified potential key drivers (KDs) of COVID-19 

severity pathways within and across-tissues 

KDs for the COVID-19 pathways from the Chinese Cohort  

KDA for the significant pathways from the Chinese population identified a total of 81 KDs 

for artery (aorta, tibial), adipose (subcutaneous, visceral omentum), colon (sigmoid), and 

the liver. The consistent top KDs across tissues included CD74, HLA-B, HLA-DMA, HLA-

DPB1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, and MIF-AS1.  

The COVID-19 severity pathways regulated by the top KDs included interferon 

signaling, cell adhesion molecules (CAMs), adaptive immune system, and cytokine 

signaling in immune system. The tissues that had the most key drivers were the adipose 

subcutaneous, whose KDs included: CD74, HLA-B, HLA-DMA, HLA-DQB1, HLA-DRB1, 

and MYO1F, and the artery tibia, whose KDs included: CD74, HLA-DQB1, HLA-DRA, 

HLA-DRB1, HLA-DRB5, and MIF-AS1 (Supplementary 8 and Figure 10a). 

  

KDA for the COVID-19 severity pathways in the UK Cohort  

The top KDs for the COVID-19 severity pathways identified from the UK cohort were 

identified for arteries (aorta, coronary, tibial), cultured fibroblasts, and esophagus 

gastroesophageal junction. These included HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-

DRB6, MIF-AS1, and RP11-259G18.3, which were KDs for pathways CAMs and 

interferon gamma signaling, and cytokine signaling. The tissue that had the most KDs 

was the esophagus, whose KDs included: HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-

DRB6, MIF-AS1, and RP11-259G18.3 (Supplementary 8 and Figure 10b). 
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KDs for the COVID-19 severity pathways from the Italian and Spanish cohort  

There were 29 top KDs across 5 tissues: artery (aorta), esophagus (gastroesophageal 

junction, mucosa, muscularis), and heart atrial appendage. Three KDs HLA-DQA2, HLA-

DRB5, and RP11-259G18.3 were consistent across tissues and pathways such as 

costimulation of CD28 family, cell death, vesicle transport, WNT signaling, cancer, long 

term depression, and cell signaling. The tissue with the most KDs was heart atrial 

appendage whose KDs included HLA-DQA2 and HLA-DRB5 (Supplementary 8 and 

Figure 10c). 

 

KDs for COVID-19 severity pathways from the multi-European cohort  

We identified 29 KDs form COVID-19 severity pathways from the multi-European cohort 

from adipose tissues (subcutaneous, visceral omentum), fibroblasts, and heart atrial 

appendage. Top KDs seen consistently across multiple tissues were RP11-259G18.3, 

CD74, HLA-B, HLA-DQB1, HLA-DRA, HLA-DRB1, IRF7, IRF9, and OAS2. These KDs 

orchestrated genes in the following pathways enriched for COVID-19 severity SNPs: 

adaptive immune system, interferon/cytokine signaling, water homeostasis, vesicle 

transport, synaptic/postsynaptic signaling, and visual phototransduction. The tissue with 

the most KDs was the esophagus whose KDs included: RP11-259G18.3, CD74, HLA-B, 

HLA-DQB1, HLA-DRA, HLA-DRB1, IRF7, IRF9, and OAS2 (Supplementary 8 and Figure 

10d). 
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Across data visualizations for the Esophagus (Gastroesophageal Junction and Mucosa), 

Artery (Aorta and Tibial) and Adipose (Subcutaneous and Visceral Omentum), HLAs were 

consistent KDs 

The KDA of the meta-analysis of all 4 cohorts showed 14 tissues with 29 KDs (Table 8). 

Of these the esophagus (gastroesophageal junction and mucosa), artery (aorta and tibial) 

and adipose (subcutaneous and visceral omentum) had the most KDs. 

Next, we visualized the top KDs for the immune system from the following tissues: the 

esophagus (gastroesophageal junction and mucosa), arteries (aorta and tibial) and 

adipose (subcutaneous and visceral omentum).  

In the esophagus, top KDs including MHC class II genes (HLA- DQA1, DQB1, DRB6, 

DRA), RP11-259G18.3, MIF-AS1, and IGHV1-56 were visualized. Although the HLA 

genes were highly connected in the network, RP11-259G18.3, MIF-AS1, and IGHV1-56 

were KDs in their own subnetworks. IGHV1-56 was also a KD unique to esophagus 

mucosa. (Figure 11) 

For the two artery tissues (tibial and aorta), top KDs included MHC class II molecules 

(HLA-DRB1, DQB1, DRA, DPB1), CD74, MIF-AS1, RP11-259G18.3, CXCL3, and 

RARRES3. KDs HLA, CD74, and RARRES3 were connected, while MIF-AS1, RP11-

259G18.3, and CXCL3 were KD in their own subnetworks. RARRES3 was only present 

in the aorta artery network, while MIF-AS1 and CXCL3 were only seen in the tibial artery 

network (Figure 12)  

In the visceral omentum adipose network, MHC class II genes (HLA- DQA1, DQB1, 

DRB1, DMA), MHC class I gene HLA-B, RNASE3, CD47, LY86, LCP2, and SLC11A1 

were all key drivers and all highly connected. All these SNPs shared networks. The KD 
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unique to this tissue was LCP2. The adipose KD network also contained KDs which were 

genes reported as the GWAS loci in the original GWAS summary statistics: GWAS gene 

CCR2 was connected to KD RNASE3 and GWAS gene HLA-G was connected to KD 

HLA-B in the visceral omentum adipose network (Figure 13). 

The subcutaneous adipose tissue had the largest KD subnetwork, containing 12 KDs, 

including those for MHC class II genes (HLA- DQA1, DQB1, DRB1, DMA, DMB), MHC 

class I gene (HLA-B), CD47, PSMB8, GBP4, ISG15, UQCRC2, and NCKAP1L. UQCRC2 

was the only KD in its own network, while the other KDs shared networks. Of the KDs, 

the ones that were not seen in other tissues were for PSMB8, GBP4, ISG15, and 

UQCRC2. There were also nodes that were reported to exhibit significant associations in 

the original GWAS: OAS1, OAS2 (nodes connecting to KD ISG15), CCR2 (node 

connecting KD HLA-DMB), and HLA-G (node connecting to KD HLA-B). IFNAR1, which 

is in the same family as a previously reported GWAS gene IFNAR2, is also in the 

subcutaneous adipose top KD network (Figure 14).  

 

Discussion 

The four severe COVID-19 GWAS datasets had previously reported GWAS hits 

implicating diverse processes. The UK dataset reported GWAS loci associated with 

antiviral activity (IFNAR2, OAS1, OAS2, and OAS3), and inflammatory response (TYK2, 

DPP9, CCR2). The Italian and Spanish datasets reported genes involved in the 

interaction with the SARS-CoV-2 cell-surface receptor (SLC6A20), intracellular cargo 

trafficking (LZTFL1), microtubule transport of autophagosomes (FYCO1), immune 

response (CCR9, CXCR6 and XCR1), and the ABO blood group. The Chinese data set 
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from Wuhan had reported genes important for immune response (FOXP4-AS1) and the 

ABO blood group. The multi-European dataset reported SNPs for intracellular cargo 

trafficking (LZTFL1), immune response (SLC6A20), ABO, and antiviral activity (IL10RB, 

IFNAR2 and OAS1) (11). The Italian and Spanish study showed association signals 

spanning the ABO blood group locus, with blood-group-specific analysis showing risk 

being higher in blood type A compared to other blood groups, with a protective effect in 

blood type O compared to other types. This study also found association signals 

spanning SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and XCR1(12). Another Chinese 

GWAS analysis study found loci associated with COVID-19 severity on 11q23.3 and 

11q14.2. These loci are involved in inflammation and immune cell functions and include 

genes CTSC, CADM1, REXO2, and ZBTB16 (13). Across these GWAS, LZTFL1, 

CCR9, IFNAR2, CXCR6, SLC6A20, OAS1, OAS2, and OAS3 were replicated in more 

than one cohort, whereas the others were not. 

As genome-wide loci are highly dependent on population size and only capture very 

limited genetic heritability of complex diseases or traits like COVID-19 severity, here we 

carried out a pathway/network-based analysis that is complementary to the original 

GWAS that considers individual SNPs. This approach has been previously reported to 

reveal more comprehensive biological insights and uncover more missing heritability. 

Our pathway/network-based analysis for the four GWAS studies of COVID-19 severity 

recapitulated the importance of both the innate and adaptive immune responses, 

signaling for cytokines, chemokines, interferons, antigen-presenting pathways, and anti-

inflammatory response. It is believed that the severity of COVID-19 is linked to how the 

immune system responds to the virus. The immune system responds to COVID-19 by 
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activating TLR receptors which in turn turns on IFN production, activates antigen 

presentation and eventually can lead to uncontrolled inflammation at later stages of 

disease. There is also a response with chemokines, leading to the activation of T cells 

which eventually causes an increase in IFN, leading to the activation of pro-

inflammatory macrophages. All of these accelerate the severity and course of the 

disease (30). 

In addition to inflammatory pathways, we also found autoimmune response pathways, 

seen in pathways like allograft rejection, type 1 diabetes mellitus, etc. It has been 

reported that autoimmune diseases tend to exhibit an exaggerated immune response 

called the cytokine storm. Cytokine storms are also seen in COVID-19 patients with 

severe illness (31). There has also been previous research that has investigated the 

autoimmune response and its association with COVID-19, where some individuals 

develop autoimmune diseases, including type 1 diabetes mellitus, systemic lupus 

erythematosus, and rheumatoid arthritis (32,33). 

We also uncovered pathways related to antimicrobial, parasitic, and viral infection, more 

particularly SARS-CoV-2, HIV, and Leishmania infection. HIV and Leishmania are 

different diseases from COVID-19; however, they share some similarities regarding the 

immune response. Leishmania infection is characterized by an immune response of 

uncontrolled activation of T lymphocytes, natural killer cells and macrophages, and the 

possibility of increased levels of proinflammatory cytokines (34). HIV, on the other hand, 

seems to share common mechanisms in immune response with COVID-19. Both 

viruses cause similarities in the pro-inflammatory cytokine response (cytokine storm), 
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and T lymphocyte deficiency seen with high expression of T cell inhibitory receptors, 

including programmed cell death-1 (PD-10) (35) 

In addition to the immune/inflammation pathways that agree with the original GWAS 

discoveries, our pathway analysis also uncovered additional cell processes such as 

vesicle transport, water homeostasis, cell signaling, cell cycle/death, and cell transport. 

Pathways involved with DNA/RNA, such as translation, transcription, and epigenetics, 

were also found. Previous studies have found alterations in DNA methylation as 

individuals with severe COVID-19 progress through illness, particularly in the “apoptotic 

execution pathway” (36). These essential cellular processes may be important for cell 

survival and therefore affect COVID severity. 

Surprisingly, our analysis also revealed pathways involved with neuronal and synaptic 

activity, particularly with AMPA and NMDA signaling and long-term neuronal 

depression, which were not implicated in the original GWAS discoveries. There has 

been some previous work that has shown that COVID-19 affects the central nervous 

system (CNS) and the olfactory sensory neurons (37,38), and genetic vulnerabilities 

associated with CNS processes may predispose patients to more severe COVID 

outcomes. 

Our tissue-specific pathway/network analysis also revealed tissue importance and 

tissue-specific processes, which could not be retrieved in standard GWAS analysis. We 

suggest that a multitude of tissues contribute to COVID severity, but the ones that had 

the most significant pathway results were for adipose, artery, esophagus, cerebellum 

and the heart. In particular, the use of adipose tissue eQTLs informed significant 

pathways across all GWAS populations. Obesity is a known risk factor for COVID-19 
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and dysregulated adipose tissue occurs in obesity, leading to systemic inflammation 

and altered immune response. There is research that shows that adipose tissue is 

correlated with COVID-19 severity. In lethal cases, viruses’ nucleocapsid antigen has 

been found in a sizeable proportion of adipocytes of subcutaneous fat (39). Similarly, 

another study found that SARS-CoV-2 infects fat tissue and the surrounding pre-

adipocytes and macrophages, which can lead to a cytokine storm (40). High levels of 

adipocytes could be associated with the level of severity of illness in COVID-19. The 

large number of immune and inflammatory pathways from adipose tissue supports the 

contribution of adipose tissue to COVID-19 severity through immune dysregulation. 

COVID-19 has also been shown to affect the brain. Individuals who had COVID-19 were 

shown to have decreased grey matter volume (41). An individual with a severe case of 

COVID-19 exhibited cerebellar dysfunction, with brain magnetic resonance imaging 

(MRI) depicting edema of the cerebellar hemisphere (42). There is an apparent 

“invasion of the brain” in these cases, where the SARS-CoV-2 virus has been found in 

the brain regions of those who passed from the disease, with the olfactory bulb being 

the predicted entry site of COVID-19 into the brain (43,44). Our work has shown 

pathways involved in the olfactory senses. Furthermore, this could explain why there is 

a loss of smell for people with COVID-19. There is also a change in immune response, 

with there being a decrease in microglia cells, a pathway also revealed in our findings, 

in the cerebellum of individuals who have passed from COVID-19 (45). 

Despite limited research on the causal association of heart, artery, or esophagus on the 

severe illness of COVID-19, complications in these tissues after COVID-19 severity 

have been reported. There is a correlation between individuals hospitalized for severe 
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COVID-19 symptoms and experiencing long-term sequelae, such as a cardiovascular 

event, arterial and venous thromboses, and esophageal hypersensitivity (46–48). It is 

hypothesized that due to the digestive symptoms that occur in COVID-19 illness, that 

the digestive systems are probably involved. Some studies have shown that 

angiotensin-converting enzyme 2, which is how SARS-CoV-2 gets into the body, was 

not only expressed in the lungs, but also in the upper esophagus, and other digestive 

areas like the small intestine, liver, and colon, tissues that have had enriched pathways 

in our results (49,50).   

The esophagus also has its own immune response where esophageal epithelial cells 

and underlying immune cells can trigger an inflammatory response characterized by 

increased expression of Th2 cytokines, such as thymic stromal lymphopoietin (TSLP), 

IL-5, and IL-13 and activation of dendritic cells (51). Therefore, the esophagus may also 

play a role in disease severity through immune modulation. 

When conducting key driver analysis, top key drivers were implicated in the potential 

regulatory roles of the MHC system (CD74, PSMB8, HLA-B, HLA-DMA, HLA-DPB1, 

HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DMB, HLA-DQA2, 

HLA-DRB6, HLA-DQB1-AS1, HLA-H),  cell proliferation (MIF-AS1), metastasis 

suppression (RARRES3), host antiviral response (RTP4, GPB4, and ISG15), collagen 

production (COL5A1) protein processing (FAU, RPL10A, and RPL3), anti-microbial 

activity (RNASE3), mitochondrial processes (UQCRC2), inflammatory responses 

(ALOX5AP, CXCL3, LY86, LCP2, SLC11A1, and DPEP2), alcohol processing (ADH1B), 

lymphocyte processes (IGHV1-46, and NCKAP1L), amino acid transportation (LAT2), 

neurotransmitter release (KCNK13) and a pseudogene (RP11-259G18.3). 
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The HLA key drivers can be broken down into 2 categories: MHC class I and Class II. 

HLAs play an important role in the immune system and are involved in processes such 

as antigen presentation to T cells and acting as ligands for receptors seen on natural 

killer (NK) cells. MHC Class I include HLA-A, HLA-B, and HLA-C. The other HLAs 

belong in class II. It has been found that different alleles of HLA are associated with 

COVID-19 severity (52). HLA-B, HLA-DRB1, and HLA-DQB1 are associated with 

COVID-19 susceptibility and severity (53–55). Diseases associated with HLA include 

MHC-peptides and autoimmune diseases, some of which were pathways significant in 

our MSEA results. In addition, some HLAs are associated with Alzheimer’s and 

Parkinson diseases (56,57). The other top key drivers are involved in macrophage 

activity, T Cell Activity, and protein synthesis.  

In our network visualization, we found the top KDs are highly connected in the 

esophagus, artery, and adipose tissues. Most of the KDs were HLA I or II genes, in 

particular, the KDs mostly fell into HLA alleles of HLA-DQ , DR, DP, and DM alleles.  

Other interesting KDs were involved with MHC processes (CD74 and PSMB8), cell 

proliferation (MIF-AS1), metastasis suppression (RARRES3), anti-microbial activity 

(RNase3), inflammatory response (CXCL3, LY86, LCP2, and SLC11A1), host antiviral 

response (GPB4 and ISG15). CD74, a KD replicated across tissues and COVID-19 

severity pathways, is closely involved in antigen presentation in the immune response 

and is involved in pathways related to the innate immune system, inflammation, and cell 

proliferation (58). It plays a role in both MHC and non-MHC functions. It is also seen as 

a cell membrane receptor for macrophage migration inhibitory factor (MIF) (59).  
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MIF-AS1 is a MIF, which is associated with COVID-19 infection or disease severity (60). 

Although MIF-AS1 has not directly been found to be associated with COVID-19, it has 

been found to be associated with breast cancer cell proliferation along with CD74 

(58,61). Another KD linked to COVID-19 is ISG15, which exacerbates inflammation in 

SARS-CoV-2 infection (62). In the immune response of individuals with severe COVID-

19, there was a higher level of inflammatory macrophages expressing CXCL3 in 

comparison to moderate cases (63). In addition, LCP2 is considered a novel biomarker 

for COVID-19, and SLC11A1 is shown in studies as a possible therapeutic for COVID-

19 (64,65). LY86 has been found as a most influential gene in a study linking COVID-19 

and sepsis (66). Our network analysis revealed the central roles of these KDs in 

regulating COVID-19 severity pathway, thereby highlighting them as potential 

therapeutic targets. 

This study has some strengths in regard to the way the analysis is being conducted. 

Previous studies mainly focused on individual genetic loci and genes with limited 

replication and significant missing heritability due to small sample sizes, lack of tissue 

specific analysis, and lack of omics integration. Our study overcomes these previous 

limitations by focusing on tissue-specific aggregation of genetic association across 

cohorts thereby improving power and interpretability, and capturing a more holistic view 

of disease mechanism. We also acknowledge the following limitations. The datasets 

used were published in 2021 and are not viral variant specific. SARs-CoV2 variants, 

although the same virus, have different levels of disease severity and contagiousness. 

Thus, the results may not be an indicator for the newer variants after 2021. Future steps 

should involve newer COVID-19 datasets, especially those with more diversity in viral 
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variants and genetic diversity in human populations. Transcriptomic, metabolomic, and 

proteomic datasets should also be included to offer additional molecular insights, as 

Mergeomics allows for multi-omics data analysis.  
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Table 1: Unique pathways found across single tissue-specific eQTLs for the Chinese 
population. The most unique modules were for the adipose subcutaneous tissue. The most 
significant unique module was for the generation of second messenger molecules. Table is 

organized alphabetically, first by tissue, then by pathway. 
 

Tissue Pathway FDR 

Adipose Subcutaneous APOPTOSIS 1.19E-02 

HEDGEHOG LIGAND BIOGENESIS 1.82E-04 

HEDGEHOG ON STATE 2.47E-04 

MAPK6 MAPK4 SIGNALING 5.35E-05 

METABOLISM OF AMINO ACIDS AND DERIVATIVES 4.00E-02 

MYD88 INDEPENDENT TLR4 CASCADE 3.20E-02 

POTENTIAL THERAPEUTICS FOR SARS 7.96E-03 

PROGRAMMED CELL DEATH 1.30E-02 

PROTEIN LOCALIZATION 2.85E-03 

PROTEIN PROTEIN INTERACTIONS AT SYNAPSES 1.73E-02 

REGULATION OF RAS BY GAPS 1.25E-04 

THE ROLE OF GTSE1 IN G2 M PROGRESSION AFTER G2 CHECKPOINT 5.39E-05 

TOLL LIKE RECEPTOR CASCADES 4.19E-02 

TOLL LIKE RECEPTOR TLR1 TLR2 CASCADE 1.53E-02 

Adipose Visceral Omentum DEVELOPMENTAL BIOLOGY 1.67E-02 

INFECTIOUS DISEASE 1.68E-02 

SIGNALING BY RECEPTOR TYROSINE KINASES 1.53E-02 

Artery Aorta PROCESSING OF CAPPED INTRON CONTAINING PRE MRNA 1.90E-02 

Artery Tibial ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING 
OF CLASS I MHC 

4.94E-02 

Brain Caudate Basal Ganglia HIV LIFE CYCLE 3.03E-02 

Brain Cerebellum FATTY ACID METABOLISM 2.38E-02 

LYSOSOME 2.05E-03 

Brain Cortex ASTHMA 8.07E-08 

Brain Frontal Cortex Ba9 METABOLISM OF NUCLEOTIDES 8.51E-03 
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Esophagus Mucosa TIGHT JUNCTION 1.73E-02 

Heart Left Ventricle GLYCEROPHOSPHOLIPID BIOSYNTHESIS 4.25E-03 

Lung DISEASES ASSOCIATED WITH O GLYCOSYLATION OF PROTEINS 2.76E-03 

DRUG METABOLISM CYTOCHROME P450 2.77E-03 

Skin Not Sun Exposed 
Suprapubic 

GENERATION OF SECOND MESSENGER MOLECULES 3.78E-11 

THE CITRIC ACID TCA CYCLE AND RESPIRATORY ELECTRON 
TRANSPORT 

3.48E-02 

Skin Sun Exposed Lower Leg NEURONAL SYSTEM 2.59E-02 

Whole Blood CELLULAR RESPONSE TO HYPOXIA 5.86E-03 

DOWNSTREAM SIGNALING EVENTS OF B CELL RECEPTOR BCR 2.08E-02 

TNFR2 NON CANONICAL NF KB PATHWAY 5.23E-03 

 
Table 2: The top most significant pathways for the UK single MSEA analysis. The most 
significant enriched modules were found in the esophagus mucosa, immune cells, esophagus 

muscularis, and cerebellum.   

 

Tissue Pathway FDR 

Esophagus Mucosa COPII MEDIATED VESICLE TRANSPORT 1.67E-07 

Immune CHROMATIN MODIFYING ENZYMES 1.95E-07 

Esophagus muscularis APOPTOTIC EXECUTION PHASE 1.89E-06 

Immune HATS ACETYLATE HISTONES 2.01E-06 

Esophagus Mucosa INTRA GOLGI TRAFFIC 2.66E-06 

Brain Cerebellum COPII MEDIATED VESICLE TRANSPORT 4.02E-06 

 

Table 3: Unique pathways found across single tissue-specific eQTLs for the UK 
population. The most unique modules were for the esophagus muscularis tissue. The most 

significant unique module was for the transport of bile salts and organic acids metal ions and 
amine compounds. Table is organized alphabetically by tissue. Abbreviations for tissues are in 

Supplementary table 2. 
Tissue Pathway FDR 

AVO ANTIMICROBIAL PEPTIDES 3.13E-02 

AT TRAFFICKING OF GLUR2 CONTAINING AMPA RECEPTORS 1.06E-02 
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MEF2D PATHWAY 4.16E-02 

GLIOMA 4.92E-02 

CER RHO GTPASE EFFECTORS 1.87E-02 

CH HIV LIFE CYCLE 1.33E-02 

HIV INFECTION 3.11E-02 

CCF THE PHOTOTRANSDUCTION CASCADE 4.28E-03 

EGJ FATTY ACID METABOLISM 4.12E-02 

EM CDC42 GTPASE CYCLE 5.30E-04 

RAC1 GTPASE CYCLE 1.45E-03 

ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF CLASS I MHC 6.08E-03 

MHC CLASS II ANTIGEN PRESENTATION 6.79E-03 

SARS COV 2 INFECTION 8.33E-03 

CARGO CONCENTRATION IN THE ER 9.79E-03 

DISEASES OF DNA REPAIR 1.06E-02 

INSULIN SIGNALING PATHWAY 2.27E-02 

HDR THROUGH SINGLE STRAND ANNEALING SSA 2.29E-02 

SIGNALING BY RHO GTPASES MIRO GTPASES AND RHOBTB3 2.42E-02 

REGULATION OF TP53 ACTIVITY THROUGH PHOSPHORYLATION 2.43E-02 

CLASS I MHC MEDIATED ANTIGEN PROCESSING PRESENTATION 2.82E-02 

DOWNREGULATION OF TGF BETA RECEPTOR SIGNALING 2.84E-02 

SARS COV 2 ACTIVATES MODULATES INNATE AND ADAPTIVE IMMUNE RESPONSES 3.48E-02 

FOCAL ADHESION 3.50E-02 

OOCYTE MEIOSIS 3.54E-02 

TRIGLYCERIDE METABOLISM 3.55E-02 

HOMOLOGOUS DNA PAIRING AND STRAND EXCHANGE 4.01E-02 

TGF BETA RECEPTOR SIGNALING ACTIVATES SMADS 4.02E-02 

LONG TERM POTENTIATION 4.30E-02 

SIGNALING BY TGF BETA RECEPTOR COMPLEX 4.88E-02 

EMUSC TRANSPORT OF BILE SALTS AND ORGANIC ACIDS METAL IONS AND AMINE COMPOUNDS 4.97E-04 

TRANSPORT OF INORGANIC CATIONS ANIONS AND AMINO ACIDS OLIGOPEPTIDES 1.33E-03 

SLC MEDIATED TRANSMEMBRANE TRANSPORT 1.40E-03 
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TYPE I DIABETES MELLITUS 3.42E-03 

GRAFT VERSUS HOST DISEASE 3.55E-03 

DISORDERS OF TRANSMEMBRANE TRANSPORTERS 4.86E-03 

SLC TRANSPORTER DISORDERS 4.87E-03 

TRANSPORT OF SMALL MOLECULES 4.89E-03 

AUTOIMMUNE THYROID DISEASE 4.92E-03 

ALLOGRAFT REJECTION 6.73E-03 

ANTIGEN PROCESSING AND PRESENTATION 9.23E-03 

ASTHMA 1.55E-02 

RHOV GTPASE CYCLE 1.81E-02 

GPCR PATHWAY 1.81E-02 

NOS1 PATHWAY 1.94E-02 

ENDOCYTOSIS 2.09E-02 

RHOU GTPASE CYCLE 2.37E-02 

CREB PATHWAY 2.41E-02 

INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION 2.93E-02 

SYSTEMIC LUPUS ERYTHEMATOSUS 3.44E-02 

NON SMALL CELL LUNG CANCER 3.45E-02 

AT1R PATHWAY 3.72E-02 

NATURAL KILLER CELL MEDIATED CYTOTOXICITY 4.27E-02 

GENERATION OF SECOND MESSENGER MOLECULES 4.30E-02 

MEIOTIC RECOMBINATION 4.88E-02 

DEATH PATHWAY 4.89E-02 

IC ROS AND RNS PRODUCTION IN PHAGOCYTES 3.61E-02 

FERTILIZATION 3.64E-02 

 
Table 4: Unique modules found across single tissue-specific eQTLs for the Italian and 
Spanish dataset. The most significant unique module was for cargo concentration in the ER 

found in the skin exposed lower leg tissue. Table is organized by smallest to largest FDR. 

Tissues Pathway FDR 

Skin Exposed Lower Leg CARGO CONCENTRATION IN THE ER 8.54E-03 

Cells Cultured Fibroblasts THE PHOTOTRANSDUCTION CASCADE 1.96E-02 
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Brain Substantia Nigra CELL CYCLE MITOTIC 3.05E-02 

 
Table 5: The top most significant enriched pathway of the single tissue eQTL from the 
Italian and Spanish dataset. Of the enriched tissue-specific eQTLs the RHO GTPase was the 

most significant. Table is organized by smallest to largest FDR. 

Tissues Pathway FDR 

Brain Caudate Basal Ganglia RHO GTPASE CYCLE 2.19E-05 

Brain Caudate Basal Ganglia RAC1 GTPASE CYCLE 2.60E-05 

Heart Atrial Appendage TRANSPORT TO THE GOLGI AND SUBSEQUENT 
MODIFICATION 

3.47E-05 

Brain Nucleus Accumbens Basal 
Ganglia 

LONG TERM DEPRESSION 4.75E-05 

Brain Caudate Basal Ganglia CDC42 GTPASE CYCLE 9.13E-05 

Colon Sigmoid WNT SIGNALING PATHWAY 1.12E-04 

Brain Caudate Basal Ganglia NEUROACTIVE LIGAND RECEPTOR INTERACTION 1.22E-04 

Brain Cortex CDC42 GTPASE CYCLE 1.24E-04 

Immune HATS ACETYLATE HISTONES 1.30E-04 

 
 

Table 6: All of the enriched pathways across the Chinese (C), UK, Italian and Spanish 
(IS), and Multi-European (ME) datasets. The table is organized in alphabetical order by tissue 
name. In total, there were 1751 enriched pathways across all populations. The esophagus 

muscularis had the greatest number of enriched pathways at 178. The totals of each tissue 
across populations are presented in the total column. 

 
Tissue C UK IS ME Total 

Adipose Subcutaneous 102 17 0 23 142 
Adipose Visceral Omentum 85 22 8 34 149 

Artery Aorta 21 32 5 24 82 
Artery Coronary 3 4 5 1 13 

Artery Tibial 31 32 4 2 69 
Brain Amygdala 2 0 0 15 17 

Brain Anterior Cingulate Cortex Ba24 1 0 0 0 1 
Brain Caudate Basal Ganglia 15 10 8 18 51 
Brain Cerebellar Hemisphere 11 9 14 9 43 

Brain Cerebellum 20 24 28 46 118 
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Brain Cortex 16 1 6 0 23 
Brain Frontal Cortex Ba9  13 0 0 9 22 

Brain Hippocampus 4 7 5 21 37 
Brain Hypothalamus 3 0 3 0 6 

Brain Nucleus Accumbens Basal Ganglia  13 9 15 21 58 
Brain Putamen Basal Ganglia 5 0 0 0 5 

Brain Substantia Nigra 2 0 1 1 4 
Cells Cultured Fibroblasts 14 18 1 38 71 

Cells EBV-Transformed Lymphocytes 3 3 5 15 26 
Colon Sigmoid 16 19 11 22 68 

Colon Transverse 3 17 6 21 47 
Esophagus Gastroesophageal Junction 18 23 12 0 53 

Esophagus Mucosa 23 64 0 0 87 
Esophagus Muscularis 9 80 31 58 178 
Heart Atrial Appendage 17 20 28 30 95 

Heart Left Ventricle 15 13 13 18 59 
Immune 13 5 11 2 31 

Liver 5 0 0 0 5 
Lung 17 17 1 1 36 

Skin Not Sun Exposed Suprapubic  18 8 2 15 43 
Skin Sun Exposed Lower Leg  18 7 1 17 43 
Small Intestine Terminal Ileum 1 2 2 2 7 

Whole Blood 69 2 0 4 75 
Grand Total 593 465 226 467 1751 

 
Table 7: The unique pathways seen when the Chinese (C), UK, Italian and Spanish (IS), 
and Multi-European (ME) are combined for MSEA. Table is sorted alphabetically for the 

population, tissue, and pathways. The Chinese population had 9 tissues and 15 unique 

pathways, The multi-European population had 5 tissues and 12 unique pathways, the Italian 
and Spanish population had 8 tissues and 11 unique pathways, and the  UK population had 5 

tissues and 18 unique pathways. Tissue abbreviations are found in Supplementary 2. 
 

Pop Tissue Pathway 

C 

AS 

MAPK6 MAPK4 SIGNALING 

MYD88 INDEPENDENT TLR4 CASCADE 

REGULATION OF RAS BY GAPS 

THE ROLE OF GTSE1 IN G2 M PROGRESSION AFTER G2 CHECKPOINT 

AVO DEVELOPMENTAL BIOLOGY 

CER LYSOSOME 

FC METABOLISM OF NUCLEOTIDES 
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EM TIGHT JUNCTION 

HLV GLYCEROPHOSPHOLIPID BIOSYNTHESIS 

L 
DISEASES ASSOCIATED WITH O GLYCOSYLATION OF PROTEINS 

DRUG METABOLISM CYTOCHROME P450 

SNSES THE CITRIC ACID TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT 

WB 

CELLULAR RESPONSE TO HYPOXIA 

DOWNSTREAM SIGNALING EVENTS OF B CELL RECEPTOR BCR 

TNFR2 NON CANONICAL NF KB PATHWAY 

IS 

AA ACTIVATION OF ATR IN RESPONSE TO REPLICATION STRESS 

CH SENSORY PERCEPTION 

CER 

ADIPOCYTOKINE SIGNALING PATHWAY 

REGULATION OF LIPID METABOLISM BY PPARALPHA 

SIGNALING BY RETINOIC ACID 

HYP METABOLISM OF RNA 

NABG CILIUM ASSEMBLY 

EMUSC 
ECM RECEPTOR INTERACTION 

NICOTINATE AND NICOTINAMIDE METABOLISM 

HAA GLYCINE SERINE AND THREONINE METABOLISM 

HLV FATTY ACYL COA BIOSYNTHESIS 

ME 

AS CASPASE MEDIATED CLEAVAGE OF CYTOSKELETAL PROTEINS 

A 

DNA REPAIR 

EXTENSION OF TELOMERES 

G2 M DNA DAMAGE CHECKPOINT 

CCF CLASS A 1 RHODOPSIN LIKE RECEPTORS 

EMUSC 

AMINO ACID TRANSPORT ACROSS THE PLASMA MEMBRANE 

MUCOPOLYSACCHARIDOSES 

RNA POLYMERASE II TRANSCRIBES SNRNA GENES 

SLC TRANSPORTER DISORDERS 

TRAFFICKING OF GLUR2 CONTAINING AMPA RECEPTORS 

TRANSPORT OF INORGANIC CATIONS ANIONS AND AMINO ACIDS OLIGOPEPTIDES 

WB NKT PATHWAY 

UK 

AVO ANTIMICROBIAL PEPTIDES 

AT 
GLIOMA 

MEF2D PATHWAY 

EM 

FOCAL ADHESION 

INSULIN SIGNALING PATHWAY 

LONG TERM POTENTIATION 

TRIGLYCERIDE METABOLISM 

EMUSC AT1R PATHWAY 
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CREB PATHWAY 

DEATH PATHWAY 

ENDOCYTOSIS 

NATURAL KILLER CELL MEDIATED CYTOTOXICITY 

NON-SMALL CELL LUNG CANCER 

NOS1 PATHWAY 

SLC TRANSPORTER DISORDERS 

TRANSPORT OF INORGANIC CATIONS ANIONS AND AMINO ACIDS OLIGOPEPTIDES 

IC 
FERTILIZATION 

ROS AND RNS PRODUCTION IN PHAGOCYTES 

 
Table 8: Meta key driver analysis including all four populations. The results are for the 

tissue eQTLs and the top KDs for each. There were 14 tissues that had top key driver results, 
with a total of 350 results. Tissue abbreviations are found in Supplementary 2. 

Row Labels	 AA	 AC	 AS	 AT	 AVO	 CCF	 CS	 EGJ	 EM	 EMUSC	 HAA	 HLV	 SELL	 SNES	 Grand Total	
CD74	 5	 	

6	 9	 4	 	
3	 	 	 	 	 	 	 	

27	
COL5A1	 	 	 	 	 	 	 	 	 	

1	 	 	 	 	
1	

CXCL3	 	 	 	
1	 	 	 	 	 	 	 	 	 	 	

1	
GBP4	 	 	

2	 	 	 	 	 	 	 	 	 	 	 	
2	

HLA-B	 	 	
6	 	

4	 	 	 	 	 	 	 	 	 	
10	

HLA-DMA	 	 	
3	 	

4	 	 	 	 	 	 	 	 	 	
7	

HLA-DMB	 	 	
6	 	 	 	 	 	 	 	 	 	 	 	

6	
HLA-DPB1	 4	 	 	

6	 	 	 	 	 	 	 	 	 	 	
10	

HLA-DQA1	 	 	
4	 	

5	 	 	
7	 3	 8	 3	 	 	 	

30	
HLA-DQA2	 	 	 	 	 	 	 	 	 	 	

9	 6	 	 	
15	

HLA-DQB1	 4	 1	 6	 4	 4	 	 	
5	 7	 8	 	 	 	 	

39	
HLA-DQB1-AS1	 	 	 	 	 	 	 	 	 	 	 	 	 	

1	 1	
HLA-DRA	 7	 	 	

9	 	 	 	
7	 7	 8	 	 	

5	 8	 51	
HLA-DRB1	 	 	

5	 2	 5	 	 	 	 	 	 	 	 	 	
12	

HLA-DRB5	 	 	 	 	 	 	 	 	 	 	
12	 8	 	 	

20	
HLA-DRB6	 	 	 	 	 	 	 	

6	 5	 7	 	 	 	 	
18	

HLA-H	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 3	

IGHV1-46	 	 	 	 	 	 	 	 	
1	 	 	 	 	 	

1	
ISG15	 	 	

1	 	 	 	 	 	 	 	 	 	 	 	
1	

LCP2	 	 	 	 	
1	 	 	 	 	 	 	 	 	 	

1	
LY86	 	 	 	 	

1	 	 	 	 	 	 	 	 	 	
1	

MIF-AS1	 	 	 	
1	 	 	 	

1	 1	 1	 	 	
1	 	

5	
NCKAP1L	 	 	

1	 	 	 	 	 	 	 	 	 	 	 	
1	

PSMB8	 	 	
3	 	 	 	 	 	 	 	 	 	 	 	

3	
RARRES3	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	

1	
RNASE3	 	 	 	 	

1	 	 	 	 	 	 	 	 	 	
1	

RP11-259G18.3	 15	 2	 	
11	 	

11	 	
7	 13	 21	 	 	 	 	

80	
SLC11A1	 	 	 	 	

1	 	 	 	 	 	 	 	 	 	
1	

UQCRC2	 	 	
1	 	 	 	 	 	 	 	 	 	 	 	

1	
Grand Total	 36	 3	 44	 43	 30	 11	 3	 33	 37	 54	 24	 14	 6	 12	 350	

 	
 



 39 

 
Figure 1: Overview of study. 1) All data were mined from the NCBI GWAS Catalog or Covid-

19 Host Genetics Initiative Browser. Summary statistics for the 4 datasets were mined and 
edited for input into MDF. 2) GWAS SNPs are mapped onto genes using single tissue-specific 

eQTLs or combined tissue-specific eQTLs. Genes found are then linked to canonical pathways 
and co-expression modules. 3) MSEA of single and combined tissue eQTLs for each of the 4 

populations are carried out independently for pathway/co-expression module enrichment. Meta-

MSEA of the combined cohorts for pathway/co-expression module enrichment. Similar modules 
are then categorized into independent supersets and input into a wKDA. 4)  wKDA implemented 

Bayesian networks independently for key driver gene identification and network visualization.  
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Figure 2: Venn Diagram of the unique and consistent (not repeated) enriched modules for 
the MSEA single tissue eQTLs. There were 463 enriched modules (not repeated for their own 
population) across four population datasets. The Chinese (C), Italian and Spanish (IS), Multi-

European (ME), and UK populations had 133, 92, 115, and 123 non-repeated enriched 
modules, respectively. Seven enriched modules were shared between C and IS, 9 between C 

and ME, 11 between C and UK, 0 between IS and ME, 4 between IS and UK, and 19 between 

ME and UK. When looking at similarities between three of the populations, C, IS, and UK had 4 
similar enriched modules, C, ME, and UK had 5 similar enriched modules, IS, ME, and UK, had 

47 similar enriched modules, and C, IS, and ME had 2 similar enriched modules. Across all four 
datasets, there were 4 shared enriched modules. 
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Figure 3: Bar graph of tissue eQTLs with their enriched pathway count for the Chinese 
dataset. The X-axis is organized from highest to lowest enriched pathway count. Chinese 
MSEA results showed a total of 593 enriched modules across 33 tissues. The GTEx adipose 

subcutaneous eQTL had the most enriched modules at 102. Tissue-specific eQTLs with only 1 

enriched module were for brain anterior cingulate cortex Ba24 and small intestine terminal 
ileum. Abbreviations for tissues found in Supplementary 2. 

 

 
 
Figure 4: Bar graph of number of enriched pathways per tissue for the UK dataset. UK 

MSEA results showed a total of 465 enriched pathways across 32 tissues. The GTEx 

esophagus muscularis eQTL had the most enriched modules at 80. Tissue-specific eQTLs with 
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only 1 enriched module were for brain cortex. X-axis is organized by tissue abbreviation from 

lowest the highest pathway count. Abbreviations for tissues are found in Supplementary 2. 
 

 
Figure 5: Bar graph of tissue eQTLs with their enriched module count for the Italian and 
Spanish dataset. Italian and Spanish MSEA results showed a total of 226 enriched modules 

across 25 tissues. The GTEx ssophagus muscularis eQTL had the most enriched modules at 
31. Tissue-specific eQTLs with only 1 enriched module were for brain substantia nigra, cultured 

fibroblasts, lung, and skin exposed lower leg. The x-axis is organized by tissue abbreviation 

from lowest to highest pathway count. Abbreviations for tissues are found in Supplementary 2. 
 

 
Figure 6: Bar graph of tissue eQTLs with their enriched module count for the Meta MSEA. 
Meta MSEA results showed a total of 741 enriched modules across 26 tissues. The GTEx 

cerebellum eQTL had the most enriched modules at 58. Tissue-specific eQTLs with only 2 
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enriched modules was for the small intestine. The x-axis is organized by tissue abbreviation 

from lowest to highest pathway count. Abbreviations for tissues are found in Supplementary 2. 
 

Figure 7: Heat map of the cerebellum from the Meta MSEA for Multi European, 
Italian/Spanish, Chinese, and UK populations for Severe COVID-19. Heat map for the Meta 

results of all four populations and their -Log(FDR) for each enriched pathway in the cerebellum. 
The most significant pathway was for COPII mediated vesicle transport. The y-axis lists all the 

enriched pathways in order of their -Log(FDR) from smallest to largest.  
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Figure 8: Heat map of the HATS Acetylase pathway from the Meta MSEA for Multi 
European, Italian/Spanish, Chinese, and UK populations for Severe COVID-19. Heat map 

of the Meta results for all four populations and their -Log(FDR) for each tissue that had the 
enriched pathway HATS Acetylase. The most significant -LOG(FDR) for the pathway was found 

in the small intestine terminal ileum. The y-axis lists all the tissues for HATS Acetylase in order 
of their -Log(FDR) from smallest to largest.  
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Figure 9: Heat map of all the tissue-specific pathways from the Meta MSEA for Multi 
European, Italian/Spanish, Chinese, and UK populations for Severe COVID-19. Heat map 
of the Meta results all four populations and their -Log(FDR) for each unique pathway found 

across all tissues. Unique pathway labels have their corresponding tissue abbreviation in 

parentheses. The most significant -Log(FDR) were found for the CCR3 pathway in whole blood 
and the  infectious disease pathway found in the cerebral hemisphere. The y-axis lists all the 

unique pathways with their abbreviated tissues in order of their -Log(FDR) from smallest to 
largest.  
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a.  
 

b.   c.  

d.  

Figure 10: Single tissue eQTL key driver analysis with the key drivers for each tissue. A) 

There were 11 top key drivers over 6 tissues for the Chinese dataset. b) There were 6 top key 
drivers over 5 tissues for the UK dataset. c) There were 3 top key drivers over 5 tissues for the 

Italian and Spanish dataset. d) There were 17 top key drivers over 4 tissues for the Multi 

European dataset. Tissues were abbreviated based on the table found in Supplementary 2. 



 47 

 
 

 
 

 

 
 

 

 
 

Figure 11: Network visualization of Esophagus Mucosa (EM) and Gastroesophageal 
Junction (EGJ) for the Meta MSEA. Key drivers (KDs) of the networks are represented by 

the largest circles, with mid-size circles representing nodes that are part of a pathway but are 
the peripheral genes that are involved but aren’t critical, and the smaller gray circles are the 

nodes that are a non-pathway members but are present in the Bayesian network. The colors 

represent the pathways that are involved and are labeled in the tables. Circles with more 
than one color are multiple pathway members and gray circles are non-pathway members. 

The border on the shapes represents the pathway for the KD. The EGJ meta results yielded 
6 KD, with 5 in a network. EM meta results showed 7 KDs with 4 in a network. 
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Figure 12: Network visualization of Artery Tibial (AT) and Aorta (AA) for the Meta 
MSEA. Key drivers (KDs) of the networks aere represented as the largest circles, with mid-
size circles representing nodes that are part of a pathway but are the peripheral genes that 

are involved but aren’t critical, and the smaller gray circles are the nodes that are a non-

pathway member but were present in the Bayesian network. The colors represent the 
pathways that are involved and are labeled in the tables. Circles with more than one color 

are multiple pathway members and gray circles are non-pathway members. The border on 
the shapes represents the pathway for the KD. The AT meta results yielded 8 KD, with 5 in a 

network. AA meta results showed 6 KDs with 5 in a network. 
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