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RESEARCH

Evidence for the placenta‑brain axis: 
multi‑omic kernel aggregation predicts 
intellectual and social impairment in children 
born extremely preterm
Hudson P. Santos Jr1,2*†  , Arjun Bhattacharya3†  , Robert M. Joseph4  , Lisa Smeester2,5,6  , Karl C. K. Kuban7  , 
Carmen J. Marsit8  , T. Michael O’Shea9   and Rebecca C. Fry2,5,6 

Abstract 

Background:  Children born extremely preterm are at heightened risk for intellectual and social impairment, includ-
ing Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the placenta in prenatal devel-
opmental programming, suggesting that the placenta may, in part, contribute to origins of neurodevelopmental 
outcomes.

Methods:  We examined associations between placental transcriptomic and epigenomic profiles and assessed their 
ability to predict intellectual and social impairment at age 10 years in 379 children from the Extremely Low Gesta-
tional Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and social function was completed with 
the Differential Ability Scales-II and Social Responsiveness Scale (SRS), respectively. Examining IQ and SRS allows for 
studying ASD risk beyond the diagnostic criteria, as IQ and SRS are continuous measures strongly correlated with 
ASD. Genome-wide mRNA, CpG methylation and miRNA were assayeds with the Illumina Hiseq 2500, HTG EdgeSeq 
miRNA Whole Transcriptome Assay, and Illumina EPIC/850 K array, respectively. We conducted genome-wide differ-
ential analyses of placental mRNA, miRNA, and CpG methylation data. These molecular features were then integrated 
for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We lastly examined associations 
between ASD and the multi-omic-predicted component of IQ and SRS.

Results:  Genes with important roles in neurodevelopment and placental tissue organization were associated with 
intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted intellectual and 
social function, explaining approximately 8% and 12% of variance in SRS and IQ scores via cross-validation, respec-
tively. Predicted in-sample SRS and IQ showed significant positive and negative associations with ASD case–control 
status.

Limitations:  The ELGAN cohort comprises children born pre-term, and generalization may be affected by unmeas-
ured confounders associated with low gestational age. We conducted external validation of predictive models, 
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Background
Despite substantial research efforts to elucidate the eti-
ology of neurodevelopmental impairment [1], little is 
known about transcriptomic and epigenomic factors 
influencing trajectories of neurodevelopment, such as 
those associated with preterm delivery [2]. Children 
born extremely preterm are at increased risk not only for 
intellectual impairment but also for Autism Spectrum 
Disorder (ASD) [3, 4], often accompanied by intellec-
tual disability. In addition, preterm-born children have 
consistently been observed to manifest social difficulties 
(e.g., fewer prosocial behaviors) in childhood and adole-
cense that do not meet diagnostic criteria for ASD [5].

The placenta is posited as a critical determinant of 
both immediate and long-lasting neurodevelopmen-
tal outcomes in children [1]. The placenta is involved in 
hormone and neurotransmitter production and transfer 
of nutrients to the fetus, thus having direct influence on 
brain development. This intimate connection between 
the placenta and the brain is termed the placenta-brain 
axis [6, 7]. Epidemiological and animal studies have 
linked genomic and epigenomic alterations in the pla-
centa with neurodevelopmental disorders and normal 
neurobehavioral development [8–10]. For example, the 
Markers of Autism Risk in Babies: Learning Early Signs 
(MARBLES) study has identified a differentially methyl-
ated region containing a putative fetal brain enhancer in 
placentas from children diagnosed with ASD (N =  24) 
compared to placentas from typically developing 
(N =  23) children [11]. The study of molecular interac-
tions within and between the transcriptome and epige-
nome that represent the placenta-brain axis may advance 
our understanding of fetal mechanisms involved in aber-
rant neurodevelopment [6].

Most prior studies have investigated single molecu-
lar levels of the placenta transcriptome or epigenome, 
precluding analysis of possible interactions that could 
be linked to neurodevelopmental outcomes. Examining 
only a single molecular feature, or a single type of feature 
such as genotype even at a genome-wide scale can still 
result in much unexplained variation in phenotype due 
to potentially important interactions between multiple 
features [12, 13]. This observation is in line with Boyle 

et  al.’s omnigenic model [14, 15], which proposes that 
gene regulatory networks are so highly interconnected 
that a large portion of the heritability of complex traits 
can be explained by effects on genes outside core path-
ways. Molecular integration to identify placental path-
ways related to fetal neurodevelopment in children has 
been largely unexplored but may prove to be insightful in 
associations with complex diseases [16].

We conducted a genome-wide analysis of DNA meth-
ylation (i.e., 5-methylcytosine), miRNA, and mRNA 
expression in the placenta, examining individual associa-
tions with social and intellectual impairment at 10 years 
of age in children from the Extremely Low Gestational 
Age Newborn (ELGAN) study [17]. We then combined 
the transcriptomic and epigenomic data to identify cor-
relative networks of placental biomarkers predictive of 
social and intellectual impairment as continuous scales, 
thus allowing us to study neurodevelopmental difficul-
ties beyond the ASD diagnostic categories [18]. To assess 
the convergent validity of our behavioral findings, we 
also examined the association of social and intellectual 
impairment in relation to ASD diagnoses [19]. This is 
among the first study of its kind to use multiple placen-
tal molecular signatures to predict intellectual and social 
impairment, which may inform a framework for predict-
ing risk of adverse neurocognitive and neurobehavioral 
outcomes in young children.

Methods
ELGAN recruitment and study participants
From 2002 to 2004, women who gave birth at under 
28  weeks gestation at one of 14 medical centers across 
five U.S. states enrolled in the ELGAN study [17]. The 
Institutional Review Board at each participating institu-
tion approved study procedures. Included were 379  of 
889 children with both placental molecular data  (CpG 
methylation, mRNA expression, and miRNA expression) 
and a 10-year neurodevelopment assessment.

Social and cognitive function and ASD at 10 years of age
Trained child psychologist examiners [5, 20] evaluated 
general cognitive ability (IQ) with the School-Age Dif-
ferential Ability Scales-II (DAS-II) Verbal and Nonverbal 

though the sample size (N = 49) and the scope of the available out-sample placental dataset are limited. Further 
validation of the models is merited.

Conclusions:  Aggregating information from biomarkers within and among molecular data types improves predic-
tion of complex traits like social and intellectual ability in children born extremely preterm, suggesting that traits 
within the placenta-brain axis may be omnigenic.

Keywords:  Prenatal neurodevelopmental programming, Social and cognitive impairment, Placental gene regulation, 
Epigenome-wide association, Differential expression analysis, Multi-omic aggregation
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Reasoning subscales [21]. The Social Responsiveness 
Scale (SRS) was used to assess severity of ASD-related 
social deficits in 5 subdomains: social awareness, social 
cognition, social communication, social motivation, and 
autistic mannerisms [22]. We used the gender-normed 
T-score (SRS-T; intended to correct gender differences 
observed in normative samples) as continuous meas-
ure of social deficit [23]. All participants were assessed 
for ASD [19]. Diagnostic assessment of ASD was con-
ducted with three well-validated measures, administered 
sequentially. First, the Social Communication Question-
naire (SCQ) was administered to screen for potential 
ASD, using a score ≥ 11 to increase sensitivity relative to 
the standard criterion score of ≥ 15 [19, 24]. For children 
who screened positive on the SCQ criterion, we con-
ducted the Autism Diagnostic Interview–Revised (ADI-
R) with the primary caregiver [25]. All children who met 
ADI-R criteria for ASD, or who had a prior clinical diag-
nosis of ASD and/or exhibited symptoms of ASD during 
cognitive testing according to the site psychologist) were 
then assessed with the Autism Diagnostic Observation 
Schedule, Second Version (ADOS-2), which served as the 
criterion measure of ASD in this study [26]. All ADOS-2 
administrations were independently scored by a second 
rater with autism diagnostic and ADOS-2 expertise. In 
cases of scoring disagreements, consensus was reached 
via discussion between raters. Item-by-item inter-rater 
agreement for the 14 ADOS-2 diagnostic algorithm 
scores was on average 0.93 (SD = 0.12). These develop-
mental assessment procedures and all relevant test scores 
for ASD and intellectual function are reported in a prior 
publication [20].

Placental DNA and RNA extraction
After delivery, placentas were biopsied under sterile con-
ditions. The ELGAN team collected a piece of the cho-
rion, representing the fetal side of the placenta [27]. More 
specifically, placentas were placed in a sterilized basin 
and biopsied by pulling back the amnion to expose the 
chorion at the midpoint of the longest distance between 
the cord insertion and edge of the placental disk. A sam-
ple from the fetal side of the placenta was removed by 
applying traction to the chorion and underlying tropho-
blast tissue. The specimen was placed in a cryogenic vial 
and immersed in liquid nitrogen. Specimens were stored 
at − 80 °C for approximately 13–15 years until processed. 
For processing, a 0.2 g subsection of the placental tissue 
was cut from the frozen biopsy and washed with sterile 
1 × phosphate-buffered saline to remove any remaining 
blood. Samples were homogenized using a lysis buffer, 
and the homogenate was separated into aliquots. This 
process was detailed in a prior publication [28]. Nucleic 
acids were extracted from the homogenate using AllPrep 

DNA/RNA/miRNA Universal kit (Qiagen, Germany). 
The quantity and quality of DNA and RNA were ana-
lyzed using the NanoDrop 1000 spectrophotometer and 
its integrity verified by the Agilent 2100 BioAnalyzer. As 
previously described [29], RNA quality was determined 
using LabChip (Perkin Elmer) instrument to generate 
RNA integrity numbers (RIN), which ranged from 1 to 
3, and DV200 values, which were in acceptable range for 
placenta tissue [30].

Epigenome‑wide placental DNA methylation
Extracted DNA sequences were bisulfate-converted using 
the EZ DNA methylation kit (Zymo Research, Irvine, CA) 
and followed by quantification using the Infinium Meth-
ylationEPIC BeadChip (Illumina, San Diego, CA), which 
measures CpG loci at a single nucleotide resolution, as 
previously described [27, 28, 31, 32]. Quality control and 
normalization were performed resulting in 856,832 CpG 
probes from downstream analysis, with methylation rep-
resented as the average methylation level at a single CpG 
site (β value) [28, 33–35]. DNA methylation data was 
imported into R for pre-processing using the minfi pack-
age [33]. Quality control was performed at the sample 
level, excluding samples that failed and technical dupli-
cates; 411 samples were retained for subsequent analyses. 
Functional normalization was performed with a prelimi-
nary step of normal-exponential out-of band (noob) cor-
rection method [36] for background subtraction and dye 
normalization, followed by the typical functional normal-
ization method with the top two principal components 
of the control matrix [34, 37]. Quality control was per-
formed on individual probes by computing a detection P 
value and excluded 806 (0.09%) probes with non-signifi-
cant detection (P > 0.01) for 5% or more of the samples. 
A total of 856,832 CpG sites were included in the final 
analyses. Lastly, the ComBat function was used from the 
sva package to adjust for batch effects from sample plate 
[38]. The data were visualized using density distributions 
at all processing steps. Each probe measured the average 
methylation level at a single CpG site. Methylation levels 
were calculated and expressed as β values (β = intensity 
of the methylated allele (M))/(intensity of the unmeth-
ylated allele (U) + intensity of the methylated allele 
(M) + 100). βvalues were logit transformed to M values 
for statistical analyses [39].

Genome‑wide placental mRNA and miRNA expression
mRNA expression was determined using the Illumina 
QuantSeq 3′ mRNA-Seq Library Prep Kit, a method with 
high strand specificity. mRNA-sequencing libraries were 
pooled and sequenced (single-end 50 bp) on one lane of 
the Illumina Hiseq 2500. mRNA were quantified through 
pseudo-alignment with Salmon v.14.0 [40] mapped to the 
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GENCODE Release 31 (GRCh37) reference transcrip-
tome. miRNA expression profiles were assessed using 
the HTG EdgeSeq miRNA Whole Transcriptome Assay 
(HTG Molecular Diagnostics, Tucson, AZ). miRNA 
were aligned to probe sequences and quantified using 
the HTG EdgeSeq System [41]. Genes and miRNAs with 
less than 5 counts and variance less than 0.5 for each 
sample were filtered [42], resulting in 11,224 genes and 
2047 miRNAs for downstream analysis. Distributional 
differences between lanes were first upper-quartile nor-
malized [43]. Unwanted technical and biological vari-
ation (e.g. cell-type heterogeneity) was then estimated 
using RUVSeq [44], where we empirically defined tran-
scripts not associated with outcomes of interest as nega-
tive control housekeeping probes [45]. One dimension of 
unwanted variation was removed from the variance-sta-
bilized transformation of the gene expression data using 
the limma package [46, 47].

Statistical analysis
All code and functions used in the statistical analysis can 
be found at https​://githu​b.com/bhatt​achar​ya-a-bt/multi​
omics​_ELGAN​.

Correlative analyses between SRS, IQ, and ASD
Associations among SRS scores, IQ and ASD were 
assessed using Pearson correlations with estimated 95% 
confidence intervals, and the difference in distributions 
of SRS and IQ across ASD case–control was assessed 
using Wilcoxon rank-sum tests. Associations between 
demographic variables (race, sex, maternal age, number 
of gestational days, maternal smoking status, placental 
inflammation, birth weight Z-score and mother’s insur-
ance) with SRS and IQ were determined using multivari-
able regression, assessing the significance of regression 
parameters using Wald tests of significance and adjusting 
for multiple testing with the Benjamini–Hochberg proce-
dure [48].

Genome‑wide molecular associations with SRS and IQ
Once associations between SRS and IQ and ASD were 
confirmed, we utilized continuous SRS and IQ measures 
as the main outcomes of interest. Associations between 
mRNA expression or miRNA expression with SRS and 
IQ were estimated through a negative binomial linear 
model using DESeq2 [46]. Epigenome-wide associations 
(EWAS) of CpG methylation sites with outcomes were 
assessed using robust linear regression with test statistic 
modification through an empirical Bayes procedure [47], 
described previously [28]. Both the differential mRNA 
and miRNA expression and EWAS models controlled for 
the following covariates: race, age, sex, number of gesta-
tional age days, birth weight Z-score, acute inflammation 

of the placental chorion, and education level of the 
mother. As in previous analyses, EWAS models also con-
trolled for five surrogate variables to account for cell-type 
heterogeneity [28, 38]. Multiple testing was adjusted for 
using the Benjamini–Hochberg procedure. Sensitivity 
analyses of test power across various effect sizes (fold 
change for RNA-seq and miRNA-seq expression) and 
parameters (mean and dispersion of expression) were 
conducted for differential gene expression analysis [49], 
showing sufficient power to detect effect sizes of differen-
tial expression (Additional file 2: Supplemental Results—
Figure S1A-B). Likewise, we found sufficient power to 
detect differentially methylated sites at large effect sizes 
(Additional file  2: Supplemental Results—Figure S1C) 
using the framework from Mansell et al.[50].

To examine placental cell type variability, we extended 
the differential mRNA expression analysis to consider 
cell-type specific proportions. We applied unmix, a ref-
erence-based deconvolution method [46], to estimate 
cell-type proportions using reference single cell RNA-
seq expression profiles for extravillous trophoblasts, 
cytotrophoblasts, syncytiotrophoblasts, and mesenchy-
mal stromal cells, derived from fetal placental tissue at 
24 weeks of gestation [51]. Here, we refer to the mRNA 
expression data from ELGAN as the bulk signal, as it rep-
resents the mRNA expression from the bulk tissue that 
includes gene expression signal from all contributing 
cell (i.e. different trophoblasts, endothelial cells, epithe-
lial cells, etc.). This algorithm estimates the contribution 
to the bulk mRNA signal from individual cell types on 
a sample-by-sample basis. We incorporated these cell-
type proportions into the differential expression analysis 
by adding a covariate for cell-type proportions and an 
interaction term between gene expression and propor-
tion. This cell-type interaction model subtly changes the 
interpretation of the main gene expression term, repre-
senting an estimate of the gene expression effect size on 
SRS or IQ when the bulk tissue contains 0% of the cell 
type. Thus, we can detect cell-type-specific differentially 
expressed genes by testing the interaction effect, which 
measures how the magnitude of the gene-to-outcome 
association differs in bulk tissue with 0% and 100% of 
the cell type in question [52] (details in Additional file 1: 
Supplemental Methods).

Placental multi‑molecular prediction of SRS and IQ
We next assessed how well an aggregate of one or more 
of the molecular datasets (CpG methylation, mRNA 
expression, and miRNA expression) predicted continu-
ous SRS and IQ scores. The analytical scheme is summa-
rized in Fig. 1, using 379 samples with data for all three 
molecular datasets (DNA methylation, miRNA, and 
mRNA). Briefly, we first adjusted the outcome variables 

https://github.com/bhattacharya-a-bt/multiomics_ELGAN
https://github.com/bhattacharya-a-bt/multiomics_ELGAN


Page 5 of 16Santos Jr et al. Molecular Autism           (2020) 11:97 	

and molecular datasets for above noted demographic 
and clinical covariates using limma [53] to account for 
associations between the outcomes and these coviarates 
in the eventual predictive models. Next, to model the 
covariance between samples within a single molecular 
profile, we aggregated the molecular datasets with thou-
sands of biomarkers each into a molecular kernel matrix. 
A molecular kernel matrix represents the inter-sample 
similarities in a given molecular profile (Additional file 1: 
Supplemental  Methods). A linear or non-linear kernel 
aggregation may aid in prediction of complex traits by 
capturing non-additive effects [54–56], which represents 
a sizable portion of phenotypic variation [57, 58]. Using 
all individual, pairwise, and triplet-wise combinations of 

molecular kernel matrices, we fitted predictive models 
of SRS and IQ based on linear mixed modeling [56] or 
kernel regression least squares (KRLS) [59] and assessed 
predictive performance with McNemar’s adjusted R2 via 
Monte Carlo cross validation [60]. We also optimized 
predictive models for the number of included biomark-
ers per molecular profile with feature selection in the 
training sets. Extensive model details, as well as alterna-
tive models considered, are detailed in Additional file 1: 
Supplemental Methods.

Validation in external dataset
Lack of studies that consider placental mRNA, CpG 
methylation and miRNA data with long-term child 

Fig. 1  Scheme for kernel aggregation and prediction models. (1) Design matrices for CpG sites, mRNAs, and miRNAs are aggregated to form a 
linear or Gaussian kernel matrix that measures the similarity of samples. (2) Clinical variables are regressed out of the outcomes IQ and SRS and 
from the omic kernels to limit influence from these variables. (3) Using 50-fold Monte Carlo cross-validation on 75–25% training-test splits, we train 
prediction models with the kernel matrices for IQ and SRS in the training set and predict in the test sets. Prediction is assessed in every fold with 
adjusted R2 and averaged for an overall prediction metric
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neurodevelopment limit the ability to extablish exter-
nal validation. We obtained one external placental CpG 
methylation dataset from the MARBLES cohort [11]. 
To assess out-of-sample performance of kernel mod-
els for methylation, we downloaded MethylC-seq data 
for 47 placenta samples, 24 of which were identified as 
ASD cases (NCBI Gene Expression Omnibus acces-
sion numbers GSE67615) [11]. β-values for DNA meth-
ylation were extracted from BED files and transformed 
into M-values with an offset of 1 [39], and used the best 
methylation-only predictive model to predict SRS and 
IQ in these 47 samples, as detailed in Additional file  1: 
Supplemental Methods.

Correlative networks and gene ontology enrichment 
analysis
In the final KRLS predictive models for both IQ and SRS 
including all three molecular profiles, we extracted the 
top 50 most predictive (largest point-wise effect sizes) 
CpGs, miRNAs, and mRNAs of SRS and IQ. A sparse 
correlative network was inferred among these biomark-
ers that links them  based on the strength of correlative 
signals using graphical lasso in qgraph [61, 62]. We then 

conducted biological process and molecular function 
gene ontology over-representation analysis of genes iden-
tified in these correlative networks using WebGestalt 
[63].

Results
Social impairment (SRS) and cognition (IQ) are associated 
with ASD
Although the sample is enriched for ASD cases (N = 
35 cases, 9.3% of the sample) relative to non-preterm 
cohorts, there is still a relatively low case–control ratio 
for a genome-wide study of this sample size (descriptive 
statistics for relevant covariates in Table  1). Therefore, 
we considered continuous measures of SRS and IQ at 
age 10 for both associative and predictive analyses. Using 
continuous variables for SRS and IQ allow us to to study 
complexities beyond the ASD diagnostic categories [16, 
18, 19]. Figure 2a, b shows the relationship between SRS, 
IQ, and ASD. SRS and IQ are negatively correlated [Pear-
son ρ = − 0.47,  95%CI (− 0.55, − 0.39)]. The mean SRS 
is significantly higher in ASD cases compared to controls 
[mean difference of 1.74, 95%CI (1.41, 2.07)]. Mean IQ is 
significantly lower in ASD cases versus controls [mean 
difference of − 2.23, 95%CI  (−  2.46, −  1.96)]. We also 

Table 1  Descriptive statistics for demographic and clinical covariates

Continuous variable Mean, SD, median

Maternal age (years) 29.6, 6.61, 29.5

Gestational age (days) 182.5, 9.17, 184.0

Birthweight Z-score 0, 1, 0.05

Categorical variable Number (proportion)

ASD

 Case 35 (9.3%)

 Control 344 (90.7%)

Race

 White 233 (61.5%)

 Black 112 (29.5%)

 Other 34 (9.0%)

Sex of baby

 Female 180 (47.5%)

 Male 199 (52.5%)

Mother’s smoking status

 Non-smoker 340 (89.7%)

 Smoker 39 (10.3%)

Mother’s insurance status

 Private 251 (66.2%)

 Medicaid 128 (33.8%)

Placental chorion inflammation

 Not inflamed 252 (66.5%)

 Inflamed 127 (33.6%)
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measured associations between demographic charac-
teristics with SRS and IQ using multivariable regression 
(Fig.  2c). Male sex is associated with lower IQ, while 
public health insurance is associated with both lower IQ 
and increased social impairment. Demographic variables 
included in the multivariable regression explain approxi-
mately 12% and 15% of the total variance explained in 
IQ and SRS, as measured by adjusted R2, with a sum-
mary of regression parameters in Table  2. Based on the 
associations identified here and the value of inclusion of 
continuous measures, subsequent transcriptomic and 
epigenomic analyses control for demographic covariates.

Genome‑wide associations of mRNA, miRNA, and CpGs 
with SRS and IQ
Genome-wide association tests between each of the 
individual placental molecular datasets (e.g. the placen-
tal mRNA data, the CpG methylation, or the miRNA 
datasets) in relation to SRS and IQ (see "Methods") 
identified two genes with mRNA expression signifi-
cantly associated with SRS at FDR-adjusted P  <  0.01, 

namely Hdc Homolog, Cell Cycle Regulator (HECA), 
and LIM Domain Only 4 (LMO4). We did not find CpG 
sites or miRNAs associated with SRS (Table  3). Asso-
ciations between IQ and the mRNA expression, at FDR-
adjusted P  <  0.01, were observed at four genes, namely 
Ras-Related Protein Rab-5A (RAB5A), Transmembrane 
Protein 167A (TMEM167A), Signal Transducer and 
Activator of Transcription 2 (STAT2), ITPRIP Like 2 
(ITPRIPL2). One CpG site, cg09418354, located in the 
gene Carbohydrate Sulfotransferase 11 (CHST11) dis-
played an association with IQ, and no miRNAs were 
associated with IQ (Table  3). Manhattan plots (Addi-
tional file 2: Supplemental Results—Figure S2) show the 
strength of associations of all biomarkers by genomic 
position. No mRNAs, CpG sites, or miRNAs were signifi-
cantly associated with both SRS and IQ. Summary sta-
tistics for these associations are provided in Additional 
file 2: Supplemental Results: Table S1.

We also considered differential mRNA expression anal-
ysis specific to four key distinct cell-types that comprise 
the placenta: extravillous trophoblasts, cytotrophobalsts, 

SRS

IQ

ASD Control Case

a

P = x −

Control Case
ASD

S
R

S

b

P < x −

Control Case
ASD

IQ

IQ SRS

Gestational days

C
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R R

Fig. 2  Associations between SRS, IQ, and ASD and with clinical variables. a Scatter plot of SRS (X-axis) and IQ (Y-axis) colored by ASD case (orange) 
and control (blue) status. b Boxplots of SRS and IQ across ASD case–control status. P value from a two-sample Mann–Whitney test is provided. c 
Caterpillar plot of multivariable linear regression parameters of IQ and SRS using clinical variables. Points give the regression parameter estimates 
with error bars showing the 95% FDR-adjusted confidence intervals [48]. The null value of 0 is provided for reference with the dotted line
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syncytiotrophoblasts, and mesenchymal stromal cells 
[64]. Importantly, we did not detect any significant 
associations between placental cell-type proportions 
and the differentially expressed genes in the bulk tissue. 
Incorporating estimated cell-type proportions into an 
interaction-based differential mRNA expression model 
revealed no cell-type-specific differentially expressed 
genes at FDR-adjusted P < 0.01. To examine any cell-spe-
cific trends, at FDR-adjusted P < 0.05, we detected two 

SRS-associated stromal cell-specific differentially expres-
sion genes and two IQ-associated syncytiotrophoblast-
specific differentially expression genes (Additional file 2: 
Supplemental Results—Table  S2), all not detected with-
out the interaction model. These SRS-associated genes 
include Bromodomain Containing 2 (BRD2), associated 
with fetal metabolic programming of newborns [65]. Fur-
thermore, we detected a syncytiotrophoblasts-specific 
association between IQ and ATPase Plasma Membrane 
Ca2 + Transporting 1 (ATP2B1), a gene whose polymor-
phic variants have been shown to have associations with 
preeclampsia [66, 67].

Kernel regression shows predictive utility in aggregating 
multiple molecular datasets
Because the genome-wide association analyses revealed 
few mRNAs, CpG sites or miRNAs that were associated 
with SRS or IQ with large effect sizes, we next assessed 
the impact of aggregating these molecular datasets on 
prediction of SRS and IQ. This was done to account for 
the considerable number of biomarkers that have mod-
erate effect sizes on outcome. To find the most parsimo-
nious model with the greatest predictive performance, 
we first selected the optimal number of biomarkers per 
molecular profile from the training set for each out-
come that gave the largest mean adjusted R2 in predic-
tive models with only one of the three molecular datasets 
(see Additional file 1: Supplemental Methods). Figure 3a 
shows the relationship between the number of biomark-
ers from the mRNA expression, CpG level, miRNA 

Table 2  Summary of multivariable regression models of SRS and IQ in relation to clinical covariates (self-reported race, 
sex, maternal age, smoking status, insurance level of the mother, gestational age, birthweight Z-score, and inflammation 
of the placental chorion)

Parameter SRS IQ

Estimate (SE) FDR-adjusted
P value
(Raw P value)

Estimate (SE) FDR-adjusted
P value
(Raw P value)

Race

 Black 0.219 (0.13) 0.165 (0.091)  − 0.369 (0.13) 0.012 (0.004)

 Other 0.375 (0.19) 0.087 (0.043)  − 0.113 (0.18) 0.684 (0.533)

Sex

 Male 0.119 (0.10) 0.342 (0.243)  − 0.288 (0.10) 0.012 (0.004)

 Maternal age  − 0.002 (0.01) 0.800 (0.800)  − 0.003 (0.01) 0.792 (0.748)

Smoking status

 Yes 0.215 (0.17) 0.334 (0.204) 0.337 (0.17) 0.087 (0.043)

Mother’s insurance

 Medicaid 0.454 (0.13) 0.002 (0.001)  − 0.453 (0.13) 0.003 (0.001)

 Gestational age  − 0.017 (0.01) 0.012 (0.002) 0.012 (0.01) 0.087 (0.043)

 Birthweight Z-score  − 0.060 (0.05) 0.342 (0.247) 0.179 (0.05) 0.003 (0.001)

 Placental inflammation  − 0.042 (0.11) 0.793 (0.705)  − 0.046 (0.11) 0.793 (0.677)

Table 3  Summary of  genome-wide associations 
of  molecular profiles with  SRS and  IQ at  FDR-adjusted 
P < 0.01

Biomarker Effect size FDR-adjusted
Pvalue

SRS

mRNA expression

 HECA 0.571 0.001

 LMO4 0.467 0.001

IQ

Biomarker

 mRNA expression

 RAB5A  − 0.516 0.002

 TMEM167A  − 0.632 0.004

 ITPRIPL2  − 0.557 0.004

 STAT2  − 0.584 0.004

CpG methylation site

 cg09418354 (within CHST11)  − 0.005 0.002
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expression datasets and their predictive performance. In 
general, predictive performance steadily increased as the 
number of biomarker features increased until reaching 
a tipping point where predictive performance decreased 
(Fig.  3a). Overall, for CpG methylation, the top (low-
est P values of association) 5000 CpG features showed 
the greatest predictive performance, and for the mRNA 
and miRNA expression datasets, the top 1000 features 
showed the greatest predictive performance.

Using the fully-tuned 7000 biomarkers (5000 for CpG 
methylation and 1000 for both mRNA and miRNA 

expression) per molecular dataset with feature selec-
tion carried out in the training set, we trained predictive 
models (both linear and Gaussian kernel models) using 
all individual, pair-wise, and triplet-based combina-
tions of the three molecular datasets. Figure  3b shows 
that whereas the mRNA had the lowest predicted per-
formance to both IQ (R2 = 0.025) and SRS (R2 = 0.025), 
aggregating the mRNA expression, CpG methylation and 
miRNA expression datasets tends to increase the predic-
tive performance. Specifically, in relation to both out-
comes (SRS and IQ), the model using all three integrated 

a b

Fig. 3  In-sample predictive performance of kernel models. a Adjusted mean R2 (Y-axis) of best kernel models over various numbers of the top 
biomarkers (X-axis) in the CpG (dark blue), miRNA (orange), and mRNA (light blue) omics over 50 Monte Carlo folds. The X-axis scale is logarithmic. 
b Bar plots of adjusted mean R2 (Y-axis) for optimally tuned kernel predictive models using all combinations of omics (X-axis) over 50 Monte Carlo 
folds. The error bar gives a spread of one standard deviation around the mean adjusted R2
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datasets shows the greatest predictive performance 
(mean adjusted R2 = 0.11 in relation to IQ and R2 = 0.08 
in relation to SRS).

Correlative networks of placental biomarkers
To gain further understanding of the associations among 
the identified mRNA, CpG and miRNA biomarkers in 
the context of IQ and SRS, we extracted (n = 50) mRNA, 
CpGs, and miRNAs with the largest effect sizes on IQ 
and SRS in the kernel regression models and inferred 
sparse correlative networks using the graphical lasso 
[61, 62] (see "Methods"). In the networks (Additional 
file  2: Supplemental Results—Figure S3), each molecu-
lar dataset clusters by itself, with minimal nodes extend-
ing between molecular datasets, and more correlation 
observed between miRNAs and CpG methylation ver-
sus mRNAs. These networks point to genes that have 
been shown in literature to play important roles in neu-
ronal development and in placental function. For exam-
ple, SMARCA2 (SWI/SNF Related, Matrix Associated, 
Actin Dependent Regulator Of Chromatin, Subfamily A, 
Member 2) and DDX59 has been implicated in develop-
ment disorders of the brain, such as Nicolaides-Baraitser 
syndrome and epilepsy, and other developmental dis-
orders, such as dysfunctional central nervous system 
development and orofaciodigital syndrome [68–73]. Fur-
thermore, ARL5B (ADP Ribosylation Factor Like GTPase 
5B) and MPP5 (Membrane Palmitoylated Protein 5) have 
been associated with decidua and trophoblasts func-
tions within the placenta [74–76]. Furthermore, at FDR-
adjusted P < 0.05, over-representation analysis revealed 
gene enrichments for membrane organization processes 
(endomembrane system and membrane organization) for 
the IQ-associated gene set and nucleic acid and enzyme 
binding processes (RNA binding, ubiquitin protein ligase 
binding, heterocyclic compound binding, etc.) for the 
SRS-associated gene set (Additional file 2: Supplemental 
Results—Table S3).

Validation of in‑sample and out‑sample SRS and IQ 
prediction with ASD case and control
To contextualize our predictions, we tested whether 
the predicted SRS and IQ scores generated by our ker-
nel models are associated with ASD case–control status; 
these predicted SRS and IQ scores represent the portion 
of the observed SRS and IQ values that our models can 
predict from placental genomic features. We used the 
optimal 7000 biomarker features identified with a tenfold 
cross-validation process, splitting samples into 10 hold-
out sets and using the remaining samples as a training set 
to predict SRS and IQ for all 379 samples. After account-
ing for covariates, the predicted SRS and IQ values 

from the biomarker data were well-correlated with the 
observed clinical SRS and IQ values, explaining approxi-
mately 8% (approximate Spearman ρ =0.29, cross-valida-
tion R2 P value P = 7.5 × 10−9) and 12% (Spearman ρ = 
0.35, P = 3.6 × 10−12) of the variance in the observed SRS 
and IQ variables, respectively. This shows that biomark-
ers in the placenta can explain considerable amount of 
the variance in SRS and IQ at 10 years of age.

Lastly, we assessed associations between molecu-
larly-predicted SRS and IQ values and ASD case–con-
trol status. In ELGAN, we found strong associations 
between the predicted SRS and IQ with ASD case and 
controls, mean difference of − 0.56 (test statistic W = 
8121,  P = 6.6 × 10−4) for IQ, and mean difference of 
0.33 (W = 4717, P = 0.03) for SRS (Fig. 4a). Because of 
the lack of an available external dataset with all three 
molecular data (mRNA, CpG methylation, and miRNA) 
and IQ, SRS and ASD data, we assessed the out-of-sam-
ple predictive performance of the CpG methylation-only 
models using MethylC-seq data from the MARBLES 
cohort (GEO GSE67615) [11]. We computed predicted 
IQ and SRS values for 47 placental samples (24 cases of 
ASD) and assessed differences in mean predicted IQ and 
SRS across ASD case and control groups. The direction 
of the association is similar to our data for IQ, yet the 
differences in mean-predicted IQ (− 0.22, P = 0.37) and 
SRS (− 0.42, P = 0.12) across ASD groups in MARBLES 
are not significant (Fig. 4b). This external validation pro-
vides some evidence of the portability of our models and 
merits further future validation of these models, as more 
placental multi-omic datasets are collected.

Discussion
We evaluated the predictive capability of three types 
of molecular biomarker data, namely transcriptomic 
(mRNA), and epigenomic (miRNA expression, CpG 
methylation), in the placenta on cognitive and social 
impairment in relation to ASD at 10  years of age. The 
molecular biomarker data highlight that genes that play 
important roles in placental functioning (ARL5B and 
MPP5) and neurodevelopment (SMARCA2, DDX59, 
MPP5) were associated with or predictive of SRS and IQ. 
The multi-omic predictions of SRS and IQ are strong and 
explain up to 8% and 12% of the variance in the observed 
SRS and IQ variables in tenfold cross-validation, respec-
tively. External validation of our models is inconclusive, 
however, and merits further investigation to minimize 
uncertainty in our findings, as mentioned in the limita-
tions section. This study supports the utility of aggre-
gating information from biomarkers within and among 
molecular datasets to improve prediction of complex 
neurodevelopmental outcomes like social and intellectual 
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ability, suggesting that traits on the placenta-brain axis 
may be omnigenic.

Several genes with known ties to neurodevelopmen-
tal disorders distinguished individuals with and without 
intellectual or social impairments. For example, LMO4 
(associated with social impairment) is a protein encod-
ing gene with a broad spectrum of expression in human 
tissues and involved in multiple developmental path-
ways, including neurogenesis. Among its many roles, 
LMO4 promotes the acquisition of cortical neuronal 
identities by forming a complex with the protein neu-
rogenin 2 (NGN2) and subsequently activating NGN2-
dependent gene expression [77]. Humans with deletions 
in LMO4 display intellectual disabilities and occasionally 
autism [78]. Furthermore, this gene has also been associ-
ated with modulation of fear [79] and cue-reward lean-
ing [80], which could result in perceptions and behaviors 
seen in association with social impairment. LMO4 also 
influence the growth factor-β (TGF-β) cytokine path-
way, which plays important roles in mammalian devel-
opment [81]. LMO4 and HECA has been identified in 
pathways and processes related to neural development 
via commonly regulated targets of Forkhead box protein 
P2 (FOXP2) and miR-3666; the LMO4 gene shows asym-
metric expression in the embryonic brain possibly due to 
repression by FOXP2 and hence plays important roles in 
cortical patterning [82].

Among the biomarkers associated with IQ, we found 
RAB5A, a protein coding gene belonging to a family of 
small GTPases, involved in a variety of cellular processes 
including intracellular membrane trafficking. In the 
placental syncytiotrophoblasts, a specialized epithelial 
structure that interfaces the placenta and maternal blood, 
RAB5A has shown involvement in vesicular trafficking 
which could affect the syncytiotrophoblast function of 
transporting nutrients necessary for fetal development 
[83]. RAB5A can also affect the regulation of genes with 
roles in cell proliferation [84]. In terms of cognitive out-
comes, RAB5A and the RAB family play critical roles in 
synaptic function [85, 86] and dendritic branching [87]. 
Finally, genetic variants of RAB5A have been associ-
ated with ASD [88]. Other relevant genes are STAT2 and 
CHST11. STAT2 is a well-known essential and specific 
positive effector of type I interferons (IFNs) signaling 
[89], and placental type I IFNs is an important immune 
modulator, including modulation of viral infection in the 
mother and fetus [90]. STAT2 was identified as one dif-
ferentially expressed genes in ASD and co-morbidities 
that overlap with innate immunity pathways [91]. Also, 
with important roles in immune regulation, the genetic 
variation and methylation of the CHST11 gene, for which 
we found a methylated CpG site associated with intellec-
tual impairment, has been linked to neurodevelopmental 
disorders [92, 93].

IQ SRS

Control Case Control Case

0

ASD

v

ASD Control Case

IQ SRS

Control Case Control Case

0

ASD
v

ASD Control Case

-4

a b

Fig. 4  Association of ASD case/control status with predicted SRS and IQ. a Box-plots of in-sample predicted IQ (left) and SRS (right) over ASD case/
control in ELGAN over tenfold cross-validation. b Box-plots of out-sample predicted IQ (left) and SRS (right) over ASD case/control in MARBLES 
external validation dataset. P-values presented as from a Mann–Whitney test of differences across the ASD case/control groups
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In our correlative gene network analysis, we detected a 
group of inter-related genes associated with IQ enriched 
for membrane organization processes. This enrichment 
may point to a previously established link: endothelial 
cell membrane dysfunction leads to deficient nutrient 
exchange and has a lasting impact on neurodevelopment 
[94]. For example, one of these genes is DDX59; in our 
differential expression analysis, DDX59 shows a nomi-
nally significant negative association with IQ. A recent 
study has shown that DDX59 is upregulated in syncytio-
trophoblasts in severe preeclampsia patients compared 
to controls [95]. Another example is MPP5, expressed 
in the placenta, brain, nervous system and other tissues, 
which is essential for cell polarity, fate and survival. In the 
placenta, MPP5 seem to have significant roles: promo-
tion of embryo-decidual adhesion [75], differentiation of 
extravillous trophoblasts [76], and gene expression levels 
from chorionic villus have been associated with severe 
early-onset preeclampsia [96]. In terms of neurodevelop-
ment, both animal and human studies show that MPP5 
has been found to be essential in neurogenesis [97, 98]; 
in a murine model Mpp5 depletion led to microceph-
aly, decreased cerebellar volume and cortical thickness, 
while humans with de novo variants of MPP5 suffer from 
global developmental delays with language regression 
and behavioral changes [97]. In our differential expres-
sion analysis, we found that MPP5 has a nominal nega-
tive association with IQ. Lastly, we also estimated that 
SMARCA2 has a strong predictive effect on and a nomi-
nally positive association with IQ; previous literature 
shows that epigenomic effects on and genetic dysfunc-
tion of SMARCA2 plays a role in development of Nico-
laides-Baraitser syndrome, a developmental disorder 
categorized by intellectual disability and seizures [68, 69]. 
It is worth noting that these results are ultimately corre-
lational in nature, and a causal interpretation should be 
avoided. Future research using in vitro and in vivo studies 
could elucidate the mechanistic influences of placental 
expression of these genes on the brain.

Not only did our cell-type-specific differential expres-
sion analysis show that the differentially expressed genes 
we detected in the bulk placenta were minimally affected 
by cell-type heterogeneity, we detected genes whose cell-
type-specific expression has large associations with IQ 
and SRS. For instance, we detected a syncytiotrophoblast-
specific association between IQ and ATP2B1, a gene that 
has been implicated in preeclampsia [66, 67], an in utero 
condition that is partially mediated by dysfunctional 
syncytiotrophoblasts [99] and has negative impacts with 
childhood neurodevelopment [100, 101]. In addition, 
ATP2B1 encodes PMCA1, a plasma membrane calcium 
ion pump, shown to have reduced activity in fetal-facing 
syncytiotrophoblast basal plasma membranes in patients 

with preeclampsia compared to controls [102–105]. This 
cell-type-specific analysis underscores the importance 
of not only accounting for cell-type-heterogeneity in 
bioinformatics analyses of the placenta but estimating 
cell-type-specific associations through deconvolution or 
single cell assays.

Comparing the individual molecular datasets, DNA 
methylation effects showed the strongest prediction of 
both SRS and IQ impairment. There is strong evidence 
suggesting inverse correlation between DNA methylation 
of the first intron or promoter region and gene expres-
sion across tissues and species [106]. We found that many 
of the CpG loci with the largest effect sizes on SRS and 
IQ identified in our analysis are located in genes with 
DNase hyperactivity or active regulatory elements for 
the placenta [107, 108], suggesting that these loci likely 
play regulatory functions. Experimental studies have 
demonstrated regions of the genome in which DNA 
methylation is causally important for gene regulation 
and those in which it is effectively silent [109]. We found 
that aggregating biomarkers within and among molecu-
lar datasets improves prediction of social and cognitive 
impairment. Specifially, this observation suggests new 
possibilities to the discovery of candidate genes in the 
placenta that convey neurodevelopmental risk, improv-
ing the understanding of the placenta-brain axis. Recent 
work in transcriptome-wide association studies (TWAS) 
are a promising tool that aggregates genetics and tran-
scriptomics to identify candidate trait-associated genes 
[110, 111]. Incorporating information from regulatory 
biomarkers, like transcription factors and miRNAs, into 
TWAS increases study power to generate hypotheses 
about regulation [112, 113]. Given our observations in 
this analysis and the number of the integrated molecu-
lar datasets, we believe that the ELGAN study can be 
used to train predictive models for placental transcrip-
tomics from genetics, enriched for regulatory elements 
[113]. These transcriptomic models can then be applied 
to genome-wide association study cohorts to study the 
regulation of gene-trait associations in the placenta.

Limitations
When interpreting the results of this study, some fac-
tors should be considered. Extremely preterm birth is 
strongly associated with increased risk for neurodevelop-
mental disorders [19]. This association may lead to bias 
in estimated associations between the molecular bio-
markers and outcomes, mainly when unmeasured con-
founders are linked to both pre-term birth and autism 
[114]. Ideally, an external dataset with both multiomic 
data and pre-term birth phenotypes could be used to 
examine associations between molecular profiles and 
pre-term birth to investigate the degree to which collider 
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bias affects associations between molecular profiles and 
SRS and IQ [114, 115]. Without this assessment of col-
lider bias, results from our predictive models may not 
generalizable to term cohorts. Still, to our knowledge 
the ELGAN cohort is among the largest available placen-
tal repositories with both multiple molecular datasets 
and long-term neurodevelopmental assessment of the 
children.

Second, as the placenta is comprised of several hetero-
geneous cell types, cell type-specific molecular patterns 
in the placenta should be taken into consideration when 
interpreting these findings. We did consider deconvolu-
tion of our tissue samples using mRNA expression. Due 
to a dearth of placental cell-type-specific expression ref-
erences, we opted for a reference-based deconvolution 
of four key cell types. These four cell types, however, 
do not fully represent the cellular compexity of the pla-
centa. As these reference expression profiles become 
available, a more comprehensive analysis with reference-
based deconvolution may reveal more cell-type-specific 
expression and methylation patterns that are specific 
to diverse populations of trophoblasts, stromal cells, 
endothelial cells, and pericytes. There are also consid-
erations made about the degradation of RNA in the pla-
cental specimens over time. As the placental tissue was 
stored for ~ 15  years, we had to impose strict pre-filter-
ing of genes whose expression have low counts and dis-
persions [42], resulting in a reduction of the analyzable 
transcriptome.

Lastly, to test the reproducibility and robustness of 
our kernel models, further out-of-sample validation is 
required, using datasets with larger sample sizes and 
similar molecular datasets. Though in-sample predictive 
performance is strong, platform differences between the 
ELGAN training set (assayed with the EPIC BeadChip) 
and the validation set (assayed with MethylC-seq) may 
lead to loss of predictive power. As our optimal models 
trained in ELGAN all aggregated the DNA methylation, 
miRNA, and mRNA datasets, the dearth of data for the 
placenta, in the context of social and intellectual impair-
ment, makes out-of-sample validation of the full model 
especially challenging. In spite of these limitations, these 
data support the association between molecular features 
within the fetal placenta and social and cognitive out-
comes in children that merits future investigation.

Conclusions
Our analysis underscores the importance of synthesizing 
data representing various levels of biological organization 
to understand distinct transriptomic and epigenomic 
underpinnings of complex developmental deficits, like 
intellectual and social impairment. This study provides 
novel evidence for the omnigenicity of the placenta-brain 
axis in the context of social and intellectual impairment.
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