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Label-Free Fluorescence 
Spectroscopy for Detecting Key 
Biomolecules in Brain Tissue from 
a Mouse Model of Alzheimer’s 
Disease
Lingyan Shi1,3,6, Luyao Lu2, George Harvey5, Thomas Harvey5, Adrián Rodríguez-Contreras1,3 
& Robert R. Alfano1,4

In this study, label-free fluorescence spectroscopy was used for the first time to determine spectral 
profiles of tryptophan, reduced nicotinamide adenine dinucleotide (NADH), and flavin denine 
dinucleotide (FAD) in fresh brain samples of a mouse model of Alzheimer’s disease (AD). Our results 
showed that the emission spectral profile levels of tryptophan and NADH were higher in AD samples 
than normal samples. The intensity ratio of tryptophan to NADH and the change rate of fluorescence 
intensity with respect to wavelength also increased in AD brain. These results yield an optical method 
for detecting early stage of AD by comparing spectral profiles of biomolecules.

Alzheimer’s disease (AD), a degenerative disorder that attacks neurons in the brain and leads to the loss of proper 
cognition, is the sixth leading cause of death in the United States, and from 2000–2010 the proportion of deaths 
resulting from AD in America has gone up 68%1. Although AD has been the focus of much scientific research in 
past years, there is still no cure or understanding of molecular mechanisms. A large proportion of people with AD 
remained undiagnosed; early diagnosis can help them make decisions for the future while they are still capable, 
and can allow people to receive early treatment to improve their cognition and increase the quality of their life as 
they live with AD2.

Physicians diagnose AD with just an examination of the patients state, inquiries into the familial history of 
psychiatric and neurological disorders, and a neurological exam1. Other newer methods of diagnosis include 
using Magnetic Resonance Imaging (MRI) to look for Hippocampal atrophy3, Positron Emission Tomography 
(PET) scans4, and examining levels of beta-amyloid and tau protein in cerebrospinal fluids taken from the 
patient5. Photonics offers a new and novel approach to give molecular information on AD. In 1984, Alfano’s group 
pioneered the use of optical label free optical spectroscopy to detect cancer on a molecular level by looking at the 
fluorescence levels of native organic biomolecules in tissues6. This process of biomedical spectroscopy, using light 
and the native fluorescence of certain proteins and molecules within human tissue, has been expanded upon and 
applied to examine levels of tryptophan, reduced nicotinamide adenine dinucleotide (NADH), flavin, and col-
lagen in normal and cancerous breast tissue for diagnosing certain types of cancer7, 8. The brain tissue is a smart 
tissue with different molecular components and structures in comparison to other body tissues. This past pho-
tonics work inspires the application of label free optical spectroscopy to detect AD at molecular level in the brain.

Mitochondria play an essential role in energy production by oxidative phosphorylation, and cell survival and 
death9, 10. Mitochondrial dysfunction has been associated to a number of diseases including cancer and AD10–12. 
Early identification of mitochondrial dysfunction will be helpful for early detection and better understanding the 
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mechanisms of AD. Intracellular coenzymes such as NADH and flavin adenine dinucleotide (FAD) play impor-
tant roles in cellular oxidation-reduction (redox) reactions9, thus can be potentially used as intrinsic biomark-
ers for detecting metabolic activities and mitochondrial dysfunction. Change of NADH-linked mitochondrial 
enzymes has been found in AD brain13, 14. Tryptophan kynurenine metabolism has also been reported involved 
in the pathogenesis of AD15.

In the present study we measured the fluorescence spectroscopy in mouse brain tissue with an early stage 
of AD16, and in normal brain samples for comparison purpose. The objective was to develop a technique that 
applies biomolecules (tryptophan, NADH, and FAD) as intrinsic biomarkers for detecting early stage of AD in 
mouse brain tissue, and to propose a potential method for detection, diagnosis, and better understanding of AD 
in humans.

Results
Figure 1 displays the result of fluorescence spectral profiles in AD and N brain samples at excitation wavelengths 
266 nm (Fig. 1a), 300 nm (Fig. 1b), and 340 nm (Fig. 1c). Different excitation wavelengths were employed to 
determine the emission spectra of each biomolecule (tryptophan, NADH, and FAD), as shown in Fig. 2. Table 1 
summarizes the emission wavelengths for assigned molecules at peak emissions in AD and N fresh brain tissues 
under different excitation wavelengths.

Figure 1(a) shows that at excitation wavelength of 266 nm the fluorescence peaks of AD and N brain tissues are 
at the same wavelength (~330 nm), corresponding to the wavelength of emission peaks of tryptophan (Fig. 2)17. 
Significant difference of peaks of tryptophan was observed between AD and N brain (P = 0.001). A weak second-
ary peak ranging from 430 to 460 nm is due to NADH, which may be caused by fluorescent resonance energy 
transfer from excited tryptophan to NADH and second singlet excitation from 266 nm. The averages of the two 
peak intensities in AD brain are 2.01-fold (for tryptophan, 1.000 vs. 0.497) and 1.58-fold (for NADH, 0.268 vs. 
0.169) higher, respectively, than those in N brain (Table 1).

Figure 1(b) shows the scans at excitation wavelength of 300 nm, which are similar with emission spectra 
excited at 266 nm. The emission intensities of the AD and N brain tissues both peak in the range of 330–350 nm, 

Figure 1.  Averaged spectral (emission) profiles with error bar (n = 5) of AD and N brains at excitation 
wavelength (a) 266 nm, (b) 300 nm, and (c) 340 nm.
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which match the wavelength of the emission peak of tryptophan (Fig. 2). In addition, the weak second peaks are 
at 430–460 nm due to NADH. The mean peak intensity of tryptophan and NADH in AD brain tissue are 1.88-fold 
(1.000 vs. 0.532) and 1.61-fold (0.161 vs. 0.100) higher, respectively, than those in N brain tissue (Table 1).

Figure 1(c) shows the scans at excitation wavelength of 340 nm. The emission peaks of AD and N in the range 
of 430–460 nm match the emission peak of NADH (Fig. 2), and the weak second peaks at 530–560 nm is due to 
FAD. The mean peak intensities of NADH and FAD are 1.65-fold (1.000 vs. 0.606) and 1.70-fold (0.352 vs. 0.207) 
higher, respectively, in AD brain compared to N brain (Table 1).

An alternate way to differentiate the spectral profiles in AD or N brain is to compare the intensity ratio of tryp-
tophan to NADH (Table 1, Fig. 3). The average values of the ratio are 3.73 in AD brain and 2.93 in N brain at the 
excitation wavelength of 266 nm, and 6.21 in AD and 5.33 in N excited at the wavelength of 300 nm. The increased 
ratio of tryptophan to NADH in AD indicates low efficiency of energy transfer from tryptophan (donor) to 
NADH (acceptor) which may be due to longer distance (R) and fewer interactions between the two molecules. 
Comparing the spectral profiles (peaks) of tryptophan and NADH and their relative ratio excited at the wave-
length near absorption peak of tryptophan may be an applicable method for diagnosing AD. On the other hand, 
as shown in Fig. 3, the ratios of NADH to FAD in AD brain are not significantly different from the ratios in N 
brain, which indicates that analogous changes of NADH and FAD occurred in AD brain.

The first derivatives of emission spectra were calculated for comparing fluorescence properties of AD and N 
brain tissues. Figure 4a–c show the mean profiles of the first derivative of emission spectra which were excited 
by monochromatic excitation lights of 266 nm, 300 nm, and 340 nm, respectively. At excitation wavelength of 
266 nm, the ascending rate of emission intensity is higher in AD brain than that in N brain, the peaks of which 
are 0.039 vs. 0.0169; and the descending rate of intensity in AD is higher than that in N brain, the negative peaks 
of which are about −0.0159 vs. −0.0083. When excited at 300 nm, the maximum values of the ascending rate 
are 0.0078 in AD and 0.0034 in N brain; and the negative peaks of the descending rate are −0.0144 in AD and 
−0.0071 in N brain. However, the derivative of spectra from AD brain is close to that from N brain at excitation 
wavelength of 340 nm (Fig. 4c), due to the similar curve shapes of fluorescence spectra in both AD and N brain 
tissues (Fig. 1c). The derivative of spectral profiles could be used to measure instantaneous rate of change, the 
ratio of the instantaneous change in the fluorescence intensity to that of its wavelength.

Discussion
In our experimental results, fluorescence intensities of tryptophan, NADH, and FAD were higher in the brain 
tissues of a young transgenic AD mouse compared with N brain tissues. The increase in emission intensity at 
about 340 nm of direct pumping tryptophan shows more emission efficiency in AD than N, which may be due 
to decreased nonradiative Knr or increased Kr. This is because tryptophan may be in a cage and has fewer inter-
actions to the host molecules in the environment in AD than in N brain. This observation is consistent with the 
results from THz research in AD and N18. Therefore, the vast disparity of tryptophan fluorescence levels in AD 
and N mouse brain scans proposes an important method for AD diagnosis. Mitochondrial abnormalities are 
correlated with AD, while intracellular NADH and FAD play important roles in mitochondrial dysfunction that 

Figure 2.  Absorption and fluorescence profiles of key biomolecules. (a) Absorption of key molecules, and (b) 
emission of key molecules.



www.nature.com/scientificreports/

4Scientific Reports | 7: 2599  | DOI:10.1038/s41598-017-02673-5

allows them as potential biomarkers for diagnosis of AD9, and this is validated by the current study. Nevertheless, 
NADH-linked mitochondrial enzyme activity was reported to be down-regulated in AD patients13, our results 
showed higher NADH emission efficiency. One reason might be the different host environment of biological 
molecules in AD, in which NADH is farther from tryptophan and NADH itself may also have fewer interaction 
with the host environment. As a result, the emission intensity of NADH was higher in AD due to reduced nonra-
diative Knr or increased radiative Kr. Considering our objective was to detect AD in its early stage such that we 
used a young AD mouse, another reason may be due to overcompensation of NADH for dysfunction of energy 
metabolism in the early stage of AD. The future direction could use time resolved fluorescence that gives fluores-
cence rate (Kf = Kr + Knr) and combines with longer wavelength multiphoton excitation that offers deeper tissue 
penetration.

In the present study, the scattering of fluorescence intensity is small since 1) the emission is detected from 
<0.5mm deep from the surface, and 2) the scattering coefficient and transport coefficient are smooth and flat, 
causing little or no influence on the measurements (as shown in Fig. 1).

In conclusion, the current study shows for the first time the fluorescence spectra of major molecular building 
blocks in brain of tryptophan, NADH, and FAD in AD and N mouse brain tissues. Fluorescence intensity levels of 

Excitation 
wavelength Tissue

Normalized 
intensity of peak 1

Normalized 
intensity of peak 2 Ratio (peak1/ peak2)

266 nm

tryptophan 
emission at 331 nm

NADH emission at 
435 nm

AD

1.032 0.266 3.88

1.016 0.271 3.75

1.001 0.269 3.73

0.986 0.268 3.68

0.965 0.268 3.60

mean 1.000 0.268 3.73

N

0.522 0.174 3.01

0.495 0.170 2.91

0.495 0.169 2.93

0.491 0.167 2.93

0.480 0.167 2.88

mean 0.497 0.169 2.93

tryptophan 
emission at 335 nm

NADH emission at 
492 nm

300 nm

AD

1.013 0.164 6.19

1.014 0.161 6.29

1.005 0.161 6.25

0.989 0.161 6.15

0.979 0.158 6.19

mean 1.000 0.161 6.21

N

0.536 0.101 5.31

0.537 0.100 5.36

0.531 0.099 5.35

0.530 0.099 5.34

0.526 0.099 5.31

mean 0.532 0.100 5.33

NADH emission at 
462 nm

FAD emission at 
557 nm

340 nm

AD

1.032 0.358 2.88

1.010 0.355 2.84

0.998 0.353 2.83

0.983 0.348 2.82

0.978 0.343 2.85

mean 1.000 0.352 2.84

N

0.606 0.212 2.86

0.609 0.206 2.95

0.609 0.205 2.97

0.605 0.206 2.93

0.602 0.207 2.92

mean 0.606 0.207 2.928

Table 1.  Emission peaks in AD and N brain samples. AD: Alzheimer; N: normal.
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tryptophan, NADH, and FAD increased in AD brain tissues. This study verifies that tryptophan, NADH, and FAD 
can be employed as biomarkers for AD diagnosis. This work provides an effective technique to detect differences 
of fluorophore compositions in AD and normal brain tissues, and to diagnose AD by examining the spectral 
profiles of various fluorophores. This research can extend to employ ultrafast time resolved two photon excitation 
fluorescence spectroscopy for measuring the underlying relaxation times in AD.

Figure 3.  Ratios of intensity peaks from three different regions of interest. Ratios of emission peaks (a) of 
tryptophan/NADH (at 331 nm/435 nm) when excited at 266 nm, (b) of tryptophan/NADH (at 330 nm/490 nm) 
when excited at 300 nm, and (c) of NADH/FAD (at 462 nm/557 nm) when excited at 340 nm.

Figure 4.  Means of the first derivative of fluorescence profiles of AD and N brain tissues at excitation 
wavelength (a) 266 nm, (b) 300 nm, and (c) 340 nm.
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Methods
Animal preparation.  Mice were purchased from Jackson Laboratory and housed at the City College Animal 
Facility. A 3-month-old triple transgenic AD mice harboring PS1M146V, APPSwe and tauP301L transgenes in a 
uniform strain background19 was used. Another N mouse at the same age was used as control. The experimental 
methods were in accordance with the guidelines and regulations approved by the Institutional Animal Care and 
Use Committee at the City College of the City University of New York. The protocol number is 841. The method 
used to prepare rodent brain tissue has been described in detail elsewhere18. A brief outline of the methods is 
given below with emphasis on the special features of the present experiments.

After anesthesia with a mixture of ketamine and xylazine (41.7 and 2.5 mg/kg body weight, respectively), the 
mouse was decapitated and the brain was dissected and taken out. Fresh brain tissue with the hippocampus region 
was quickly sliced coronally at thickness of ~2 mm with a brain matrix (RWD Life Science Inc., CA). The fresh 
brain tissue slice was then immediately placed in a quartz cuvette. Regions of interest (ROI) in the hippocampus 
were measured 5 times at different spots in each AD and normal brain samples.

Basic theory of fluorescence.  It is well known that the fluorescence intensity If depends on efficiency Q 
from the radiative rate Kr and nonradiative rate Knr, where Q is given by20:

= +Q Kr/(Kr Knr) (1)

where Q equals to the ratio of number of photons emitted out to the number of photons pumped in (Nout/Nin). 
The intensity from excited molecules If is

= Ω π · nI ( /4 )(Q ) (2)f

where Ω is the solid angle and n is the number of excited molecules. The Knr depends on the interaction of mole-
cules with their host environments. Weak interaction will lead to a small Knr and more emission intensity. When 
Knr ≫ Kr, the emission is reduced.

Förster resonance energy transfer (FRET) is a mechanism for energy transfer between donor and acceptor 
via dipole-dipole coupling. Since the emission peak of tryptophan is around 340 nm and the absorption peak of 
NADH ranges from 340~360 nm, energy transfer from excited donor (tryptophan) to acceptor (NADH) proba-
bly occurs in the biological tissues21, 22. Effective donor to acceptor transfer can reduce emission from donor and 
enhance emission from acceptor. The transfer rate is

τ~K (1/ )(R /R) (3)DA D 0
6

where R0 is overlap between donor emission and acceptor absorption, τD is the fluorescence lifetime of donor, and 
R is the distance between donor and acceptor.

FluoroMax-3 fluorescence spectrometer.  The fluorescence of AD and N brain tissues was measured 
by a FluoroMax-3 fluorescence spectrometer (Horiba Jobin Yvon Inc.). A 150-W xenon lamp was used as the 
discharge light source in the spectrometer. There are two Czerny-Turner monochromators for excitation and 
emission respectively. The essential part of a monochromator is a reflection grating, which selects the wavelength 
being used. The gratings contain 1200 grooves mm−1. A direct drive is used for each grating to scan the spectrum 
at up to 200 nm/s, the accuracy is better than 0.5 nm and repeatability is of 0.3 nm. The monochromatic excita-
tion light strikes the sample, which is stored in a cuvette, and then emits fluorescence. The fluorescence light is 
directed into the emission monochromator, and is collected by the signal detector whose response ranges from 
180–850 nm. Another detector named reference detector monitors the xenon lamp, and has good response from 
190–980 nm.

The AD and N brain samples were excited at selected wavelengths 266 nm, 300 nm, and 340 nm, respectively, 
to examine the fluorescence peaks of each of tryptophan, NADH, and FAD. All measurements were performed by 
using a scanner (at 200 nm/sec), and the samples were held in cuvettes during the measurement.

Measurements of AD and N brain samples were each taken at three regions of interest, with the same slit width 
of 2.0 nm (in bandpass unit) and integration time of 0.2 s at each excitation wavelength. Three groups of spectra 
were obtained at excitation 266 nm, 300 nm, and 340 nm, respectively. Each group contains three spectra from 
AD brain tissues and three from N brain. Average curve of these three spectra and maximum intensity were cal-
culated. In each group, the spectral profiles were normalized to the maximum intensity of averaged spectra from 
AD brain. All averaged data was presented as mean ± SD.
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