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ABSTRACT OF THE DISSERTATION 

 

Detection of Damage in a Composite Structure Using Guided Waves 
 

by 

Harsh Kumar Baid 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2012 

Professor Ajit K. Mal, Chair 

 
 

 Advanced composites are being increasingly used in state-of-the-art aircraft and 

aerospace structures. In spite of their many advantages composite materials are highly 

susceptible to hidden flaws that may occur at any time during the life of a structure and if 

undetected, may cause sudden and catastrophic failure of the entire structure.  An 

example of such a structural component is the “honeycomb composite” in which thin 

composite skins are bonded with adhesives to the two faces of extremely lightweight and 

relatively thick metallic honeycombs. These components are often used in aircraft and 

aerospace structures due to their high strength to weight ratio. Unfortunately, the bond 

between the honeycomb and the skin may degrade with age and service loads can lead to 

separation of the load-bearing skin from the honeycomb (called “disbonds”) and 

compromise the safety of the structure. The need for model-based studies is widely 

recognized in the NDE community and a great deal of work has indeed been carried out 

for simple, metallic structures. However the literature on composite structures is rather 

limited due to the enormous mathematical complexity involved in dealing with them. In 
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this dissertation a comprehensive approach including numerical (finite element method) 

and analytical method is used for calculating the ultrasonic wavefield in composite 

structural components with and without defects.  Laboratory experiments are carried out 

on a composite honeycomb specimen containing damage to the skin or a localized 

disbond at the skin-core interfaces. The skin and the honeycomb composite are 

considered separately in order to understand the interaction of ultrasonic waves with 

damage in the two structures. The waves are launched into the specimen using a 

broadband PZT transducer and are detected by a distributed array of identical transducers 

located on the surface of the specimen. The guided wave components of the signals are 

shown to be strongly influenced by the presence of a defect in the skin or the honeycomb 

composite structure. The experimentally observed results are used to develop an 

autonomous scheme to locate the disbonds. The calculated results from the simulations 

are compared with existing and new experiments to validate and improve the models. The 

results should be very useful in model-based understanding of ultrasonic data collected 

during nondestructive inspection and evaluation (NDI/NDE) of advanced aircraft and 

aerospace structure and in the development of reliable health monitoring systems in the 

structures. 
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Chapter 1 INTRODUCTION 

Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace 

structures, due to their high specific stiffness and strength, and extremely low coefficient of 

thermal expansion. The new Boeing 787 and many Airbus models make extensive use of 

composites as their primary structural components. In addition, novel multifunctional composites 

are being developed both for commercial and military applications. The estimated use of 

composites in commercial aircraft is shown in Figure 1-1, the curves for military aircraft would 

probably be even steeper. It is well known that composite materials are highly susceptible to 

hidden flaws that may arise from manufacturing defects, foreign object impact, mechanical and 

thermal fatigue and other service related events. If these hidden flaws are undetected they can 

grow and lead to catastrophic failure of the structure. An example of such a catastrophic failure 

was explosion of the Delta II Launch Vehicle in January 1997 due to impact in the composite 

structures. The explosion was caused due to a hidden delamination in one of the strapped-on 

Graphite Epoxy Motors (GEMs) [1]. Other examples include the crash of the Airbus AA-587 

due to loss of its composite vertical stabilizer and the explosion of a X-33 fuel tank also appear 

to have been caused by the presence of hidden delaminations [2, 3]. Since many of these defects 

can occur at any time during service of the structure, proper maintenance at regular intervals is 

critical to insure the safety of these structures, adding large amounts to their cost of operation 

and maintenance. 

 Life extension and safe operation of aircraft, aerospace and civil structures requires an 

intensive and costly program of inspection and maintenance at regular intervals. Methods to 

assess structural damage and cracks/delaminations in aircraft components without removing 

paint continue to remain cumbersome and labor-intensive requiring subjective judgment. 
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According to some estimates, over 25% of the life cycle cost of an aircraft or aerospace structure, which 

includes pre-production, production and post-production costs can be attributed to operation and support, 

involving inspection and maintenance. The life cycle cost of new aircraft and aerospace structures 

can be reduced significantly with the development of a more efficient nondestructive evaluation 

technology using an effective data collection system and an interpretation methodology based on 

fundamental physical models.  

 

Figure 1-1: Composite in commercial aircrafts 

 

 A number of techniques are available for detecting and characterizing defects in aircraft 

and aerospace structures. These include visual inspection, tap testing, electromagnetics, 

radiography, thermography, and ultrasonics. However, the currently available methods that can 

be used to nonintrusively assess structural damage and cracks/delamination on aircraft 

components (such as thermography, coin-tap testing, and water-jet coupled ultrasound imaging, 
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or squirter) are cumbersome, time consuming, and costly.  Squirter, the off-line ultrasonic (US) 

scanning system that uses water-jets (e.g., Scanmaster-IRT Model DS-2005, and other systems 

from Mortec, Olympus NDT, and others) are expensive instruments that require the test structure 

to be unmounted and transferred to a defined location where the sample can be scanned. The 

transportation process could further damage the component needing additional evaluation. As an 

Example, the vertical stabilizer of a typical aircraft could take up to three hours to scan with the 

squirter, not including the time required for disassembly, reassembly, and loss of service. To 

overcome the limitations of the conventional, rigorous, and time-consuming off-line non-

destructive examination of large area structures, in situ inspection methods, which do not require 

the disassembly of the structure, need to be improved. In this dissertation, a conceptual real-time 

damage detection system based on ultrasonics is developed for assessing the health of composite 

structural components in scheduled periodic inspections.  The technique is applied to detect 

hidden damage in a woven composite laminate and composite-aluminum honeycomb aircraft 

structural component using broadband transducers that can be placed at different locations on the 

surface of the structural components. This approach offers the potential for developing an in situ 

diagnostic/prognostic ultrasound imaging system for determining the location and size of 

delaminations and disbonds in composite aircraft structures. 

 Two general approaches to structural health monitoring are currently being pursued by 

many investigators.  One is the global approach in which changes in the vibrational properties of 

a structure caused by damage are measured and analyzed in an effort to detect and characterize 

the damage and the other is a local approach whereby changes in the characteristics of ultrasonic 

waves propagating across existing defects or created by emerging defects are measured and 

analyzed to detect and characterize them [4-12]. Many of the techniques are based on the fact 
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that the dynamical response of a structure to time dependent loads can be measured accurately, 

that the response changes with the initiation and growth of damage and that careful model based 

analysis of the measured data on a continuing basis can provide detailed information on the 

location and severity of the damage. In this dissertation the wave propagation approach along 

with a novel technique based on a "damage index" is introduced and used to detect impact 

damage in a woven composite panel. 

 In order to develop an efficient and reliable damage detection and monitoring system 

using ultrasonic transducers, it is necessary to have a clear understanding of the quantitative 

nature of ultrasonic waves that can be transmitted in composite structures with and without 

damage. The general features of elastic waves that can be transmitted in isotropic and anisotropic 

solids have been studied in great detail over the past several decades [13-14]. These studies were 

motivated, in part, by the need to understand the nature of ultrasonic waves that can be 

transmitted in structural components [15-17].  In contrast, the literature on the response of 

anisotropic and multilayered composite plates to buried or surface sources that are representative 

of impact or fatigue damage is relatively sparse.  

 The exact solution of three-dimensional problems consisting of multilayered, angle-ply 

laminates of finite thickness and large lateral dimensions subjected to various types of surface 

loads, has been given in [18-27]. In these papers, the response problem was formulated using 

triple integral transforms involving one in time and two in space, leading to an exact 

representation of the elastodynamic field in the transformed frequency-wavenumber domain. The 

inversion of the transforms required numerical evaluation of a double wavenumber integral 

followed by frequency inversion using the fast Fourier transform (FFT) algorithm. The main 

computational effort in this approach involves the accurate evaluation of the double wavenumber 
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integrals. The evaluation of this integral is computationally intensive due to the presence of 

singularities and the highly oscillatory nature of the integrands at higher frequencies and large 

distances between the field and source points. 

 Approximate thin-plate theories, such as the classical plate theory (C.P.T) under 

Kirchoff-Love kinematic assumption, and shear deformation plate theory (S.D.P.T) or Mindlin 

theory, have been developed to obtain the analytical solution to a variety of problems involving 

the dynamic response of thin isotropic and anisotropic plates [28, 30]. A comprehensive review 

of recent research on guided waves in composite plates and their use in nondestructive material 

characterization can be found in [29].  

  The finite element method (FEM) is also a versatile tool to analyze this class of problems 

and a dynamic finite element code has been developed for the calculation of acoustic emission 

(AE) waveforms in isotropic and anisotropic plates [31-32]. This code has been validated with 

both experimental measurements and analytical predictions for a variety of source conditions and 

plate dimensions in isotropic materials. Although the FEM can handle complex geometries and 

has the capability to accommodate reflections from the lateral boundaries, it is computationally 

much more intensive than the analytical methods discussed above.  

 As indicated earlier, this research involves NDE and health monitoring of a relatively thin 

woven composite laminate and a thick layered plate consisting of an aluminum honeycomb core 

bonded to two woven composite face sheets. The objective is to develop reliable and efficient 

defects monitoring systems in the structures using ultrasonic guided Lamb type waves. The 

guided waves are selected as probes due to their ability to propagate large distances across the 

plate and their strong sensitivity to the presence of crack-like defects in their propagation path.  

A good understanding of the characteristics of the waves as they propagate across the plate in 
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absence and presence of defects is a prerequisite to the development of a reliable monitoring 

system for the structure. Almost all of the wave propagation studies mentioned above involve 

angle-ply laminates consisting of a stack of unidirectional fiber reinforced materials with 

different orientations. In the theoretical models, each ply is assumed to be transversely isotropic 

with its symmetry axis on a plane parallel to the surface of the laminate. This homogenized 

model of the ply has been shown to be adequate when the wavelengths are large compared to the 

ply thickness which is usually less than 10 μm.  A reasonable homogenized model for the 

material of the woven composite plate is also transversely isotropic but with its symmetry axis 

normal to the plate surface. This is also true for the honeycomb material where the symmetry 

axis is parallel to the axis of the cells of the core.  Thus the theoretical problem that is considered 

for the woven composite panel here is a homogeneous plate composed of a transversely isotropic 

material with symmetry axis normal to its surface. The model of the honeycomb composite is 

three-layered transversely isotropic plate composed of the honeycomb core bonded to the 

composite face sheets. The theoretical solutions of these problems are not available in the 

literature and are provided here using analytical and numerical (Finite Element) methods. The 

elastic constants of the two materials (woven composite and aluminum honeycomb core) are 

determined form mixture typed theories, and from destructive and ultrasonic nondestructive 

experiments. The validity of the assumption of transverse isotropy in the frequency range of are 

demonstrated from experiments.          

 Due to the complex geometry and material properties it is difficult if not impossible to 

predict the quantitative properties of guided waves in these structures using purely analytical 

approaches. Based on simplified model, the dynamic behavior of the honeycomb sandwich was 

investigated. The material properties of honeycomb structure were obtained from the simplified 
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model proposed by Gibson and Ashby [33]. Several methods exist for determining the effective 

properties of plane weave lamina and unidirectional cross-ply laminates. It is more difficult to 

determine the effective properties of twill woven lamina. Once we determine plane weave and 

cross-ply properties, the properties of the 2/2 twill lamina can be bounded by these two cases. 

The numerical method described by Naik [34] can be used to estimate the properties of the plane 

weave lamina, which is relatively simple compared to other methods (e.g. finite element 

methods), but still retains relatively high accuracy. The material properties of the cross-ply 

laminate were determined using a modified Hashin model [35]. A simple rule of mixture method 

described by Whitcomb and Xiadong [36] was used to estimate the material properties of the 2/2 

twill lamina. 

 The dissertation is composed of seven chapters. Chapter 1 contains introduction and 

literature review. In chapter 2 the elastic properties of the composite and the honeycomb are 

determined using a combination of mechanical and ultrasonic tests. In chapter 3 propagation 

characteristics of ultrasonic waves in composite structures understood theoretically, 

experimentally, and numerically (finite element method). The characterization consists of 

obtaining dispersion curves, proving the transverse isotropy, and attenuation in both the face 

sheet and sandwich structure. Guided wave propagation as well as determination of impact 

damage in the composite panel using guided wave and damage index algorithm is discussed in 

Chapter 4. In chapter 5 and 6 detection of damage both experimentally and numerically in a thick 

aluminum plate as well as sandwich structure is discussed. Finally, concluding remarks are 

discussed in Chapter 7.      
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Chapter 2 DETERMINATION OF MATERIAL PROPERTIES OF 
THE SANDWICH PANEL 

  

 The sandwich panel of interest is composed of two carbon-epoxy face sheets with an 

aluminum honeycomb core with hexagonal cells. The face sheet consists of 8 layers of 2/2 twill 

woven carbon fiber with a [0°/45°/0°/45°]s stacking sequence. The effective elastic properties 

will be used for both the face sheet and the core material in analyzing the propagation of guided 

waves in the panel. The justification for this idealization will be provided later.   

 

2.1 Effective Properties of the Composite Face Sheets Using Theoretical 
Approach 
 

The 2/2 twill-woven carbon fabric, a balanced weave, has 12 yarns-per-inch in both the 

warp and fill directions.  Each lamina is 0.221 mm thick with a density of 0.0197 g/cm3, and 

each yarn is composed of 3000 strands of T300 carbon fibers and the matrix that binds the 

material is Unibond 1070 epoxy. The properties of these materials are listed in Table 2-1. 

 

Figure 2-1: 2/2 Twill Weave 
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Table 2-1: Elastic properties of T-300 Carbon Fibers and Epoxy (from Naik and Ganesh [37]) 

( ) ( ) ( ) ( ) ( ) ( )

f ,m f ,m f ,mf ,m f ,m f ,m
33 13 2311 22 12 f ,m f ,m f ,m

12 13 23

E G GE E G

GPa GPa GPaGPa GPa GPa
230 40 40 24 24 13.4 0.23 0.23 0.26
3.5 3.5 3.5 1.3 1.3 1.3 0.35 0.35 0.35

ν ν ν

 

 

Several methods exist for determining the effective properties of the plane weave lamina and the 

unidirectional cross-ply laminates, although it is more difficult to determine the effective 

properties of twill woven lamina. Once we determine plane weave and cross-ply properties, the 

properties of the 2/2 twill lamina can be bounded by these twos. The numerical method described 

by Naik [34], which is relatively simple compared to other methods (e.g. finite element methods), 

are used here to estimate the properties of the plane weave. The cross-ply material properties 

were determined using the modified Hashin model [35]. A simple rule of mixture method, 

described by Whitcomb and Xiadong [36], can be used to estimate the effective material 

properties of the 2/2 twill lamina from the following five equations: 

w s
w s

11 11 11

V V1
E E E

= +  ( )2.1

w s
33 33 w 33 sE E V E V= +  ( )2.2

13 13

w s w ww s w s
13 12 12 w 12w s w s

11 11 11 11

V V V Vv ; V V
E E E E

⎛ ⎞ ⎛ ⎞
= ν + ν + ν = ν + ν⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( )2.3

w w
13 13 w 13 sG G V G V= +  ( )2.4

w
12 12G G=  ( )2.5

where Vw is the volume fraction of the wavy region and Vs is the volume fraction of the straight 

region. For the 2/2 twill weave both Vw and Vs are about 0.5. The superscript, w, indicates 
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properties of the wavy region, which are modeled using the properties for a plane weave lamina 

and the superscript, s, indicates properties for the straight regions, which are modeled using the 

properties of the cross-ply laminate. Table 2-2 give the input parameters required for estimating 

the effective properties of the plane weave and cross-ply laminae. 

Table 2-2: Input parameters for estimating effective properties of plane weave and cross-ply 
laminae. 
Packing density of the yarn, pd 0.65 
Yarn spacing, a 2.032 mm 
Filament diameter, df 0.007 mm 
Number of filaments in the yarn, N 3000 
Fiber volume fraction Vf 
 
 

Effective properties of unidirectional lamina and laminate 

The effective properties of the unidirectional lamina are found using the modified Hashin 

method [35] and those for [0/90] cross-ply laminate are determined using classical laminate 

theory (CLT) for the in-plane properties. Its out-of-plane properties remain the same as that for 

the individual lamina. To determine the in-plane properties based on CLT, we need to use the 

following steps (Jones [38]): 

(1) Determine the reduced stiffness’s (Qij) for a plane stress state in the 1-2 plane for each 

lamina from the relation 

11 12

ij 12 22

66

Q Q 0
Q Q Q 0

0 0 Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
( )2.6

 

 

 



11

where, 

1 2 12 2 21 1
11 22 12 66 12

12 21 12 21 12 21 12 21

12 21

1 2

E E E EQ ,Q ,Q ,Q G
1 1 1 1

E E

ν ν
= = = = =

−ν ν −ν ν −ν ν −ν ν

ν ν
=

            

(2) Transform the lamina properties to the laminate coordinates. 

[ ] [ ][ ]1 T− −⎡ ⎤ =⎣ ⎦Q T Q T  ( )2.7

where, 

[ ]
2 2

2 2

2 2

cos sin 2sin cos
sin cos 2sin cos

sin cos sin cos cos sin

⎡ ⎤θ θ θ θ
⎢ ⎥= θ θ − θ θ⎢ ⎥
⎢ ⎥− θ θ θ θ θ− θ⎣ ⎦

T  

And θ is the orientation of the lamina. In the cross-ply laminate 90θ = ±   

(3) Determine the extensional stiffness, Aij. 

( ) ( )
N

ij ij k k 1k
k 1

A Q z z −
=

= −∑  ( )2.8

For a [0/90] cross-ply with thickness h for each lamina, it can be shown that: 

( ) ( )0 90

ij ij ijA Q Q h⎛ ⎞= + ×⎜ ⎟
⎝ ⎠

 ( )2.9

(4) Invert the Aij matrix to find the extensional compliance, A*
ij.  

1 * * *
11 12 16 11 12 16

* * * *
ij 12 22 26 12 22 26

* * *
16 26 66 16 26 66

A A A A A A
A A A A A A A

A A A A A A

− ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

( )2.10
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(5) Using the extensional compliance for the laminate, the in-plane laminate engineering 

constants can be defines as: 

*
12

11 22 12 12* * * *
11 22 66 22

1 1 1 1 1 1 AE ,E ,G ,
t A t A t A A

= = = ν =
( )2.11

where, t is the thickness of the laminate. 

To find the elastic properties of a [0°/45°/0°/45°/45°/0°/45°/0°] stacking sequence we need to 

follow the same approach as above. The only difference will be extensional stiffness, Aij matrix, 

where: 

( ) ( )0 45

ij ij ijA Q Q 4h⎛ ⎞= + ×⎜ ⎟
⎝ ⎠

 ( )2.12

 

Effective properties of plane weave lamina and laminate 

A program called “Micromechanics and Laminate Analysis of Textile Fabric 

Composites” (Shivakumar and Challa [39]) was used to compute the effective properties of the 

plane weave lamina and 8-layer plane weave with a [0°/45°/0°/45°]s stacking sequence.  The 

input values used are listed in Tables 2-1 and 2-2. 

Plots for the effective properties of plane weave, 2/2 twill weave, the unidirectional 

lamina with T300 carbon fiber and epoxy matrix, the 8-layer plane weave, 2/2 twill, and 

unidirectional cross-ply laminates with a [0°/45°/0°/45°]s stacking sequence are shown in Figures 

2-2 and 2-3. 
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Figure 2-2: Estimated effective elastic constants of plane-weave, 2/2 twill weave, and 
unidirectional cross-ply lamina with T300 carbon fiber and epoxy matrix. 
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Figure 2-3: Same as in Figure 2-2 for 8 layer plain weave, 2/2 twill, and unidirectional cross-ply 
laminate with a [0°/45°/0°/45°/45°/0°/45°/0°] stacking sequence. 
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2.2 Effective Properties of Composite Face sheets Using Experimental 
Approach 
 
 Some of the material constants were also determined experimentally for the composite 

face sheet to validate the above estimates. The constant E22 was determined by applying a tensile 

load in the x2 direction and measuring the extension in the same direction using an extensometer. 

The stress-strain plot obtained experimentally is shown in Figure 2-4. From the data obtained 

experimentally, the Young’s Modulus E22 is found to be 38.8 GPa. 

Stress-Strain Curve (Composite Face Sheet)

y = 38796.36x - 3.18
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Figure 2-4: Stress-Strain Plot for the Composite Face Sheet 

The Poisson ratio in the 1-2 plane ( 12ν ) was determined by applying tensile load in the x2 

direction and measuring strains in both the x1 and x2 directions using strain gauges mounted on 

the test sample. From the experimental data, 12 0.3137ν = .  

 

 

1x

2x

P

P



16

2.3 Effective Properties of Composite Face sheets Using Wave Propagation 
Approach 
  
 The shear modulus G23 and the elastic constant E33 for the composite face sheet were 

determined from the following equations (Mal and Singh [40]), using wave propagation 

experiments 

 2
23 23G v= ρ  ( )2.13

( )
( )

2
22 12 11

33 2 2
22 12 13 11

E 1 v
E

E 1 2 v
ρ −ν

=
−ν + ρν

 
( )2.14

where v11 and v23 are the longitudinal and shear wave velocities respectively of wave 

propagation along the thickness direction of the composite face sheet. From Equation (2.14) E33 

can be calculated by assuming a value for 13ν from Figure 2-3 for Vf = 0.5. The measured 

velocities using through transmission of ultrasonic waves were v11 = 2880 m/s, v23 = 1517 m/s. 

These results are nearly independent of the frequency of the ultrasonic waves.  For ρ = 1276.3 

kg/m3, E22 = 38.8 GPa, 12 0.3137ν = , and 13 0.324ν = Equations (2.13) and (2.14) give G23 = 

2.93714 GPa and E33 =  9.77 GPa. The estimated effective properties of the composite face sheet 

obtained from the mixture type theory and destructive and ultrasonic nondestructive experiments 

is given in Table 2-3. 

 

Table 2-3: The estimated effective properties of the Twill woven carbon fiber composite using 
mixture typed theory for Vf = 0.5. 

( ) ( )
( )

( ) ( )

11 31 32
1233 13 2311 22

13
12 21 13 2333

13
11

E ,GE G ,GE , E
2 1 , ,E

GPa GPa GPa
EGPa

Experiment 38.8 9.77 14.7675 2.937 0.3137 0.081585 0.324
Theroy 44.795 10.753 17.230 3.881 0.320 0.07778 0.324

ν ν=
+ ν ν ν ν ν

= ν
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It should be noted that the experimentally determined values of the effective properties are 

significantly different from those from the theory given in Table 2-3. The experimental value in 

Table 2-3 will be used in calculating the wave propagation characteristics in subsequent sections.   

 

2.4 Effective Properties of the Honeycomb Core 
 
The honeycomb core has a regular hexagonal cell structure made of 5052 aluminum 

approximately 12 mm width. The geometry of the hexagonal cell used in determining the 

effective material properties of the core is shown in Figure 2-5. A complicating factor in 

determining the properties of the core material resulted from the manufacturing process shown in 

Figure 2-6. A sheet of aluminum is crimped and the adhesive is applied to the flat faces. These 

sheets are then stacked to create the honeycomb geometry. The result of this process is two walls 

in each unit cell which have a double wall thickness. This complication changes the shear moduli 

and density compared to single thickness walls but does not have a significant effect on the 

elastic moduli. The approximate expressions for the elastic properties of the regular hexagonal 

honeycomb core are given in Equations (2.15 and 2.16) (Gibson and Ashby[33]). 

 

Figure 2-5: Regular hexagonal honeycomb unit cell geometry. 
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Table 2-4: Properties of 5052 Aluminum material properties. 

( ) ( ) ( )3E GPa G GPa g cm

70.3 25.9 0.33 2.68

ν ρ
 

 

 

Figure 2-6: Honeycomb core manufacturing process showing double wall thickness due to 
corrugated sheet bonding. 

 

Equation (2.15) gives the expression for the relative density of the double wall honeycomb core 

(ρ*) to the solid material (ρs). In this expression, t is the wall thickness of the honeycomb cell 

and l is the length of the edge of the cell. 

s

8 t 0.042568
3 3

∗ρ
= =

ρ l
 ( )2.15

Equations (2.16) give expressions for the elastic. As can be seen, the in-plane elastic 

muduli *
i ij ijE ,G ,and∗ ∗ν relative to their values in the monolithic aluminum, s s s

i ij ijE ,G ,andν : 
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3* *
51 2

s s

E E 4 t 4.88 10
E E 3

−⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠l

 
( )2.16a

3

s s

E 2 t 0.042568
E 3

∗ ∗ρ
= = =

ρl
 ( )2.16b

* *
12 21 1ν = ν =  ( )2.16c

1 2
13 s 23 s

3 3

E E,
E E

∗ ∗
∗ ∗

∗ ∗ν = ν ν = ν  ( )2.16d

31 32 s
∗ ∗ν = ν = ν  ( )2.16e

3
512

s

G 1 t 1.22 10
E 3

∗
−⎛ ⎞= = ×⎜ ⎟

⎝ ⎠l
 

( )2.16f

13 23

s s

G G 1 t 0.015963
G G 3

∗ ∗ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠l

 ( )2.16g

 

It can be seen that as expected the in-plane moduli are much smaller than the corresponding out-

of-plane moduli. Using equation (2.16), dimensions of the unit cell (Figure 2-5) and the material 

properties of 5052 aluminum (Table 2-4) in equation (2.15 and 2.16) the estimated density and 

elastic properties of the honeycomb core are calculated and given in Table 2-5. 

 

Table 2-5: Estimated effective properties for a regular hexagonal honeycomb core. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
33 13 2311 22 12

12 21 31 32 13 23 3

3 3 3 4

E G GE E G
, , ,

kg mGPa GPa GPaGPa GPa GPa

3.43 10 3.43 10 2.99 0.86 10 0.413 0.413 1.00 0.33 3.79 10 114.1− − − −

ρ
ν ν ν ν ν ν

× × × ×
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Chapter 3 GUIDED WAVE PROPAGATION IN COMPOSITE 
STRUCTURES 

 The degradation of composite materials and composite structures can be assessed using 

ultrasonic nondestructive evaluation (NDE) techniques. For successful application of these 

techniques to locate and estimate the severity of the damage, it is extremely important to 

understand the propagation characteristics of ultrasonic waves in these structures. Wave 

propagation in composites is extremely complex due to its material inhomogeneity and 

anisotropy, where characteristics of the waves depend on the laminate layup, direction of wave 

propagation, frequency, and interface conditions. When elastic waves are generated by surface 

sources in a plate, they experience repeated reflections at the top and bottom surfaces alternately. 

The mutual interference of the reflected waves results in propagation guided by the plate surfaces. 

The guided waves are dispersive, i.e., their velocity of propagation along the plate is dependent 

on the frequency and the thickness of the plate. The dispersion relation for a homogeneous 

elastic isotropic plate was first derived by Lamb [41]. Lamb waves are guided waves that travel 

parallel to the surface of a homogeneous plate of finite thickness, infinite lateral dimensions, and 

traction-free boundaries. Since lamb waves are guided and stay confined inside the plate, they 

can travel over long distances, allowing inspection of a large area in plate-like structures with 

limited number of sensors. Guided waves are classified in to three types in isotropic structures 

according to their polarization or the direction of displacement vector. The one polarized in the 

plane perpendicular to the plate, say in the x-y plane shown in Figure 3-1, are called symmetric 

(or extensional, S) waves and anti-symmetric (or flexural, A) waves, and the one polarized in the 

plane of the plate are called shear horizontal (SH) waves.      
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Figure 3-1: Guided waves in a homogeneous plate: (a) symmetric motion and (b) antisymmetric 
motion [40] 
 

3.1 Dispersion Relation for an Elastic Isotropic Plate 

 For a homogeneous isotropic elastic plate under plane strain conditions for anti-

symmetric motion of the plate, the dispersion equation is of the following form [40] 

( ) ( ) ( ) ( ) ( )22 2 2
2 1 2 1 2 2 12k k sinh H cosh H 4k sinh H cosh H 0− η η − η η η η =  ( )3.1

where, 

2 2
j j j

j

k k , k , k , j 1,2
c c
ω ω

η = − = = =  ( )3.2

The solution of equation (3.1) gives the wave number k, from which the wave speed c can be 

calculated using the relation k
c
ω

= . Since equation (3.1) is a transcendental equation and c is a 

function of ω. The waves are then called dispersive, and the equation giving c as a function of ω 

is called dispersion equation. If the frequency is small, an approximate solution of the dispersion 

equation can be found as: 

1 42 1 2

2

2 1 2

cc 4 H1
c 3 c c

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ω⎢ ⎥⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
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At high frequencies the dispersion equation reduces to Rayleigh wave equation. 

( )22 2 2
2 1 22k k 4k 0− − η η =   ( )3.3

For symmetric motion of the plate the dispersion equation is of the following form [34],  

( ) ( ) ( ) ( ) ( )22 2 2
2 2 1 1 2 1 22k k sinh H cosh H 4k sinh H cosh H 0− η η − η η η η = ( )3.4

In the limit of zero frequency, the phase velocity c tends to a finite value cp, given by 

2

2
p 2

1

cc 2c 1
c

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

( )3.5

At low frequencies, the symmetric Lamb waves are called “extensional waves” and are 

designated as the So mode; the anti-symmetric waves are called “flexural waves” and are 

referred to as the Ao mode. At intermediate frequencies, the dispersion equation must be solved 

numerically. The graphical results shown in Figure 3-2, called dispersion curves.  

 

Figure 3-2: Dispersion curves for Lamb waves in an aluminum plate. 
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3.2 Dispersion Relation for an Elastic Transversely Isotropic Plate 

 As indicated in Chapter 2, the composite plate of interest here is transversely isotropic 

with its symmetric axis normal to the plate. In this section the dispersion properties of lamb 

waves in a transversely isotropic plate with symmetry axis along x3-axis (figure 3-3) are 

determined. Since the dispersion curves are strongly dependent on some of the elastic constants 

of the material, they can be used to determine these constants as a further check on the validity of 

the estimated values in Table 2-3 obtained experimentally.  

 

 
Figure 3-3: Composite Layer 

 

 

For a homogeneous and transversely isotropic material with 1-2 plane as the plane of isotropy, 

the stress components ijσ can be expressed in terms of the displacement components iu by the 

following equations: 
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( )

11 12 13
1,111

12 22 13
2,222

13 13 33
3,333

44
2,3 3,223

44
1,3 3,131

1,2 2,112 11 12

c c c 0 0 0 u
c c c 0 0 0 u
c c c 0 0 0 u
0 0 0 c 0 0 u u
0 0 0 0 c 0 u u

1 u u0 0 0 0 0 c c
2

⎡ ⎤σ ⎧ ⎫⎧ ⎫ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥σ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪σ⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥ +σ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪+σ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ +σ −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥⎣ ⎦

 

 
 

( )3.6

The equations of motion with no body forces are, 

2
1311 12 1

2
1 2 3

2
2312 22 2

2
1 2 3

2
13 23 33 3

2
1 2 3

u
x x x t

u
x x x t

u
x x x t

∂σ∂σ ∂σ ∂
+ + = ρ

∂ ∂ ∂ ∂

∂σ∂σ ∂σ ∂
+ + = ρ

∂ ∂ ∂ ∂

∂σ ∂σ ∂σ ∂
+ + = ρ

∂ ∂ ∂ ∂

 
( )3.7

 
In order to determine the propagation characteristics of the guided waves we consider the plane 

strain model shown in Figure 3-4. 

 

 

Figure 3-4: A plane strain model of the transversely isotropic plate.  

2
2

u 0 and 0
x
∂

= =
∂

 

Then the stress displacement relations and equations of motion can be rewritten as, 

3 3 31 1 1
11 11 13 33 13 33 13 44

1 3 1 3 3 1

u u uu u uc c , c c , c
x x x x x x

⎡ ⎤∂ ∂ ∂∂ ∂ ∂
σ = + σ = + σ = +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

( )3.8
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22
13 13 33 311 1

2 2
1 3 1 3

uu 0, 0
x x t x x t

∂σ ∂σ ∂σ ∂∂σ ∂
+ −ρ = + −ρ =

∂ ∂ ∂ ∂ ∂ ∂
 ( )3.9

The displacement components associated with the lamb waves can be expressed in the form: 

( )1 3i kx t xu A e , 1,3−ω +η
α α= α =  ( )3.10

whereη is a function of ωand c, and Aα are constants.  

Inserting equation (3.10) into equation (3.8), 

( ) ( )

( ) ( )

( ) ( )

1 3

1 3

1 3

i kx t x
11 11 1 13 3

i kx t x
13 44 1 3

i kx t x
33 13 1 33 3

ikc A c A e

c A ikA e

ikc A c A e

−ω +η

−ω +η

−ω +η

σ = + η

σ = η +

σ = +η

 

 

( )3.11

Substituting from equation (3.11) into the equations of motion (3.9) leads to the linear system: 

( ) ( )
( ) ( )

2 2 2
44 11 13 44 1

2 2 2
313 44 33 44

c k c ik c c A 0
A 0ik c c c k c

⎡ ⎤η +ρω − η + ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥η + η +ρω − ⎩ ⎭⎩ ⎭⎣ ⎦

 

( )3.12

For nontrivial solution of equation (3.12) for A1 and A3, ηmust satisfy the equation  

( )( ) ( )22 2 2 2 2 2 2 2
44 11 33 44 13 44c k c c k c k c c 0η +ρω − η +ρω − + η + =  

which can be expressed in the form 

( )13

22 2 2 2
11 33 13 444 2 2 4 11

33 44 33 44 44 33 33

c c c 2c c cc c c ck k 1 0
c c c c c c c

⎧ ⎫− − ⎛ ⎞⎛ ⎞ρ ρ ρ ρ⎪ ⎪η +η + − + − − =⎨ ⎬ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

 
( )3.13
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Thus 

( )13

3L 3T 3T 3L

2

1.2

22 2 2 2
11 33 13 44 11

2 2 2 2
33 44 33

33 44
3L 3T

A A 4Bk
2

where

c c c 2c c cc c c cA , B 1
c c c c c c c

c cc and c

− ± −
η =

− − ⎛ ⎞⎛ ⎞
= + − = − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= =
ρ ρ

 

From equation (3.12), the constants A1 and A2 are related through 

( )
2 2 2

3 11 44

1 13 44

A k c c
A ik c c

−ρω −η
=

η +
 

( )3.14

2 2
11 33 1 44 2 13 13 44 11

For the isotropic case
c c 2 c ,  c c ,  c ,  c 2c c= = λ + μ = ρ = μ = ρ = λ + =

 

and the expressions for 1 2 and η η reduce equation (3.2) 

 

3.2.1 Dispersion Relation for the Symmetric Case: 
 
The general solution for the symmetric problem can be expressed in the form   

( ) ( )

( ) ( )

1

1

ikx
1 1 3 1 1 3 2 2 3

ikx
3 1 3 1 1 3 2 2 3

u x , x a cosh x a cosh x e

u x , x b sinh x b sinh x e

= η + η

= η + η
 

 

( )3.15

where ai and bi are constants to be determined from the boundary conditions.   

 

 

 

 



27

From equation (3.14) 

( )

( )

2 2 2
1 11 1 44

1
1 1 13 44

2 2 2
2 11 2 44

2
2 2 13 44

b k c c
a ik c c

b k c c
a ik c c

−ρω −η
= = β

η +

−ρω −η
= = β

η +

 

 

 

( )3.16

equations (3.8), (3.15) and (3.16) yield the stress components, 

[ ]

( ) ( )
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c c c c
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⎡ ⎤⎛ ⎞ ⎛ ⎞−ρω −η −ρω −η
= η + η + η + η⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟η + η +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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Similarly 
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The boundary conditions that must be satisfied are 13 33 30 at x Hσ = σ = = , which lead to, 

1

2

aP Q 0
aR S 0
⎧ ⎫⎡ ⎤ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭⎩ ⎭
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where,

c k cP sinh H
c c

c k cQ sinh H
c c

k c c c c c k c c
R cosh H

ik c c

k c c c c c k c c
S cos

ik c c

⎛ ⎞η + −ρω
= η⎜ ⎟⎜ ⎟η +⎝ ⎠

⎛ ⎞η + −ρω
= η⎜ ⎟⎜ ⎟η +⎝ ⎠

⎡ ⎤− + −η + −ρω⎣ ⎦= η
+

⎡ ⎤− + −η + −ρω⎣ ⎦=
+ 2h Hη

 

For nontrivial solution of equation (3.19) for a1 and a2 the phase velocity andωmust satisfy the 

transcendental equation. 
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( )13
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As 0,  the equation reduces to:

c A a b c c A c A a b c c A 0

where

ca c 1 ,  b c c c ac
c

After simplification, this leads to

bc ac c A A 0

Thus,

bc ac c 0,  c c 1
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This reduces to the correct value of c c for the isotropic case equation 3.5 :

cc 2c 1
c

Another solution is given by
A A 0,A 4B 0
which does not have real roots.
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In the isotropic case:

cc c 2 c ,  c c ,  c ,  c 2c c ,c c

cA 1
k c A

AcA 1
k c

It can be shown that equation (3.20) becomes:

sinh kA H cosh kA H
sinh kA

= = λ + μ = ρ = μ = ρ = λ + = = =
ρ

⎫η
= = − ⎪

⎪ η⎪⇒ =⎬ η⎪η
= = − ⎪

⎪⎭

( )( )
( ) ( )22 2 2 22 2

2 21 2
2 2 2

2 1 2 1 1 2

2k k 2k k2k k
H cosh kA H 2 2k 4 k

− −⎛ ⎞ ⎛ ⎞η −
= =⎜ ⎟ ⎜ ⎟η η η η⎝ ⎠⎝ ⎠

 

This is same as equation (3.4) for the isotropic case, confirming the accuracy of equation (3.20) 

Equation (3.20) is a transcendental equation which must be solved numerically. The equation has 

multiple roots corresponding to different modes of the lamb waves. In order to obtain correct 

numerical solution it is necessary to identify the cutoff frequencies at which the higher modes 

appear. As in the isotropic case, the cutoff frequencies are obtained in the limiting case. Thus 

as c →∞ , D 0→ and 2 1sinh(kA H)cosh(kA H) 0→ . This agrees with the equation for the cutoff 

frequencies in the symmetric case.  

 

3.2.2 Dispersion Relation for the Anti-symmetric Case: 
 
The general solution for anti-symmetric problem can be expressed in the form: 

( ) ( )

( ) ( )

1

1

ikx
1 1 3 1 1 3 2 2 3

ikx
3 1 3 1 1 3 2 2 3

u x , x a sinh x a sinh x e

u x , x b cosh x b cosh x e

= η + η

= η + η
 

( )3.22

Using a procedure similar to the symmetric case, the dispersion equation can be formed as, 
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 The solution of the dispersion equations for transversely isotropic case for both 

symmetric and anti-symmetric cases are presented in Figure 3-5, where the values of c are 

obtained numerically for a given range of frequencies. The material used is for a 1.78 mm thick 

2/2 twill carbon fiber composite plate with properties given in Table 2-3. The five independent 

stiffness constants of the material are c11, c12, c33, c13 and c44. These are related to constants 

E11=E22=E1, E33=E3, ν12, ν31= ν32, G23=G13 through 

1 32 23
11

12 12 32 23

E (1 )c
(1 )(1 2 )

−ν ν
=

+ ν −ν − ν ν
, 2 12 32 23

12
12 12 32 23

E ( )c
(1 )(1 2 )

ν + ν ν
=

+ ν −ν − ν ν
, 3 12

33
12 32 23

E (1 )c
(1 2 )

−ν
=

−ν − ν ν
, 

23 3
13

12 32 23

Ec
(1 2 )

ν
=

−ν − ν ν
, 55 13c G=  

( Note: G12=E1/[2(1+ ν 12)] and  ν 13= ν 23=E2υ32/E3) 

The stiffness constants are given in Table 3-1. 

 

Table 3-1: Stiffness constants of the woven composite plate. 

( ) ( ) ( ) ( ) ( )
33 1311 12 44c cc c c

GPa GPa GPaGPa GPa
45.37 15.83 9.42 4.69 2.94
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Figure 3-5: Dispersion curve for Lamb wave velocity in composite plate. 

 

3.3 Experimental Approach to Determine Lamb Wave Group Velocity in the 
Composite Face Sheet 
 

 In this section Lamb wave velocity in the composite face plate is measured 

experimentally and compared with their theoretical values as additional check on the estimates of 

the elastic constants. The general experimental setup used for the tests is shown in Figure 3-6. 

Several broadband transducers (B1025, Digital Wave) with flat response in the range (100 kHz 

to 1 MHz) are placed precisely on the composite surface with the aid of a plexiglass faces sheet 

with an array of holes drilled with an accuracy of 0.1mm in position. The diameter of the holes is 

equal to that of the transducers.  The plexiglass sheet is attached to the surface of the specimen 

with marking tapes and it helps in repeating experiments with identical transducer locations. 
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Thus only two transducers are needed to obtain data from an array of transducers with prescribed 

positions. The transmission of ultrasound is aided by the application of an ultrasonic gel couplant 

(Sonotech).  Several identical broadband PZT transducers (Digital Wave B1025) are used as 

transmitters and receivers of the waves. A 5-cycle sinusoidal tone burst enclosed in a Hanning 

window in the range frequency between 100-350 kHz were generated by an arbitrary waveform 

generator (Stanford Research Systems) and applied to the PZT actuator. The input source has the 

following form: 

( ) ( )1 2 ftP t 1 cos sin 2 ft
2 5
⎡ π ⎤⎛ ⎞= − π⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 ( )3.24

where f is the central frequency. A four channel signal conditioner (Digital Wave Corp., Model 

FM-1) is used to boost and filter the signals in all experiments. The ultrasonic signal is digitized 

and recorded directly in a four-channel digital oscilloscope with 100 MHz sampling rate 

(54624A, Agilent Technologies).  
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Figure 3-6: Experimental setup for ultrasonic NDE 
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In order to determine the velocity of the waves, the signals are recorded at distances of 2-

10 inches (50.8-254 mm) from the source on the test sample. Since the Lamb waves are 

dispersive, the direct time-of-flight measurements to calculate the phase velocity would produce 

error in the results. Thus the dispersive signals need to be subjected to a short time Fourier 

transform (e.g., Wavelet transform) to determine the group velocity of the waves. To this end the 

digital signals are processed using an AGU-Vallen Wavelet [42-44] program which performs 

their wavelet transforms. The wavelet transformation decomposes each signal into frequency 

bands, and resolution. The received signals and the contour plots of their wavelet transforms are 

obtained as shown in Figures 3-7 and 3-8.  
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Figure 3-7: Experimentally obtained signals at 2 through 6 inches (50.8 mm – 152.4 mm) and 
corresponding contour plot of the wavelet transform of the composite face sheet 
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Time-Voltage Plot (7 inches)
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Figure 3-8: Same as Figure 3-7 at 7 through 10 inches (177.8 mm - 254 mm) 
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From the contour plots the time of arrival of the wave groups at 100 kHz frequency are obtained, 

and plotted as shown in Figure 3-9. The group velocity at this particular frequency can be 

calculated by measuring the slope of the line, which in this case is 1.5507 mm/µs. The group 

velocities at various frequencies using the above approach are presented in Table 3-2. 
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Figure 3-9: Time location plot for 100 kHz input central frequency 

 

Table 3-2: Group velocities at various frequencies in the 1-2 plane of the composite plate 
obtained experimentally 

Frequency 
(MHz) 

Group Velocity 
(A0 mode) 

 (m/s) 

Group Velocity 
(S0 mode) 

 (m/s) 
0.100 1550.7 - 
0.125 1569.4 - 
0.150 1564.6 - 
0.175 1550.7 - 
0.200 1556.7 - 
0.225 1547.9 - 
0.250 1526.1 - 
0.300 - 5868.2 
0.325 - 5644.4 
0.350 - 5644.4 
0.425 - 5976.5 
0.450 - 5969.5 
0.475 - 5976.5 
0.500 - 5644.4 
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The theoretical group velocity can be obtained from the following relation 

g
cc
c1 k

=
∂⎛ ⎞−⎜ ⎟∂ω⎝ ⎠

 ( )3.25

where c is phase velocity given in Figure 3-4, ω is the circular frequency, k=ω/c, and c∂
∂ω

is 

obtained by numerical differentiation of the phase velocity curves in Figure 3-5. Both theoretical 

and experimental group velocities are presented in Figure 3-10. It can be seen that the 

experimental values agree very well with their theoretical values using the material properties 

given in Table 2-3, providing additional check on the accuracy of the estimated properties. 
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Figure 3-10: Dispersion curve for Lamb wave group velocity in composite plate. 
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3.4 Verification of Transverse Isotropy of the Composite Panel 

 In this section, the assumption of the transverse isotropy of the composite plate is verified 

by measuring Lamb wave group velocity in different directions on the symmetry plane. The 

measured velocities in different directions using the experimental set up of Figure 3-6 are 

presented in Table 3-3. It can be seen that velocity is independent of the direction of propagation, 

confirming the assumption of transverse isotropy of the woven composite plate. 

 

Table 3-3: Group velocity for different angles of propagation in the 1-2 plane of the composite 
plate 

Group Velocity (A0 mode only) (m/s) Frequency 
(MHz) 0° 90° 45° 
0.100 1550.7 1539.4 1528.6 
0.150 1569.4 1516.4 1578.9 
0.200 1564.6 1494.1 1596.5 
0.250 1550.7 1563.1 1545.0 
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Figure 3-11: Directionality test for composite panel 
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3.5 Attenuation in the Composite Panel 

Attenuation is the loss of signal strength over its propagation distance.  This is an 

important factor when designing a damage-monitoring system, as it will determine how to 

maximize inspection area with a minimum number of measurements. 

 For the input source given in equation (3-25) with 100 kHz central frequency, the peak 

amplitude of the received time-voltage signals (see Figure 3-7) at locations 50.8 mm through 

228.6 mm from the source location is measured. A clear signal is obtained at a distance 254 mm 

from the source location, but the signal strength would likely be inadequate for measurements 

further away from the source. Figure 3-12 shows the peak signal amplitude at distances 50.8 mm 

through 228.6 mm.  
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Figure 3-12: Peak voltage with source-receiver distance, indicating ultrasound propagation loss 
(at 100 kHz). 

  

 The amplitude was found to attenuate with distance r as 1/r, which is typical of 

geometrical (cylindrical) spreading. Based on these measurements, an inspection range of 228.6 

mm can be obtained using a single piezoelectric source transducer (B1025, Digital Wave) at a 
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drive voltage of 2V. It should be noted, however, the range can be increased at higher driving 

voltage. 

 

3.6 Lamb Wave Group Velocity in a Honeycomb Composite Structure using 
Experimental Approach 
  

 The honeycomb composite plate consists of a 0.5in. thick aluminum honeycomb core 

sandwiched between two 0.075in. thick 2/2 twill carbon fiber composite face sheets (Figure 3-

13). The velocity of guided Lamb type waves in this three-layered medium can be obtained from 

its theoretical model using the global matrix developed in [18]. The experimental procedure 

described in the previous section is used to determine the group velocity of the waves. As in the 

composite skin discussed in section 3.3 the time-voltage ultrasonic signals were recorded at 9 

locations at a distances of 2-10 inches (50.8mm – 254 mm) from the source on the surface of the 

honeycomb composite structure. The received signals at locations 2-10 inches (50.8mm – 254 

mm) from the source given in equation (3.25) and their corresponding contour plots of the 

wavelet transforms for the received signals are shown in Figure 3-14 and 3-15. 

Composite Panel

Aluminum 
Honeycomb  
(a) 

 

 

1.78 mm
12.7 mm
1.78 mm

#1: Graphite Woven 
Composite Skin

#2: Aluminum 
Honeycomb  

(b) 

 

Figure 3-13: (a) 2/2 Twill Woven Carbon Fiber Composite Panel and Aluminum Honeycomb 
Sandwich Structure, (b) Test specimen dimension. 
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Figure 3-14: Experimentally obtained signals at 2 through 6 inches (50.8 mm – 152.4 mm) and 
corresponding contour plot of the wavelet transform of the sandwich structure 
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Time-Voltage Plot (7 inches)

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500
Time (µs)

V
ol

ta
ge

 (V
)
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Figure 3-15: Same as Figure 3-14 at 7 through 10 inches (177.8 mm - 254 mm) 
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Using the same procedure as in previous section the travel time of the wave groups at 100 

kHz is shown in Figure 3-14 and the group velocity as a function of frequency is plotted in 

Figure 3-15. 
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Figure 3-16: Time location plot for 100 kHz input central frequency 

 
 
Group velocities at various frequencies using the above approach are presented in Table 3-4 and 
plotted in Figure 3-17. 
 

Table 3-4: Group velocities at various frequencies in the 1-2 plane of the sandwich structure 
obtained experimentally 

Frequency 
(MHz) 

Group Velocity 
(A0 mode) 

 (m/s) 
0.075 1195.8 
0.100 1409.1 
0.125 1448.2 
0.150 1443.6 
0.175 1429 
0.200 1430.1 
0.250 1422.1 
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Figure 3-17: Dispersion curve for Lamb wave group velocity in Honeycomb Composite 
Sandwich Structure. 

 

These results will be compared with those obtained for a numerical simulation in the next section. 

3.7 Lamb Wave Group Velocity in a Honeycomb Composite Structure Using 
Numerical Simulation 
  

 A finite element simulation is carried out to determine the characteristics of Lamb waves 

in a plane-strain model of the sandwich plate. The honeycomb core and composite panel are 

modeled separately and then assembled together using surface-based tie constrains to connect the 

nodes at the interface. This constrains ties the two regions together and thus there is no relative 

motion between them at the interface. The 2-D plane strain finite element model contains 

405,000 CPE4R elements (ABAQUS, 4-node bilinear plane strain quadrilateral, with reduced 

integration, hourglass control) with 420,084 nodes. The mesh density that is used for the 
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sandwich structure includes at least 10 elemental nodes within the wavelength of each Lamb 

wave mode. The effective material properties for both the composite panel and honeycomb core 

used in the simulation are given in Tables 2-3 and 2-5. Both the displacements and rotations are 

assumed to vanish at the right and the left ends of the model. Guided wave propagation is 

activated in the sandwich structure using the source given in equation (3.24) with various central 

frequencies. Figures 3-18 and 3-19 show the schematic of the finite element model for both 

symmetric and anti-symmetric cases with appropriate boundary conditions, the applied vertical 

loads and the receiver locations. The red spots represent the source locations and blue spots 

represent the receiver locations. The dynamic simulation was accomplished using the 

ABAQUS/EXPLICIT® [45] code. The vertical displacement on the surface of the plate were 

calculated at the locations R2, R3, R4, R5, R6, R7, R8, R9 and R10. The time-displacement data 

were calculated at 9 locations at a distance of 2 - 10 inches (50.8 mm – 254 mm) from the source 

on the surface of honeycomb composite sandwich structure. The time-displacement data were 

then downloaded directly to a personal computer for post processing in AGU-Vallen Wavelet 

[42-44] program. The received time-displacement data for anti-symmetric case at locations 2-10 

inches (50.8mm – 254 mm) from the source and the corresponding contour plots of the wavelet 

transforms for the received signals are shown in Figures 3-21 and 3-22. 
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Figure 3-18: Schematic of the 2-D finite element model for the symmetric case with applied 
vertical source and receiver positions. 

 

Figure 3-19: Same as Figure 3-15 for the anti-symmetric case 
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Figure 3-20: A narrow band pulse - central frequency 100 kHz in (a) Time domain (left) (b) 
Frequency Domain (right) 
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Figure 3-21: Numerically obtained signals at 2 through 6 inches (50.8 mm – 152.4 mm) and 
corresponding contour plot of the wavelet transform of the sandwich structure 



49

Response at 7 inches (177.8 mm) from source location

-1.00

-0.50

0.00

0.50

1.00

0 50 100 150 200 250 300
Time (μs)

V
er

tic
al

 D
is

pl
ac

em
en

t
(N

or
m

al
iz

ed
)

Abaqus
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Response at 9 inches (228.6 mm) from source location

-1.00

-0.50

0.00

0.50

1.00

0 50 100 150 200 250 300
Time (μs)

V
er

tic
al

 D
is

pl
ac

em
en

t
(N

or
m

al
iz

ed
)

Abaqus
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Figure 3-22: Same as Figure 3-21 at 7 through 10 inches (177.8 mm – 254 mm) 

 
 
 
 
 
 
 
 
 



50

    Again the travel time of the wave groups at 100 kHz is shown in Figure 3-20. The group 

velocity as a function of frequency is plotted in Figure 3-24 together with the experimental 

values obtained in the previous section. The two results agree quite well, indicating the accuracy 

of the material model. 
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Figure 3-23: Time location plot for 100 kHz input central frequency 

 

Table 3-5: Group velocities at various frequencies in the 1-2 plane of the sandwich structure 
obtained using numerical simulation 

Frequency 
(MHz) 

Group Velocity 
(A0 mode) 

(m/s) 

Group Velocity 
(S0 mode) 

(m/s) 
0.05 1323.2  ----- 
0.075 1425.3  ----- 
0.100 1475.7 1177 
0.125 1501.8 1342.4 
0.150 1512.3 1404.3 
0.175 1514.5 1448.3 
0.200 1512.6 1466.1 
0.250 1500.7 1486.5 
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Figure 3-24: Dispersion curve for Lamb wave group velocity in Honeycomb Composite 
Sandwich Structure. 

 

3.8 Verification of Transverse Isotropy of the Sandwich Panel 

 As section 3.4 the assumption of the transverse isotropy of the sandwich panel is verified 

by measuring the Lamb wave group velocity in different directions on the symmetry plane. The 

measured velocities are presented in Table 3-6 and plotted in Figure 3-25. The velocity is nearly 

independent of the propagation direction confirming the assumption of transverse isotropy. 

 

Table 3-6: Group velocity for different angles of propagation in the 1-2 plane of the sandwich 
structure 

Group Velocity (A0 mode only) (m/s) Frequency 
(MHz) 0° 90° 45° 
0.100 1409.1 1328.1 1330.4 
0.150 1443.6 1411.1 1367.8 
0.200 1430.1 1430.9 1381.4 
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Figure 3-25: Measured Lamb wave group velocity in the 1-2 plane for the sandwich structure 
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3.9 Attenuation in the Sandwich Plate 

The peak amplitude of the measured signal as a function of the source-receiver distance is 

plotted in Figure 3-26. Again the amplitude was found to attenuate with distance r as 1/r, which 

is typical of geometrical (cylindrical) spreading. Based on these measurements, an inspection 

range of 228.6 mm can be obtained using a single piezoelectric source transducer (B1025, 

Digital Wave) at a drive voltage of 2V. 
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Figure 3-26: Piezoelectric transducer peak voltage with reference to source-receiver distance, 
indicating ultrasound propagation loss (at 100 kHz). 
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Chapter 4 DAMAGE DETECTION IN A COMPOSITE PANEL 
USING GUIDED WAVES 

In this chapter, the problem of detection of damage due to impact on the composite face 

sheet using ultrasonic Lamb waves is considered. An improved ultrasonic test setup consisting of 

a distributed, high fidelity and broad band sensor array is used to determine changes in the 

dynamical properties of the composite face sheet resulting from the appearance of the impact 

damage. A damage index comparing the measured dynamical response of two successive states 

of the structure is introduced as a determinant of structural damage. The method relies on the fact 

that the dynamical properties of a structure change with the presence of damage. The value of the 

index at a given sensor increases with its proximity to the damage. A sensitivity analysis is 

carried out in an effort to determine a threshold value of the index below which no reliable 

information about the state of health of the structure can be estimated. It is shown that the 

automated procedure is able to identify damage from its appearance, with a high degree of 

confidence. 

Damage identification using the wave propagation approach requires a good 

understanding of the properties of the various types of waves that can be transmitted in the 

structure in presence or absence of damage. In thin-walled structures, the predominant waves are 

Lamb waves that can propagate to relatively large distances from the source. The propagation 

characteristics of these waves in the composite face sheet used in this study are described in 

Chapter 3. The specific characteristics of waves in a face sheet when they are generated by 

surface mounted ultrasonic sources requires the solution of a more complex problem involving 

boundary loads. Similar problems involving dynamic surface loads on multilayered composite 

laminates have been solved [18-27], the symmetry axis in these problems has been assumed to be 

parallel to the laminate surface. The solution of the present problem where the symmetry axis is 
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normal to the plate surface does not seem to be available in the literature. In this section the 

response of the woven composite face sheet to a dynamic surface line load is calculated by 

means of numerical (Finite Element) method. The calculated waveforms are compared with 

those obtained from ultrasonic experiments using the test set up described in section 3.3 for their 

mutual validation.  

 

4.1 A plane strain Finite Element Modeling of Lamb Wave Propagation in the 
Woven Composite plate 
 
 The Finite element method offers several advantages over analytical and experimental 

methods. The powerful software packages that are available today offer flexibility with regards 

to model complexity and analysis that cannot be easily achieved with experimental or analytical 

methods. There are a number of commercially available software packages that perform 

modeling and finite element analysis. Of the software packages that were available to us, 

ABAQUS offered an explicit-dynamic modeling capability that we needed for this particular 

case. A dynamic finite element simulation was conducted to evaluate the wave propagation 

characteristics in the composite plate. The 2-D plane strain finite element model of the composite 

plate contained CPE4R elements (ABAQUS, 4-node bilinear plane strain quadrilateral, with 

reduced integration, hourglass control) with 50010 nodes. The mesh density that was used for the 

composite plate included at least 10 elemental nodes within the wavelength of the Lamb wave 

modes. The material properties used in the simulation are given in Table 2-3. 

 Figure 4-1 shows the schematic of the 2-D model with applied vertical load and receiver 

locations; the red spots represent the source and blue spots represent the receivers. 
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Figure 4-1: Schematic of the 2-D model with applied vertical source and receiver positions. 

 

4.2 Lamb Wave Propagation in Transverse Isotropic plate due to Modified 
Input Source 
 
 The input source from the function generator used in the experiment given in equation (3-

24), is plotted in Figure 4.2a for a central frequency of 100 kHz. However this source is modified 

by various components of the test set up before it is transmitted as a force on the specimen. 
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Figure 4-2: A narrow band pulse - central frequency 100 kHz in (a) Time domain (left) (b) 
Frequency Domain (right) 
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In the frequency domain the modified input source signal is calculated from equation (4.1). 

( ) ( )
( ) ( )exp

mod
Th

V
F F

U
ω

ω = × ω
ω

 ( )4.1

where Vexp(ω) is the received signal at a given location on the composite panel obtained 

experimentally and UTh(ω) is the received signal at the same location for a source F(ω) in the 

FEA model. Once Fmod(ω) is obtained, it is inverted in the time domain to determine modified 

input force for the FEM model that can be compared with experimental data. An example of 

such a modified signal is shown in Figure 4-3. 
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Figure 4-3: (a) Signal used in the experiment (left) 

 (b) Modified signal for input in the FE model (right) 

 

The Experimental and FEA responses at receiver locations due to modified five-cycle sine pulse 

at 100 kHz central frequency are shown in Figure 4-4. 
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Response at 4 inches (101.6 mm) from source location
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Response at 6 inches (152.4 mm) from source location
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Response at 3 inches (76.2 mm) from source location
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Response at 5 inches (127 mm) from source location
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Response at 7 inches (177.8 mm) from source location
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Response at 8 inches (203.2 mm) from source location
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Figure 4-4: Experimentally and numerically obtained signals at 2-8 inches (50.8 mm - 203.2 
mm) in the composite face sheet 
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4.3 Structural Health Monitoring (SHM) Using Guided Wave Data 

The research in this chapter is directed toward developing a reliable method for detecting 

and characterizing existing and emerging defects in critical structural components (plates) before 

they grow to a critical size and compromise the safety and integrity of the structure. The damage 

may be due to foreign object impact on the surface or internal delamination. An improved 

ultrasonic test setup consisting of distributed, high fidelity sensor arrays is used to determine 

changes in the dynamical properties of the composite face sheet with the appearance of impact 

damage. A damage index, comparing the measured dynamical response of two successive states 

of the structure is introduced as a determinant of structural damage. The method relies on the fact 

that the dynamical properties of a structure change with the initiation of impact damage. The 

value of the index at a given sensor increases with the proximity of the impact damage to the 

sensor. A sensitivity analysis has been carried out in an effort to determine a threshold value of 

the index below which no reliable information about the state of health of the structure can be 

estimated. It is shown that the automated procedure is able to identify an impact damage right 

from its appearance, with high degree of confidence. 

 

Experimental Setup 

The general experimental setup used for the test cases is shown in Figure 3-6 and discussed in 

section 3.3. A five-cycle sinusoidal tone bursts enclosed in a Hanning window with frequency 

200 kHz (Figure 4-5) was generated by an arbitrary waveform generator (Stanford Research 

Systems). 
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Figure 4-5: A narrow band pulse - central frequency 200 kHz in (a) Time domain (left) (b) 
Frequency Domain (right) 

 

Damage Index 

 A 2/2 twill woven carbon fibre composite panel of thickness 1.78 mm was taken and 

impacted at particular location. First a baseline ultrasonic response data (time-voltage) was 

created for the undamaged specimen. Figure 4-6 shows the distribution of transmitter and 

receiver sensors on the composite panel. The red spots represent source locations whereas the 

blue spots represent the receiver locations. The specimen was impacted once from given height 

and weight (Table 4-1) at a particular location as shown in Figure 4-6. After the panel was 

impacted time-voltage data are collected exact way as the base line data.  For statistical analysis, 

five sets of data are taken for each case by three different operators. 
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Figure 4-6: Source is fixed at S1 through S4 and receiver is moved along their respective row 

 

Table 4-1: Impact height, weight, velocity and energy. 

( )Height (m) Weight (kg) Impact Velocity m s Impact Energy (Joule)
0.18 5.1 1.88 9.0

 

 

In both pre and post-damage cases, the signals are recorded in the time domain and then 

transformed into the frequency domain by fast-Fourier transform (FFT). The damage index DI 

[5] at the i th sensor location is defined as follows: 

( )
{ } { }
{ } { }

T
i ipost-damage post-damage

Ti
i ipre-damage pre-damage

F * F
DI = 1-

F * F
 

( )4.2

where, F is the frequency domain response vector of the signal, whose elements are calculated in 

the frequency range of interest. 

 Damage produced by the impact modifies the elastic waves propagating between the 

source and the receivers.  Thus the pre-damage and post-damage signals at some control points 

differ in their properties. Complete pre- and post time-voltage signals at all the control points for 

one specific trial and the corresponding FFT plots for the received signals are shown in Figure 4-

7 through Figure 4-10. A careful model based analysis of the signals can in principle be used to 
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determine the nature, location and severity of the damage. However, the damage caused by the 

impact is extremely complex, and the solution of even the direct problem of wave interaction 

with the damaged region in this complex structure is extremely difficult if not impossible. The 

damage index approach offers a more pragmatic approach for approximately locating and 

characterizing the damage. It can be seen from Figures 4-8 that the influence is most pronounced 

at locations S2R2 and S2R3 due to the transmission of the waves through the damaged area. The 

index is calculated using the square of the measured voltage as the response parameter in 

equation (4.2) at 12 control points in the frequency range of 0 - 0.4 MHz and are plotted in 

Figure 4-11.  

 

 
Time-Voltage plot at S1R1 

 
FFT plot at S1R1 

 
Time-Voltage plot at S1R2 

 
FFT plot at S1R2 

 
Time-Voltage plot at S1R3 

 
FFT plot at S1R3 

Figure 4-7: Undamaged and damaged signals in a composite face sheet at locations S1R1, S1R2, 
and S1R3 and their corresponding FFT plots 
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Time-Voltage plot at S2R1 

 
FFT plot at S2R1 

 
Time-Voltage plot at S2R2 

 
FFT plot at S2R2 

 
Time-Voltage plot at S2R3 

 
FFT plot at S2R3 

 

Figure 4-8: Same as Figure 4-7 at locations S2R1, S2R2, and S2R3 
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Time-Voltage plot at S2R1 

 
FFT plot at S2R1 

 
Time-Voltage plot at S2R2 

 
FFT plot at S2R2 

 
Time-Voltage plot at S2R3 

 
FFT plot at S2R3 

 

Figure 4-9: Same as Figure 4-7 at locations S3R1, S3R2, and S3R3 
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Time-Voltage plot at S4R1 

 
FFT plot at S4R1 

 
Time-Voltage plot at S4R2 

 
FFT plot at S4R2 

 
Time-Voltage plot at S4R3 

 
FFT plot at S4R3 

 

Figure 4-10: Same as Figure 4-7 at locations S4R1, S4R2, and S4R3 
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Figure 4-11:  Damage Index at the receiver location for a single trial 

 

Statistical Analysis 

Experimental measurements can be affected by different operators, random errors or 

environmental noise that could affect damage detection, as their influence may lead to positive 

DI values. In order to correlate statistically the DI values to the presence of damage with a 

certain confidence level, a number (M) of frequency response functions (FRFs) are acquired in 

the "starting configuration" (without any structural damage, i.e. the baseline). One of these has 

been adopted as the reference and DI in equations (4.2) have been evaluated for the remaining 

M-1. Then, after damage occurs M FRFs related to the "damaged configuration" are acquired 

and the DI values are calculated using the FRF acquired in the healthy configuration. In the 

following tests M = 5 has been fixed and consequently 4 DIs have been obtained for the healthy 

configuration and 5 DIs for the damaged configuration. A coupled Student's Test has been 



67

applied in order to verify that these "samples sets" belonged to different structural configurations 

with a confidence level of 99.5%. If the experimentally evaluated statistic t, defined in equation 

(4.3) below, is higher than the value obtained from the Student’s distribution, then it is possible 

to assert that, with the chosen confidence level, the two data sets can be statistically associated 

with two different physical conditions (healthy and damaged), and consequently, the difference 

between the means of the sets is not casual. The statistic t is defined as follows: 

1 2x x
t

A B
−

=
⋅

 ( )4.3

where, 

( ) ( )
[ ]

2 2
1 1 2 21 2

1 2 1 2

n 1 n 1n nA ,B
n n n n 2

⎡ ⎤− ⋅σ + − ⋅σ+ ⎣ ⎦= =
⋅ + −

( )4.4

In the equations (4.3) and (4.4) 1x  and 2x  are the means of the two sets of DIs related to the 

healthy and damaged configurations, 1σ  and 2σ  are their standard deviations and 1n  and 2n are 

the number of samples for the two sets. The number of "degrees of freedom," ν  of the T-test is 

function of 1n  and 2n  ( 1 2n n 2ν = + − ) and is related to the "confidence level" of each test. If 

1n 4=  and 2n 5= , then 8ν = , and for a confidence level of 0.995, 0.995t 3.355= . This means that 

if the t value calculated from equations (4.3) and (4.4) is greater than 3.355, then the difference 

between the means of the compared data sets is not casual but it is due to a structural 

disturbance. By using the proposed approach, it has been possible to identify very small damages 

with a high reliability level, and is shown in Figure 4-12. 

 



68

0.94

4.61

1.48 2.171.07

7.75

2.09 2.741.38

0.91
2.68

2.84

0
2

4

6

8

t

S1
S2

S3
S4

 

Figure 4-12: Statistic t evaluated for the damage index formulation (equation 4.3). 
 

The damage index approach presented here can be used for detection and, under certain 

conditions, characterization of degradation in aircraft, aerospace and civil structures. It is clearly 

demonstrated that the damage indices are pronounced for the sensors located closer to the impact 

location. It should be noted that the method proposed here has a number of limitations. These 

include the inability for accurate localization and detailed characterization of the damage. Some 

of the limitations may be addressed through further research. In spite of these limitations, the 

present study clearly illustrates the potential effectiveness of the “damage-index” to predict the 

approximate location and severity of the impact. In addition, the effect of random noise and 

different operators was studied using a t-distribution.  It is determined beyond a 99.5% 

confidence level that the higher damage indices near the impact were due to local changes in the 

FRFs. 
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Chapter 5 DAMAGE DETECTION IN A THICK ALUMINUM 
PLATE USING GUIDED WAVES 

 Due to the complexity of the honeycomb composite sandwich structure, a much simpler 

structure, namely, a thick aluminum plate is analyzed first to analyze the guided waves with and 

without damage. Guided wave propagation in the plate is investigated both numerically (finite 

element analysis) and experimentally. In the experiments, the elastic waves are generated by a 

broadband PZT transducer located on the plate surface and recorded by an identical transducer 

placed at different locations on the surface of the plate as well. The simulations are carried out 

using the finite element code ABAQUS for a two dimensional model of the problem to 

understand these features and to predict other expected features of the interaction process. 

 

5.1 Guided Wave Propagation in a Thick Aluminum Plate 

In this section the response of the thick aluminum plate to a dynamic load is calculated by 

means of the numerical (Finite Element) method. The aluminum plate considered here is a 12x12 

inch (304.8x304.8 mm) squared plate with a thickness of 10 mm. The calculated waveforms are 

compared with those obtained from ultrasonic experiments using the test set up described in 

section 3.3 

The general experimental setup used for the tests is shown in Figure 5-1 and described in 

section 3.3. 
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Figure 5-1: Experimental setup for ultrasonic NDE 

 

Response data was created for the undamaged specimen. Figure 5-2 shows the 

distribution of transmitter and receiver sensors on the aluminium plate in the experiment. The red 

spot represents source location whereas the blue spots represent receiver location.  

 

Figure 5-2: Source is fixed at S and receiver is moved from R1 to R6 
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 A finite element simulation is carried out to determine the characteristics of guided waves 

in a plane-stress model of a 12x12 inch (304.8x304.8 mm) aluminum plate. The 12x12 inch 

(304.8x304.8 mm) plate was composed of a 1.78 mm thin plate and 303.03 mm thick plate. Both 

the plates were modeled separately and then assembled together. Surface-based tie constrains is 

used to connect the nodes at the interface. The 2-D plane stress finite element model of the 

aluminum plate contains 140,762 CPS4R elements (ABAQUS, 4-node bilinear plane stress 

quadrilateral, with reduced integration, hourglass control) and 663 CPS3 elements (ABAQUS, 3-

node linear plane stress triangle) with 143,904 nodes. Modulus of elasticity (E) of 70.5 GPa, 

Poisson ratio (ν) of 0.33, and density (ρ) of 2800 kg/m3 were used for both the plates. The model 

was supported to simulate the same boundary conditions as existed in the experiments. Both the 

displacement and rotation were fixed to zero at the bottom edge of the plate. As indicated earlier, 

the forcing function used in the FEA was the modified source incorporating the system response 

(Figure 5-4). Figure 5-3 shows the schematic of the 2-D model with appropriate boundary 

conditions, applied vertical source and receiver locations; red spot represents source locations 

and blue spots represent receiver locations. Vertical displacement on the surface of the plate 

were recorded at locations R1, R2, R3, R4, R5 and R6.  
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Figure 5-3: 2-D plane stress finite element model with applied vertical source and receiver 

positions. 
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Figure 5-4: A narrow band pulse - central frequency 200 kHz (a) Actual Signal (left) 

 (b) Modified Signal (right) 
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Time-Amplitude plot at R2
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Time-Amplitude plot at R3
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Figure 5-5: Experimentally and numerically obtained signals at 1-6 inches (25.4 mm - 152.4 

mm) in the thick aluminum plate. 
 

From Figure 5-5, it is evident that the results obtained from finite element simulation agrees very 

well with those obtained in the experiment. 
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5.2 Guided Wave Propagation in a Thick Aluminum Plate with a Crack 
 
 In this section we use the experimental and finite element approaches to understand the 

interaction of guided waves in the thick aluminum plate with a crack. In this case a crack of 

length 25.4 mm (1 inch) with left tip located at 63.5 mm (2.5 inches) from the source location 

and 1.78 mm (0.07 inches) from top surface as shown in Figure 5-6 was introduced in the test 

sample using an EDM equipment.  

 

 
Figure 5-6: Source is fixed at S and receiver is moved from R1 to R6 
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Experimentally obtained responses for undamaged and damaged cases at receiver locations is 

shown in Figure 5-7. 
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Time-Amplitude plot at R2
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Time-Amplitude plot at R3
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Figure 5-7: Time-voltage plots for undamaged and damaged cases in a thick aluminum plate 
obtained experimentally  

 



76

The response at receiver locations 1 and 2 did not show any significant changes in the waveform, 

especially the first part of the wave. Receiver location 3, which is located right on the top of the 

crack, showed a significant change in the first part of the wave. At locations 4, 5, and 6 in the 

damaged case there was a delay in the signal. Time-voltage plot at locations R2 through R6 is 

magnified in Figure 5-8 to view the significant change in the delay of the signal. 
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Figure 5-8: A magnified view of time-voltage data for undamaged and damaged cases in the 
thick aluminum plate 

 
 

Similar to section 5.2, a finite element simulation is carried out to determine the characteristics 

of the guided waves in a plane-stress model of the aluminum plate with a disbond between the 

top and the bottom layer. In order to mimic the crack from the experimental case the disbond 
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between the top and the bottom layer was generated by suppressing the surface-based tie bonds 

at the same location, introducing discontinuity between the two layers. For the finite element 

simulation, the surface response for both undamaged and damaged case at receiver locations is 

shown in Figure 5-9. 
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Time-Displacement plot at R3
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Time-Displacement plot at R4
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Time-Displacement plot at R5
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Time-Displacement plot at R6
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Figure 5-9: Time-voltage plots for undamaged and damaged case in a thick aluminum plate 
obtained numerically  
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As in the experiment the response at receiver locations 1 and 2 did not show significant changes 

especially the first part of the waveform. Receiver location 3, which is located on the top of the 

crack, showed a significant change in the first part of the wave. At locations 4, 5, and 6 for the 

damage case, there is a delay in the signal. Again time-displacement plot at locations R1 through 

R6 is magnified to view the significant change in the delay of the signal. 
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Time-Displacement plot at R4
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Time-Displacement plot at R5
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Time-Displacement plot at R6
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Figure 5-10: A magnified view of time-voltage plots for undamaged and damaged cases in the 
thick aluminum plate obtained numerically 
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 It can be seen that as a result of the interaction between the propagating waves and the 

disband-like crack, there is a delay in the signal. The simulations carried out using the finite 

element code ABAQUS for a two dimensional model of the problem provides a clear 

understanding of this feature and also predict other expected features of the interaction process. 

Examples of the simulated displacement field with and without damage at different time 

intervals are presented in Figure 5-11 and Figure 5-12. A more detailed image of wave 

interaction with damage is shown in Figure 5-13 and Figure 5-14. It is evident that as the wave 

profile encounters the disbonded region, it splits in two parts, with one traveling in the disbonded 

upper layer and the other below it. The delay in the signal is due to the slower propagation speed 

in the upper layer. 
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5 μs 5 μs 

 
10 μs 

 
10 μs 

 
27.5 μs 27.5 μs 

 
37.5 μs 37.5 μs 

 
Figure 5-11: Contour plot of vertical displacement profile in an undamaged and damaged 

aluminum plate at time intervals for 5 μs to 37.5 μs 
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47.5 μs 47.5 μs 

 
57.5 μs 57.5 μs 

 
67.5 μs 67.5 μs 

 
77.5 μs  77.5 μs 

 
Figure 5-12: Same as Figure 5-11 at time intervals for 47.5 μs to 77.5 μs 
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Propagation of waves before entering the disbonded region at 30.0 μs 

 
Propagation of waves across the disbonded region at 38.75 μs 

 
Figure 5-13: Contour plot of detailed vertical displacement profile in a damaged aluminum plate 

at 30 μs and 38.7 μs 
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Propagation of waves across the disbonded region at 46.25 μs 

 
Propagation of waves past the disbonded region at 57.5 μs 

 
Figure 5-14: Same as Figure 5-13 at 46.25 μs and 57.5 μs 
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Chapter 6 DAMAGE DETECTION IN A HONEYCOMB 
COMPOSITE STRUCTURE USING GUIDED WAVES 

 Guided wave propagation in sandwich plate is investigated numerically (finite element 

analysis) and experimentally using wave propagation approach. The sandwich plate consists of a 

12.7 mm thick aluminum honeycomb core sandwiched between two 1.78 mm thick 2/2 twill 

woven composite panels. The equivalent cell diameter of the core is about 5.5 mm. Due to the 

relatively low frequencies used in this work, both materials can be assumed to be transversely 

isotropic with a common symmetry axis normal to the plate. The elastic properties of the 

composite and the honeycomb were determined using a combination of mechanical and 

ultrasonic tests as discussed in Chapter 2. For the damaged case a disbond at the skin-core 

interface is assumed to be present. In the experiments, the elastic waves are generated by a 

broadband PZT transducer located on the plate surface and recorded by an identical transducer 

placed at different locations on the surface of the plate (Figure 3-6). The simulations are carried 

out using the finite element code ABAQUS for a two dimensional model of the problem to 

understand these features and to predict other expected features of the interaction process.  

 

6.1 Guided Wave Propagation in a Honeycomb Composite Sandwich 
Structure 

 
In this section we use both experimental and finite element approaches to understand the 

propagation of guided waves in honeycomb composite sandwich structure. Similar to section 5.1 

for the experimental part an improved ultrasonic test setup consisting of distributed, high fidelity 

sensor array is used to determine the propagation of waves in the structure. A computer model 

using the Finite Element Method is used to calculate the waveforms of the propagating waves in 
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the sandwich structure and the results are compared with the experimental data. In the next 

section an artificially generated debonding is introduced between the skin-core interface and the 

changes in the dynamical properties of the sandwich structure with the appearance of disbond is 

analyzed using experimental and numerical methods. 

The general experimental setup used for the test is shown in Figure 3-6 and the details 

can be found in section 3.3. 

First baseline ultrasonic response data (time-voltage) is obtained in a region which is 

known to have no damage. Figure 6-1 shows the top view of distribution of transmitter and 

receiver sensors on the sandwich plate. The red spots represent source locations whereas the blue 

spots represent the receiver locations. The row containing S1 as source is assumed to be the 

undamaged region.  

 

 

Figure 6-1: Source  is fixed at S and receiver is moved from R2 to R7 

  

 A finite element simulation described in section 3.7 is carried out to determine the 

characteristics of Lamb waves in a three-layered plane-strain model of the sandwich plate. 

Guided wave propagation was activated in the sandwich structure using a waveform of modified 

source given in equation (3.24) with central frequency 200 kHz (Figure 6-3). Figure 6-2 shows 
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the schematic of the 2-D model with appropriate boundary conditions and applied vertical source 

and receiver locations. The dynamic simulation was accomplished using the 

ABAQUS/EXPLICIT® code. The vertical displacements on the surface of the plate were 

obtained at locations R2, R3, R4, R5, R6 and R7. 

  

 

Figure 6-2: Schematic of the 2-D model of sandwich structure with applied load and the receiver 
positions. 
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Figure 6-3: A narrow band pulse - central frequency 200 kHz (a) Actual Signal (left) 

 (b) Modified Signal (right) 
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Time-Amplitude plot at R2
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Time-Amplitude plot at R3
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Time-Amplitude plot at R7

-1.0

-0.5

0.0

0.5

1.0

0 25 50 75 100 125 150 175 200
Time (μs)

A
m

pl
itu

de
 (N

or
m

al
iz

ed
) Experiment

Abaqus

 
 

 
Figure 6-4: Experimentally and numerically obtained time-amplitude plot of the received signals 

at 1-6 inches (25.4 mm - 152.4 mm) in the sandwich plate. 
 
 
It should be noted that the model of the honeycomb composite used in the finite element 

simulation is highly idealized. However, in spite of this, the main features of the signals in the 

finite element simulation match quite well with those obtained experimentally. 
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6.2 Guided Wave Propagation in a Honeycomb Composite Sandwich 
Structure with Disbond 
 
 In this section we consider the problem of guided wave propagation in the sandwich 

structure with a disbond between the composite face sheet and the aluminum core. The disbond 

was created by inserting a thin piece of teflon during the manufacturing of the sandwich plate. 

The experimentally obtained time-voltage surface response for both undamaged and damaged 

regions at receiver locations due to the modified five-cycle sine pulse with 150 kHz and 200 kHz 

central frequencies are shown in Figures 6-5 through 6-8. 
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Time-Amplitude plot at R3
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Time-Amplitude plot at R7
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 Figure 6-5: Received signals for undamaged and damaged cases in the sandwich structure at 150 
kHz central frequency obtained experimentally  
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Time-Amplitude plot at R2
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Time-Amplitude plot at R3
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Time-Amplitude plot at R7
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Figure 6-6: A magnified view of time-voltage plots for undamaged and damaged cases in the 
sandwich structure at 150 kHz central frequency obtained experimentally 
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Time-Amplitude plot at R2
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Time-Amplitude plot at R3

-1.0

-0.5

0.0

0.5

1.0

0 50 100 150 200 250 300
Time (μs)

V
ol

ta
ge

 (N
or

m
al

iz
ed

) Undamaged
Damaged

 
 

Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6

-1.0

-0.5

0.0

0.5

1.0

0 50 100 150 200 250 300
Time (μs)

V
ol

ta
ge

 (N
or

m
al

iz
ed

) Undamaged
Damaged

 
 

Time-Amplitude plot at R7
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Figure 6-7: Time-voltage plots for undamaged and damaged cases in the sandwich structure at 
200 kHz central frequency obtained experimentally 
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Time-Amplitude plot at R2
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Time-Amplitude plot at R3
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Time-Amplitude plot at R4
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Time-Amplitude plot at R5
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Time-Amplitude plot at R6
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Time-Amplitude plot at R7
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Figure 6-8: A magnified view of time-voltage plots for undamaged and damaged cases in the 
sandwich structure at 200 kHz central frequency obtained experimentally 

  

The signals at receiver locations 2, 3 and 4 do not show significant changes in their waveforms, 

especially in the first part. Locations 5, 6, and 7 for the damaged signal there is a delay in the 

signal and also initial increase in the amplitude; the signals are magnified in Figure 6-6 and 

Figure 6-8 to view the delay. 
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Similar to section 6.2 a finite element simulation was carried out to evaluate the wave 

propagation characteristics in the disbonded sandwich structure. The calculated surface response 

for the undamaged and damaged cases at the receiver locations due to the modified source with 

200 kHz central frequency is shown in Figure 6-9. 
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Time-Displacement plot at R3
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Time-Displacement plot at R4
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Time-Displacement plot at R5
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Time-Displacement plot at R6
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Time-Displacement plot at R7
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Figure 6-9: Time-voltage plots for undamaged and damaged cases in the sandwich structure at 

200 kHz central frequency obtained numerically 
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Similar to experimentally obtained data, the responses at receiver locations 2, 3 and 4 do not 

show any significant changes in the waveform, specially the first part of the waveform. At 

locations 5, 6, and 7 for the damage case there is a delay in the signal and also initial increase in 

the amplitude. A magnified view of the signals is presented in Figure 6-10. 
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Time-Displacement plot at R3
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Time-Displacement plot at R4
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Time-Displacement plot at R5
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Time-Displacement plot at R6
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Time-Displacement plot at R7
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Figure 6-10: A magnified view of time-voltage plots for undamaged and damaged cases in the 
sandwich structure at 200 kHz central frequency obtained numerically 
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 It can be seen that as result of the interaction between the propagating waves and the 

disbond, there is an initial increase in the amplitude as well as a delay in the signal. The 

simulations carried out using the finite element code, ABAQUS, for a two dimensional model of 

the problem gave a clear understanding of this feature and further it also predicts other expected 

features of the interaction process. Examples of the simulated displacement field with and 

without damage at different time interval is presented in Figure 6-11 and Figure 6-12. A more 

detailed image of wave interaction with damage is shown in Figure 6-13 and Figure 6-14. It is 

evident that as the wave profile encounters the disbonded region, it splits in two parts, with one 

traveling in the disbonded upper layer and the other below it. The delay in the signal is due to the 

slower propagation speed in the skin, the amplitude variation is due the complex interaction 

between the propagating waves and the disbond tips. 
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2.5 μs 2.5 μs 

5 μs 5 μs 

25 μs 25 μs 

50 μs 50 μs 
 

Figure 6-11: Contour plot of vertical displacement profile in an undamaged and damaged 
sandwich structure at time intervals for 2.5 μs to 50 μs 
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75 μs 
 

75 μs 

93.75 μs 
 

93.75 μs 

100 μs 
 

100 μs 

112.5 μs 
 

112.5 μs 
 

Figure 6-12: Same as Figure 6-11 at time intervals for 75 μs to 112.5 μs 
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Propagation of waves before entering the disbonded region at 80 μs 

Propagation of waves across the disbonded region at 92.5 μs 
 

Figure 6-13: Contour plot of detailed vertical displacement profile in a damaged sandwich 
structure at 80 μs and 92.5 μs 
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Propagation of waves across the disbonded region at 98.75 μs 

Propagation of waves after the disbonded region at 112.5 μs 
 

 
Figure 6-14: Same as Figure 6-13 at 98.75 μs and 112.5 μs 
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Chapter 7 CONCLUDING REMARKS 

7.1 Concluding Remarks 

 The ultrasonic signals obtained by surface-mounted, removable transducers in a woven 

composite panel and a sandwich plate consisting of an aluminum honeycomb core and woven 

composite face-sheets are analyzed. The results can be summarized as follows: 

1. Guided waves can be efficiently transmitted along the surface of both the composite plate 

and the sandwich structure. 

2. For both structures, adequate signal strength could be obtained at a distance of about 20 

cm from the source at 2V and 200 kHz. 

3. The damage index approach presented here can be used for detection and, under certain 

conditions, characterization of the degradation in aircraft, aerospace and civil structures. 

It is determined beyond a 99.5% confidence level that the higher damage indices near the 

impact were due to local changes in the FRFs. 

4. As a result of the interaction between the propagating waves and the disbond like crack in 

a thick aluminum plate, there is a delay in the signal. The simulations carried out using 

the finite element code ABAQUS for a two dimensional model of the problem provided a 

clear understanding of this feature and also predicted other qualitative features of the 

interaction process. 

5. As a result of the interaction between the propagating waves and the disbond in the 

honeycomb composite sandwich structure, there is an initial increase in the amplitude as 

well as a delay in the signal. As in the thick aluminum plate, the Finite Element 

simulations carried in a two dimensional model of the sandwich structure gave a clear 

understanding of this feature. It is evident that as the wave profile encounters the 
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disbonded region, it splits in two parts, with one traveling in the disbonded upper layer 

and the other below it. The delay in the signal is due to the slower propagation speed in 

the skin, the amplitude variation is due the complex interaction between the propagating 

waves and the disbond tips. 
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