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Abstract 
For statistical learning to aid in language learning, learners 
must resolve statistical information along multiple dimensions 
of the same linguistic signal. Given that infants show 
evidence of lexical knowledge while they are still learning 
how to categorize speech, infant learners are likely presented 
with at least two statistical learning problems simultaneously. 
In an effort to approximate this scenario, we presented adult 
participants with multiple exemplars of sounds from 4 
experimenter-defined categories. These sounds were novel 
and thus, adult have not developed specialized processing for 
these sounds. Stimuli were presented in a regular, continuous 
stream containing statistical structure between sound-category 
types with variable exemplars (i.e. pairs of sound categories 
but with variable exemplars of each category presented 
instead of just one). Participants were tested for familiarity 
with high probability pairs. We found that participants can 
learn from  statistical structure based on varying exemplars of 
novel sounds but they learn based on the perceptual grouping 
biases that they bring into the experiment and not based on 
the experimenter-defined categories (groupings they would 
have to form ad hoc in the experiment). We discuss these 
results in relation to language learning. 

Keywords: Statistical learning; unsupervised learning; 
language learning and development; speech categorization; 
cognitive development; auditory processing. 

Introduction 
Throughout development, humans are highly sensitive to 

statistical regularities in the environment.  From these 
regularities, it is possible to learn a large amount about the 
structure of the world without explicit feedback or innate 
knowledge.  Statistical learning has been intensely studied 
in relation to one of the most formidable tasks that humans 
face: learning language. It has been established that 
statistical information can aid infants in many aspects of 
language development including speech categorization, 
lexical development, and syntactic processing, even in the 
first year of life (see Thiessen & Saffran, 2007 for a review).   

For a colloquial example, take the phrase “pretty baby” 
(Saffran, Newport, & Aslin, 1996) which would typically be 
produced as a continuous utterance /prI’tibeI’bi/. In the 
ambient language, the transitional probabilities (as well as 
co-occurrence frequency) are higher within syllables of 
words than between the syllables at the boundaries of 
words. Not only have infants have been shown to be 
sensitive to these transitional probabilities as early as 2-
months of age (Kirkham, Slemmer, & Johnson, 2002), 

syllables linked by high transitional probability are more 
likely to be used as lexical labels (Graf-Estes, Evans, 
Alibali, & Saffran, 2007). Thus, it is thought that this 
learning ability is likely to contribute to lexical 
development, characterized in part by the word explosion 
beginning around 14-months (Thiessen & Saffran, 2007).  

However, in the infant's acoustic environment, these 
transitional probabilities are necessarily accumulated over 
many, many instances of hearing different productions of 
the same continuous utterance (e.g. "pretty baby" or 
/prI’tibeI’bi/). Across these utterances, there is a large 
amount of acoustic variability that functionally belong to the 
same speech category.1 This variation is thought to be dealt 
with through the process of speech categorization. However, 
even though infants in the first year begin to preferentially 
discriminate the acoustic contrasts employed in their 
ambient language (Werker & Tees, 1984), the solidification 
of speech categories continues well beyond infancy (e.g. 
Hazan & Barrett, 2000).  

Thus, the process of speech categorization has a largely 
overlapping developmental time-course to statistical 
learning of transitional probabilities and the early stages of 
language learning. In order for infants to learn words based 
on the statistical information in their ambient language, they 
are likely presented with at least two statistical problems 
simultaneously: infants have to learn that syllables cohere to 
form a word while simultaneously resolving that the many 
variable productions are functionally equivalent in their 
native language.  

In previous studies examining statistical learning of 
transitional probabilities, participants are exposed to a 
corpus that consists of acoustically identical repetitions of 
sounds.  This is markedly different from the multiple 
varying productions as exist in infants’ early language 
experience.  In these experiments, stable physical properties 
across multiple presentations eliminates the problem of 
categorization across multiple, varying productions of 
speech.  Likewise in adulthood, speech processing is largely 
robust to variations across speech productions.  

 
  

                                                             
1 There are many other sources of information that vary across 

productions, including contextual information, visual environment, 
and interaction with the caregiver, all of which have been shown to 
modify cognitive processing in infancy and later in development 
and thus will alter the informational content of each utterance.   
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In an attempt to approximate the task facing an infant 
attempting to form lexical knowledge while lacking 
completed speech categorization, the current experiments 
investigate statistical learning using multiple, varying 
exemplars of novel, complex sound categories in adults. The 
stimuli were adapted from the training study of Wade and 
Holt (2005) which employed a video game paradigm to 
implicitly train listeners to learn categories of novel, 
spectrotemporally complex non-speech stimuli. These 
sounds are carefully designed to capture some of the 
spectral complexities that exist within natural speech 
categories without sounding speech-like. For current 
purposes, it is essential to note that adult participants have 
not heard these sounds before nor have they undergone any 
experiences that would result in the formation of functional 
categorization of these sounds.  

In the current experiments, we employed the 4 
experimenter-defined sound categories from Wade and Holt 
(2005) and grouped these sound categories into pairs (i.e. 
pairs of sound categories were linked by high transitional 
probability).  We presented 6 different exemplars of these 
novel sounds. Thus, participants have to group sounds 
across multiple productions in order for the transitional 
probabilities to be reliable. This is similar to what an infant 
faces when learning transitional probabilities without fully 
developed functional sound categories.  

Experiment 0: Naïve Perceptual Biases 
Adapted from Wade and Holt (2005), six stimuli from 

each of four experimenter-defined categories were used.  All 
sounds were designed to have two spectral peaks, P1 and P2 
with both steady-state and gradually changing portions, 
similar to syllables containing a vowel and a semivowel or 
liquid, (for a schematic diagram of the four categories of 
stimuli, see Figure 1). 

The two “Easy” categories comprise stimuli that begin 
with a steady state period and then either rise or fall. These 
were designed to be easy to learn because they are reliably 
discriminable by the direction of the transition period. The 
two “Hard” categories begin with a transition, followed by a 
steady state. Note that stimuli from both Hard categories 
should, therefore, be highly discriminable from the Easy 
stimuli. The contrastive cue that distinguishes Hard 
categories is the onset frequency of the transition period. 
Both contain rising and falling frequency patterns and 
completely overlap in their steady-state frequencies, and 
thus, only a higher-order interaction between these two cues 
creates a perceptual space in which the two hard categories 
are discriminable (see Wade & Holt, 2005 for a 
comprehensive discussion and http://www.psy.cmu.edu/ 
~lholt/php/gallery_irfbats.php to hear the sounds).  

Because the stimuli and experimenter-defined categories 
are spectrotemporally complex and completely novel to 
participants, two consequences follow: 1) participants do 
not have specialized processing for these sounds like they 
do with speech processing. Therefore, we believe there is no 
a priori categorical perception of these stimuli (see Wade & 
Holt, 2005). 2) However, it is unlikely that experimenter-
defined categories will be perceived to be equally distinct. 
To investigate the perceptual biases participants bring to the 
learning tasks, we asked naïve participants to perform a 
perceptual similarity judgment. 

Methods 
Participants 28 students participated in the current study.  
All participants reported in this paper were undergraduates 
at Cornell University who participated in exchange for 
course credit.  Participants were asked to report any 
auditory, visual, or neurological deficits via post-
experimental questionnaire; no participants reported any 
such deficits.  
Stimulus presentation All sounds were presented using 
over-the-ear headphones (Sony MDR-V150) at a 
comfortable, above-threshold volume.  Instructions and 
stimuli were presented using PsyScope X B53 on MacMini 
computers.  During sound presentation, participants 
observed  blank, white screens on 17in CRT monitors. All 
sounds were presented for 300ms. Each trial began and 
ended with 500ms of silence and the two sounds were 
presented separated by a pause of 500ms. 
 
 
 
 

Figure 1:  Schematic diagram of the spectrotemporal 
properties of the stimuli employed in all experiments. Each 
sound has two components: P1 (constant over all stimuli in 
a category) and P2 (varies for each stimulus).  
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Similarity Judgment After hearing both sounds, 
participants were asked to report how similar the sounds 
were on a scale of 1 to 4  (1 = the same and 4 = completely 
different) on a keyboard.  Participants were given an 
unlimited amount of time to make their responses.  

For practical purposes it was necessary to limit the 
number of trials by partitioning the full set of 24 exemplars 
(6 from each of the 4 categories) into two subsets; one 
subset contained exemplars 1, 3, 5 from each category and 
the other subset contained exemplars 2, 4, 6. Half the 
participants performed similarity judgment on one subset, 
the other half on the other subset.  

Results and Discussion 
Similarity for each stimulus pair was computed for each 
participant. Similarity judgments for each contrast were 
analyzed directly in a one-way ANOVAs with subject (F1) 
as a random factor (F1(1,27) = 1982.1, p < 0.0005) revealing 
contrast (E1-E1, E1-E2, E1-H1, E1-H2, etc.) as a significant 
variable: F2(9,243)= 58.92, p < 0.0005.  Within category 
judgments were smallest, indicating the most similar 
judgments, for E1 and E2 judgments (1.45 and 1.53 
respectively) and larger for H1 and H2 judgments (2.23 and 
2.20 respectively) with a significant main effect of category 
in an ANOVA (F(3,81) = 24.42, p < 0.0005). These results 
reveal within category cohesion for both Easy categories 
indicating that they are “perceptually grouped” naïvely.   
    Both our graphical results (Figure 2) and the statistical 
analyses indicate that E1-E1 and E2-E2 exemplars are rated 
more similarly than any other exemplar comparison. 
However, participants do not rate H1-H1 or H2-H2 
exemplar pairs more similarly than they do H1-H2 pairs 
suggesting that they do not treat H1 and H2 as two separate 
groups but as one single “perceptual group” separate from 
E1 and E2.  

Experiment 1: Statistical Learning Using 
Multiple Auditory Exemplars 

 
After establishing the perceptual biases and groupings that 
participants bring to the corpus of sounds, we presented a 
new group of participants with the sounds in a continuous 
stream with statistical structure (i.e. pairs) defined over 
sound category (e.g. E1-H2). Critically, we presented one 
exemplar of an E1 sound of which there are 6 and one 
exemplar of an H2 sound, of which there are also 6.  In 
other words, multiple exemplars from each sound category 
are presented. 

In the current paradigm, statistical learning can take place 
based on specific exemplars (e.g. E1_1-H2_5 vs. E1_1-H2-
2), consistent with previous findings, or over groups of 
multiple exemplars of sounds (e.g. E1-H2). We didn’t 
anticipate that participants would learn based on the 
individual exemplars (of which there are 24), two specific 
exemplars (e.g. E1_1-H2-2) are only presented together 
twice during the entire familiarization stream.  Thus, we 
focused our analyses on how learning takes place across 
groups of sounds.   

Although the corpus we employed has four categories of 
sounds constructed a priori (see Introduction), results from 
Experiment 0 indicate that naïve participants do not equally 
distinguish all 4 categories of sounds. Thus, if participants 
are able to learn across multiple exemplars of sounds, it is 
possible that they could learn based on different perceptual 
groupings of stimuli.  Specifically, we examined whether 
the pattern of behavioral results is consistent with 
participants learning based on different levels of perceptual 
grouping:   
1) Four groups of sounds (E1, E2, H1, H2) based on the 
four experimenter-defined categories, but not distinguished 
by naïve participants;  
2) Three groups of sounds (E1, E2, H) as seen in the naïve 
perceptual groupings.  Thus exemplars of E1 and E2 sounds 
would be grouped separately and the two Hard categories 
(H1 and H2) would be treated as distinct from the two Easy 
categories but being indistinguishable from each other.  
3) Two groups only (E, H) with the Easy categories (E1 
and E2) being perceived as a single group and the Hard 
categories (H1 and H2) being perceived as a second group. 
  Based on how participants group the different exemplars 
(perceptual grouping) as well as the sound-pair assignment 
(discussed below), we made specific predictions as to 
whether or not participants would be able to demonstrate 
learning at test (see the table in Figure 4 for a summary of 
these predictions).  

Methods 
Participants 45 participants were recruited for this 
experiment. One participant was excluded for failing to 
complete the entire experiment. 
Sound-Pair Assignment For each participant, the four 
categories are grouped into two pairs (e.g. E1-H2, H1-E2).  
We will refer to this as a sound-pair assignment.   

Figure 2:  Perceptual Distance between all stimuli for all 
subjects.  Similarity judgments were entered into MDS 
analysis with two dimensions. 
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Familiarization Each sound was presented for 300ms with 
a 115ms inter-stimulus interval (ISI) for a 415 stimulus 
onset asynchrony (SOA). All the exemplars from each 
category are paired with all other exemplars from the paired 
category of sounds twice resulting in a familiarization 
stream of 648 pairs of sounds constructed from 24 different 
exemplars from the four categories of sounds presented in 
randomized order (see Figure 3, top row). 
Cover Task In order to encourage participants to pay 
attention to the familiarization stream without explicitly 
asking them to track the relationships between sounds heard, 
a cover task was employed which consisted of participants 
detecting ‘soft’ sounds by pressing the SPACE bar.  A 
sound attenuated version of each exemplar was added into 
the familiarization six times resulting in 144 ‘soft’ sounds 
out of the 1296 sounds presented. These were incorporated 
into the familiarization stream and thus did not disrupt the 
statistical structure of the stream. Participants were 
instructed that they would hear a stream of sounds and to 
press the SPACE bar when they heard the stream get 
quieter. They were also told that the task would last 7 
minutes.  Button presses within 1.6 seconds of presentation 
of the soft sound were considered a correct response. 
Test for Statistical Learning After familiarization, 
participants were given a self-timed break and then told that 
they would be presented with two pairs of sounds separated 
by a long pause (1000ms) and after hearing both, they 
would be asked to report which pair of sounds is more 
familiar based on their previous task. They used the ‘g’ and 
‘h’ keys to indicate which pair was more familiar. They 
were also told that no new sounds are being introduced and 
encouraged to go with their intuition or 'gut instinct’. The 
responses were self-timed. 

Participants were given 48 test trials. In each trial, one 
pair was composed of two exemplars consistent with those 
in familiarization and the other was a foil that violated the 
statistical structure from familiarization. Foils were 
constructed based on the 4 experimenter-defined sound 

categories: if pair 1 is AB and pair 2 is CD then the foils are 
CA and DB. All exemplars were heard and each pair was 
paired with each foil an equal number of times and 
counterbalanced order. 
Perceptual Similarity Judgment After completion of the 
SL test, participants were asked to perform a perceptual 
similarity judgment, as described in Experiment 0.  

Results 
Cover task results Participants responded correctly to the 

‘soft’ sound with an average of 76% accuracy.  We didn’t 
exclude any participants based on Cover Task performance. 

Perceptual Similarity Judgments: We did the same 
analyses on the perceptual similarity judgments as in 
Experiment 0 and found identical results indicating that 
participants have a stable perceptual bias in relation to the 
corpus of sounds throughout the experiment. An ANOVA 
with subject as a random factor (F1) revealed a significant 
effect of category comparison (F2 (9,387) = 65.13, p < 
0.0005; F1(1,43) = 2501.1, p < 0.0005) with the lowest 
average judgments for within E1 and within E2 trials (1.39 
and 1.61 respectively).  Within H1 and H2 trials were on 
average much greater (2.08 and 2.09 respectively).  Within 
category comparisons also yielded a significant effect of 
category (F2 (3,129) = 25.93, p < 0.0005). 

Discrimination at test We first examined behavioral 
responses for evidence of learning for all participants 
together, regardless of which sound-pair assignment.  When 
evaluated against chance performance (24 out of 48 or 50% 
performance), we find that overall, participants were able to 
reliably distinguish the category pairs heard during 
familiarization from foils: mean performance = 27.93, std = 
6.65, t(43) = 3.93, p < 0.001.   
   Transitional Probabilities in Familiarization and at 
Test The experimental organization of the four categories of 
sounds creates an a priori set of transitional probabilities 
which are higher within pairs of sound categories (100% or 
1.0 transitional probability within pairs) than between pairs. 

Figure 3: Differences in transitional probabilities and foils for both Experiment 1 and 2 across the 3 levels of perceptual 
grouping: E1, E2, H1, H2 (experimenter-defined categories); E1, E2, H (naïve perceptual groupings), and E vs. H (minimal 
naïve groupings).  
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However, because the statistics are defined at the level of 
category rather than exemplar, the statistical information 
could differ from the experimental design is participants’ 
groupings differ from the a priori categories. Figure 3 
illustrates how different perceptual groupings of multiple 
exemplars change transitional probabilities during 
familiarization and how different perceptual groupings will 
change transitional probabilities of the foils at test.   
   Using the transitional probabilities during familiarization 
and of the foils, we made predictions for the test conditions. 
Specifically, if the transitional probabilities between pairs 
are 1.0 during familiarization2 and the transitional 
probability of the foils averaged less than the transitional 
probabilities between pairs during familiarization (i.e., less 
than 0.5), we predicted above-chance performance in 
discriminating learned pairs from foils. A summary of 
predictions is presented in Figure 4.  

Analysis based on Sound-Pair Assignments Next, we 
divided participants into three subgroups based on sound-
pair assignment. All possible sound-pair assignments were 
used in the experiments equally often.  However, as seen in 
both the perceptual judgment of naïve participants and 
participants who have undergone familiarization, the 
perceptual space is not homogenously parsed for all 
categories.  Thus, not all sound-pair assignments (which 
differ across participants) are equivalent.  For the purposes 
of defining subgroups we equated both Easy and Hard 
categories and defined three subgroups as follows:   

Sound-Pair Assignment 1 participants who had both 
Easy categories assigned to one pair and the two Hard 
categories assigned to the other (i.e. EE, HH).   

Sound-Pair Assignment 2 participants who had Easy and 
Hard categories mixed between pairs but in consistent 
ordinal position in both pairs (i.e. EH, EH or HE, HE)  

Sound-Pair Assignment 3 participants who had Easy and 
Hard categories mixed between pairs in different ordinal 
position (i.e. HE EH).  

A one-way ANOVA revealed a significant effect of 
Sound-Pair Assignment (F(2, 41) = 7.71, p = 0.001). 
Performance for each group (see Figure 4):  S-P Assign. 1 
and S-P Assign. 2 reliably discriminated correct pairs from 
foils (S-P Assign. 1: mean = 28.5, std = 7.06, t(13) = 2.37, p 
< 0.05; S-P Assign. 2: mean = 31.8, std = 5.83, t(14) = 5.18, 
p < 0.001) whereas participants in S-P Assign. 3 failed to 
discriminate correct pairs from foils: mean = 23.53, std = 
4.27, t(14) = -0.423, p > 0.5. Thus, we find differences in 
the ability of participants to distinguish foils from pairs 
depending on Sound-Pair Assignment. Comparing this 
pattern of results to our predictions (Figure 4), we find 
evidence that participants learned across multiple sound 
exemplars based on the perceptual groupings that they had 
prior to the experiment (results from Exp. 0).  

                                                             
2 This is true in all cases except for perceptual grouping of less 

than 4 groups for the third Sound-Pair Assignment possibility.  

Discussion 
These results indicate statistical learning is possible 

across multiple exemplars of sounds from novel, complex 
categories. However, in order to accomplish this, 
participants relied on the perceptual groupings of these 
sounds that they bring into the task as demonstrated by the 
large effect of Sound-Pair Assignment. Our predictions, 
based on transitional probabilities during familiarization and 
at test, predict test performance across Sound-Pair 
Assignment only with the assumption that participants 
group the sound exemplars according to their initial 
perceptual biases and not according to either the 
experiment-defined categories or according to a two-way 
discrimination of Easy and Hard categories (perceptual 
grouping of E1, E2, and H; see Figures 3 and 4).    

Experiment 2: Changing the Foils 
We presented evidence in Experiment 1 that participants 

are able to learn statistical structure of novel, complex 
auditory categories and they learn based on their naïve 
perceptual groupings. In the current experiment, we change 
the foils that we employ at test to produce different 
predictions for learning across Sound-Pair Assignments (see 
Figure 4), thereby allowing us to further test our assumption 
that participant learn over multiple sound exemplars based 
on their naïve perceptual groupings of the stimuli.  

Methods 
40 participants were recruited. Methods were the same as 

Experiment 1 with the exception of the foils: if pairs are AB 
and CD (with A – D being the 4 categories of sounds), the 
foils in the current experiment were AD and CB (cf CA and 
DB in Experiment 1; shown in the last column in Figure 3).  

Results and Discussion 
Cover task results: Participants responded correctly to 

the ‘soft’ sound with an average of 73% accuracy.  
Perceptual similarity results:  As in Experiments 0 and 

1, an ANOVA with subject as a random factor (F1) revealed 
a significant effect of category comparison (F2 (9,351) = 
46.73, p < 0.0005; F1 (1,39)= 2305.6, p < 0.0005) with the 
lowest average judgments for within E1 and within E2 trials 
(1.45 and 1.65 respectively).  Within H1 and H2 trials were 
on average much greater (2.30 and 2.23 respectively).  
Within category comparisons also yielded a significant 
effect of category (F2 (3,117) = 40.44, p < 0.0005). 

Statistical learning results:  Overall, participants show 
ability to correctly discriminated pairs from foils (mean = 
26.4, std = 4.63, t(39) = 3.31, p < 0.01), however, as in 
Experiment 1, performance was not uniform across Sound-
Pair assignment (F(2,39) = 5.46, p < 0.01). Unlike 
Experiment 1, we find reliable evidence for in S-P Assign. 1 
(mean = 29.54, std = 4.63, t(12) = 4.31, p = 0.01; S-P 
Assign.2: mean = 24.54, std = 3.23, t(13) = 0.601, p > 0.5; 
S-P Assign.3: mean = 25.29, std = 4.50, t(3) = 1.07, p > 
0.25).  
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General Discussion 
We find that adult participants can learn statistical 

structure using multiple exemplars from novel, complex 
auditory categories. Further, we demonstrate that in learning 
across multiple, varying exemplars, participants use the 
perceptual groupings available to naïve listeners rather than 
experimenter-defined categories.  

To our knowledge, this is the first example of learning 
using multiple exemplars of auditory stimuli in a statistical 
learning paradigm. Two previous studies have used varying 
exemplars of visual scenes (Brady & Oliva, 2008) and 
human action (Loucks & Baldwin, in press).  However,  
participants have had considerable exposure to the 
categories from which the variable stimuli are derived (e.g. 
kitchen scenes employed by Brady & Oliva, 2008), so there 
would be little doubt that participants would group these 
stimuli into the experimenter-defined categories before the 
experiment.  

By contrast, participants in the current study have not had 
previous experience with the corpus of stimuli and thus have 
not established categorical perception of the stimuli.  They 
do, however, have perceptual biases as determined in 
Experiment 0. Moreover, participants maintain their naïve 
perceptual groupings throughout the experiment. Both 
Experiments 1 and 2 demonstrate that participants rely on 
these groupings to learn from the transitional probabilities. 
Our results provide evidence that, in adults, categorical 
knowledge of sounds is not needed in order to learn across 
varying exemplars. Instead, non-categorical perceptual 
biases can be used to learn environmental structure (based 
on transitional probabilities). 

To sum, we find that participants can learn based on 
transitional probabilities of varying exemplars for which 
they have no a priori sound categorization ability. This is a 
comparable task to that faced by infants in the first year of 
life:  having to simultaneously resolve the variation in 
speech production and learn to segment chunks of highly 
coherent speech in the speech stream. We believe that the 
current results provide initial insight into how infants are 
able to learn their first words while forming their speech 
categories.  
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