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MOVING BOTTLENECKS: A THEORY 
GROUNDED ON EXPERIMENTAL 
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Juan Carlos Muñoz1  and  Carlos F. Daganzo, Inst. of Transportation. Studies,  
University of California, Berkeley, California, USA 
 
 
 
 

ABSTRACT 
 

This paper presents the most complete picture yet of moving bottlenecks on 
freeways, including experimental observations and a theory. The experimental 
observations include the “fingerprint” of a moving bottleneck on a series of loop 
detectors, and a set of controlled experiments in which moving bottlenecks were 
artificially introduced in the traffic stream. The paper also contrasts this evidence with 
current theories and describes a new one that is consistent with the data.  

High-resolution oblique plots of loop detector data from freeway I-880 in 
Oakland (California) are used to analyze the aforementioned fingerprint. They clearly 
display the presence of the bottleneck and its evolution in time and space, including the 
precise location in space-time where it appeared.  The data also reveal a fleeting but real 
change in the drivers’ car-following attitude shortly after the bottleneck’s appearance. 

The controlled experiments reveal that the flow downstream of the bottleneck 
increases with the speed of the bottleneck when the bottleneck holds back a queue—in 
contradiction with two previous theories (Gazis and Herman, 1992, and Newell, 1993).  

The new theory includes these as special cases. It treats the moving bottleneck as 
a boundary condition that can be integrated with kinematic wave (KW) theory and also 
with variants of this theory that account for multiple vehicle types and changes in driver 
psychology. The empirical evidence suggests that the lengths of queues upstream of 
moving bottlenecks and the ensuing vehicle delays can now be predicted with good 
accuracy. 

                                                           
1 Instructor at the Pontificia Universidad Católica de Chile, Ph.D. student at U.C. Berkeley.  



1. INTRODUCTION 
 
This paper is concerned with the effects of slow-moving obstructions on a traffic 

stream.  The main determinants of these effects are (i) the maximum rate at which a 
queue held back by the moving bottleneck discharges, and (ii) the density of the queue 
for a given discharge rate.  The former is important because it determines whether a 
queue can form for a given flow and bottleneck speed and, if it does, whether the queue 
will grow or dissipate as traffic conditions change.  The latter is important because it 
establishes the spatial length of the queue.  It is found from field observations that the 
queue density behind a moving bottleneck closely matches the vehicular density of 
kinematic wave (KW) theory, in agreement with existing theories: Gazis and Herman 
(1992) and Newell (1993). Additionally, a set of controlled experiments reveal a 
reproducible relation between bottleneck speed and queue discharge rate, but this relation 
contradicts the theories. Fortunately, the experimental data strongly suggest the form of a 
complete and empirically sound theory of queue dynamics around moving obstructions.  

The uncontrolled observations were made possible by a new way of processing 
loop detector data (oblique-plots) that can reveal information at the platoon level, and 
sometimes even at the individual vehicle level. For a tutorial on this processing technique 
see Muñoz and Daganzo (2000b). In our case, it was possible to see that drivers in the 
queue initially followed the obstruction very closely, exceeding “capacity” flow, and 
shortly thereafter at the equilibrium spacings. This change was observed among the same 
set of drivers. As such, it is the first direct evidence that drivers can change their 
following behavior in response to external stimuli.  A similar effect has been proposed in 
Daganzo (1999a and 1999b) as an explanation of several puzzling traffic phenomena.  

The paper has been organized as follows. Section 2 describes all moving 
bottleneck theories and the proposed one. The experimental basis for the new theory is 
then presented in Sections 3 and 4. Section 3 describes how a steadily moving bottleneck 
on Freeway I-880 in Oakland (California) was identified and characterized from loop 
detector data, including the behavior of the traffic stream around it. Section 4 presents 
two batteries of floating-vehicle experiments involving a slow test-vehicle that revealed a 
relation between maximum passing rate and bottleneck speed for one-lane obstructions in 
two- and three-lane freeways.  Section 5 discusses the results. Finally, a possible 
extension of the theory is detailed in Appendix A. 

 



2. THE MOVING BOTTLENECK THEORY REVISITED 

 
Recall that the rate, qr , at which cars pass an observer that moves with speed vb 

when traffic is in a steady flow-density state (q,k) is given by the flow conservation 
formula:  

 
qr  = q – kvb            (1) 

 
If vb and (q,k) are given then qr is the vertical separation between the 

corresponding steady-state point on the (k,q)-plane and the dotted ray shown in Fig. 1a. 
Equation (1) applies in particular to an observer that either trails or precedes a 

moving bottleneck by a substantial but fixed distance; i.e. to the steady traffic states on 
either side of a bottleneck.  

Such a bottleneck is said to be “active” when, as a result of its presence, the 
steady states upstream and downstream of it are different.  This occurs in practice when 
the bottleneck is holding back a queue; i.e. when a queue is detected behind it but no 
queue exists for a long stretch of road downstream.  Equation (1) implies that if a stable 
passing rate qr exists when an active bottleneck moves at speed vb, then the two steady 
states on its sides must be somewhere on the dark straight line of Fig. 1a. From now on qr 
will exclusively denote the passing rate when a bottleneck is active. Note that in general, 
qr may depend on vb. 

If there exists a reproducible (q,k)-curve of equilibrium states (e.g., as in Fig. 1a) 
which is not affected by the presence of the bottleneck, then the two active bottleneck 
states must be on the intersection of this line with the (q,k)-curve.  Points “U” (upstream) 
and “D” (downstream) of the figure illustrate this.  The upstream state (U) should always  
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Figure 1. a) Possible stationary states on the flow-density  plane, upstream and downstream of 
a moving bottleneck. Effect of bottleneck speed on queue behavior in Gazis-Herman theory.b) Effect 
of bottleneck speed on bottleneck capacity in Newell's theory.
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be the one with higher density and lower speed.2 
If the bottleneck is not active then the upstream and downstream states must 

coincide and be on the (k,q)-diagram. If one now assumes that vehicles cannot pass the 
bottleneck on a sustained basis at a rate higher than qr ; i.e. that the maximum passing 
rate is achieved when the bottleneck is holding back a queue, we see that the thin portion 
of the (q,k)-curve protruding above the thick straight line cannot arise. Furthermore, since 
a moving bottleneck cannot travel faster than traffic, the thin portion of the curve below 
the ray cannot arise either.  Thus, only the solid portions of the(q,k)-curve are possible.   

Note that the highest possible unqueued flow that can persist upstream and 
downstream of the bottleneck (i.e. when the bottleneck is not active) is achieved at point 
“D”.  Since this is also the downstream flow when the bottleneck is active, flows 
corresponding to points such as “D” will be generically called bottleneck capacities.  In 
addition, the solid slanted line corresponding to (1) will be called the capacity line. 

Two papers consistent with these ideas have been published in the last decade. 
Gazis and Herman (1992) introduced the moving bottleneck problem. Based on relatively 
few assumptions, they estimated several features of the system such as the (critical) speed 
at which a queue would form behind the bottleneck. The assumptions were that flow was 
conserved, that an equilibrium flow-density relation existed independent of location,3 and 
most importantly that the capacity state (or escape state in their terminology) was given, 
presumably independently of the bottleneck speed.  Unfortunately, fixing the capacity 
state (point “D” in Fig. 1a) for all feasible bottleneck speeds can lead to strange results.  
For example, the bottleneck could travel so fast that the capacity line could intersect the 
(q,k)-curve to the left of the capacity state, as shown by the thin straight line with slope 
vb’of Fig. 1a and by point U’. Vehicles would then be moving faster in the queue 
upstream of the bottleneck than after passing it.4  This strange result does not arise if the 
uncongested branch of the flow-density curve is a straight line. 

Newell (1993) provided a more complete but still unsatisfactory picture of the 
problem with a slightly different and more complete set of assumptions.  Instead of a 
fixed capacity-state he assumed that kinematic wave (KW) theory held, that the 
                                                           
2 The reverse position for these points does not correspond to an active bottleneck.  It physically means that 
the back of a queue caused by some downstream obstruction is moving forward and (by a remarkable 
coincidence) together with the bottleneck.  The bottleneck is not said to be active because it is not the cause 
for the different states. 
 
3 Explicitly, they only assumed that equilibrium states existed and were reproducible.  But, of course, the 
collection of all such states would define a curve.  Gazis and Herman (1992) show such a curve toward the 
end of the paper. 
 
4 Gazis and Herman (1992) do not state specifically that the capacity state is on the (q,k)-curve, as in Fig. 
1a.  However, If the capacity-state were not to be on the curve one would have to develop the theory further 
to explain how downstream traffic returns to equilibrium without disrupting the bottleneck. 



bottleneck was a long convoy, and that the traffic stream next to it would behave as in a 
scaled-down version of the freeway’s flow-density curve (see Figure 1b).  This implicitly 
assumes that people’s form of driving is not affected by the speed of the convoy.  These 
assumptions allow for variable capacity-states and can be used to construct a solution to 
any well-posed problem, but if the uncongested portion of the flow-density relation is 
curved, the model still produces strange results.  It predicts that capacity would decline 
with bottleneck speed as shown in Fig. 1b. This means that a queue could form behind a 
moving obstruction when the speed of the obstruction increases. This does not seem 
reasonable5. It is particularly counter-intuitive for short bottlenecks, such as slow-moving 
cars and trucks.  

Fortunately, the strange predictions of Newell’s model disappear if the 
uncongested branch of the (q,k)-curve is a straight line. This is fortunate because the 
straight line appears to be a good approximation for uncongested traffic. In this special 
case the Newell model has a fixed capacity state and the family of capacity lines 
corresponding to different bottleneck speeds fans out from a single point on the 
uncongested branch of the (q,k)-diagram, as occurred in the Gazis and Herman case; i.e., 
both theories coincide. Although the strange predictions disappear in this simple case, the 
fixed-capacity assumption (i.e. same capacity for any bottleneck speed) is not necessarily 
correct. Only experiments can determine that.  The rest of this section describes a more 
general theory, which will be tested experimentally. 

The general model is specified by assuming the following two things: 
(i) There is a reproducible relation, qr(vb), between the bottleneck speed, vb, 

and the bottleneck passing rate, qr , when the bottleneck is active. This is also the 
maximum rate at which vehicles can pass the bottleneck.  The passing rate is assumed to 
be independent of the history of the system.  It can be determined experimentally. 

(ii) KW theory can be used as a first approximation when conditions are 
changing dynamically, using equation (1) as a boundary condition for the bottleneck 
when it is active, and making sure that that the relation implied by Figure 1a, 

rb qkvq ≤−≤0 , holds at all times. 

The steps necessary to solve any problem with this general theory, e.g., a problem 
where the demand is variable and the moving bottleneck changes speeds, are ostensibly 
the same as those for the simpler case where the Gazis-Herman and Newell theories 
coincide; see Daganzo (1997) for details about the procedures. 

To test the general theory, one should check if traffic around moving bottlenecks 
exhibits flow- density states on an equilibrium (q,k)-curve (assumption 2).  Section 3, 
below, will furnish evidence suggesting that this is the case.  One should also check if 
                                                           
5 Newell (1993) states that the theory is not realistic for light traffic. 



reproducible passing rates are obtained for different speeds (assumption 1). Section 4 will 
show that the experimentally determined qr(vb) relations are reproducible and that 
(contrary to the simple model) they imply an increasing relation between bottleneck 
speed and capacity. 

 
 

3. MOVING BOTTLENECK DETECTION AND DIAGNOSIS 
 
3.1 Site description and data preparation 

 
The Freeway Service Patrol data set (Skabardonis et al., 1994) was used for our 

study because of its fine level of detail. This data set includes 2-second counts and 2-
minute occupancies at every station and lane for a long stretch of U.S. Interstate Freeway 
I-880 in the East Bay Area for many days of 1993. The sub-site examined in this paper is 
a 3 km northbound section of the freeway, directly upstream of the connecting off-ramp 
with freeway I-238; see Fig. 2. Boldface numbers on the bottom of the figure indicate 
detector stations. These labels express the approximate distance between each station and 
the I-238 off-ramp in multiples of 100 meters.  For example, the first station from the left 
which is 2705 meters away from station 0 is labeled  “27”. The diamonds on the top lane 
designate an HOV lane, but this restriction was not in force during the study period 
(between 14:15 and 14:45 hrs.)  

The data were slightly adjusted to correct for detector drift and bias, as usual, to 
ensure that all the stations counted the same total number of vehicles.  Details of this 
procedure can be found in Muñoz and Daganzo (2000a).  This reference also explains 
how the N-curves were synchronized, to ensure that all stations started the count with the 
same vehicle, and also displays the final result of this process. 

1
2
3
4
5

27 22 17 12 5

0

Hesperian
     Blvd.

   I-238 
eastbound
off-ramp

0
 

Figure 2. Freeway I-880, northbound; site geometry not to scale; diamonds denote an 
inactive HOV lane. 



It was concluded in Muñoz and Daganzo (2000a) that vehicles were moving in 
free-flow conditions during the whole period at a speed of about 100 km/hr.  This 
conclusion was reached in three different ways: by cross-correlating the cumulative count 
series at different detector stations, by cross-correlating the series of ordinary counts, and 
also from the time series of vehicular speeds at different locations.  Figure 3 shows a 
flow-density scatter plot for Station 27, using a two-minute aggregation of the data from 
14:00 to 14:45 hrs. The line shown in the figure is the result of a least squares regression, 
without an intercept.  It corresponds to a speed of 100.2 km/hr.  The deviations from the 
line were caused by driver differences and platooning.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Flow-Density Scatter Plot at Station 27 between 14:00 and 14:45 hrs (2 minute counts).  
 
 

3.2 A close look at the data 
 
Examination of the data between 14:15 and 14:45 does not reveal anything that 

contradicts current understanding of free-flow traffic conditions; in particular, the 
presence of the I-238 diverge does not seem to disrupt uncongested traffic in a significant 
way.  Figure 4a, for example displays the cummulative N-curves of vehicle count for 
stations 12 and 27 on an oblique coordinate system, defined by two non-orthogonal 
families of individually labeled parallel lines. In this paper, these lines will be either 
vertical or slanted, as shown in the figure. Coordinate labels will be shown in boldface 
for vertical (time) lines and unbolded for slanted (number) lines. The slope of these lines 
will be -6930 veh/hr; its absolute value is called the "background flow" of the diagram. 
Note that vehicle accumulation is given by the vertical separation between curves, as in 
an orthogonal plot, but that trip times are now given by curve separations in the direction 
parallel to the oblique axis. A tutorial on this technique can be found in Muñoz and 
Daganzo (2000a and 2000b). Figure 4a clearly shows that disturbances in count 

6000

7000

8000

9000

50 60 70 80 90 100
Density (Veh/Km)

Fl
ow

 (v
eh

/h
r)

Traffic data

100.2 km/hr line



1700

1800

1900

2000

2100

2200

2300

Station 27

Station 12 
2,300 2,900 3,500 4,100 4,700

2,300 2,900 3,500 4,100 4,700 5,300

1700

1750

1800

1850

1900

1950

2000

2050

2100

Station 27 displaced
Station 12

1000

2000

3000

4000

5000

6000

Station 27

Station 12

propagate forward with the traffic stream and that trip times remain quite constant despite 
the fluctuations in count as noted in Cassidy and Windover (1995). The close match is 
shown more clearly in part b of the figure, where curve N27 has been translated toward 
N12 along the slanted lines by the trip time from station 27 to station 12 with a 100 km/hr 
speed. 

        (a) 
 
 

     (b)       (c) 

Figure 4. Traffic conditions at stations 12 and 27 between 14:15 and 14:45 hrs. (a) 
Oblique N-plot (background flow = 6930 vph); (b) shifted N-plot with N27 displaced 
along the oblique coordinates toward N12 (shift corresponds to a speed of 100 km/hr); (c) 
Ordinary N-plot.  
 
The two curves of Fig. 4b show a large discrepancy around 14:28 hrs, however, 

and this is examined below. The magnification capabilities of oblique plots allowed us to 
detect regularities within the discrepancy, which ruled out everything but a moving 
bottleneck.  None of this would have been easy, or perhaps even possible, without this 
methodology. Note that the discrepancy would be considerably harder to identify with 
rectangular cumulative plots; see Fig. 4c.  

The discrepancy between curves was first magnified by means of a smaller scale 
plot, as shown in Fig. 5a.  This figure also displays the intermediate N-curve 
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corresponding to station 22.  The new figure shows that the discrepancy at station 12 
corresponds to a 30-sec period of very low flow.  A detector malfunction was ruled out 
because a similar but shorter-lived effect was found at the intermediate detector, and 
because the cumulative count later recovered to the “correct” level.  A sudden decrease in 
demand was also ruled out because demand fluctuations should propagate across 
detectors with little change, but this was not the case here.  

Although there is no sure-fire way of finding what happened, the most likely 
explanation for the patterns in Fig. 5a is that one or more slow-moving vehicles entered 
the  road somewhere  upstream of  station 27  (for N ≈ 3400)  and that these vehicles only  

    (a) 
 
 
 
 

 
 
 
 

 
 
  (b)       (c) 

 
Figure 5. Traffic patterns around a moving bottleneck: (a) N-curve signature detected at 
stations 27, 22 and 12; (b) evolution in time and space; (c) flow and density states. 

 
allowed a small flow to pass.  Given the smallness of the passing rate (see below), and 
the fact that the freeway had five lanes, we speculate that the obstruction may have been 
a police car traveling close to the speed limit (88 km/hr).  This may have induced drivers 



to pass hesitatingly, even on the wide freeway.  (Both authors have observed this effect 
repeatedly in their daily lives.) 
 
 
3.3 Moving bottleneck characteristics 

 
The position of this “moving bottleneck” in each one of the curves is the bottom 

of the “V”.  Examination of the figure reveals that the bottleneck speed was 72 km/hr, 
and that its speed was the same between stations. We can also see by extrapolating the 
length of the lull in the upstream direction that the incident must have started 
approximately 3.0 km upstream of station 0. 

The slope of left side of the “V” in the oblique coordinate system is the flow 
downstream of the bottleneck, and the slope of the right side is the flow inside the 
moving queue directly upstream of the bottleneck. The downstream flows are 1500 
veh/hr at station 22 and 1800 veh/hr at station 12.  

The rate at which vehicles pass through the bottleneck (in a frame of reference 
attached to the bottleneck) can also be estimated from the figure since it is the rate at 
which the N-coordinate of the bottom of the “V” increases with time. Note that “N” 
increases by about 10 veh (+/- 2 veh) between stations 27 and 12, and that it does so in 75 
sec.  Hence, the passing rate is about  (10/75)(3600) = 480 veh/hr (+/- 100 veh/hr);6 i.e., 
only about 2 veh/min/lane, assuming that 4 lanes were available to pass the obstruction. 

The flow upstream of the incident is much larger: 10740 veh/hr at station 22, and 
9540 veh/hr at station 12, where the queue is more fully developed.  Note that the first 
value is very high (for a 5-lane freeway) and that the two flow levels are experienced by a 
single set of drivers, N ≈ (3430, 3500), which were in the queue at both locations.  This 
suggests that the differences in flow are not caused by driver differences, but by a change 
in driver behavior.  The data indicate that the first hundred drivers pack themselves 
closely upon joining the queue and later relax.  The data also show that following drivers 
do not act in this way, since higher numbered drivers  (up to N= 3750) never experience 
the high flows.  This differential behavior is probably caused by proximity to the 
bottleneck when vehicles join the queue.  We speculate that the first drivers may be 
adopting very short spacings in the hope of getting through the bottleneck quickly, and 

                                                           
6 The passing rate could also be obtained without the figure, since vehicle conservation implies that the 
flow through the bottleneck (in a frame of reference moving with the bottleneck) only depends on the flow 
and speed prevailing on one of its sides and the speed of the bottleneck.  Reassuringly, the result of this 
calculation is: 1800(100-72)/100 = 504 veh/hr.  



that their motivation disappears once they realize that they will be queued for a while7.  
Later drivers act differently because they may not be able to see the bottleneck and do not 
see a benefit from following aggressively8. Therefore, the platoon flow seen at station 12 
(about 9500 veh/hr) is more likely to be sustained at succeeding locations. This flow is 
close to the “capacity” of a 5-lane freeway.   

The regime transition corresponding to the back of the moving queue can also be 
identified in Fig. 5a by the upper right side of the “V’s”.  Although the queue grows in 
length, it does not grow fast enough to overcome the speed of the bottleneck and 
propagate upstream; thus, the back of the queue propagates forward and passes all the 
observers.  Note that it passes station 27 at about 14:28 hrs and station 12 around14:30:30 
hrs. Thus, it takes about 2.5 minutes to travel 1.5 km, yielding a forward speed of 
approximately 36 km/hr.  Forward propagation is logical since the upstream flow is lower 
than the queued flow.   

Figure 5 also displays the flow-density states that would be consistent with all this 
information, both, as part of a time-space diagram (in part b) and on an associated flow-
density diagram (in part c).  Figure 5b also shows the trajectories of several items: (i) the 
moving bottleneck, (ii) the back of the queue, (iii) the front of the starvation zone and (iv) 
some vehicles. This part of the figure also indicates the likely time and place where the 
bottleneck first emerged. Reassuringly, there is an uninstrumented on-ramp at that 
location. The diagram is consistent with the data of Fig. 5a, in the sense that the timing 
and magnitude of the regime transitions at the locations of the detectors coincide with the 
flow changes of Fig. 5a.  

Figure 5c displays on the density-flow plane the states “A”, “B” and “C” that 
were observed at detector 12, and also the compressed state, “D”, observed at detector 22.  
The dotted line is an estimated flow-density relation for this freeway, and the open circle 
the queued state, “K”, that kinematic wave theory would have predicted instead of “C” or 
“D”.  The flow-density relation was obtained from a broader analysis that included a 3-
hour congested period. Complete details can be found in Muñoz and Daganzo (2000a). 

Note how state “D” is only experienced at the outset and how the system quickly 
reaches a state “C”, which is close to “K”.  Thus, except for the small difference between 
states “C” and “K”, which is comparable with the ordinary 2-minute fluctuations during 
the 3-hour period that were found in Muñoz and Daganzo (2000a), the behavior of the 
                                                           
7 It is not unusual to see very high flows at locations where drivers can be motivated to follow closely for 
brief periods of time; e.g., the short weaving areas of clover-leaf interchanges, where flows in excess of 
3000 veh/hr per lane have been observed (Brilon, 1999) 

8 Changes in following behavior have recently been proposed as explanations for several puzzling 
phenomena (Daganzo, 1999a and 1999b). 
 



queue behind the moving obstruction is similar to that of an ordinary obstruction. 
Therefore, despite what appear to be temporary changes in driver psychology, 
observations are roughly consistent with KW theory. 

It should be clear that the detection of our “moving bottleneck”, and the 
quantification of its interesting regularities was only made possible by the oblique plot 
technique. 

 
 

4. MODEL OF PASSING RATES9 
 

4.1 A two-lane freeway experiment 
 
An experiment to measure the qr(vb), relation was conducted on the Richmond-

San Rafael (RSR) Bridge of the San Francisco Bay Area, late during the morning rush 
hour on June 14, 2000.  The experiment consisted in creating an artificial bottleneck by 
introducing a test vehicle into the traffic stream. The time-of-day was chosen so that the 
disruptions to traffic would be minimized, while still ensuring that queues would develop 
behind the artificial moving bottleneck.  Speeds below 30 mi/hr were not used, to prevent 
large speed differences from developing around the bottleneck.  This important feature of 
the traffic stream was constantly monitored for the safety of all concerned.  

The RSR Bridge has two decks, with two 1-directional lanes (and a shoulder) 
each. The bridge has no entrances or exits, and is 5.5 miles long. The westbound 
direction is more heavily traveled during the morning commute, but the eastbound 
direction also had sufficient traffic for our experiment.  The prevailing space-mean speed 
during our experiment was about 62.5 mi/hr (+/- 1 mi/hr) in both directions, despite the 
different flows. This suggests that the free-flow speed, vf , for this bridge is about 62.5 
mi/hr, and that there is no significant dependence of speed on flow for traffic conditions 
ranging from light to heavy (free-flow). These estimates were obtained with the standard 
“moving-observer” method; i.e., by traveling a set distance while maintaining position in 
the traffic stream (passing as many vehicles as passed the test vehicle) and then recording 
the test vehicle’s average speed over the distance.  

For the bottleneck capacity measurement part of the experiment, the test vehicle 
first traveled at a reduced fixed speed until a queue developed and then its occupants 
started to record the number of vehicles that passed it in consecutive 10-sec intervals.  

                                                           
9 This section does not use SI units because we did not use SI instruments, and conversion of their data to 
SI units would introduce awkward numerical values which could be distracting. 
 
 



The test vehicle maintained the same speed with cruise control for a run of about 10 
intervals (with some variation in this number), and then changed its speed.  The data are 
provided in Muñoz and Daganzo (2000b), and summarized in Fig. 6a.  Each point 
(diamond) in this diagram is the average of the ten or so values obtained for each run. 
The vertical line through each point denotes the estimated standard error in the average. 
Runs were done on both directions of the Bridge with two different passenger vehicles as 
test vehicles.  They were done both, with and without the hazard lights on.  No systematic 
effects were detected by these variations.  No systematic effects were observed either 
when a large truck closely followed the test vehicle, essentially becoming the test vehicle. 
This would suggest (although not definitively) that the effects of slow trucks on the 
traffic stream are similar to those of slow passenger vehicles; i.e. that vehicle size does 
not change the properties of the bottleneck appreciably.  This comment does not extend 
to “non-ordinary” vehicles that cause gawking, such as police cars and emergency 
vehicles; such vehicles should probably have quite different properties. 

A hollow diamond is used with the data-line at v = 0 because these data were not 
the result of our experiment.  The low end of the vertical line through the hollow 
diamond (q = 1400 veh/hr) is the capacity predicted by the most recent version of the 
Highway Capacity Manual (Bloomberg et al, 1999) for the case of a 1-lane (stationary) 
blockage of a 2-lane freeway.  This value is probably affected by gawking  
(rubbernecking)  and may not be perfectly representative of incidents moving at very low 
speeds, since in these cases gawking may not be a factor.   Thus, we use it as a lower 
bound. The upper end of the line (1800 veh/hr) is the saturation flow per lane of a traffic 
signal.  It is reasonable to use this value as an upper bound for qr(vb) for vb → 0, because 
traffic signal flows are not disrupted by the merge of two lanes.  Thus, the line of the 
figure represents the likely range of possible values for qr(0) (for cases without gawking). 
A reasonable guess for the actual value is the mid-range (1600 veh/hr), which is depicted 
by means of the open diamond. 

The figure also contains a dotted vertical line at v = 55 mi/hr, to signify that 
bottleneck speeds above this level would probably have no effect.  We believe that this 
upper bound, vmax, is the average speed on the shoulder lane when the freeway 
experiences its maximum sustainable flow. We speculate that the maximum relevant 
speed should be about 55 mi/hr since we observed an average speed of 60 mi/hr on the 
shoulder lane with sub-capacity conditions, and lower speeds should prevail on the 
shoulder lanes when the freeway is close to saturation.  

Figure 6b displays the capacity lines on the density-flow plane obtained from 
these data.  Only one capacity line was drawn for each speed, using all the information 
available  for  the  given  speed.   The  figure  also  contains  a  darker  line,  which  is  the 
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Figure 6: (a) Average passing rate and standard deviation estimated from measurements 
for different bottleneck speeds. (b) capacity lines on the density-flow plane obtained from 
the experimental data (c) Downstream (capacity) flow v/s bottleneck speed (d) Family of 
capacity lines generated by a linear relation between bottleneck speed and downstream 
flow 
 

(straight) unqueued branch of the flow-density diagram that was estimated for the bridge.  
The intersections of the thin lines with the darker line give the (capacity) flows, qD, 
downstream of the bottleneck. The formula linking qr and qD is: 

 
         qD  = qr /(1 - vb/vf).           (2) 

 
Figure 6c plots these downstream (capacity) flows vs. the bottleneck speed, vb, 

using the same convention as in part (a) to display standard errors.10  The results clearly 

                                                           
10   The error increases with speed because the factor that multiplies qr (and its error) to obtain qD (and its 
error) is larger for larger speeds. 



establish that capacity flows are considerably greater for a moving bottleneck than for a 
stationary one.  They also suggest that capacity may increase monotonically with speed. 

Perhaps the simplest model to capture this effect approximately is one where 
capacity varies linearly with speed, in the range from vb = 0 to vb = vmax. When vb = vmax , 
we would expect qD to be equal or slightly greater11 than the flow on the passing lane 
when the freeway is experiencing its maximum sustainable flow.  If we use QD  to denote 
this passing lane flow, then the formula for qD in this crude approximation is: 

 
qD  = qr(0) + [QD - qr(0)](vb/vf)           (3) 

 
Cassidy and Bertini (1999) have reported that flows of 2630 veh/hr on the median 

lane of a 3-lane freeway were sustained for a period of 1 hour.  For a 2-lane freeway, the 
maximum passing lane flow should be lower since the left lane will in this case include a 
broader mix of vehicles.  Perhaps, using QD ≈ 2500 veh/hr when vb ≈ 55 mi/hr is 
reasonable for the RSR bridge.  This data-point is shown by a large square on Fig. 6c. 
Thus, a plausible model for the Bridge is: qD  = 1600 + 900 (vb / 55), where flow is 
measured in veh/hr, speed in mi/hr and vb < 55.  This is the slanted straight line on Fig. 
6c. 

The family of capacity lines generated by this model is displayed on Fig. 6d.  
Note that capacity lines could be generated graphically without any calculation by 
specifying the upper envelope of all the lines (which is a convex increasing curve in our 
case), and then looking for the tangent with the desired slope. 

 
 

4.2 A three-lane freeway experiment 
 
Another experiment was also conducted on a section of I-80 (westbound) near 

Richmond, California, using the same procedure.  This road is a 4-lane freeway where the 
median lane is reserved for HOVs.  This lane was lightly traveled during our experiment 
because the HOV restriction was in force at the time.  Thus, the experiment should be 
representative of three-lane freeways.  We believe that the results of this experiment are 
less reliable than those of the RSR Bridge because: (1) the effect of a single-lane 
restriction is less noticeable on wide freeways; (2) on occasion, vehicles with one 
occupant used the HOV lane to pass the obstruction and created a void in the queue; and 
(3) vehicles would sometimes use the auxiliary lanes near on-ramps and off-ramps to 
pass the obstruction and also created a void.  
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Figure 7: (a) Average passing rate and standard deviation estimated from measurements 
for different bottleneck speeds. (b) Downstream (capacity) flow v/s bottleneck speed. 
 
Figure 7 presents the results of this experiment using the same conventions of Fig. 

6.  The raw data is provided in Muñoz and Daganzo (2000b). As in the previous case, 
there should be little doubt that downstream capacity increases with bottleneck speed.  
The lower bound for vb = 0 is again taken from Bloomberg et al (1999), and the upper 
bound from saturation flows. Our best guess for qr(0+) continues to be the mid-range 
between the bounds; i.e, qr(0+) ≈ 3300 veh/hr.  For vb = vmax , the capacity flow (QD ≈ 
3600 veh/hr) was taken directly from Cassidy and Bertini (1999). The linear model is 
then as shown on the figure. 

 
 

5. DISCUSSION 
 
Police cars and linearity: It should be emphasized that there is no theoretical 

justification for assuming a linearly increasing relation between capacity and speed, 
except simplicity. Thus, the proposed model should be taken with a “grain of salt”.  It 
should also be noted that the linear model should not be applied to police cars, since 
vehicles should be quite hesitant to pass the police car when it is traveling close to the 
speed limit.  In this case, the bottleneck capacity may actually decline with increasing 
speed, and may approach zero for the speed limit. In Sec. 3 we found a bottleneck that 
moved at 45 mi/hr and reduced downstream flow to 1800 veh/hr.  An ordinary bottleneck 
would have to span 4 out of 5 lanes to have such a noticeable effect, but a humble police 
car traveling at such speed could have easily achieved the feat. 

                                                                                                                                                                             
11   Drivers only have to sustain the short headways for a short time while passing the moving bottleneck. 



Long bottlenecks: The proposed capacity formulas should not be applied to long 
bottlenecks such as military convoys, because in these cases drivers may be less willing 
to sustain next to the convoy the short headways required to achieve the high passing 
rates observed in our experiments for high bottleneck speeds.  As a result, one may find 
experimentally that bottleneck capacity increases less rapidly with bottleneck speed in 
this case. Perhaps, capacity is nearly independent of speed for sufficiently long 
bottlenecks. This, question is somewhat academic, though, since most bottlenecks are 
short. 

High bottleneck speeds and driver differences: The general model proposed in 
Sec. 2, even with variable capacity states, is only a first approximation. The main 
weakness is that it relies on the KW model for light traffic when passing is possible; in 
these situations kinematic waves do not exist and driver differences matter. We are most 
doubtful of its performance for high bottleneck speeds, when not all vehicles in the queue 
may have the same incentive to pass. Predictions can perhaps be improved with 
extensions of the KW model that allow for passing, different vehicle classes and changes 
in driver psychology.12  These models can better explain why a long queue behind a 
bottleneck may begin to dissipate before an accelerating bottleneck reaches the free-flow 
speed.  As an illustration of this possibility, Appendix A explains the time-space solution 
of a problem where a bottleneck accelerates from a standstill until it reaches the desired 
speed of the slowest vehicles, using the two-vehicle class theory in Daganzo (1999a).   
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Appendix A: An Accelerating Bottleneck 
 
Figure A1 illustrates the stationary states we expect to find when an accelerating 

bottleneck is introduced in a traffic stream composed of two types of drivers, “slugs” and 
“rabbits”, with different desired free-flow speeds (vfs and vfr respectively). The notational 
conventions in the figure are taken from Daganzo (1999a). We assume that rabbits 
outnumber slugs, and that rabbits are faster (vfr > vfs). As in that reference we also assume 
that in traffic conditions where average speed is faster than vfs slugs use only the right 
lane, and rabbits the left lane. Otherwise, both types can be found in both lanes. 

The thick lines of Figure A1a are the q-k diagrams for this model.  The lower 
triangle is for the shoulder lane, which can only be populated by slugs in free-flow.  The 
broken line directly above it is for the median lane, which can only be populated by 
rabbits when the speed on that lane exceeds vfs.  The upper down-sloping line is the 
congested (1-pipe) portion of the diagram for both lanes together.  In this regime, all the 
vehicles travel at the same speed, and the data points representing the different classes 
line up on a ray from the origin; see for example the points for state “A”. In the (2-pipe) 
passing regime, the passing-lane point contains only rabbits and the shoulder lane point 
only slugs; state “D” is an example.  The position of the combined data point for a 2-pipe 
state is not on any curve since it depends on the particular mixture of rabbits and slugs. 

Note that the maximum flow of rabbits on the median lane can be considerably 
higher than the maximum flow on the shoulder lane. This is because, in this theory, 
rabbits can become quite motivated to follow closely under certain stimuli. Under normal 
conditions, though, e.g., if a restriction holding back a queue is removed, the maximum 
rabbit flow is that of point “D”.  (Higher flows can only be achieved in the theory as the 
stream flows past an on-ramp and other rabbits squeeze into the passing lane; this effect 
does not play a role in Figure A1, however.) 

Figure A1b is a time-space diagram of an accelerating bottleneck and the traffic 
states next to it.  The thick line represents the bottleneck trajectory.  The thin lines are 
vehicle trajectories and interfaces between stationary states. The states refer to those in 
the q-k diagram above. It is assumed that passing occurs as per the capacity lines of part 
(a) of the figure. Note that the downstream flow when vb = vfs is that of point “D”. The 
geometrical construction for the part of the diagram that is upstream of the bottleneck is 
exactly as in KW theory because traffic is in a 1-pipe regime.  However, the downstream 
behavior is different because there is passing. Trajectories are not drawn downstream of 
the bottleneck because this would complicate the picture considerably. Therefore, this 
appendix explains how one would determine the downstream states precisely.  

Consider first the initial part of the diagram, when the bottleneck is stopped. Here, 



the bottleneck line is flat and the passing rate is also the total flow upstream and 
downstream of the bottleneck.  Data points “A”, represent the upstream state.  Note that 
the combination point for both lanes is on the capacity curve and that the speed in the 
queue is the same for all vehicles. Once vehicles pass the bottleneck and reach free-flow 
conditions, however, slugs take the shoulder lane and rabbits stay on the passing lane; a 
two-pipe state arises. Therefore, because rabbits and slugs are conserved across the 
bottleneck, the downstream conditions on each lane are simply obtained by projecting the 
total-rabbits data point (dotted circle) and the total-slugs data point (empty square) 
horizontally, across to their respective free-flow branches of the q-k diagram.  This 
ensures that the flow of rabbits and slugs is the same on both sides of the bottleneck.  The 
downstream state is denoted “a”. 

When the bottleneck starts moving at the speed shown in Figure A1b the passing 
rate changes.  The new bottleneck line will pass through a new combination point  (“B”), 
which will still be queued as a 1-pipe.   Since the percentage composition of the queue 
cannot change, the component points are obtained by projecting the “A” points onto the 
“B” ray in a direction parallel to the congested branch of the (q,k)-curves. As in case “A”, 
traffic downstream of the moving bottleneck will be in a 2-pipe state.  Furthermore, 
conservation of rabbits and slugs across the bottleneck continues to determine the 
downstream state.  Now one would project the total-rabbit and total-slug states on the B-
ray towards their respective free-flow branch of the q-k diagram, but would project them 
in a direction parallel to the bottleneck line (since slope = speed of the bottleneck).   The 
downstream state is denoted “b”.  Note that that there would be a portion of time-space 
with rabbits from state “b” and slugs from state “a”.  This is denoted “ab”. 

Notice that if the bottleneck speeds up to a vfs , something unusual would happen.  
Upon reaching this speed, slugs no longer wish to pass.  Therefore, the bottleneck 
essentially becomes a slug.  It would leave the queue behind, and the bottleneck would 
shift to the slugs upstream.  This process is also shown on Figure A1. 

Upstream of the bottleneck a first acceleration wave would travel shifting the 1-
pipe state from “B” to “C” (the capacity, 1-pipe state).  A second (slower) wave, depicted 
by a double line, later shifts the queue into a 2-pipe state. Conservation of rabbits, since 
their discharge state “D” is known, determine the speed of this transition. To understand 
the process intuitively, imagine that you are a rabbit in the right lane of the queue. First, 
you will notice that everybody increases its speed to vfr (wave “BC”), and later you will 
notice that the left lane is moving faster than your lane and that vehicles in your lane 
don’t want to speed up. If you are a rabbit, you will change lanes, and as you do this, you 
will be experiencing the regime transition (“CD”).  Eventually, you will overtake the 
original bottleneck.  If you are a slug the regime transition does not affect you, and you 



will not catch up with the bottleneck. 
It should be obvious by now, that in this theory there must be a critical bottleneck 

speed below vf, above which queues cannot grow, no matter how high the initial flow. 
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Figure A1: Solution of a problem where a bottleneck accelerates from a standstill until it 
reaches the desired speed of the slowest vehicles. a) Flow-density diagram, b) Time-
space diagram. 
 




