
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
An optimization Framework for Shared Mobility in Dynamic Transportation Networks

Permalink
https://escholarship.org/uc/item/2c97k3q3

Author
Masoud, Neda

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2c97k3q3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

An optimization Framework for Shared Mobility in Dynamic Transportation Networks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Civil Engineering

by

Neda Masoud

Dissertation Committee:
Professor R. Jayakrishnan, Chair

Professor Will Recker
Professor Michael McNally

Professor Amelia Regan
Professor John Turner

2016

© 2016 Neda Masoud

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xiii

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1

2 Literature Review 5
2.1 History of Ridesharing . 5

2.1.1 Bellevue Smart Traveler: Washington (Haselkorn et al. (1995)) 5
2.1.2 Los Angeles Smart Traveler (Giuliano et al. (1995)) 7
2.1.3 Coachella Valley Transaction Network (Levofsky and Greenberg (2001)) 8
2.1.4 Sacramento Dynamic Ridesharing project (Kowshik et al. (1993)) . . 8
2.1.5 Seattle Smart Traveler (Dailey et al. (1999)) 9
2.1.6 RideNow, California (Nelson Nygaard Consulting Associates and Ri-

deNow Inc (2006)) . 9
2.1.7 Goose Networks, San Francisco, California (Heinrich (2010)) 11
2.1.8 Avego, University Cork, Ireland (Heinrich (2010) and UCC (2013)) . 12
2.1.9 Go520, Washington (RTrip (2013) and O’Sullivan (2011)) 13
2.1.10 WeGo, California (Wego rideshare (2013)) 15
2.1.11 Lessons Learned . 17

2.2 Ridesharing in Perspective . 21
2.3 P2P Ride-Matching . 26

3 Peer-to-Peer Ridesharing System 30
3.1 Implementation Strategies . 32

ii

4 Mathematical Formulation 35
4.1 Time-Expanded Network . 35
4.2 Main Formulation . 37
4.3 Problem Variants . 41

4.3.1 Expanding the Objective Function 41
4.3.2 Targeting Drivers . 41
4.3.3 Including Service Times . 42
4.3.4 Individual Rationality Constraints . 42

5 The Ellipsoid Spatiotemporal Accessibility Method (ESTAM) 45
5.1 Generating Reduced Networks . 46
5.2 Generating Time-Expanded Reduced Networks 47
5.3 Generating Riders’ Time-Expanded Feasible Networks 50

6 The Many-to-One Matching Problem 53
6.1 Illustrative Example . 53
6.2 Preprocessing using ESTAM . 54
6.3 Solution Methodology . 57

6.3.1 The Dynamic Programing (DP) Algorithm 58
6.4 Numerical Experiments . 62

6.4.1 Uniform Random Selection of Trip End Locations 63
6.4.2 Uniform Random Selection of Trip Ends in Clusters 66
6.4.3 The Critical Mass . 66
6.4.4 P2P Ride Exchange . 69
6.4.5 Overlapping Sets of Drivers and Riders 72

6.5 Case Study: P2P Ridesharing as Transit Feeder in the Los Angeles County . 73
6.5.1 Preliminaries . 76
6.5.2 Results . 78

7 The Many-to-Many Matching Problem 88
7.1 Decomposition Algorithm . 89
7.2 Illustrative Example . 92
7.3 Properties of the Decomposition Algorithm 94

7.3.1 Optimality . 94
7.3.2 Bounds . 95

7.4 Numerical Study . 97
7.4.1 Pre-Processing . 98
7.4.2 Value of a Multi-hop Solution . 100
7.4.3 Percentage of Satisfied Ride Requests 105
7.4.4 Algorithm Performance . 106
7.4.5 Transfers . 107
7.4.6 Sensitivity Analysis . 108

7.5 Application in Practice . 116
7.5.1 Re-optimization Period . 117
7.5.2 Restricting the Number of Transfer Stations 117

iii

7.5.3 Selecting a Time Interval . 119
7.5.4 Heuristic Solutions . 120

8 P2P Ride Exchange Mechanism 122
8.1 Introduction . 122
8.2 Related Work . 123
8.3 Peer-to-Peer Ride Exchange . 124

8.3.1 The Scope of the Trade . 127
8.3.2 P2P Ride Exchange Mechanism . 130
8.3.3 Pricing . 135

8.4 Numerical Study . 136
8.4.1 Base Fares . 137
8.4.2 Number of Participants . 140
8.4.3 System Composition . 141
8.4.4 Departure Period . 146
8.4.5 Travel Time Budget Factor . 146
8.4.6 Statistical Analysis . 149
8.4.7 Customer Retention . 151
8.4.8 Higher Levels of Trade . 151

9 Ride-Matching with Stochastic Demand 153
9.1 Introduction . 153
9.2 Generating Scenarios . 154

9.2.1 Example . 157
9.3 P2P Multi-Hop Ride-Matching Problem with Stochastic Demand 162
9.4 L-Shaped Decomposition . 165
9.5 Small Example . 167
9.6 Applicability in Practice . 171

10 Shared Ownership and Ridership of Autonomous Vehicles 175
10.1 Introduction . 175
10.2 SVOU: Shared Vehicle Ownership and Use Program 178

10.2.1 Mathematical Modeling . 179
10.2.2 Routing of Autonomous Vehicles . 180
10.2.3 On-Demand Carsharing . 183

10.3 Solution Method . 186
10.3.1 Heuristic Algorithm to Solve the On-Demand Carsharing Problem . . 187

10.4 Real-World Implementation . 190
10.4.1 Location-Based Clustering . 192
10.4.2 Clustering Based on Trip Overlap . 196
10.4.3 Level of Clustering . 199

10.5 Discussion . 202

11 Conclusion 205

iv

Bibliography 210

v

LIST OF FIGURES

Page

1.1 Average vehicle occupancy in the US in 2009 for different trip purposes (U.S.
Department of Transportation, 2009) . 2

2.1 History of ridesharing (part I) . 19
2.2 History of ridesharing (part II) . 20

3.1 Inputs from Participants . 32

4.1 Example of links in a time-expanded network 36

5.1 An example of forward and backward movements for a participant with OSp =
14, DSp = 3, ∆t = 1 min, TWp = [1, 40], and T TBp = 40 min 51

6.1 Problem instance used for demonstrating the steps of the DP algorithm through-
out the chapter . 54

6.2 Reduced networks of all the participant in our example 56
6.3 Time-expanded reduced network for driver 2 in Figure 6.2 56
6.4 Time-expanded feasible network for the rider in our example before and after

revision . 59
6.5 Example of an infeasible solution . 62
6.6 Algorithm performance for the randomly generated problem instances, aver-

aged over 10 runs . 65
6.7 System performance for the scenario with distinct business and residential

areas. Results are averaged over 10 runs. 67
6.8 Sensitivity analysis over the number of participants in the system 68
6.9 P2P ride exchange . 70
6.10 Solution times and number of served riders for each randomly generated prob-

lem instance under different re-optimization periods 72
6.11 Number of served riders under different percentage of riders (who can switch

and become drivers) . 74
6.12 Case study area: Los Angeles Metro red line 75
6.13 Three types of stations in the LA network 77
6.14 Link sets . 79
6.15 Matching rate as a function of number of drivers 81
6.16 Number of transfers . 82
6.17 Most frequently used transfer points . 83

vi

6.18 Vehicle occupancies) . 84
6.19 VMT savings . 84
6.20 Driver Compensation . 85
6.21 Percentage of ride requests satisfied by the transit-rideshare option) 87

7.1 Solution time of a set of problem instances by directly solving model (D.1)(Appendix
D) . 89

7.2 The decomposition algorithm flowchart . 90
7.3 Iterations of the decomposition algorithm . 93
7.4 Iterations of the simplified decomposition algorithm 94
7.5 Bounds on the objective function value for the example in section 7.2 97
7.6 The pre-processing procedure . 100
7.7 Cumulative number of served riders using five different matching algorithms 102
7.8 Percentage of riders served . 106
7.9 Improvements in solution times. Contour plots of solution times in seconds. . 107
7.10 Number of decomposition algorithm iterations 107
7.11 Distribution of transfers . 109
7.12 Ratio of new to old solution times after limiting the number of transfer stations119
7.13 Solution times with 5-min time intervals . 120
7.14 Quality of heuristic solutions . 121

8.1 An example of a successful trade. Solid and dashed lines represent proposed
and potential itineraries, respectively . 126

8.2 Levels of trade . 129
8.3 Examples of multilateral trade . 130
8.4 Base fares for ridesharing systems with different levels of spatiotemporal prox-

imity between trips . 139
8.5 Initial rider matching and exchange rates under different number of stations

and participants . 142
8.6 Initial driver matching and exchange rates under different number of stations

and participants . 143
8.7 Matching and exchange rates under different ratio of riders 145
8.8 Percentage of riders and drivers matched before and by P2P ride exchange

under different departure periods . 147
8.9 Rider matching and exchange rates as a function of travel time budget factor

of participants . 148
8.10 Driver matching an exchange rates as a function of travel time budget factor

of participants . 148
8.11 P-values for the between the exchange rate is scenarios listed in table 8.1 . . 150

9.1 Stations and travel times in the example network 168
9.2 Evolution of θ over iterations of L-shaped decomposition, and convergence of

the L-shaped decomposition . 170

10.1 Average daily vehicle miles for households with various number of vehicles.
The data is from the National Household Travel Survey (NHTS), 2009 . . . 177

vii

10.2 A typical network to demonstrate the connection of depot stations to each
other, and to members of set S . 180

10.3 Determining the set of feasible requests R(v′) for vehicle v′ 189
10.4 Clusters of households. Households in each cluster are assumed to share own-

ership of a set of autonomous vehicles . 192
10.5 Solution time (sec) of finding the optimal number of vehicles and vehicle

itineraries for each cluster size . 193
10.6 Impact of the shared vehicle ownership and use program on vehicle ownership 195
10.7 Impact of the shared ownership and use program on vehicle ownership 198

viii

LIST OF TABLES

Page

2.1 Transportation alternatives differing in flexibility, cost, and environmental
impacts . 25

2.2 Literature on P2P ridesharing . 25

7.1 Quality of service measures for the five matching methods in a system with
relatively low spatiotemporal proximity among trips 104

7.2 Quality of service measures for the five matching methods in a system with
relatively high spatiotemporal proximity among trips 104

7.3 Sensitivity study over the problem parameters. All instances are generated
with 400 participants composing of 200 riders and 200 drivers in a randomly
generated network with 49 stations . 114

7.4 Sensitivity study over the problem parameters. All instances are generated
with 400 participants composing of 200 riders and 200 drivers in a randomly
generated network with 100 stations . 115

8.1 Ridesharing instances. The scenario properties include (no. of participants,
ratio of riders, departure period, no. of stations, travel time budget factor) . 149

9.1 An example of the scenario generation algorithm for a problem with three
stochastic riders . 159

9.2 Input data for the example . 168
9.3 Set of scenarios with their corresponding probabilities 169
9.4 Optimal solution to the stochastic ride-matching problem 169
9.5 Solution to the deterministic ride-matching problem 170
9.6 Experiments with problems of larger sizes 173

10.1 Impact of different elements of the shared ownership and use program on
vehicle ownership and vehicles miles traveled using distance-based clustering 196

10.2 Impact of different elements of the shared ownership and use program on
vehicle ownership and vehicles miles traveled using trip overlaps for clustering 199

10.3 Impact of level of clustering and parking availability of vehicle ownership and
VMT . 201

ix

LIST OF ALGORITHMS

Page
1 Link reduction procedure . 48
2 Scenario Generation Procedure . 158
3 On-demand vehicle allocation . 188

x

ACKNOWLEDGMENTS

I would like to express my sincere gratitudes to my ITS family who have made the past few
years some of the best years of my life. The warm and supportive environment created by
the faculty, staff, and students made ITS feel like home to me.

I am utterly grateful to my adviser, Professor R. Jayakrishnan, for giving me the chance to
explore different directions until I found a subject I was passionate about, always making
time for me when I needed someone to brainstorm with, generously sharing his invaluable
advice and experience, patiently explaining the logic behind every single grammar correction,
and last but not least, introducing me to Bibimbap!

My sincere gratitudes are due to my committee members Professor Will Recker, Professor
Michael McNally, Professor Amelia Regan, and Professor John Turner for their endless
support, never-ending encouraging words, insightful comments, and priceless advice.

I am indebted to Professor Stephen Ritchie for supporting me through the first two years of
my Ph.D., and for being a part of my Ph.D. qualifying exam committee.

I would also like to thank Dr. Joseph Chow for his kind review of my work and his useful
suggestions and advice, all the way from when he was my friend Joe whose office was a few
doors away, to when he attained the very well-fitting and deserving “Professor” title.

I am also very appreciative of friends and colleagues at ITS who made the last five years
memorable. Mahdieh, Mahboobeh, Nasrin, Mojtaba, Morteza, Amir, Mahdi, Sepehr, Fate-
meh F., Akram, Anahita, Elnaz, Narges, Saeid, Maryam, Joe, Pedro, Christina, Fatemeh
R., Robert, Daniel, Riju, Anupam, Kate, Ashley, Suman, Roger, Danny, and Gabe: thank
you for making this journey an enjoyable one.

To my forever partner in crime, little sister Sara: thank you for always being there for me.
Your positive attitude on life brings out the best in me.

I am utterly grateful to my parents for teaching me what matters in life, and giving me all
the love and support a child could ask for; and, to my little brother Arshia, for putting his
video games aside every once in a while to Skype with me!

A very special thanks goes to the most important person in my life: my kind, supportive, and
beloved husband, Ali. He has always been there by my side, encouraged me to expand my
horizons, and made me believe in myself by believing in me. Without him, this dissertation
would not have been a possibility.

This work was financially supported by the U.S. Department of Transportation and the
California Department of Transportation though the University of California Center on Eco-
nomic Competitiveness in Transportation, the California Intelligent Transportation Systems
scholarship, the Orange County Women in Transportation scholarship, and the Railway As-
sociation of Southern California scholarship. I am also very grateful to the Department of

xi

Civil and Environmental Engineering, and the Institute of Transportation Studies at Uni-
versity of California, Irvine for their support.

xii

CURRICULUM VITAE

Neda Masoud

EDUCATION

Doctor of Philosophy in Civil Engineering 2016
University of California, Irvine Irvine, CA

Master of Science in Physics 2011
University of Massachusetts Dartmouth Dartmouth, MA

Bachelor of Science in Industrial Engineering 2008
Sharif University of Technology Tehran, Iran

xiii

ABSTRACT OF THE DISSERTATION

An optimization Framework for Shared Mobility in Dynamic Transportation Networks

By

Neda Masoud

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2016

Professor R. Jayakrishnan, Chair

Recent advances in communication technology coupled with increasing environmental con-

cerns, road congestion, and the high cost of vehicle ownership have directed more attention to

the opportunity cost of empty seats traveling throughout the transportation networks every

day. Peer-to-peer (P2P) ridesharing is a good way of using the existing passenger-movement

capacity on the vehicles, thereby addressing the concerns about the increasing demand for

transportation that is too costly to address via infrastructural expansion.

This dissertation is dedicated to the optimization of the matching process between the par-

ticipants in a ridesharing system. More specifically, focus of this dissertation is on multi-hop

matching, in which riders have the possibility of transferring between vehicles. Different al-

gorithms have been presented for various implementation strategies of ridesharing systems.

Multiple case studies assess the important role ridesharing can play as a separate mode, or

in conjunction with other modes of transportation, in multi-modal settings.

xiv

Chapter 1

Introduction

Recent advances in communication technology coupled with increasing environmental con-

cerns, road congestion, and the high cost of vehicle ownership have directed more attention to

the opportunity cost of empty seats traveling throughout the transportation networks every

day. Peer-to-peer (P2P) ridesharing is a good way of using the existing passenger-movement

capacity of vehicles, thereby addressing the concerns about the increasing demand for trans-

portation that is too costly to address via infrastructural expansion.

Although limited versions of P2P ridesharing systems initially emerged in the US in the

1990s, they did not receive enough support from the targeted population to continue oper-

ating. Inadequate and non-targeted marketing, insufficient flexibility and convenience, and

absence of appropriate technology were some of the factors that contributed to the lack of

success in the implementation of the first generation of ridesharing systems.

A second generation of ridesharing systems emerged after considerable improvements in

communications technology in the past few years. Making use of GPS-enabled cell phones

in more recent ridesharing systems allows for accessing online information on the location

of participants, making ridesharing more accessible, and providing people with a sense of

1

Figure 1.1: Average vehicle occupancy in the US in 2009 for different trip purposes (U.S.
Department of Transportation, 2009)

security. These factors combined with the high cost of travel (both financial and environ-

mental) have played an important role in the higher interest in ridesharing systems in the

recent years. The high growth rate of Transportation Network Companies (TNC) such as

Uber and Lyft in the USA and elsewhere in the world is an indicator of increasing levels of

acceptance in the concept of outsourcing rides.

In line with the demand side, the supply side of P2P ridesharing has experienced growth

as well. According to the 2009 national household travel survey (NHTS), out of an average

of 4 seats available in a vehicle, only 1.7 is being actually used (Figure 1.1). This number

is as low as 1.2 for work trips. In addition, number of trips per household in the US has

experienced a decreasing trend since 1995. On the contrary, the general trend in the number

of vehicles owned by households has been increasing. These statistics suggest that carpooling

in households is declining, and that the number of empty seats available on traveling vehicles

is increasing.

This increase on the supply side of ridesharing, coupled with the rise on the demand side

imply an optimistic future for P2P ridesharing services. This potential was recognized by

the US congress in June 2012. Section 1501 of the Moving Ahead for Progress in the 21st

Century (MAP-21) transportation act expanded the definition of “carpooling” to include

“real-time ridesharing” as well, making ridesharing eligible for all the federal funds that were

2

previously available only for carpooling projects. Ridesharing finds a mention in the Fixing

America’s Surface Transportation (FAST) Act of December 2015 as well, though proponents

of ridesharing would be somewhat disappointed that there was no further expansion in the

consideration of the concept.

In this dissertation, we define P2P dynamic ridesharing to include all one-time shared rides

with any type of arrangement, whether it is on-the-fly or pre-arranged, between peer drivers

and riders. Dynamic ridesharing differs from more traditional carpooling services in that in

carpooling shared trips are scheduled for an extended period of time, and are not one time

occurrences. Furthermore, the nature of carpooling programs does not ask for real-time

ride-matching.

Drivers in a ridesharing system drive to perform activities of their own, and not for the

mere purpose of transporting riders, hence the term “peer-to-peer”. Each driver can have

multiple riders on board at any point in time. In addition, to increase the number of satisfied

ride requests, the system provides multi-hop itineraries for riders, i.e. riders may transfer

between vehicles.

We define a set of stations in the network where riders and drivers can start and end their

trips, and riders can switch between vehicles. The system finds matches for riders by opti-

mally routing drivers in the network. In order to guarantee a high quality of service, both

riders and drivers provide a time window to specify the start and end of their trip, and a

maximum ride time. Furthermore, riders can specify the maximum number of transfers they

are willing to make, and drivers can put a limit on the number of riders they want to have

on board at each moment in time. The term “real-time” emphasizes the capability of the

system to make ride-matches in a short period of time, for implementation with frequent

re-optimizations using newer data over time.

A P2P ride-matching algorithm is central to the successful implementation of a ridesharing

3

system. Ride-matching refers to the problem of matching riders (passengers) and drivers in

a ridesharing system. A successfully matched rider receives from the system an itinerary of

their trip that includes information on the scheduled route, and the drivers with whom the

travel is planned. Drivers receive itineraries that include the schedules to pick up and drop

off riders.

In the next Chapter, we provide a review of previous ridsharing projects, and the attempts

made in academia to devise efficient matching algorithms. In Chapter 3, we elaborate on

the architecture of the ridesharing system under study. Chapter 4 provides a mathematical

formulation of the ride-matching problem. In Chapter 5, we propose a pre-processing proce-

dure that makes this mathematical formulation computationally easier to solve, by reducing

the size of its input sets. In Chapters 6-9, we propose different ride-matching algorithms for

different implementation strategies in a ridesharing system. Finally, in Chapter 10 we look

at the central role ridesharing can play with the emergence of driver-less vehicles.

4

Chapter 2

Literature Review

2.1 History of Ridesharing

P2P ridesharing systems emerged in the US in the 1990’s, mostly under government-funded

projects, and continue working throughout the world today. In this section some of the

ridesharing projects from both early and current days are presented. The close study of

these systems manifests their evolution through time. Figures 2.1 and 2.2 display a list of

these projects, the details involved in them, and the lessons learnt by the experts that could

be used in designing more successful ridesharing systems.

2.1.1 Bellevue Smart Traveler: Washington (Haselkorn et al. (1995))

Two Smart Traveler projects were piloted in Bellevue, a small city near Seattle in 1993 and

1995. Bellevue was selected as the location to pilot these projects due to the existence of a

dense employment location in the city’s downtown area, where the majority of commuters

traveling in single occupancy vehicles (SOVs) caused severe congestion. Previous efforts to

5

reduce the congestion using HOV lanes had not been successful. The purpose of the projects

was to provide commuters with innovative communication technologies to help them arrange

for HOV commuting to and from the employment center.

The 1993 project focused on examining the impact of cellular phones on the ridesharing

experience and to see whether it would promote ridesharing. The project started in July

1992, and the demonstration phase ended in April 1994. The system consisted of a voice-

activated matching service, which also provided real-time traffic conditions. At the end of the

project, the researchers found that no one used cell phones for the purpose of ridesharing,

suggesting that cell phones alone were not incentive enough for people to participate in

ridesharing. In the participants’ views, cell phones did not compensate for their perceived

downsides of ridesharing such as lack of flexibility and convenience. The second phase of

this project was piloted in 1995 built on the lessons learnt from the first phase, and lasted

for 5 months. The focus of the second phase was on assessing the ridesharing demand. This

time in addition to matching rides and real-time traffic conditions, the transit schedule was

also provided to the users.

The results of this phase were more encouraging than the last phase. People generally

preferred to offer rides than to accept them. In this phase there were 53 participants, and

148 ride requests, out of which only 6 shared rides happened. The necessity of more research

on the psychology of people offering and accepting rides was one of the conclusions made

the researchers. Towards the end of the project, a survey of the participants was conducted.

Participants indicated that it was difficult to find matches, which the program coordinators

believed was due to lack of enough number of participants. Participants also believed that

searching and confirming matches was a time consuming process.

The program coordinators concluded that lack of knowledge was one of the reasons behind

unpopularity of the program. They found that tangible incentives for using the program, and

a guaranteed ride home could have positive impact on the participation rate. Also, people

6

could be more confident if their ride was confirmed at least one hour before the departure

time. Pre-screening the participants could also make people feel more secure to participate

in the program. An additional conclusion was that to avoid confusion, rather than having

people meet at arbitrary places, they should meet at pre-determined stations.

2.1.2 Los Angeles Smart Traveler (Giuliano et al. (1995))

This project was conducted in 1994 in the LA metropolitan area. Passengers could use 77

kiosks located throughout the region to access transit routes, traffic conditions, and find

one-time or regular rides. The participants could call their matches and talk to them, or

leave them a message.

The majority of the ride-matching requests were for regular, and not one-time, carpools.

A future survey revealed that this was because people did not want to take or give rides

to people they didn’t know. The scope of the project was changed due to the Northridge

earthquake, and no marketing was done to promote the program.

A survey conducted of 25 of the participants in the program showed that none of them

used the system to find a one-time match. Three of the survey takers stated that they had

been contacted by other people for a one-time carpool that never happened. The program

coordinators found out that people preferred to turn to their family or social network for

one-time rides. One of the reasons behind this preference was that people found communi-

cating through voice messages and waiting for return phone calls frustrating. The program

coordinators also believed that the low use of the system was due to lack of marketing.

The final recommendations of the project team was assessing the potential demand before in-

vesting in a costly system, ensuring the knowledge of the users of the system, and developing

a ridesharing application.

7

2.1.3 Coachella Valley Transaction Network (Levofsky and Green-

berg (2001))

This project was conducted in Riverside in southern California in 1994. Similar to the Los

Angeles Smart Traveler project, this project provided traffic conditions, transit information,

and one-time ridesharing matches via 4 kiosks located in areas with high retail and pedestrian

activity. The project continued for 7 month, at the end of which it was decided that the

costs were too high and the usage was too low for it to be continued. The high cost of the

system was due to using expensive, market specific media in the kiosks. It was projected

that such a system may become cost efficient in 6 year.

During the time the project was running, around 21,500 people accessed the kiosks. Only

one third of the inquiries were related to ridesharing, and only 8% of the total 3,200 printouts

were rideshare match lists. These user statistics suggesting the lack of interest in ridesharing

contributed to the decision on not continuing the project.

2.1.4 Sacramento Dynamic Ridesharing project (Kowshik et al.

(1993))

This project started in 1994. Out of the 360 people who participated in the program, only 10

requested a ride, and out of the 10 ride-matching requests only 1 was found. In general, the

project was considered as an unsuccessful one, primarily due to security concerns, as surveys

revealed. The surveys conducted at the end of the program suggested that a pre-screening

process to assure safety, and a fixed payment scheme to avoid undesirable negotiations could

have improved the program.

The program coordinators considered inadequate marketing as one of the reasons of the

failure of the project. They also believe that HOV lanes alone were not incentive enough for

8

people to engage in ridesharing. Finding ways to assure personal security of the participants

was one of the main suggestions of the program coordinators.

2.1.5 Seattle Smart Traveler (Dailey et al. (1999))

This project was conducted in 1996, on the campus of university of Washington. This

location was selected because it was assumed that students and faculty would be inclined

to use dynamic ridesharing, mainly because of type of their schedules, their high level of

computer literacy and access to communication technologies, and the limited number of

parking spaces available on campus.

Users had to provide a phone number and an email address. The system sent a list of

matches to the user’s email address. The rider and driver met at pre-determined locations,

which reduced confusion, but led to some degree of inflexibility at the same time.

The project started in March and ended in the November of 1996. During this period 2056

trips were registered, 3% of which were one-time trips. The project coordinates did not start

marketing the program until the fall of 1996. After outreach to the target users, however,

the number of one-time ride matches increased considerably, making the project coordinates

believe that there exists a demand for dynamic ridesharing.

2.1.6 RideNow, California (Nelson Nygaard Consulting Associates

and RideNow Inc (2006))

RideNow was a dynamic ridesharing pilot project whose demonstration phase started in

November 2005. The program provided one-time ride matches to and from the Dublin/Pleasanton

BART station. The goal of the project was to shift the demand from SOVs to transit by

9

offering dynamic ridesharing, while preserving the convenience of solo driving for ridesharing

users.

The system was designed to provide ”instant” matches for the users, minutes before they

left home in the morning, and while they were in the BART train on their way back home

in the afternoon. The program tried to put into practice the lessons learned from other

ridesharing programs. They offered incentives, such as free BART tickets for registration,

extra free tickets for making matches, and a guaranteed ride home. They also conducted a

three-phase marketing program.

The implementation phase of the program started in November 2005, and the program

terminated in May 2006. During this 6 month period a total of 121 people registered in the

program. The registration started at around 20 in week 1, and took its pick through weeks

18-21 (from around 45 to 105) after a marketing campaign. 20% of the registrants preferred

to drive, 22% preferred to ride, and the remaining 58% were indifferent.

Around 50% of the registered users actually used the system. During this 6 month period,

1179 ridesharing requests were made, of which 141 matches were made. The ratio of suc-

cessful matches however increased after the marketing campaign attracted more registrants

in March 2006. Before this marketing campaign, an average of 6 ride matches per week was

made. This average jumped to around 22 per week in April.

Eventually, only around 8% of the requests ended up sharing rides. Although more rideshar-

ing matches were made, people didn’t actually follow up and get together with their matches,

especially on the way back home.

The program was considered costly and difficult to market, and hence didn’t go further than

a pilot project. However, the program coordinators believed that it could be cost-efficient if

offered as a part of a larger ridesharing program. A follow up on the participants revealed

that the phone system was cumbersome to use for some participants. Also, participants

10

preferred to have a longer notification time frame than the 15 minutes used by the program

for the morning commute.

The program coordinates recommendations for future ridesharing programs include sustained

marketing, offering parking spaces as an incentive where applicable, an easy-to-use phone

system and more lead time for morning matches.

2.1.7 Goose Networks, San Francisco, California (Heinrich (2010))

The Goose Networks Co. developed a real-time dynamic ridesharing technology that used

SMS texting as the communication tool. The system searched for the key works, such as

”today” or ”now” in sentences. After assuring of the proper functioning of the technology

the corporation decided to assess the demand for such a service by conducting a pilot project

at The Genentech Co., a biotechnology firm located in San Francisco.

The pilot project lasted 11 months, and 200 out of the 8000 employees at Genentech reg-

istered in the program. Despite Genentech’s effort to support this program by extending

their existing $4 per day commute incentive program to the ridesharers, only 50 matches

were made and carpooled. The project coordinators found that this was partially due to the

preference employees had in riding the well-equipped busses that Genentech offered. Also,

participants had a lot of questions during different phases of the program and required a

high level of customer service that was hard to sustain.

11

2.1.8 Avego, University Cork, Ireland (Heinrich (2010) and UCC

(2013))

Avego started in 2007 in Ireland as the R&D division of the company Mapflow, and the

company is now known as Carma. In 2009 Avego became a separate entity and first offered

its real-time ridesharing service at the University College Cork (UCC), with the purpose of

trying out the dynamic ridesharing technology. Avego’s technology consisted of an iPhone

app, coupled with internet access.

UCC had 20,000 students and 3,000 staff at the time. In this project 20 participants were

selected and were each given a free iPhone with a subsidized phone contract in return for

picking up and dropping off simulated riders (named ”ghosts”) at least 20 times per month.

The payment was VMT-based, and micro-payments were transferred between participants’

accounts.

The pilot program was launched in February 2011, from Carrigaline to Cork. This line was

selected because a high proportion of workers came to Cork from Carrigaline, there was little

public transport available between Carrigaline and Cork, and the main arterials entering the

town were extremely congested.

As for security measures, after each match was made, each participant was given a PIN

which was required to be provided to the match. In addition, each participant could rate

the match based on the overall ridesharing experience. These ratings could be viewed by

participants and were considered a tool to enhance security.

As incentive, the first 30 drivers signing up for the program received e100 toward purchase

of a phone, and active drivers could also earn e40 each four month.

12

2.1.9 Go520, Washington (RTrip (2013) and O’Sullivan (2011))

The Go520 dynamic ridesharing project, conducted in the 14-mile SR520 corridor connecting

Redmond and Seattle in Washington, is known as the world’s largest real-time ridesharing

pilot project to date. The first phase of the project started after Avego received a $400,000

grant from the Washington State DOT (WSDOT) in September 2010, and was launched in

January 2011.

The SR520 corridor is a crowded corridor carrying 190,000 people (and 115,000 vehicles) on

a daily basis. For the first phase of this project, the goal was to recruit 1000 people (250

drivers, and 750 riders) who pass the rigorous, state-mandated screening process.

The drivers were provided with the Avego driver real-time ridesharing app (for iPhone), and

the riders could book a ride from any internet-enabled cell phone, from a PC, or through

the Avego rider app.

The program offered several incentives to the participants: 1- all the participants received

a starter pack including free gas cards, iPhone chargers, and detained information on the

program. 1- drivers were paid a fee for offering their empty seats ($1 booking fee, plus 20

cents per VMT for each passenger). 2- drivers could earn up to $30 per month in free gas

cards. 3- riders who used the program were given a $30 per month in Avego credits that

could be used towards ridesharing payment. 4- after launching the program, in spring of

2011, a toll was placed for the vehicles who used the SR520 bridge, making carpooling a

more attractive option.

The demonstration phase started in January 2011 with 30 participants. By the end of

February, the number of participants had jumped up to 550, and by April, 962 people had

registered in the system, close to the target number of participants for the first phase.

The success of this phase was indebted to the coverage by the media, Public Relations

13

(PR) campaigns and outreach events, and involvement of big employers such as Microsoft

and University of Washington in the program. The number of participants in the program

experienced considerable jumps after each outreach and marketing event. However, the most

affective impacts were due to the support of employers within the area.

The program was impeded due to the mandatory and strict screening process required by

the state. Participants were asked to provide their social security number and date of birth

for criminal background checks, hold a liability insurance that covers at least $300,000 per

accident, provide their driving record, and meet the vehicle maintenance guidelines. The

pre-screening process although insuring safety and security of participates in the program,

created a huge gap between the registration and approval which curbed the initial high

interests. Also, many people felt that the amount of information they have to provide is not

worth the service, despite the incentives.

The second phase of the project was funded by Avego, and started in June 2011. At the time

of launch of this phase, many improvements had been made to the system: the pre-screening

process was removed, a driving app for windows phone holders was developed (WP7), and

riders were able to book rides using SMS. The program was focused on a route connecting

Capitol Hill in Seattle to Overlake in Radmond, where the Microsoft campus was located.

This route was selected because out of the 1000 people registered in phase 1, 300 of them

lived in Capitol Hill, and worked for Microsoft, which made this route the best transport

option for them. Although transit and employee-provided transport options were available,

but they required long transit times or long distances on foot, making Avego’s Real-Time

Ridesharing (RTR) an optimal choice.

Many incentives were considered during the length of this phase at different times, ranging

from gas cards to gift cards, larger prizes for drawings, free Avego credits, etc., some of which

proved to be more effective than the others. In addition, Avego provided a Guaranteed Ride

Home (GRH), which included a free shared van service, during the peak hours. Use of

14

the HOV lanes, specially the 3+ ones, was one of the other incentives for the participants.

During the 10 week trial of phase 2, 400 trips were logged from 235 users, with the peak

repeat user rate of 65%.

For commuters who were not familiar with carpooling, an information session was held where

commuters could book their first ride with an Avego employee, and then with a regular Go520

driver. It should be noted than in general, only a small proportion of people have such a

high trust threshold, and for places where carpooling is already a practice, the trusting issue

is not a big barrier. One of the potential obstacles in this phase was abundance of free

commute options for Microsoft staff. For the riders to participate in RTR, the benefits of

the program should have proved to surpass the free commute.

Avego learned three main lessons from the Go520 project: 1) involvement of the TDM

(Transportation Demand Management) agencies and employers is very effective in building

trust, 2) the main incentives for participation in RTR was saving money and time, 3) to

build the critical mass required to run TDM, crowded corridors are a good choice.

2.1.10 WeGo, California (Wego rideshare (2013))

This $1.5 million project was conducted in San Francisco Bay area. The project was ad-

ministrated by the Metropolitan Transportation Commission (MTC), in conjunction with

the Sonama County Transportation Authority, the Climate Protection Campaign in Sonama

County, the Transportation Authority of Marine, and the Contra Costa Transportation Au-

thority. The technology for this project is provided by Avego, and the requirements to

use the system include smartphones for drivers, phones for riders, and the internet. Each

program has its own characteristics, and offers a specific reward system.

WeGo Sanoma: The purpose of this project is three-fold: 1- to reduce parking demand and

15

increase the number of shared commute trips. 2- to reduce GHG emissions. 3- to reach the

critical mass required to run the system.

All new users receive $20 in Avego credit to use toward receiving rides. Riders pay a $1

booking free plus $0.2 per mile for the first 15 miles and $0.08 per mile thereafter. The

micropayments are transferred electronically from the rider to the driver. The driver has the

option to provide a free ride.

The WeGo ”More” reward program offers a $5 Starbucks coffee card to the first-time WeGo

users. Starting from June of 2013, the program is trying out a new rewarding system. In

the month of June participants who use the program for at least 10 days are entered in the

draw of 5 $100 gift cards.

The WeGo referral program offers $5 Amazon gift cards to participants who refer other

people from the community to the program. The referees will receive the gift card after their

referral uses the program for the first time. For those participants who feel charitable, the

opportunity has been provided to donate the dollar amount of their rewards to LandPaths.

WeGo Marin: The WeGo Marin offers three types of services: bookings for the RTR minutes

before leaving, one-time shared rides booked in advance, or traditional carpools. The RTR

service is rolling out for major employers, including Larkspur ferry and Marin college during

spring of 2013. As an incentive, participants in the program are entered into a weekly draw

of up to $100 in prizes. In addition, participants who engage in the program more than 2

times a week receive a $5 Starbucks coffee card.

Contra Costa: The Contra Costa RTR program offers a guaranteed ride home for the users

who go to work as riders. This program also offers weekly and monthly drawing of gift cards.

They also have a public score board that shows the number of drivers, number of rides

provided by each driver, and savings in terms of GHG emissions. Up to this date (June 27,

16

2013), Contra Costa has had 582 shared trips by 59 registered drivers, with the top driver

giving 182 rides to a pool of 6 riders. The ridesharing program has led to reduction in CO2

emissions in the amount of more than 14,000 pounds.

2.1.11 Lessons Learned

Figures 2.1 and 2.2 display a summary of the ridesharing systems presented in this section.

Although P2P ridesharing systems initially emerged in 1990s, at the time they did not receive

enough support from the targeted population to continue operating. The problem with these

first attempts was that there was not enough awareness and sufficient marketing regarding the

systems and therefore they could not reach the critical mass required to continue running.

In addition, the perceived lack of flexibility and convenience, and the safety and security

concerns overweighed the incentives such as using HOV lanes.

The lessons learned from these early trials, however, were very useful in developing the more

successful ridesharing systems later. Based on these early experiences, the systems emerging

later tried to invest more on marketing and building awareness in target groups, consider

more tangible incentives such as free parking spots and monetary compensation, provide

a guaranteed ride home for the riders who were not able to find a ride back, design fixed

payment schemes to avoid awkward negotiations, confirm the matches ahead of time so that

people can be certain about their plans, and finally include a pre-screening process for system

participants to enhance safety and security.

Despite all these new improvements based on the lessens learned from older projects, if it were

not for the technological improvements, the more recent ridesharing systems would not enjoy

the level of success they are experiencing today. In 1990s, communication between system

participants occurred using individuals’ private phones or public kiosks implemented in some

regions for this purpose. Through these years, using email for establishing communication

17

was considered an extreme technological contribution. The ridesharing systems today mostly

run using mobile apps and ridesharing websites, which make using the systems much simpler.

Another very important lesson learnt through years of ridesharing was that having a targeted

group of people for a ridesharing system is crucial. Offering such programs in crowded

corridors or for certain employers makes it easier to spread the word and advertise the

system, and may assure use of sufficient participants to keep the system up and running.

The existence of private ridesharing companies such as Carma (former Avego) and Zimride

today, as opposed to the early efforts that were mostly government-funded, implies that

peer-to-peer ridesharing is little by little finding its way through society and turning into a

profitable business.

18

P
ro

je
ct

 n
am

e

T
im

e

L
o

ca
ti

o
n

L

o
ca

ti
o

n
 p

ro
p

er
ti

es

T
ec

h
n
o

lo
g

y

M
ar

k
et

in
g

In

ce
n
ti

v
es

R

ea
so

n
s

o
f

fa
il

u
re

S

u
g
g
e
st

io
n

s

B
el

le
v
u
e

S
m

ar
t

T
ra

v
el

er

(H
as

el
k
o

rn
 e

t
al

.,
 1

9
9

5
)

P
h
as

e
1

:
1

9
9

3

P
h
as

e
2

:
1

9
9

5

W
as

h
in

g
to

n

D
en

se
 e

m
p

lo
y
m

e
n
t

lo
ca

ti
o

n
 i

n
 t

h
e

ci
ty

’s

d
o

w
n
to

w
n

 a
re

a,
 w

h
er

e

th
e

m
aj

o
ri

ty
 o

f

co
m

m
u

te
rs

 t
ra

v
el

V
o

ic
e-

ac
ti

v
at

ed

m
at

c
h
in

g

se
rv

ic
e

 -

 -

L
ac

k
 o

f
fl

ex
ib

il
it

y
,

la
c
k
 o

f

co
n
v
e
n
ie

n
ce

,

T
im

e
co

n
su

m
in

g

se
ar

ch
in

g
 a

n
d

 c
o

n
fi

rm
in

g

p
ro

ce
ss

,

L
ac

k
 o

f
cr

it
ic

al
 m

as
s,

L
ac

k
 o

f
a
w

ar
en

e
ss

T
an

g
ib

le
 i

n
ce

n
ti

v
e
s,

G
u
ar

an
te

ed
 r

id
e

h
o

m
e,

C
o

n
fi

rm
in

g
 r

id
es

 o
n
e

h
o

u
r

b
ef

o
re

 t
h
e

d
ep

ar
tu

re
 t

im
e,

P
re

sc
re

en
in

g
 p

ro
ce

ss
,

 S
ta

ti
o

n
s

w
h

er
e

p
eo

p
le

 c
an

m
ee

t

L
o

s
A

n
g
e
le

s
S

m
ar

t

T
ra

v
el

er
 (

G
iu

li
an

o
 e

t
al

.,

1
9

9
5
)

1
9

9
4

L
o

s

A
n

g
el

es
,

C
al

if
o

rn
ia

 -

K
io

sk
s

 -

 -

L

ac
k
 o

f
se

n
se

 o
f

se
cu

ri
ty

,

N
o

 m
ar

k
et

in
g
,

In
ef

fe
ct

iv
e

te
c
h
n
o

lo
g

y

(v
o

ic
e

m
ai

l
a
n
d

 w
a
it

in
g

fo
r

re
tu

rn
 c

al
ls

)

 -

C
o

ac
h
el

la
 V

al
le

y

T
ra

n
sa

ct
io

n
 N

et
w

o
rk

(L
ev

o
fs

k
y
 a

n
d

 G
re

en
b

er
g
,

2
0

0
1
)

1
9

9
4

R
iv

er
si

d
e,

C
al

if
o

rn
ia

 -

K
io

sk
s

 -

 -

la

ck
 o

f
in

te
re

st

 -

S
ac

ra
m

e
n
to

 D
y
n
a
m

ic

R
id

es
h
ar

in
g
 p

ro
je

ct

(K
o

w
sh

ik
 e

t
al

.
1

9
9

3
)

1
9

9
4

 S
ac

ra
m

en
t,

C
al

if
o

rn
ia

 -

E
m

ai
l

a
n
d

ce
ll

p
h
o

n
e

n
u

m
b

er

 -

-

S
ec

u
ri

ty
 c

o
n
ce

rn
s,

In
ad

eq
u
at

e
m

ar
k
et

in
g
,

L
ac

k
 o

f
p

ro
p

er
 i

n
ce

n
ti

v
e
s

P
re

-s
cr

ee
n
in

g
 p

ro
ce

ss
,

F
ix

ed
 p

a
y
m

en
t

sc
h
e
m

e

S
ea

tt
le

 S
m

ar
t

T
ra

v
el

er

(D
ai

le
y
 e

t
al

.
1

9
9

9
)

1
9

9
6

 S
ea

tt
le

,

W
as

h
in

g
to

n

U
n
iv

er
si

ty
 o

f

W
as

h
in

g
to

n

(f
a
m

il
ia

ri
ty

 w
it

h

co
m

m
u

n
ic

at
io

n

te
ch

n
iq

u
es

 a
n
d

sc
h
ed

u
le

 o
f

cl
as

se
s)

 -

Y
es

(t
o

w
ar

d

th
e

en
d

)

 -

 -

M
ar

k
et

in
g

R
id

eN
o

w
 (

N
el

so
n

N
y
g
aa

rd
 C

o
n
su

lt
in

g

A
ss

o
ci

at
es

 a
n
d

 R
id

eN
o

w
,

In
c,

 2
0

0
6

)

2
0

0
5

D
u
b

li
n
/P

le
as

an
to

n

C
al

if
o

rn
ia

 -

 P
h
o

n
e

Y
es

F

re
e

B
A

R
T

ti
ck

et
s,

G
u
ar

an
te

ed

ri
d

e
h
o

m
e

C
u

m
b

er
so

m
e

sy
st

e
m

,

S
h
o

rt
 n

o
ti

fi
ca

ti
o

n
 t

im
e

fr
a
m

e
th

a
n
 t

h
e

1
5

 m
in

u
te

s

S
u
st

ai
n
ed

 m
ar

k
et

in
g
,

P
ar

k
in

g
 s

p
ac

es
 a

s
an

 i
n
ce

n
ti

v
e

w
h

er
e

ap
p

li
ca

b
le

,

A
n
 e

as
y
-t

o
-u

se
 s

y
st

e
m

M
o

re
 l

ea
d

 t
im

e

G
o

o
se

 N
et

w
o

rk
s

C
o

.

(H
ei

n
ri

ch
,

2
0

1
0

)

 -

S
an

F
ra

n
ci

sc
o

,

C
al

if
o

rn
ia

F
o

r
th

e
e
m

p
lo

y
ee

s
o

f

th
e

G
en

e
n
te

c
h
 C

o
.,

S
M

S
 t

ex
ti

n
g

$

4
 p

er
 d

ay

co
m

m
u

te

in
ce

n
ti

v
e

p
ro

g
ra

m

C
o

m
p

et
it

iv
e

m
o

d
es

(
th

e

w
el

l-
eq

u
ip

p
ed

 b
u
ss

es

o
ff

er
ed

 b
y
 G

en
e
n
te

c
h
),

R
eq

u
ir

ed
 a

 h
ig

h
 l

e
v
el

 o
f

cu
st

o
m

er
 s

er
v
ic

e
th

at
 w

a
s

h
ar

d
 t

o
 s

u
st

ai
n
.

 -

A
v
e
g
o

 (
H

ei
n
ri

ch
,

2
0

1
0

;

U
n
iv

er
si

ty
 C

o
ll

e
g
e

C
o

rk

(U
C

C
)

o
ff

ic
ia

l
st

u
d

e
n
t

n
e
w

s)

2
0

1
1

U
n
iv

er
si

ty

C
o

rk
,

Ir
el

an
d

F
ro

m
 C

ar
ri

g
al

in
e

to

C
o

rk
 (

h
ig

h
ly

 u
se

d
,

o
th

er
 m

o
d

es
 n

o
t

av
ai

la
b

le
)

iP
h
o

n
e

ap
p

,

In
te

rn
et

ac
ce

ss

 -

-

-

-

F
ig

u
re

2.
1:

H
is

to
ry

of
ri

d
es

h
ar

in
g

(p
ar

t
I)

19

P
ro

je
ct

 n
am

e

T
im

e

L
o

ca
ti

o
n

L

o
ca

ti
o

n
 p

ro
p

er
ti

es

T
ec

h
n
o

lo
g

y

M
ar

k
et

in
g

In

ce
n
ti

v
es

R

ea
so

n
s

o
f

fa
il

u
re

S

u
g
g
e
st

io
n

s

G
o

5
2

0
 (

S
at

e
fu

n
d

ed
,

b
y

A
v
e
g
o

)
p

h
as

e
1

 (
R

T
ri

p
;

O
'S

u
ll

iv
a
n
 2

0
1

1
)

2
0

1
1

W
as

h
in

g
to

n

S
R

5
2

0
 c

o
rr

id
o

r
(a

cr
o

w
d

ed
 c

o
rr

id
o

r)

A
p

p
s,

in
te

rn
e
t-

en
ab

le
d

ce
ll

p
h
o

n
es

Y
es

F

re
e

g
as

ca
rd

s,

iP
h
o

n
e

ch
ar

g
er

s,

A
v
e
g
o

cr
ed

it
s,

L
e
n
g
th

 o
f

th
e

p
re

-

sc
re

en
in

g
 p

ro
ce

ss

 -

G
o

5
2

0
 (

P
ri

v
at

e
fu

n
d

ed
,

b
y
 A

v
e
g
o

)
p

h
as

e
2

(R
T

ri
p

;
O

'S
u
ll

iv
a
n
 2

0
1

1
)

2
0

1
1

 W
as

h
in

g
to

n

R
o

u
te

 c
o

n
n
ec

ti
n

g

C
ap

it
o

l
H

il
l

in
 S

ea
tt

le

to
 O

v
er

la
k
e

in

R
ad

m
o

n
d

,
w

h
er

e
th

e

M
ic

ro
so

ft
 c

a
m

p
u
s

w
a
s

lo
ca

te
d

.

A
p

p
s,

In
te

rn
et

-

en
ab

le
d

ce
ll

p
h
o

n
es

.

 -

G
as

 c
ar

d
s,

g
if

t
ca

rd
s,

d
ra

w
in

g
s,

fr
ee

 A
v
e
g
o

cr
ed

it
s,

G
u
ar

an
te

ed

R
id

e
H

o
m

e

 -

In
v
o

lv
e
m

e
n
t

o
f

T
D

M
s

an
d

e
m

p
lo

y
er

s,

to
 b

u
il

d
 t

h
e

cr
it

ic
al

 m
a
ss

cr
o

w
d

ed
 c

o
rr

id
o

rs
 t

o
 b

u
il

d
 t

h
e

cr
it

ic
al

 m
as

s

W
eG

o
 (

W
eg

o
 r

id
es

h
ar

e)

2
0

1
3

C
al

if
o

rn
ia

,

S
an

F
ra

n
ci

sc
o

B
ay

 a
re

a

 -

 -

 -

D
if

fe
re

n
t

in
ce

n
ti

v
e
s

fo
r

d
if

fe
re

n
t

re
g
io

n
s

 -

 -

F
ig

u
re

2.
2:

H
is

to
ry

of
ri

d
es

h
ar

in
g

(p
ar

t
II

)

20

2.2 Ridesharing in Perspective

Congestion in urban transportation networks is one of the common problems faced by many

countries around the world. In addition to having a direct impact on travel time and fuel

consumption, congestion imposes indirect costs by increasing travel time uncertainty, as

well as emission levels which adversely affect human health and ecosystems. Managing

congestion by expanding the infrastructure is costly and damaging to the environment. An

alternative way is to make more efficient use of the existing transportation infrastructure.

Public transportation is a conventional way of using the existing capacity on the roads more

efficiently.

Transit systems in urban networks mainly include buses and rail services. They typically

carry multiple passengers, and therefore can help reduce vehicle miles traveled (VMT) and

ease congestion in urban networks. One drawback of transit services is that they operate on

fixed routes and schedules, which limits their coverage of the network, both geographically

and temporally. Urban transit systems are typically and necessarily designed to satisfy peak

period demands. Due to significant peaking behavior of demand, the system capacity is often

drastically under-utilized during off-peak periods, which causes significant cost inefficiencies.

The government regulations on fares exacerbate the cost concerns. Thus transit services

usually fail to act as financially independent entities, and are in need of subsidies.

Para-transit services were originally introduced to run as supplementary services alongside

transit, and as a means to increase the flexibility of public transportation. These services are

demand-responsive, and usually serve multiple passengers at a time, based on spatiotemporal

proximity of the requests they receive. Routes and schedules are fairly flexible and demand-

dependent. Para-transit services include all shuttle-like services that serve customers such

as airport travelers, employee or student commuters, or the elderly and disabled. Since the

passage of the Americans with Disabilities Act of 1990, however, the term para-transit has

21

been used more commonly to refer to the services provided to persons with disabilities, or

to the elderly. In this dissertation, we reserve the term para-transit to refer to such services.

Although para-transit services can be beneficiary to demographics they target, these demo-

graphics are fairly limited. In addition, most services that fall under this category are offered

by non-profit organizations that are supported by federal funding. Due to the limit on the

amount of subsidies, it is not possible to extend these services to the general public. These

limitations along with the desire for a more comfortable (and possibly quicker) ride have

resulted in a much higher demand for private sector alternatives, such as taxis.

Taxis are a private form of demand-responsive transportation alternative. They provide

door-to-door transportation, but at a higher cost that not everyone can afford. Shared

taxi/limousine/shuttle services provide an opportunity for customers to share their trips,

cutting the cost of the journey, and potentially reducing the total miles traveled in the

system (which translates into lower environmental impact). Over the years, different shared-

use services have been designed. Flexible route transit systems (Quadrifoglio et al. 2008; Li

and Quadrifoglio 2010; Qiu et al. 2014), and High-Coverage Point-to-Point Transit (HCPPT,

Cortés and Jayakrishnan, 2002) are a few examples. HCPPT is perhaps the first conceptual

system that envisaged the option of private drivers offering rides to be shared, and entirely

eliminated fixed route transit, though the somewhat misleading word ”transit” was used in

the name.

In all alternative modes of transportation above, with the exception of HCPPT, drivers work

as system employees. Some of the discussed transportation alternatives are more flexible

than others in terms of routing and scheduling, and some have the potential to benefit the

environment and customers by allowing them to share (parts of) their trips. In the next set

of transportation alternatives we discuss, drivers are not employed by the agencies.

A different family of transportation alternatives which has attracted considerable attention

22

during the recent years is founded based on the principle of shared-use mobility (Shaheen

and Chan, 2015). These alternatives try to reduce the cost of flexible transportation by

reducing (or completely eliminating) the capital investments and the operating costs.

Informal carpooling is one of the first and common forms of trip sharing, in which already-

familiar individuals use the same vehicle for their travel, which typically involves the same

origin and destination points. Examples include parents who take turns in taking their

children to school, colleagues who travel to work together, etc. In this form of carpooling,

vehicles belong to individuals, and the driver of the vehicle has personal interest in the

trip, regardless of whether additional passengers are present in the car. The incentives for

informal carpooling could be saving time through carpool lanes, or not having to drive one’s

own vehicle every single day, if participants take turns in driving. This form of carpooling is

usually pre-arranged, and happens among individuals who share commonalities beyond the

time and location of their trips.

Transportation Network Companies (TNC), such as Uber and Lyft, are among the more

recent faces of shared-use mobility alternatives. TNCs use private vehicle owners and their

personal vehicles to provide flexible and on-demand transportation services. These indi-

viduals work for the company as independent contractors, as opposed to employees. This

substantially reduces the cost of capital and human resources, while generating revenue for

both the company and the drivers. Essentially, the basic services provided by TNCs act

as a lower-cost alternative to taxi services, but not only do they not address the problem

of increasing travel demand and congestion, but they add to it. In terms of sustainability,

TNCs impose the same cost to the environment as taxi companies do. Recently, two of the

more prominent TNCs, Uber and Lyft, have introduced sharing services Uberpool and Lyft

Line, respectively. Such services can certainly reduce the cost and environmental impacts of

the base services.

Peer-to-peer (P2P) ridesharing aims at capturing the benefits of TNCs while alleviating

23

their adverse impact on the environment. These systems are founded on the principle of

sharing economy. Sharing economy, also known as collaborative consumption, is a fairly old

concept that focuses on the benefits obtained from sharing resources (products or services)

that would otherwise go unused. This economic model has gained more popularity in the

recent years, giving birth to many P2P services in different fields (for examples, refer to

Böckmann, 2013). The advent of the internet has extended the domains of sharing economy

to global populations, and has highlighted its benefits. Moreover, new computer platforms

allow easy and quick development of companion mobile applications that facilitate sharing

economy.

Similar to TNCs, drivers in a P2P ridesharing system use their own vehicles to carry pas-

sengers, and do not work as agency employees. Contrary to the TNC operations, drivers in

a P2P ridesharing system are making trips to perform activities of self interest (as in the

case of informal carpooling), i.e., they do not roam around the city only to pick up and

deliver passengers. This setting can lead to services that are more environmentally-friendly

and cost-efficient compared to the sharing services offered by TNCs.

The overwhelming success and good acceptance of TNCs by the public suggest a bright

future for more environmentally-friendly ridesharing systems. Since founded in 2009, Uber

has managed to expand its operations in 75 countries and more than 450 cities worldwide.

According to business insider, in 2014 Uber had more than 160,000 registered driver-partners

in the US, and the number of new drivers subscribing to Uber each month increased expo-

nentially, approaching 40,000 (Business Insider, 2015). The company reportedly had $1.5

billion revenue in 2015 (Carson, 2016).

Table 2.1 summarizes the attributes of the transportation alternatives discussed above. This

table suggests that ridesharing systems have the potential to outperform other alternatives in

terms of cost, flexibility, and impact on the congestion and the environment, if they succeed

to operate as financially independent systems.

24

T
ab

le
2.

1:
T

ra
n
sp

or
ta

ti
on

al
te

rn
at

iv
es

d
iff

er
in

g
in

fl
ex

ib
il
it

y,
co

st
,

an
d

en
v
ir

on
m

en
ta

l
im

p
ac

ts

T
ra

n
sp

or
ta

ti
on

al
te

rn
at

iv
es

T
ra

n
si

t
P

a
ra

-T
ra

n
si

t
T

a
x
i

S
h

a
re

d
In

fo
rm

a
l

T
ra

n
sp

o
rt

a
ti

o
n

P
2
P

(d
is

a
b

le
d

)
T

a
x
i/

V
a
n

C
a
rp

o
o
li

n
g

n
et

w
o
rk

co
m

p
a
n

ie
s

(T
N

C
)

R
id

es
h

a
ri

n
g

D
ri

ve
rs

E
m

p
lo

ye
es

!
!

!
!

P
ee

r
to

ri
d

er
s

!
!

A
rr

an
ge

m
en

t
P

re
-a

rr
an

ge
d

!
!

!
!

!
!

O
n

-d
em

an
d

!
!

!
!

!

M
u

lt
ip

le
p

as
se

n
ge

rs
!

!
!

!
!

!

F
in

an
ci

al
ly

se
lf

-s
u

ffi
ci

en
t

!
!

!
!

!
?

C
os

t
to

cu
st

om
er

s
L

ow
L

ow
H

ig
h

M
ed

iu
m

L
ow

L
ow

L
ow

F
le

x
ib

il
it

y
L

ow
M

ed
iu

m
H

ig
h

M
ed

iu
m

M
ed

iu
m

H
ig

h
H

ig
h

T
ab

le
2.

2:
L

it
er

at
u
re

on
P

2P
ri

d
es

h
ar

in
g

A
u

th
or

F
le

x
ib

le
M

u
lt

i-
M

u
lt

ip
le

F
o
rm

u
la

ti
o
n

/
O

p
ti

m
a
l

P
a
th

s
H

o
p

R
id

er
s

S
o
lu

ti
o
n

A
lg

o
ri

th
m

S
o
lu

ti
o
n

W
ol

fl
er

C
al

vo
et

al
.

(2
00

4)
!

!
G

re
ed

y
h

eu
ri

st
ic

B
al

d
ac

ci
et

al
.

(2
00

4)
!

!
O

p
ti

m
iz

a
ti

o
n

!

D
u

sa
n

an
d

M
au

ro
(2

00
5)

!
!

B
ee

co
lo

n
y

o
p

ti
m

iz
a
ti

o
n

(m
et

a
-h

eu
ri

st
ic

)

A
ga

tz
et

al
.

(2
00

9)
!

!
O

p
ti

m
iz

a
ti

o
n

!

A
ga

tz
et

al
.

(2
01

1)
!

O
p

ti
m

iz
a
ti

o
n

!

H
er

b
aw

i
an

d
W

eb
er

(2
01

1a
)

!
G

en
et

ic
/
E

vo
lu

ti
o
n

a
ry

A
lg

o
ri

th
m

s

H
er

b
aw

i
an

d
W

eb
er

(2
01

2)
!

!
E

x
a
ct

fo
rm

u
la

ti
o
n

+
H

eu
ri

st
ic

so
lu

ti
o
n

D
i

F
eb

b
ra

ro
et

al
.

(2
01

3)
!

!
O

p
ti

m
iz

a
ti

o
n

!

G
h

os
ei

ri
(2

01
3)

!
!

E
x
a
ct

F
o
rm

u
la

ti
o
n

+
H

eu
ri

st
ic

so
lu

ti
o
n

!

S
ch

au
b

et
al

.
(2

01
4)

!
B

ip
a
rt

it
e

M
a
tc

h
in

g
!

25

2.3 P2P Ride-Matching

The Multi-hop P2P ride-matching problem can be formulated as a special case of the general

pick-up and delivery problem (GPDP). GPDP consists of devising a set of routes to satisfy

transportation requests with given loads, and origin/destination locations. Vehicles that

operate these routes each have a certain origin, destination, and capacity (Savelsbergh and

Sol (1995)).

The dial-a-ride problem (DARP) is a special case of the GPDP, where all vehicles share the

same origin and destination depot, and the loads to be transported are people. Although

DARP is usually used in systems that aim at transporting elderly or handicapped people,

this problem is very close to the ride-matching problem in ridesharing systems.

In its basic form, DARP considers a depot where a fleet of homogeneous vehicles start their

trips in the morning, and to which they return at the end of their shifts. Each passenger is

assumed to make the entire trip in the same vehicle, i.e. the possibility of transfers between

vehicles is not considered. Variants of DARP that are more application-friendly consider

time windows for the pick-up and delivery of passengers (Jaw et al., 1986; Psaraftis, 1983).

Cordeau and Laporte (2007a,b) provide an overview of the literature on DARP.

In reality, the problem of transporting passengers is often more complex than the basic form

of DARP. Some agencies have their fleet located at stations throughout their operating area.

This has motivated the development of the multi-depot formulation for DARP (MD-DARP)

(Cordeau and Laporte 2007a). Recently, Carnes et al. (2013) and Braekers et al. (2014) have

added heterogeneity into the mix, and studied the multi-depot heterogeneous DARP (MD-H-

DARP). These studies include heterogeneity among vehicles (multiple depots, capacity, level

of service, and operating costs) as well as passengers (level of care, accompanying individuals,

required resources, and total number of passengers).

26

An additional degree of flexibility that has recently been added to the original DARP is

the possibility for passengers to transfer between multiple vehicles/modes of transportation,

leading to the emergence of the DARP with transfers (DARPT). Masson et al. (2014a),

Stein (1978), and Liaw et al. (1996) are the only papers that have studied this variant of the

problem, to the best of our knowledge. Masson et al. (2014a) limit the number of potential

transfers to one. Stein (1978) does not put a constraint on the capacity of vehicles, and works

with demand at an aggregate level, rather than the individual passengers’ travel desires. Liaw

et al. (1996) use heuristic algorithms to propose multi-modal routes to para-transit users.

In their study, they try to route para-transit vehicles to carry passengers from their homes

to bus stops, and from bus stops to their destinations.

The P2P ride-matching problem has attracted attention in academia only in the very re-

cent years. Ride-matching problems share some of the characteristics of the more advanced

DARPs, such as multiple depots and heterogeneous vehicles and passengers. Drivers in

ridesharing systems are traveling to perform activities, and have distinct origin and desti-

nation locations (multi-depot), different vehicle capacities (heterogeneity), and rather nar-

row travel time windows. These factors can lead to the matching problems in ridesharing

systems being spatiotemporally sparse, in general. One characteristic that differentiates the

ride-matching problem from DARP is the fact that the set of vehicles in a ridesharing system

is neither fixed (i.e. not a certain fleet size is available on a regular basis), nor deterministic

(i.e. the system does not know in advance the time windows and origins and destinations of

drivers’ trips). In addition, drivers who make their vehicles available in ridesharing systems

are peers to the passengers who are looking for rides, and therefore measures of quality of

service that are reserved only for passengers in DARPs should be extended to drivers as well

in ridesharing systems.

Agatz et al. (2012) and Furuhata et al. (2013) classify ride-sharing systems based on differ-

ent criteria, and discuss the challenges ridesharing systems face. In its simplest form, the

27

ride-matching problem matches each driver with a single rider. This can be modeled as a

maximum-weight bipartite matching problem that minimizes the total rideshare cost (Agatz

et al., 2011).

There are also ride-matching problems that are more complex and try to take advantage of

the full unused capacity of vehicles by allowing multiple riders in each vehicle. This form

of ridesharing is similar to the carpooling problem where a large employer encourages its

employees to share rides to and from work (Baldacci et al., 2004, Teodorović and Dell’Orco,

2005, Schaub et al., 2014, and Wolfler Calvo et al., 2004).

The taxi-sharing problem, as formulated by Hosni et al. (2014), also tries to reduce the cost

of taxi services by having people share their rides. Herbawi and Weber (2012) have studied

the problem of matching one driver with multiple riders in the context of ridesharing, and

have proposed non-exact evolutionary multi-objective algorithms. Di Febbraro et al. (2013)

formulate an optimization problem to model the one-to-many ridesharing systems (in which

each rider is paired with only one driver, though each driver can carry multiple riders), and

use optimization engines to solve it. Stiglic et al. (2015) manage to increase the number of

served riders by having riders walk to meeting points, where multiple riders can be picked

up by a driver. The number of stops for each driver, however, is limited to a maximum of

two.

Herbawi and Weber (2011a,b) model another variant of the ride-matching problem in which

a single rider can travel by transferring between multiple drivers. They propose a genetic

algorithm to solve this one-to-many matching problem. Masson et al. (2014b) study a

similar problem in a multi-modal environment, where goods are carried using a combination

of excess bus capacities and city freighters. They propose an adaptive large neighborhood

heuristic algorithm to solve the problem. Coltin and Veloso (2014) show the fuel efficiency

that including transfers in the riders’ itineraries can offer, using three heuristic algorithms.

28

Many-to-many matching problems allow drivers to have multiple passengers on board at

each point in time, and riders to transfer between drivers (Agatz et al., 2009). Cortés et al.

(2010) were the first to formally formulate a many-to-many pick-up and delivery problem.

They introduced an exact branch-and-cut solution method. The largest example they solved,

however, consisted of 6 requests, two vehicles, and one transfer point. To the best of our

knowledge, there are only two studies that model many-to-many ridesharing systems. Agatz

et al. (2009) is one of the first to take an optimization approach toward modeling many-

to-many ridesharing systems. In their study, the authors discuss modeling multi-modal

ridesharing systems that allow for transfers between different modes of transport. However,

they do not discuss a solution methodology. Ghoseiri (2013) formulates a mixed integer

problem (MIP) to model the many-to-many ridesharing system. Their proposed solution

heuristic limits the number of transfers to a maximum of two.

In addition to multi-hop ridesharing, a solution methodology that can handle unlimited

number of transfers can be used to optimize multi-modal transportation networks, where,

for example, ridesharing is combined with public transportation. In such a scenario, each

public transport line acts as a driver with a fixed route in the ridesharing system. In case

of a multi-modal network, allowing for higher numbers of transfers becomes a necessity, and

an algorithm that can accomplish routing and scheduling of passengers in real-time becomes

necessary.

29

Chapter 3

Peer-to-Peer Ridesharing System

The ridesharing system defined in this book contains a set of participants P . These partici-

pants are divided into a set of riders, R, who are looking for rides, and a set of drivers, D, who

are willing to provide rides (P = R∪D). Drivers may have different incentives to participate

in the ridesharing system, including monetary compensation, using high occupancy vehicle

(HOV) lanes, or reduced-cost parking, among others. Different driver incentives for partic-

ipating in ridesharing can translate into different objective functions for the corresponding

ride-matching problem.

The system finds matches for riders by optimally routing drivers in the network. In order

to guarantee a high quality of service, both riders and drivers provide a time window to

specify the start and end of their trips, and a maximum ride time. Furthermore, riders can

specify the maximum number of transfers they are willing to make, and drivers can put a

limit on the number of riders they want to have on board at each moment in time. The term

“real-time” emphasizes the capability of the system to make ride-matches in a short period

of time, for implementation with frequent re-optimizations using newer data over time.

To facilitate pick-ups and drop-offs, a set of stations, S, are identified in the network. Sta-

30

tions are pre-specified locations where participants can start and end their trips, and riders

can switch between drivers and/or to other modes of transport, such as transit. Strate-

gic identification of stations is central to the performance of the system. Lessons learned

from the previous P2P ridesharing systems suggest that it is better for riders to be picked

up/dropped off at pre-specified locations, rather than their homes (or the exact location

where their trips start/end) for two reasons (Heinrich, 2010). First, these locations could be

hard to find for drivers, and therefore riders could miss their scheduled rides. In addition,

drivers could have a hard time finding an appropriate location to park their vehicles. Second,

some drivers and riders would understandably be reluctant to reveal their home address to

others. In addition, as shown by Stiglic et al. (2015), introducing stations can increase the

number of successful matches. Note, however, that these stations could be fairly small in its

infrastructural scope, in that they could be spots where a vehicle or two could stop and a

few riders could wait.

Every active participant p of the rideshare system provides to the system their origin and

destination stations (OSp and DSp respectively), the earliest acceptable time to depart from

the origin station, TEDp , the latest acceptable time to arrive at the destination station, TLAp ,

and their maximum ride time, T TBp . The travel time window for participant p is defined as

TWp = [TEDp , TLAp]. In addition, each participant is asked to provide a notification deadline

by which they need to be informed of any matches made for them. Some of these parameters

are displayed in Figure 3.1.

Drivers should announce the capacity of their vehicles, Cd. This could simply be the physical

capacity of the vehicle, or the maximum number of riders the driver is willing to carry in

their vehicle at any point in time. Riders can specify the maximum number of transfers

(change of vehicles), Vr, that they are willing to make to get to their destinations.

The goal of the ridesharing system in this dissertation is to maximize the matching rate

(although we discuss various objective functions in Chapter 4). For now, let us assume that

31

Figure 3.1: Inputs from Participants

drivers leave the route choice to the system. This does not preclude the case of drivers who

want to follow their own fixed routes, as those routes can be specified as successive nodes

and entered into the formulation as fixed parameters.

3.1 Implementation Strategies

There are multiple implementation strategies that the operator of a ridesharing system can

consider. The implementation strategy for a system depends greatly on the nature of the

requests received by the system, specifically on the lag between the time participants register

in the system, their notification deadlines, and their earliest departure times.

A system whose participants’ registration times are very close to their notification deadlines,

is highly dynamic. Services offered by ridesourcing companies such as Uber and Lyft are

of this nature. For such systems, a very fast matching algorithm is necessary. In chapter

32

6, we introduce a Dynamic Programming (DP) algorithm that is capable of handling the

matching in such highly dynamic systems by serving riders on a First-Come First-Served

(FCFS) basis.

Another implementation strategy is to serve ride requests on a rolling time-horizon basis

(Figure 3.1). In such an implementation, the system operator optimizes the system period-

ically, at pre-specified points in time called “re-optimization times” (say every 30 minutes

starting from 12:00 A.M.). At each re-optimization time, a matching problem is solved that

includes all the riders whose travel time windows intersect with the period for which the

system is being optimized. After solving the optimization problem, the itineraries of partici-

pants whose notification deadlines lie within the optimization period is fixed, and announced

to them. In Chapter 7, we propose a decomposition algorithm that can optimally solve this

many-to-many matching problem.

In Chapter 7, we also discuss the operations of a system that falls in between the two

implementation strategies discussed above, where a subset of participants register their trips

ahead of their actual departure times, and the rest of participants register their trips not

long before they plan to leave their origin stations. In such a scenario, the decomposition

algorithm in Chapter 7 can be used for individuals who announce their trips ahead of time,

and the DP algorithm in Chapter 6 can be used for those who arrive at the system in

real-time.

In a highly dynamic system where a participant’s registration time and notification deadline

are close, it could be the case that the participant’s earliest departure time is further ahead

in time, or their maximum ride time is higher than their shortest path travel time. For such

instances, we propose a P2P ride exchange mechanism in Chapter 8, which enables matched

riders to sell their current itineraries to real-time riders in exchange for a less convenient

itinerary, and a monetary compensation. The P2P exchange mechanism can also be used

in a mixed system, where a subset of participants announce their trips ahead of time, and

33

a subset arrive in real-time. In such a system, the P2P ride exchange mechanism gives the

real-time riders a higher chance of being served.

Another way to increase the matching rate in a ridesharing system is to use historical data

to forecast the arrival of participants who tend to register their trips in real-time, and route

drivers to put them in spatiotemporal proximity of their trips. Chapter 9 is dedicated to this

concept. In this chapter, we introduce the stochastic ride-matching problem and propose a

solution methodology to solve this problem efficiently.

34

Chapter 4

Mathematical Formulation

The role of the ride-matching problem is to devise itineraries that can take riders to their

destinations by optimally routing drivers. Itineraries have to comply with the riders’ spec-

ified maximum number of transfers, and the capacity of drivers’ vehicles, as well as the

participants’ travel time windows and maximum ride times. The ride-matching problem will

devise itineraries for the matched riders in the system, and all drivers, matched or not.

4.1 Time-Expanded Network

We formulate the general many-to-many ride-matching problem in a time-expanded network.

By introducing stations, we discretize the two-dimensional network into a single space dimen-

sion. In addition, we discretize the study time horizon into an ordered set of indexed time

intervals of small duration, ∆t, to allow for using time-dependent travel-time matrices. We

define set Tp to contain the indices for all time intervals within the range TWp = [TEDp , TLAp]

for participant p.

In a network discretized in both time and space, we define node i, ni, as a tuple (ti, si), where

35

Figure 4.1: Example of links in a time-expanded network

ti is the time interval one may be located at station si. Subsequently, a link ` is defined as

(ni, nj) = (ti, si, tj, sj), where ti is the time interval one has to leave station si, in order to

arrive at station sj during time interval tj. We generate links between neighboring stations

only, i.e. a link exists between stations si and sj if traveling from si to sj does not require

passing through another station. Naturally, the links are determined by the travel time

matrix, which could be time-dependent, and travel times used must ensure that a traveler

leaving at the very end of the time interval of ti can arrive at least by the very end of the

time interval tj. We denote the set of links by L.

Figure 4.1 demonstrates an example of a link in a time-expanded network. If a participant

leaves station 1 at time interval 1, they arrive at station 2 at time interval 2. The starting

and ending nodes of this trip are ns = (ts, ss) = (1, 1), and ne = (te, se) = (2, 2) respectively.

The resulting link is ` = (ts, ss, te, se) = (1, 1, 2, 2). In this figure, we can also see the link

(2, 2, 3, 4). These two links together form a path that leaves station 1 at time interval 1, and

arrives at station 4 at time interval 3.

36

4.2 Main Formulation

To mathematically model the ride-matching problem, we use four sets of decision variables,

as defined in equations (10.1)-(4.4).

xd` =


1 Driver d travels on link `

0 Otherwise

(4.1)

yrd` =


1 Rider r travels on link ` with driver d

0 Otherwise

(4.2)

zr =


1 Rider r is matched

0 Otherwise

(4.3)

udr =


1 Driver d contributes to the itinerary for rider r

0 Otherwise

(4.4)

Equation (10.3a) presents the objective function of the problem. A ride-matching prob-

lem can have various objectives, ranging from maximizing profits to minimizing the total

miles/hours traveled in the network. This objective can vary depending on the type of the

agency that is managing the system (public or private), the level of acceptance of the sys-

tem in the target community, and the ridesharing incentives. For a ridesharing system in

its infancy, it seems logical to maximize the matching rate. We use this objective for the

ridesharing system in this dissertation.

The first term in the objective function (10.3a) maximizes the total number of served riders,

while the second term minimizes the total number of transfers in the system, and is added

only for the purposes described in Proposition A (in the Appendix A). The weight Wr should

be set to a proper value (any value smaller than 1
Vr

, where Vr is the maximum number of

37

transfers rider r is willing to make) to ensure that serving the maximum number of riders

remains the primary objective of the system.

The sets of constraints that define the ridesharing system are presented in (10.3b)-(4.5m).

Constraint sets (10.3b)-(10.3d) route drivers in the network. Constraint set (10.3b) directs

drivers in set D out of their origin stations, and (10.3c) ensures that they end their trips at

their destination stations. Note that we do not use a separate set of constraints to enforce

the travel time windows for drivers. Such constraints are satisfied automatically, since we

limit the set of links in constraint sets (10.3b) and (10.3c) to the ones whose time intervals

are within the driver’s travel time window (in set Td).

Constraint set (10.3d) is for flow conservation, enforcing that a driver entering a station in

a time interval, exits the station in the same time interval. Notice that participants might

not physically leave a station. Members of the link set L in the form (t, s, t+ 1, s) represent

the case where a participant is physically remaining at station s for one time interval, but

technically leaving node (t, s) for node (t+ 1, s). In addition, constraint set (10.3d) enforces

the multi-hop property of the ridesharing system. Riders can enter a node with a driver,

and exit it with a different driver, suggesting a transfer between the two drivers (or modes of

transportation). Constraint set (4.5e) limits the total travel times by drivers based on their

maximum ride times.

38

Max
∑
r∈R

zr −
∑
r∈R

Wr

∑
d∈D

udr (4.5a)

∑
`∈L:

si=OSd;ti,tj∈Td

xd` −
∑
`∈L:

sj=OSd;ti,tj∈Td

xd` = 1; ∀d ∈ D (4.5b)

∑
`∈L:

sj=DSd;ti,tj∈Td

xd` −
∑
`∈L:

si=DSd;ti,tj∈Td

xd` = 1; ∀d ∈ D (4.5c)

∑
ti,si

`=(ti,si,t,s)∈L

xd` =
∑
tj ,sj

`=(t,s,tj ,sj)∈L

xd` ; ∀d ∈ D, ∀t ∈ Td,∀s ∈ S\{OSd ∪DSd} (4.5d)

∑
`∈L

(tj − ti)xd` ≤
T TBd
∆t

; ∀d ∈ D (4.5e)

∑
d∈D′

∑
`∈L:

si=OSr ;ti,tj∈Tr

yrd` −
∑
d∈D′

∑
`∈L:

sj=OSr ;ti,tj∈Tr

yrd` = zr; ∀r ∈ R (4.5f)

∑
d∈D′

∑
`∈L:

sj=DSr ;ti,tj∈Tr

yrd` −
∑
d∈D′

∑
`∈L:

si=DSr ;ti,tj∈Tr

yrd` = zr; ∀r ∈ R (4.5g)

∑
d∈D′

∑
ti,si:

`=(ti,si,t,s)∈L

yrd` =
∑
d∈D′

∑
tj ,sj :

`=(t,s,tj ,sj)∈L

yrd` ; ∀r ∈ R, ∀t ∈ Tr, ∀s ∈ S\{OSr ∪DSr} (4.5h)

∑
d∈D′

∑
`∈L

(tj − ti)yrd` ≤
T TBr
∆t
∀r ∈ R (4.5i)

∑
r∈R

yrd` ≤ Cdx
d
` ; ∀d ∈ D′∀` ∈ L (4.5j)

udr ≥ yrd` ; ∀r ∈ R, ∀d ∈ D, ∀` ∈ L (4.5k)

udr ≤
∑
`∈L

yrd` ; ∀r ∈ R, ∀d ∈ D (4.5l)

∑
d∈D

udr − 1 ≤ Vr; ∀r ∈ R (4.5m)

Rider r’s itinerary is determined by variable yrd` . A value of 1 for this variable indicates

that the rider is traveling on link ` in driver d’s vehicle. By definition, this variable implies

that a rider should always be accompanied by a driver. However, in reality, a rider does

39

not need to be accompanied when he/she is traveling on a link in the form (t, s, t + 1, s),

i.e. staying at station s, waiting to make a transfer. To incorporate this element into the

formulation, we introduce the dummy driver d′. The dummy driver does not have a real

origin or destination in the network. The set of links used by the dummy driver is also

different from the members of the link set L. We define the set of links for the dummy driver

as L′ = {(t, s, t+ 1, s),∀(t, s) ∈ T ×S}. This set includes all the links that represent staying

at a station for one time interval. We define set D′ to include the dummy driver in addition

to the set of drivers, D, i.e. D′ = {D ∪ d′}.

Constraint sets (10.3e)-(10.3g) route riders in the network, and are analogous to (10.3b)-

(10.3d), except for a small variation. While drivers, matched or not, will receive an itinerary,

this is not the case for the riders. Only the riders who are successfully matched will receive

itineraries. This difference is reflected in the formulation by replacing 1 on the right hand

side of constraint sets (10.3b)-(10.3c) by zr in constraint sets (10.3e)-(10.3f). Constraint set

(4.5i) sets a limit on the riders’ maximum ride times.

Constraint set (4.5j) serves two purposes. First, it ensures that riders are accompanied by

drivers throughout their trip. Second, it ensures that vehicle capacities are not exceeded.

Constraint sets (4.5k)-(4.5m) collectively set a limit on the total number of transfers for

each rider. Constraint sets (4.5k) and (4.5l) register drivers who contribute to each rider’s

itinerary (refer to Proposition B in the Appendix B). Constraint set (4.5m) restricts the

number of transfers by each rider (refer to Proposition A in the Appendix A). Finally, all

decision variables of the problem defined in (10.1)-(4.4) are binary.

40

4.3 Problem Variants

It is possible to expand the formulation in model (4.5) to include various other objectives

and/or system characteristics. In this section, we review how some minimal changes can

make the formulation suitable for different circumstances.

4.3.1 Expanding the Objective Function

Although the formulation in model (4.5) is defined for a ridesharing system in its infancy, it

is easy to include additional terms in the objective function or introduce additional decision

variables and constraint sets to cover different objectives ridesharing systems may have

throughout their lifetime. For instance, we can minimize the total travel time by riders

and drivers by adding terms
∑

d∈D
∑

r∈R
∑

`∈L(tj − ti)yrd` and
∑

d∈D
∑

`∈Ld(tj − ti)x
d
` to the

objective function, respectively. We can also further penalize waiting times (during transfers)

for riders by adding the term W
∑

d∈D
∑

r∈R
∑

`=(ti,si,tj ,sj)∈L:si=sj
yrd` to the maximization

objective function, where W is a negative penalty for each interval of waiting.

4.3.2 Targeting Drivers

It is possible to minimize/maximize the number of matched drivers by introducing the de-

cision variable z′d that takes the value of 1 is driver d is matched, and 0 otherwise. In this

case, the unit values on the right hand sides of constraint sets (10.3b) and (10.3c) should be

replaced with z′d, and the term W ′∑
d∈D z

′
d should be added to the objective function.

41

4.3.3 Including Service Times

In the formulation presented in model (4.5), we do not consider an exclusive service time

for participants. This is a realistic assumption, since we are concerned with people and not

goods. However, if service times are required due to practical considerations, they can be

easily integrated by making small changes in the definition of the link sets and constraint

sets (10.3d) and (10.3g). Originally, we defined a link between two stations si and sj if

the two stations were neighboring stations in the network. To account for service times, we

have to redefine the link sets to include links between any two stations. If a rider travels

from their origin station to station k, and then from station k to their destination station,

this implies a transfer at station k. To include service times, equations (10.3d) and (10.3g)

should be replaced with constraint sets (4.6) and (4.7) respectively, where ts is the service

time (in number of time intervals).

∑
ti,si

`=(ti,si,t,s)∈L

xd` =
∑
tj ,sj

`=(t+ts,s,tj ,sj)∈L

xdl ; ∀d ∈ D, ∀t ∈ Td,∀s ∈ S\{OSd ∪DSd} (4.6)

∑
d∈D′

∑
ti,si:

`=(ti,si,t,s)∈L

yrd` =
∑
d∈D′

∑
tj ,sj :

`=(t+ts,s,tj ,sj)∈L

yrd` ; ∀r ∈ R, ∀t ∈ Tr,∀s ∈ S\{OSr ∪DSr} (4.7)

4.3.4 Individual Rationality Constraints

The individual rationality constraints ensure that all the parties involved would benefit from

participating in the system. Adding constraint sets (4.8a)-(4.8c) to model (4.5) ensures that

riders and drivers would benefit from participating in the system (given a distance-based fare

charged to riders, and transfered to drivers), and that the total VMT would not increase as

a result of the operations of the ridesharing system.

42

∑
r∈R

∑
`∈L

(θmζ
m
` y

rd
` + αθtζ

t
`y
rd
`) ≥

∑
`∈L

ζm` xd` − SPm
d + α

(∑
`∈L

ζt` x
d
` − SP t

d

)
∀d ∈ D

(4.8a)∑
d∈D

∑
`∈L

(
θm ζ

m
` y

rd
` + αθtζ

t
`y
rd
`

)
+ wr

∑
d∈D

udr ≤ Gr ∀r ∈ R (4.8b)

∑
d∈D

∑
`∈L

ζm` x
d
` ≤

∑
r∈R

SPr zr +
∑
d∈D

SPd (4.8c)

Constraint set (4.8a) is the drivers’ individual rationality constraint. Here, ζm` and ζt` are

the length of link ` in miles and hours, respectively. Normalizing the unit distance and time

costs of travel for drivers to 1 and α respectively, we assume θm and θt (both between 0 and

1) to be the proportion of the distance- and time-based costs for which the driver will be

compensated, and SPm
d and SP t

d to be the lengths of the shortest distance and time paths

for driver d, respectively. The left hand side of constraint (4.8a) represents the revenue

earned by driver d, and the right hand side of this constraint is the total cost of the detour

undertaken by the driver in order to transport passengers. This constraint set ensures that

drivers earn a non-negative revenue by participating in the ridesharing system.

Constraint set (4.8b) is the riders’ individual rationality constraint. On the left hand side

of the constraint, we have the generalized cost of participating in the ridesharing system

realized by rider r. This cost is composed of three components: a distance-based cost, a

time-based cost, and a penalty associated with discomfort of transfers, ωr, where all three

components are monetized. In case a rider travels with a single driver, ωr represents the

discomfort associated with using the ridesharing system and its inherent uncertainties on

finding a match. Higher number of transfers will be penalized linearly, for simplicity, though

an argument can be made that this could be non-linear. The right hand side of this constraint

is the monetized cost of the rider’s most favorable transportation alternative outside of the

43

ridesharing system, in terms of generalized cost. This constraint ensures that the ultimate

utility of using the ridesharing system for a given rider is higher than the utility of the rider’s

all other transportation alternatives, assuming a rider’s utility to be the negative of his/her

generalized cost.

Constraint set (4.8c) ensures that the total VMT in the network is less than the cumulative

cost of individuals traveling using their alternative transportation options if the ridesharing

system was not available. Without loss of generality, here we assume this alternative to be

for individuals to travel using their personal vehicles through their shortest paths.

44

Chapter 5

The Ellipsoid Spatiotemporal

Accessibility Method (ESTAM)

The goal of the Ellipsoid spatiotemporal accessibility method (ESTAM) is to limit the num-

ber of accessible links for each participant, and identify and eliminate drivers who cannot

be part of a rider’s itinerary due to the lack of spatiotemporal compatibility between their

trips. At the outset, it should be noted that this procedure does not limit the search space

of the optimization problem in Chapter 4, but only narrows it by cutting down practically

infeasible ranges, and therefore it does not affect the optimality of the solution.

As explained before in 4, we present a link, `, as a 4-tuple (ti, si, tj, sj). Participants can

potentially reach any station in the network in any time interval within their travel time

window, making the size of the set of links, L, as large as O(|T ||S|), where |T | is the number

of time intervals in the study time horizon, and |S| is the number of stations in the network.

The premise of the pre-processing procedure is that the spatiotemporal constraints enforced

by maximum ride times and travel time windows of participants limit their access to members

of the link set L. We use this information to construct the set of links accessible to riders

45

and drivers, denoted by Lr and Ld respectively.

ESTAM first uses a simple geometric tool to identify the set of stations spatially reachable

by each participant. Such stations form the “reduced networks” of participants. Next,

ESTAM finds the time intervals during which each station can be reached, forming the

“time-expanded reduced networks” (i.e. the set of feasible links) for participants. Finally,

ESTAM uses this information to generate the “time-expanded feasible networks” for riders

using the set of the riders’ feasible links that are reachable by drivers. The three steps of

ESTAM are discussed in more detail in the following.

5.1 Generating Reduced Networks

The origin and destination stations, maximum ride times, and travel time windows of par-

ticipants can be used to define a region in the network in the form of an ellipse, inside which

participants have a higher degree of space proximity, i.e. the percentage of accessible stations

within this region is at least as high as the same percentage within the entire network. We

call the region inside and on the circumference of the ellipse associated with participant p

the reduced network of the participant, denoted by Gp (reduced network of rider r/driver d

is denoted as Gr/Gd).

The focal points of the ellipse are the participant’s origin and destination stations. The

length of the major axes between the focal points is the straight distance between the origin

and destination stations, and the transverse diameter of the ellipse is an upper-bound on the

distance that can be traveled by the participant in
TTBp
∆t

number of time intervals, within the

participant’s time window.

We know that for each point on the circumference of an ellipse, sum of the distances from

the two focal points is always constant, and equal to the transverse diameter of the ellipse.

46

By setting the length of this transverse diameter to the maximum distance a participant can

travel given their maximum ride time, we ensure that none of the stations outside of the

participant’s reduced network are accessible to them.

5.2 Generating Time-Expanded Reduced Networks

In the previous step, we formed the reduced networks for the participants. However, not all

stations in the participants’ reduced networks are necessarily reachable by them, since we

have yet to study time proximity of stations. To study time-proximity, we have to find the

set of time intervals during which station i ∈ Gp can be reached by participant p. After the

reduced networks are generated, we use the link generation procedure presented in Algorithm

1 to identify the time-expanded reduced networks for participants, and construct sets Lr and

Ld.

The algorithm finds the set of links in two steps: a forward movement followed by a back-

ward movement. Both forward and backward movements are iterative procedures. In each

iteration, the forward movement generates a set of links originating from one of the stations

in the reduced graph. Let us define the set of active stations as Sact, and initialize it by

the origin station. The algorithm starts with the first member of the active stations set,

s1, which initially is the origin station of the participant (i.e. s1 = OSp). The participant

can leave this station in time intervals within the window [TEDp , TLAp − tt(OSp,DSp)], where

tt(OSp,DSp) is the shortest path travel time between participant p’s origin and destination

stations. tt(OSp,DSp) is calculated based on a static travel time matrix. To ensure that no

feasible links are eliminated, this static travel time matrix should contain underestimated

link travel times, say for example, the travel times during non-peak hours.

After identifying the set of feasible time intervals for the origin station, the origin station is

47

Algorithm 1 Link reduction procedure
Generate a link set Lp for participant p
Initialize
∀s ∈ Gp, L(s) = ∅
Step1. Forward movement
Sact = {OSp}
S̄act = ∅
TOSp

= {T
ED
p

∆t : ∆t :
TLA
p −tt(OSp,DSp)

∆t }
While Sact 6= ∅

s1 ← Sact(1)
For s ∈ {S\OSp}

Set Ts1 = Ts1 ∪ {t1} such that ∃` = (t, s, t1, s1) ∈ L(s), ∀t, t1 ∈ Tp

End For
S̄act = S̄act ∪ {s1}
Sact = Sact\{s1}
For s2 ∈ S : (s1, s2) ∈ Gp

If s2 ∩ S̄act = ∅
Sact = Sact ∪ {s2}
For t ∈ Ts1

L(s2) = {L(s2) ∪ (t, s1, t + Tdynamic(t, s1, s2)†, s2)}
End For

Else
For t ∈ Ts1

If Ts2 ∩
{
t + Tdynamic(t, s1, s2)

}
6= ∅

L(s2) = {L(s2) ∪ (t, s1, t + Tdynamic†(t, s1, s2), s2)}
End If

End For
End If

End For
End While
Step 2. Backward movement

Ldel = {(t1, s1, t2, s2) ∈ Lp : s2 = DSp ∧ t2 >
TLA
p

∆t }
While Ldel 6= ∅

`(t1, s1, t2, s2)← Ldel(1)
Ldel = Ldel\{`}
Lp(s2) = Lp(s2)\{`}
For s1 ∈ Gp

For (t, s) : (t, s, t1, s1) ∈ Lp(s1):
Ldel = Ldel ∪ {(t, s, t1, s1)}

End For
End For

End While
†Tdynamic(t, s1, s2) : travel time between stations s1 and s2 at time interval t

48

eliminated from the set of active stations, outgoing links from the origin station whose end

stations are inside the reduced network are identified, and their end stations are added to

the set of active stations. At this point, we have information on the starting station (s1),

ending stations (s2 : (s1, s2) ∈ Gp) and the starting time intervals at s1. The ending time

intervals for each s2 can be easily looked up from a dynamic travel time matrix, completing

the information required to construct the set of links originating at s1. The algorithm

proceeds to select the next station from the set of active stations, and generates the set of

links originating from this station following the same procedure. We iterate the procedure

until the set of active stations in empty.

Figure 5.1 demonstrates an example of the forward movement for a participant who is trav-

eling from station 14 to station 8, with TWp = [1, 40](∆t = 1 min), maximum ride time

of 40 minutes, and shortest path travel time of 38 minutes. Link travel times (in minutes)

are shown on the graph. It is assumed that the travel time remains constant on each link.

Note that this assumption is made only for simplicity, and using time-dependent travel times

would be just as straightforward. The set of links for each station is computed during the

forward movement, and is presented in the Figure 5.1. These links are not final, however,

and have to be refined during the backward movement.

The backward movement simply scans through the set of links generated for each station

by the forward movement and refines these sets by removing the time intervals that are

identified as infeasible based on the participant’s latest arrival time. In the example shown

in Figure 5.1, since the latest arrival time is at ∆t = 40, links with ending time intervals 41

and 42 should be removed from the set of links for the destination station. Tracking back the

stations from destination to origin, the time intervals for the stations that have led to the

infeasible time intervals at the destination station are identified and removed (see Algorithm

1 for details). For the example in Figure 5.1, after completing the backward movement, the

set of links, Lp, is finalized and listed in the figure.

49

At the end of this step, the set of links for each participant p ∈ P is identified. These links

form the time-expanded reduced network for the participant.

Once the set of links for participants are generated, we can use these sets to reduce the size

of some other sets in the optimization problem, namely the set of riders and drivers. We

can reduce the size of the rider set R by filtering riders out of the problem based on their

accessibility to potential drivers. For a rider to be served, they should have spatiotemporal

proximity with at least one driver at both their origin and destination stations. Members of

set R who do not enjoy this spatiotemporal proximity can be filtered out.

In addition, in order for a driver d to be able to contribute to the itinerary of a rider r, the

intersection of their link sets should not be empty, i.e. Lr
⋂
Ld 6= ∅. We denote by M the set

of tuples (r, d) ∈ R×D for whom Lr
⋂
Ld 6= ∅ and therefore could potentially be matched.

For members of set M , we construct a set Lrd = {Lr
⋂
Ld}.

After performing this step, we can replace model (4.5) with a refined version of the op-

timization problem in model (D.1), presented in Appendix D. This refined model is very

similar to model (4.5), with two major differences, thanks to the first two steps of ESTAM:

(i) Constraint sets (4.5e) and (4.5i) are now redundant, since the requirement to not exceed

the maximum ride times is met, and (ii) input sets in model (D.1) are more refined.

5.3 Generating Riders’ Time-Expanded Feasible Net-

works

In this step, we form the time-expanded feasible network for a rider r ∈ R, by finding sections

of the rider’s time-expanded reduced network that intersect with at least one driver’s time-

expanded reduced network. In other words, a rider’s time-expanded feasible network consists

50

Station 14 15 10 11 11 12 8

Pred. - 14 14 15 10 11 12

𝐿𝑝 - (1,14,11,15)
(2,14,12,15)
(3,14,13,15)

(1,14,8,10)
(2,14,9,10)
(3,14,10,10)

(11,15,20,11)
(12,15,21,11)
(13,15,22,11)

(8,10,21,11)
(9,10,22,11)
(10,10,23,11)

(20,11,28,12)
(21,11,29,12)
(22,11,30,12)
(23,11,31,12)

(28,12,39,8)
(29,12,40,8)
(30,12,41,8)
(31,12,42,8)

Station 8 12 11 11 10 15 14

Pred. 12 11 10 15 14 14 -

𝐿𝑝 (28,12,39,8)
(29,12,40,8)
(30,12,41,8)
(31,12,42,8)

(20,11,28,12)
(21,11,29,12)
(22,11,30,12)
(23,11,31,12)

(8,10,21,11)
(9,10,22,11)
(10,10,23,11)

(11,15,20,11)
(12,15,21,11)
(13,15,22,11)

(1,14,8,10)
(2,14,9,10)
(3,14,10,10)

(1,14,11,15)
(2,14,12,15)
(3,14,13,15)

-

𝐿𝑝 = {(28,12,39,8), (29,12,40,8), (20,11,28,12), (21,11,29,12), (8,10,21,11),
(11,15,20,11), (12,15,21,11), (1,14,8,10),(2,14,12,15)}

Figure 5.1: An example of forward and backward movements for a participant withOSp = 14,
DSp = 3, ∆t = 1 min, TWp = [1, 40], and T TBp = 40 min

51

of links that exist in at least one driver’s set of links, since a rider needs to be carried by a

driver on all the links that from his/her route.

Note that the ellipses that form boundaries of the reduced networks strictly prevent any

feasible stations from being cut off. Furthermore, the link generation procedure uses con-

servative estimate of the traveling speed in the region to ensure that no feasible links are

cut off. Therefore, the link set L can be safely replaced by Lp, ∀p ∈ P . Furthermore, since

the potential drivers for each rider are determined based on the reduced networks and the

forward and backward movements, no potential driver is excluded from the set of eligible

drivers for each rider. Hence, use of the refined input sets generated by ESTAM in the

ride-matching problem does not affect the optimal matching of riders and drivers.

52

Chapter 6

The Many-to-One Matching Problem

The simplest from of a multi-hop matching problem, in which a single rider can travel by

transferring between drivers, is the many-to-one problem. This type of matching is useful

for systems that serve riders on a first-come first-served (FCFS), or any other pre-arranged

order. This matching problem is a special case of the many-to-many problem presented in

Chapter 4. In this chapter, we propose a Dynamic Programming (DP) algorithm that can

solve this problem to optimality in real-time.

6.1 Illustrative Example

Throughout this chapter, we use the following problem instance to illustrate the concepts

and demonstrate different steps of the proposed algorithm. This example contains a network

with 16 stations, one rider, and four drivers. The network and the characteristics of the

participants are presented in Figure 6.1. It is assumed that participants have no restrictions

on the people with whom they travel.

53

Figure 6.1: Problem instance used for demonstrating the steps of the DP algorithm through-
out the chapter

6.2 Preprocessing using ESTAM

As described in Chapter 5, ESTAM generates for each rider a time-expanded feasible network

in which the rider’s optimal itinerary could be searched. This network is constructed from

the links on the rider’s reduced time-expanded network that are reachable by drivers. In

this section, we review the three steps of ESTAM for the example presented in section 6.1,

and generate the time-expanded feasible network for the rider in our example. In the next

section, we use the DP algorithm to search on this time-expanded feasible network for the

rider’s optimal itinerary.

Figure 6.2 displays the reduced networks for the participants in our example. r1 is planning

to travel from station 5 to station 12. Gr is pointed out in Figure 6.2 as the section of

the network confined inside the dashed green ellipse. The reduced networks for the four

drivers in our example are also demonstrated in this figure, using solid red ellipses. The

54

shaded area shows the intersection of the rider’s reduced network with those of the drivers.

This figure demonstrates that the rider’s origin and destination stations are both inside the

shaded region (i.e. reachable spatially by drivers), and so this rider has a chance of being

served. If either of the origin or destination stations were not located in the shaded region,

we could immediately conclude that the rider could not be served. For example, if driver 2

(traveling from station 14 to 5) was not in the set of drivers, the rider could not be served,

due to lack of space proximity at its origin station (station 5).

Figure 6.2 can also help us identify and eliminate drivers who cannot contribute to the

rider’s itinerary. As an example, driver 4 in Figure 6.2 can be filtered out from the problem,

reducing set D = {d1, d2, d3, d4} to D = {d1, d2, d3}. Driver 3 does not have proximity to the

rider’s origin or destination, but can contribute to portions of the travel in case of a transfer.

In fact, in this particular example, the only way the rider can travel from station 5 to station

12 is by being picked up by driver 2, transferring to driver 3, and finally transferring to driver

1. The exact transfer locations, and deciding whether such a route is feasible at all under the

participants’ travel time restrictions will be examined later. For instance, it might be the

case that by the time the rider reaches station 6, 9 or 10 by driver 2, driver 3 needs to have

traveled beyond those stations to reach its destination on time (thereby, a spatiotemporal

feasible path for the rider would not exist).

Next, let us look into the time-proximity, using the link generation procedure detailed in

Chapter 5. Figure 6.3 displays the time-expanded reduced network for driver 2 in our

example. Note that it is possible to have more than one origin and/or destination node in a

time-expanded reduced network. Recall that each node is represented by a 2-tuple of a time

interval and a station. Nodes in the form of (t, OSp),∀t ∈ TOSp are all origin nodes, and

nodes in form of (t,DSp),∀t ∈ TDSp are all destination nodes. We keep these nodes in origin

and destination sets, O(p) and D(p) respectively. In Figure 6.3, O(d2) = {(3, 14), (4, 14)},

and D(d2) = {(27, 5), (28, 5)}.

55

Figure 6.2: Reduced networks of all the participant in our example

Figure 6.3: Time-expanded reduced network for driver 2 in Figure 6.2

56

Finally, Figure 6.4a shows the time-expanded feasible network for the rider in our example.

6.3 Solution Methodology

The ESTAM algorithm constructs the time-expanded feasible network for the rider in our

problem, on which the rider’s optimal itinerary can be searched. Even though this network

is substantially smaller than the original network, the number of feasible routes for the rider

can still be very large. Different combinations of links on which to travel, and drivers with

whom to ride, can make enumerating the paths computationally prohibitive (see Figure

6.4b). In this section, introduce an algorithm using which the optimal path for the rider can

be found quite efficiently.

Figure 6.4a shows the time-expanded feasible network for the rider in our example. The

goal is to find an optimal itinerary for the rider to travel from his/her origin node to his/her

destination node. We define the origin node as the node in the rider’s origin set , Or, with

the smallest time interval, and the destination node as the node in the rider’s destination

set, Dr, with the largest time interval. In our example, the origin node is (3, 5), and the

destination node is (29, 12).

The optimal itinerary as defined in this study is a path that minimizes a linear combination

of the in-vehicle travel time, wait time, and the number of transfers. Before searching for the

optimal path, two preliminary operations need to be performed on the graph. First, nodes

that are not descendants of the origin node, or predecessors of the destination node should be

removed. An example of this operation is demonstrated in Figure 6.4a. This figure displays

the time-expanded feasible network of the rider in our example who is traveling from station

5 to station 12. The components of the graph containing nodes {(22, 7), (23, 7), (24, 7)},

and {(14, 9), (15, 9)} (marked by red rectangles in Figure 6.4a) have to be eliminated from

57

the graph, since they are not descendants of the origin node (3, 5). This task can be easily

accomplished by scanning the adjacency matrix of the graph.

The second operation is to topologically sort the graph. A topological ordering for such a

graph always exists, since the graph is directed and acyclic (the graph is acyclic since nodes

have a time component, and the link generation procedure does not generate links that

represent traveling back in time). Figure 6.4b displays the resulting graph after performing

these two preliminary operations. The numbers to the left of nodes in this figure show the

topological orders. The numbers on the links show the IDs of the drivers who can carry the

rider on the links.

Doing a depth first search (DFS) on this revised time-expanded feasible network (Figure

6.4b) determines whether an itinerary for the rider exists at all. Starting from the first node

in the topologically ordered graph, if DFS does not conquer a node in the destination set,

then the rider cannot be served in the system. Otherwise, if DFS finds a path (establishing

that a matching is spatially and temporally feasible), we will use the proposed DP algorithm

to find the best path for the rider.

6.3.1 The Dynamic Programing (DP) Algorithm

Let us start by defining sets DIN
j and DOUT

j as the set of drivers who enter and exit node

j respectively, and set DNj for each node j as a set of tuples (i, d) such that there is a link

for driver d from node i to j in the revised time-expanded feasible network. Furthermore,

we denote by V (j, d) the minimum cost of the optimal path from the start node (node 1 in

the topologically ordered graph) to node j, such that the last link on the path is traversed

by driver d. The goal is to find V ∗r = minj∈D(r),d∈DINj {V (j, d)}.

We initialize the Nr×Dr matrix V (·) to infinity, where Nr is the number of nodes in rider r’s

58

(a) Time-expanded feasible network (b) Revised time-expanded feasible network
(after performing the preliminary opera-
tions)

Figure 6.4: Time-expanded feasible network for the rider in our example before and after
revision

59

revised time-expanded network, and Dr is the number of drivers that contribute to rider r’s

revised time-expanded feasible network. To keep track of the optimal solution, we introduce

two additional matrices of the same size, called Pred − Node and Pred − Driver, and

initialize them to zero. These matrices keep the predecessor node and the driver that takes

the rider to the predecessor node on the optimal path, respectively.

We set the initial condition as V (1, d) = 0, for all d ∈ DOUT
1 . In the revised time-expanded

feasible network in Figure 6.4b, the initial condition is V (1, d1) = 0. After setting the initial

condition, we traverse the nodes in the (topologically ordered) graph in ascending order.

For each node j, and each driver d in the set DIN
j , V (j, d) is computed as in equation (6.1)

below:

V (j, d) = mini:(i,d)∈DNj
{
mind′∈DINi \ED(i,d′){V (i, d′) + CT1{d6=d′}}+ C(i, j)

}
(6.1)

The indicator function (1d6=d′) returns 1 if d 6= d′ (i.e., if the rider makes a transfer) and

returns zero otherwise. CT is the penalty (cost) of a transfer. The function C(i, j) gives

the cost of traveling on link (i, j) = (ti, si, tj, sj), and can be calculated using equation 6.2.

The cost of travel as defined in equation (6.2) is the travel time on the link in case a travel

takes place (i.e., si 6= sj), or a penalty W if the rider waits at the station (si = sj) for one

time interval. Note that if the rider stays in the same station for multiple time intervals, the

algorithm will automatically accumulate W the appropriate number of times. This is due

to the fact that the same station at different time intervals corresponds to separate nodes

on the time-expanded feasible network. Further, note that C(i, j) in equation (6.2) can be

easily extended to C(i, j, d), in case a more customized driver-dependent cost is desired. We

discuss the set ED(i, d′) used in equation (6.1) further down.

C(i, j) =


(tj − ti + 1)dt si 6= sj

W si = sj

(6.2)

60

After each computation of V (j, d) using the recursive function in equation (6.1), we save n∗i =

argmini:(i,d)∈DNj
{
mind′∈DINi \ED(i,d′){V (i, d′)+CT1{d6=d′}}+C(i, j)

}
in Pred−Node(j, d), and

d∗ = argmind′∈DINi \ED(i,d′){V (i, d′) + CT1{d 6=d′}} in Pred − Driver(j, d). Once the optimal

minimum cost for the rider is found, these matrices can be used to retrieve the corresponding

optimal itinerary.

We define set ED(i, d′) to include all drivers on the optimal path to node i, excluding the

driver on the last link (d′). Drivers in this set are excluded from set DIN
i in equation (6.1)

to ensure the feasibility of the solution. Although very unlikely, it could happen that a route

includes links that cannot co-exist. If a driver covers multiple links on a rider’s itinerary,

and those links belong to different feasible paths of the driver, then the resulting itinerary is

not feasible. To clarify, an example is shown in Figure 6.5. In this example, driver d has two

potential paths to make his/her trip, while driver d′ has only one. There is only one itinerary

for the rider, marked by dashed red arrows. This itinerary consists of three links. The first

link is covered by driver d via this driver’s first potential path, the second link is covered

by d′, and the third link is covered by d via this driver’s second potential path. Clearly the

resulting itinerary is not feasible, since d cannot carry the rider on both links. Excluding

drivers in set ED from the list of potential drivers in equation (6.1) ensures that such an

itinerary is never generated. In the example in Figure 6.5, the rider cannot be served.

Using the proposed DP algorithm, not only the optimal itinerary, but all the feasible

itineraries for a rider are readily available. Therefore, if the solution that is deemed op-

timal based on the objectives of the system (i.e. number of transfers, and traveling and

waiting times) did not satisfy other personal requirements of participants, we can easily

access and examine the next best solutions.

Once a rider’s itinerary is fixed, it is easy to find the optimal itineraries for drivers. If a

driver is part of a rider’s itinerary, then a portion of his/her path is fixed. Given the fixed

portions, it is easy to find the shortest travel time path for the driver from the driver’s

61

Figure 6.5: Example of an infeasible solution

origin station to his/her first fixed portion, between the fixed portions, and from the last

fixed portion to the driver’s destination station. Notice that because the fixed portions of a

driver’s path have time components, it is easy to order them. After these ordering is done,

Dijkstra’s algorithm can be used to find the shortest path between the fixed stations in the

driver’s reduced network.

6.4 Numerical Experiments

In this section, we generate multiple random instances of the ridesharing problem in a net-

work with 49 stations. All problem instances contain 1000 participants. We vary the ratio

of drivers and riders in each problem instance, and assess the performance of the proposed

ridesharing algorithm as the ratio of riders in the problem changes. The participants’ earliest

arrival times are generated uniformly within a one hour time period.

All drivers are assumed to have four empty seats, and riders are assumed to accept up to

3 transfers. We use 1 min time intervals, and consider a randomly generated maximum

ride time within the interval [T STp , 1.1T STp] for participant p ∈ P , where T STp is the shortest

path travel time between the participant’s origin and destination stations. The latest arrival

62

time for each participant is computed as the sum of their earliest departure time and maxi-

mum ride time. In the interest of simplicity, we assume that participants have no personal

requirements on the people with whom they travel.

In the next two sections, we use the proposed algorithm to find the optimal solutions for

the randomly generated problems through simulations. In section 6.4.1, the origin and

destination locations of participants will be selected based on a uniform random distribution.

This type of selection serves as the default setting in our simulations. In section 6.4.2, we

study a more practical scenario, where trip ends are determined randomly, but based on a

clustering of the network.

6.4.1 Uniform Random Selection of Trip End Locations

For the problem instances generated in this section, the origin and destination stations of

participants are selected from the 49 stations, based on a uniform random distribution. The

results we report in this section are averaged over 10 simulation runs for each problem.

Figures 6.6a and 6.6b display the solution times, and the percentage and number of served

riders respectively.

As mentioned before, riders are considered in a FCFS basis in simulations, and once a rider

registers in the system, a ride-matching problem is solved for that rider (i.e. the notification

deadlines of participants are assumed to be their registration times). The solution time

reported for each problem instance in Figures 6.6a and 6.6b is the highest solution time

among all riders in the problem (averaged over 10 runs).

Figure 6.6a shows that the percentage of served riders decreases as we increase the ratio of

riders in the problem. Note that since the number of participants is held constant (1000),

by increasing the number of riders we are in fact decreasing the number of drivers. Since

63

this rise on the demand side is met with a decline on the supply side, naturally, a declining

trend in the matching rate is witnessed.

Figure 6.6b suggests that the number of served riders is maximized when the number of

riders in the system is slightly lower than number of drivers, i.e. the ratio of drivers to riders

is slightly higher than 1. At his best case scenario (highest number of riders served), about

30% of the demand for rides is satisfied. If the interest of the system is to maximize the

percentage of served riders, about 50% of riders can be served in the best case scenario.

Notice that this higher performance is obtained when the number of riders in the system is

only 50, and there are 950 drivers.

Figure 6.6c shows the number of matched participants in the system. This figure suggests

that the number of matched participants is maximized in the same range where the number of

served riders is maximized. In fact, when riders constitute about 45% of the total number of

participants, the number of matched riders and drivers are both maximized. Notice that this

is not an obvious conclusion, since each driver can carry multiple riders, and each rider can

transfer between multiple drivers. Furthermore, notice that these results are only valid for

the case where the origin and destination locations of trips are randomly selected. We show

in the next section that in more practical settings where business districts and residential

areas are separated (and therefore trip ends have higher spatial proximity), the number of

matched participants can increase drastically.

Finally, Figure 6.6d shows the distribution of number of transfers for each problem instance.

This figure suggests that the majority of served riders do not have to make any transfers.

This figure also suggests that the number of additional riders that can be served as a result

of allowing transfers in the system is not trivial.

64

(a) Change in solution time and percentage of
served riders with ratio of riders

(b) Change in solution time and the number of
served riders with ratio of riders

(c) Distribution of number of participants matched
in each problem

(d) Distribution of number of transfers in the opti-
mal solutions

Figure 6.6: Algorithm performance for the randomly generated problem instances, averaged
over 10 runs

65

6.4.2 Uniform Random Selection of Trip Ends in Clusters

In the previous section, we made the assumption that the origin and destination locations of

trips are completely random. In reality, residential areas are usually close to each other, and

separate from commercial and business districts. In this section, we identify two geographi-

cally distinct regions on the network to represent residential and business districts. Similar

to the previous section, we generate different problem instances, varying the percentage of

riders in the problems. For each problem instance (each problem instance having a different

ratio of riders), we conduct 10 simulation runs, and report the average results.

Figure 6.7a shows the clustering of a sample network. The area on the top is considered

to be the business district, and the area on the bottom is assumed to be the residential

area. Each problem instance represents the simulation of a morning peak period, in which

participants travel from a randomly selected station in the residential area, to one in the

business district.

Figure 6.7b shows that number of served riders has the same trend compared to the scenario

where origin and destination locations were completely random, but in this case the number

of served riders has more than doubled. Figure 6.7c suggests that in this more practical

setting, when the system has the optimum ratio of drivers and riders, more than 60% of the

participants will actually participate in the system.

6.4.3 The Critical Mass

For a ridesharing system to be able to work independently, a critical mass of participants is

required. In the previous sections, we demonstrated the performance of a ridesharing system

with 1000 participants. We showed that in the more practical scenario of having distinct

business and residential areas, more than 60%, and in the completely random case, about

66

(a) A sample clustering of the network

(b) Comparison of number of served riders between
the completely random scenario and the clustering
scenario

(c) Distribution of matched participants in the clus-
tering scenario

Figure 6.7: System performance for the scenario with distinct business and residential areas.
Results are averaged over 10 runs.

67

Figure 6.8: Sensitivity analysis over the number of participants in the system

35% of participants can be successfully matched. It is intuitive to expect the average number

of successful matches to increase with the number of participants. However, for a system to

survive, a minimum number of participants should be able to use the system successfully.

This success will encourage users to consider participating in the system again, and promote

the system to their friends and family members.

In this section, we do a sensitivity analysis on the number of participants in the system. This

analysis can shed light on the relationship between system performance, and the number and

ratio of participants.

Figure 6.8 shows the percentage of matched participants as the total number of participants

changes from 200 to 1000 individuals. Similar to the previous sections, for a given number of

participants, we generate multiple random problem instances by changing the ratio of riders.

The travel ends of participants are selected at random with uniform probabilities. Figure 6.8

suggests that the increase in the number of participants leads to higher system performance,

in terms of the percentage of matched participants. The peak performance of the system in

all cases, however, occurs in the same range.

68

6.4.4 P2P Ride Exchange

Ridesharing systems are in general spatiotemporally sparse. The temporal sparsity stems

from the rather tight time windows of participants, and the spatial sparsity is due to the

participants’ fixed origin and destination locations. This spatiotemporal sparsity limits the

number of satisfied requests. In fact, one of the contributors to the initial failure of P2P

ridesharing systems in the US in the 1990s was the very small number of served rider requests.

Today, advancements in the communication technology and prevalence of smartphones, along

with the young generation’s fascination with use of technology has led to a larger pool of

riders and drivers interested in ridesharing. However, as discussed in the previous sections,

a critical mass of participants is still an important requirement for ridesharing systems to

ensure that they can operate independently, without having to outsource drivers. Therefore,

a ridesharing system has to try and make the best use of its limited supply resource, the

drivers.

A ridesharing system that takes riders into consideration only one at a time, is in fact wasting

its very limited and valuable resources by fixing itineraries of matched drivers. Figure 6.9

shows an example of how fixing drivers’ itineraries can deteriorate the performance of the

system. This example includes two riders and two drivers. Assume rider 1 has registered

in the system before rider 2, and hence the system starts by finding a match for rider 1.

Vehicles 1 and 2 are both candidates to be matched with this rider. Eventually the system

matches rider 1 with driver 2, since driver 1 has to make a larger detour to carry the rider.

Driver 2’s itinerary, marked in solid blue line, is then fixed. The next rider in queue is rider

2. This rider could have been matched with driver 2 through the route marked with the blue

dashed line, if driver 2’s itinerary had not been fixed. However, under the current state of

the system, rider 2 cannot be matched. The ridesharing system, therefore, can only match

one rider with one driver.

69

Figure 6.9: P2P ride exchange

In the example in Figure 6.9, we could have increased the system performance by solving

a ride-matching problem that included the two available riders (using the formulation in

Chapter 4), as opposed to considering them one at a time. The solution to such a problem

would match rider 1 with driver 1, and rider 2 with driver 2, serving both riders, and involving

all 4 participants.

There are two issues that may prevent us from the benefits of solving a many-to-many

matching problem. First, if rider 2 has not joined the system yet at the time when we

have to notify rider 1 of the results, then solving the many-to-many problem would not be

beneficial (we would obtain a solution similar to that of a one-to-many problem). Second,

solving the many-to-many problem could be too time-consuming. Even efficient algorithms

(as we’ll see in Chapter 7) can take minutes to solve, even for moderately sized problem

instances.

To demonstrate the difference between a many-to-many ride-matching problem (which in-

cludes multiple riders and multiple drivers) and a many-to-one problem (which includes one

rider and multiple drivers) in terms of solution time and matching rate, we solve the prob-

lem instances in section 6.4.1 using both approaches. For the many-to-many problem, we

use the decomposition algorithm proposed in Chapter 7 on a rolling time-horizon basis, by

70

re-optimizing the system at 2, 5, and 10 minute time intervals. In this approach, instead of

matching one rider at a time, we solve a problem that includes all the riders whose notifica-

tion deadlines lie within the mentioned time interval. Figure 6.10 depicts the results of this

comparison.

Figure 6.10 suggests that the solution time for a many-to-many ride-matching problem is too

high for real-time applications. On the other hand, the number of matched riders improves

when a many-to-many problem is solved. In this section, we propose P2P ride exchange as

a mechanism to improve the solution of a many-to-one ride-matching problem, while still

being able to serve riders in real-time. We elaborate on this mechanism in Chapter 8.

Although we can use the proposed algorithm in this chapter to solve a many-to-one ride-

matching problem to optimality, the formulation of the problem itself is not optimal. P2P

ride exchange can help us move from the sub-optimal solution obtained by matching one

rider as a time, toward the optimal solution that can be obtained by including all riders in

the matching problem, without the unattractive side-effect of the increased solution time.

In this approach, we still solve the matching problem for one rider at a time, and on a FCFS

basis. However, we do not fix the itineraries of matched drivers. If a rider can be served

only using a driver that has been previously matched (but though a conflicting itinerary),

then the two riders can start a negotiation to make a ride exchange. Note that it is easy for

the system to propose alternative itineraries to riders involved in the exchange, since all the

feasible itineraries for riders are generated using the DP algorithm (see section 6.3).

In the example in Figure 6.9, if we solve the ride-matching problem for rider 2 without fixing

the itinerary of driver 2, the solution will have driver 2 routed on the dashed path, and

match it with rider 2. However, driver 2 was previously routed differently, and assigned to

rider 1. These two riders can now engage in a negotiation. Since rider 1 can also be matched

with driver 1, there is a good chance that rider 1 will accept the proposed ride exchange

71

(a) Distribution of solution times (b) Distribution of number of matched participants

Figure 6.10: Solution times and number of served riders for each randomly generated problem
instance under different re-optimization periods

by rider 2, in exchange for money, or credit toward using the ridesharing system. In case

the negotiation is successful, the final matching would be equal to the matching obtained by

solving a many-to-many ride-matching problem.

In addition to the benefits that P2P ride exchange can offer in terms of system performance, it

can also make riders more engaged in the system. Riders can earn money or credit by selling

their itineraries, and settling for less efficient itineraries suggested by the system. However,

for such a system to work properly, a good mechanism should be designed to ensure that

individuals cannot take advantage of the system by providing untruthful information.

6.4.5 Overlapping Sets of Drivers and Riders

Initially, we made the assumption that riders and drivers form two mutually exclusive sets.

In this section, we study the scenario in which participants who register in the system as

riders might be doing so because they prefer traveling as riders, and not because they do

not own or have access to a vehicle. If the system is not able to serve these participants as

riders, then they will drive their own vehicles, and join the system as drivers. An extreme

72

case would be to study the case where all riders have access to vehicles, and are willing to

join the system as drivers. This case shows the maximum benefits a ridesharing system can

offer.

In this section, we study the impact of this assumption on the problem instances in section

6.4.1. Figure 6.11 shows the maximum number of served ride requests under different per-

centage of riders who are willing to act as drivers. In the case of 0%, the problem becomes

equivalent to the problem of a system with two mutually exclusive sets of riders and drivers.

As this percentage increases, the shape of the curve starts to change. The best performance

of the system can be obtained when 100% of riders have access to vehicles, and are willing

to join the system as drivers, if they cannot be served as riders. It is interesting to see that

in this best case scenario, the number of served riders has an increasing trend.

In the basic scenario with two mutually exclusive sets of riders and drivers, number of served

riders reaches its peak when riders constitute around 45% of the participants. As the ratio

of riders increases, the number of served riders decreases, because there are fewer number of

drivers available. If riders who cannot be matched join the system as drivers, this practically

increases the number of drivers in the ranges where previously there was a shortage of drivers,

and this leads to higher number of riders being served. Figure 6.11 suggests that encouraging

such a strategy in a ridesharing system can drastically improve its performance.

6.5 Case Study: P2P Ridesharing as Transit Feeder in

the Los Angeles County

One of the main issues faced by major cities in the US today is congestion. In addition to

directly impacting travelers by increasing travel time and reducing travel time reliability,

congestion leads to higher levels of Green House Gas (GHG) emissions which are harmful to

73

Figure 6.11: Number of served riders under different percentage of riders (who can switch
and become drivers)

the environment and people’s health. One of the solutions as to how to reduce congestion

is to eliminate vehicles from roads by putting individuals who are traveling along the same

routes in the same vehicles.

In recent years, thanks primarily to increase in carpooling ridesharing in the US has expe-

rienced a slight increase in mode share, reaching 11% in 2008. Although this increase in

ridesharing seems to be a step forward in the direction of a greener transportation system,

this is not necessarily the case. The kind of modal shift that occurred as a result of the intro-

duction of ridesharing is as important. The benefits of ridesharing depend tremendously on

the nature of the modal shift. The benefits would be high in terms of reducing congestion and

GHG emissions if the demand is being shifted from single-occupancy vehicles to rideshare

systems, but may not be significant if the ridesharing demand is being shifted from transit.

In addition, introduction of ridesharing can lead to emergence of more complex multi-modal

alternatives, such as the transit-rideshare mode.

Study of the many government-funded ridesharing systems indicate that ridesharing systems,

as they work today, are competitive to transit systems (Levofsky and Greenberg (2001);

Nelson Nygaard Consulting Associates and RideNow Inc (2006)). The goal of this section

is to assess the potential of ridesharing in being a complement to transit, feeding it instead

74

(a) Los Angeles Metro red line (b) Ridership trends of LA metro

Figure 6.12: Case study area: Los Angeles Metro red line

of shifting demand away from it. We analyze the potential of such multi-modal travel

using a parametric study with simulated demand based on the current Southern California

Association of Governments (SCAG) model of a selected area (LA Metro red Line catchment

area).

The reason why we consider the LA Metro red line (Figure 6.12a) to study potential ride-

share based demand augmentation is the noticeable reduction of ridership (Figure 6.12b)

in recent years. Such a trend indicates potential opportunities for additional demand-

inducement strategies using rideshare options.

The success of a multi-modal transit-rideshare system can be considerably influenced by

the architecture of the designed system, namely locations where the ridesharing service is

offered, price of ridesharing, and the matching method used by the system. In this section, we

elaborate on this system architecture, and show case the impact of such targeted architecture

on transit ridership augmentation for the LA Metro red line.

75

6.5.1 Preliminaries

We use the DP algorithm introduced in this chapter for routing passengers. Transit lines can

enter this model as drivers with fixed routes. Here, we elaborate on how we have obtained

other sets of input for the DP algorithm, with main focus on set of stations and links.

Stations

In order to avoid confusion between ridesharing and transit stations, here we refer to rideshar-

ing stations as “go-points”. Furthermore, due to the large size of the network, we only treat

a subset of go-points as locations were transfers can occur, and call such points “transfer

points”. Each go-point belongs to a neighboring transfer-point. Individuals can travel di-

rectly between the go-points attributed to the same transfer point. However, in order to

travel between two go-points attributed to two different transfer points, an individual has to

travel between the two transfer points. Note that despite traveling between transfer points,

a transfer does not have to occur, i.e. an individual can enter and exit a transfer point in

the same vehicle.

The SCAG region has a total of over 4000 TAZs (i.e. 16 million OD pairs). Our goal is to

identify significant OD pairs in terms of demand level, and use this information to identify

the go- and transfer points in the network. For this purpose, we identified OD pairs in the

SCAG trip tables with hourly trip rates higher than 10. We limited our analysis to single-

occupancy auto demand only, because the focus of the study is to identify potential modal

shift from drive-alone to rideshare and rideshare-transit alternatives.

We select a subset of go-points that fulfill two criteria as transfer points. Transfer points

should be distributed in the network such that (i) they are located closer to go-points with

higher levels of demand, and (ii) they are distributed in the network as evenly as possible.

76

Figure 6.13: Three types of stations in the LA network

Red line stations, go-points, and transfer points are displayed in Figure 6.13.

Link Sets

We introduce three families of link sets that connect different types of stations (i.e. go-points,

transfer points, and red line stations) in the network. Figure 6.14 demonstrates the three

families of link sets. The first link set displayed in Figure 6.14a connects transfer points to

each other. The second link set (Figure 6.14b) connects go-points to their corresponding

transfer points. Figure 6.14c demonstrates the third link set that connects the red line

stations to their nearby go-points. This link set connects each of the go-points confined

within a 2.5 mile radius of at least one of the red line stations to the red line stations

located within their 2.5 miles radius. Notice that we do not generate any ridesharing links

that connect red line stations together, or to their nearby go-points, in order to have the

itineraries use transit whenever possible.

Each go-point in the network is connected to at least one transfer point (link sets 2 and

77

3). In addition, all transfer points are connected to each other (link set 1). This indicates

that there is a path between any two go-points in the network. Link set 2 implies that the

shortest path of a rider who is traveling between two go-points (that are not within a 2.5

miles radius of the red line) includes traveling to the transfer point corresponding to the

origin go-point; next, traveling from this transfer point to the transfer point corresponding

to the destination go-point; and finally traveling from there to the destination go-point itself.

Another implication of link set 2 is that since all the go-points corresponding to the same

transfer point are connected to each other, if a rider needs to make a short trip between two

such go-points, no transfers are required.

For practical reasons, it is assumed that transfers for trips that originate from or are destined

to go-points within a 2.5 mile radius of the red line stations are limited to the metro red

line stations only. Hence, link set 3 connects such go-points to the red line stations directly.

This link set is appropriate to use, because we wish to promote the rideshare-transit option.

In the contrary, if the goal was for ridesharing to replace transit, we could introduce links

that connect such go-points to each other, rather than to the transit stations.

6.5.2 Results

In this section, we study the modal shift from drive-alone to rideshare and rideshare-transit

alternatives using simulations. Simulations are done for the morning peak hour in LA. Origin-

destination trip tables used in simulations are obtained from the SCAG planning model, and

spread throughout the three-hour morning peak period based on a uniform distribution.

For each simulation run, we randomly select our set of riders and drivers. In all simulation

runs, we use 1,000 riders, but change the number of drivers from 1,000 to 160,000 in order to

study the impact of the rider to driver ratio on the matching rate. We assume each vehicle

has the capacity to carry 4 passengers, and do not a set a limit on the number of transfers.

78

(a) Link set 1: Links connecting transfer points to
each other

(b) Link set 2: Links connecting go-points to their
corresponding transfer points

(c) Links connecting red line stations to the nearby
go-points

Figure 6.14: Link sets

79

In addition, we assume that maximum ride times for participants are 20% higher than their

shortest path travel times.

The cost function we use in the DP algorithm is the sum of four components: (i) a distance-

based fare, (ii) dollar value of travel time, (iii) dollar value of additional penalty for waiting

time, and (iv) dollar value of penalty for transfers. We consider a default value of $20/hr

for value of time (VOT), $0.25/mile distance-based fare, $1.5 fare for use of transit, $0.1 as

the monetary equivalent of additional penalty for waiting for each time period (in addition

to the value of time), and $0.1 as the monetary equivalent of the penalty for each transfer.

Matching Rate

In order to study the impact of the number of drivers on the matching rate, we ran a set of

simulations. The resulting matching rates are displayed in Figure 6.15.

Figure 6.15a displays the percentage of served riders as a function of the number of drivers.

As intuition suggests, this percentage increases with the number of drivers. Percentage of

served riders, however, grows with the number of drivers at a rate slower than linear. For

example, with a 5,000 unit increase in the number of drivers (going from 5,000 to 10,000

drivers), we witness a 20% increase in the percentage of served riders. However, in order to

experience another 20% increase in the percentage of served riders, we have to have a 10,000

unit increase in the number drivers (going from 10,000 to 20,000 drivers).

Figure 6.15b displays the number of served riders and matched drivers as a function of the

number of drivers in the system. This figure sheds light on the performance of the system

under different levels of supply (i.e. number of drivers).

When the number of drivers is at its lowest, the number of served riders is about the same as

the number of matched drivers, implying that most trips are being served without transfers

80

(a) Percentage of served riders (b) Number of served participants

Figure 6.15: Matching rate as a function of number of drivers

(this conclusion is confirmed by looking at the number of transfers for each level of supply

in Figure 6.16, as we will discuss in the following section). At such low level of supply, the

number of drivers is too small for multi-hop routes to be formed for riders. Up to a certain

level (20,000 drivers), the difference between the number of matched riders and drivers (i.e.

the horizontal distance between the two curves in Figure 6.15b) keeps increasing. Finally,

when the supply level becomes really large, and most of the demand is being served, there

is no need for more costly multi-hop routes anymore, and the number of matched riders and

drivers start to converge again.

Number of transfers

Figure 6.16a demonstrates the number of transfers under different levels of supply. This

figure suggests that when the number of drivers is too low or too high, transfers are very

limited, and most riders can be served with zero transfers (Figure 6.16b). However, more

transfers are required in the middle ranges.

As discussed in the previous section, at very low supply levels there are not enough drivers in

81

(a) Relationship between the average number of transfers
and the number of served riders and drivers

(b) Boxplot of number of transfers

Figure 6.16: Number of transfers

the system to form multi-hop routes, and at very high supply levels almost all ride requests

can be served without any transfers, and therefore an overwhelming number of trips end up

being single-hop. In the middle ranges, however, transfers are necessary to obtain higher

matching rates. A look at Figure 6.16 reveals that even in the middle ranges most riders

experience zero transfers, with a few percentage experiencing 1 transfer. The maximum

number of transfers ever witnessed was 4.

Figure 6.17 displays the most frequently used transfer points. This figure has been created

based on the simulation results for a ridesharing system with 20,000 number of drivers, since

such a system was shown to have the highest number of transfers (Figure 6.16). This figure

suggests that the most important transfer points coincide with some of the red line stations,

which implies good decision making in determining the station locations by Metro. This

figure can also be a guide in revising the transfer points in our models in the future studies.

82

Figure 6.17: Most frequently used transfer points

Vehicle Occupancy

Figure 6.18 shows the average vehicle occupancy as a function of the supply level. This

figure suggests that the average occupancy of vehicles decreases as the number of drivers

in the system increases, which is intuitive, since at lower levels of supply riders are more

probable to share the limited resources. The maximum vehicle occupancy, however, follows

the previously observed trend of initially experiencing a rise, followed by a decline. Notice

that the minimum vehicle occupancy is always higher than 2, since each matched driver

carries at least one rider.

VMT Savings

Figure 6.19 displays the system-wide savings in vehicles miles traveled in the system under

different levels of supply. Under lower levels of supply where the matching rate is small,

83

Figure 6.18: Vehicle occupancies)

Figure 6.19: VMT savings

so is the VMT savings. VMT savings experience significant increase as the matching rate

increases. However, at higher levels of supply, since drivers are abundant, vehicle occupancies

drop (Figure 6.18), and consequently VMT savings experience a slight decline. In general,

the analyses conducted in this section suggest that with number of drivers falling in the range

between 5,000 and 20,000, the system performance reaches its peak, in terms of making the

best use of resources.

84

Figure 6.20: Driver Compensation

Budget Balancedness

In this section, we look into the circumstances under which the ridesharing system can be

budget balanced, and operate without need for outside subsidies. We assume that the system

charges a distance based fare to riders. From this total income, the system pays 0.56¢ to

drivers for every additional mile they have to travel (compared to their shortest path), and

then distributes the rest of the income to drivers on a per mile basis for the duration of their

trips where they have been transporting passengers.

Figure 6.20 shows the remaining budget after paying drivers for their additional idle travels.

This figure displays the results of three simulation runs, with 10,000 drivers, and varying

per-mile fare charged to riders. Results show that when riders are charged very little (0.10¢

per mile), the system will encounter a deficit. Per-mile fares of 0.25¢ and 0.4¢ per mile,

however, lead to some positive income, which can then be distributed to drivers based on their

contoribution to the system. Figure 6.20 suggests that when riders are charged 0.25¢ per

mile, drivers can get paid 0.1¢ per mile, and when riders are charged 0.4¢ per mile, drivers

can get paid 0.27¢ per mile. Under such circumstances, the system is budget balanced and

does not require subsidies.

85

The Rideshare-Transit Alternative

Figure 6.21 shows the percentage of riders who use the transit-rideshare option, under dif-

ferent values for value of time (VOT), and distance-based fares. This figure shows that,

as intuition suggests, use of transit increases with the distance-based fare (under all VOT

values), since the transit fare is fixed. This figure also suggests that use of transit increases

with VOT, which is expected, since the LA metro red line has a high speed compared to the

street network.

Although at first glance it might seem like the percentage of individuals using ridesharing

as a means to connect to transit is not significant, it should be noted that the trip tables

used for simulations are single-occupancy trip tables, and the individuals using the transit-

rideshare option are actually increasing the current level of transit ridership. Furthermore,

keep in mind that having as little as 1% of single-occupancy vehicles switch to transit would

translate to a considerable increase in transit ridership. According to SCAG trip tables,

2,000,000 single occupancy vehicles travel during the morning peak hours in LA County in a

working day. This adds up to a total of about 20,000 additional trips, just by the Metro red

line. This number of trips distributed evenly between the roughly 50 Metro lines running

during the morning peak hours indicates an additional 400 passengers in each train.

86

Figure 6.21: Percentage of ride requests satisfied by the transit-rideshare option)

87

Chapter 7

The Many-to-Many Matching

Problem

In a many-to-many ride-matching problem each driver can carry multiple passengers in

his/her vehicle at each moment in time, and each rider can transfer between multiple drivers.

A many-to-many matching problem is computationally hard to solve, and using model (4.5)

directly to solve this problem either leads to failure, or takes a long time.

In this chapter, we propose a decomposition algorithm that solves the many-to-many match-

ing problem more efficiently, through iteratively solving multiple smaller problems, called

“sub-problems”. Figure 7.1 shows solution times of multiple random instances of a match-

ing problem that differ in the number of riders and drivers. The solution times reported

in this figure are obtained by directly solving model (D.1), as explained in Chapter 5 and

given in Appendix D. It is interesting to notice that problem instances that include a small

number of riders, but a large number of drivers (or vise versa) can be solved in a few seconds.

Instances that include a large number of riders and drivers, however, are harder to solve.

This observation is what motivates the forming of the sub-problems in the decomposition al-

88

Figure 7.1: Solution time of a set of problem instances by directly solving model
(D.1)(Appendix D)

gorithm. This algorithm attempts to solve the original ride-matching problem
(
model (4.5)

)
,

or the revised version of the problem in model (D.1), via solving a number of sub-problems

that are easier to solve.

7.1 Decomposition Algorithm

The basic idea behind the decomposition algorithm is that in each iteration the algorithm

solves a number of sub-problems that can represent the entire system. If the solutions to

the sub-problems do not have any conflicts, the algorithm is terminated and the union of

solutions to the sub-problems yields the global optimum for the original problem (proof in

section 7.3.1). The algorithm flowchart is displayed in Figure 7.2.

Let Rk
i and Dk

i denote the set of riders and drivers in sub-problem k of iteration i respectively.

Each sub-problem includes a subset of riders in the problem. Once the subset of riders for

sub-problem k in iteration i is determined, the set of drivers can be formed as Dk
i = {d|∀r ∈

89

Figure 7.2: The decomposition algorithm flowchart

Rk
i ,(r, d) ∈M}.

The algorithm starts by solving |R| sub-problems, each including one of the riders in set R

(note that since at this initialization step each sub-problem includes a single rider, we can

use the DP algorithm in Chapter 6 to solve the sub-problems in the first iteration much more

efficiently). In the case of there being no conflicts between the solutions, the solution to the

original problem is readily available. This happens if each rider is matched with a different

driver, or if multiple riders are matched with the same driver and the driver is capable of

performing all the pick-up and drop-off assignments. If not, conflicts are identified. Note

that existence of conflicts between drivers’ paths in different sub-problems implies that the

union of solutions to the sub-problems is infeasible to the original ride-matching problem.

In each iteration, in the case of there being conflicts between solutions of the sub-problems

in the previous iteration, we form the set of “applicable” sub-problems. An applicable

sub-problem is comprises: (i) a group of riders from the last iteration’s sub-problems with

90

identical driver assignment (if these assignments conflict in time or space), and (ii) sub-

problems from the previous iteration from which riders are excluded (with the remaining set

of riders). Sub-problems in the previous iteration that are not applicable sub-problems will

be carried out to the next iteration without any changes.

After the new set of sub-problems are formed, first we have to check to see if there are any

loops between iterations. If the set of sub-problems in the current iteration is similar to the

set of sub-problems in a previous iteration, the algorithm will be looping between iterations,

if no measures are taken. To prevent this, we re-define sub-problems in the current iteration

by forming an “intermediate” sub-problem, whenever a loop is identified. The intermediate

sub-problem combines the sub-problems from the previous iteration that contribute to the

loop, and hence prevent it (refer to Algorithm C in the Appendix for details).

After all the new sub-problems are determined, a decision has to be made on whether a sub-

problem needs to be solved or not. Sub-problems that need to be solved are called “active”

sub-problems. These sub-problems are the ones whose optimal solutions cannot be readily

obtained from the previous solutions. Sub-problems that have already been solved in the

previous iterations (such as non-applicable sub-problems) are not active. In addition, if a

sub-problem is the union of multiple sub-problems in a previous iteration, and the solutions

of these sub-problems do not conflict, the solution to the sub-problem can be readily obtained

by combining the solutions of the non-conflicting sub-problems. The algorithm stops when

the solutions to the current iteration’s sub-problems do not have any conflicts, i.e. each

driver is assigned to one route only.

Note that using this decomposition algorithm, a large problem could be solved in the first

iteration, or we might end up solving multiple sub-problems before having to solve the

original problem in the last iteration. The main merit of this algorithm is that sub-problems

in each iteration can be solved independently. This also indicates that parallel computing

implementations are possible. The pseudo-code of the scheme is described in Algorithm C

91

in the Appendix.

7.2 Illustrative Example

Assume that a ridesharing system has 6 riders and 4 drivers, and that all drivers have

spatiotemporal proximity with all riders, i.e. (r, d) ∈ M,∀(r, d) ∈ R ×D. The iterations of

the decomposition algorithm are displayed in Figure 7.3. As the interest is in showing the

nature of the creation of sub-problems, the actual network on which this problem is solved

is left out. The active sub-problems during each iteration are displayed in blue in the figure.

The problems whose solutions do not change throughout the iterations of the algorithm are

displayed in green.

In iteration 1, each rider constitutes an active sub-problem. The solutions show that riders

1, 3 and 6 all have driver 1 in their solution, but in conflicting paths. Therefore, an active

sub-problem of {r1, r3, r6} is formed and solved in the second iteration. Also, since rider 2

was not able to find any matches, even without facing competition from other riders, he/she

will not be able to find a match in the current configuration of the system. Sub-problems

{r4} and {r5} are not active sub-problems and their solutions are readily available.

The solution to the active sub-problem {r1, r3, r6} in iteration 2 indicates that the optimal

matches for riders 5 and 6 are in conflict (they are both matched with driver 2, but through

different paths). So they form the applicable sub-problem {r5, r6}. Also, since rider 6 was

removed from the sub-problem {r1, r3, r6}, the solution obtained for this sub-problem for

riders 1 and 3 might not be optimal anymore. Therefore, a new applicable sub-problem

{r1, r3} is formed. However, not both of these newly formed sub-problems are active. The

optimal match for rider 5 is driver 2, and the optimal match for rider 6 is driver 1. Since these

two do not have any conflicts, the solution to the {r5, r6} sub-problem is readily available.

92

Figure 7.3: Iterations of the decomposition algorithm

The only active sub-problem in iteration 3 is {r1, r3}. The solution to this sub-problem

suggests that two new applicable sub-problems {r1, r3, r6} and {r5} need to be formed, which

along with two sub-problems {r4} and {r2} should constitute the set of sub-problems for

iteration 4. However, we had the exact same set of sub-problems iteration 2. Therefore, in

order to avoid looping, a new (intermediate) sub-problem {r1, r3, r6, r5} is formed in iteration

4. After solving this sub-problem, we find that there are no more conflicts. So the global

solution to the original problem is obtained in iteration 4. A total of 9 sub-problems needed

to be solved for this solution to be obtained. However, in iteration 1, all 6 active sub-problems

could be solved simultaneously.

It is possible to solve another version of the algorithm which is easier to implement, but may

take longer to solve. In this simplified version, if any two riders in two sub-problems have

conflicts, all the riders in the two sub-problems are combined into a new sub-problem in the

following iteration. This will lead to potentially fewer iterations, but larger sub-problems to

be solved in each iteration.

Let us apply this simplified algorithm to the example above. The sub-problems in each

iteration are presented in Figure 7.4. Here, after solving the active sub-problem {r1, r3, r6}

in iteration 2, and studying the solutions to all sub-problems, it turns out that riders 6

and 5 are both matched with driver 2, but through conflicting paths. Therefore, in the

next iteration the two sub-problems {r1, r3, r6} and {r5} are combined. In this particular

example, using the simplified version of the algorithm leads to reaching the optimal solution

93

Figure 7.4: Iterations of the simplified decomposition algorithm

in fewer iterations, and less amount of time, since Figure 7.4 is skipping iteration 3 in Figure

7.3. Although reaching the optimal solution in fewer iterations is expected while using the

simplified version of the algorithm, a smaller solution time is not a typical behavior to expect

from it.

7.3 Properties of the Decomposition Algorithm

7.3.1 Optimality

During each iteration of the decomposition algorithm, we are in fact solving a relaxation of

the original ride-matching problem. In the original optimization problem each driver can be

assigned to a single route. By including a driver in multiple sub-problems, we might have

the driver being routed differently in each. In fact, we are relaxing the constraint set that

forces each driver to take a single route. Throughout the iterations, we are trying to find

conflicts of this nature, and merge the sub-problems whose solutions demonstrate such a

conflict, in an attempt to find a solution with no conflicts.

If the optimal solution to this relaxation satisfies the omitted set of constraints, then this

solution would be optimal to the original problem as well. We have based the stopping

criteria of our algorithm on this factual principle. After the final iteration of the algorithm,

there exist no more conflicts between any given driver’s routes in different sub-problems.

Therefore, what we find through the use of the decomposition algorithm is indeed an optimal

94

solution to the relaxation of the original problem that does not violate the set of omitted

constraints. Hence the solution found is the globally optimal solution to the original problem.

It should be noted that throughout the iterations, the union of the sub-problem solutions

form an infeasible solution to the original problem. It is only in the last iteration, where

there are no conflicts among driver assignments, when the first feasible solution is obtained,

and this feasible solution is in fact the optimal solution. Furthermore, note that although the

pre-processing procedure may eliminate some of the drivers from the pool of drivers available

for each rider, it does not affect the optimality of the final matching. The omitted drivers

could not have contributed to the solution in any case, since they did not have spatiotemporal

proximity to the riders.

7.3.2 Bounds

In this section we discuss computing upper and lower bounds on the optimal value of the

objective function in model (4.5) after each iteration of the decomposition algorithm. We

compute the bounds for the objective function in (10.3a), but the concept can be easily

extended to any other objective function.

Clearly, if a ride-matching problem is solved to optimality, the upper and lower bounds would

be similar. However, if there is a time limit on reaching a solution, we might be obliged to

settle for a sub-optimal solution (as will be described later in section 7.5.4). In that case,

upper and lower bounds on the optimal solution can be computed after completion of each

iteration to provide insight on the quality of the solution.

The main objective in model (4.5) is to find the maximum number of served riders, and that

the second term in (10.3a) has been added only for technical reasons (to ensure that the

constraint sets work properly, as explained in Proposition A in the Appendix). Therefore,

95

while solving the sub-problems, we include this term, but use only the value of the first term

as the value of the objective function of the problem while computing bounds.

In section 7.3.1, we showed that the solution reached in every iteration of the decomposition

algorithm is infeasible, until the last iteration. This infeasibility is caused by conflicts between

itineraries of common drivers in different sub-problems. When such conflicts exist, the best

case scenario is for all the riders who are receiving conflicting itineraries to be eventually

served in the system. Therefore, the upper bound in each iteration can be computed as the

sum of the number of served riders in all sub-problems, regardless of the conflicting driver

itineraries.

It should be noted that the upper bound is strictly non-increasing with the number of

iterations. The reason is that when two sub-problems have conflicting assignments during

a given iteration, the riders who are receiving conflicting itineraries will be included in the

same sub-problem in the following iteration. If all such conflicting riders can be served, then

the upper bound to the objective function does not change. Otherwise, the upper bound

will decrease.

The lower bound in each iteration can be obtained by solving a set packing problem. The

optimal solution to sub-problems of a typical iteration provides us with information on the

riders with conflicting itineraries, and drivers who form the itineraries of such riders. To

find the tightest lower bound, we have to find the maximum number of riders who could be

served under the current configuration (e.g. assuming that the driver routes are fixed). This

is analogous to solving a set packing problem where the universe is the set of drivers, and

the sub-sets are drivers who form each rider’s itinerary.

It should be noted that unlike the upper bound that has a non-increasing trend with the

number of iterations, the lower bound is not necessarily non-decreasing with iterations. In

addition, note that the lower bound corresponds to a feasible solution, while the upper

96

Figure 7.5: Bounds on the objective function value for the example in section 7.2

bound corresponds to a possibly infeasible solution. Figure 7.5 shows the lower and upper

bounds for the example in section 7.2. Clearly the lower and upper bounds meet at the final

iteration.

As we mentioned in the beginning of this section, we can follow a similar logic to compute

bounds for any objective function. Since we are solving a relaxation of the original ride-

matching problem at each iteration, no matter the objective function, sum of the objective

functions of sub-problems always provides an upper bound on the original problem. To

obtain a lower bound at each iteration, similar to what we did for the objective function

in (10.3a), we have to compute a feasible global assignment from the solutions to the sub-

problems at each iteration by solving a set packing problem. At each iteration, once we find

the set of riders who can be served, the drivers who serve them and the itineraries of these

riders and drivers are readily available, and can be used to calculate any measures that are

included in the objective function to obtain a lower bound.

7.4 Numerical Study

To evaluate the performance of the proposed decomposition algorithm, we generate and solve

420 random instances of the ride-matching problem. Each problem instance has a different

size in terms of number of riders and drivers, and is generated in a grid networks with 49

97

stations. The results reported here are averaged over the 10 runs for each problem instance.

The number of participants |P | in the problem instances varies between 20 and 400, and

the number of riders |R| between 1 and |P |. Origins and destinations of trips are selected

uniformly at random among the 49 stations. Earliest departure times of all trips are gen-

erated randomly within a one hour time period. The maximum ride time for a participant

p is generated randomly within the window [tt(OSp,DSp), 1.1 tt(OSp,DSp)]. The latest arrival

times are simply the sum of the earliest departure times and the maximum ride times of

participants. Each vehicle is assumed to have 4 empty seats, and each rider is assumed to

accept up to three transfers.

The ride-matching instances are solved on a PC with Core i7 3 GHz and 8GB of RAM. The

optimization problems are coded in AMPL, and solved using CPLEX 12.6.00 with standard

tuning.

In addition to problem instances that use these default parameter values, we solve additional

problem instances in section 7.4.4 to conduct sensitivity analysis over some of the parameters

of the problem, including the number of stations, the spatiotemporal proximity of trips, and

the maximum ride time of participants. The results shown in the rest of the chapter are for

solving the static versions of the problems, unless otherwise specified.

7.4.1 Pre-Processing

In this section, we look at the running time of the pre-processing procedure ESTAM, and

examine its impact on the size of the ride-matching problem that needs to be solved. Figure

7.6a shows the contour plot of the pre-processing time as a function of the size of the problem.

The pre-processing time in this chapter is the sum of two components: the time required to

generate the set of feasible links for each participant, and the time required to find the set

98

of feasible drivers for each rider.

The former component consists of the time spent on generating the reduced networks, and

forming sets of feasible links for participants using forward and backward movements. This

task can be completed when a participant registers a request in the system, and hence is not

a bottleneck when it comes to solving the ride-matching problem in real-time in a rolling

time-horizon implementation. Even if a large number of participants join the system at

the same time, the computations can be done independently, and implemented in a parallel

computing system.

The latter component of the pre-processing time consists of the time required to compare

each rider’s set of feasible links to those of the drivers. Similar to the first component, these

computations can be done once a rider joins the system (with all registered drivers), and

updated continuously as drivers keep joining the system.

The total pre-processing time depends on the size of the problem. For the 420 problem

instances solved in this section, the maximum time was 3.5 seconds. The distribution of the

pre-processing times over the randomly generated instances are displayed in Figure 7.6a. The

pre-processing procedure managed to reduce the average size of the link sets for participants

to 0.01% of the size of the original link set L.

Not only does the pre-processing procedure lead to indirect savings in solution time by

limiting the size of the input sets to the optimization problem, but more importantly a quick

scan of the participants’ feasible links can lead to direct and more considerable savings in

solution time. For a rider to be served, he/she should have spatiotemporal proximity with

some driver at both origin and destination stations. Whether such proximity exists can

be easily examined using the sets of feasible links. Riders who do not have spatiotemporal

proximity at both origin and destination stations can be filtered out from the system. Figure

7.6b shows the fraction of riders filtered out from each problem instance during the pre-

99

(a) Pre-processing time (sec) (b) Percentage of filtered riders

Figure 7.6: The pre-processing procedure

processing procedure. This figure suggests that, for a given number of riders, the lower the

number of drivers, the higher the number of filtered riders, as expected.

7.4.2 Value of a Multi-hop Solution

A ridesharing system can use a variety of approaches to match riders with drivers. Ride-

matching methods could differ in multiple aspects, ranging from the flexibility in routing of

drivers, to the type of routes devised for riders (single- or multi-hop). Matching methods

can be formulated as optimization problems, and solved to optimality. However, different

ride-matching methods lead to different system performance levels.

In this section, in order to investigate the effectiveness of the ridesharing system defined in

this study, we compare its performance with a few more common ride-matching methods.

Figure 7.7 compares the cumulative number of served riders in the 420 randomly-generated

problem instances using five different matching methods. The problem instances in this

figure are sorted by the number of participants.

The first matching method labeled as the “OD-based” in Figure 7.7 matches riders and

100

drivers who share the same origin and destination locations, if their time windows allow.

The second matching method, labeled as “Single-hop, Fixed-route” matches each rider with

one driver only, where the drivers’ routes are pre-specified and fixed (although they still

have flexibility in departure time). The third matching method labeled as “Multi-hop,

Fixed-route” allows riders to transfer between drivers. The drivers’ routes, however, remain

pre-specified. The fourth matching method labeled as “Single-hop, Flexible-route” matches

each rider with one driver only. In this method, however, the ridesharing system takes over

routing of the drivers. The fifth and final matching method labeled as “Multi-hop, Flexible-

route” allows riders to transfer between drivers. The driver routes are not pre-specified, and

will be determined by the system.

As Figure 7.7 indicates, the OD-based matching method provides the least number of

matches. The Single-hop, Fixed-route method does significantly better, since in this method

not only can drivers carry the riders who share the same origin and destination locations

with them (as in the OD-based method), but also they can carry passengers whose ori-

gin and destination locations lie on their pre-specified routes. The Multi-hop, Fixed-route

matching method produces results that are slightly superior to the Single-hop, Fixed-route

method, implying that allowing riders to transfer between drivers is in general beneficial to

the system.

The Single-hop, Flexible-route and Multi-hop, Flexible-route methods lead to considerable

improvements in the number of matches. This implies that having the system route the

drivers can be one of the most influential features of a ridesharing system. Comparison of

the Single-hop, Flexible-route and Multi-hop, Flexible-route methods suggests that allowing

transfers in the system is the second most important factor, after routing drivers. In addition,

comparing the Single-hop, Flexible-route and Multi-hop, Flexible-route methods with Single-

hop, Fixed-route and Multi-hop, Fixed-route methods suggests that the value of a multi-hop

solution becomes more prominent when the driver routes are not pre-specified.

101

Figure 7.7: Cumulative number of served riders using five different matching algorithms

Figure 7.7 measures the efficiency of the matching methods based on the number of served

riders. What this figure fails to demonstrate is how measures of quality of service, such

as number of transfers and waiting times in transfer stations for riders, and the average

vehicle occupancy and the extra time spent in the network by drivers compare between

these methods. Table 7.1 displays these measures of quality of service along with some

additional metrics to assess the five matching methods from different perspectives.

The results presented in this table are averaged over 10 runs with 400 participants, 200

of which are drivers and 200 are riders. This problem composition is selected because it

yields the highest number of served riders, regardless of the matching method. The earliest

departure times of all trips are randomly generated within a 60 minute time period, and

the trip origin and destination stations are selected randomly among the 49 stations. The

quality of service measures in this table are averaged over all participants in all the randomly-

generated problems.

Table 7.1 suggests that in addition to serving higher number of riders, the multi-hop matching

methods also engage higher number of drivers, compared to their single-hop counterparts.

Although the ultimate purpose of a ridesharing system is serving riders, involving higher

102

number of drivers is important as well, because users who do not get matched might stop

registering in the system after a few failed attempts. Another interesting point is that in

multi-hop matching methods the number of matched drivers is higher than number of served

riders. In spite of this observation, the average number of riders a driver in a multi-hop

system carries is slightly higher than the average number of riders carried by a driver in a

single-hop system.

Another interesting observation is that vehicle occupancies are highest in a multi-hop fixed-

route system. In such a system, because driver’s routes are fixed, a smaller percentage of

drivers get matched. However, drivers who get matched are the ones who drive on “popular”

routes, and therefore end up with higher occupancy rates. In other words, although the

system is not routing drivers, those drivers who try to optimally route themselves will benefit

more compared to the case where the system routes all drivers.

Table 7.1 suggests that the measures of quality of service stay within reasonable ranges for

all matching methods. It should be noted, however, that these measures correlate with the

problem parameters in general, and are more sensitive to some parameters of the problem

than others, as we will see in section 7.4.4.

103

T
ab

le
7.

1:
Q

u
al

it
y

of
se

rv
ic

e
m

ea
su

re
s

fo
r

th
e

fi
ve

m
at

ch
in

g
m

et
h
o
d
s

in
a

sy
st

em
w

it
h

re
la

ti
ve

ly
lo

w
sp

at
io

te
m

p
or

al
p
ro

x
im

it
y

am
on

g
tr

ip
s

R
id

er
s

D
ri

ve
rs

N
u
m

.
(%

)
M

in
\a

v
g.
\m

ax
M

in
\a

v
g.
\m

ax
N

u
m

.
M

in
\a

v
g.
\m

ax
M

in
\a

v
g.
\m

ax
M

at
ch

in
g

m
et

h
o
d

se
rv

ed
n
u
m

.
tr

an
sf

er
s

w
ai

t
in

tr
an

sf
er

(m
in

)
in

vo
lv

ed
ex

tr
a

tr
av

el
ti

m
e

(m
in

)
ri

d
er

s
on

b
oa

rd

O
D

-b
as

ed
5

(3
%

)
N

A
N

A
5

(3
%

)
N

A
1.

0\
1.

00
\1

.0
S
in

gl
e-

h
op

,
F

ix
ed

-r
ou

te
11

(6
%

)
N

A
N

A
8

(4
%

)
N

A
1.

0\
1.

37
\3

.1
M

u
lt

i-
h
op

,
F

ix
ed

-r
ou

te
16

(8
%

)
0.

0\
0.

63
\1

.9
0.

0\
0.

38
\2

.5
18

(9
%

)
N

A
1.

0\
1.

44
\3

.2
S
in

gl
e-

h
op

,
F

le
x
ib

le
-r

ou
te

32
(1

6%
)

N
A

N
A

26
(1

3%
)

0.
0\

3.
04
\8

.1
1.

0\
1.

23
\2

.3
M

u
lt

i-
h
op

,
F

le
x
ib

le
-r

ou
te

52
(2

6%
)

0.
0\

0.
50
\2

.6
0.

0\
0.

63
\2

.1
62

(3
1%

)
0.

0\
2.

13
\6

.9
1.

0\
1.

26
\1

.8

T
ab

le
7.

2:
Q

u
al

it
y

of
se

rv
ic

e
m

ea
su

re
s

fo
r

th
e

fi
ve

m
at

ch
in

g
m

et
h
o
d
s

in
a

sy
st

em
w

it
h

re
la

ti
ve

ly
h
ig

h
sp

at
io

te
m

p
or

al
p
ro

x
im

it
y

am
on

g
tr

ip
s

R
id

er
s

D
ri

ve
rs

N
u
m

.
(%

)
M

in
\a

v
g.
\m

ax
M

in
\a

v
g.
\m

ax
N

u
m

.
M

in
\a

v
g.
\m

ax
M

in
\a

v
g.
\m

ax
M

at
ch

in
g

m
et

h
o
d

se
rv

ed
n
u
m

.
tr

an
sf

er
s

w
ai

t
in

tr
an

sf
er

(m
in

)
in

vo
lv

ed
ex

tr
a

tr
av

el
ti

m
e

(m
in

)
ri

d
er

s
on

b
oa

rd

O
D

-b
as

ed
21

(1
1%

)
N

A
N

A
19

(1
0%

)
N

A
1.

0\
1.

11
\2

.4
S
in

gl
e-

h
op

,
F

ix
ed

-r
ou

te
79

(4
0%

)
N

A
N

A
62

(3
1%

)
N

A
1.

0\
1.

27
\4

.2
M

u
lt

i-
h
op

,
F

ix
ed

-r
ou

te
89

(4
5%

)
0.

0\
1.

51
\2

.5
0.

0\
0.

91
\3

10
4(

52
%

)
N

A
1.

0\
1.

91
\3

.1
S
in

gl
e-

h
op

,
F

le
x
ib

le
-r

ou
te

10
4(

52
%

)
N

A
N

A
79

(3
5%

)
0.

0\
2.

47
\6

.1
1.

0\
1.

32
\2

.9
M

u
lt

i-
h
op

,
F

le
x
ib

le
-r

ou
te

15
2(

76
%

)
0.

0\
2.

22
\2

.9
0.

0\
1.

28
\5

18
1(

86
%

)
0.

0\
4.

75
\8

.8
1.

0\
1.

26
\3

.6

104

The problem instances whose performance we studied in Table 7.1 represent a ridesharing

system that is spatiotemporally sparse. To compare the matching methods in a more realistic

setting, we generated 10 random instances of a ridesharing system with higher spatiotemporal

proximity among trips. Similar to the problem instance studied in Table 7.1, this problem

instance contains 400 participants, 200 of whom are riders and 200 are drivers. The earliest

departure times of all trips is generated within a 30 minute time period. The network

is clustered into two sets of non-intersecting sections, where all trip origins are randomly

selected from stations located in one of the sections, and all trip destinations from the other.

This trip generation procedure significantly increases the spatiotemporal proximity among

trips. The number of served riders and matched drivers using all five ride-matching methods

along with some measures of quality of service are displayed in Table 7.2. This table suggests

that all matching methods serve higher number of riders in a more spatiotemporally-dense

ridesharing system.

7.4.3 Percentage of Satisfied Ride Requests

Figure 7.8 displays the contour plots of the percentage of satisfied ride requests for the ran-

domly generated problem instances. As intuition suggests, for a given number of riders, the

percentage of served requests increases with the number of drivers in the system. Analyzing

this type of graph can be especially helpful when one is interested in the critical mass of

participants required to keep the system up and running, or when looking to set marketing

strategies. For example, if we have 100 registered riders in a network where the origin and

destination of trips are completely random, and aim to serve at least 40% of the riders,

then we know we need at least 230 drivers (330 participants), and can tailor our marketing

strategies accordingly.

Note that the percentages shown in Figure 7.8 are the result of uniformly distributed OD

105

Figure 7.8: Percentage of riders served

patterns in the study problems, which is a worst case scenario with a much less chance of joint

rides than found in real networks, where trip distributions cause high demands for certain

OD pairs, hence increasing the spatial proximity of trips in the network. It is expected

that real networks can operate with much better ratios between drivers and riders. As a

consequence, marketing attempts in real networks can be targeted towards the more popular

OD pairs.

7.4.4 Algorithm Performance

Figures 7.9a and 7.9b compare the time required to solve the randomly generated ride-

matching problems to optimality, without and with the decomposition algorithm. Solution

times in Figure 7.9a were obtained by solving model (D.1) directly, and solution times in Fig-

ure 7.9b were obtained by solving the same model using the decomposition algorithm. Com-

parison of these two figures suggests considerable savings in solution times can be obtained

using the decomposition algorithm, without any trade-offs in terms of solution accuracy.

Figure 7.10 shows the number of iterations of the decomposition algorithm it takes to solve

the problems to optimality. Note that the higher numbers of iterations correspond to prob-

106

(a) Original matching problem solution times (sec) (b) Decomposition algorithm solution times (sec)

Figure 7.9: Improvements in solution times. Contour plots of solution times in seconds.

Figure 7.10: Number of decomposition algorithm iterations

lems with higher solution times. None of the problem instances requires more than 7 itera-

tions to be solved to optimality using the decomposition algorithm.

7.4.5 Transfers

Transfers usually connote discomfort, and understandably so; since public transportation

commonly runs under a fixed schedule, making transfers could lead to high wait times and

large deviation from one’s shortest route. Note, however, that ride-sharing systems of the

107

future could be fundamentally different in nature, and better user-acceptance of transfers is

possible depending on the ease of transfers and reduction in transfer times offered by such

systems. This will naturally depend on the market penetration of the system as well as

user-side behavioral changes. While this remains speculative, in this study we allow riders

to specify their maximum number of transfers, and incorporate the maximum ride times

requested by riders and drivers in our models. These input parameters could vary among

individuals depending on their accessibility to personal vehicles, and value of time. As the

individual riders’ own transfer preferences are incorporated, this will help ease concerns on

the perceived quality of service being affected by transfers.

Figure 7.11 shows the distribution of number of transfers in the 420 problem instances we

solved in this section. Even though in our numerical experiments we assume that riders are

comfortable with up to 3 transfers, this figure suggests that the majority of trips have zero

or one transfer.

A further reason to include multiple transfers is to combine ride-sharing systems to other

modes, as we saw in Chapter 6. It is straight-forward to include, say, a fixed transit system

simply as high-capacity drivers with fixed routes in the formulation. In such cases, more than

one-transfer between another mode and the ride-share mode (near the origin and destination,

for example) is reasonable, and this also highlights the need for not limiting the number of

transfers.

7.4.6 Sensitivity Analysis

In order to perform sensitivity analysis over some of the parameters of the ride-matching

problem, we generate and solve two additional series of matching problems. All these prob-

lems contain 400 participants, with equal number of riders and drivers. This configuration

is selected because Figures 7.8 and 7.9 suggest that problems with equal number of riders

108

(a) Percentage of served riders with zero transfers (b) Percentage of served riders with one transfer

(c) Percentage of served riders with two transfers (d) Percentage of served riders with three transfers

Figure 7.11: Distribution of transfers

109

and drivers produce the highest number of matches, and require the most computational

resources. For the following problems, we maximize an objective function that includes two

main terms: sum of the total number of served riders (
∑

r∈R zr), and the weighted total

distance traveled by riders (−
∑

r∈RWr

∑
d∈D:(r,d)∈M

∑
`=(ti,si,tj ,sj)∈Lrd(tj − ti)y

rd
`). The term

Wr = 1/(T TBr + 1) (where T TBr is the maximum ride time for rider r) is considered as the

weight for the travel time of rider r in this objective function to ensure that maximizing the

total number of served riders remains the main priority of the system.

Table 7.3 shows the performance of the decomposition algorithm in solving 5 problem in-

stances in a network with 49 stations. The field “release period” in this table shows the

period of time during which the earliest departure times of participants is generated. For

this field, we use two values of 30 and 60 minutes. Problem instances with release period of

30 minutes incorporate higher temporal proximity between trips.

The field “Dir. trips” in Table 7.3 has a binary value. Value of zero for this field is used

when the trip origin and destination locations are generated randomly in the network. In

problem instances with value of 1 for this field, we use a clustered network. In a clustered

network, trips experience a higher degree of spatial proximity.

Finally, we use two values of 1.1 and 1.2 for the participants’ maximum ride times. Value

of 1.1/1.2 for this parameter indicates that all participants are assumed to have a maximum

ride time that is 1.1/1.2 times their shortest path travel time.

The field “Optimal” in Table 7.3 indicates whether a problem has been solved to optimality

(Y), or we ran out of memory when solving at least one of the sub-problems (the original

problem in case of a static problem), and had to report the solution obtained by the heuristic

described in section 7.5.4.

All these problem instances have been solved as both static problems, and dynamic problems

with different re-optimization periods. For each problem instance, “NA” under the field

110

“Re-optimization period” indicates that the problem is solved in a static setting, assuming

all participants have registered their trips before the matching problem is solved. Other

values under this field show the re-optimization period. We assume that the demand for

re-optimization period i arrives within the window [(i− 1)k, ik], where k is the length of the

re-optimization period. In addition, after each re-optimization period, we fix the itineraries

of all matched riders and drivers, and include the fixed itineraries of matched drivers in the

problems solved for the following re-optimization periods, if their travel time windows allow.

Not surprisingly, static versions of all five problem instances have the largest number of

matches and the largest solution times compared to their dynamic counterparts, since static

problems include all participants. Following the same logic, given a fixed number of par-

ticipants, longer re-optimization periods translate to a larger pool of participants in the

matching problems, and higher matching rates.

For each problem, we provide statistics on the number of rider transfers (based on the

itineraries of matched riders), and the waiting time of riders during transfers (based on the

itineraries of riders who experience transfers). As a general trend, all these values decrease

with the length of the re-optimization period, although the average waiting time of riders

during transfers is in general negligible, especially given the potential uncertainties in travel

times.

Table 7.3 also reports the number of matched drivers, and the statistics on the extra travel

time they have to spend in the network (compared to their shortest path travel times).

This table suggests that number of matched drivers decreases with the length of the re-

optimization period. However, no monotonic relationship can be observed between the

drivers’ extra time spent in the network, and the length of the re-optimization period.

Compared to the first problem instance, problem instances 4, 5, and 6 incorporate higher

temporal, spatial, and spatiotemporal proximity among trips, respectively. Although all

111

these problem instances lead to higher number of served riders compared to the first problem

instance, it is interesting to note that the effect of higher spatial proximity on the number of

served riders is more significant than the effect of higher temporal proximity. An interesting

point to notice is that at 5-min re-optimization periods, all the problem instances can be

solved in less than 1 minute.

The highest number of served riders is obtained in problem instance 2, where the participants’

time budgets are the highest. However, notice that the measures of quality of service, namely

the average extra travel time for drivers, and the average number of transfers and transfer

wait time for riders, are also considerably higher compared to other problem instances. The

matching rate and quality of service measures reported on problem instance 3 in which riders

are (naturally) assumed to have a higher maximum ride time than drivers lie between those

of instances 1 and 2.

Table 7.4 displays problem instances similar to the ones in Table 7.3 in terms of problem

parameters, but in a network with 100 stations. We should point out that we could not

solve the static version of problem instance 5 to optimality (ran out of memory), and instead

used the heuristic approach described in section 7.5.4. The two numbers reported under

the “Num. served” field show the lower and upper bounds on the optimal solution (the

lower bound solution is the feasible solution that can be eventually used). Note that if

one encounters such a problem due to lack of computational capacity, they could opt for

re-optimizing the system more periodically.

In general, Table 7.4 demonstrates the same trends as in Table 7.3. The most prominent

difference that can be observed comparing the two tables is that Table 7.4 has fewer number

of served riders. This is an expected result, since by increasing the number of stations and

keeping the same number of participants, we are in fact decreasing the spatial proximity

among trips. In practice, however, increased number of stations could lead to potentially

higher levels of demand, as higher number of stations translates into higher accessibility to

112

the ridesharing system.

In the following section, we present methods to make the solution algorithm more appropriate

for dynamic implementations by reducing the solution times even further.

113

T
ab

le
7.

3:
S
en

si
ti

v
it

y
st

u
d
y

ov
er

th
e

p
ro

b
le

m
p
ar

am
et

er
s.

A
ll

in
st

an
ce

s
ar

e
ge

n
er

at
ed

w
it

h
40

0
p
ar

ti
ci

p
an

ts
co

m
p

os
in

g
of

20
0

ri
d
er

s
an

d
20

0
d
ri

ve
rs

in
a

ra
n
d
om

ly
ge

n
er

at
ed

n
et

w
or

k
w

it
h

49
st

at
io

n
s R
id

er
s

D
ri

ve
rs

S
ol

u
ti

on
P

ro
b
le

m
D

ir
.

R
el

ea
se

T
im

e
b
u
d
ge

t
R

e-
op

ti
m

iz
at

io
n

N
u
m

.
M

in
\a

v
g.
\m

ax
M

in
\a

v
g.
\m

ax
N

u
m

.
M

in
\a

v
g.
\m

ax
ti

m
e

O
p
ti

m
al

In
st

an
ce

tr
ip

s
p

er
io

d
ri

d
er

/d
ri

ve
r

p
er

io
d

se
rv

ed
n
u
m

.
tr

an
sf

er
s

w
ai

t
in

tr
an

sf
er

In
vo

lv
ed

ex
tr

a
ti

m
e

(s
ec

)
Y

/L
B

(m
in

)
(m

in
)

(m
in

)

1
0

60
1.

1/
1.

1
N

A
69

0.
0\

0.
88
\3

.0
0.

0\
0.

58
\3

.0
98

1.
0\

2.
67
\3

.0
51

8
Y

1
0

60
1.

1/
1.

1
10

27
0.

2\
0.

47
\1

.0
0.

0\
0.

31
\1

.8
44

1.
8\

2.
96
\3

.4
16

Y
1

0
60

1.
1/

1.
1

5
20

0.
4\

0.
45
\0

.8
0.

0\
0.

36
\1

.2
36

1.
1\

2.
17
\3

.2
6

Y
2

0
60

1.
2/

1.
2

N
A

15
0

0.
0\

2.
09
\2

.1
0.

0\
2.

50
\4

.1
14

4
0.

0\
11

.1
7\

15
19

20
Y

2
0

60
1.

2/
1.

2
10

72
0.

0\
0.

56
\1

.7
0.

0\
1.

28
\3

.1
10

5
2.

9\
8.

50
\1

1
17

4
Y

2
0

60
1.

2/
1.

2
5

67
0.

0\
0.

36
\1

.7
0.

0\
0.

43
\3

.3
87

3.
6\

6.
50
\9

.2
29

Y
3

0
60

1.
2/

1.
1

N
A

11
2

0.
0\

0.
70
\2

.4
0.

0\
1.

5\
3.

1
12

3
0.

1\
3.

10
\5

.4
71

8
Y

3
0

60
1.

2/
1.

1
10

43
0.

0\
0.

45
\1

.2
0.

0\
0.

81
\3

.0
80

2.
0\

3.
05
\5

.1
53

Y
3

0
60

1.
2/

1.
1

5
38

0.
0\

0.
42
\0

.9
0.

0\
0.

43
\2

.1
67

2.
6\

4.
20
\4

.2
11

Y
4

0
30

1.
1/

1.
1

N
A

87
0.

0\
0.

90
\3

0
0.

0\
0.

74
\1

.5
11

5
0.

75
\2

.3
2\

3.
3

23
57

Y
4

0
30

1.
1/

1.
1

10
54

0.
0\

0.
73
\2

.3
0.

0\
0.

59
\3

.3
80

1.
7\

3.
14
\4

.2
20

1
Y

4
0

30
1.

1/
1.

1
5

48
0.

0\
0.

45
\1

.5
0.

0\
0.

48
\3

.7
68

0.
5\

2.
55
\4

.3
12

Y
5

1
60

1.
1/

1.
1

N
A

13
7

0.
0\

2.
10
\3

.0
0.

0\
1.

67
\7

.0
15

8
0.

0\
2.

40
\8

.0
11

04
Y

5
1

60
1.

1/
1.

1
10

73
0.

0\
0.

83
\2

.3
0.

0\
0.

59
\2

.8
10

7
0.

0\
2.

45
\7

.0
6

52
Y

5
1

60
1.

1/
1.

1
5

57
0.

0\
0.

65
\1

.7
0.

0\
0.

63
\1

.8
85

0.
3\

3.
00
\3

.4
22

Y
6

1
30

1.
1/

1.
1

N
A

15
2

0.
0\

2.
22
\3

.0
0.

0\
1.

28
\8

.0
19

2
0.

0\
2.

34
\8

.0
27

50
Y

6
1

30
1.

1/
1.

1
10

11
6

0.
0\

0.
82
\2

.6
0.

0\
0.

48
\3

.7
13

3
0.

0\
2.

55
\8

.0
14

2
Y

6
1

30
1.

1/
1.

1
5

10
1

0.
0\

0.
65
\1

.5
0.

0\
0.

43
\2

.2
11

2
0.

1\
1.

95
\6

.2
48

Y

114

T
ab

le
7.

4:
S
en

si
ti

v
it

y
st

u
d
y

ov
er

th
e

p
ro

b
le

m
p
ar

am
et

er
s.

A
ll

in
st

an
ce

s
ar

e
ge

n
er

at
ed

w
it

h
40

0
p
ar

ti
ci

p
an

ts
co

m
p

os
in

g
of

20
0

ri
d
er

s
an

d
20

0
d
ri

ve
rs

in
a

ra
n
d
om

ly
ge

n
er

at
ed

n
et

w
or

k
w

it
h

10
0

st
at

io
n
s R
id

er
s

D
ri

ve
rs

S
ol

u
ti

on
P

ro
b
le

m
D

ir
.

R
el

ea
se

T
im

e
b
u
d
ge

t
R

e-
op

ti
m

iz
at

io
n

N
u
m

.
M

in
\a

v
g.
\m

ax
M

in
\a

v
g.
\m

ax
N

u
m

.
M

in
\a

v
g.
\m

ax
ti

m
e

O
p
ti

m
al

In
st

an
ce

tr
ip

s
p

er
io

d
ri

d
er

/d
ri

ve
r

p
er

io
d

se
rv

ed
n
u
m

.
tr

an
sf

er
s

w
ai

t
in

tr
an

sf
er

In
vo

lv
ed

ex
tr

a
ti

m
e

(s
ec

)
Y

/L
B

(m
in

)
(m

in
)

(m
in

)

1
0

60
1.

1/
1.

1
N

A
61

0.
0\

1.
81
\2

.7
0.

0\
1.

80
\1

0
94

0.
0\

4.
40
\7

.0
50

1
Y

1
0

60
1.

1/
1.

1
10

18
0.

5\
1.

07
\1

.8
0.

2\
1.

15
\3

.7
39

0.
5\

5.
86
\9

.1
40

Y
1

0
60

1.
1/

1.
1

5
11

0.
3\

0.
48
\0

.7
0.

1\
0.

40
\0

.8
20

0.
3\

3.
86
\8

.2
36

Y
2

0
60

1.
2/

1.
2

N
A

13
8

0.
0\

2.
38
\2

.5
0.

3\
2.

36
\6

.2
12

4
0.

0\
16

.1
8\

20
.2

13
39

Y
2

0
60

1.
2/

1.
2

10
59

0.
1\

1.
65
\2

.1
0.

0\
1.

05
\5

.1
83

1.
0\

14
.3

0\
19

.8
51

5
Y

2
0

60
1.

2/
1.

2
5

39
0.

0\
0.

43
\0

.9
0.

1\
0.

89
\3

.9
63

2.
1\

12
.2

2\
18

.2
31

6
Y

2
0

60
1.

2/
1.

2
2

32
0.

0\
0.

35
\0

.6
0.

0\
0.

70
\3

.1
40

0.
1\

8.
06
\1

4.
0

11
5

Y
3

0
60

1.
1/

1.
2

N
A

85
0.

1\
1.

82
\2

.5
0.

3\
2.

11
\4

.1
10

2
0.

0\
2.

13
\6

.2
10

20
Y

3
0

60
1.

1/
1.

2
10

35
0.

3\
1.

50
\1

.9
0.

1\
1.

19
\4

.0
49

0.
2\

3.
91
\7

.1
18

0
Y

3
0

60
1.

1/
1.

2
5

21
0.

2\
0.

45
\1

.1
0.

1\
0.

78
\3

.8
30

0.
1\

3.
87
\7

.3
11

5
Y

4
0

30
1.

1/
1.

1
2

36
0.

2\
1.

0\
1.

5
0.

2\
0.

80
\2

.0
63

0.
1\

4.
46
\8

.2
86

6
Y

4
0

30
1.

1/
1.

1
10

23
0.

1\
0.

85
\1

.7
0.

3\
1.

74
\3

.4
42

0.
1\

4.
06
\9

.1
33

9
Y

4
0

30
1.

1/
1.

1
5

15
0.

0\
0.

44
\0

.7
0.

3\
0.

67
\2

.3
23

0.
1\

3.
23
\7

.6
31

Y
5

1
60

1.
1/

1.
1

N
A

13
2

0.
5\

2.
42
\2

.9
0.

4\
1.

86
\4

.1
14

5
0.

0\
6.

68
\8

.9
85

6
Y

5
1

60
1.

1/
1.

1
10

29
0.

1\
0.

85
\1

.2
0.

0\
0.

69
\2

.1
49

0.
1\

4.
02
\7

.1
12

4
Y

5
1

60
1.

1/
1.

1
5

19
0.

1\
0.

74
\0

.9
0.

1\
0.

40
\1

.9
32

0.
2\

4.
50
\7

.1
30

Y
6

1
30

1.
1/

1.
1

N
A

[7
8,

12
8]

0.
4\

2.
42
\2

.7
0.

1\
1.

27
\3

.8
16

1
0.

2\
6.

16
\1

0.
1

75
3

L
B

6
1

30
1.

1/
1.

1
10

61
0.

1\
0.

97
\1

.2
0.

1\
0.

97
\2

.1
99

0.
3\

4.
90
\6

.9
21

40
Y

6
1

30
1.

1/
1.

1
5

40
0.

1\
0.

78
\1

.2
0.

1\
0.

82
\1

.9
64

0.
1\

2.
69
\4

.5
44

7
Y

6
1

30
1.

1/
1.

1
2

28
0.

0\
0.

50
\0

.7
0.

1\
0.

69
\1

.5
42

0.
0\

1.
05
\3

.1
12

3
Y

115

7.5 Application in Practice

The scalability of the solution algorithm to solve the ride-matching problem may become

an issue in practice. Larger areas of coverage call for larger number of stations and larger

number of participants. Larger ride-matching problems can lead to higher solution times

and reduce the effectiveness of the proposed algorithm for dynamic applications.

Replacing the original network with reduced networks of participants can address this prob-

lem to a large extent. Even though a ridesharing company could cover a very large area,

the distance traveled by participants is usually within a limited (but not necessarily small)

circumference of their homes, e.g. within city limits, and therefore their reduced networks

contain a limited number of stations. It is only in rarer cases that people might require to,

or be willing to, travel larger distances in a dynamic rideshare system. Thus, it may be

expected that larger reduced networks would be rarer.

In order for the ridesharing system to cover longer (such as inter-city) trips, the system can

locate one or two important stations in each city, and use only those set of stations for riders

with long-distance trips. In addition, drivers who are selected to be included in the ride-

matching problems with such riders can be limited to those who are making inter-city trips

themselves. Using drivers with shorter trip lengths in such settings would not be practical

due to the large number of transfers that forming an itinerary with short-distance drivers

would require.

In the interest of lower solution times, in this section we suggest three different approaches

to simplify the problem and obtain high quality heuristic solutions to the ride-matching

problem within a reasonable time period.

116

7.5.1 Re-optimization Period

The solution times of the numerical experiments in the previous section (presented in Figure

7.9) are for a system whose participants have all registered their trips ahead of time, say,

prior to the onset of a morning rush hour (static ridesharing). However, in real systems, it

is not always the case that the demand is known in advance, and hence the system needs

to be re-optimized periodically to take into consideration requests that arrive in real-time.

Consequently, the problem instances that need to be solved will be smaller in size.

Figure 7.9 can be used to get an estimate on the solution times of matching problems for

various re-optimization periods. For example, envision a system with 400 participants in a

morning rush hour, half of whom have registered before the start of the rush hour, with the

rest arriving uniformly during a one-hour period. In a rolling time-horizon implementation

where the ride-matching problem is solved every five minutes, the size of the problem instance

that needs to be solved at each period hardly ever goes over 200 participants (this size

decreases as we proceed through the time horizon), and so the solution times will be limited

to one minute. This implies that in a system with 400 participants, we can even solve

the ride-matching problem once every minute, and respond to the real-time demand more

effectively. It is easy to see the trade-off between the matching rate (which increases with

the size of the re-optimization period) and the solution times.

7.5.2 Restricting the Number of Transfer Stations

In the ride-matching problem in model (4.5), itineraries are devised assuming transfers can

occur at any station. In practice, we can identify stations where transfers are more likely to

occur, and limit the set of transfer stations. Let us denote by ST the set of stations where

transfers are allowed. The flow conservation constraint (10.3g) should then be replaced

by two sets of constraints, (7.1) and (7.2). Constraint set (7.1) and (7.2) both model flow

117

conservation. Constraint set (7.1) covers stations where transfers are allowed, and constraint

set (7.2) covers the rest of the stations.

∑
d∈D′

∑
ti,si:

`=(ti,si,t,s)∈L

yrd` =
∑
d∈D′

∑
tj ,sj :

`=(t,s,tj ,sj)∈L

yrd` ; ∀r ∈ R, ∀t ∈ Tr, ∀s ∈ ST\{OSr ∪DSr} (7.1)

∑
ti,si:

`=(ti,si,t,s)∈L

yrd` =
∑
tj ,sj :

`=(t,s,tj ,sj)∈L

yrd` ; ∀r ∈ R, ∀d ∈ D, ∀t ∈ Tr,∀s ∈ S\{ST ∪OSr ∪DSr} (7.2)

To study the impact of limiting transfers to certain stations on the quality of the solutions

and solution times, we experimented with the 420 randomly generated problem instances.

For each problem instance, we studied the solution to model (D.1) where all stations are

transfer stations, and identified the top 80% of stations in terms of frequency of transfers.

We then limited transfers to those stations only. Figure 7.12 shows the ratio of reduction

in solution times (new solution times divided by the old solution times). The reduction in

computation time can range from 0 to 60%. It is interesting to observe that the higher

savings in solution times are obtained for problem instances with higher original solution

times (see Figure 7.9a).

In terms of solution quality, the number of served riders using the top 80% transfer stations

remained on average within 95% of the number of served riders in the original solution,

suggesting that the trade-off between the solution time and quality in dynamic settings may

be in favor of restricting the number of transfer stations. These results are similar to the

results found by Masson et al. (2014b). In their study of a multi-modal system designed

to carry goods using a combination of excess bus capacities and city freighters, they found

that 60% of the transfers took place in two bus stops that were closer to a large body of

customers.

118

Figure 7.12: Ratio of new to old solution times after limiting the number of transfer stations

7.5.3 Selecting a Time Interval

In the numerical experiments in this chapter, we discretized the study time horizon into

1-minute time intervals. In this section, we study the impact of using larger time intervals

on the solution times, and discuss when using larger time intervals is appropriate.

The impact of using larger time intervals on solution times is not obvious without running

experiments. On one hand, using larger time intervals will lead to smaller link sets produced

by the pre-processing procedure. On the other hand, using larger time intervals can cause

higher degrees of spatiotemporal proximity among trips, which can lead to higher solution

times.

Figure 7.13 shows the solution times for the 420 randomly generated problems, solved using

the decomposition algorithm with 5-minute time intervals. This figure suggests that utilizing

larger time intervals leads to lower solution times. It should be noted that as the participants’

maximum ride times increase, so do the size of the link sets, and therefore the savings in

solution times by incorporating higher time intervals become more significant. In addition

to lower solution times, considering larger time intervals can make it less probable for travel

time uncertainties to cause missed rides (specially during transfers), since it might not be as

119

Figure 7.13: Solution times with 5-min time intervals

easy for drivers to guarantee 1 minute precision.

Another issue that needs to be discussed is the circumstances under which it is appropriate to

use larger time intervals. In practice, individuals tend to report their schedules in five-minute

increments at the finest, i.e., it is not typical to hear an individual planning to leave no later

than 2:21 P.M., and therefore in general using larger time intervals (e.g., 5 min intervals)

seems appropriate. For a ridesharing system that is integrated with a transit system with

minute-level time schedule, however, using smaller time intervals might be more suitable.

7.5.4 Heuristic Solutions

In each iteration of the decomposition algorithm, a solution to the original ride-matching

problem is available. In section 7.3.2, we saw that we can obtain a heuristic feasible solution

in each iteration of the decomposition algorithm by solving a set packing problem. In this

section, we study the impact of stopping the decomposition algorithm at certain time limits,

and retrieving the best heuristic solution. The results are displayed in Figure 7.14.

Figure 7.14 suggests that the additional number of served riders obtained from letting the

computations continue beyond 240 seconds is negligible. Comparing Figures 7.14 and 7.7

120

Figure 7.14: Quality of heuristic solutions

suggests that even at a computational cut-off time of 120 seconds, the number of served

riders is higher than or comparable to the number of served riders in the other four ride-

matching methods described in section 7.4.2. In fact, for several of the problems, even 60

seconds is sufficient. The fact that computations can be accomplished in a mere 2-minute

period again validates the applicability of the optimizations schemes in dynamic settings.

121

Chapter 8

P2P Ride Exchange Mechanism

8.1 Introduction

Customers in many transportation systems are served on a first-come first-served (FCFS), or

otherwise pre-ordered basis. For P2P ridesharing in which customer retention is especially

important, considering riders on a FCFS basis is an inefficient use of the very limited available

resources (drivers). The FCFS rule, however, is the natural order of serving riders in a

dynamic system, where riders announce their trips not long before departure. In addition,

dropping the FCFS principle leads to high solution times for the resulting matching problem,

and is therefore not an appropriate implementation strategy for dynamic real-time systems.

In this chapter, we introduce what we call the “P2P ride exchange” mechanism to improve

the number of matches in a FCFS-based system. In a system where P2P ride exchange is

implemented, riders will still be considered for service on a FCFS basis. Upon joining the

system, a rider will be offered the best available itinerary, according to the criteria discussed

in section 6.3.1 (i.e. number of transfers, and traveling and waiting times). However, if no

match exists, the rider will be given the chance to buy a previously-matched rider’s itinerary

122

under specific circumstances. Purchasing an itinerary from a previously-matched rider is

in fact reversing the FCFS rule. This exchange of rides is accompanied with an exchange

of money through the system. Since the objective of the system from implementing the

exchange mechanism is to increase the total number of matched riders, only riders for whom

an alternative itinerary is available will receive a proposal to sell their current itineraries.

This chapter has been a collaboration with Roger Lloret-Batlle. Extensions of this work will

appear on Roger’s dissertation.

There are, however, considerable regulatory obstacles to overcome for such P2P exchange

or trade schemes to be used in transportation systems. The legal battles faced by rideshar-

ing companies are well-known. Transportation supply being considered a public good, any

breaking of the traditional FCFS operational paradigms also could face objections based on

socio-political arguments of inequity across users. While important, such topics are con-

sidered beyond the scope of this dissertation that focuses only on showing the performance

potential of the proposed scheme.

8.2 Related Work

There have been a few attempts in the literature to design mechanisms for para-transit and

ridesharing systems. Furuhata et al. (2015) propose the Proportional Online Cost Sharing

Mechanism for demand-responsive transport Systems. This mechanism is capable of propos-

ing an upper bound on the fare a potential user has to pay. The mechanism relies heavily

on having the passenger requests in advance of the start time of the trips. The focus of

the work is on proving the online fairness, budget balancedness, individual rationality and

ex-post incentive-compatible properties of the mechanism under certain conditions. The

mechanism, however, unlike the P2P ride exchange mechanism proposed in this chapter, is

123

not designed to increase operational efficiency of the transport system. Wang (2013) pro-

poses a stable matching game between riders and drivers in a one-to-one system, where no

rider/driver can be better off by unilaterally switching to other drivers/riders. Although

such a system can lead to an equilibrium, to yield operationally efficient results it requires

access to the participants’ trip information in advance. Kleiner et al. (2011) proposes an

auction-based allocation mechanism that incorporates users’ valuations on the ride assign-

ment. While this mechanism violates the FCFS rule, it is not real-time since it uses a rolling

horizon in which decisions are delayed.

P2P ride exchange is the first real-time mechanism designed to compensate, to some extent,

the inherent trade-off between the two factors that influence customer satisfaction, serving

higher number of riders and system responsiveness, in a ridesharing system. To the best of

our knowledge, the proposed P2P ride exchange mechanism is the first trading mechanism to

increase ridership in a dynamic P2P ridesharing system. The designed mechanism is limited

to bilateral trade, where there is a single buyer and a single seller. Such a mechanism

therefore, is optimal for a one-to-one matching system, and provides a lower-bound on the

rise in ridership in one-to-many and many-to-many systems.

In the rest of this chapter, we first officially introduce the mechanism, and elaborate on

some of its properties. Next, we conduct extensive numerical experiments to quantify the

performance of the P2P ride exchange mechanism under different parameter values.

8.3 Peer-to-Peer Ride Exchange

Dynamic ridesharing systems should have the capability of matching riders and drivers in

real-time. Since participants in a dynamic ridesharing system announce their trips not long

before they are ready for departure, the attempt to find a match for them should start as

124

soon as the trip announcement is received by running the DP algorithm described in Chapter

6. If all the itineraries generated by the algorithm are infeasible due to their conflicts with

itineraries of the previously assigned riders (i.e. if the itineraries use the same drivers, but

through different paths), then the system evaluates the possibility of a trade. In this section,

we show through an example the benefits of a P2P exchange program, discuss the conditions

under which trade can happen, and devise a mechanism that ensures a fair trade.

Let P r denote the set of itineraries for rider r. Each itinerary has a value that is deter-

mined by a pre-specified objective function (the DP objective function), based on which the

itineraries within P r are ranked. Let pri denote the ith itinerary of rider r, and d(pri) denote

the set of drivers who contribute to itinerary pri . Note that there is no need to know all

members of set P r in advance, but we will generate them as (and if) needed. Furthermore,

let pk denote the itinerary of the assigned driver k.

Once rider r joins the system, the system uses the DP algorithm to generate a set of trees

from which members of set Pr can be retrieved. The system starts by evaluating members

of set P r in order of their ranking. If an itinerary with no conflicts with the itineraries of

previously matched drivers is found, this itinerary will be assigned to rider r. If the system

exhausts all members of set Pr, and is not successful in finding a non-conflicting itinerary

for rider r, then it considers the possibility of a trade.

Assume that rider 1 enters the system, and has two itineraries: P1 = {p1
1, p

1
2}, where d(p1

1) =

{d1} and d(p1
2) = {d2}. The left hand side picture in Figure 8.1 shows the rider and his

itinerary set. Assuming that the minimum cost itinerary for this rider is the first one, this

itinerary will be announced to both rider 1 and driver 1.

Now, assume that rider 2 joins the system. Because rider 1’s itinerary has been fixed, there

are no feasible itineraries for rider 2. However, rider 2 has a chance to buy rider 1’s itinerary,

if rider 1 has not started his trip yet. The right hand side picture in Figure 8.1 shows this

125

Figure 8.1: An example of a successful trade. Solid and dashed lines represent proposed and
potential itineraries, respectively

scenario after the trade. In this trade, rider 2 buys rider 1’s assigned itinerary, and by doing

so releases driver 1, who in turn forms a feasible itinerary for rider 2. Rider 1 switches to

a less convenient itinerary (with driver 2) in exchange for a monetary compensation. This

trade’s contribution to customer retention is double-folded. Not only are both riders served,

but now both drivers are participating in the system as well.

Note that it is possible to obtain the same optimal solution by solving a many-to-many

ride-matching problem that is capable of considering both riders at the same time. There

are, however, two issues with such an approach: (1) An optimal matching algorithm that

could consider both riders at the same time is computationally hard to solve (specially for

real-world size problems), and therefore cannot yield solutions in real-time. (2) Even if the

system is equipped with a many-to-many ride-matching algorithm that can yield solutions

in a moderate period of time, the information on the two drivers and the two riders need

to be available in advance for the many-to-many matching problem to generate the solution

that can serve both riders.

The system studies the possibility of a trade if the following three conditions hold. First,

the buyer does not have any feasible itineraries. Second, the seller has an alternative feasible

126

itinerary to his current one, and third, both parties will be better off with the trade than

without it.

The monetary transfer from the buyer to the seller covers the additional cost the seller has to

undertake due to switching itineraries. This cost includes the additional monetary cost due

to a potentially increased travel distance, and a compensation to the seller for a potentially

increased travel time. A proportion of this money will be used by the system operator to

cover the cost of the seller’s more expensive new itinerary, and the rest will be transferred

to the seller himself.

8.3.1 The Scope of the Trade

Assume a set of itineraries P r for rider r. Drivers contributing to itinerary i are stored in set

d(pri). Let us divide members of set d(pri) into two mutually exclusive sets, da(p
r
i) and df (p

r
i).

Drivers in set da have been previously assigned to other riders, but their corresponding riders’

trips have not started yet. Drivers in set df are free, and have not been assigned to any

riders. The necessary condition for rider r to have a feasible itinerary is for at least one of

the driver sets da(p
r
i) and df (p

r
i) to be non-empty. As the sufficient condition for pri to be

a feasible itinerary for rider r, one of the following conditions should hold: (1)da(p
r
i) = ∅,

i.e. none of the drivers that contribute to the itinerary are assigned to other riders, and (2)

∀k ∈ da(p
r
i), p

r
i (k) ∈ pk, i.e. drivers in set da(p

r
i) can still follow their previously assigned

itineraries. If none of these two conditions hold, then the system tries to find a good candidate

for a trade amongst the assigned riders.

To find the candidates for a trade, the system has to first identify the itinerary that rider r

is interested in. It starts from the best itinerary, i.e. pr1, and moves to the next itinerary if

the trade on the current itinerary is not possible.

127

In order for the system to offer itinerary pri to rider r, it has to free all the drivers in set

da(p
r
i) from their previous assignments. Therefore, the system has to find all the riders who

are using these drivers, and try to find alternative itineraries for them as well. These riders

form the sellers in the first level of trade (Figure 8.2a). In order for the system to propose

an exchange to a rider r′ in the first level of trade, it should find an alternative itinerary for

this rider first. This task can be accomplished by identifying the set of assigned drivers for

the rider (d′a), finding the rest of the riders whose itineraries are affected by these drivers,

and finally finding alternative itineraries for them as well. This procedure continues until

the system reaches a level of trade where all riders have itineraries with free drivers (or

non-conflicting assigned drivers).

The system will then start proposing trades to riders, starting from those in the last level

of trade. In order for a trade to be approved at any level, all the riders at that level should

approve the trades proposed to them. For the nth level of trade to take place, the trade at

level n+ 1 should have been approved. Once all riders in a given level of trade approve the

proposed trades, the system can move to a higher level of trade (moving upward in Figure

8.2a). Therefore, it is clear that the higher the levels of trade, the less likely it is for rider r

to obtain itinerary pri .

Another complication is that if even one rider does not agree to the trade at a certain

level, the trade cannot happen. In this case all the riders in the same and lower levels who

have agreed to the trades proposed to them have to go back to their previous itineraries.

Therefore, in order to simplify this procedure and make it easy to implement in practice,

this chapter only considers trades in settings where the level of trade is limited to 1, and

the number of riders in the first level of trade is limited to 1 as well, i.e. the set of assigned

drivers affect only the itinerary of a single previously assigned rider (Figure 8.2b). These

simplifications limit the trade to be between on two individuals: the buyer, r, and the seller,

r′.

128

(a) General levels of trade (b) Level of trade covered in this study

Figure 8.2: Levels of trade

Figure 8.3 displays two examples involving multilateral trade. In the first example (Figure

8.3a), in order for the system to serve rider 2 by freeing driver 1, it must find alternative

itineraries for both riders currently served by driver 1 (riders 1 and 3). For this to happen,

rider 2 should negotiate with both riders 1 and 3, which is beyond the scope of the bilateral

trade covered in this chapter. Notice that this example is still limited to the first level of

trade in Figure 8.2a. Furthermore, even if a multilateral trade mechanism was available, in

order for the trade to happen, both riders 1 and 3 should have agreed to the trade.

Figure 8.3b demonstrates an example of a simple scenario involving riders beyond the first

level of trade. In this example, two alternative itineraries are available for rider 1, just as

in Figure 8.1. When rider 2 joins the system, he is interested in purchasing the itinerary

assigned to rider 1. In this example, however, driver 2 has been matched with rider 3, who

belongs to the second level of trade. Therefore, for the trade to happen, the system should

find an alternative itinerary for rider 3 first.

129

(a) More complex trade at the first level (b) Trade at the second level

Figure 8.3: Examples of multilateral trade

8.3.2 P2P Ride Exchange Mechanism

Besides ensuring that the trade makes both parties better off, the designer (operator) should

also ensure that the trading parties cannot manipulate the outcome of the trade. Since both

the buyer and the seller hold private information not known to the operator (e.g. their value

of time (VOT)), this could lead to an inefficient outcome. This issue is addressed by modeling

the trade from a mechanism design perspective. Informally, a mechanism is a method that

defines rules for a game with incomplete information (Bayesian game) to influence agents’

behavior and reach a particular goal, which in this case is efficiency maximization. Excellent

introductions to mechanism design can be found in Mas-Colell et al. (1995) and Nisan and

Ronen (1999). The basic definitions are provided next, but a complete understanding of

mechanism design may require reading the above introductory references.

Let I = 1, . . . , n be the set of agents. Each agent has a type (value of time), θi ∈ Θi, which

is private. Θ = ×(i∈I)Θi is the type profile set. Agent i has the (quasilinear) utility function

ui(θi, θ−i; θi) = vi
(
k(θi, θ−i); θi

)
−pi(θi, θ−i). Where vi(·) is his valuation and pi(·) is the price

charged to him. The types before the semicolon are the types announced to the designer,

130

while the type at its right is the agent i’s actual type. A (direct revelation) mechanism is

composed of two interrelated functions. Firstly, an allocation function k : Θ→ K that maps

the type space to an outcome set K. That is, for every announced type profile, an allocation

k(θ) ∈ K is given. In the case of a bilateral trade, K is composed of the two allocations

(trading states): either there is trade or there is not. The allocation rule that maximizes

the sum of agents’ valuations is the efficient allocation rule, k∗(θ) ∈ K. Secondly, there is a

payment function p : Θ → RN . This function assigns a transfer amount to every agent i in

accordance with its announced type θi.

Mechanism design defines concepts that address how the strategic interests of agents are

satisfied. The main one is truthfulness, or incentive compatibility, which states that truthful

bidding forms an equilibrium. In other words, any participating agent is always better off by

truthfully eliciting its type rather than lying, subject to others telling the truth. A mechanism

(k, p) is (Dominant-Strategy) Incentive Compatible (DSIC) if all agents are better off (or at

least not worse off) by being truthful, regardless of other agents’ behavior.

Besides truthfulness, a designer is interested in the users’ willingness to participate in the

mechanism, called individual rationality. A mechanism (k, p) is Ex-Post Individual Rational

(EPIR) if no agent loses due to participating in the system.

where ūi(.) is agent i’s utility from not participating in the mechanism. If EPIR is satisfied,

an agent would be willing to truthfully participate in the mechanism rather than stay out.

Finally, the designer may be interested in the mechanism being self-sufficient from a budget

point of view. In this way, the mechanism should not require an external subsidy to achieve

the desired outcome. This condition is known as balanced budget. A mechanism (k, p) is

strictly budget balanced (SBB) if it is financially independent, and does not require subsidies

to operate.

We follow a “pessimistic” approach (Yamashita, 2015) in which the designer calculates the

131

expected surplus that is guaranteed among all the admissible strategy profiles of the agents,

with the actual strategies played being unknown to the designer. A strategy is said to be

admissible if it is not weakly dominated. It is assumed that the operator has a prior on the

private information from agents, but the agents themselves do not have a prior of the other

agents’ type, as in the case of weaker truthfulness concepts (Myerson and Satterthwaite,

1983). This framework is very convenient for our purposes, since the mechanism has to be

designed far in advance, with no previous experience or learning on trading outcomes from

either the users’ or the designer’s part, while, at the same time, it guarantees an increase in

the number of served riders to achieve user permanence in the system.

The trade is modeled as a bilateral trade with private information (Hagerty and Rogerson,

1987; Myerson and Satterthwaite, 1983). Let I = 1, 2 be the set of agents, i = 1 being the

seller and i = 2 being the buyer. Each agent i has type vi = [vi, vi]. These types are drawn

from an empirical VOT distribution estimated from a survey on households conducted in

Stockholm, Sweden in 2005 (Abou-Zeid et al., 2010). In that research, the Stated Preferences

(SP) choice scenarios are composed of car alternatives that differ on attributes such as travel

times and travel costs. Since only the main statistics are available in the publication, the

distribution is recalibrated as a lognormal distribution given these statistics. Its parameters

are location µ = 2.16 and scale σ = 0.40.

The mechanism lies in the space (q, p) ∈ [0, 1]×R, where q is the probability of trade and p is

the payment from the buyer to the seller. For clarity in the exposition, we use the following

change in notation c1
def
= −v1. c1 is the opportunity cost of the seller. By definition, the

bilateral trading setting satisfies the strict budget balance property, thus the seller has utility

u1 = p− c1q and the buyer u2 = v2q − p. Both agents are proposed the price p and if both

agree, the trade takes place. This occurs when v2 > p > c1. The surplus of such as trade is

w
(
(q, p); θ

)
= (v2 − c1)q.

Instead of valuing an object by a scalar as in the original bilateral trading environment, riders

132

value their allocation (assigned ride) by its generalized cost, which is an affine transformation

of their private type. For a rider i, this cost is the product of the travel time tri and the sum

of the value of time θi, plus the fare per unit of time cri. These valuations are normalized with

regard to the initial situation (no trade) to fit the bilateral trading original setting: c1 and

v2 are in fact the valuation difference between states “trade” and “no trade”. When there

is a trade, c1(θ1) = θ1(t′r1 − tr1) + c′r1t
′
r1 − cr1tr1 and v2(θ2) = θ2(tout − tr2) + couttout − cr2tr2.

Here, tr1, t′r1, tr2, and tout refer to the travel time of the seller’s current and new itineraries,

travel time of the buyer’s itinerary, and the travel time of the buyer’s outside alternative,

respectively. cr1, c′r1, cr2 and cout are the costs per unit time of seller initial ride, seller

alternative proposed ride, buyer proposed ride and the outside option cost to the buyer.

These time and cost variables have bounds and relative magnitudes. tout ≤ tr2 since we

consider the outside option to use the shortest path between buyer’s origin and destination.

We assume that cost of the rideshare option to the buyer is less than that of the outside

option, i.e. couttout − cr2tr2 ≥ 0; Otherwise the buyer would not have selected to use the

rideshare option. This assumption leads v2 = [v2, v2] to be positive in our analysis. Note

that as θ2 increases, v2 decreases, so v2 = max
(
0, v2(θ2)

)
and v2 = v2(θ2). Since the seller

is offered a longer ride than the one he holds, t′r1 ≥ tr1 and c′r1t
′
r1 − cr1tr1 ≥ 0, with a high

probability. If due to higher number of riders involved in the new itinerary c′r1 becomes

smaller than cr1, the system will set c′r1t
′
r1 − cr1tr1 = 0. In this way, c1 ∈ [c1, c1] ≥ 0 and it

is increasing with θ1. Its bounds are c1 = c1(θ1) and c1 = c1(θ1). Without loss of generality,

we assume θ1 = θ2 = θ and θ1 = θ2 = θ. Trade is only possible when v2 ≥ c2.

The problem that now the designer faces is to post a price to agents such that the probability

of trade and consequent surplus is maximized.

Proposition 1. The posted-price mechanism with price p for the bilateral trade setting is a

133

revelation mechanism (q, p) such that:

(q, p) =


(1, p) v2 > p > c1

(0, 0) otherwise

This mechanism is DSIC, EPIR, SBB and guarantees the following upper bound expected

surplus W (p):

W (p) =

(c1,v2)=
(
τ,v2(θ2)

)
¨

(c1,v2)=
(
c1(θ1),τ

) (v2 − c1)φ(c1, v2)dv2dc1

Proof. Let the strategy of the seller sseller be: sell if p > c1 and do not sell if p ≤ c1. This

is the only DSIC strategy for the seller (we assume that the seller prefers to keep the object

when the gain is zero). Suppose that the seller follows a different strategy s′seller: sell only

when p − c1 > ε, ε > 0. Then the seller would lose the opportunity to make profit p − c1

when c1 + ε > p > c1. Equivalently, when ε is negative, the seller would incur a loss of c1− p

when c1 + ε < p < c1.

Moreover, sseller is the only strategy that is EPIR. Seller’s payoff of not participating in the

mechanism is zero. Following the same reasoning done above on incentive compatibility,

sseller is the only strategy that provides a non-negative profit for every buyer and seller type.

The same reasoning applies for the buyer, with strategy sbuyer: buy if v2 > p and do not buy

if v2 ≤ p.

The mechanism is SBB by construction. When there is no trade the transfer is zero. When

there is trade, the positive price payed by the buyer goes to the seller. There is no waste in

the numeraire in any case.

The expected welfare W (p) is the integral of welfare function weighted by the joint type

134

probability distribution function. The bounds determine the entire valuation range over

which trade happens and therefore when there is positive surplus from trade. When trade

does not happen, the surplus is zero. Each expected surplus integral is solved by numerical

simulation in price intervals of 5 cents. The optimal price p∗ is found by linear search. Since

the VOT distributions of the agents are assumed to be independent, the VOT joint distribu-

tion is the product of the two marginal distributions. Empirical value of time distributions

do not satisfy the sufficient condition stated in (Yamashita, 2015) since they are neither

monotonically increasing/decreasing in buyer and seller type respectively over all the range

nor the rate of change is small enough. Therefore, W (p∗) stays a priori as the upper bound

of the highest expected surplus we can guarantee.

8.3.3 Pricing

There are many factors that should be taken into consideration in determining the fare for

ridesharing services. Setting the right price is essential to the success of a ridesharing system,

and deserves the designing of a separate mechanism which ensures that no incentive exists

for drivers and riders to falsely report their preferences in order to affect the amount of

transaction.

The fare a rider is charged in our system is made of two components. The first component

is a variable, distance/time dependent fee. Assume that rider r’s itinerary involves traveling

on link set L∗, and that at the time of matching the rider, on each link ` ∈ L∗, n` number of

individuals (including the driver) share the same vehicle with the rider. The cost of travel on

each link is equally shared by the individuals who travel on the link. Therefore, the variable

fee of rider r will be
∑

`∈L∗
d`
n`

. In this equation, d` is the general cost of traveling on link `,

and
∑

`∈L∗
d`
n`

is the total share of the rider from the cost. Note that the general cost of a

link can be time-based, distance-based or a combination of both.

135

In addition to a variable component, the fare also has a fixed component. Since drivers may

have to divert from their shortest/preferred paths in order to accommodate riders, they need

to be compensated for the extra travel. We calculate the base fare based on the average extra

travel time drivers have to spend in the network, assuming an average speed of 40 mph, and a

payment of 60 cents per mile. These fares could vary for different times of the day, and days

of the week, based on the composition of the ridesharing system, i.e. number of participants,

the driver to rider ratio, and the degree of flexibility of riders and drivers. Although a pricing

scheme that can distribute fares among drivers based on their contribution to the system may

be fairer, in the interest of simplicity we use the more preliminary pricing scheme introduced

in this section.

8.4 Numerical Study

In order to study the impact of the P2P ride exchange mechanism on the performance of

a ridesharing system, we generate and solve multiple random instances of the ridesharing

problem. All results reported here are averaged over 30 runs for each problem instance.

In each problem instance, we generate a number of participants with varying ratio of riders.

The origin and destination of participants are selected based on a uniform random distri-

bution from a pre-specified set of stations in a grid network. The earliest departure time

of each participant is selected uniformly by a random distribution within a certain depar-

ture period. The maximum ride time of each participant is determined as a factor of their

shortest path travel time (called “travel time budget factor”). The latest arrival time of a

participants at their destination station is then computed as the sum of the participant’s

earliest departure time and maximum ride time. All these parameters impact the level of

spatiotemporal proximity between trips.

136

For each participant, a VOT is drawn from the lognormal distribution described earlier. Each

individual is assumed to have a separate transportation alternative outside of the system,

with a travel time equal to the shortest path travel time between the individual’s origin and

destination. The unit distance-based cost of the outside alternative is assumed to be equal

to that of the ridesharing system.

We solve each problem instance using three different ridesharing implementation strategies.

The first strategy referred to as “one-to-one”, matches a single rider with a single driver.

The second strategy referred to as “one-to-many” allows a driver to carry multiple riders.

Riders, however, accomplish their trips in one vehicle. The last implementation strategy

referred to as “many-to-many” allows each driver to carry multiple riders, and each rider

to transfer between multiple drivers. Note that the P2P exchange mechanism is optimal

only for the “one-to-one” matching method. The number of additional riders served by the

exchange in “one-to-many” and “many-to-many” systems is only a lower bound and may

increase using a more sophisticated mechanism that can include higher levels of trade.

In this section, we perform sensitivity analysis over the system parameters, namely number

of participants, ratio of riders, travel time budget factor, and number of stations. Through

these analysis we study the impact of different parameter values on the percentage increase in

the number of matched riders (to which we refer as the exchange rate). Finally, we generate

different ridesharing scenarios with different levels of spatiotemporal proximity between trips,

and use statistical tests to confirm whether the observed difference in the exchange rates in

these scenarios is statistically significant.

8.4.1 Base Fares

In order for a rider to decide whether to participate in a trade or not, he/she should have

information on the cost of the proposed itinerary. As discussed in section 8.3.3, the cost of

137

an itinerary entails a variable, route-dependent cost, and a fixed cost. In this section, we

demonstrate for certain parameter values how this fixed cost is calculated, and how it may

differ from hour to hour or day to day.

Figure 8.4 displays the base fares charged to riders and payed to drivers in a ridesharing

system at different degrees of spatiotemporal proximity between trips. As mentioned in

the previous section, this study uses the same base fares for all drivers and a different but

equal base fare for all riders in a given time period, for example, during weekday morning

peak hours. These fares may vary from location to location, and depend on the number of

participants and system composition (number of participants, and ratio of riders to total

number of participants). In this section, we show sample base fares for a system with 200

participants with departure period of 60 minutes and travel time budget factor of 1.5, under

different ratio of riders and number of stations.

As Figure 8.4 suggests, for a one-to-one system, the fare paid by riders is similar to the fare

received by drivers, since the number of served riders and matched drivers in a one-to-one

system are equal. In a one-to-many system, in which each driver carries multiple riders, the

fixed fare paid by riders decreases as the ratio of riders to participants increases, since now

multiple riders are served by a driver and hence they each pay a portion of the fixed fare the

driver receives. Interestingly enough, in a many-to-many system, when the ratio of riders in

the problem is small, each rider pays more than what each driver receives, suggesting that

riders are receiving multi-hop itineraries (i.e. transferring between drivers), specially when

the number of stations is high and therefore the spatial proximity between trips is too low.

After a certain point, however, the fare received by each driver surpasses the fare paid by

each rider, suggesting a high level of sharing.

138

Figure 8.4: Base fares for ridesharing systems with different levels of spatiotemporal prox-
imity between trips

139

8.4.2 Number of Participants

In this section, we study the performance of the P2P ride exchange mechanism under dif-

ferent participation rates, and different numbers of stations. The problem instances have

been generated in grid networks of different sizes (9, 25 and 49 stations), departure period

of one hour, and 200, 300, and 500 number of participants. For a given number of partici-

pants, number of riders and drivers are assumed to be equal, since a rider to driver ratio of

close to 1 is where a ridesharing system yields the highest matching rate (see Chapter 7).

Figure 8.5 shows the initial matching rate of riders, and the exchange rate under different

implementations of the system.

The results suggest that under all implementation strategies, both the initial matching rate

and the exchange rate are positively correlated with the participation rate, i.e. the higher

the number of participants, the higher the performance of the system and the exchange rate.

Another general observation is that with all matching methods, lower number of stations

results in higher initial matching rate, and higher exchange rate. This result is intuitive,

since participants have to choose their origins and destinations from the set of stations.

Therefore, a lower number of stations results in more participants sharing the same origin

and/or destination stations, and therefore higher spatial proximity between trips. Higher

spatial proximity also suggests a higher probability of finding a driver that can serve the

seller in the ride exchange, and therefore higher success rate in the exchange.

Despite this general trend, the impact of spatial proximity depends on the number of partic-

ipants as well. For a one-to-one system with 300 participants, the exchange rate increases as

we increase the spatial proximity by moving from from 49 to 25, and finally 9 stations. With

500 participants, however, the exchange rate does not go down when we decrease the spatial

proximity among trips by going from 9 to 49 stations. Even when we have 49 stations, the

exchange rate does not start plummeting, since a higher number of participants by itself

140

increases the proximity between trips to some degree.

The one-to-one matching method is the only method for which the result of the exchange

mechanism is optimal; Therefore, the matching rate for such a system is the highest. Another

reason why the idea of P2P exchange may serve one-to-one ridesharing systems well is that

since in such systems each driver serves a single rider (if matched), purchasing a driver’s

itinerary would require negotiations with a single seller, and therefore is practically more

likely to happen.

In one-to-many and many-to-many systems trades typically expand beyond the first level,

and therefore are not accomplished. This is one reason behind the lower exchange rates for

these systems, compared to the one-to-one system. Another reason for the lower exchange

rate in one-to-many and many-to-many systems is that the exchange rate measures the

percentage increase in the matching rate. Even if the same additional number of rider are

served by the exchange mechanism under all implementation strategies, since the initial

matching rates in the many-to-many and one-to-many systems are higher, they will have

lower exchange rates.

Figure 8.6 shows the driver matching rates and the impact of the exchange mechanism on

the increase in the percentage of matched drivers. In general, this figure follows similar

trends to Figure 8.5. In a many-to-many system, the driver exchange rates are higher than

the rider exchange rates, which implies a high level of sharing before the exchange.

8.4.3 System Composition

The problem instances in this section include 500 number of participants generated uniformly

during a departure period of one hour, in grid networks with 25 stations. Number of riders

are changed from 50 to 450 (and drivers from 450 to 50) in 100 increments, in order to study

141

Figure 8.5: Initial rider matching and exchange rates under different number of stations and
participants

142

Figure 8.6: Initial driver matching and exchange rates under different number of stations
and participants

143

the impact of system composition on the performance of the exchange mechanism.

Figure 8.7 summarizes the results. For all ridesharing implementations, as the ratio of riders

to participants increases (and ratio of drivers to riders decreases), the rider matching rate

experiences a declining trend. At rider ratio of 0.1 (50 riders and 450 drivers), most of the

50 riders can be matched, due to the abundance of supply (i.e. drivers). As we move in the

direction of the horizontal axes, the increase in demand is met with a decrease in supply

which leads to a decreasing trend in the rider matching rate. At rider ratio of 0.9 (450 riders

and 50 drivers) the matching rate of riders is the lowest, due to the lack of sufficient supply.

The trend in the driver matching rate is the opposite of the trend in the rider matching rate.

At lower rider ratios where there are a few riders and many more drivers, the driver matching

rate is low, since a low percentage of drivers is enough to satisfy the demand. As the rider

ratio increases, the demand becomes higher than supply, and so the driver utilization rate

increases.

Another general trend among matching rates is the bell-shaped form of the rider and driver

exchange rates. In the beginning, when the rider-to-driver ratio is low, a high percentage of

demand is satisfied, and there is not much need for exchange, hence the low exchange rate.

At high ratios of riders to system participants, the rider matching rate is small, but the driver

matching rate is high, and therefore there are not many free drivers left to form alternative

itineraries for the sellers. In the case of a many-to-many system, an exchange mechanism

that can extend to higher levels of trade could help in raising the declining exchange rate.

In the middle range, at rider ratio of 0.5 for the one-to-one and one-to-many systems, and

0.3 for the many-to-many system, the exchange rate becomes the highest. In this range,

the rider matching rate is not too high to eliminate the need for exchanges, and the driver

matching rate is not too high to decrease the chance of finding alternative itineraries for the

sellers.

144

Figure 8.7: Matching and exchange rates under different ratio of riders

145

8.4.4 Departure Period

Similar to the previous section, the problem instances in this section involve 500 participants,

with equal number of drivers and riders. The participants are assumed to have a travel time

budget factor of 1.5, and their origins and destinations are randomly selected from 25 pre-

specified stations. We increase the departure periods of individuals from 15 minutes to 60

minutes, in order to study the impact of higher temporal proximity between trips on the

performance of the exchange mechanism.

Figure 8.8 shows that under all ridesharing implementations, both the initial rider and driver

matching and exchange rates increase with the temporal proximity between trips (i.e. as the

departure period becomes smaller). This is not surprising, since higher temporal proximity

between trips leads to higher probability of finding a match in the first place, and higher

probability of finding alternative itineraries for the sellers in case an exchange is required.

8.4.5 Travel Time Budget Factor

Experiments in this section include 200 participants, with equal number of riders and drivers,

and a departure period of 60 minutes. Figure 8.9 shows the initial rider matching rate, and

the percentage increase in the number of served riders under different travel time budget

factors for participants. This figure suggests that in general the matching rate as well as the

exchange rate increase with the travel time budget factor, regardless of the change in the

proximity of trips. Figure 8.10 suggests the same results for drivers.

146

Figure 8.8: Percentage of riders and drivers matched before and by P2P ride exchange under
different departure periods

147

Figure 8.9: Rider matching and exchange rates as a function of travel time budget factor of
participants

Figure 8.10: Driver matching an exchange rates as a function of travel time budget factor of
participants

148

Table 8.1: Ridesharing instances. The scenario properties include (no. of participants, ratio
of riders, departure period, no. of stations, travel time budget factor)

Scenario Per. of Per. increase in Per. of Average
properties served riders served riders retained social

(mean,st.dev.) (mean,st.dev.) riders surplus

(500,0.1,15,9,1.5) (99,1.5) (0.2,0.4) 0.6 11.33
(200,0.25,15,9,1.5) (9,0.6) (4.5,3.2) 11.5 10.92
(500,0.9,15,9,1.5) (10,0.4) (7.2,3.6) 18 8.82
(200,0.75,15,9,1.5) (8,0.7) (8,4.9) 20 8.66
(200,0.5,15,9,1.5) (13,1.2) (10,3.7) 26 9.69
(200,0.6,15,9,1.5) (12,0.9) (10,4) 25 9.47
(500,0.7,30,9,1.5) (25,1.3) (10,3) 28 9.01
(500,0.7,15,25,1.5) (21,1.3) (11,3.2) 28 14.34
(500,0.7,15,9,1.5) (33,1) (15,3) 38 9.97
(1000,0.5,30,25,1.5) (60,1.6) (15,1.2) 32 15.57

8.4.6 Statistical Analysis

Table 8.1 lists 10 ridesharing scenarios sorted in an increasing order of the exchange rate.

Scenarios have different levels of spatiotemporal proximity between trips, and are all gener-

ated for a one-to-one matching method, since it is the only matching method for which the

exchange mechanism is optimal.

As demonstrated in the previous sections, when the spatiotemporal proximity of trips is too

low or too high, the exchange rate is small. When the spatiotemporal proximity between

trips is too low, the initial matching rate is too low, and so is the exchange rate due to lack

of supply. When the spatiotemporal proximity is too high, a high percentage of demand

is served, and there is not much room left for improvement by making exchanges. In the

middle ranges, where the spatiotemporal proximity between trips is moderate, is where the

exchange rate is the highest. Table 8.1 lists scenarios that cover the entire range. The mean

and standard deviation of the matching and exchange rates for each scenario are presented

in this table. For each scenario, we have also noted the total social surplus of the system

obtained due to exchanges, averaged over the 30 generated instances for each scenario.

149

Figure 8.11: P-values for the between the exchange rate is scenarios listed in table 8.1

Figure 8.11 demonstrates the statistical significance of the difference in exchange rates among

scenarios. For each pair of scenarios, we have used a two-sample t-test with the null hypoth-

esis that the two scenarios come from independent random samples drawn from two normal

distributions with equal means and equal but unknown variances. The alternative hypothesis

is that the two scenarios come from populations with unequal means. The null hypothesis

is rejected at a 5% significance level.

Figure 8.11 shows the p-values for the two-sample t-tests for each pair of scenarios. This

figure suggests that under the 5% significance level each scenario is not statistically dif-

ferent from one or two scenarios with higher exchange rates, but as the difference in the

exchange rates between scenarios increases, the null hypothesis is rejected, and the scenarios

are shown to be statistically different. This figure suggests that the difference in the ex-

change rates observed for different ridesharing systems with different parameter values and

levels of spatiotemporal proximity between trips is statistically significant.

150

8.4.7 Customer Retention

The higher number of served riders that can be obtained by implementing the exchange

mechanism does not have a one-to-one impact on the performance of the system. It is true

that the number of served riders increases only by the number of successful exchanges, but

the impact on customer retention and the reputation of the system should also be taken into

consideration.

To study customer retention, we assume that a rider does not return to the system if he/she

has three failed experiences. By simulating a three day experience for each rider, it is possible

to compute the number of retained customers in a 3-day period. To conduct this study, we

use the same set of riders in each instance of each of the scenarios listed in table 8.1 (i.e. we

change only the driver set for each problem instance in each scenario). To compute customer

retention, it is assumed that a rider will consider using the system again if he/she has at least

one successful experience. The percentage of retained riders due to exchange are reported

in table 8.1.

In addition to creating a positive experience for these riders and increasing the probability

of them returning to the system, using P2P exchange could eliminate the possible negative

word of mouth that could have been generated by these riders had they not been served,

and could even replace them with a positive word of mouth.

8.4.8 Higher Levels of Trade

This study concentrated on the simplest possible scenario for trade, where there is a single

buyer and a single seller. We study the impact of higher levels of trade on the exchange rate

by considering a many-to-many ridesharing system for scenarios in Table 8.1. The results

show an average of 20% increase in the number of served riders, over all scenarios. Numbers in

151

table 8.1 are generated solely based on the operational feasibility of exchange (e.g. making

sure for a rider who sells his/her current itinerary, there are alternative non-conflicting

itineraries available), and not the monetary transactions. In addition, note that although

theoretically a multi-level trade can increase the percentage of served riders significantly,

moving to lower levels of trade can make the trade harder to manage and less probable to

succeed, due to the requirement for all individuals involved in the trade to agree to it.

152

Chapter 9

Ride-Matching with Stochastic

Demand

9.1 Introduction

In an on-demand and dynamic ridesharing system, riders may register their requests not long

before they plan on starting their trips. Knowing such requests in advance can help increase

the matching rate. Stochastic ride-matching attempts to achieve higher performance by

using a prediction of rider arrivals, and routing drivers through paths where higher levels of

demand are anticipated, although not officially registered.

In this chapter, we formulate the P2P ride-matching problem under stochastic demand for

rides. In reality, riders’ requests can be predicted to a good degree of accuracy using historical

data, especially due to the prevalence of using smart phones to access transportation services.

Predicting demand can be more straight forward during morning and evening peak hours, and

in areas where there are rather distinct residential and business districts. When predicting

riders’ requests, the probability of each rider request r to arrive at the system can also be

153

estimated. We denote this probability by Pr.

In order to solve the stochastic ride-matching problem, we have to generate a set of scenarios.

Scenarios are all the possible combinations of the predicted riders registering in the system.

The solution to the stochastic ride-matching problem determines how drivers should be re-

routed under each scenario. Therefore, as the predicted riders join the system in real-time,

the solution on how the drivers should be re-routed to serve them is readily available.

9.2 Generating Scenarios

We start solving the stochastic P2P ride-matching problem by generating a set of scenarios,

denoted by Scen. Each scenario is presented as a zero/one string, with |Rf | number of place

holders. let bi,r denote the rth element of scenario i. bi,r = 0 implies that stochastic rider r is

not included in scenario i (i.e. it is assumed that this rider will not register in the system),

and bi,r = 1 indicates the opposite. For example, if we predict that four riders will sign up

in the future, (|Rf | = 4), then the string 0101 is a scenario that indicates that among the

four predicted riders, only riders 2 and 4 will eventually register in the system.

Originally, the number of scenarios is exponential in |Rf |. In this section, we identify and

eliminate scenarios that can be proven to be dominated by other scenarios, using a scenario

generation algorithm. We label a scenario as “dominated” if the system cannot serve all

the riders in the scenario. In our example of four riders, assume that scenario 0101 actually

happens and riders 2 and 4 register in the system. If by studying the spatiotemporal prox-

imity of the set of deterministic drivers, we come to the conclusion that rider 2 cannot find

a match in the system, then whether rider 2 registers in the system or not does not impact

our solution, because no matter how we route the drivers, rider 2 cannot be served. There-

fore, we call scenario 0101 a dominated scenario. Since rider 2’s request cannot be satisfied,

154

scenario 0101 is in fact equivalent to scenario 0001. We call scenario 0001 the “dominant”

scenario.

The probability of each scenario occurring can be calculated based on the probabilities of

riders included in the scenario. Equation (9.1) demonstrates how this probability can be

calculated. Needless to say, sum of the probabilities of all scenarios should be 1. Notice

that calculating a scenario’s probability in equation 9.1 is based on the assumption that the

decisions of predicted riders whether to register in the system are (conditionally) independent

of each other.

Probi =
∏

r∈Rf |bi,r=1

Pr
∏

r∈Rf |bi,r=0

(1− Pr); ∀i ∈ Scen (9.1)

We start the scenario generation procedure by generating an exhaustive set of scenarios,

Scen. We denote the size of this set by N . It is easy to see that N = 2|Rf |, since each

scenario is a string with |Rf | number of place holders, each of which could hold values 0 or

1. We use the notation ni to denote the size of scenario i, i.e. sum of the digits of the string

representing the scenario. We sort the scenarios in an ascending order of their size.

Each scenario could have three different states, presented in equation (9.2). Initially we set

the state of all scenarios to 2. We go through the sorted list of scenarios one by one, and

analyze them to determine whether a scenario is dominant and should stay in the scenario

list, or is dominated, and needs to be merged with a dominant scenario.

State(ns) =


0 analyzed, and dominated

1 analyzed, and dominant

2 Not analyzed

(9.2)

155

When a scenario i is labeled as dominated, there is a dominant scenario j (nj < ni) with

which it should be merged. In addition, all scenarios k with nk > ni which contain scenario

i (scenarios that contain 1 in all the digits that scenario i contains 1) are also dominated

scenarios. However, it is not instantaneously obvious for a dominated scenario k with which

dominant scenario it has to be merged. Therefore, when finding a dominated scenario of size

n, we only change the state of the scenarios of size n+ 1.

The purpose of merging a dominated scenario with its corresponding dominant scenario is to

adjust the probabilities of the dominant scenarios. This is necessary since after eliminating

the dominated scenarios, sum of the probabilities of all the remaining scenarios should remain

1.

Algorithm (2) shows the procedure used to generate the set of dominant scenarios in detail.

This algorithm starts by generating an exhaustive set of scenarios, and setting the state

of all scenarios to 2. Then the algorithm goes through the sorted list of scenarios. If a

scenario k has a state of 2, then we should solve a deterministic ride-matching problem that

includes the riders in the scenario, and all the registered drivers. After solving this matching

problem, we keep the list of riders who can be served in set Served(k). If the solution to

the matching problem shows that not all riders in the scenario can be served, we change

the state of the scenario to 0, and find the scenario’s corresponding dominant scenario (s′).

s′ is a smaller scenario that includes only the riders in the current scenario that could be

served. We add the tuple [k, s′] to set Switch−Scen to indicate that scenario k should be

temporarily merged with scenario s′. This arrangement is temporary since scenario s′ might

itself need be merged with another scenario. Furthermore, we add to set Not−Served(k) the

list of riders from scenario k that could not be served.

Next, we have to find scenarios that are one unit larger than scenario k and include all the

riders in scenario k, change their status to 0, find their corresponding temporary dominant

scenarios by eliminating the unserved riders in scenario k from their list of riders, and finally

156

make a note of this probable dominated/dominant relationship in set Switch−Scen. In

addition, we have to add the unserved riders in scenario k to the Not−Served sets of these

larger scenarios.

If after solving a scenario with initial state 2 we learn that all the riders in the scenario can

be served, we simply change the status of the scenario to 1. If we come to a scenario with

status of 0, we once more find scenarios that are one unit larger in size and contain the

scenario, remove the unserved set of riders from the current scenario from these scenarios to

find their temporary dominant scenarios, and revise the set Switch−Scen accordingly.

After we go through all the scenarios, we have to use set Switch−Scen to adjust the prob-

abilities of dominant scenarios. We start from the last entry of this set (say [k1, k2]), and

increment the probability of scenario k1 by the probability of scenario k2. The probability

of scenario k2 then needs to be set to zero.

9.2.1 Example

Here, we use a small example with three predicted riders to demonstrate how Algorithm (2)

can be used to revise an exhaustive set of scenarios. The iterations of the scenario generation

procedure are shown in Table 9.1. The changes made in each iteration are marked in red.

An exhaustive list of scenarios can be generated considering all possible combinations of the

three predicted riders registering in the system. An ordered version of this list is demon-

strated in Table (9.1). We start by scenario 2 (scenario 1 is always dominant). Since the

status of this scenario is 2, a (deterministic) ride-matching problem needs to be solved for

this scenario. The solution to this problem shows that rider 1 cannot be served, even without

facing competition from any of the deterministic riders. Since scenario 2 has only one rider,

the fact that this rider’s request cannot be satisfied implies that we can merge scenario 2

157

Algorithm 2 Scenario Generation Procedure

Generate the exhaustive set of scenarios Scen ascending in size, ni.
Done← 0
n← 0
k ← 1
State (k) = 2 ∀k ∈ Scen
While Done = 0

If k < N k ← k + 1 Else Done← 1; break End If
Served(k) ← Served riders in the optimal solution of the matching problem that includes riders in

scenario k, and all the drivers
If State(k) = 2

If not all riders in scenario k served
s′ ←the sub-scenario that can be served
s′d ← the riders in scenario k that cannot be served
n = n + 1
Switch−Scen (n, 1)← k
Switch−Scen (n, 2)← s′

Not−Served (k)← Not−Served (k) ∪ {s′d}
State (k)← 0
Cand−for−Removal← find scenarios of size nk + 1 that include all the riders in scenario k
For i ∈ Cand−for−Removal

State (cand−for−removal)← 0
Cand−for−Replacement (i)← Cand−for−Removal (i)− {s′d}
n← n + 1
Switch−Scen (n, 1)← Cand−for−Removal (i);
Switch−Scen (n, 2)← Cand−for−Replacement (i)
Not−Served

(
Cand−for−Removal (i)

)
← Not−Served

(
Cand−for−Removal (i)

)
∪ {s′d}

End For
Else

State (k)← 1
End If

Else State (k) = 0
Cand−for−Removal← find scenarios of size nk + 1 that include all the riders in scenario k
For i ∈ Cand−for−Removal

Cand−for−Replacement (i)← Cand−for−Removal (i)− {Not−Served(i)}
n← n + 1
Switch−Scen (n, 1)← Cand−for−Removal (i)
Switch−Scen (n, 2)← Cand−for−Replacement (i)
Not−Served

(
Cand−for−Removal (i)

)
← Not−Served

(
Cand−for−Removal (i)

)
∪ {s′d}

End For
End If

End While
For i = Switch−Scen(n, :) : Switch−Scen(1, :)

Prob
(
Switch−Scen(i, 2)

)
← Prob

(
Switch−Scen(i, 2)

)
+ Prob

(
Switch−Scen(i, 1)

)
Prob

(
Switch−Scen(i, 1) = 0

End For
For i ∈ Scen

If Stat(i) = 1,Scen(i) = []; End If
End For

158

Table 9.1: An example of the scenario generation algorithm for a problem with three stochas-
tic riders

Scenario ID 1 2 3 4 5 6 7 8

Switch−ScenScenario 000 100 010 001 110 101 011 111

ni 0 1 1 1 2 2 2 3

Itr0
State(i) 2 2 2 2 2 2 2 2

[]
Not−Served − − − − − − − −

Itr1
State(i) 2 0 2 2 0 0 2 2 [

2 1
]

Not−Served − {r1} − − {r1} {r1} − −

Itr2
State(i) 2 0 1 2 0 0 2 2 [

2 1
]

Not−Served − {r1} - − {r1} {r1} − −

Itr3
State(i) 2 0 1 1 0 0 2 2 [

2 1
]

Not−Served − {r1} − − {r1} {r1} − −

Itr4
State(i) 2 0 1 1 0 0 2 0

[
2 1
5 3

]
Not−Served − {r1} − − {r1} {r1} − {r1}

Itr5
State(i) 2 0 1 1 0 0 2 0  2 1

5 3
6 4

Not−Served − {r1} − − {r1} {r1} − {r1}

Itr6
State(i) 2 0 1 1 0 0 1 0  2 1

5 3
6 4

Not−Served − {r1} − − {r1} {r1} − {r1}

Itr7
State(i) 2 0 1 1 0 0 1 0 

2 1
5 3
6 4
8 7

Not−Served − {r1} − − {r1} {r1} − {r1}

Probi
∑

i∈{2,1}

Probi 0
∑

i∈{5,3}

Probi
∑

i∈{6,4}

Probi 0 0
∑

i∈{8,7}

Probi 0

159

with scenario 1. This is demonstrated in the last column of Table (9.1). The first number in

this column shows the current scenario, and the second number shows the dominant scenario

with which the current scenario needs to be merged. In addition, since the current scenario

has size of 1, we identify the scenarios with size of 2 that include rider 1 (scenarios 5 and 6),

and change their status to zero. We know that these scenarios are dominated, but at this

point, we do not know their corresponding dominant scenarios.

In iteration 2 we proceed to investigate scenario 3. Since the status of this scenario is 2,

it should be solved. We solve the ride-matching problem, and since the only rider in this

scenario (rider 2) can be matched successfully, we change the status of this scenario to 1.

In the third iteration, we proceed to scenario 4 (with status 2), and solve the ride-matching

problem for Rf = {r3}. This rider can be served, and therefore similar to the previous

iteration, the only thing we have to do is to change the status of this scenario to 1.

In iteration 4, we analyze scenario 5. Since the status of this scenario is already 0, there is

no need to solve a ride-matching problem. We can determine which scenario it should be

merged with, by studying the set Not−Served (5). This set contains only r1. Eliminating r1

from scenario 5 ({r1, r2}), we conclude that this scenario should be merged with scenario 3

({r2}). Furthermore, since n5 = 2, we look for scenarios with size of 3 that contain scenario 5

(e.g. have +1 elements in digits where scenario 5 does). There is only one scenario, scenario

8, that fits this criterion. We change the status of scenario 8 to 0, and since the unserved

rider in scenario 5 is r1, we add r1 to Not−Served (8).

In iteration 5, we study scenario 6. Similar to the previous scenario, this scenario does not

need to be solved. Studying Not−Served (6) indicates that this scenario should be merged

with scenario 4. Furthermore, this scenario impacts the status of scenario 8. However, we

changed the status of scenario 8 to 0 in the previous iteration, and so do not need to make

any additional changes to the status of this scenario. Furthermore, r1 which is in the set

Not−Served (6), has been already included in Not−Served (8), and hence no further action

160

is required.

In iteration 6, we investigate scenario 7 which includes two riders, r2 and r3. Since the status

of this scenario is 2, this problem needs to be solved. The solution indicates that both riders

can be served. Therefore we update the status of this scenario to 1, and proceed to the

last scenario. Scenario 8 has a status of zero, and studying Not−Served (8) suggests that it

should be merged with scenario 7.

After going through the scenario list, we go through the Switch−Scnerio table, and cal-

culate the updated probabilities of scenarios. Note that in this example instead of solving

8 matching problems for the 8 scenarios, we solved only 4 matching problems to prepare

the final list of scenarios. As a general rule, eliminating a scenario with size n, reduces the

number of scenarios by 2|Rf |−n. In this example, the only ride-matching problem whose all

riders were not served was scenario 1. Since n1 = 1, this reduced the number of scenarios to

23 − 23−1 = 4.

In solving the ride-matching problem associated with each scenario, instead of directly using

the mathematical formulation presented in Chapter 4, it is much more efficient to use the

decomposition algorithm described in Chapter 7. Since our scenarios are ordered ascending

in size, once we come across a given scenario, solutions to all the sub-problems that need

to be solved by the decomposition algorithm are readily available. This makes solving the

deterministic matching problems in Algorithm 2 exceptionally quick.

In our example in this section, for instance, in scenario 7, we have riders r2 and r3. We

already have the separate solutions for the {r2} and {r3} sub-problems, by solving scenarios

3 and 4. If the itineraries of these riders can co-exist (i.e. they are matched with different

drivers, or with the same set of drivers but through the same routes for the drivers), then

the solution to scenario 7 is readily available. Using this decomposition algorithm proves

much more important when dealing with a larger list of scenarios, since scenarios of size n

161

all include scenarios of size n− 1. Assuming that the solutions to scenarios of size n− 1 are

available, using this decomposition algorithm, not much computation is required for solving

scenarios of size n. In this chapter, we use this decomposition algorithm to generate the list

of dominant scenarios much more efficiently.

9.3 P2P Multi-Hop Ride-Matching Problem with Stochas-

tic Demand

The P2P ride-matching problem with stochastic demand can be formulated as a stochastic

program with fixed recourse. The first stage decision variables determine the itineraries of

drivers and deterministic riders. The second stage variables are scenario-dependent, and

determine the itineraries of the stochastic riders and drivers under each scenario. These

variables are presented in equations (9.3)-(9.6).

x′d`k =


1 Driver d travels on link ` in scenario k

0 Otherwise

(9.3)

y′rd`k =


1 Driver d carries rider r on link ` in scenario k

0 Otherwise

(9.4)

u′drk =


1 Driver d carries rider r in scenario k

0 Otherwise

(9.5)

z′r,k =


1 Rider r is matched in scenario k

0 Otherwise

(9.6)

In the interest of simplicity of notation, let us define set Scen′ = {Scen∪ 0} as the union of

162

scenario 0 and our former scenario set Scen. We define scenario 0 to include the deterministic

riders, and set Rt = {R∪Rf} to include the entire set of riders, deterministic and stochastic.

In addition, we define a binary parameter br,k to be valued 1 if rider r is part of scenario

k, and 0 otherwise. Needless to say, br,0 = 1,∀r ∈ R (i.e. scenario 0 contain the set of

deterministic riders). In addition, all the deterministic riders are included in the formulation

with probability of 1.

Since the stochastic ride-matching program with recourse is only piecewise linear, we refor-

mulate it as a binary (i.e. zero/one) program, and solve this deterministic equivalent instead.

The set of constraints for this binary reformulation, P , is presented in model (9.7). Con-

straint sets (9.7b)-(9.7e) route drivers in the network, and ensure that they do not exceed

their travel time windows and maximum ride times. Constraint sets (9.7f)-(9.7l) route riders,

making sure that they do not exceed their travel time windows, maximum ride times,and

maximum number of transfers.

Constraint set (9.7m) ensures that parts of the drivers’ routes that pertains to transporting

the deterministic riders do not change under different scenarios, since in the beginning of each

re-optimization period the deterministic riders’ routes are announced to them and cannot

be changed. Constraint set (9.7n) links the stochastic riders to the deterministic riders and

drivers, by making sure that the vehicle capacities are not exceeded under any scenarios.

Finally, constraint set (9.7o) determines which riders belong to which scenarios.

The objective function of the problem presented in equation(9.7a) maximizes the expected

objective function of the problem. Any of the terms introduced in Chapter 4 can be used as

the objective function. Recall that we use probabilities of 1 for the deterministic riders.

163

P : Maximize Zsto = Z +
∑

k∈Scen

ProbkZk (9.7a)

∑
`∈L:

si=OSd

x′d`,k −
∑
`∈L:

sj=OSd

x′d`,k = 1; ∀k ∈ Scen′,∀d ∈ D (9.7b)

∑
`∈L:

sj=DSd

x′d`,k −
∑
`∈L:

si=DSd

x′d`,k = 1; ∀k ∈ Scen′, ∀d ∈ D (9.7c)

∑
ti,si

`=(ti,si,t,s)∈L

x′d`,k =
∑
t,sj

`=(t,s,tj ,sj)∈L

x′d`,k; ∀k ∈ Scen′,∀d ∈ D, ∀t ∈ Td,∀s ∈ S\{OSd ∪DSd} (9.7d)

∑
`∈L

(tj − ti)x′d`,k ≤ T TBd ; ∀k ∈ Scen, ∀d ∈ D (9.7e)

∑
d∈D′

∑
`∈L:

si=OSr

y′rd`,k −
∑
d∈D′

∑
`∈L:

sj=OSr

y′rd`,k = z′r,k; ∀k ∈ Scen′,∀r ∈ Rt (9.7f)

∑
d∈D′

∑
`∈L:

sj=DSr

y′rd`,k −
∑
d∈D′

∑
`∈L:

si=DSr

y′rd`,k = z′r,k; ∀k ∈ Scen, ∀r ∈ Rt (9.7g)

∑
d∈D′

∑
t,si:

`=(ti,si,t,s)∈L

y′rd`,k =
∑
d∈D′

∑
tj ,sj :

`=(t,s,tj ,sj)∈L

y′rd`,k ; ∀k ∈ Scen′,∀r ∈ Rt,∀t ∈ Tr,∀s ∈ S\{OSr ∪DSr}

(9.7h)∑
d∈D′

∑
`∈L

(tj − ti)y′rd`,k ≤ T TBr ; ∀k ∈ Scen′,∀r ∈ Rt (9.7i)

u′dr,k ≥ y′rd`,k ; ∀k ∈ Scen′,∀r ∈ Rt,∀d ∈ D, ∀` ∈ L (9.7j)

u′dr,k ≤
∑
`∈L

y′rd`,k ; ∀k ∈ Scen′,∀r ∈ Rt,∀d ∈ D (9.7k)

∑
d∈D

u′dr,k − 1 ≤ Vr; ∀r ∈ Rt (9.7l)

x′d`,k ≥ y′rd`,0 ; ∀k ∈ Scen, ∀r ∈ R, ∀d ∈ D, ` ∈ L (9.7m)∑
r∈Rt

y′rdl,k ≤ Cdx
′d
`,k; ∀k ∈ Scen′, ∀d ∈ D, ∀` ∈ L (9.7n)

z′r,k ≤ br,k; ∀r ∈ Rt, ∀k ∈ Scen′ (9.7o)

164

9.4 L-Shaped Decomposition

In this section we use L-shaped decomposition to solve the deterministic equivalent of the

ride-matching problem in model (9.7) more efficiently from a computational point of view. An

L-shaped decomposition iteratively solves a master problem containing a subset of constraints

of the original problem and |Scen| number of sub-problems, until a certain criterion is met.

In each iteration, the solution of the master problem is fixed in the iteration’s sub-problems,

making it possible for the sub-problems to be solved independently, and in parallel.

We formulate the master problem to route the deterministic riders and the drivers. We

then formulate the sub-problems to route the stochastic riders and re-route the drivers while

fixing the portions of their itineraries that are allocated to the deterministic riders. After

solving the master problem in each iteration, we fix the itineraries of the drivers and the

deterministic riders. This makes the sub-problems independent of each other.

The master problem is a relaxation of the original problem. In each iteration, after solving

the master problem, we generate optimality cuts based on the feedback received from the

sub-problems (constraint set (9.8b)), and add these cuts to the master problem, shrinking

the feasible region.

We start by dividing the set of constraints in model (9.7) between the master problem and

sub-problems. The master problem includes the set of constraints for drivers and determin-

istic riders (e.g. constraint sets in model 9.7 that pertain to scenario 0). In addition, the

master problem includes a set of optimality cuts that are presented in constraint set (9.8b).

In addition to the binary variables presented in (9.8e), there is an additional variable, θ, in

the set of decision variables of the master problem. Variable θ is a lower bound on sum of

the sub-problems’ objective function values. Vectors bk,i and uk,i in constraint set (9.8b) are

the right hand side and dual values of the constraint sets of sub-problem k in iteration i,

respectively. Since the decision variables in the sub-problems are relaxed, the internal prod-

165

uct of vectors b and u for a sub-problem renders the sub-problem’s optimal objective value

(strong duality). The optimality cuts generated raise the lower bound θ until the stopping

criteria of θ =
∑

k∈Scen Probk ZSP (i, k) is reached in some iteration i, where ZSP (i, k) is the

objective function value of sub-problem k in iteration i. The vector b includes the master

problem variables that are fixed in the sub-problems, and so b · u is a constant that helps us

evaluate the stopping criterion. However, if the stopping criterion is not met, and when we

are generating the optimality cuts, these formerly fixed master problem variables are treated

as decision variables in the right hand side of constraint set (9.8b).

Master Problem (i) i ∈ {i..itr}:

Minimize ZMP (i) : Z + θ (9.8a)

θ ≥
∑

k∈Scen

Probk ×
(
bkuk,i

)
; ∀i ∈ {2..itr} (9.8b)

θ ≥ 0 (9.8c)

P
(
(9.7b)− (9.7l), (9.7n)− (9.7o), k = 0

)
(9.8d)

x′d`,0, y
′rd
`,0 , u

′d
r,0, z

′
r,0 ∈ {0, 1} (9.8e)

Sub-problems include the set of constraints pertaining to stochastic riders. As mentioned

before, the itineraries of the drivers and the deterministic riders are fixed in sub-problems.

This makes it possible to dedicate each sub-problem to a separate scenario (model (9.9)).

The variables that were binary previously are relaxed in the sub-problems. We add con-

straint set (9.9c) to model (9.9) to ensure that only the remaining capacity of vehicles

(taking into consideration the capacity consumed by the deterministic riders) is being used

by sub-problems. This helps reduce the number of iterations needed to reach the stopping

criterion. Furthermore, there is no source of infeasibility in the sub-problems, and therefore

sub-problems only generate and send an optimality cut per iteration to the master problem.

166

Sub-problem (i, k) ∀i ∈ 1..itr,∀k ∈ Scen:

Minimize ZSP (i, k) : Z(k) (9.9a)

P
(
(9.7b)− (9.7o), k

)
(9.9b)∑

r∈Rf

y′rdl,k +
∑
r∈R

y′rdl,0 ≤ Cdx
′d
l,k; ∀k ∈ Scen′,∀d ∈ D, ∀l ∈ L (9.9c)

0 ≤ x′d`,0, y
′rd
`,0 , u

′d
r,0, z

′
r,0 ≤ 1 (9.9d)

After the stopping criterion is met, we solve the last iteration’s sub-problems one additional

time, with (9.9d) replaced by integrality constraints. Note that the sub-problems are always

feasible, and hence enforcing the decision variables to be binary does not lead to an infeasible

solution to the original problem.

The sub-problems, in general, have very tight linear relaxations. In more than 90% of the

problem instances we solved, the solutions to the linear relaxations turned out to be integer.

For the remaining 10%, enforcing the binary condition led to an objective function equal to

the integer part of the objective function of the linear relaxation of the problem, implying

that the solutions remained optimal. We have never encountered an instance of the problem

in which enforcing the binary constraints has led to sub-optimal solutions.

9.5 Small Example

In this section, we present a small example of a ridesharing system with two registered

(deterministic) riders, three stochastic (predicted) riders, and two drivers, and solve the

problem and present the solution using both the deterministic reformulation of the stochastic

program with recourse presented in (9.7), and the L-shaped decomposition. In this example,

nine stations are located in the network, where riders can start their trips, end them, or

167

Figure 9.1: Stations and travel times in the example network

Table 9.2: Input data for the example

Deterministic Riders Stochastic Riders Drivers
Participant r1 r2 r3 r4 r5 d6 d7 d8

Rider(0)/Driver(1) 0 0 0 0 0 1 1 1
Origin Station 3 4 5 2 9 3 9 6

Destination Station 2 6 2 8 7 7 8 8
Earliest Departure 5 5 6 20 41 5 41 4

Latest Arrival 21 24 16 46 56 56 46 23
Probability 1 1 0.7 0.9 0.85 1 1 1

make transfers between drivers. Figure 9.1 displays the network for this example. Table 9.2

shows the problem instance we are trying to solve in this example. We use the objective of

maximizing the number of served riders.

The first step is to form the set of scenarios. The step by step scenario generation procedure

presented in Table 9.1 is in fact for the example in this section. The results suggest that the

Scen set contains four scenarios. These scenarios and their corresponding probabilities are

presented in Table 9.3. Note that the first scenario (all-zero string) can always be dropped

from the set of scenarios.

First, we use the deterministic reformulation of the stochastic ride-matching problem with

168

Table 9.3: Set of scenarios with their corresponding probabilities

Scenario Probability
000 0.0150
010 0.1350
001 0.0850
011 0.7650
sum 1.0000

Table 9.4: Optimal solution to the stochastic ride-matching problem

Scenario Participant Matched? Driver
Route

(ti, si, tj , sj)

Matched Drivers

NA

d6 Y es d6

(6, 3, 20, 2)

NA (20, 2, 30, 5)

NA (30, 5, 46, 8)

First Stage NA (46, 8, 56, 7)

NA d7 Y es d7 (42, 9, 46, 8)

Deterministic Riders
NA r1 Y es d6 (6, 3, 20, 2)

NA r2 No − −

Stochastic Riders

1 r4 Y es
d6 (20, 2, 30, 5)

d6 (30, 5, 46, 8)

2 r5 Y es
d7 (42, 9, 46, 8)

Second Stage d6 (46, 8, 56, 7)

Variables

3

r4 Y es
d6 (20, 2, 30, 5)

d6 (30, 5, 46, 8)

r5 Y es
d7 (42, 9, 46, 8)

d6 (46, 8, 56, 7)

recourse, presented in (9.7), to solve this problem. The optimal solution is displayed in Table

9.4. Based on this solution, only one of the deterministic riders can be served. However, two

of the three stochastic riders can be matched in the system. The time required to generate

the scenarios was less than 2 seconds. The optimal solution to the stochastic ride-matching

problem was obtained in less than 0.5 second.

Next, we use the L-shaped decomposition to solve the problem. The final solution is exactly

the same as the solution in Table 9.4 (The solution to the last sub-problem was integer). It

took six iterations for the algorithm to converge. The evolution of variable θ is presented in

Figure 9.2. As expected, the value of θ is increasing through iterations, since we keep adding

169

Figure 9.2: Evolution of θ over iterations of L-shaped decomposition, and convergence of the
L-shaped decomposition

Table 9.5: Solution to the deterministic ride-matching problem

Participant Matched? Driver
Route

(ti, si, tj , sj)

Deterministic Riders
r1 Y es d6 (7, 3, 21, 2)

r2 No − −

Matched Drivers d6 Y es d6

(7, 3, 21, 2)

(21, 2, 29, 1)

(29, 1, 34, 4)

(34, 4, 46, 7)

optimality cuts to the master problem.

In deterministic ridesharing systems where riders’ requests are not predicted, the ride-

matching problem is initially solved only for the deterministic (registered) riders. Once

(and if) a rider joins the system in real-time, a ride-matching problem can be solved for the

newly joined rider assuming fixed routes for drivers who have been assigned to deterministic

riders. We use this small example to show the superiority (in terms of system performance)

of predicting rider requests and solving a stochastic program, to real-time matching of indi-

viduals.

To this end, we first solve a matching problem for the set of deterministic riders, R = {r1, r2},

using the decomposition algorithm in Chapter 7. The solution to this problem is displayed in

170

Table 9.5. This solution indicates that from the set of deterministic riders, R = {r1, r2}, only

r1 can be served. d6 is the driver who is matched with r1. However, notice that d6’s itinerary

is different from his itinerary in Table 9.4. Next, we assume that the three stochastic riders

(whose arrival was not predicted) arrive in real-time. We use the DP algorithm described in

Chapter 6 to find an itinerary for them. In forming the time-expanded feasible networks for

these riders, we assume that the itinerary of d6 is fixed, but d7 and d8 can be routed, since

they were not matched previously. The solutions show that none of the real-time (stochastic)

riders can find a match in the system. This example illustrates the importance of formulating

and solving a stochastic ride-matching problem. Although in both cases (the stochastic, and

deterministic problems) only r1 from the set of deterministic riders could be served, in the

stochastic case, we could serve riders r4 and r5 as well.

9.6 Applicability in Practice

In this section, we investigate the possibility of using stochastic matching for problems

of practical sizes. To this end, we have generated multiple random instances of the ride-

matching problem, and have recorded their solution times, and the quality of their solutions.

The problem instances are generated on a random greed-like network similar to the one

presented in Figure 9.1. We vary the number of drivers, and deterministic and stochastic

riders in each instance. The experiments are performed on a PC with Core i7 3 GHz and

8GB of RAM.

It should be noted that a ride-sharing system could be very sparse in time and space, and

therefore for each problem instance, we first use the pre-processing procedure ESTAM pre-

sented in Chapter 5 to detect and filter out a subset of riders who cannot be matched. The

terms “before” and “after” under rows |R|/|Rf | in table 9.6 refer to the number of determinis-

tic/stochastic riders, before and after performing the pre-processing procedure, respectively.

171

The row |Scen| this table shows the number of scenarios generated using Algorithm 2. We

show the time of reaching the optimal solution by directly solving the binary reformulation

of the problem presented in model 9.7. In addition, we report the solution time by the

L-shaped decomposition, and comment on the optimality of the solution. It should be noted

that since the sub-problems in the L-shaped decomposition can be solved in parallel, the

time we report is the maximum solution time of sub-problems in each iteration, and not the

sum of solution times. Table 9.6 suggests that larger instances of the problem can still be

solved in a matter of a few minutes.

172

T
ab

le
9.

6:
E

x
p

er
im

en
ts

w
it

h
p
ro

b
le

m
s

of
la

rg
er

si
ze

s

P
ro

b
le

m
in

st
an

ce
s

1
2

3
4

5
6

7
8

|S
|

1
6

1
6

2
5

2
5

4
9

4
9

6
4

6
4

|D
|

3
0

5
0

6
0

6
0

9
0

1
0
0

1
1
0

1
2
0

|R
|

B
ef

or
e

p
re

-p
ro

ce
ss

in
g

1
5

4
5

4
0

4
5

5
0

6
0

6
0

5
0

A
ft

er
p

re
-p

ro
ce

ss
in

g
4

1
9

1
3

1
5

1
1

1
0

1
1

1
2

|R
f
|

B
ef

or
e

p
re

-p
ro

ce
ss

in
g

5
2
5

2
0

2
0

2
0

2
5

2
0

3
0

A
ft

er
p

re
-p

ro
ce

ss
in

g
3

8
4

8
5

4
5

6
|S
ce
n
|

7
1
2
7

7
6
3

3
1

1
5

1
5

1
5

P
re

-p
ro

ce
ss

in
g

ti
m

e
(s

)
1

5
8

1
2

2
5

3
1

4
7

4
5

S
ce

n
ar

io
ge

n
er

at
io

n
ti

m
e

(s
)

8
8

4
1
5

1
3

1
5

4
0

2
8

B
in

ar
y

re
fo

rm
u

la
ti

on
so

lu
ti

on
ti

m
e

(s
)

1
4
8

4
7
4

9
2

4
9

2
9
9

1
6
8

L
-s

h
ap

ed
d

ec
om

p
os

it
io

n
T

im
e

6
1
5
2

4
1
8
9

4
5

1
4
6

1
8
7

5
2
0

It
er

at
io

n
s

1
2

2
4

3
2
9

9
2
4

1
9

3
7

O
p

ti
m

a
li

ty
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

S
to

ch
a
st

ic
−

6.
2
6
−

2
0
.2

4
−

1
1.

7
3
−

1
0
.9

2
−

1
0.

3
6
−

1
0
.9

6
−

8.
6
0
−

1
2.

8
7

E
x
p

ec
te

d
va

lu
e

−
4.

6
−

2
0
.2

4
−

1
1.

7
3
−

1
0
.9

2
−

9
.3

6
−

1
0
.9

6
−

6.
6
0
−

9.
3
2

173

Comparing the solution times of the binary reformulation of the stochastic program and the

L-shaped decomposition suggests that often times the L-shaped decomposition takes longer

to converge, although it is not the case in 100% of the instances. One benefit of using the

L-shaped decomposition in time-sensitive applications is that since the master- and sub-

problem solutions are always feasible, one can allow the iterations to run until a time limit

is reached, and then retrieve the best solution. Another advantage is the possibility of

distributing computations, in this case in users’ devices.

Another important point is that although the integral constraints in the sub-problems of

the L-shaped decomposition have been relaxed, the solutions obtained remain optimal in all

instances.

In order to assess the value of the stochastic solution, we compare the solution to the stochas-

tic program to the solution obtained from solving a deterministic ride-matching problem

(model (4.5)), with the objective function of maximizing the expected value of number of

served riders. The comparisons are displayed in the last two rows of table 9.6. Results

suggest that in some instances, the solutions of the stochastic and deterministic problems

are exactly the same, while in some others the stochastic solution is superior by up to 38%.

174

Chapter 10

Shared Ownership and Ridership of

Autonomous Vehicles

10.1 Introduction

Sharing economy, also known as collaborative consumption, is a fairly old concept that

focuses on the benefits obtained from sharing resources (products or services) that would

otherwise go unused. Although communities have been using the concept of sharing economy

locally for many years, advent of Internet has led to its spread in global populations, and

highlighted its benefits.

The sharing economy model has been historically used for high-value commodities, such

as exotic automobiles, yachts, private jets, vacations homes, and the like. Curvy Road, for

example, an exotic carshare company founded in 2000, provides fractional ownership of high-

end vehicles in four cities in the US (Curvy Road (2000)). Although it has long been realized

that taking ownership of under-utilized high-value assets may not be always economically

wise, this economic model has become more popular recently for less expensive resources as

175

well, thanks to new platforms that allow easy and quick development of companion mobile

applications.

Autonomous (also known as driver-less and self-driving) vehicles are expected to enter the

market in the near future. Although these vehicles introduce many benefits such as a higher

degree of safety and mobility to the users and the transportation system in general, their

high prices can be prohibitive when it comes to purchasing them. On the other hand, au-

tonomous vehicles can decrease the total number of vehicles needed to perform daily tasks,

since these vehicles can drive themselves to locations where there is demand for transporta-

tion. One possible strategy to make autonomous vehicles more affordable is to encourage

shared ownership of these vehicles. In addition to shared ownership, it is possible to decrease

the ownership cost of autonomous vehicles further by (1) shared use of these vehicles, and

(2) renting out the vehicles when they are not being used by owners.

Since autonomous vehicles can drive themselves, owning these vehicles decreases the number

of vehicles a household requires to perform daily tasks. Figure 10.1 shows the average daily

vehicle miles traveled (VMT) by each vehicle in a household in the US in 2009. This figure

suggests that the higher the number of vehicles owned by a household, the less the average

use of each additional vehicle tends to be. Although for a typical household owning more

than one vehicle might be financially justifiable considering the level of comfort and peace

of mind it might bring, this justifiability decreases with the purchase of additional vehicles.

Apart from the initial investment (or monthly payments), the cost of insurance, depreciation

of value, and parking can turn vehicle ownership into a financial burden. With autonomous

vehicles, fewer vehicles can cover the same trips compared to a higher number of ordinary

vehicles.

In this chapter, we introduce the shared vehicle ownership and use (SVOU) program in which

a group of households jointly own and use a set of autonomous vehicles. These households

can share rides with each other if the spatiotemporal distribution of their trips allow that.

176

Figure 10.1: Average daily vehicle miles for households with various number of vehicles. The
data is from the National Household Travel Survey (NHTS), 2009

We propose analytical optimization schemes to study the impact of this program on an

individual and system level. Though no rigorous analysis under optimal operations appear

to have been done in the literature yet, there is some awareness of such possibilities in the

automotive industry as well as among the increasing number of researchers and aficionados

of autonomous vehicles (Schall, 2015; k. Naughton, 2015; Fagnant and Kockelman, 2014;

Schoettle and Sivak, 2015). In this chapter, along with an analytical formulation, we also

offer certain new possibilities such as renting the vehicles out through a central car rental

service when they are not being used by their owners.

The analysis presented here are equally applicable to both fully autonomous vehicles and

driverless vehicles (which may not be technically autonomous), the distinction between the

two terms being relatively well-known now. In the following discussions, however, we use

only the term “autonomous” to avoid unnecessary repetition of the fact that it refers to

driverless vehicles as well.

177

10.2 SVOU: Shared Vehicle Ownership and Use Pro-

gram

Envision a set of households F , who share the ownership of a set of autonomous vehicles V .

These households form a cluster to which the vehicles under their shared ownership belong.

Each vehicle v ∈ V has the capacity to carry Cv number of passengers. Each household

f ∈ F has a set of essential trips that need to be served by the set of autonomous vehicles.

We define set Me to include all the essential trips of the households that belong to a cluster.

Common types of essential trips may include work-based trips, grocery shopping, and trips

to school. However, households can include any type of trips in the set of essential trips, for

which they need to ensure regular and timely access to a vehicle.

For a given trip k, a cluster member needs to input into the system the location of the origin

of the trip, OSk, the location of the destination of the trip, DSk, the earliest departure time

from the origin location, EDk, and the latest arrival time at the destination location, LAk.

While vehicles are idle, they can be rented out to satisfy a set of on-demand transportation

requests, M , in order to cover a part of the system cost. A rental request k ∈ M should

include the location where a vehicle needs to deliver itself (OSk), and the location where

it will be returned (DSk), along with the rental period duration (Pk), and the rental time

window ([EDk, LAk]).

The first goal of the system is to advise households in a cluster on the optimal number of

vehicles they need to purchase to cover their set of essential trips. In the interest of higher

efficiency, the system is designed to allow cluster members to rideshare, if the spatiotemporal

proximity of their trips permit it. The second goal of the system is to maximize the total

number of on-demand car rental requests, in order to maximize the external revenue gener-

ated. These goals are implemented sequentially, i.e. we first determine the optimal number

of vehicles for each cluster of households, and then use these vehicles for carsharing during

178

their idle times. In the next section, we mathematically model these two problems.

10.2.1 Mathematical Modeling

In order to model the system defined in the previous section, we formulate two optimization

problems. The first problem finds the optimal number of autonomous vehicles that should

be owned by a cluster, in order to guarantee that its set of essential trips will be served, and

provides vehicle itineraries. The second problem uses the vehicles’ idle times to serve the

maximum number of on-demand car rental requests.

To formulate these two problems, we need to first define a number of sets. For a given

cluster, we define a set of stations, Se, that contains the origin and destination locations

of the cluster’s essential trips. Furthermore, we define set S to contain all the origin and

destination locations of all essential and non-essential trips (by all clusters). Similar to

Chapter 4, by introducing stations, we discretize the space dimension of the problem. In

addition, we discretize the study time horizon into a set of short time intervals with length

∆t. We define set T to include all time intervals in the study time horizon. In this chapter,

we use ∆t = 5 minutes. In a network discretized in both time and space, we define a

node n as a tuple (ti, si) ∈ T × S. Consequently, we define a link ` as a tuple of nodes

` = (ni, nj) = (ti, si, tj, sj), where (tj − ti)∆t is the travel time between stations si and sj.

We define set L to include all links.

Furthermore, we define an origin depot, Do, and a destination depot Dd. The depot stations

are not real locations on the network, and are used to assist in the formulation of the

problem. Do is connected to all stations in set S, and all stations in S are connected to Dd.

Furthermore, Do and Dd are connected to each other. Figure 10.2 displays a typical network

and demonstrates the connection between the depots and set of stations.

179

Figure 10.2: A typical network to demonstrate the connection of depot stations to each
other, and to members of set S

We use the pre-processing procedure in Chapter 5 to reduce the size of the input sets to the

problem. Through this procedure (the first two steps of ESTAM), we find the links that are

spatiotemporally reachable for each trip k ∈ {M ∪Me} given its time window, and keep such

links in set Lk. Therefore, when formulating the problem, we do not need to place explicit

constraints on the time windows of trips, since only links with feasible time windows are

members of set Lk.

10.2.2 Routing of Autonomous Vehicles

The problem of finding the optimal number of vehicles to serve a cluster’s set of essential

trips is formulated in model (10.3). The formulation requires two sets of decision variables

defined in (10.1) and (10.2).

180

xv` =


1 If vehicle v travels on link `

0 Otherwise

(10.1)

ykv` =


1 If trip k is carried out by vehicle v on link `

0 Otherwise

(10.2)

Given that the households in a cluster have a total of m members, |m| is an upper-bound

on the number of vehicles needed to serve the cluster. Therefore, to determine the minimum

number of vehicles required for a given cluster, we formulate an optimization problem, as-

suming there to be |m| vehicles available, and try to maximize the number of vehicles that

are not used.

Constraint sets (10.3b) and (10.3c) force all vehicles to go back from Dd to Do at the end

of the day. Constraint set (10.3d) is the flow conservation constraint, forcing all vehicles

that enter a station at a given time interval to exit that station at the same time interval.

Notice that vehicles do not have to physically leave a station. Members of set L in the form

` = (t, s, t+ 1, s) can cover such situations, where a vehicle can stay at a station for one time

interval. Constraint sets (10.3e)-(10.3g) route the set of trips in the network. Constraint set

(10.3e) and (10.3f) ensure that a trip leaves its origin station and enters its destination station

within the trip’s time window, respectively. Constraint set (10.3g) is the flow conservation

constraint. Constraint set (10.3h) serves two purposes: it links vehicle routes to trip routes,

and ensures that the number of individuals assigned to each vehicle at any moment in time

does not exceed the vehicle’s capacity.

Vehicles that are excessive and are not actually routed in the system have to take the link

that connects Do to Dd. Therefore, to minimize the number of used vehicles, we maximize

the vehicles that travel on this link, as mathematically stated in the objective function of the

181

problem in (10.3). The second term in the objective function minimizes the total travel time

by vehicles in the network. We set a negative weight W for the first term in the objective

function to take into account the relative importance of minimizing the number of vehicles

in a cluster, and the total travel time by the cluster members.

The solution to this problem simultaneously provides the minimum number of vehicles re-

quired to serve the essential trips, and itineraries for the trips and the vehicles.

Minimize W
∑

v∈V, ti∈T, tj∈T :

`=(ti,Do,tj ,Dd)∈L

xv` +
∑

v∈V,`∈L:
si 6=sj

xv` (10.3a)

∑
`=(ti,si,tj ,sj)∈L:

si=Dd,sj=Se\Do

xv` = 0; ∀v ∈ V (10.3b)

∑
`=(ti,si,tj ,sj)∈L:

si=Dd,sj=Do

xv` = 1; ∀v ∈ V (10.3c)

∑
si∈Se,ti∈T :

`=(ti,si,t,s)∈L

xv` =
∑

sj∈Se,tj∈T :

`=(t,s,tj ,sj)∈L

xv` ; ∀v ∈ V, t ∈ T, s ∈ Se\Do : ` = (ti, si, t, s) ∈ L (10.3d)

∑
v∈V

∑
`∈Lk:
si=OSk

ykv` −
∑
v∈V

∑
`∈Lk:
sj=OSk

ykv` = 1; ∀k ∈Me (10.3e)

∑
v∈V

∑
`∈Lk:
sj=DSk

ykv` −
∑
v∈V

∑
`∈Lk:
si=DSk

ykv` = 1; ∀k ∈Me (10.3f)

∑
si∈Se,ti∈T :

`=(ti,si,t,s)∈Lk

ykv` =
∑

sj∈Se,tj∈T :

`=(t,s,tj ,sj)∈Lk

ykv` ; ∀v ∈ V, k ∈Me, t ∈ T, s ∈ Se\{OSk ∪DSk} : ` = (ti, si, t, s) ∈ Lk

(10.3g)∑
k∈Me,`∈Lk

xkv` ≤ xv` ; ∀v ∈ V, ` ∈ L (10.3h)

182

10.2.3 On-Demand Carsharing

The pick-up and drop-off schedules for the set of essential trips are determined by the op-

timization problem in the previous section. The idle times of vehicles can be used to serve

on-demand transportation requests through a central car rental service provider.

Autonomous vehicles become free after dropping off a passenger, and before picking up the

next. During this period, a vehicle needs to make a trip from the destination location of

the first passenger, to the origin location of the second, in a travel time window that is

bounded from below by the scheduled arrival time of the first passenger, and from above by

the scheduled departure time of the second. The first optimization problem ensures that this

travel time window is larger than the actual travel time between the locations. Although this

time window is not strictly an idle period (the vehicle should travel to the pick-up location for

the second trip), the vehicle can use the extra time to serve on-demand car rental requests,

and that is why we refer to the time window between two consecutive scheduled drop-off

and pick-ups as the free travel time window.

In order to mathematically formulate the carsharing problem, we identify the set of free

time windows between scheduled trips, and try to find the maximum number of carsharing

requests that can be satisfied during these time windows. We keep the set of free time

windows for each vehicle v ∈ V in set J(v). The jth free time window of autonomous vehicle

v starts after dropping off its jth assigned passenger, and ends when passenger j + 1 needs

to be picked up. We denote this travel time window by [ED(v,j) LA(v,j)]. During this time

window, the vehicle needs to travel from the destination location of its jth scheduled trip,

to the origin location of its next scheduled trips. We denote these parameters by OS(v,j)

and DS(v,j) respectively, and formulate this problem using three sets of decision variables in

equations (10.4)-(10.6).

183

xvj` =


1 If vehicle v travels on link ` during its jth free time window

0 Otherwise

(10.4)

ykvj` =


1 If request k is served on link ` using the jth free window of vehicle v

0 Otherwise

(10.5)

zk =


1 If carsharing request k is served

0 Otherwise

(10.6)

Contrary to the problem in (10.3) where all vehicles had the same link set L, here each

vehicle has a different link set in each of its free time windows. Let us keep the set of links

for vehicle v during its jth free window in set Lvj. Furthermore, we introduce a new set

Lkvj = Lk
⋂
Lvj. This set includes all the links that are accessible to both vehicle v during

its jth time window, and request k.

The constraint sets that defines this problem are very similar to constraint sets in the pre-

vious section, where we routed the autonomous vehicles to satisfy the set of essential trips.

Constraint sets (10.7b)-(10.7d) route vehicles within their free time windows. Constraint set

(10.7b) ensures that each vehicle at each of its free time windows leaves its origin station

after delivering its last passenger. Constraint set (10.7c) ensures that the vehicle reaches

its destination location before the departure time of its next scheduled passenger. Con-

straint set (10.7d) is the flow conservation constraint. Constraint sets (10.7e)-(10.7g) route

on-demand requests in the network. These sets of constraints are similar to constraint sets

(10.7b)-(10.7d) that route vehicles, with a small variation that not all on-demand requests

can be necessarily served. This is reflected in the formulation by replacing 1 on the right

184

hand side of constraint sets (10.3e) and (10.3f) by variable zk in constraint sets (10.7e) and

(10.7g) . Finally, constraint set (10.7h) ensures that each served request is assigned a single

vehicle, and each vehicle is assigned to only one request at a time. The objective of the

carsharing problem (10.7a) is to maximize the total number of served requests.

Minimize
∑
k∈M

zk (10.7a)

∑
`∈Lvj :

si=OSv,j

xvj` −
∑
`∈Lvj :

sj=OSv,j

xvj` = 1; ∀v ∈ V, j ∈ J(v) (10.7b)

∑
`∈Lvj :

sj=DSv,j

xvj` −
∑
`∈Lvj :

si=DSv,j

xvj` = 1; ∀v ∈ V, j ∈ J(v) (10.7c)

∑
si∈S,ti∈T :

`=(ti,si,t,s)∈Lvj

xvj` =
∑

sj∈S,tj∈T :

`=(t,s,tj ,sj)∈Lvj

xvj` ; ∀v ∈ V, j ∈ J(v),∀t ∈ T, s ∈ Se\Do : ` = (ti, si, t, s) ∈ Lvj

(10.7d)∑
v∈V
j∈J(v)

∑
`∈Lkvj :
si=OSk

ykvj` −
∑
v∈V
j∈J(v)

∑
`∈Lkvj :
sj=OSk

ykvj` = 1; ∀k ∈M (10.7e)

∑
v∈V
j∈J(v)

∑
`∈Lkvj :
sj=DSk

ykvj` −
∑
v∈V
j∈J(v)

∑
`∈Lkvj :
si=DSk

ykvj` = 1; ∀k ∈M (10.7f)

∑
si∈Se,ti∈T :

`=(ti,si,t,s)∈Lkvj

ykvj` =
∑

sj∈Se,tj∈T :

`=(t,s,tj ,sj)∈Lkvj

ykvj` ;
∀v ∈ V, j ∈ J(v), k ∈M, t ∈ T,

s ∈ Se\{OSk ∪DSk} : ` = (ti, si, t, s) ∈ Lkvj
(10.7g)

∑
k∈M,`∈Lkvj

ykvj` ≤ xvj` ; ∀v ∈ V, j ∈ J(v), ` ∈ Lvj (10.7h)

185

10.3 Solution Method

We formulated the first optimization problem to find the minimum number of autonomous

vehicles required to serve a cluster’s set of essential trips, and optimally route these vehicles.

This problem does not need be solved in real-time, and therefore for problems of moderate

size (as we will discuss later) optimization engines such as CPLEX can be used.

The second optimization problem that maximizes the number of served carsharing requests

may need to be solved in real-time, as carsharing requests arrive dynamically. In this section,

we devise a greedy heuristic algorithm to solve this problem in real-time. The numerical

study that follows illustrates the level of efficiency and accuracy of this heuristic algorithm.

The carsharing problem as described in the previous section bears similarities to the family

of parallel machine scheduling problems in manufacturing. This class of problems includes

a large variety of problems, and is used to find the optimal sequence of using machinery in

manufacturing processes. Parallel machine scheduling problems vary in job characteristics

(whether there are preemptive or precedence constraints present, fixed/relaxed start or finish

time, etc.), machine characteristics (identical or non-identical, serial or parallel, etc.), and

the optimality criteria (max number of completed jobs, min makespan, etc.). In the context

of our carsharing problem, jobs are carsharing requests, and machinery are the free time

windows of drivers. The problem we are trying to solve has the following characteristics:

1. No preemptive or precedence constraints present: Once we fix the schedules of the

essential trips, the vehicles’ free time windows can be used in any manner, i.e. there

is no precedence requirement on the sequence of the carsharing request to be satisfied.

2. Multiple non-homogeneous machines/servers: In our problem each free time window of

each vehicle acts as a separate server. Furthermore, our servers are non-homogeneous,

meaning that each vehicle at each of its free time windows has distinct origin and

186

station, as well as start and finish times.

3. Jobs are available during specified time windows, rather than with specific start and

finish times: the carsharing requests specify a time window during which a vehicle is

required, rather than specify the exact time for start and end of their requests.

4. Set-up cost: In our problem there exist server- and job sequence-dependent set-up costs.

Because vehicles have to travel to location where they are requested, which vehicle is

to be assigned to a request, and the sequence of requests assigned to a vehicle, all play

a role.

5. Objective: maximizing the number of served jobs (satisfied carsharing requests).

There is an extensive amount of literature on machine scheduling (Hall and Sriskandarajah

1996; Cheng et al. 2004). Rabadi et al. (2006) propose heuristics to solve the non-preemptive

unrelated parallel machine scheduling problem, in which machine- and job sequence-dependent

setup times are considered, but jobs are all assumed to be available at time zero. Gabrel

(1995) proposes heuristics to solve the problem of scheduling non-preemptive jobs with an

interval for starting time, on identical parallel machines. To the best of our knowledge, there

is no study that combines both characteristics (set-up costs, and time windows for jobs),

that can be used to solve the carsharing problem formulated in the previous section.

10.3.1 Heuristic Algorithm to Solve the On-Demand Carsharing

Problem

The heuristic algorithm described in this section is based on the earliest finishing time

(EFT) heuristic originally designed to solve the interval scheduling problem. In the interval

scheduling problem, there is a machine that needs to complete the maximum number of jobs

possible. Each job has a specific start and finish time. At each step, the EFT heuristic selects

187

the job with the earliest finishing time that does not conflict with the previously selected

jobs. The EFT heuristic yields optimal solutions.

The carsharing problem we need to solve is substantially more complicated than the interval

scheduling problem. In fact, it is easy to see that the carsharing problem is NP-Hard. Here,

we modify the EFT heuristic, and tailor it to solve the carsharing problem. Our proposed

algorithm is displayed in Algorithm 3.

In the mathematical program in (10.7), we used the tuple (v, j) to refer to the jth free time

window of vehicle v. In the interest of simplifying notation, we treat each free time window

of each vehicle as a separate vehicle v′ ∈ V ′, where V ′ = (v, j)|v ∈ V, j ∈ J(v).

Algorithm 3 On-demand vehicle allocation
Allocates carsharing requests using the idle autonomous vehicles

1. Initialize: ∀v′ ∈ V ′

Loc(v′) = OSv′

Time(v′) = EDv′

2. Find the set of feasible requests R(v′), ∀v′ ∈ V ′

∀k ∈ R :

If Max{Time(v′) + shp1(Loc(v′), OSk), EDk}+ shp(OSk, DSk) ≤ LAk

R(v′) = R(v′) ∪ {k}

3. Find the matched request and driver by studying the minimum finishing time for all combinations of
vehicles and requests

(
∀v′ ∈ V ′, k ∈ R(v′)

)
(v′∗, k∗) = Argminv′∈V ′,k∈R(v′)

{
Max{Time(v′) + shp(Loc(v′), OSk), EDk}+ shp(OSk, DSk)

}
4. Update sets

Loc(v′∗) = DSk∗

Time(v′∗) = Max{Time(v′∗) + shp(Loc(v′∗), OSk∗), EDk∗}+ shp(OSk∗ , DSk∗)

5. Delete k∗ from R(v′),∀v′ ∈ V ′.

6. Update R(v′∗) based on rider travel time windows:

∀k ∈ R(v′∗) :

If Max{Time(v′∗) + shp(Loc(v′∗), OSk), EDk}+ shp(OSk, DSk) > LAk

}
R(v′∗) = R(v′∗)\k

Go to step 3.

7. Stopping Criteria: ∀v′ ∈ V ′, R(v′) = ∅.
1shp(i, j) : shortest path travel time between i and j

In the first step of the algorithm, we initialize two sets of arrays. The first array, Loc(v′),

188

Figure 10.3: Determining the set of feasible requests R(v′) for vehicle v′

indicates the current location of vehicle v′. The second array, Time(v′), indicates the time

vehicle v′ becomes idle (available). We initialize the location array Loc for each vehicle

v′ ∈ V ′ with the origin station of the vehicle, and the time array Time with the earliest

departure time of the vehicle.

The algorithm starts by determining the set of feasible carsharing requests for each vehicle.

In order for a request to be feasible for a vehicle, the vehicle should be able to drive from

its current location to the request’s origin station, and get there at or after the start of the

request’s time window, stay in possession of the requester for the requested duration of time,

and finally arrive at its own destination (the pick-up location of its next scheduled essential

trip) before its latest arrival time. Figure 3(b) studies the feasibility of three carsharing

requests for a vehicle. The boundaries of the boxes show the free time window of the vehicle,

and the line (blue, red, green) associated with each request marks its time window. The

first request (at the bottom) is feasible for the vehicle. The vehicle arrives at the request’s

origin location after the request’s earliest departure time, is able to stay in possession of

the requester for the demanded duration that ends before the request’s latest arrival time,

189

and travels to its destination station within its time window. The second and third requests,

however, are not feasible for the vehicle. In the case of the second request, the vehicle cannot

stay in possession of the requester for the duration of the request, and in the case of the third

request, the vehicle cannot go back to its own destination station after finishing serving the

request. In the third step of the algorithm, we find finishing times for all combinations of

vehicles and their set of feasible requests. The finishing time of vehicle vˆ’ serving request k

includes the time required for the vehicle to arrive at the request’s origin location, and then

stay in possession of the requester for the demanded period of time. Note that if the vehicle

arrives at a requested location before the start of the request’s time window, it has to wait

until the start of the time window. The vehicle and request pair that lead to the earliest

finishing time will be selected and matched together. In step 4, the location of the matched

vehicle will be updated to the location of the destination of the matched request, and the

time array of the assigned vehicle will be updated to the drop-off time of the rented out

vehicle. In step 5, the matched request in step 3 will be eliminated from the set of available

requests to all vehicles. Furthermore, since the time window and location of the matched

vehicle in step 3 have been updated, the set of feasible requests for this vehicle needs to be

updated as well. The algorithm stops when all vehicles have empty sets of feasible requests.

10.4 Real-World Implementation

We implemented the SVOU program for a sample of households in San Diego County, using

data from the 2000-2001 California statewide household travel survey (Casas, 2002). In this

survey, Caltrans collected travel data from 17049 volunteer households in California.

After cleaning the data by eliminating records with incomplete or contradicting information,

a total of 1184 households residing in the city of San Diego were remained. For these house-

holds, detailed information on the number of household members, the number of vehicles

190

owned by households, logged trips of each member during a working day along with the

purpose of each trip were available, among other information.

After cleaning the trip sets, we determined the set of essential trips for each household based

on the information on the purpose of trips. We categorized trips concerning work, school,

childcare, medical, fitness, community meetings, volunteer activities, visiting friends and

family, and entertainment activities as essential (core), and the rest of the trips as non-

essential. Among the 1184 households, 573 of them did not report any essential trips during

the survey day, and therefore were not considered for the shared use and ownership program.

These households, however, were taken into consideration for the car rental service to serve

their non-essential trips. The 1184 households made a total of 3306 trips, 1624 (49%) of

which were essential trips.

The first step in implementing the program is to cluster households. Each cluster should

include a number of households with enough commonalities that would interest them to

participate in the shared vehicle ownership and use program together. Various parameters

can be used to determine a suitable cluster for a household, including home location, demo-

graphics and social status of household members, level of spatiotemporal proximity of trips

between households, and income level, to name a few. In this study, we cluster households

at different levels and using different criteria. In sections 10.4.1 and 10.4.2 we study the

impact of clustering households based on the proximity of their home locations and the de-

gree of overlap between their trip sets, respectively. In section 10.4.3, we study two extreme

clustering approaches and estimate upper and lower bounds on the potential savings on the

number of vehicles and VMT in our sample.

191

Figure 10.4: Clusters of households. Households in each cluster are assumed to share own-
ership of a set of autonomous vehicles

10.4.1 Location-Based Clustering

In our first implementation, we use agglomerative clustering, an unsupervised learning

method, to group households based on their home location (Steinbach et al., 2000).

Figure 10.4 displays the resulting 277 clusters of households. These clusters are distinguished

by color based on the number of their household members. Figure 10.4 also displays the

distribution of number of households in clusters. About 80% of clusters have three or fewer

household members, which makes managing of shared vehicles an easier task. About 30%

of the households are geographically isolated from others, and therefore remain as singleton

clusters. Figure 10.4 also illustrates the Voronoi polygons attributed to clusters. These

polygons suggest to which cluster a prospective household looking to join the program would

belong based on its home location.

For each cluster, we solve the optimization problem (10.3) to find the optimal number of

vehicles required to cover the cluster’s set of essential trips. All problems are solved on a PC

192

Figure 10.5: Solution time (sec) of finding the optimal number of vehicles and vehicle
itineraries for each cluster size

with Core i7 3GHz and 8GB of RAM, using AMPL modeling language and CPLEX 12.6.00

solver with standard tuning. Solution times are displayed in Figure 10.5. Not surprisingly,

the solution times increase with cluster size; However, they remain within a reasonable range

for a problem that does not need to be solved in real-time.

The solution suggests that a total of 379 vehicles are required to serve all the essential trips

by all clusters (including the one-household clusters). Note that households are still in need

of transportation for their non-essential trips. Therefore, this number serves as a lower bound

to the total number of required vehicles.

Figure 10.6a shows the distribution of number of vehicles households owned in 2000. This

figure suggests that the majority of households owned at least 2 vehicles. Figure 10.6b shows

the distribution of minimum number of vehicles needed in the clusters, obtained from our

methodology. This figure shows that about 65% of clusters need no more than one vehicle

to serve their essential trips. No cluster needs more than 4 vehicles.

After forming clusters of households and routing the set autonomous vehicles owned by each

cluster to serve the cluster’s set of essential trips, we need to address the non-essential trips.

One possibility is to use a central car rental system that uses the idle autonomous vehicles

owned by clusters to serve non-essential trips of the entire population. The question is, what

percentage of the non-essential trips can be served by such a centralized system, and how

193

many additional vehicles need to be owned by the rental service provider to serve the entire

set of non-essential trips. Note that not only the 611 households who participate in the

SVOU program, but also the 573 households which did not report any essential trips need

to have their non-essential trips served.

Using Algorithm 3 to rent out the 379 autonomous vehicles owned by clusters with the goal

of serving as many non-essential trips as possible, we manage to serve 63 of the non-essential

trips. We then use a variation of Algorithm 3 to find the additional number of vehicles

the rental company needs to own in order to serve the remaining 37% of the non-essential

trips. We assume a yard for the rental service provider located strategically in the network

(marked with a star symbol in Figure 10.4) where there is a very high density of trip origin

and destination locations. We increment the number of vehicles one at a time, having each

vehicle start its trip from the yard, to which it returns at the end of the day. We assign trips

to each newly added vehicle using Algorithm 3 until all trips are served.

The results suggest that a total of 125 vehicles need to be owned and managed by the rental

service provider to serve the rest of the non-essential trips. All these vehicles, however, do

not have the same contribution in terms of the number of served trips. Figure 10.6c displays

the incremental percentage and number of trips served by each additional vehicle. This

figure suggests that using only 30 vehicles, the rental service provider can serve 75 of the

remaining non-essential trips. The remaining 95 vehicles each serve only 1 or 2 trips with

origins and/or destinations in remote areas. In fact, using cluster-owned vehicles in their

idle times, and owning 30 vehicles, the rental company can serve more than 90 of its demand

of non-essential trips.

Comparing the count of 504 vehicles that could serve the entire transportation demand

against the 2194 vehicles owned by households suggests that the shared ownership and use

program has the potential to have significant impacts on vehicle ownership.

194

(a) Frequency distribution of the
number of vehicles owned by
cluster members in year 2000

(b) Frequency distribution of the
number of autonomous vehicles
required for clusters under the
shared vehicle ownership and use
program

(c) Number of additional vehicles re-
quired to serve non-essential trips

Figure 10.6: Impact of the shared vehicle ownership and use program on vehicle ownership

The savings in the number of vehicles in the proposed system originate from three different

sources: (1) introduction of autonomous vehicles, (2) shared ownership of these vehicles, and

(3) ridesharing within clusters. It would be interesting to observe how much of the savings

can be attributed to each source. Toward this end, we consider two additional cases. In the

first case, we study the impact of households trading their current vehicles for the optimal

number of autonomous vehicles. In the second case, we allow households to form clusters in

order to share the ownership of vehicles. The third and most complete case considers the

shared ownership and shared use of vehicles among the members of each cluster, as suggested

by the SVOU program.

Table 10.1 summarizes the number of required vehicles, and the total and average vehicle

miles traveled (VMT) for each case. Note that for now we assume that there is parking

space available to vehicles when and where required. In case 1, where ordinary vehicles

are replaced with autonomous vehicles, a total of 787 vehicles need to be purchased by

the households in our sample. Not surprisingly, total and average VMT increase, since the

number of autonomous vehicles is substantially less than the number of ordinary vehicles. In

the second case, allowing shared ownership of autonomous vehicles leads to a 30% decrease

in vehicle ownership compared to case 1, although this decrease in the number of vehicles

195

Table 10.1: Impact of different elements of the shared ownership and use program on vehicle
ownership and vehicles miles traveled using distance-based clustering

Base Case: Case 1: Case 2: Case 3:
Year 2000 data Autonomous vehicles Autonomous vehicles Autonomous vehicles

+ Shared ownership + Shared ownership
+ Shared use

No. of vehicles 2,194 787 528 504
Total VMT 29,959 62,980 64,836 65,610
Average VMT 13.6 80 122 130

comes at the cost of a 50% increase in the average VMT for each vehicle. The increase in

total VMT, however, is not substantial. Finally, in the third case where shared ownership

and use of autonomous vehicles is studied, an additional 5% decrease in vehicle ownership

compared to case 2 can be witnessed, accompanied by a slight increase in both total and

average VMT.

10.4.2 Clustering Based on Trip Overlap

An alternative way of clustering households in based on the overlap between household trips.

For each household pair, we compute the degree of compatibility between their trips. For a

given pair of households h1 and h2, we define an n1 × n2 matrix, where n1 and n2 denote

the number of essential trips by the two households, respectively. Each cell cij in this matrix

takes the value of 1 if trips i and j can be fulfilled using the same vehicle, i.e., either one

of the two following conditions holds: (1) the vehicle can fulfill the trips sequentially (fulfill

the first trips, drive to pick up the passenger for the second trip and fulfill the second trip),

or (2) the driver can fulfill the trips concurrently (perform the pick-up task for the both

trips, followed by performing the drop-off task for the two trips). If neither of these two

conditions is satisfied, the cell cij will be assigned the value of 0, implying that the two trips

are incompatible. The summation of all elements in matrix c is what we define as the degree

of compatibility between households h1and h2. We use agglomerative clustering based on

the degree of compatibility between households to group households into 261 clusters.

196

A total of 340 autonomous vehicles are required to serve the essential trips of the 261 clusters.

Figures 10.7a and 10.7b compare the distribution of vehicles owned by households before

and after implementing the shared ownership and use program. It is interesting to note

that more than half of the clusters need only one autonomous vehicle, whereas in year 2000

data the majority of clusters own four or more vehicles. Figures 10.7c and 10.7d display

the distribution of number of households in clusters, and the solution times to optimize the

itineraries in clusters, respectively. Similar to the distance-based clustering, the solution

times remain within a reasonable range.

During their idle times, essential vehicles managed by the rental service provider can serve

57% of the non-essential trips of the entire population. The company needs to own 128

additional vehicles to serve the remaining 43% of the non-essential trips. Figure 10.7e shows

the contribution of each additional vehicle to serving the remainder of non-essential trips.

This figure suggests that although 128 vehicles are required to cover the entire set of non-

essential trips, the first 27 vehicles can serve more than 70% of the remaining set of non-

essential trips, and around 90% of the entire set of non-essential trips.

Similar to the previous section, we study the impact of each component of the shared own-

ership and use program on vehicle ownership and VMT. Results are displayed in table 10.2.

The same decreasing trend in vehicle ownership that was observed in distance-based clus-

tering can be witnessed in trip-overlap clustering as we move from case 1 to case 3. For

each case, however, the total number of vehicles in trip-overlap clustering is less than that

of distance-based clustering. This is an intuitive finding, since in trip-overlap clustering

we are grouping households whose trips have higher degrees of compatibility, and therefore

can be served using fewer vehicles. Fewer vehicles translates into higher total and average

VMT. One interesting observation is that in case 3 where we allow households in a cluster

to rideshare, the total and average VMT are less than case 2 in which ridesharing is not

allowed. In distance-based clustering, adding the ridesharing capability slightly increased

197

(a) Histogram of number of ve-
hicles currently owned by cluster
members

(b) Histogram of optimized num-
ber of autonomous vehicles re-
quired for clusters

(c) Histogram of optimized num-
ber of autonomous vehicles re-
quired for clusters

(d) Solution time (sec) of finding the
optimal number of vehicles and vehicle
itineraries for each cluster size

(e) Number of additional vehicles required
to serve the entire set of non-essential trips

Figure 10.7: Impact of the shared ownership and use program on vehicle ownership

198

Table 10.2: Impact of different elements of the shared ownership and use program on vehicle
ownership and vehicles miles traveled using trip overlaps for clustering

Base Case: Case 1: Case 2: Case 3:
Year 2000 data Autonomous vehicles Autonomous vehicles Autonomous vehicles

+ Shared ownership + Shared ownership
+ Shared use

No. of vehicles 2,194 787 497 468
Total VMT 29,959 62,980 102,790 73,841
Average VMT 13.6 80 207 158

the total and average VMT.

10.4.3 Level of Clustering

In sections 10.4.1 and 10.4.2 we studied the impact of clustering households based on two

different criteria. In this section, we present two additional and more extreme clustering

approaches to provide some bounds on the impact of shared vehicle ownership and use

program for our sample of households. Results are displayed in table 10.3.

The first extreme approach is to conduct no clustering at all, and assume each households

as a singleton cluster. Our sample includes a total of 611 households with non-empty sets

of essential trips. Our analysis shows that these households need 678 vehicles to cover their

essential trips. To satisfy the non-essential trips of all 1184 households in our data set, The

car rental service provider needs to own 109 separate vehicles in addition to having access

to shared vehicles during their idle times.

By simply replacing ordinary vehicles by the optimal number of autonomous vehicles, the

total number of vehicles owned by the entire sample reduces from 2194 to 787. This 2.8

fold reduction in the number of vehicles, however, comes with higher VMT for vehicles,

as discussed in the previous section. The amount of increase in VMT, however, depends

highly on the availability of parking. Here, we discuss two extreme scenarios on parking

availability. In the first scenario, parking is available when and where required, and in the

199

second scenario, there is no parking available, i.e. vehicles have to drive around until it is

time for their next pick-up job. In the latter scenario, the unavailability of parking is not

limited to physical availability, but the affordability of the available parking spaces as well.

If parking is priced highly, it might be a financially wiser alternative for vehicles to drive

around.

Our analysis shows that the availability and affordability of parking space have substantial

impact on the total VMT. For the households in our sample, we find a 5-fold increase in the

total and average VMT when there is not access to affordable parking. This result, however,

is obtained under the assumption that introduction of autonomous vehicles does not change

households’ travel patterns.

In the second extreme case, we group all households into a single cluster. In this case, a

total of 258 vehicles would suffice to serve all trip requests, which is a 3-fold reduction in

the number of vehicles compared to the first extreme case, where each household formed a

separate cluster. An interesting observation is that even under the assumption of unavail-

ability of affordable parking, this case leads to substantial savings in the total VMT. This

observation has two implications. First, as the number of households participating in the

program and hence the average cluster size increases, the impact of parking availability be-

comes less prominent. Second, the substantial reduction in VMT along with a decrease in

the number of vehicles observed under the single-cluster scenario demonstrate the significant

benefits that the marriage of ridesharing services and autonomous vehicles can provide in

transportation systems.

Our two realistic clustering approaches from sections 10.4.1 and 10.4.2 lie between the two

extreme cases studied above. Although the difference between the distance-based and trip

overlap-based clustering is not substantial, we expect the benefits of clustering households

based on trip overlap to become more prominent with higher participation rates.

200

Table 10.3: Impact of level of clustering and parking availability of vehicle ownership and
VMT

Clustering method
Household-based Geographical Trip Single
(no clustering) distance overlap cluster

No. of clusters 611 277 261 1
Avg. cluster size 1 2.21 2.34 1184
Min no. of autonomous vehicles owned by clusters 678 379 340 258
Percentage of non-essential trips covered 63% 63% 57% 100%
Additional no. of vehicles required 109 125 128 0
Total number of vehicles 787 504 468 258
Parking not available:
Optimized total VMT 335,640 305,800 286,060 158,020
Current avg. VMT 13.6 13.6 13.6 13.6
Optimized avg. VMT/shared vehicle 450 715 734 612
Optimized avg. VMT/additional vehicle 278 278 286 0
Optimized avg. VMT/vehicle 426 607 611 612
Parking available when and where desired:
Optimized total VMT 62,980 65,610 73,841 76,134
Optimized avg. VMT/shared vehicle 73 134 174 295
Optimized avg. VMT/additional vehicle 121 119 115 0
Optimized avg. VMT/vehicle 80 130 158 295

Among the clustering approaches discussed above, the last scenario which considers a single

cluster renders the most benefits. In this scenario, a regional shared-mobility service provider

owns and manages a fleet of autonomous vehicles that serves the entire transportation needs

of a region. We can, in fact, expect this type of shared-mobility service to emerge before

autonomous vehicles are offered for private ownership, for two reasons. First, in order for

autonomous vehicles to be ready for consumer use, adequately-detail maps of the entire

United States road network need to be collected. The type of maps required for this purpose

need to include far more details than currently contained in street maps maintained by

Google and the like. To have fleets of autonomous vehicles operate in certain urban regions

would require far less efforts to collect street data on the targeted areas. Second, a fleet of

autonomous vehicles used in a shared-mobility context in populous areas would have very

high utilization rate, which amounts to very low cost to the consumer. High demand makes

such shared-mobility services less sensitive to the high cost of autonomous technology, and

the inexpensive transportation alternative provided to the consumers may render vehicle

ownership in certain urban regions obsolete.

201

This type of regional shared-mobility service, however, might not be accessible or attrac-

tive to everyone. It might not be a financially feasible strategy for shared-mobility service

providers to target households who reside in remote areas. In addition, there will always be

individuals who would like to ensure their privacy, flexibility, or timeliness by owning private

vehicles. Such individuals would seek other clustering approaches, or at extreme case, form

individual clusters.

10.5 Discussion

Throughout this chapter, we made the assumption that the introduction of autonomous

vehicles does not impact household travel behavior. However, autonomous vehicles can

change household travel patterns in multiple ways. Having access to a new technology

that allows individuals to make use of their time while traveling can encourage longer trips

that would have otherwise been avoided due to the burden of driving. Moreover, access to

autonomous vehicles could induce higher number of trips. With self-driving vehicles, trip

chaining (which is currently a necessity to many households) would not be as essential. Self-

driving cars can transport household members without a valid driver’s license and perform

activities such as parking or refueling, making current trip chains smaller, changing travel

patterns, and increasing the number of trips. Longer and more frequent trips impose higher

costs on the transportation infrastructure, and can cancel out some of the benefits that

autonomous cars introduce by reducing the number of vehicles.

The results of our study implies that availability of affordable parking is a major determinant

of the total VMT and the consequent cost to the transportation infrastructure and the

environment. We showed, however, that this impact depends on the degree and type of

clustering. With the right type of clustering and larger cluster sizes, total VMT stays within

a reasonable range. In the best case scenario where a central shared-mobility service provider

202

serves the entire transportation demand of a region, the change in the VMT becomes close

to non-existent.

In spite of a possible increase in VMT, autonomous vehicles will significantly reduce the

adverse impact of transportation on the environment by targeting two main sources of emis-

sion dissemination. Autonomous vehicles can reduce the number of vehicles required by

orders of magnitude, as demonstrated in this study. In addition, these vehicles significantly

increase network capacity, as we will discuss next. The combination of these two factors

can reduce, and in some regions completely eliminate, the stop-and-go conditions that are a

major contributor to vehicle emissions.

In addition to fewer vehicles, autonomous vehicles can further contribute to congestion-relief

due to their ability to communicate. Tientrakool (2011) shows that a highway populated with

a mix of autonomous and ordinary vehicles can experience substantial increase in capacity

depending on the percentage of communicating vehicles in the traffic mix. Her study suggests

that when less than 30% of the traffic mix can communicate, the resulting rate of change

of capacity is rather slow. With penetration rate of 30% − 85% the rate of change of

improvement in capacity increases, and when the percentage of communicating vehicles in

the traffic mix exceeds 85%, the resulting rate of change of increase in capacity improves

very quickly, to the extent that at the 100% penetration rate, the capacity reaches more

than 10, 000 vehicles/hours/lane. The increase in capacity is caused by lower inter-vehicle

gaps that need to be maintained. These findings further highlight the positive impacts of

having a centralized shared-mobility service provider in populous urban areas.

Autonomous vehicles eliminate the possibility of human error, which is the leading cause for

the majority of traffic collision fatalities. An autonomous driver will never get distracted,

fall asleep, or drive under the influence. Furthermore, autonomous vehicles can make split-

second decisions based on probabilistic models fed by far more complete information than

a human driver can have access to, while a human driver needs to take longer to make a

203

decision based on in-complete information. As the percentage of autonomous vehicles in the

traffic mix increases, so does the level of safety as the network becomes more deterministic.

This is another benefit that can be experienced with implementation of a centralized shared-

mobility system.

To conclude, although change in travel patterns and increase in VMT under certain condi-

tions may lead to higher costs to the transportation system, the many benefits of autonomous

vehicles described in this chapter more than outweigh the possible downfalls. Furthermore,

higher contribution rates in the SVOU program would exponentially increase the benefits.

Note that the sample we used for this study contained only 0.1% of the population, which

is far less than the participation rate expected for such services. Despite the small sample

size, we showed that in the case of a central shared-mobility service provider we can achieve

10-fold reductions in the number of vehicles. These results push the previous bounds sug-

gested by autonomous taxi studies that have estimated a 6-10 fold reduction in the number

of vehicles. Much of the the higher success rate of the SVOU program proposes in this

chapter can be attributed to its “shared use” component.

Finally, introduction of autonomous vehicles in the traffic mix may call for some policy

adjustments to reduce the possible adverse impacts of this new technology. Our study points

out that parking availability and cost play important roles on the potential environmental and

congestion-relief benefits expected from autonomous vehicles. A grid-lock for an autonomous

vehicle that is traveling with no purpose is equivalent to free parking. The temptation to drive

around when idle becomes more strong with alternative-fuel autonomous vehicles. Under

current regulations, roads and highways are funded by gas tax, and therefore the only driving

related cost alternative-fuel autonomous vehicles would have to bear is the depression cost

associated with higher VMT. To avoid such behavior, changing from gas-based to VMT-

based tax might be a necessary policy adjustment.

204

Chapter 11

Conclusion

This dissertation introduces a mathematical framework for modeling the problem of matching

riders and drivers in a peer-to-peer (P2P) ridesharing system under uncertainty for trip

requests. The focus is on the most general form of ride-matching, namely many-to-many

matching in which each driver can carry multiple riders at each point in time, and each

rider can transfer between multiple vehicles, although more efficient algorithms for more

restrictive forms of ride-matching are also provided. The contributions of this dissertation

are primarily methodological. However, multiple numerical experiments and case studies

provide insights on successful implementation strategies of ridesharing systems that can be

useful to decision makers.

To mathematically model the problem, we discretize the network into a set of stations. These

are pre-specified locations where individuals can start and end their trips, and riders can

transfer between vehicles. In addition, we discretize the study time horizon into small time

periods and formulate the problem of P2P ride-matching on a time-expanded network, where

a node is defined as a tuple of time period and station. The ride-matching problem on a

time-expanded network is in fact an integer (binary) flow optimization problem. The basic

205

formulation is quite efficient and powerful, and its variants can be used for a wide variety of

problems of the future.

To model a P2P ridesharing system, we adopt a rolling time-horizon approach, where the

system is re-optimized periodically at pre-specified re-optimization times. This modeling

approach allows us to increase the performance and reliability of the system by incorporating

the data on the most recent trip requests and travel times in the decision making process.

At each re-optimization time, the system solves a stochastic ride-matching problem. This

problem includes stochastic requests that are not registered, but predicted to arrive during

the first re-optimization period, and deterministic trips registered in advance to occur during

the next few re-optimization periods. The solution to this problem provides itineraries for

the deterministic riders and drivers, as well as contingency plans on drivers’ routes in case

the predicted trip requests turn into registered trips.

A decomposition algorithm is proposed to solve the deterministic many-to-many matching

problem, by means of iteratively solving smaller sub-problems. This decomposition algorithm

can be used to efficiently generate a set of scenarios required to solve the deterministic re-

formulation of the stochastic problem.

The deterministic re-formulation of the stochastic program can be solved using an L-shaped

decomposition, where sub-problems are always feasible. The feasibility of sub-problems

makes it possible to continuously improve the solution through iterations, and have a high-

quality solution in case the algorithm needs to be stopped prematurely due to the real-time

nature of the problem. Furthermore, due to the fact that sub-problems in each iteration of

the L-shaped decomposition are independent of each other, it is possible to speed up the

solution process by implementing parallel computations, and overcome the burden of solving

a large-scale problem by distributing the computations among the users’ mobile devices.

Although solving a stochastic problem allows the system to take into consideration trip

206

requests that may arrive at the system at some later point in time, there could still be real-

time requests that cannot be successfully predicted. Such real-time requests can be served

using the many-to-one dynamic programming algorithm proposed in this dissertation.

Transportation systems in general serve requests on a first-come first-served basis. Whether

it is due to lack of computational resources, the real-time nature of requests, or the quest to

be “fair”, this pre-specified order of serving requests does not allow the system to realize its

full potential in terms of the number of served requests. In this dissertation, we propose what

we call “P2P ride exchange”, a bi-lateral trade mechanism that allows previously matched

riders to sell their itineraries to un-matched riders, in exchange for a less attractive itinerary,

and a monetary compensation. Our numerical experiments suggest that this mechanism can

improve the matching rate by up to 15%.

The large variety of numerical experiments simulating the deterministic and stochastic

ridesharing systems that are presented in this dissertation have provided interesting insights

on the behavior of such systems under different circumstances, and the insights therein can

potentially lead to efficient design considerations in future practical implementations.

No matter the matching method, if riders and drivers are assumed to form two mutually

exclusive sets, the matching rates are maximized when the number of riders and drivers are

about the same. However, under a more realistic scenario where individuals initially join

the system as riders and switch to taking a driver’s role only if they cannot be successfully

matched as riders, the highest matching rates are obtained under the highest ratio of riders.

This observation has strong policy implications, suggesting that providing incentives for

individuals to participate in a ridesharing system initially as riders gives the system a higher

chance of reaching a critical matching rate required for sustainable operations.

The multi-hop property of the proposed algorithms allows for them to be used in multi-modal

settings. This capability was put into play in a case study in Los Angeles County, where

207

P2P ridesharing was used to feed the LA metro red line, under the assumption of real-time

trip request arrivals. This study demonstrates the scalability of the dynamic programming

algorithm proposed in this dissertation, and provides insights on the performance of the

system under different levels of supply. Although it might seem counter-intuitive in the first

glance, for a fixed number of trip requests, there is an optimal range for the number of drivers

that leads to the highest performance levels. Going beyond this range does not improve the

matching rate, but deteriorates sustainability-related indices such as vehicles miles traveled.

The Los Angeles case study also provides insights on the pricing of ridesharing systems, and

demonstrates how appropriate pricing levels could vary from region to region depending on

the residents’ financial welfare and their values of time. Furthermore, this study investigates

under what levels of fares a ridesharing system can be budget-balanced, and operate without

need for subsidies.

Finally, this dissertation explores the impact of shared autonomous mobility on private

vehicle ownership and the transportation infrastructure, and makes recommendations on the

policy and land-use adjustments that should be rigorously studied to provide the foundation

for seamless transition to autonomous technology.

Studying the impact of implementing a shared ownership and ridership program in the San

Diego county suggests that self-driving vehicles can introduce a much more flexible and

inexpensive form of shared-mobility in certain populous regions, rendering vehicle ownership

and public transit in its current form in such regions obsolete. For other areas with less

dense populations, replacing ordinary vehicles with autonomous cars, especially under a

shared ownership program, can still introduce benefits in terms of vehicle ownership. Our

study also suggests that the extent of environmental and congestion-relief benefits expected

from autonomous vehicles depend on some operational and deployment strategies, such as

availability of affordable parking.

208

In conclusion, the research developed a framework for rideshare systems that is sound in its

theoretical foundations and formulations, as well as efficient in the algorithmic implementa-

tions, and demonstrated through numerical studies the possibilities for its use. It is hoped

that this framework will be of use in future for transforming the current state of urban travel

towards a better world with much fewer empty seats traveling in vehicles, the goal behind

this research effort.

209

Bibliography

Abou-Zeid, M., M. Ben-Akiva, M. Bierlaire, C. Choudhury, and S. Hess (2010). Attitudes
and value of time heterogeneity. Applied Transport Economics-A Management and Policy
Perspective. De Boeck Publishing , 523–545.

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang (2009). Sustainable passenger trans-
portation: Dynamic ride-sharing. ERIM Report Series Reference No. ERS-2010-010-LIS .

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang (2012). Optimization for dynamic ride-
sharing: A review. European Journal of Operational Research 223 (2), 295–303.

Agatz, N., A. L. Erera, M. W. Savelsbergh, and X. Wang (2011). Dynamic ride-sharing: A
simulation study in metro Atlanta. Transportation Research Part B: Methodological 45 (9),
1450 – 1464.

Baldacci, R., M. Vittorio, and M. Aristide (2004). An exact method for the car pooling
problem based on lagrangean column generation. Operations Research 52 (3), pp. 422–
439.

Böckmann, M. (2013). The shared economy: It is time to start caring about sharing; value
creating factors in the shared economy. University of Twente, Faculty of Management and
Governance.

Braekers, K., A. Caris, and G. K. Janssens (2014). Exact and meta-heuristic approach for a
general heterogeneous dial-a-ride problem with multiple depots. Transportation Research
Part B: Methodological 67 (0), 166 – 186.

Business Insider (2015). Uber Just Released Its First Report On Its Drivers Here Are
The Numbers. Internet: http://www.businessinsider.com/uber-driver-data-report-2015-1.
Accessed: 2015-06-20.

Carnes, T. A., S. G. Henderson, D. B. Shmoys, M. Ahghari, and R. D. MacDonald (2013).
Mathematical programming guides air-ambulance routing at Ornge. Interfaces 43 (3),
232–239.

Carson, B. (2016). Report: Uber was on track to top $ 1.5 billion in revenue last year. http:
//www.businessinsider.com/report-uber-15-billion-revenue-in-2015-2016-1.
Accessed 6/29/2016.

210

http://www.businessinsider.com/report-uber-15-billion-revenue-in-2015-2016-1
http://www.businessinsider.com/report-uber-15-billion-revenue-in-2015-2016-1

Casas, J. (2002). 2001 california statewide household travel survey final report. California
Department of Transportation.

Cheng, T. E., Q. Ding, and B. M. Lin (2004). A concise survey of scheduling with time-
dependent processing times. European Journal of Operational Research 152 (1), 1–13.

Coltin, B. and M. Veloso (2014). Ridesharing with passenger transfers. In Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 3278–3283.
IEEE.

Cordeau, J.-F. and G. Laporte (2007a). The dial-a-ride problem: models and algorithms.
Annals of Operations Research 153 (1), 29–46.

Cordeau, J.-F. and G. Laporte (2007b). The dial-a-ride problem: models and algorithms.
Annals of Operations Research 153 (1), 29–46.

Cortés, C. and R. Jayakrishnan (2002). Design and operational concepts of high-coverage
point-to-point transit system. Transportation Research Record: Journal of the Transporta-
tion Research Board (1783), 178–187.

Cortés, C. E., M. Matamala, and C. Contardo (2010). The pickup and delivery problem
with transfers: Formulation and a branch-and-cut solution method. European Journal of
Operational Research 200 (3), 711–724.

Curvy Road (2000). http://www.curvyroad.com. Accessed July 22, 2015.

Dailey, D., D. Loseff, and D. Meyers (1999). Seattle smart traveler: dynamic ridematching
on the world wide web. Transportation Research Part C: Emerging Technologies 7 (1),
17–32.

Di Febbraro, A., E. Gattorna, and N. Sacco (2013). Optimizing dynamic ride-sharing sys-
tems. Presented in the TRB 2013 annual meeting .

Dusan, T. and D. Mauro (2005). Bee colony optimization–a cooperative learning approach
to complex transportation problems. In Advanced OR and AI Methods in Transportation:
Proceedings of 16th Mini–EURO Conference and 10th Meeting of EWGT (13-16 September
2005).–Poznan: Publishing House of the Polish Operational and System Research, pp. 51–
60.

Fagnant, D. J. and K. M. Kockelman (2014). The travel and environmental implications of
shared autonomous vehicles, using agent-based model scenarios. Transportation Research
Part C: Emerging Technologies 40, 1–13.

Furuhata, M., K. Daniel, S. Koenig, F. Ordonez, M. Dessouky, M.-E. Brunet, L. Cohen, and
X. Wang (2015). Online cost-sharing mechanism design for demand-responsive transport
systems. Intelligent Transportation Systems, IEEE Transactions on 16 (2), 692–707.

Furuhata, M., M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang, and S. Koenig (2013).
Ridesharing: The state-of-the-art and future directions. Transportation Research Part B:
Methodological 57, 28–46.

211

Gabrel, V. (1995). Scheduling jobs within time windows on identical parallel machines: New
model and algorithms. European Journal of Operational Research 83 (2), 320–329.

Ghoseiri, K. (2013). Dynamic rideshare optimized matching problem. Ph.D. Dissertation at
University of Maryland .

Giuliano, G., R. Hall, and J. Golob (1995). Los angeles smart traveler field operational test
evaluation.

Hagerty, K. M. and W. P. Rogerson (1987). Robust trading mechanisms. Journal of Eco-
nomic Theory 42 (1), 94–107.

Hall, N. G. and C. Sriskandarajah (1996). A survey of machine scheduling problems with
blocking and no-wait in process. Operations research 44 (3), 510–525.

Haselkorn, M., J. Spyridakis, C. Blumenthal, S. Michalak, B. Goble, and M. Garner (1995).
Bellevue smart traveler: Design, demonstration, and assessment. final technical report.
Technical report.

Heinrich, S. (2010). Implementing real-time ridesharing in the san francisco bay area. Ph.D.
Dissertation at San Jose State University .

Herbawi, W. and M. Weber (2011a). Ant colony vs. genetic multiobjective route planning in
dynamic multi-hop ridesharing. in Tools with Artificial Intelligence (ICTAI), 2011 IEEE
Conference.

Herbawi, W. and M. Weber (2011b). Comparison of multiobjective evolutionary algorithm
for solving the multiobjective route planning in dynamic multi-hop ridesharing. Pro-
ceedings of the 11th European conference on Evolutionary computation in combinatorial
optimization, Torino, Italy , 84–95.

Herbawi, W. and M. Weber (2012). A genetic and insertion heuristic algorithm for solving
the dynamic ridematching problem with time windows. In Proceedings of the fourteenth
international conference on Genetic and evolutionary computation conference.

Hosni, H., J. Naoum-Sawaya, and H. Artail (2014). The shared-taxi problem: Formulation
and solution methods. Transportation Research Part B: Methodological 70, 303–318.

Jaw, J.-J., A. R. Odoni, H. N. Psaraftis, and N. H. Wilson (1986). A heuristic algorithm for
the multi-vehicle advance request dial-a-ride problem with time windows. Transportation
Research Part B: Methodological 20 (3), 243 – 257.

k. Naughton (2015). Driverless, shared cars to cut vehicle ownership by half: Barclays.
Accessed Oct. 6, 2015.

Kleiner, A., B. Nebel, and V. Ziparo (2011). A mechanism for dynamic ride sharing based
on parallel auctions.

212

Kowshik, R., J. Gard, J. Loo, P. P. Jovanis, and R. Kitamura (1993). Development of user
needs and functional requirements for a real-time ridesharing system. California Partners
for Advanced Transit and Highways (PATH).

Levofsky, A. and A. Greenberg (2001). Organized dynamic ride sharing: The potential
environmental benefits and the opportunity for advancing the concept. In Transportation
Research Board 2001 Annual Meeting, pp. 7–11.

Li, X. and L. Quadrifoglio (2010). Feeder transit services: choosing between fixed and
demand responsive policy. Transportation Research Part C: Emerging Technologies 18 (5),
770–780.

Liaw, C.-F., C. C. White, and J. Bander (1996). A decision support system for the bimodal
dial-a-ride problem. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on 26 (5), 552–565.

Mas-Colell, A., M. D. Whinston, J. R. Green, et al. (1995). Microeconomic theory, Volume 1.
Oxford university press New York.

Masson, R., F. Lehuédé, and O. Péton (2014a). The dial-a-ride problem with transfers.
Computers & Operations Research 41 (0), 12 – 23.

Masson, R., A. Trentini, F. Lehuédé, N. Malhéné, O. Péton, and H. Tlahig (2014b). Opti-
mization of a city logistics transportation system with mixed passengers and goods. EURO
Journal on Transportation and Logistics , 1–29.

Myerson, R. B. and M. A. Satterthwaite (1983). Efficient mechanisms for bilateral trading.
Journal of economic theory 29 (2), 265–281.

Nelson Nygaard Consulting Associates and RideNow Inc (2006). Ridenow evaluation draft
final report. In Prepared for the Alameda County Congestion Management Agency.

Nisan, N. and A. Ronen (1999). Algorithmic mechanism design. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pp. 129–140. ACM.

O’Sullivan, S. (2011). Case study in real-time ridesharing: Sr 520 carpooling pilot project,
seattle, wa. In 18th ITS World Congress.

Psaraftis, H. N. (1983). An exact algorithm for the single vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science 17 (3), 351–357.

Qiu, F., W. Li, and J. Zhang (2014). A dynamic station strategy to improve the performance
of flex-route transit services. Transportation Research Part C: Emerging Technologies 48,
229–240.

Quadrifoglio, L., M. M. Dessouky, and F. Ordóñez (2008). Mobility allowance shuttle transit
(mast) services: Mip formulation and strengthening with logic constraints. European
Journal of Operational Research 185 (2), 481–494.

213

Rabadi, G., R. J. Moraga, and A. Al-Salem (2006). Heuristics for the unrelated parallel
machine scheduling problem with setup times. Journal of Intelligent Manufacturing 17 (1),
85–97.

RTrip (2013). Avego go520 is new and improved. http://www.gortripblog.com/2011/07/
avego-go520-is-new-and-improved/. Accessed: April 2013.

Savelsbergh, M. W. P. and M. Sol (1995). The general pickup and delivery problem. Trans-
portation Science 29 (1), 17–29.

Schall, E. (2015). The future of car ownership and autonomous driving. Accessed Aug. 1
2015.

Schaub, T., G. Friedrich, and B. O’Sullivan (2014). ECAI 2014: 21st European Conference
on Artificial Intelligence, Volume 263. IOS Press.

Schaub, T., F. Gerhard, and O. Barry (2014). ECAI 2014: 21st European Conference on
Artificial Intelligence, Volume 263. IOS Press.

Schoettle, B. and M. Sivak (2015). Potential impact of self-driving vehicles on household
vehicle demand and usage.

Shaheen, S. and N. Chan (2015). Mobility and the sharing economy: Impacts Synopsis.
Technical report, TRANSPORTATION SUSTAINABILITY RESEARCH CENTER, Uni-
versity of California Berkeley.

Stein, D. M. (1978). Scheduling dial-a-ride transportation systems. Transportation Sci-
ence 12 (3), 232–249.

Steinbach, M., G. Karypis, V. Kumar, et al. (2000). A comparison of document clustering
techniques. In KDD workshop on text mining, Volume 400, pp. 525–526. Boston.

Stiglic, M., N. Agatz, M. Savelsbergh, and M. Gradisar (2015). The benefits of meeting
points in ride-sharing systems. ERIM Report Series Reference No. ERS-2015-003-LIS .

Teodorović, D. and M. Dell’Orco (2005). Bee colony optimization–a cooperative learning
approach to complex transportation problems. In Advanced OR and AI Methods in Trans-
portation: Proceedings of 16th Mini–EURO Conference and 10th Meeting of EWGT (13-
16 September 2005).–Poznan: Publishing House of the Polish Operational and System
Research, pp. 51–60.

Tientrakool, P. (2011). Reliable Neighborcast Protocol for Vehicular Ad hoc Networks. Ph.
D. thesis, Columbia University.

UCC (2013). Avego to launch world’s first commuter service in
cork. http://collegenews.ie/index.php/1601/express/express-news/

avego-to-launch-world-first-commuter-service-in-cork/. Accessed: April
2013.

214

http://www.gortripblog.com/2011/07/avego-go520-is-new-and-improved/
http://www.gortripblog.com/2011/07/avego-go520-is-new-and-improved/
http://collegenews.ie/index.php/1601/express/express-news/avego-to-launch-world-first-commuter-service-in-cork/
http://collegenews.ie/index.php/1601/express/express-news/avego-to-launch-world-first-commuter-service-in-cork/

U.S. Department of Transportation, F. H. A. (2009). Ridesharing in north america: Past,
present, and future. pp. 2.

Wang, X. (2013). Optimizing ride matches for dynamic ride-sharing systems.

Wego rideshare (2013). Avego go520 is new and improved. http://wegorideshare.com/.
Accessed: April 2013.

Wolfler Calvo, R., F. de Luigi, P. Haastrup, and V. Maniezzo (2004). A distributed geo-
graphic information system for the daily car pooling problem. Computers & Operations
Research 31 (13), 2263 – 2278.

Yamashita, T. (2015). Implementation in weakly undominated strategies: Optimality of
second-price auction and posted-price mechanism. The Review of Economic Studies ,
rdv018.

215

http://wegorideshare.com/

Appendices

A Proof of Proposition

Proposition 2. Number of connections for rider r can be calculated using term
∑

d∈D u
d
r−1.

Proof. If driver d carries rider r on any link, then udr = 1. So
∑

d∈D u
d
r − 1 yields the number

of connections, only if a driver does not pick up a rider multiple times. Without loss of

generality, we use the example in Figure A.1 to show by contradiction that such a situation

cannot happen. Figure A.1 shows a rider’s itinerary. On the first and third links, the rider

is traveling with d1, and on the second link, he/she is traveling with d2. If d1 travels on

both `1 and `3, at some point d1 must have traveled from node 2 to node 3, and the rider

could have accompanied him on that ride too, reducing the number of connections from 2 to

0. The term −Wr

∑
udr in the maximization objective function ensures that the route with

zero connections is selected as the optimal solution. Alternatively, one could leave out this

term from the objective function, and use post-processing to refine the solution.

Figure A.1: An undesirable match

216

B Proof of Proposition

Proposition 3. Constraint sets (4.5k) and (4.5l) register all drivers who collectively form

each rider’s itinerary.

Proof. From constraint set (4.5k) we have udr ≥ yrd` . If yrd` = 1, udr is forced to be 1. If

yrdl = 0, udr can take either 0 or 1. Constraint set (4.5l) ensures that in the latter case, udr

takes its lower bound.

C Decomposition Algorithm

We start the algorithm by setting the iteration counter (i) to 1, and the sub-problem counter

(k) to 0. Each rider forms a new sub-problem in the first iteration of the algorithm, and the

type of all sub-problems is set as active. In Algorithm C, Rk
i denotes the set of riders in sub-

problem k of iteration i, and SPi denotes the set of sub-problems in iteration i. Active(k)

indicates whether the type of sub-problem k is active (1) or not (0).

The second step of the algorithm involves solving the set of active sub-problems in the current

iteration. We keep in set Dk
i all matched drivers in sub-problem k of iteration i, and in set

Di all drivers who have been matched in iteration i. Furthermore, we use sets Yi,k, X
d
i,k, and

Zr
i,k to keep a track of the itineraries of all riders, driver d (∀d ∈ D), and whether rider r

(∀r ∈ R) has been matched in sub-problem k of iteration i, respectively.

In step 3 we check the stopping criterion of the algorithm. If each driver receives the same

itinerary under all sub-problems, then the union of solutions to the sub-problems will yield

the optimal solution to the original optimization problem (X∗).

217

Algorithm C The decomposition algorithm
Step 1. Initialize
i← 1
k ← 0
For each rider r ∈ R

k ← k + 1.
Set Rk

i = {r}.
Set SPi = {1, ..., |R|}.
Set Active(k)← 1.

End For
Step 2. Solve the (active) sub-problems
For each sub-problem k ∈ SPi for which Active(k) = 1

Solve sub-problem k.
Let Dk

i = {d ∈ D |
∑

r∈Rki ,`∈Lrd
yrd∗` ≥ 1}.

Let Di =
⋃
k∈SPi D

k
i .

Let Yi,k =
(
yrd∗`

)
r∈Rki ,d∈Dki ,`∈Lrd

.

Let Xd
i,k =

(
xd∗`
)
`∈Ld

, ∀d ∈ Dk
i .

Let Zr
i,k = z∗r , ∀r ∈ Rk

i .
End For
Step 3. Termination Criterion
For each driver d ∈ Di

Terminate(d)← 0.
If Xd

i,m = Xd
i,n for all (m,n) ∈ Dm

i ×Dn
i

Terminate(d)← 1.
End IF

End For
If
∑

d∈Di Terminate(d) = |D| then
Stop.
X∗ = Uk∈SPi

(
Yi,j,∪d∈DXd

i,k,∪r∈RZr
i,k

)
.

Else
Continue to Step 4.

End If

If the algorithm does not terminate in step 3, we move forward to step 4 to form the set of

sub-problems for the next iteration. We start step 4 by defining set R′ to include all riders

that need to be allocated to sub-problems in the new iteration, and initialize it with R. Next,

we go through the list of matched drivers in the previous iteration (in no particular order).

For each driver, we find the riders in set R′ that have the driver on their itinerary. These

riders (if belonging to different sub-problems) will from a new sub-problem in the current

218

iteration, and are removed from set R′. We mark all such sub-problems k as applicable by

setting Applicable(k)← 1.

At this point, there could still be riders that do not belong to any sub-problems in the new

iteration. Next, we go through the sub-problems from the previous iteration one by one. For

a given sub-problem j from the previous iteration, we find all riders r who do not belong to

any sub-problems in the current iteration (i.e. r ∈ R′). If such riders exist, they will from

a new sub-problem in the current iteration. If it turns out that we are importing an entire

sub-problem from the previous iteration to the current iteration, then this sub-problem does

not need to be solved again, and so we set the applicability indicator of the sub-problem

to zero. Otherwise, if we are importing only a part of a sub-problem from the previous

iteration as a new sub-problem to the current iteration, then the solution from the previous

iteration is not necessarily optimal anymore, and so we set the applicability indicator of the

new sub-problem to 1.

219

Algorithm C (continued) The decomposition algorithm
Step 4. Form the set of sub-problems for the next iteration
i← i+ 1
k ← 0
Let R′ = R.
For each driver d ∈ Di−1 such that there are at least two sub-problems m,n ∈ SPi−1 with
d ∈ Dm

i−1 and d ∈ Dn
i−1

Let Rtemp = set of all riders r ∈ R′ that have driver d on their optimal path
in any sub-problems k ∈ SPi−1.
If Rtemp 6= ∅ then

Form a new sub-problem: k ← k + 1.
Set Rk

i = Rtemp.
Update R′ ← R′\Rtemp.
Set Applicable(k)← 1.

End If
End For
For j ∈ SPi−1

If Rj
i−1 ∩R′ 6= ∅ and |Rj

i−1 ∩R′| < |R
j
i−1| then

Form a new sub-problem: k ← k + 1.
Set Rk

i = Rj
i−1 ∩R′.

Set Applicable(k)← 1.
Elseif |Rj

i−1 ∩R′| = |R
j
i−1|

Form a new sub-problem: k ← k + 1.
Set Rk

i = Rj
i−1.

Set Applicable(k)← 0.
End If

End For

In step 5, we prevent the algorithm from looping between iterations. After forming the

set of sub-problems for the current iteration, we compare these sub-problems with sub-

problems from previous iterations. If it turns out that two iterations have the exact same set

of sub-problems, we form a new intermediate sub-problem in the current iteration by finding

two sub-problems from the previous iteration such that each of these two sub-problems in-

cludes a subset of riders in a sub-problem in the current iteration. These two sub-problems

form a new sub-problem in the current iteration. Naturally, riders in this newly formed sub-

problem are eliminated from their original sub-problems, and the newly formed intermediate

sub-problem is marked as applicable.

220

The last step of the algorithm is to find the active sub-problems: those whose solutions

cannot be derived from the solutions of previously solved sup-problems. There are two cases

where sub-problems are not active: first, if the exact same sub-problem has been solved

before, in which case the solution is readily available; second, if a sub-problem k is a union

of a set of sub-problems from a previous iteration, and the solutions to these sub-problems

do not have any conflicts in terms of itineraries of drivers. In this case, the solution to

sub-problem k would be the union of the solutions to this set of sub-problems.

221

Algorithm C (continued) The decomposition algorithm
Step 5. Check for repeating patterns and form intermediate sub-problems
For j ∈ 1 to i− 2

If iterations i and j have the same set of sub-problems, then
For sub-problem k ∈ SPi

Find two sub-problems m,n ∈ SPi−1 such that they each share
at least one rider with Rk

i .
Delete all riders in Rm

i ∪Rn
i from sub-problems in SPi.

Add a sub-problem k to SPi with combined set of riders Rm
i ∪Rn

i .
Set Applicable(k)← 1.
Exit For loop.

End For
End If

End For
Step 6. Identify active sub-problems
For each sub-problem k ∈ SPi such that Applicable(k) = 1

Set Active(k)← 1
For each iteration j = 1 to i− 1

For each sub-problem n ∈ SPj
While Active(k) = 1

If Rk
i = Rn

j then
The solution to k is already available:
Set Yi,k = Yj,n.
Set Xd

i,k = Xd
j,n ∀d ∈ Dn

j .
Set Zr

i,k = Zr
j,n ∀r ∈ Rj

n.
Set Active(k)← 0.

Elseif there exist a set of sub-problems N ∈ SPj such that
Rk
i = ∪n∈NRn

j , and the solutions to sub-problems in set N
have no conflict (i.e., ∀m,n ∈ N and ∀d ∈ Dm

j ∩Dn
j : Xd

j,m = Xd
j,n)

The solution to k is the union of the solutions to n ∈ N :
Set Yi,k =

(
Yj,n
)
n∈N .

Set Xd
i,k = Xd

j,n ∀d ∈
⋃
n∈N D

n
j .

Set Zr
i,k = Zr

j,n ∀r ∈
⋃
n∈N R

j
n.

Set Active(k)← 0.
End If

End While
End For

End For
End For
Go to Step 2

222

D Revised version of the P2P multi-hop matching prob-

lem

Each sub-problem k in iteration i of the decomposition algorithm needs to be solved using

the optimization problem in (D.1). In the interest of simplicity of notation, let us denote

Rk
i and Dk

i , i.e. the rider and drivers sets in sub-problem k in iteration i, by Rκ and Dκ

respectively.

223

Max
∑
r∈Rκ

zr −
∑
r∈Rκ

Wr

∑
d∈Dκ:(r,d)∈M

udr (D.1a)

∑
`∈Ld:

si=OSd

xd` −
∑
`∈Ld:

sj=OSd

xd` = 1; ∀d ∈ Dκ (D.1b)

∑
`∈Ld:

sj=DSd

xd` −
∑
`∈Ld:

si=DSd

xd` = 1; ∀d ∈ Dκ (D.1c)

∑
ti,si

`=(ti,si,t,s)∈Ld

xd` =
∑
tj ,sj

`=(t,s,tj ,sj)∈Ld

xd` ; ∀d ∈ Dκ,∀t ∈ Td, ∀s ∈ Gd\{OSd ∪DSd} (D.1d)

∑
d∈D′κ:
(r,d)∈M

∑
`∈Lrd:
si=OSr

yrd` −
∑
d∈D′κ:
(r,d)∈M

∑
`∈Lrd:
sj=OSr

yrd` = zr; ∀r ∈ Rκ (D.1e)

∑
d∈D′κ:
(r,d)∈M

∑
`∈Lrd:
sj=DSr

yrd` −
∑
d∈D′κ:
(r,d)∈M

∑
`∈Lrd:
si=DSr

yrd` = zr; ∀r ∈ Rκ (D.1f)

∑
d∈D′κ:
(r,d)∈M

∑
ti,si:

`=(ti,si,t,s)∈L

yrd` =
∑
d∈D′κ:
(r,d)∈M

∑
tj ,sj :

`=(t,s,tj ,sj)∈L

yrd` ; ∀r ∈ Rκ,∀t ∈ Tr,∀s ∈ Gr\{OSr ∪DSr}

(D.1g)∑
r∈Rκ:

(r,d)∈M,`∈Lrd

yrd` ≤ Cdx
d
` ; ∀d ∈ Dκ,∀` ∈ Ld (D.1h)

udr ≥ yrd` ; ∀(r, d) ∈M, ∀` ∈ Lrd (D.1i)

udr ≤
∑
`∈Lrd

yrd` ; ∀(r, d) ∈M (D.1j)

∑
d∈D′κ:
(r,d)∈M

yrd` − 1 ≤ Vr; ∀r ∈ Rκ (D.1k)

224

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Literature Review
	History of Ridesharing
	Bellevue Smart Traveler: Washington (haselkorn1995bellevue)
	Los Angeles Smart Traveler (giuliano1995angeles)
	Coachella Valley Transaction Network (levofsky2001organized)
	Sacramento Dynamic Ridesharing project (kowshik1993development)
	Seattle Smart Traveler (dailey1999seattle)
	RideNow, California (NelsonRideNow2006)
	Goose Networks, San Francisco, California (heinrich2010implementing)
	Avego, University Cork, Ireland (heinrich2010implementing and UCC)
	Go520, Washington (RTrip and o2011case)
	WeGo, California (Wego)
	Lessons Learned

	Ridesharing in Perspective
	P2P Ride-Matching

	Peer-to-Peer Ridesharing System
	Implementation Strategies

	Mathematical Formulation
	Time-Expanded Network
	Main Formulation
	Problem Variants
	Expanding the Objective Function
	Targeting Drivers
	Including Service Times
	Individual Rationality Constraints

	The Ellipsoid Spatiotemporal Accessibility Method (ESTAM)
	Generating Reduced Networks
	Generating Time-Expanded Reduced Networks
	Generating Riders' Time-Expanded Feasible Networks

	The Many-to-One Matching Problem
	Illustrative Example
	Preprocessing using ESTAM
	Solution Methodology
	The Dynamic Programing (DP) Algorithm

	Numerical Experiments
	Uniform Random Selection of Trip End Locations
	Uniform Random Selection of Trip Ends in Clusters
	The Critical Mass
	P2P Ride Exchange
	Overlapping Sets of Drivers and Riders

	Case Study: P2P Ridesharing as Transit Feeder in the Los Angeles County
	Preliminaries
	Results

	The Many-to-Many Matching Problem
	Decomposition Algorithm
	Illustrative Example
	Properties of the Decomposition Algorithm
	Optimality
	Bounds

	Numerical Study
	Pre-Processing
	Value of a Multi-hop Solution
	Percentage of Satisfied Ride Requests
	Algorithm Performance
	Transfers
	Sensitivity Analysis

	Application in Practice
	Re-optimization Period
	Restricting the Number of Transfer Stations
	Selecting a Time Interval
	Heuristic Solutions

	P2P Ride Exchange Mechanism
	Introduction
	Related Work
	Peer-to-Peer Ride Exchange
	The Scope of the Trade
	P2P Ride Exchange Mechanism
	Pricing

	Numerical Study
	Base Fares
	Number of Participants
	System Composition
	Departure Period
	Travel Time Budget Factor
	Statistical Analysis
	Customer Retention
	Higher Levels of Trade

	Ride-Matching with Stochastic Demand
	Introduction
	Generating Scenarios
	Example

	P2P Multi-Hop Ride-Matching Problem with Stochastic Demand
	L-Shaped Decomposition
	Small Example
	Applicability in Practice

	Shared Ownership and Ridership of Autonomous Vehicles
	Introduction
	SVOU: Shared Vehicle Ownership and Use Program
	Mathematical Modeling
	Routing of Autonomous Vehicles
	On-Demand Carsharing

	Solution Method
	Heuristic Algorithm to Solve the On-Demand Carsharing Problem

	Real-World Implementation
	Location-Based Clustering
	Clustering Based on Trip Overlap
	Level of Clustering

	Discussion

	Conclusion
	Bibliography
	Appendices
	Proof of Proposition
	Proof of Proposition
	Decomposition Algorithm
	Revised version of the P2P multi-hop matching problem

