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ABSTRACT OF THE DISSERTATION
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Doctor of Philosophy in Engineering Sciences (Engineering Physics)
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Professor Daniel M. Tartakovsky, Chair
Professor Prabhakar Bandaru, Co-Chair

Subsurface processes represent a class of important phenomena that occurs in many nat-

ural and anthropogenic settings. This dissertation deals with mathematical modeling of multi-

scale subsurface processes. Subsurface processes can be simulated at multiple scales with vari-

able degrees of fidelity. We investigate the effect of subsurface phenomena on macroscopic

dynamics in three particular cases.

In Chapter 2, we consider microscopic (pore-scale) features of reactive transport that can-

not be properly resolved in macroscopic (Darcy-scale) models. While microscopic descriptors

might be closer to reality, they are computationally unfeasible when deployed on a macroscale.
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Hybrid algorithms combine the physical fidelity of a microscopic model with the computational

efficiency of its macroscopic counterpart. We develop a hybrid model of dynamic reactive fronts

in an open fracture, with a chemical reaction occurring in the zone of contact between two dis-

solved species. Our numerical experiments demonstrate that the hybrid model outperforms its

microscopic and macroscopic counterparts in terms of computational time and representational

accuracy, respectively.

In Chapter 3, we consider the effect of temperature on interfacial dynamics where small

fluctuations affect instabilities. Viscous fingering is a hydrodynamic instability that can be

caused by a viscosity difference across a traveling thermal front. We investigate the problem

of displacement stability in the filtration flow for two-phase filtration in the presence of heat

transfer. Fingers instability was analyzed for isothermal and non-isothermal processes. Our syn-

ergistic numerical and theoretical investigation confirms the development of instability due to

differences in viscosities. Our results demonstrate that controlling the stability of such a system

requires exponentially lowering the fluid’s viscosity when the temperature is increased.

Even by implementing multiple simplifying assumptions, most real-world problems are

extremely complex and, therefore, quite costly to thoroughly analyze. In Chapter 4, we utilize

a supporting vector regression (SVR) method to create a surrogate model, based on a limited

amount of data, capable of describing the behavior of a set of wells with various input param-

eters. SVR is applied to analyze and to deconstruct the groundwater geochemistry observed in

the regional aquifer for characterization of contaminant sources. Using synthetic and real-world

data, we demonstrate that our SVR model is capable of accurately building a surrogate model us-

ing only a limited amount of experimental data and simulation results. Further, we demonstrate

that global sensitivity analysis can be applied to our SVR model and it can produce accurate

results at significantly lower computational cost.

Overall, this thesis investigates multiple aspects of multi-scale fluid dynamics by both

developing physics-based numerical models and data-driven computational approaches.

xiv



Chapter 1

Introduction

1.0.1 Multi-scale modeling in subsurface and biological processes

Interfaces between two fluids occur everywhere, for example in natural environments or

in industrial applications. The two-fluid flows development are powerful in many engineering

applications. For example, the instability of fluid-fluid flows affects the spray combustion break-

down, the sea sprays breakdown, and carbon dioxide sequestration in oil recovery processes. A

large amount of fluid dynamic problems involve dynamic interfaces. Some of the applications

include dynamics of air and water, breaking surface waves , oil recovery problems and reacting

flows in porous media.

Any mathematical or physical model is based on an general system simplification on a

different scales. These models are solved with the assumptions that enable their formulation and

predictive tool usage. To make a model with a certain accuracy we need to describe the behavior

of the system and provide the necessary computational cost to solve the original model. Different

models provide various performances in different regimes. Also, there are further complications

in they systems when the prediction scales is much bigger than the governing equations scales are

described. This problem is very common for flow and transport equations in porous media where

the prediction scales are much larger than the scales where these equations are represented. We
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are very interested in the following complex systems, since their characteristics are based on a

large scale environments such as geologic formations to biological singe cells cells and from oil

reservoir modeling on a field scale to nano products on a pore scale.

As a matter of our particular interest, the subsurface systems involve various processes

taking place at a wide range of spatial and temporal scales. Subsurface systems have spatial

scales with range from kilometers e.g., oil production and CO2 sequestration, and from meters

to microns when dealing with a biological single cell or multiple cells when we are considering

the problem of the spread of cancer.

Flow and transport in porous media can be modeled on a various scales: at the pore-

(microscopic) or Darcy- (macroscopic) scales. The Darcy scale have a solid physical founda-

tion and consists of Stokes equations for fluid flow and advection-reaction- diffusion equations

(ARDEs) for solutes and transport; The Darcy-scale equations for flow and ARDEs for transport

are impractical for large-scale simulations because of the lack of knowledge about the detailed

pore geometry and high computational costs. The heterogeneity and uncertainty of most natural

porous media, such as oil reservoirs and aquifers make pore scale simulations impractical in

terms of the predictive tool at continuum scales that are many orders of magnitude larger than

the pore scale.

Macroscopic models describe porous medium as an ”averaged continuum” and solve

these constrains by relying on a set of simplified conditions which are required to solve equa-

tions for averaged flow velocity and solute concentrations, which provide Darcy-scale constrains

of flow and transport in porous media. Such macroscopic models fail when some of these as-

sumptions become violated where the heterogeneity in porous systems could lead to localized

violation of homogenizability constrains in continuum models.

2



1.0.2 The porous medium

Fluids play a vary important role in a wide range of geological and biological processes.

The advective transport of dissolved species is valuable in a many applications for geochemical

transformations where contaminants travel through large distances in the subsurface or blood

vessels as a result of fluid flow. Although many fractured and porous biological geological

systems are saturated with a single fluid (water with a many dissolved minerals and gasses,

blood with the contaminants), pore spaces and fractures are often occupied simultaneously by

two and more fluids and gases.

Simulations of pore-phases in multiphase fluid flow are much more complicating than

single phase flow simulations for several reasons: the complex dynamics of fluid-fluid interfaces

has to be tracked fast and precisely and the behavior of multiphase fluids with large density and

viscosity ratios is difficult to accurately simulate. Pore scale models have been used to simulate

several cases of multiphase and single-phase fluid flow in porous media. However, pore models

are based on simplified models using the pore space geometry and simplified physics assump-

tions. Also, pore models are not well developed for the simulation of multiphase fluid flow in

heterogeneous porous media [58]. It is still not possible to accurately describe the multiphase

fluid flow models for the large ratios of densities and viscosities. Due to the high scientific atten-

tion, multiphase fluid dynamics of moving fronts has been investigated using both experiments

and computational methods by a large community of scientists and engineers. Consequently, a

quite large number of methods have been developed to simulate multiphase fluid flow.

1.0.3 Types of displacement processes

Instabilities between interfaces develop at the interface between the displacing and the

displaced fluids due to the growth of perturbations that forms complex interface topologies.

These perturbations will grow and interact with one another in a non-linear way, affecting the
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overall fluid flow and resulting displacement characteristics. The viscous fingering instability is

an interfacial instability caused by a difference in the fluids’ viscosity. If a high viscosity fluid

is displacing the low viscosity fluid, perturbations that are greater than a certain wavelength de-

velop instabilities along the fluid interface and promote the growth of a nonlinear displacements

which affects the more viscous fluid ( [21], [70]).

The development of viscous fingers is an important effect in many applications, such

as the fluid flow in porous media, enhanced oil recovery [75], geothermal heat extraction [57]

and carbon dioxide sequestration [94]. In these flows, the fluid-fluid front interface separate the

displacing and the displaced fluid and front can be described as a smooth or sharp interface.

In immiscible displacements the the fluid-fluid interface is sharp, well defined and controlled by

viscous forces, where the fluid properties observe discontinues profiles, and in miscible displace-

ments the front is smooth (due to the dispersion) and the diffusion is mixing the concentrations

of both fluids [64]. Any process that helps to reduce instabilities or the control of the growth rate

of viscous fingers, is the key importance for technology development.

During the immiscible displacement in porous media, the flow regime depends on the

mobility ratio at the interface between the fluids which describes the viscous driving forces [10].

The motivation behind the current studies is propagation of the immiscible flows in porous media

driven by the pressure gradient with the influence of variable temperature. There is an instability

at the interface in the problem of the water-oil spreading, due to the deference in fluid properties,

which can give rise to the viscous fingering phenomena. The injection of water will typically oc-

cur at a temperature different to that of the fracture creating temperature gradients in the domain

that will alter mechanical fluid quantities such as viscosity, density and surface tension. The

water may also be injected at a higher temperature than the oil in the fracture, for front evolution

monitoring. The difference in temperatures can create a thermo-viscous fingering problem there

the dependence of viscosity on temperature affects the mechanisms of the fingering process.

The observations of the viscous fingering process in a subsurface contaminant flow
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caused several research attempts on viscous fingering in Hele-Shaw cells, studying the fluid

flow between two separated plates [70]. The study of viscous fingering in Hele-Shaw cells is

often used as the simplification approach for more complex problems in porous media, allowing

the simplified models to describe mechanisms that control the viscous fingering regime [21]. In

addition to analytical and numerical models, it is possible to dtudy fingering instabilities experi-

mentally using a relatively simple Hele-Shaw cell setup.

The majority of existing studies have focused on isothermal displacements where both

fluids are at the same temperature. Extensive reviews of theoretical, experimental, and numerical

simulation studies can be found in the study of ( [32]), [46], [67]).

The instability development is driven by the different viscosity ratios may vary as a

result of a change in the flow temperature. The resulting instability may be observed under two

conditions. In the first one, a fluid flows through a porous medium having a temperature different

than that of the fluid. Such instability may be observed in magma flow in fissure eruptions, geo-

thermal flows as well as flow of polymer melts in injection molding. In the second one, the

two fluids are at two different temperatures resulting in two traveling fronts, a fluid front and

a thermal front along which the instability may be observed. Such flows are encountered in

many thermal enhanced oil recovery processes such as hot water flooding, steam flooding and

hot solvent injection, as well as in some polymer processing systems.

Fingering problems operate on many spatial scales, such as pore scale and the Darcy-

scale which triggers the existence of a characteristic macroscopic length scale or wavelength.

We want to explore the linear stability stages of the viscous fingering instability in immiscible

flows, and understand the mechanisms of the processes that can occur during the water-oil dis-

placements within the inclusion of temperature dependence. By studying the problem of the

two dimensional two phase filtration in a homogeneous fracture and using advanced numerical

methods, the mechanisms for the instability in the linear stages of finger growth can be explicitly

studied and the different thermal and structural effects explored in detail.
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Kong et al. (1992) conducted one of the first research studies on this topic [51]. These

authors developed the steam displacement problem of crude oils in vertical and horizontal Hele-

Shaw cells. In their studies the steam tended to condense in contact with the cold oil. The authors

also compared isothermal water-oil and non-isothermal steam-oil displacements problems.

In terms of mathematical or numerical modeling of the thermo-viscous fingering instabil-

ity, there are not a lot of conducted studies. The first numerical study to research this instability

was made by Saghir et al. (2000) [71]. These authors studied nonlinear double-diffusive con-

vection in a vertical homogeneous porous medium, and applied the finite element methods for

solving the fluid flow in porous media. They included Isothermal and non-isothermal displace-

ments. Variations of the distance traveled by the base and the tip were studied for each case

and not a lot of differences were conducted between the isothermal and non-isothermal cases.

Pritchard (2004) analyzed the stability regimes of non-isothermal miscible displacements in a

porous medium of radial geometry [64]. The author developed the stability of the fluid and

thermal traveling fronts and since viscosity may change across each front, viscous fingering in-

stability was observed on both fronts. In order to find the flow instability, the viscosity changes

corresponding to thermal and concentration changes must be studied separately. In general, both

variations were developing fingering instabilities however the growth rate could be varied by

the coupling between the two thermal and solutal mechanisms. Recently, MN Islam, J Azaiez

(2010) are fully examined the development of the thermo-viscous fingering instability of misci-

ble displacements in homogeneous porous media [46].

1.0.4 Thesis aims and objectives

The focus of this dissertation is to investigate the problems of how subscale phenomena

affects macroscopic dynamics of moving fronts. We developed three problems that deserved not

a lot of attention. For the first problem in Chapter 2 we investigated the pore-scale/Darcy-scale,

physics based model of moving reactive miscible fronts of bi-molecular reaction. The second
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problem in Chapter 3 we developed the field scale model of immiscible two phase filtration

of two displacing fluids with the inclusion of temperature. A third problem in Chapter 4 was

chosen to be a data driven simulation of miscible displacement in contaminant flow where we

are interested in the movement of the front and thus in creation of surrogate model capable of

analyzing and deconstructing the groundwater geochemistry observed in the regional aquifer for

characterization of contaminant sources. These case studies are lined to each other in various

ways and at various spatial scales and serve as excellent test-beds in multi-scale mathematical

modeling of fluid flow in subsurface environments.

The evolution of a reaction A+B→C in a spatially extended system is characterized by

the propagation of reaction fronts that separate the species A and B. The motion of these fronts

is well understood for reaction-diffusion systems in the absence of any substrate flow. The ef-

fects of fluid motion on fronts in the more general advection-reaction-diffusion system have only

recently received significant attention. This is somewhat surprising, given the applicability of

advection-reaction-diffusion to a wide range of systems, including microfluidic chemical reac-

tors [29], plasmas [87], the dynamics of ecosystems in the oceans (e.g.,plankton blooms) [81],

cellular- and embryonic-scale biological processes ( [93], [86]), and the propagation of diseases

in society [82]. Some microscopic (pore-scale) features of reactive transport cannot be properly

resolved in macroscopic (Darcy-scale) models. While microscopic descriptors might be closer

to reality, they are computationally unfeasible when deployed on a macroscale. Hybrid algo-

rithms combine the physical fidelity of a microscopic model with the computational efficiency

of its macroscopic counterpart. In Chapter 2 we develop a hybrid model of dynamic reactive

fronts in an open fracture, with a chemical reaction occurring in the zone of contact between two

dissolved species. Our numerical experiments demonstrate that the hybrid model outperforms its

microscopic and macroscopic counterparts in terms of computational time and representational

accuracy, respectively.

In chapter 3, we aim to model the 2D evolution of the water oil displacement process
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in porous media and explore certain aspects of the displacement regime and viscous instabil-

ity to better understand the underlying mechanisms that control the immiscible thermo viscous

fingering process. We consider the effect on temperature on interfacial dynamics where small

fluctuations affects instabilities. Viscous fingering is a hydrodynamic instability that can be

caused by a viscosity difference across a traveling thermal front. We investigate the problem

of displacement stability in the filtration flow for two-phase filtration in the presence of tem-

perature. Fingers instability was analyzed for isothermal and non-isothermal processes. Were

confirmed the results of theoretical investigations about the developing the instability due to the

difference in viscosities. Results demonstrate that it’s possible to control the the stability of the

system when the increase of temperature causes the exponential lowering the viscosity of the

fluid.

Even with the implementation of many simplifying assumptions, most real-world prob-

lems are extremely complex and therefore quite costly to analyze thoroughly. In Chapter 4, we

utilize a Supporting Vector Regression (SVR) method for creation a surrogate model capable of

describing the behavior of a set of wells with the various input parameters, based on a limited

amount of data samples. SVR method is applied to analyze and deconstruct the groundwater

geochemistry observed in the regional aquifer for characterization of contaminant sources. Us-

ing synthetic and real world site data, we demonstrate that SVR method is capable of accurately

build a surrogate model of set of monitoring wells, using only a limited amount of experimen-

tal data and simulation results. A comprehensive analysis of the model’s output and sensitivity

indices via Global Sensitivity Analysis (GSA) method can be accurately calculated with much

lower computational costs.
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Chapter 2

A Hybrid Multiscale Model of Miscible

Reactive Fronts

2.1 Introduction

Reaction fronts moving with a fluid are a characteristic feature of many physical, chem-

ical and biological processes [24, 26, 32, 49]. This phenomenon occurs when a fluid with a

dissolved species A displaces a fluid (the same or different) with a dissolved species B. A chem-

ical reaction, e.g., A+B→ C, occurs within a spatially localized region (a “front”) separating

these two solutions. The position and width of this front change with time due to fluid flow,

molecular diffusion, and hydrodynamic dispersion. While localized reaction fronts might oc-

cupy a minuscule fraction of a flow domain, their effects on flow transport can be felt over much

larger regions [36].

Like all subsurface flow and transport processes, dynamic reaction fronts can be de-

scribed with either pore-scale (microscopic) or Darcy-scale (macroscopic) models. The former

have a solid physical foundation consisting of Stokes equations for flow and advection-reaction-

diffusion equations for transport; yet they are impractical for large-scale simulations of practical
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interest because of the lack of knowledge about pore geometry and prohibitively high com-

putational cost. A set of simplifying assumptions is required to derive equations for average

flow velocity (Darcy’s law) and solute concentration (advection-dispersion equation or ADE),

which provide Darcy-scale descriptors of flow and transport in porous media. Such macro-

scopic models fail when some of these assumptions become invalid ( [11], [15]). If the failure

of macroscopic models is confined to a small region of a computational domain, hybrid pore-

scale/Darcy-scale algorithms [82] allow one to combine the high-fidelity of microscopic models

with the computational efficiency of their macroscopic counterparts. Hybrid algorithms yield

accurate predictions, while keeping computational cost relatively low by restricting microscopic

simulations in subdomains where macroscopic models break down and solving macroscopic

equations in the rest of the computational domain [3], [4], [5], [83]. Hybrid algorithms for

subsurface applications have been developed by [9, 12, 69, 79, 84]. In these and other similar

analyses, the micro- and macroscopic simulation domains are fixed in space.

A major goal of our analysis is to develop a hybrid model of dynamic reactive fronts,

which involve two dissolved species undergoing a nonlinear homogeneous reaction to produce

another solute. A set of numerical experiments is performed to investigate the validity of the ho-

mogenizability conditions for multicomponent reactive flow in a horizontal open fracture. When

these conditions are not met, we deploy the hybrid algorithm that couples a pore-scale model in

the vicinity of a moving reaction front with a corresponding Darcy-scale model elsewhere in the

fracture. The two models are coupled via an iterative procedure, which enforces the continuity

of concentrations and mass fluxes across the interface between the two models.

Section 2.2 contains pore- and Darcy-scale formulations of flow and reactive transport

in both general porous media and an open fracture; it also summarizes, in the form of a phase

diagram in the space of Péclet and Damköhler numbers, the conditions under which the Darcy-

scale model becomes invalid. In section 2.3 we develop our hybrid algorithm for dynamic re-

active fronts. In section 2.4 we report results of our numerical experiments in various transport
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regimes, including those under which the Darcy-scale model becomes invalid and either the

pore-scale model or the hybrid must be used. The relative performance of the three modeling

strategies is compared in terms of both accuracy and computational time. Main conclusions

drawn from our study are presented in section 2.6.

2.2 Problem Formulation

We consider both pore-scale and Darcy-scale descriptions of fluid flow and reactive so-

lute transport in a generic porous medium Ω̂. The material’s pore space, denoted by ℜ̂ ⊂ Ω̂, is

fully saturated with a fluid of dynamic viscosity µ. The (multi-connected) solid-fluid interface is

denoted by Γ̂. The fluid is a dilute solution of two chemical species A and B, which undergo an

irreversible fast bimolecular reaction,

A+B k−→C, (2.1)

to form the reaction product C with the homogeneous reaction rate constant k [L/T]. We assume

that this chemical reaction does not alter the pore space ℜ̂ and, hence, does not affect the flow

velocity.

The pore-scale molar concentrations of the dissolved species A, B and C are denoted by

ĉi [M/L3], where i = A,B and C, respectively. The corresponding Darcy-scale concentrations

Ĉi [M/L3] are averages of ĉi over a representative elementary volume V̂ ⊂ Ω̂ centered around a

point x,

Ĉi(x, t) =
1

‖V̂ ‖

∫
V̂ (x)

ĉi(y, t)dy, i = A,B,C. (2.2)

A characteristic length of V̂ , `, is much smaller than that of Ω̂, `� L, so that ε ≡ `/L� 1.

Equations describing the spatiotemporal evolution of ĉi(x̂, t̂) and Ĉi(x̂, t̂) are described below.
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Consider reactive transport in an open fracture Ω̂ with a characteristic length L. Let

us assume that the fracture has microscopical representation by the set of unit cells Ŷ whose

characteristic length scale is l such that ε≡ l ≤ 1. The medium consists of the spaces ℜ̂ of each

cell Ŷ and the impermeable solid matrix Ĝ such that Ω̂ = ℜ̂∪ Ĝ. The smooth multi-connected

boundary between space ℜ̂ and the solid matrix Ĝ is denoted by the surface Γ̂.

2.2.1 Pore-Scale Equations

Steady-state pressure-driven single-phase incompressible fluid flow is described by Stokes

and continuity equations,

µ∇̂
2v̂− ∇̂p̂ = 0, (2.3)

∇̂ · v̂ = 0, x̂ ∈ ℜ̂, (2.4)

where v̂(x̂) is the fluid velocity, p̂(x̂) is the fluid pressure, and x̂ is a point in ℜ̂. Flow equations

(2.3) are subject to no-slip boundary conditions on the impermeable solid-fluid interface Γ̂, i.e.,

v̂ = 0 for x̂ ∈ Γ̂.

The pore-scale concentrations ĉi(x̂, t) are described by a system of coupled advection-

diffusion-reaction equations,

∂ĉA

∂t̂
+ ∇̂ · (v̂ĉA) = D∇̂

2ĉA− kĉAĉB, x̂ ∈ ℜ̂, t̂ > 0 (2.5a)

∂ĉB

∂t̂
+ ∇̂ · (v̂ĉB) = D∇̂

2ĉB− kĉAĉB, x̂ ∈ ℜ̂, t̂ > 0 (2.5b)

and

∂ĉC

∂t̂
+ ∇̂ · (v̂ĉC) = D∇̂

2ĉC + kĉAĉB, x̂ ∈ ℜ̂, t̂ > 0. (2.5c)
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Here, for the sake of simplicity and without loss of generality, we assume that the three dissolved

species have the same molecular diffusion coefficient D [L2/T]. Transport equations (2.5) are

subject to no-flux boundary conditions on the solid-fluid interface Γ̂ with unit normal vector

n̂(x),

n̂ · ∇̂ĉi = 0, i = A,B,C; x̂ ∈ Γ̂. (2.6a)

and initial conditions

ĉi(x̂,0) = ĉin,i, i = A,B,C; x̂ ∈ ℜ̂ (2.6b)

where ĉin,i(x̂) are known (possibly spatially varying) initial concentrations.

2.2.2 Dimensionless Formulation.

Let L and v denote characteristic length and characteristic velocity magnitude, respec-

tively; and set c? = max{ĉin,A, ĉin,B}. We introduce dimensionless parameters and independent

and dependent variables,

Pe =
vL
D
, Da =

L2kc?

D
, x =

x̂
L
, t =

t̂D
L2 , v =

v̂
v
, p =

p̂l2

µvL
, ci =

ĉi

c?
. (2.7)

The Péclet number Pe = td/ta represents the ratio between the diffusion (td = L2/D) and ad-

vection (ta = L/v) time scales, while the Damköhler number Da = td/tr is defined as the ratio

between the diffusion and reaction (tr = 1/kc?) time scales. (This scaling of pressure p̂ ensures

that the rescaled viscous term has the same order of magnitude of as that in the Stokes original

equations.) We also introduce a space variable y defined in the unit cell Y and dimensionless
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time t = t̂/t̂d and time variables associated with advection and reaction

y = ε
−1x, ta = Pe t = ε

−αt, tr = Da t = ε
βt, (2.8)

where α and β are determining the system’s behavior. Rewriting (2.3) and (2.5) in terms

of the dimensionless quantities (3.4) yields a dimensionless form of the governing equations

ε
2
∇

2v−∇p = 0, ∇ ·v = 0, x ∈ℜ; (2.9)

and

∂cA

∂t
+Pe∇ · (vcA) = ∇

2cA−DacAcB, x ∈ℜ, t > 0, (2.10a)

∂cB

∂t
+Pe∇ · (vcB) = ∇

2cB−DacAcB, x ∈ℜ, t > 0, (2.10b)

and

∂cC

∂t
+Pe∇ · (vcC) = ∇

2cC +DacAcB, x ∈ℜ, t > 0, (2.10c)

subject to the correspondingly rescaled initial and boundary conditions.

cAm(x,0) = A0(x), cBm(x,0) = B0(x), cCm(x,0) =C0(x), (2.11a)

n ·∇cAm = n ·∇cBm = n ·∇cCm = 0. (2.11b)

2.2.3 Darcy-Scale Equations

The macroscale flow and transport equations can be derived from their microscopic ana-

logue by numerous homogenization (upscaling) techniques. One of the methods for homog-

enization uses the multiple-scale expansions to upscale transport equations from the micro to
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macroscale and to operate with the averaged velocity and averaged concentrations. The method

of multiple-scale expansions represent concentrations and velocity as an asymptotic series in

powers of separation of scales parameter ε. Using this method it was shown that [11, 15] the

microscopic reactive transport processes described by (2.10) and (2.11a) can be homogenized,

i.e., approximated up to the order ε2 and the macroscopic concentrations satisfies ARDEs Under

certain conditions on Pe and Da, the spatial averaging of pore-scale equations (2.9) and (2.10)

yields Darcy-scale (advection-dispersion-reaction) equations for the dimensionless macroscopic

concentrations Ci = Ĉi/c?,

∂CA

∂t
+Pe∇ · (VCA) = ∇ · (D∇CA)−DaCACB, x ∈Ω, t > 0 (2.12a)

∂CB

∂t
+Pe∇ · (VCB) = ∇ · (D∇CB)−DaCACB, x ∈Ω, t > 0 (2.12b)

and

∂CC

∂t
+Pe∇ · (VCC) = ∇ · (D∇CC)+DaCACB. (2.12c)

Here V(x) is the Darcy flux (macroscopic velocity) computed by solving the groundwater flow

equation, and D(U) is the dispersion coefficient tensor. Specifically, equations (2.12) are valid

if [15]

ε� 1, Pe < ε
−2, Da < ε

−2, Da/Pe < ε
−1. (2.13)

• The inequality ε� 1 is a condition that ensures spatial-scale separation,

• Pe < ε−2 ensures that the system is not dominated by advection at the microscale,

• Da < ε−2 is the sufficient condition for good mixing of the reactants,

• the condition Da/Pe < ε−1 imposes a constraint on the advective and reactive time scales.
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Combining all these conditions we impose the lower and upper bounds on the order of magnitude

of Pe for any given Da.

These sufficient conditions delineate a homogenizability region in a two-dimensional Pe-Da

space (Figure 4.3), where equations (2.12) are valid. The validity is guaranteed inside the region

and not guaranteed outside.

Dynamic reactive fronts provide a challenging illustration of the possible breakdown of

Darcy-scale models. Let us suppose that, at time t = 0, the solutes A and B occupy distinct

subdomains ΩA and ΩB (Ω = ΩA∪ΩB), which are separated by an interface γ = ΩA∩ΩB. This

situation translates into (dimensionless) initial concentrations

Cin,A =


1 x ∈ΩA

0 x ∈ΩB

and Cin,B =


0 x ∈ΩA

1 x ∈ΩB

. (2.14)

The reaction A+B→ C takes place only in the immediate vicinity of the interface γ,

which both is advected with the flow, γ = γ(x, t), and diffuses due to hydrodynamic dispersion.

High concentration gradients in this diffuse reactive front can invalidate some of the homogeniz-

ability conditions (2.13), leading to a local breakdown of the Darcy-scale transport model (2.12).

Our study has three interconnected objectives. First, we identify flow and transport regimes in

which the breakdown indeed occurs, as predicted by the theory [15]. Second, we demonstrate

that under these conditions no amount of mesh refinement around the front, used to numeri-

cally solve (2.12), can remedy the model’s inadequacy. Third, we show that the hybrid model

outperforms its microscopic and macroscopic counterparts in terms of computational time and

representational accuracy, respectively. These objectives are achieved via numerical experimen-

tation with diffusive reactive fronts propagating through an open fracture.
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2.2.4 Pore- and Darcy-Scale Models of Front Propagation in Fractures

Consider an open fracture of length L and width 2w, such that Ω̂ = {x̂ = (x̂, ŷ)> : 0 < x̂ <

L,−w < ŷ < w}. Flow is driven by the externally imposed pressure gradient −J imposed in the

x̂ direction.

2.2.5 Pore-Scale Model.

Making use of the dimensionless quantities (3.4) and neglecting the boundary effects

close to the fracture’s entrance and exit, the solution of (2.9) in the rescaled fracture domain

Ω = {x = (x,y)> : 0 < x < 1,−ε < y < ε} is given by Poiseuille’s formula v = (u,0)> with

u(y) =
3
2

(
1− y2

ε2

)
, ε≡ w/L. (2.15)

(A dimensional form of Poiseuille’s law obtained by solving (2.3) reads û(y) = Jε2(1−

y2/ε2)/(2µ). The average (characteristic) flow velocity is v = (2ε)−1 ∫ ε

−ε
û(y)dy = Jε2/(3µ).

The definition of the dimensionless velocity in (3.4), u = û/v, gives (2.15).) Pore-scale transport

equations (2.10) reduce to

∂cA

∂t
+Peu

∂cA

∂x
=

∂2cA

∂x2 +
∂2cA

∂y2 −DacAcB, x ∈Ω, t > 0 (2.16a)

∂cB

∂t
+Peu

∂cB

∂x
=

∂2cB

∂x2 +
∂2cB

∂y2 −DacAcB, x ∈Ω, t > 0 (2.16b)

and

∂cC

∂t
+Peu

∂cC

∂x
=

∂2cC

∂x2 +
∂2cC

∂y2 +DacAcB. (2.16c)
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Initial conditions leading to formation of a localized reactive front, (2.14), become

cA(x,0) =


1 x≤ x0

0 x > 0
, cB(x,0) =


0 x≤ x0

1 x > 0
, cC(x,0) =

1
4
, (2.17)

where x0 is an initial position front γ(t). Boundary conditions at the fractures’ inlet and outlet

are

cA(0,y, t) = 1, cA(1,y, t) = 0, |y|< ε, t > 0; (2.18a)

cB(1,y, t) = 0, cB(0,y, t) = 1, |y|< ε, t > 0; (2.18b)

cC(0,y, t) =
1
4
, cC(1,y, t) =

1
4
, |y|< ε, t > 0. (2.18c)

Boundary conditions at the fracture’s walls are

∂ci

∂y
(x,±ε, t) = 0, i = A,B,C; 0 < x < 1, t > 0. (2.19)

2.2.6 Darcy-Scale Model.

The (dimensionless) Darcy-scale concentrations Ci(x, t) satisfy transport equations (2.12),

which for the problem under consideration reduce to

∂CA

∂t
+Pe

∂CA

∂x
= D

∂2CA

∂x2 −DaCACB, 0 < x < 1, t > 0 (2.20a)

∂CB

∂t
+Pe

∂CB

∂x
= D

∂2CB

∂x2 −DaCACB, 0 < x < 1, t > 0 (2.20b)

and

∂CC

∂t
+Pe

∂CC

∂x
= D

∂2CC

∂x2 +DaCACB, i = A,B; 0 < x < 1, t > 0. (2.20c)
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2.2.7 Effective Dispersion parameter

The dispersion coefficient is now given by D = 1+ 2ε2Pe2/105 [15]. Equations (2.20)

are subject to initial conditions

CA(x,0) =


1 x≤ x0

0 x > x0

, CB(x,0) =


0 x≤ x0

1 x > x0

, CC(x,0) =
1
4

(2.21)

and boundary conditions

CA(0, t) = 1, CA(1, t) = 0, CB(1, t) = 0, CB(0, t) = 1, CC(0, t) =
1
4
, CC(1, t) =

1
4
.

(2.22)

A solution of Darcy-scale model (2.20)–(2.17), Ci(x,y, t) with i = A,B and C, is consis-

tent with its pore-scale counterpart (2.16)–(2.19), ci(x,y, t) with i = A,B and C, if they satisfy

the definition of Darcy-scale concentration (2.2),

c̄i(x, t) =
1
2ε

∫
ε

−ε

ci(x,y, t)dy, i = A,B,C; (2.23)

i.e., if Ci(x, t) = c̄i(x, t) for i = A,B and C.

2.3 Hybrid Models of Dynamic Reactive Fronts

We present a general formulation of our hybrid model in section 2.3.1 and its implemen-

tation for transport in fractures in section 2.3.2.
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2.3.1 General Hybrid Formulation

Let us suppose that, in the immediate neighborhood Nδ[γ(x, t)] of the reactive front’s core

γ(x, t), macroscopic equations (2.12) become invalid because some of the conditions in (2.13)

are violated (see section 2.2.3). The dynamics of γ(x, t) is determined by advection, while the

envelope ∂Nδ(x, t) = γ(x, t)± δ(x) represents the diffusive nature of dynamic reactive fronts.

While the width of the reaction zone increases with time, we keep the width of Nδ[γ(x, t)] con-

stant and set to δ ∼
√
‖D‖∆t where ∆t is a time step of the Darcy-scale simulations. That is

because the concentration gradients in the outer edges of the diffuse reaction front are suffi-

ciently small for the Darcy-scale model to be valid. The pore-scale model (2.9)–(2.10) is solved

inside Nδ[γ(x, t)], and the Darcy-scale model (2.12) is solved elsewhere in the computational do-

main. The two models are coupled by enforcing the continuity of concentrations and the normal

component of mass flux along the envelope ∂Nδ,

Ci(x, t) =
1

‖∂Nδ(x, t)‖

∫
∂Nδ(x,t)

ci(s, t)ds, (2.24)

Ji(x, t) =
1

‖∂Nδ(x, t)‖

∫
∂Nδ(x,t)

ji(s, t)ds, (2.25)

for i = A,B and C. Here ji and Ji are the normal components of the pore- and Darcy-scale

dimensionless mass fluxes

ji = vci−∇ci

and

Ji = VCi−D∇Ci,

respectively. The coordinate x designates a segment of ∂Nδ(x, t) that falls within the correspond-

ing element of a numerical mesh used in the Darcy-scale computation.
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2.3.2 Hybrid Model of Front Propagation in Fractures

The Darcy-scale description (2.20)–(2.17) reduces the front’s core γ(x, t) to a single point

xf(t). Starting with its initial position xf(0) = x0, the core propagates with dimensionless velocity

Pe, so that dxf/dt = Pe. The domain of pore-scale model (2.15)–(2.19) becomes Nδ = {x :

xf(t)− δ < x < xf(t) + δ,−ε < y < ε} with the envelope consisting of two segments, ∂Nδ =

{(x,y) : xf(t)±δ,−ε < y < ε}. Setting δ = m
√

D∆t, these points are given by

a(t) = xf(t)−m
√

D4t, (2.26)

b(t) = xf(t)+m
√

D4t (2.27)

where the coefficient m defines the dimensionless width of Nδ (Figure 2.2). In the simulations

reported below we set m = 2800, which corresponds to Nδ occupying 20% of the whole sim-

ulation domain Ω. The Darcy-scale model (2.20)–(2.17) is solved in the rest of the fracture

N c
δ
= {x : 0 < x < a(t),b(t)< x < 1}. The continuity conditions (2.24) used to couple the pore-

and Darcy-scale simulations take the form,

Ci(x, t) =
1
2ε

∫
ε

−ε

ci(y, t)dy, (2.28)

Ji(x, t) =
1
2ε

∫
ε

−ε

ji(y, t)dy, (2.29)

for x = a(t),b(t). (2.30)

Our hybrid algorithm consists of the following steps.

1. Initiate simulations by setting t = 0 and xf(0) = x0; and by making an initial guess of the

concentration values at x = a and x = b, Ca,i and Cb,i with i = A,B and C, respectively.

(In the simulations reported below, we set Ca,A = 0.8, Ca,B = 0.2, Ca,C = 0.5, Cb,A = 0.2,

Cb,B = 0.8, and Cb,C = 0.5.)
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2. Compute a(t) and b(t) from (2.26), and assign pore- and Darcy-scale internal boundary

conditions

ci(a,y, t) =Ci(a, t) = Ca,i, ci(b,y, t) =Ci(b, t) = Cb,i, i = A,B,C.

3. Solve the pore-scale equations (2.16) on domain Nδ = {x : a(t) < x < b(t),−ε < y < ε}.

These equations are subject to initial and boundary conditions (2.17)–(2.19), which are

supplemented with the interfacial conditions at x = a(t) and x = b(t) from step 2.

4. Solve the Darcy-scale equations (2.20) on domain N c
δ
= {x : 0 < x < a(t)∪b(t)< x < 1}.

These equations are subject to initial and boundary conditions (2.21) and (2.17), which are

supplemented with the interfacial conditions at x = a(t) and x = b(t) from step 2.

5. Calculate pore-scale interfacial fluxes

ji(x,y, t) =−
∂ci

∂x
(x,y, t)+Peu(y)Cx,i, x = a,b, i = A,B,C,

where u(y) is given by (2.15) and ci(x,y, t) (i = A,B and C) are computed in step 3. Eval-

uate average pore-scale interfacial fluxes

j̄i(x, t) =
1
2ε

∫
ε

−ε

ji(x,y, t)dy, x = a,b, i = A,B,C.

Calculate Darcy-scale interfacial fluxes

Ji(x, t) =−D
∂Ci

∂x
(x, t)+PeCx,i, x = a,b, i = A,B,C,

where Ci(x, t) (i = A,B and C) are computed in step 4.

6. Find the values of Ca,i and Cb,i (i=A,B and C) that enforce the continuity conditions (2.28)
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by solving an optimization problem

argmin
Ca,i,Cb,i

√
∑

i=A,B,C

{
[ j̄i(a, t)− Ji(a, t)]

2
+[ j̄i(b, t)− Ji(b, t)]

2
}
.

In the simulations reported below we used the Matlab optimization procedure fmincon

with convergence error of 10−9 to solve this problem.

7. Set t = t +∆t, advance the front’s core xf(t +∆t) = xf(t)+Pe∆t, and go to step 2.

2.4 Simulation Results

We use the Crank-Nicolson scheme with the upwind method for advection terms to solve

both the pore-scale problem (2.16) and Darcy-scale (2.20) problems. The former was first solved

on domain Ω = {x = (x,y)> : 0 < x < 1,−ε < y < ε = 0.0625} discretized by a uniform mesh of

size ∆x = ∆y = 6.25×10−5 with a time step ∆t = 6.25×10−7; the latter on domain Ω = {x : 0 <

x< 1} discretized by a uniform mesh of size ∆X = 1.25×10−3 with a time step ∆T = 1.25×10−5

(Figure 2.2). This choice of discretization parameters ensures that any disagreement between the

pore- and Darcy-scale simulations is solely due to limitations of the Darcy-scale model rather

than numerical errors (see the Appendix for detail).

Next, we consider two transport regimes, hereafter referred to as Case 1 and Case 2,

which are characterized by different combinations of Pe and Da or, equivalently, α = − logε Pe

and β = logε Da with ε = 0.0625. Case 1 corresponds to Pe = Da = 0.0625 which translates

into α = −1 and β = 1; this regime satisfies constraints (2.13) (see Figure 4.3). Case 2 is

characterized by Pe = 2.0 and Da = 64.0, so that α = 0.25 and β = −1.5; this regime lies

outside the homogenizability domain (see Figure 4.3).
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2.4.1 Impact of Breakdown of the Darcy-Scale Model

For both Cases 1 and 2 we compare the averaged pore-scale concentrations of reactant A

and reaction product C with the corresponding Darcy-scale concentrations. The former, c̄A(x, t)

and c̄C(x, t), are computed with (2.16) and (2.23); and the latter, CA(x, t) and CC(x, t), with (2.20).

Also compared is the total mass of the reaction product in the fracture, computed with the pore-

scale (mC) and Darcy-scale (MC) models as

mC(t) =
∫ 1

0
c̄C(x, t)dx and MC(t) =

∫ 1

0
CC(x, t)dx. (2.31)

Figure 2.3 exhibits these three quantities for Case 1. Since this regime falls within the ho-

mogenizability region (Figure 4.3), one should expect a good agreement between the pore- and

Darcy-scale simulations. This is indeed the case. A slight disagreement between the two mod-

els’ predictions, which can be quantified in terms of a model error Ei = ‖c̄i−Ci‖2 (i = A,B,C),

being approximately of order O(ε2), as predicted by the homogenization theory [15].

Case 2, which violates the homogenizability conditions, gives rise to a pronounced dis-

agreement between predictions of the pore- and Darcy-scale models (Figure 2.4). It exemplifies

a transport regime in which the advection and diffusion time-scales are significantly faster than

the reaction time-scale. In this regime the model errors Ei > ε for all three quantities. By way

of example, the relative model error in predictions of the concentration of solute A, introduced

by the use of the Darcy-scale simulations, εA = 100%×‖c̄A−CA‖2/‖c̄A‖2, grows with time,

reaching ≈ 12% by t = 5 (Table 3.3). This apparent failure of the Darcy-scale model is not only

quantitative but also qualitative. While the Darcy-scale model predicts a Gaussian behavior,

the averaged pore-scale dynamics is non-Gaussian, as evidenced by the asymmetric, long-tailed

concentration profiles.

Figure 2.4 shows the longitudinal concentrations for the species A and C as well as the

mass MCM and mass MCm for macro- and micro-scale concentrations c̄CM and c̄Cm , respectively.
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Figure 2.4 confirms that the total mass production MCM and MCm is not conserved. This is also

verified by the theoretical prediction using the specific parameters in Case 2 that violate the

homogenizability region. Note that, in our model, microscopic simulation are treated as exact

due to numerical testing (Appendix A).

Its α and β parameters correspond to the faster advection and diffusion at the microscale.

The faster advection and diffusion makes the constraints (2.13) to be violated and this system

is outside of the the homogenizability regime. Faster diffusion rates makes values of Da being

larger, while faster advection corresponds to the higher Pe number which forces the failure of

macroscopic descriptions based on local ARDEs leading to an absolute error E > ε along the

fracture Ω.

2.4.2 Relative Performance of the Hybrid Model

While the transport regime in Case 2 invalidates the reliance of the Darcy-scale model,

the use of the pore-scale simulations over the whole transport domain Ω is computationally

expensive even for a single fracture (Table 3.1) and prohibitively so for more complex pore

geometries. Instead, we employ the hybrid algorithm described in section 2.3.2. We start by

setting the width of the pore-scale simulation domain to |Nδ| ≡ ∆ = b(t)−a(t) = 0.2; the Darcy-

scale model is solved in the remaining 80% of the simulation domain, (0,a)∪ (b,1). Visual

inspection of Figure 2.5 demonstrates a close agreement between the exact (pore-scale) solution

for the averaged pore-scale concentration c̄A(x, t) and the hybrid solution Ch
A(x, t). Table 3.3

further corroborates this observation by collating values of the relative model error

ε
h
A = 100%×‖c̄A−Ch

A‖2/‖c̄A‖2

of the hybrid model at different times t. This degree of the hybrid’s accuracy is achieved at the

fraction of computational cost, yielding a significant reduction relative to that of the pore-scale
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simulations: 1053 s for the hybrid model (Table 3.2) versus 5975 s for the pore-scale simulations

(Table 3.1). (All computations were carried out on a singe-processor laptop.)

The hybrid’s accuracy (and computational cost) can be increased by enlarging the region

of the computational domain, Nδ(t), wherein the pore-scale simulations are performed. Alterna-

tively, the hybrid’s computational cost can be reduced by decreasing the size of Nδ(t), at the cost

of reducing the hybrid’s accuracy (Table 3.2). Even the smallest size of Nδ reported in Table 3.2,

|Nδ(t)|= ∆ = 0.05, yields an acceptable relative model error (εh
A = 0.43%). The increase in the

hybrid’s accuracy and computational cost with ∆ is to be expected, since the accurate and expen-

sive pore-scale simulations are carried out over the progressively larger domain Nδ. Refining the

mesh size and time step of the Darcy-scale component of the hybrid is relatively inexpensive but

does not yield a significant improvement in the relative model error (Table 2.4 in the Appendix).

2.5 Verification of Numerical Simulations

To ensure that our numerical solutions of the pore-scale (2.16) and Darcy-scale (2.20)

models are not significantly affected by their space-time discetization, we progressively refine

the mesh size and time step. Starting with ∆x = ∆y = 10−3 and ∆t = 10−5, the space-time

discretization of (2.16) is refined according to ∆x/2k = ∆y/2k and ∆t/2k with k = 0,1, · · · . Like-

wise, starting with ∆X = 10−2 and ∆T = 10−4, the space-time discretization of (2.20) is refined

according to ∆X/2k and ∆T/2k with k = 0,1, · · · . Results of this mesh refinement are reported

in Figure 2.6 for the averaged pore-scale concentration c̄A(x, ·) computed with (2.16) and (2.23)

and for the Darcy-scale concentration CA(x, ·) computed with (2.20). The refinement beyond

k = 2 shows no visual improvement. (Although not shown here, the concentrations of species B

and C exhibit an identical behavior.)
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This assessment is made more quantitative by defining a relative discretization error

Ek( f ) =
‖ fk− fk+1)‖2

‖ fk+1‖2
, k = 0,1,2, · · ·

where fk = c̄A(∆x/2k = ∆y/2k,∆t/2k) or fk = CA(∆X/2k,∆T/2k). Table 3.1 demonstrates that

the discretization error of 10−4 is achieved with the refinement levels of k = 4 for the pore-scale

simulations and k = 3 for the Darcy-scale simulations. Further refinement does not substantially

improve the discretization error, but considerably increases the simulation time. These values of

the discretization parameters are used in all the simulations reported in this study.

Finally, we explore benefits of refining the space-time discretization of the Darcy-scale

component of the hybrid, {∆X/2k,∆T/2k}, while keeping the discretization of the pore-scale

component fixed at {∆x/24,∆y/24,∆t/24}. Such refinement does not improve the hybrid’s ac-

curacy, quantified in terms of the relative model error εh
A = 100%×‖c̄A−Ch

A‖2/‖c̄A‖2 for the

hybrid model (Table 2.4). Hence, going above the refinement level k = 3 for the Darcy-scale

component of the hybrid only increases the computational time.

2.6 Summary and Conclusions

We developed a hybrid model of propagation of reactive fronts. These fronts involve an

irreversible homogeneous reaction A+B→C and are highly localized due to an initial distribu-

tion of reactants A and B. A set of numerical experiments for multicomponent reactive flow in a

horizontal open fracture is performed to demonstrate that dynamic reactive fronts might not be

amenable to Darcy-scale modeling. Our hybrid algorithm couples the pore-scale model in the

vicinity of a moving reaction front with the Darcy-scale model elsewhere in the fracture.

Our study leads to the following major conclusions.

• Necessary conditions for the breakdown of Darcy-scale models of dynamic reactive fronts
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are presented as a phase-diagram in the space of the Péclet (Pe) and Damköhler (Da)

numbers. Our simulations provide an example of the failure of a Darcy-scale model whose

parameters fall outside the homogenizability region in this diagram.

• The observed failure of the Darcy-scale model of reaction fronts in an open fracture is not

only quantitative but also qualitative. While the Darcy-scale model predicts a Gaussian

behavior, the true dynamics is non-Gaussian, as evidenced by the asymmetric, long-tailed

concentration profiles.

• The representational accuracy of our hybrid algorithm is comparable to that of high-

fidelity pore-scale simulations, but at the fraction of computational cost.

• The hybrid formulation does not require any additional parameters beyond those used in

macroscopic or microscopic models.

• The hybrid formulation for the moving dynamic fronts suggests its high adaptability to a

wide variety of problems and different numerical schemes.

In follow-up studies, we will employ our hybrid algorithm to model dynamic reaction

fronts, which propagate in porous media and involve two-phase incompressible flow.
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Table 2.1: Relative model errors, εA = 100%×‖c̄A−CA‖2/‖c̄A‖2 and εh
A = 100%×‖c̄A−

Ch
A‖2/‖c̄A‖2, introduced by the use of the Darcy-scale and hybrid simulations, respectively.

The pore-scale result, c̄A, is treated as “ground-truth”.

Model error t = 1 t = 2 t = 5
Darcy-scale, εA 4.52 7.82 11.63
Hybrid, εh

A 0.05 0.11 0.15
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Table 2.2: Simulation time (in seconds) and relative model error of the hybrid simulations,
εh

A = 100%× ‖c̄A −Ch
A‖2/‖c̄A‖2, at t = 5 and for several sizes |Nδ| = ∆ of the pore-scale

simulation domain Nδ.

∆ 0.05 0.10 0.15 0.20 0.30 0.40
εh

A 0.4301 0.3051 0.2196 0.1573 0.0482 0.00053
Sim. time, [s] 391.62 650.71 891.74 1053.28 1768.05 2564.89
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Table 2.3: Relative discretization errors, Ek, and simulation times, in seconds, for the averaged
pore-scale (c̄A) and Darcy-scale (CA) estimates of the concentration of species A at time t = 1
on the meshes and time steps refined by the factor of 2k.

Refinement level, k Relative Error, Ek( f )×10−3 Simulation time, [s]
f = c̄A f =CA c̄A CA

0 5.458 8.20763 57.19 2.24
1 2.542 1.31274 162.92 7.53
2 0.503 0.54580 546.83 20.69
3 0.285 0.05137 1760.09 69.48
4 0.09215 0.05011 5975.24 247.98
5 0.08973 – 15627.45 –
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Table 2.4: Relative model error of the hybrid simulations, εh
A, at t = 1 and for several levels of

refinement, k, of the Darcy-scale component. The discretization of the pore-scale component
is fixed at ∆x/24,∆y/24,∆t/24.

Refinement level, k 3 4 5
εh

A, [%] 0.0529 0.0517 0.0503
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Figure 2.1: Region of the validity of the Darcy-scale transport model (2.12) in the Pe-Da phase
space spanned by the Péclet (Pe) and Damköhler (Da) numbers. Case 1, (α,β) = (−1,1),
satisfies and Case 2, (α,β) = (1/4,−3/2), violates the homogenizability conditions (2.13).
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Figure 2.2: A dynamic diffused reaction front, centered at xf(t), propagating in an open fracture
of dimensionless unit length and dimensionless width 2ε. Our hybrid algorithm solves the (two-
dimensional) pore-scale model in the front’s neighborhood Nδ = {x : xf(t)−a(t)< x < xf(t)+
b(t),−ε < y < ε} and the (one-dimensional) Darcy-scale model in the rest of the fracture. The
two models are coupled by enforcing the continuity conditions at a(t) and b(t).
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Figure 2.3: First two rows: Temporal snapshots, at t = 1.0,2.0 and 5.0 (from left to right),
of the averaged pore-scale concentrations c̄A(x, t) and c̄C(x, t) (solid line) and their Darcy-scale
counterparts CA(x, t) and CC(x, t) (dashed line), for Case 1 which satisfies the homogenizability
conditions. Bottom row: the corresponding total mass of the reaction product in the fracture,
computed with the pore-scale (mC) and Darcy-scale (MC) models.
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Figure 2.4: First two rows: Temporal snapshots, at t = 1.0,2.0 and 5.0 (from left to right), of
the averaged pore-scale concentrations c̄A(x, t) and c̄C(x, t) (solid line) and their Darcy-scale
counterparts CA(x, t) and CC(x, t) (dashed line), for Case 2 which violates the homogenizability
conditions. Bottom row: the corresponding total mass of the reaction product in the fracture,
computed with the pore-scale (mC) and Darcy-scale (MC) models.
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A(x, t) computed with the hybrid simulations
for Case 2.
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Figure 2.6: Spatial profiles of (top) averaged pore-scale concentration c̄A(x, t) and (bottom)
Darcy-scale concentration CA(x, t) at times t = 1,2 and 5 (from left to right) for the transport
regime characterized by α = 1/4 and β = −3/2. The former is computed with (2.16) and
(2.23), the latter with (2.20). Both use the progressively finer time-space discretizations.
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Chapter 3

Viscous fingering in non-isothermal

filtration

3.1 Introduction

Flow displacements in porous media have been the subject of numerous studies due to

their importance in many processes such as enhanced oil recovery, solute transport in aquifers,

filtration and carbon dioxide sequestration ( [27], [63], [39]).

In oil recovery processes it is very common to inject water or polymers into the oil field at

certain points in an attempt to drive oil to various distant locations for pumping purposes. In large

reservoirs the oil displacement by water assumes the form of a dynamic front which is a moving

zone across which the saturation of water (the fraction of pore space occupied by water) changes

fast compared to regions of constant saturation before and after the front respectively. In this

process we can observe the problem of fingering instabilities. The water pushes the oil forward

and penetrates the oil through formed channels that called fingers ( [21], [20]). The mechanism

that starts the fingering process is similar to the problem of the displacement of a viscous fluid

by a less viscous one in Hele-Shaw cell, a pair of parallel glass plates that is separated by a
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small gap ( [70]). Here the instability is caused by the high mobility properties of the displacing

fluid(water in our case). Linear stability analysis is a common technique based on triggering

of small perturbations of state variables and identify whether these perturbations grow or decay

over time( [46], [98], [67]). We analyze numerically the instability of a front separating two

fluids in a porous medium. The front is unstable for the large values of viscosity ratio. There

could be two types of perturbations: the one that spatially smooth and the perturbations with

large amplitude. In non-isothermal displacement problem the viscosity of fluids may vary with

the temperature of the fluids. Due to the difference in the rates of heat and mass transport, the

incusion of the heat transfer equation for the immiscible fluid flow involves two fronts, the first

being the saturation front and the second the thermal front ( [47], [46]). The fingering in each

of the fronts contribute to the instability of the front and the rate of growth of fingers depends

on both saturation and thermal hear transfer effects ( [64], [28]). The special cases of viscous

fingering with temperature dependence in which the displacing and the displaced fluids have

similar compositions but different temperatures can be observed in phenomena such as magma

flow through dikes, geothermal flows and the flow of the injected melt in injection molding

process ( [40], [35]). A very limited number of studies exists on immiscible thermo-viscous

fingering, with most previous research focusing on miscible cases ( [51], [53], [10]).

A major goal of our analysis is to develop a stability conditions for non-isothermal filtra-

tion problem which involves the investigation of the stability of displacement front with small

perturbations with the temperature dependent viscosity. A set of numerical experiments is per-

formed to investigate the validity of stabilizing conditions for the immiscible two phase fluid

flow in a horizontal open fracture. When these conditions are not met, the flow becomes unsta-

ble and we can observe the development of fingers instabilities. One the other side, the validity

of the stable conditions allows us to control viscous fingering and enhance the oil recovery.

Section 2 contains the problem formulation and the description of the flow of two im-

miscible fluids in porous medium in non-isothermal filtration. Section 3 summarizes the linear
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stability conditions for isothermal and non-isothermal fluid flow in porous media. It also sum-

marizes, in the form a phase diagram in the space of the dimensionless characteristic viscosity

constants A and B, the conditions under which the linear stability of the flow becomes invalid

in isothermal and non-isothermal cases. In section 4 we report the numerical model we used

for solving the non-isothermal filtration problem. In section 5 we report results of our numeri-

cal experiments via various stability regimes, including validity isothermal and non-isothermal

models. Main conclusions drawn from our study are present in section 6.

3.2 Problem Formulation

We consider a two-dimensional immiscible flow in a horizontal homogeneous generic

medium with constant porosity m and constant absolute permeability K. A fluid with viscosity

µ1, saturation s1 is driven forward by the pressure gradient to displace the second one of viscosity

µ2 and saturation s2. The direction of the flow is along the x−axis an the y−axis is parallel to the

initial plane of the interface (Figure 3.1).

The incompressible flow of two immiscible fluids in porous medium can be described by

the following Darcy, continuity and heat equations:

ûi =−
K
µi

ki(si)5p̂, (3.1)

m
∂si

∂t̂
+∇ · ûi = 0, i = 1,2. (3.2)

∂

∂t̂
(ms1ρC1T̂ +ms2ρC2T̂ +(1−m)ρrCrT̂ )+∇ · (C1û1T̂ +C2û2T̂ ) = ∇ · (λ̂∇T̂ ). (3.3)

Subject to the following boundary and initial conditions

• ∂p̂
∂n |y=0 =

∂p̂
∂n |y=ymax = 0, p̂|x=0 = pin, p̂|x=xmax = p f in,

42



• s|x=0 = sin, s|t=0 =


sin,x≤ x0 +0.2sin2(3πy),

s f in,x≥ x0 +0.2sin2(3πy)

• ∂T̂
∂n |y=0 =

∂T̂
∂n |y=ymax = 0, T̂ |x=0 = Tin, T̂ |x=xmax = Tf in,

where subscripts i = 1,2 are appended to the symbols which represent the displacing

(water) and displaced (oil) fluids, respectively, ki(si) are the relative permeabilities, ui - Darcy’s

velocity, p is the pressure, T is the temperature, Ci are the specific heats of the water, oil and

rock, respectively. The values for initial conditions are presented in Table (3.1).

Considering large-scale motions, we ignore the gravity and capillary discontinuity of the

pressure and assume that specific heats are constants. Assuming that the void space is completely

filled by the two phases so that s1+s2 = 1, the saturation of the water can be represented in terms

of the saturation of the oil: s1 = 1− s2. The indices are dropped from the previous notation in

favor of s and 1− s representing the saturations of the water and oil phases, respectively. At

some arbitrary time t = 0, we begin to displace the oil by water. The Figure 3.1 shows the initial

distribution of the water with concentration s1 and viscosity µ1 on the left and the oil with the

concentration s2 and viscosity µ2 on the right. For the isothermal flow µ2 is a constant and for the

simplicity we will use the form µ2 = eA, where A = const. In case of the non-isothermal flow, the

temperature dependence of the viscosity µ2 is well described by the Arhenius law, µ2 = µ∗eB/T ,

where µ∗, and B is a constant activation energy ( [76], [25], [61]). For the simplicity, we use

the following form for the temperature-dependent viscosity: µ2 = eA+B/T , where A,B = const.

Our objective is to carry out a linear stability analysis of this problem in isothermal and non-

isothermal flow in order to determine parameter limits within which instabilities can be triggered

by perturbations of the system.
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3.2.1 Governing equations

Let L and U denote characteristic length and characteristic velocity magnitude, respec-

tively. We introduce dimensionless parameters and independent variables:

x̂ =
x̂
L
, ûi =

u
U
, t̂ = t

U
L
, p̂i = pi

K
µ1UL

, , T̂ =
T −Tin

Tf in−Tin
(3.4)

b =
C2 +

1−m
m

ρs
ρ

Cs

C1−C2
, h =

C2

C1−C2
, λ =

λ̂

mρ(C1−C2)
. (3.5)

Let ω to be the total flow rate

ω≡ u1 +u2 =−φ(s)5p =−(φ1(s)+φ2(s))5p. (3.6)

We’ll define fractional flow function F(s) as the fraction of the displacing fluid in the total flow

with the mobility ratio µ0:

F(s) =
k1(s)

k1(s)+µ0k2(1− s)
, F(s)ω = u1, (1−F(s))ω = u2, µ0 =

µ1

µ2
(3.7)

Rewriting (3.3) in terms on the dimensionless quantities (3.5) yields a dimensionless

form of the governing equations.

m
∂s
∂t

+∇ · (F(s)ω) = 0, (3.8)

∇ ·ω = 0, (3.9)

∂

∂t
(sT +bT )+

1
m

∇ · (F(s)T +hT )ω = ∇ · (λ∇T ), (3.10)

subject to the correspondingly rescaled initial and boundary conditions. The following relative
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permeabilities ki(si) are used in the quadratic form:

ki(si) =


( si−s0

1−s0
)γ, s≥ s0

0, s≤ s0

, γ = 2. (3.11)

with the residual saturation s0.

3.3 Stability analysis of isothermal case.

We consider water/oil moving steadily along Ox axis with constant speed of filtration

ω = 1. Without loss of generality, m = 1 since it can be absorbed into the time variable. To

investigate the stability of the front governing small disturbances, we rewrite the one dimensional

version of isothermal part of (3.8) in terms of moving wave coordinate ξ = x−Vst, y and t so

that

∂s
∂t
−Vs

∂s
∂ξ

+∇ · (φ1(s)5p) = 0, (3.12)

∇ · (φ(s)5p) = 0 (3.13)

where the velocity of the shock region could be determined from the steady state analytical

solution of (3.12)

Vs =
F(s+)−F(s−)

s+− s−
, (3.14)

here s−, s+ - values of the saturation behind (water) and ahead (oil) of the front respectively.

These simplified equations (3.12) have solutions with sharp interfaces, i.e. jump discontinu-

ities in the saturation s and the pressure gradient 5p. The saturation and pressure variables are
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expressed in terms of the base state and perturbation components:

s(ξ,y, t) = s0(ξ)+ Ŝ(ξ)einy+σt , (3.15)

p(ξ,y, t) = p0(ξ)+ P̂(ξ)einy+σt , (3.16)

where n is the wavenumber of perturbation and σ is a growth rate and

Ŝ,
∂Ŝ
∂ξ

, P̂,
∂P̂
∂ξ
→ 0,ξ→±∞. (3.17)

The base state steady solution (3.12) is subject to normalized boundary conditions of the Backley-

Leverett problem s = s(ξ), s(−∞) = s−, s(+∞) = s+ = s0, It provides the basic saturation profile

and the base state satisfies

ds0

dξ
= δ(ξ), (3.18)

d p0

dξ
=− 1

φ(s0)
(3.19)

From (3.18) using interface and boundary conditions, Ŝ =Cδ(ξ) for some constant C. Substitut-

ing the expansion (3.15) into equations (3.12) and solving the resulting eigenvalue problem we

get the system of equations for the linear stability problem:

∂

∂ξ
(φ(s0)+φ

′(s0)Ŝ
∂p0

∂ξ
)−n2P̂φ(s0) = 0, (3.20)

∂

∂ξ
(φ1(s0)

∂P̂
∂ξ

+φ
′
1(s0)Ŝ

∂p0

∂ξ
)−Vs

∂Ŝ
∂ξ
−n2P̂φ1(s0) =−σŜ (3.21)
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This system can be solved numerically or by matched asymptotic expansions( [98], [66]). One

could enforce continuity of pressure and volume flux across the sharp interface at ξ = 0 [98]

∆(P̂) =−C∆(
d p0

dξ
), (3.22)

∆(φ(s0)
dP̂
dξ

) = 0, (3.23)

∆(φ1(s0)
dP̂
dξ

) = (s−− s+)σC (3.24)

Away from the discontinuity ξ = 0 we can solve (3.20) and (3.18)

P̂− = Ae−nξ, ξ < 0, (3.25)

P̂+ = Benξ, ξ > 0, (3.26)

Ŝ =Cδ(ξ) (3.27)

Using the jump conditions (3.22) for the linear stability equations (3.20) and eliminating

constants A, B, C gives us the condition on the eigenvalue σ

σ

n
=

φ(s−)−φ(s+)
φ(s−)+φ(s+)

(3.28)

Or in case of the flow having a velocity ω0, then

σ

n
= ω0

φ(s−)−φ(s+)
φ(s−)+φ(s+)

. (3.29)

This relation dictates the growth or decay of perturbations to the leading order in the wave

number. In particular, it controls whether the sharp interface is stable or unstable:when the total

mobility upstream, φ(s−), is larger than that downstream,φ(s+), then for long waves, the growth

rate is positive and the interface between the phases is affected by the Saffman-Taylor fingering

47



instability. We are only interested in σ > 0 leading to unstable solutions hence we simply need

to investigate the mobility ratio M∗ across the shock

M∗ =
φ(s+)
φ(s−)

> 1. (3.30)

Using Rankine-Hugoniot condition:

F
′
(s−) =

F(s−)−F(s+)
s−− s+

. (3.31)

and applying the definition of the fractional flow function (3.7) to the left and to the right side of

(3.31)) and also that s+ = s0 we’ll get

s− = s0 +
1−2s0√
1/µ0 +1

, (3.32)

From (3.30) - (3.32) if M∗ < 1 then the system is not stable and if M∗ > 1 the system

is stable, which gives us if µ0 = µ1/µ2 < 1/3 the system is stable and if µ0 > 1/3 the system

is unstable. Since the scaled water viscosity µ1 ≡ 1 and we pick µ2 such as µ2 = eA,A = const,

then we can introduce the stability regime for isothermal flow on Figure (3.2).

If the relative permeabilities ki(si) in equation (3.11) are used in the cubic form γ = 3 then the

system is stable if the mobility ratio µ0 < 1/10 and if γ = 4, then µ0 < 1/19.

3.3.1 Stability analysis of non-isothermal case.

We again restrict ourselves to the one-dimensional problem of frontal displacement, as-

suming that the motion takes place along the x axis and that the total flow rate ω does not depend

on time. Considering large scale motions, we ignore the capillary discontinuity of the pressure

and heat conduction λ in the system of equations (3.8) ( [10]).

To make the stability analysis more simple in non-isothermal case, we rewrite the one
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dimensional thermal balance as

∂T
∂t

+∇ · (Ĉ1u1 +Ĉ2u2)T = 0, (3.33)

where the average specific heat numbers Ĉi represented as the average ratio of energy transport

to total heat energy,

Ĉi =
Ci∫ 1

0 (msC1 +m(1− s)C2 +(1−m)ρrCr)ds
, i = 1,2. (3.34)

We do rescaling based on Ĉi so we can observe the average effect each process has on the heat

equation (3.8). The average convection numbers Ĉi are of the same order and close to one

(within the order one factor). With this in mind, we will take for simplicity Ĉi = 1. Then for one

dimensional frontal displacement the mass conservation equation ∇ ·ω = 0 and ω = 1. Then we

are able to simplify the temperature dependence as ∂T
∂t +

∂T
∂x = 0. We can now perform a linear

stability analysis around the shock associated with the change of temperature, with the traveling

wave expansion ξ = x−VT t, where VT = 1. We consider the temperature change around the

shock and we must perturb variable T in addition to the variables s and p. We have a sharp front

for the saturation variable and for the temperature as well and they are both centered around

ξ = 0. The system of one dimensional non-isothermal equations (3.8) for the two phase filtration

problem in terms of the traveling wave coordinate ξ

∂s
∂t

+∇ · (φ1(s)5p− sx̂) = 0, (3.35)

∇ · (φ(s)5p) = 0, (3.36)

∂T
∂t

+∇ · (φ(s)5p− x̂)T = 0. (3.37)

The saturation, pressure and temperature variables are expressed in terms of base state and per-
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turbation component:

s(ξ,y, t) = s0(ξ)+ Ŝ(ξ)einy+σt , (3.38)

p0(ξ,y, t) = p0(ξ)+ P̂(ξ)einy+σt , (3.39)

T (ξ,y, t) = T0(ξ)+ T̂ (ξ)einy+σt (3.40)

with

Ŝ,
∂Ŝ
∂ξ

, P̂,
∂P̂
∂ξ

, T̂ ,
∂T̂
∂ξ
→ 0,ξ→±∞. (3.41)

Applying the perturbation variables, the eigenvalue problem to linear order is

∂

∂ξ
(φ(s0)

∂P̂
∂ξ

+φ
′(s0)Ŝ

∂p0

∂ξ
−φ2(s0)

µ′2(T0)

µ2
2(T0)

∂p0

∂ξ
T̂ )−n2P̂φ(s0) = 0, (3.42)

∂

∂ξ
(φ1(s0)

∂P̂
∂ξ

+φ
′
1(s0)Ŝ

∂p0

∂ξ
)+

∂Ŝ
∂ξ
−n2P̂φ1(s0) =−σŜ, (3.43)

∂

∂ξ
(φ(s0)

∂P̂
∂ξ

T0 +φ(s0)
∂p0

∂ξ
T̂ +φ

′(s0)
∂p0

∂ξ
T0−φ2(s0)

µ′2(T0)

µ2
2(T0)

∂p0

∂ξ
T0)+

∂T̂
∂ξ
−n2P̂φ(s0)T0 =−σT̂

(3.44)

These equations are valid away from ξ = 0 where steady states are well defined. The

steady state satisfies:

dT0

dξ
= δ(ξ), (3.45)

d p0

dξ
=−1

φ
, (3.46)

ds0

dξ
= δ(ξ) (3.47)

If we substitute (3.45) into (3.42) to get T̂ ≡ 0,ξ 6= 0 for non-zero eigenvalues. It removes

50



temperature dependence from the eigenvalue problem and we get standard solutions (3.25). To

find a unique eigenvalue we use eigenfunction in the form T̂ =CT δ(ξ). With analogue to (3.22)

we introduce the following jump conditions to find solutions for the eigenvalue problem

∆(P̂) =−(Cs +CT )∆(
d p0

dξ
), (3.48)

∆(φ(s0)
dP̂
dξ

) = 0, (3.49)

∆(φ1(s0)
dP̂
dξ

) = (s−− s+)Csσ, (3.50)

∆(φ(s0)
dP̂
dξ

T0) =CT σ. (3.51)

Which we can solve to get the solutions

σ

n
= 2

φ(s−)−φ(s+)
φ(s−)+φ(s+)

(3.52)

If the speed of the temperature front is some general ω0, then

σ

n
= 2ωo

φ(s−)−φ(s+)
φ(s−)+φ(s+)

. (3.53)

The problem has two shock fronts, one in the classical sense where the jump in saturation

is due to the viscosity difference of the two immiscible fluids and the other associated in change

in viscosity due to a change of temperature. Each front goes unstable in the classical shock sense

and then collaborates to create larger fingering instability with twice the growth rate.

Since we are interested in instability conditions leading to σ > 0 we get the same for-

mulation as (3.30) M∗ = φ(s−)
φ(s+)

> 1, or µ2/µ1 > 3. We know that µ2(T ) = eA−B/T and scaled

viscosity of water µ1 ≡ 1, then we can introduce stability region for the non-isothermal flow and

we can control the stability regime by choosing parameters A and B. It gives us the condition

for stability inequality: if eA−B/T < 3 then we can observe the stable regime and viscous fingers
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will dissolve with time, otherwise the viscous fingering will continue to spread out. The scaled

temperature T is from 0 to 1 and we can find the stability region for parameters A and B on

Figure (3.3). If we pick two parameters from the stable region, we can control viscous fingering

and make the flow stable after the extended period of time.

3.4 Numerical Model

The pressure, saturation and temperature equations have been discretized using a finite

difference scheme. Uniform rectangular spatial and temporal grids with steps h and τ are em-

ployed. The values of the grid functions pressure Pn
i, j, saturation sn

i, j and temperature T n
i, j on the

time layer n at the nodes of the spatial grid (i, j) are found by the method of splitting by physical

processes. Spatial derivatives are discretized using the forward difference formula. The scheme

is fully implicit in time. Computations are carried out in three stages on each time layer. In the

first stage, we calculate the distribution of the pressure Pn
i, j for constant values of the concentra-

tions and temperature. To calculate the pressure distribution we employ the difference analogs

of Eqs. (3.8) written in conservative manner according to five point template [72]:

∑ω
n
i, j,i′, j′ = 0, (3.54)

ω
n
i, j,i′, j′ = Gn−1

i, j,i′, j′(P
n
i, j−Pn

i′, j′), (3.55)

Gn
i, j,i′, j′ = 2

φ(sn
i, j)φ(s

n
i′, j′)

φ(sn
i, j)+φ(sn

i′, j′)
(3.56)

where ωn
i, j,i′, j′ and Gn

i, j,i′, j′ are the fluid flow and the mobility function between the nodes (i, j)

and (i′, j′). Summation in expression (3.54) is made over all the nodes adjacent to (i, j). Equation

is solved for the pressure Pn
i′, j′ by the iteration method using the saturation and temperature

distribution determined on the previous time layer.

For the second and third stage the saturation sn
i, j and temperature T n

i, j are calculated based
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on the finite volume method with upwind scheme for sn
i, j:

sn
i, j− sn−1

i′, j′ =−(K
n−1
i, j −Kn−1

i′, j′ ), (3.57)

Kn−1
i, j =−F(sn

up)(P
n
i, j−Pn

i′, j′), (3.58)

sn
up =


sn

i, j, Pn
i, j−Pn

i′, j′ < 0

sn
i′, j′, Pn

i, j−Pn
i′, j′ > 0

(3.59)

sn
i, jT

n
i, j− sn−1

i′, j′ T
n−1

i′, j′ +b(T n
i, j−T n−1

i′, j′ )+(W n
i, j−W n

i′, j′))+h(
T n

i, j +T n
i′, j′

2
)) = λ̃(T n

i′′, j′′−2T n
i, j +T n

i′, j′)

(3.60)

W n
i, j = (1+

µ0(T n
i, j)+µ0(T n

i′, j′)

2

k1(sn
i, j)+ k1(sn

i′, j′)

k2(sn
i, j)+ k2(sn

i′, j′)
)−1

T n
i, j +T n

i′, j′

2
(3.61)

The solution technique is iterative and involves the linearization of the non-linear product

terms for the evaluation of the finite difference coefficients. For the following implicit difference

scheme for saturation and temperature we are using Newton’s algorithm and for the linear system

of equations we apply BiCGStab with a ILU(0) as a preconditioner (Appendix2.5). The system

of equations governing the distribution of oil and water pressure, saturation and temperature are

non-linear and strongly coupled.

A convergence criteria of 0.1% between successive iteratios on each time layer has been

used in the present study. For the region size 20m×20m, a grid consisting of 200×200 nodes

for each of the variables p,s,T has been used. Convergence of numerical results has been tested

by simulating the above results at spacial resolutions of 100×100, 200×200 and 400×400 . A

similar finger structurus has been observed in the latter two cases and this level of refinement of

200× 200 has been found to be adequate to obtain a grid-independent solution. The time step

for all the calculations was kept at 0.005.

Rock properties in well-studied geothermal reservoirs are determined from field mea-

surement data. The non-dimentioal parameters identified in Section 2 are used here to scale
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down our numerical solutions. Typical non-dimensional reservoir parameters are presented in

Table 3.2 below.

3.5 Results and discussion

Results obtained from the numerical simulation of oil displacement problem from a

porous medium are discussed in the present section. The above analysis for the models without

capillary and gravity allows us to investigate the influence the viscosity of displaced fluid on the

viscous instability of the front. The instability of the front depends on a variety of factors such as

an fluid viscosities and it’s dependence on temperature, porosity and absolute and relative per-

meabilities of the medium. However, for the present discussion we are fixing the porosity and

absolute permeability as constants. The displacement was modeled for different viscosity ratios

µ0 which may or may not depend on temperature. The parameters used in the following study

are presented in Table 3.1. The model was employed to study the influence of displacement

conditions and of the properties of porous medium on the development of the hydrodynamic

instability in displacement of oil by hot and cold water. The temperature dependence of hot

oil viscosity could be approximated by the exponential function µ2(T ) = eA+B/T , where we can

determine coefficients A and B to observe stable and unstable regimes.

The following scenarios are addressed: two stability cases in isothermal flow(A = 0,B =

0; A = 3,B = 0; Case 1-2) and two stability cases in non-isothermal flow (A = −4,B = 4; A =

1,B = 6; Case 3-4) in Table 3.3.

• Test case 1 describes a isothermal displacement process with the the viscosity of water is

equal to the viscosity of water which is constant everywhere, i.e µ0 = 1. With time t→ ∞

the short wavelength perturbations decay, as they correspond to high, and thus stable,

amplitudes. Hence the flow is characterized by the stable regime as shown in Figure (3.4).

• For the test case 2 we again consider an isothermal displacement front where the viscosity
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of water is much less than the viscosity of oil, i.e µ0≈ 1/20, A= 3,B= 0; The result of the

modeling of instability development is shown on Figure (3.5). The pressure redistribution

in the medium leads to accelerated growth of the fingers in displacing fluid. The obtained

pattern of growth of the fingers is in qualitative agreement with the results of experimental

investigations of the Saffman- Taylor instability and with the linear stability conditions for

isothermal regime.

• Test case 3 simulates non-isothermal regime with the viscosity of oil depend on tempera-

ture. Based on the linear stability condition for non-isothermal case we pick two parame-

ters A =−4,B = 4; and numerically verify that the flow become stable with the time. As

shown in Figure (3.6) the saturation front is stable since the front is strong and no fingering

behind is observed, which is in agreement with the linear stability results.

• Test case 4 shows non-isothermal regime with the viscosity of oil dependence on temper-

ature. Based on the linear stability condition for non-isothermal case we again pick two

parameters A = 1,B = 6; and numerically verify that the flow stays unstable with the ex-

tended period of time. The saturation front stays unstable and the simulation results are

shown in Figure (3.7).

We can find analytically the growth rate σ from from equations (3.29) and (3.52), and cal-

culate the amplitudes of instability X(t) = X0eσt for cases 2 and 4. We calculate the dependence

of α = ln(X/X0) as a function of time. We see that that α is linear in the case of one-dimensional

fluid flow since the velocity ω = 1. But for the two dimensional flow we can not make this as-

sumption, since the velocity of the flow is not constant anymore so after calculating equation

(3.6) we can see that α is not linear with time but has the common tendency for amplitude to

increase with t → ∞ which is supported in Figure (3.8). We can observe that the linear growth

rate is indeed two times as much in non-isothermal case than in non-isothermal.
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3.6 Conclusions

We developed a non-isothermal model for the immiscible fluid flow in porous media.

We investigated the conditions for instability in both isothermal and non-isothermal cases. We

performed stability analysis for the non-isothermal case and found conditions when flow will

be stable with the inclusion of temperature. A set of numerical experiments for isothermal and

non-isothermal immiscible flow in a horizontal open fracture is performed to verify the stability

regimes. Our study leads to the following major conclusions:

• The stability of planar fronts in two phase immiscible flow in a porous medium is governed

by the mobility difference between the two phases. With realistic relative permeability

ratios, to stabilize a front in which water is displacing oil, the displacing fluid should be

an oil-rich mixture of oil and water. The analysis here indicate of how these fronts can

be analyzed. In particular, the Saffman-Taylor analysis of sharp fronts can be extended

to allow for variable saturations with the residual oil, demonstrating that stability depends

on the interplay between the hyperbolic conservation law derived by Buckley and Leverett

[16] and the elliptic equation that expresses incompressibility of the two phase mixture.

• The linear stability analysis made it clear that the dynamics of the front in non-isothermal

case is governed by the mobility difference between the two phases.

• Necessary conditions for the breakdown of stability conditions of the immiscible non-

isothermal fluid flow in porous media are presented as a phase diagram.

• The amplitude of the instability has the twice of the growth rate in non-isothermal regime

versus isothermal regime.
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Figure 3.1: Initial distribution at t = 0 for a two-dimensional immiscible flow in a horizontal
homogeneous porous medium. A fluid with viscosity µ1, saturation s1 is driven forward by the
pressure gradient to displace the second one of viscosity µ2 and saturation s2.
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Figure 3.2: Region of validity for stability region for isothermal flow, spanned by viscosity
phases. Case 1, (A,B) = (0,0),satisfies and case 2, (A,B) = (3,0), violates stability conditions.
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Figure 3.3: Region of validity for stability region for non-isothermal flow, spanned by vis-
cosity phases. Case 3, (A,B) = (−4,4), satisfies and case 4, (A,B) = (1,6), violates stability
conditions.
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Figure 3.4: Temporal snapshots, at t = 1, t = 5, t = 10, t = 15 of the water saturation s for Case
1, A = 0,B = 0, which satisfies stability conditions of isothermal regime.
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Figure 3.5: Temporal snapshots, at t = 1, t = 5, t = 10, t = 15 of the water saturation s for Case
2, A = 3,B = 0, which violates stability conditions of isothermal regime.
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Figure 3.6: Temporal snapshots, at t = 1, t = 5, t = 10, t = 15 of the water saturation s for Case
3, A =−4,B = 4, which satisfies stability conditions of non-isothermal regime.
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Figure 3.7: Temporal snapshots, at t = 1, t = 5, t = 10, t = 15 of the water saturation s for Case
4, A = 1,B = 6, which violates stability conditions of non-isothermal regime.
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Figure 3.8: The nonlinear amplitude of the front for saturation s for isothermal and non-
isothermal regimes at t = 10 for perturbation wavenumbers n = 3π, n = 6π, n = 9π corre-
sponding to the non-linear velocity of the flow ω.
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Table 3.1: Initial conditions for saturation of water s, temperature T and pressure p for isother-
mal and non-isothermal regimes.

Parameters Symbol Value SI Unit
Initial Saturaton sin 1 [-]
Final Saturaton s f in 0.1 [-]
Initial Pressure pin 100∗105 [ML−1T−2]
Final Pressure p f in 50∗105 [ML−1T−2]
Initial Temperature Tin 273.0+95.0 [Θ]
Final Temperature Tf in 273.0+5.0 [Θ]
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Table 3.2: Non-dimensionalized geothermal reservoir parameters for Darcy, continuity and
heat equations.

Parameters Symbol Value SI Unit
Porosity m 0.2 [-]
Saturated oil s0 0.1 [-]
Absolute Permeability K 1.0 [LT−1]
Density of water, ρ1 1.0∗103 [ML−3]
Density of oil, ρ2 1.0∗103 [ML−3]
Density of the mixture ρmix 2.2∗103 [ML−3]
Viscosity of water µ1 1.0∗10−3 [MT−1L−1]

Viscosity of oil µ2 eA+B/T [MT−1L−1]
Thermal conductivity λ 1.1 [MLT−3Θ−1]
Heat capacity of water (V = const) Cv1 4.0∗103 [L2MT−2Θ−1]
Heat capacity of oil (V = const) Cv2 0.8∗103 [L2MT−2Θ−1]
Heat capacity of mixture (V = const) Cvmix 3.3∗103 [L2MT−2Θ−1]
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Table 3.3: Test cases for total mobility function µ0 in isothermal and non-isothermal flow
regimes.

Parameter Case 1 Case 2 Case 3 Case 4
A 0.0 3.0 −4.0 1.0
B 0.0 0.0 4.0 6.0
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Chapter 4

Global sensitivity analyses using a

surrogate model based on support vector

regression approach

4.1 Introduction

For several decades, one of the most important research and real world applications in the

hydrogeological sciences has been related to aquifer contamination. The work has been studied

from the scientific and engineering point of view and related to prediction and remediation of

contaminant plumes in natural environment. Most of these problems are arising because of

uncertainties related to contaminant sources ( [33]). For example, it is often to not know the

location of contaminant sources and the properties of geochemical solutes. Also, the data related

to groundwater mixtures are collected at multiple wells where the samples are taken with some

extended period of time where the data that is been measured is being affected to some errors

and uncertainties.

It is very difficult to provide accurate solution complex geophysics models due to the
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various factors that all affecting the system simultaneously. It is also very challenging to iden-

tify the original groundwater types that is found in aquifer ( [91]). The task is solved by us-

ing inverse models for groundwater mixing processes in an aquifer where the model calibrates

against the available observation data. Respectively, the observation data is characterized by the

spatial and temporal distribution of the observed geochemical data ( [43], [8]). In these mod-

els, we need to simulate numerous different geochemical properties which further complicates

the analysis. This often leads to solution involving systems such as coupled partial differen-

tial equations which require immense computational power for every iteration. Current analysis

of groundwater contamination are implementing various statistical and machine learning tech-

niques ( [30], [80]). They have been utilized to build surrogate models based on observational

data for substitution of the much more complex and time-consuming physical models used to

simulate contamination levels. Such surrogate models have been used to predict contaminant

levels in regional groundwater sites ( [50]).

Several years years ago a site has began pumping tests at the wells located on the labora-

tory property with a chromium plume in a regional aquifer. The purpose of pumping ito under-

stand the properties of the plume and evaluate the potential for pumping to remove chromium

since the concentrations of chromium exceeded limits to ensure contaminants do no threaten hu-

man health or the environment. A network of 20 monitoring wells is used to define and monitor

the concentrations of chromium.

In this chapter, we utilize a Supporting Vector Regression (SVR) method for creation a

surrogate model capable of describing the behavior of a set of wells with the various input param-

eters, based on a limited amount of data samples. SVR is applied to analyze and deconstruct the

groundwater geochemistry observed in the regional aquifer for characterization of contaminant

sources. Global Sensitivity Analysis (GSA) method is aimed at investigating the propagation of

uncertainty through a numerical model and a model that has been trained by SVR method, and

specifically assessing the contribution to the model output uncertainty from different uncertain
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input factors.

Using synthetic and real world site data, we demonstrate that SVR method is capable

of accurately build a surrogate model of set of monitoring wells, using only a limited amount

of experimental data and simulation results. We use data from a group of four physical wells

with six input parameters. We train and build an SVR model on this training set and check its

predictions with the real measured concentrations and on a set of simulation data derived by the

real physical model developed specifically for the site chromium plume problem.

Finally, we performed global sensitivity analysis on both a) the physical model of these

wells developed previously and b) on our new SVR model. The comparison of the GSA results

in these two cases demonstrates the feasibility and accuracy of the new SVR model as a fast tool

for sensitivity analysis.

In this chapter, we analyze how SVR surrogate model performs when it is applied to

approximate the model-predicted behavior of complex time- and scale-dependent contaminant

transport in an geologic porous medium (aquifer). Having experimental and simulation data we

train an SVR classifier on a limited amount of samples to reproduce the general behavior of the

model. Then, using the trained SVR model we predict the contaminant transport and compare the

SVR predictions with a large amount of data points obtained by simulations performed by a real

physical model. This comparison is necessary to verify and validate the SVR model. Finally, we

apply the validated SVR model to understand the behavior of the investigated complex system

on a bigger scale [77].

4.2 Methodology

4.2.1 Physical model

We chose to vary the following parameters in the model: the flow velocity in the x-

direction of contaminant, the contaminant dispersivity, the time-scale dispersivity of the con-
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taminant, the contaminant flux, the start time and the end time, the x-coordinate of the source,

and the y-coordinate of the source.

4.2.2 Surrogate models

In a large number of engineering fields there is a need of accurate theoretical models for

examining complex real-world phenomena. Many such theoretical models have been built and

computationally implemented. Usually, the need to provide a detailed knowledge about a sys-

tem results in extremely computationally intensive model which outputs depend on many, often

poorly known, input parameters. The analysis of the role of these parameters and their sensitiv-

ity is an important task that results in simulation times of several hours, several days, or even

several weeks per model. These long running times are in a sharp contrast to the contemporary

need for real-time answers and efficient decision making.

Recently, another type of effective and fast approaches have become available to model

complex real-world systems. Many of these approaches are based on a variety of supervised ma-

chine learning methods and have been termed surrogate models. In general, surrogate (aka meta)

models ignore the underlying mechanisms of the specific physical model and examine the prob-

lem as a black-box that provides certain output for a given input. Usually, the surrogate models

are build based on output data from computationally intensive physical model simulations (or

experimental measurements) and their variation as a function of a small set input parameters.

The trained surrogate model is then applied to a much larger set of input parameters, and after

verifying and validating its accuracy, it is used to provide fast (although approximate) results

that otherwise may take many weeks to compute. Such models have been already applied in

many engineering fields such as electronics [22], aerodynamics [2], and hydrology [65].

The surrogate models based on statistical learning theory [34] allow accurate and ef-

ficient approximation of the relationship between the input and output of a complex system,

based only on a limited set of training data. Surrogate modeling replaces the original modeling
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by iterative re-optimization of analytically tractable and computationally cheap meta-models.

While not a trivial task, a proper construction of an approximate model can accurately emulate

the behavior of the original model as a function of the input parameters. As such, the use of a

suitable surrogate model makes it possible to perform computationally efficient analyses such as

prediction, optimization, sensitivity analysis, and uncertainty quantification.

Some of popular methods for developing surrogate models are polynomial response sur-

faces [68], kriging [37], support vector machines [22], support vector regression [65], space

mapping [52], and artificial neural networks [59].

Our study builds and evaluates the performance of a surrogate model based on statistical

learning theory, viz., support vector regression (SVR) model, for approximating the behavior of

chromium contaminant transport in the local site aquifer.

4.2.3 Support vector regression technique

The Support Vector Regression (SVR) method was developed in the 90s [23] based on

the concept of Supporting Vector Machine [14]. In fact, the SVR method is one of the most

frequently used models for regression [88]. Due to its industrial concept, SVR is used frequently

as a tool for creation of surrogate models applicable in various fields.

In our paper, we analyze how an SVR surrogate model performs when it is applied to

approximate the model-predicted behavior of complex time- and scale-dependent contaminant

transport in an geologic porous medium (aquifer). Having experimental and simulation data we

train an SVR classifier on a limited amount of samples to reproduce the general behavior of the

model. Then, using the trained SVR model we predict the contaminant transport parameters

and compare the SVR predictions with a large amount of data points obtained by simulations

performed by a real physical model. This comparison is necessary to verify and validate the SVR

model. Finally, we apply the validated SVR model to understand the behavior of the investigated

complex system on a bigger scale [77]. Below we will describe shortly the core concepts of the
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SVR technique.

4.2.4 SVR method

Let’s consider a data set (the SVR training set), D = {(x1,y1), ...,(xl,yl)},x ∈ Rn,y ∈ R,

that could be described (approximated) by a linear function,

f (x) = 〈ω,x〉+b, (4.1)

where 〈·, ·〉 denotes the dot-product in Rn, xi denotes the set of the input parameters, and

yi is the output of the physical model. To produce an accurate description and prediction of the

results from the physical model we need to build function f (x) that will demonstrate relatively

small deviations from the target outputs yi at the set of input parameters xi. In fact, we will

construct our SVR classifier in such a way that it will not accept errors outside of an interval

±ε. Geometrically, Figure (4.1), it is clear that this can be done by minimizing the vector norm

‖ω‖2, which is a convex optimization problem, that is, we have to minimize

min
1
2

ω
T ·ω

subject to the constraints,

yi−〈ω,xi〉−b≤ ε

〈ω,xi〉+b− yi ≤ ε.

(4.2)

Usually, to find such a function, f (x), it is needed to allow some more errors. This can

be done by introducing of so called slack variables ξ
+
i ,ξ

−
i ≥ 0, representing the upper and lower

constraints on the outputs of the system. Then, the optimal regression function is given by the
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minimum of,

min
1
2
‖ω‖2 +C

l

∑
i=1

(ξ+i +ξ
−
i ), (4.3)

subject to

yi−〈ω,xi〉−b≤ ε+ξ
+
i

〈ω,xi〉+b− yi ≤ ε+ξ
−
i .

ξ
+
i ,ξ

−
i ≥ 0.

(4.4)

Here the constant C > 0 is a trade-off parameter (aka penalty parameter) between model

complexity and the degree to which errors bigger than ε are tolerated.

We can solve the above optimization problem by constructing Lagrange function with

primal objective function (4.3) and corresponding constraints by introducing Lagrange multipli-

ers α
+
i ,α

−
i ,ν

+
i ,ν

−
i ≥ 0.

L = 1
2‖ω‖

2 +C
l
∑

i=1
(ξ+i +ξ

−
i )− (ν+i ξ

+
i ν
−
i ξ
−
i )−

−α
+
i (ε+ξ

+
i + yi−〈ω,xi〉−b)−α

−
i (ε+ξ

−
i + 〈ω,xi〉+b− yi), (4.5)

The above Lagrangian has to be minimized with respect to the primal variables: ω,b,ξ

and then maximized with respect to ν and α (the dual variables).

∂L
∂b

= 0,
∂L
∂ω

= 0,
∂L

∂ξ
+
i
= 0,

∂L
∂ξ
−
i
= 0. (4.6)

The above equations yields the dual optimization problem:

L =


−1

2

l

∑
i, j=1

(α+
i −α

−
i )(α

+
j −α

−
j )
〈
xi,x j

〉
−

−ε

l

∑
i=1

(α+
i +α

−
i )+

l

∑
i=1

yi(α
+
i −α

−
i ),

(4.7)
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subject to 
l

∑
i=1

(α+
i −α

−
i ) = 0

α
+
i ,α

−
i ∈ [0,C].

(4.8)

After solving the dual optimization problem for α
±
i we obtain ω that is a linear combi-

nation of the training points xi.

ω =
l

∑
i=1

(α+
i −α

−
i )xi, (4.9)

and therefore

f (x) =
l

∑
i=1

(α+
i −α

−
i )

〈
xix

〉
+b. (4.10)

4.2.5 Parameter b

To find the parameter b we need to apply Karush - Kuhn - Tucker (KKT) conditions (ref):

At the optimal solution the product between the dual variables has to vanish:

α
+
i (ε+ξ

+
i − yi +(ω · xi)+b) = 0, (4.11)

α
−
i (ε+ξ

−
i + yi− (ω · xi)−b) = 0, (4.12)

and

(C−α
+
i )ξ

+
i = 0, (4.13)

(C−α
−
i )ξ

−
i = 0. (4.14)

There never be a set of dual variables α
+
i ,α

−
i which are both non-zero in the same time as it

76



would require non-zero slacks in both directions. From here we can compute b as:

b =−ε+ yi− (ω · xi), α
+
i ∈ (0,C) (4.15)

b = ε+ yi− (ω · xi), α
−
i ∈ (0,C) (4.16)

So far we described the procedure of finding a linear function f (x) ( [65], [62], [41]). If

such a linear function does not exist, i.e., the problem is non-linear, we can apply the ”kernel

trick” [14]. That is, we can map the data, by using the ”Vapnik mapping” ( [96]) φ(x) that maps

x into a higher dimensional feature space, where we will have again a linear case that we can

solve using the described above procedure. In fact, in the linear case we are only dealing with

the inner product x · x and hence in the nonlinear case (after the mapping) we will need only

φ(x) ·φ(x). We can actually choose the mapping φ and employ different basis functions by using

ψ = φ ·φ,

f (x) =
l

∑
i=1

(α+
i −α

−
i )ψi +b. (4.17)

The kernel trick allows us to compute the inner products between the images of all pairs

of data in the feature space. This operation is often computationally cheaper than the explicit

computation of the coordinates. There are different choices for the type of kernel functions,

φ(x), the most common are the linear, polynomial, Gaussian and sigmoid kernels ( [74]). We

performed preliminary tests on the data using different kernel functions and determined that

the Gaussian kernel is the one giving the best results. The Gaussian kernel is described by the

formula:

φ(xi,x j) = exp(−γ||xi− x j||2). (4.18)

After the kernel substitution we can find the support vectors by solving the dual opti-

mization problem, that is, by minimizing
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L =


−1

2

l

∑
i, j=1

(α+
i −α

−
i )(α

+
j −α

−
j )φ(xix j)−

−ε

l

∑
i=1

(α+
i +α

−
i )+

l

∑
i=1

yi(α
+
i −α

−
i ).

(4.19)

subject to 
l

∑
i=1

(α+
i −α

−
i ) = 0

α
+
i ,α

−
i ∈ [0,C].

(4.20)

4.2.6 Examples for kernels

To increase the reading facility, the kernel function could be designed as

K(xi,x j) = φ(xi)φ(x j) = Qi j, (4.21)

The matrix Qi j is called kernel matrix and and contains values of the kernel function. It is useful

to save kernel function values in this way for computational reasons. Some of the common

examples of kernel functonals are represented below:

1. Polynomial kernel K(xi,x j) with the parameters p,c ∈ N

K(xi,x j) = (xi · x j + c)p, (4.22)

2. Hyperbolic tangent kernel K(xi,x j) with the parameter Θ > 0

K(xi,x j) = tanh(θ+φ(xi · x j)), (4.23)
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3. Gaussian radial basis function (RBF) kernel K(xi,x j) with the parameters γ > 0

K(xi,x j) = exp(−γ‖xi− x j‖2)), (4.24)

4. Anova radial basis kernel K(xi,x j) with the parameter σ,k,d

K(xi,x j) =
n

∑
i=1

exp(−σ(xk
i − xk

j)
2)d. (4.25)

4.2.7 eFAST global sensitivity analysis

The computational cost associated with the use of high-fidelity computational fluid dy-

namics (CFD) models poses a serious impediment to the successful application of formal sen-

sitivity analysis in engineering design. In many engineering design problems, thousands of

function evaluations may be required to undertake a sensitivity analysis. As a result, CFD mod-

els are often impractical to use for design sensitivity analyses. In contrast, surrogate models are

compact and cheap to evaluate (order of seconds or less) and can therefore be easily used for

such tasks.

The foundational idea of global sensitivity analysis (GSA) is to quantify how input pa-

rameter variations affect our model output. Measuring the sensitivity of parameters is critical

when building any sort of precise and robust model. Although many have preferred the use of

GSA algorithms such as Monte Carlo [55], we have decided to use the extended Fourier Am-

plitude Sensitivity Test (eFAST) for our sensitivity calculations due to it’s computational speed.

eFAST allows the computation of both the independent contribution of each parameter to model

uncertainty (”main sensitivity indices”), and also variance due to a parameter including all inter-

actions between other parameters (”total sensitivity indices”). Although eFAST cannot calculate

the contributions to uncertainty of every interaction like other GSA algorithms such as Monte

Carlo, this would require Ns(2n−1) model evaluations where n is the number of parameters and
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Ns is our sample size. Calculating just the main and total sensitivity indices, on the other hand,

requires 2(Nsn) model evaluations. Studies have shown that typically eFAST is much more effi-

cient than Monte Carlo when calculating main and total sensitivity indices [1]. For our purposes,

the main and total sensitivity indices will give enough intuition to determine which parameters

are the greatest contributors to model uncertainty.

Variance-based GSA methods are utilized in this project as they are attractive for two

main reasons: they allow a quantitative breakdown regarding each parameters independent con-

tribution to the uncertainty of the model, and they also provide insight into variance due to

interactions between parameters in non-additive models. Often the most significant issue in em-

ploying variance-based SA is the computational cost of the thousands of model evaluations that

are typically required. Variance-based sensitivity analysis methods such as Sobol’s Monte Carlo

technique or the extended Fourier Amplitude Sensitivity Test (eFAST) are attractive for a few

reasons. First, they are absolute measures, that is, their value can be used to assess the relative

importance of the input factors but it also has a clear interpretation: it is the fraction of output

variance due to uncertainty in the factor under study. Second, since they can be approximated

by an algebraic formula [1], their computation is quite straightforward and does not require to

specify any tuning parameter besides the number of random samples that should be employed.

One major limitation of this approach is that the number of random samples needs to be quite

high to obtain a reliable approximation of the variance-based measures in many cases, which

can become a problem in case of time-consuming simulation models.

The eFAST algorithm exploits properties of the frequency domain to calculate main and

total sensitivity indices more efficiently than traditional GSA methods such as a Monte Carlo

algorithm. The key idea behind the strength of eFAST is the ergodic theorem. The ergodic

theorem allows us to reduce the dimensionality of a Fourier series expansion of the model from

n to 1. We use the following transformation to accomplish this:

eFAST begins by representing the model function as a multi-dimensional Fourier series
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expansion:

f (X) =
∞

∑
m1=−∞

∞

∑
m2=−∞

...
∞

∑
mn=−∞

Cm1m2...mnexp[2πi(m1X1 +m2X2 + ...+mnXn)] (4.26)

for integers m1,m2, ...,mn where X =

〈
X1,X2, ...,Xn

〉
The coefficients of the expansion are, respectively:

Am j =
∫ 1

0
...

∫ 1

0
f (X1,X2, ...,Xn)cos(2πm jX j) dX1dX2...dX3 (4.27)

Bm j =
∫ 1

0
...

∫ 1

0
f (X1,X2, ...,Xn)sin(2πm jX j) dX1dX2...dX3 (4.28)

xi(s) =
1
2
+ arcsin(sin(ωis+φi)) (4.29)

[1]

This transformation creates a set of straight lines, approximately uniformly distributed

across the parameter space. φi is a random phase shift chosen between [0,2π) which allows

the search curve to begin at any point. By searching the entire parameter space with only a

single parameter, eFAST is able to calculate accurate sensitivity indices using far less model

evaluations than a Monte Carlo analysis.

The following figure demonstrates the accuracy of eFAST over Monte Carlo. Both algo-

rithms were tested on the Sobol G function, defined as:

d

∏
i=1
|4xi−2|+ai

1+ai
(4.30)

where

ai =
i−2

2
, iε[1, ...,d] (4.31)
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As the Sobol G function’s sensitivity indices [6] can be calculated analytically, it is al-

most universally used as a benchmark for global sensitivity analysis algorithms. Both eFAST

and Monte Carlo were tested over N = 15,000 iterations. Both algorithms center around the

analytical indices but the spread for eFAST is significantly smaller as we can see in Figure (4.2).

Am j ≈
1

2π

∫
π

−π

f (s)cos(ω js) ds (4.32)

Bm j ≈
1

2π

∫
π

−π

f (s)sin(ω js) ds (4.33)

The model function is then decomposed a second time using the Fourier-Haar wavelet

decomposition [78]:

f (X) = f0 +
n

∑
i=1

fi(Xi)+
n

∑
i< j

fi j(Xi,X j)+ ...+ f12...n (4.34)

4.3 Results

Several years ago a site has began pumping tests at wells located on the site property

with a chromium plume in a regional aquifer. The purpose of pumping is to understand the

properties of the plume and evaluate the potential of the pumping to remove chromium because

the local concentrations of chromium began to exceeded the limits. Thus, a network of 20

monitoring physical wells was built and used to evaluate, monitor, and eventually mitigate the

concentrations of chromium.

The purpose of using SVR in this problem is to build a surrogate model of set of these

wells, using only a limited amount of experimental data and simulation results. Below, we use

data from a group of four physical wells with 10 input parameters (the time was treated also as a

parameter). We train and build an SVR model on this training set and check its predictions with

the real measured concentrations and on a set of simulation data derived by the real physical
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model developed specifically for the site chromium plume problem. Finally, we performed

global sensitivity analysis on both a) the physical model of these wells developed previously and

b) on our new SVR model. The comparison of the GSA results in these two cases demonstrates

the feasibility and accuracy of the new SVR model as a fast tool for sensitivity analysis.

4.3.1 The SVR model of the chromium plume problem

We build an SVR based surrogate model that describe accurately the site pumping wells

based on a training data set derived both via simulations and measurements. Our SVR trainer

was coded in Julia, an advanced high-level dynamic high-performance scientific programming

language developed recently by MIT [13], and based on the quadratic programming algorithm

quadprog [85]. The minimization procedure (described in Methods), needed to find the sup-

porting vectors, was performed using the Ipopt Julia package. However, to be able to use this

SVR trainer code and to build our SVR model we need first to define several parameters needed

to build the SVR model. The non-linear regression method of SVR rely on a set of hyper-

parameters (tube sensitivity ε, bounds for trade-off parameter C, and kernel width for RBF γ)

which optimize the objective function L. Choosing the best hyperparameters for our dataset is

not a trivial task, because we need to analyze their effect on the regression accuracy and how

to choose an admissible range of parameters. A standard way of finding these optimal hyper-

parameters is by doing a grid search, i.e. systematically evaluating each possible combination of

parameters within a given range.

4.3.2 The parameters C, ε, and γ

We need first to asses the parameters: C and ε used in (4.3) as well as the Gaussian

kernel parameter γ that appears in (4.18). The parameters C and ε control the trade-off between

the over-fitting and knowledge in the SVR model. Specifically, a small constant C leads to
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a relatively flatter prediction (more emphasis on minimizing 1
2‖ω‖

2), while a larger constant

C will lead to a closer fitting of the data (more emphasis on minimizing
l
∑

i=1
(ξ+i + ξ

−
i )). The

parameter ε estimates how closely we have to reproduce the training data set. Usually, the effort

is to choose C and ε that will produce an SVR model with the best possible generalization. The

γ parameter defines the distance of the influence of the training set. The behavior of the SVR

model is very sensitive to the γ parameter. If γ is too large, the area of influence of each support

vector only includes the support vector itself and C will be not able to prevent overfitting. When

γ is very small, the model is too constrained and cannot capture the whole complexity of the

data. In this case the region of influence of any selected support vector would include almost

the whole training set. A low C makes the surface smooth, while a high C classifies all training

examples correctly by giving the model freedom to select more support vectors samples. Thus,

the choices of the C and γ parameters are interrelated. The performances of every SVR model

highly depends on the choice of these parameters [65]. For our SVR model, we set the value of

the parameter ε between ε = 2−7 to 2−3 , as in order to perfor a 3D search between all available

parameters.

For the trade-off parameters C, ε and kernel parameter γ we utilized a grid search cross-

validation strategy, following the standard protocol [45]. The grid search method consists in

varying the parameters C, ε and γ with exponentially growing sequences of values. For C, we

start from C = 28 and stop at 215; for γ, we start at γ = 2−7 and stop at 20 [22]. To derive the

parameters C and γ for every fixed value of ε we applied a standard minimization procedure

and create a heatmap, Fig. 4.3, that illustrates the results. Thus, Figure 4.3 is a heatmap that

demonstrates the SVR cross-validation accuracy as a function of the choice of C and γ with the

best choise of ε equal 2−5. The color corresponds to the value of the Mean Square Error (MSE),

which is defined as the mean of the square of errors by which predicted results obtained by our
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SVR model differ from actual values of the expected quantity, that is,

MSE =
1
n

i=n

∑
i1

(ey− py)
2 (4.35)

where py is the predicted output calculated by the surrogate model function and ey is the real

expected output. The point on the heatmap with coordinates (C, γ) that corresponds to the

smallest value of the MSE is considered optimal.

We can see on the heatmap that there are several good SVR models on an upper diagonal

of C and γ. Lower γ values gives us smooth SVR models which can be made more complex

by selecting a larger number of support vectors with larger C values. For some median values

of γ we get equally good performing models when C becomes very large: it is not necessary to

regularize the model by limiting the number of support vectors. On the other hand, if we use a

lower value of C to limit the number of support vectors our SVR model will use less memory

and will be faster in producing predictions.

Based on the heatmap, for our SVR model we chose one (minimum) value of MSE equal

7.35 with corresponding optimal parameters (C, γ) with values of (25, 1).

We also going to use additional criteria for model validation and to evaluate the prediction

results by the following measures such as squared correlation coefficient R2:

R2 =
(n∑

i=n
i1 ey py−∑

i=n
i1 ey ∑

i=n
i1 py)

2

(n∑
i=n
i1 e2

y− (∑i=n
i1 ey)2)(n∑

i=n
i1 p2

y− (∑i=n
i1 py)2)

(4.36)

This coefficient varies in the interval [0,1] with 1 being the best possible value achievable,

it does not depend on the scale of the output, and it indicates how well the SVR model fit

the original data. For the one well using the above listed parameters we achieved result of

R2 = 0.999791.
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4.3.3 The number of the data points in the training set

The final question, before to build our SVR model, is how big should be our training

sets, to make the best predictions.

We can find this minimal number of points in the SVR training subset by investigating

how our SVR model performs when it was trained on various number of points, that is, using

consecutively a number of data points Nt = 10,20,30,50,75,100,150,200,250,300, and com-

pare the performance. Specifically, for each Nt , we built and trained an SVR model and then the

SVR model is used to predict a larger data set of 5000 data points and compared its predictions

with the corresponding data points obtained with the real physical model. Again, the criterion

of this performance is the calculated MSE. As shown in Figure (??), MSE is large when a very

small Nt is used, then MSE decreases with the increase of Nt. When Nt reaches ∼100, the

variation of MSE tend to be slowed down and the MSE reach a plateau. Hence, considering a

maximum of the speed of calculations, Nt =100 was utilized in our SVR model.

4.3.4 SVR model trained on 1 well

We first trained an SVR model on a training set derived from one well. Taking a sample

data from one of the wells, we wanted to visualize our SVR model and compare its predic-

tions with experimental data points. The specific goal here is to show how the concentration of

chromium progresses with time up to 50 months and how well the SVR model matches with

real data. For visualizing purposes, for an input parameter we chose only the time. In this case,

the training set contained 12 data points randomly distributed over the whole time domain. We

built and trained an SVR model on this set, and after that produced with this model 500 new

data points (the red points on the Figure 4.6), and compared these predictions with the green line

containing 50 points of real data. As it can be seen, all the points lie inside of the ε-tube and our

SVR model predicts very well the real data.
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4.3.5 SVR trained on 4 wells

The next step for us was to train and to build SVR model on multiple wells. Since our

task was very computationally demanding, we needed to speed up the process of building the

SVR model. One way of doing that is using using the best open source machine-learning library

LIBSVM for building supporting vector machines (SVM) for regression models. In general,

LIBSVM implements simple minimization based on the quadratic programing and it was built

for nonlinear SVMs. We implemented LIBSVM in Julia language that as fast as C but has simple

syntax similar to the syntax of MATLAB and Python. Having that transformation helped us to

preform grid search on 4 wells with varying C, ε and γ. After getting the best results from the

heatmap (Figure 4.4), randomly chose 4 wells (out of given 20) that have the closest coordinates,

trained and built SVR model on these 4 wells and produced predictions which compared with

the transport of 4 wells simulated by Anasol ( [90]). The The MSE of the prediction rate was 13

and the mean square error R2 = 0.990654, which demonstrates that our SVR surrogate model

can be very accurate if compared with experimental data points and simulation data obtained by

physical models.

4.3.6 Sensitivity results

Figure 4.7 demonstrates the main and total sensitivity indices for the parameters ((A)-

(G)) that were calculated using both the real and surrogate models. In most plots the sensitivity

indices calculated using the surrogate model are almost indistinguishable from that of the origi-

nal model, that we can see a comparison on Table 2. The mean square error (MSE) for main and

total sensitivity indices calculated using the original model and SVR is tabulated below. The er-

rors were calculated after truncating the first four data points, as these points are undefined in the

original model.These results provide confidence that predictions based on the surrogate model

within the prescribed parameter ranges are extremely reliable. Model evaluations for t ≤ 4 were
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undefined and excluded from figures.

Featured below is a figure of spaghetti plots, showing the range in model output from

varying a single parameter at a time in Figure 4.8. Each parameter was varied in a range centered

around their initial value: (Pinit± pPinit) where Pinit is the initial value of said parameter and p is

a percentage. We show these variations in model output to illustrate that our range of parameter

choices was not too strictly constrained ; even when varying seven parameters simultaneously

over the ranges illustrated, the SVR surrogate model was still able to predict accurate model

results. Similar plots were created using the surrogate model, but are not shown as there was no

visible difference between the variation in model output.

4.4 Conclusion

In this work we employed surrogate modeling via support vector regression (SVR) and

global sensitivity analysis (GSA) using the extended Fourier amplitude sensitivity test (eFAST).

Both procedures have been developed parallel in Julia language, a relatively new high-level

language created at MIT. The final result of this project aims to demonstrate the power and

accuracy of applying both SVR and eFAST to a highly nonlinear geophysical model. Our study

leads to the following major conclusions:

• As a result we got an extremely fast method of performing GSA, allowing analyses that

would have previously been impractical to execute.

• SVR and eFAST algorithms are incorporated into the MADS (Model Analyses & Decision

Support) Julia toolbox.

• We analyzed how surrogate models based on support vector regression (SVR) perform

when they are applied to approximate the model-predicted behavior of complex time- and

scale-dependent contaminant transport in an geologic porous medium (aquifer).
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• A comprehensive analysis of the model’s output and sensitivity indices can be accurately

calculated with drastically lower costs.
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Figure 4.1: One-dimensional Linear Supporting Vector Regression model, where b is the pa-
rameter and w is the width of the ε−tube .
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Figure 4.2: Comparison between Monte Carlo and eFAST methods, green bar is the eFast, red
bar is the MC Sobol methods.
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Figure 4.3: The heatmap of the SVR for one well as cross-validation accuracy as a function of
(C, γ).
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Figure 4.4: The heatmap of the Support Vector Regression for four wells as cross-validation
accuracy as a function of (C, ε and γ).
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Figure 4.5: The optimal number of training sets for Support Vector Regression one well surro-
gate model.
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Figure 4.6: SVR Modeling of the chromium density in one well treating time as a parameter,
all the training and predicting point lay within the ε tube. The model was trained on 12 training
points.
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Figure 4.7: Main and total sensitivity indices calculated using the real and surrogate SVR
model in one well.
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Figure 4.8: Temporal snapshots of spaghetti plots of real model output, varying a single pa-
rameter at a time.
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Table 4.1: Description of used parameters and bounds of variation (pinit - initial value of pa-
rameter).

Parameter Description Bounds of Variation
vx Flow velocity (x-direction) of contaminant from pore pinit± (pinit×20%)
ax Contaminant dispersivity (x-direction) pinit± (pinit×50%)
tsdsp Time-scale dispersivity of contaminant pinit± (pinit×30%)
f Contaminant flux pinit± (pinit×10%)
t0 Start time [pinit− pinit×40%, pinit ]
t1 End time pinit± (pinit×10%)
x X-coordinate of source pinit± (pinit×5%)
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Table 4.2: Mean square error between sensitivity indices calculated using real model output
vs. SVR model.

Parameter Main Sensitivity Error Total Sensitivity Error
Pore x-velocity 3.43% 4.91%
x-Dispersivity 45.6% 44.6%
Time-scale Dispersivity 3.62% 3.31%
Contaminant Flux 7.47% 8.10%
Start Time 7.92% 7.67%
End Time 8.42% 8.59%
Source x-coordinate 8.06% 7.33%
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Nataliia Siuliukina, Boian S. Alexandrov, ”Global sensitivity analyses using a surrogate

model based on support vector regression approach”, in preparation.
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Chapter 5

Conclusions

The dissertation leads to the following major conclusions:

1. We developed a hybrid model of propagation of dynamic reactive fronts. A set of nu-

merical experiments for multicomponent reactive flow in a horizontal open fracture is

performed to demonstrate that dynamic reactive fronts might not be amenable to Darcy-

scale modeling. Our hybrid algorithm couples the pore-scale model in the vicinity of a

moving reaction front with the Darcy-scale model elsewhere in the fracture.

2. We showed necessary conditions for the breakdown of Darcy-scale models of dynamic re-

active fronts and confirmed that the range of applicability of macroscopic ARDEs and var-

ious transport regimes can be adequately described by a phase diagram in a space spanned

by the dimensionless Péclet (Pe) and Damkohler (Da) numbers.Our simulations provide an

example of the failure of a Darcy-scale model whose parameters fall outside the homoge-

nizability region in this diagram.Its α and β parameters correspond to the faster advection

and diffusion at the microscale. The faster advection and diffusion makes homogeniz-

ability constraints to be violated and this system is outside of the the homogenizability

regime. Faster diffusion rates makes values of Da being larger, while faster advection

corresponds to the higher Pe number which forces the failure of macroscopic descriptions
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based on local ARDEs leading to an absolute error E > ε along the fracture.The observed

failure of the Darcy-scale model of reaction fronts in an open fracture is not only quanti-

tative but also qualitative. While the Darcy-scale model predicts a Gaussian behavior, the

true dynamics is non-Gaussian, as evidenced by the asymmetric, long-tailed concentration

profiles.

3. The representational accuracy of our hybrid algorithm is comparable to that of high-

fidelity pore-scale simulations at the fraction of computational cost. The hybrid’s accuracy

(and computational cost) can be increased by enlarging the region of the computational do-

main, wherein the pore-scale simulations are performed. Alternatively, the hybrid’s com-

putational cost can be reduced by decreasing the size of the domain, at the cost of reducing

the hybrid’s accuracy. Refining the mesh size and time step of the Darcy-scale component

of the hybrid is relatively inexpensive but does not yield a significant improvement in the

relative model error. The hybrid formulation for the moving dynamic fronts suggests its

high adaptability to a wide variety of problems and different numerical schemes.

4. A linear stability analysis of thermo-viscous immiscible flow in two phase homogeneous

porous media of rectilinear geometry has been carried out. The growth rates of the physical

perturbation disturbances are obtained analytically. Were analyzed the effects of viscosity

mobility ratio in both isothermal and non-isothermal cases, representing the effects of

mass and heat transfer on the flow viscosity. In isothermal case, the increase of mobility

ratio could be caused not only by viscosity ratios but also in the increase of power of

relative permeabilities. The quadratic relative permeability γ = 2 gives the critical number

M = 3 for the achievement of stability, and with cubic and the fourth order of γ = 3,γ = 4

the ratios of the critical numbers for stability are M = 10,M = 19 respectively.

5. We also investigated the conditions for linear stability analysis for the non-isothermal

regime. A set of numerical experiments for isothermal and non-isothermal immiscible
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flow in a horizontal open fracture is performed to verify the stability regimes.

6. We developed a two phase non-isothermal model for the immiscible fluid flow in porous

media. With full nonlinear simulations the conclusions obtained from the linear stability

analysis are in concordance with those attained from nonlinear evolution of fingers. Neces-

sary conditions for the breakdown of stability conditions of the immiscible non-isothermal

fluid flow in porous media are presented as a phase diagram.

7. The stability of planar fronts in two phase immiscible flow in a porous medium is gov-

erned by the mobility difference between the two phases. With quadratic or cubic relative

permeability ratios, to stabilize a front in which water is displacing oil, the displacing

fluid should be a mixture of oil and water. The analysis indicate the stability conditions

for these these fronts.

8. In practical terms, the results of the analysis shows that heat effects make the displacement

less unstable in the sense that initial disturbances will have faster growth rates and, hence,

one should expect faster growth of instabilities.The amplitude of the instability has the

twice of the growth rate in non-isothermal regime versus isothermal regime with analyzing

nonlinear velocity. Finally, it should be pointed that these trends will be less noticeable

if the rate of heat loss from the fluids to the surrounding medium took into account. In

such a case, thermal effects will play a role in the displacement process which becomes

dominated by viscous effects.

9. We employed a data driven simulation of surrogate modeling via support vector regres-

sion (SVR) and global sensitivity analysis (GSA) using the extended Fourier amplitude

sensitivity test (eFAST). The final result of this project aims to demonstrate the power and

accuracy of applying both SVR and eFAST to a highly nonlinear geophysical model. As a

result we got an extremely fast method of performing GSA, allowing analyses that would
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have previously been impractical to execute. SVR and eFAST algorithms are incorporated

into the MADS (Model Analyses & Decision Support) Julia toolbox.

10. We analyzed how surrogate models based on support vector regression (SVR) perform

when they are applied to approximate the model-predicted behavior of complex time-

and scale-dependent contaminant transport in an geologic porous medium (aquifer). A

comprehensive analysis of the model’s output and sensitivity indices can be accurately

calculated with drastically lower costs.
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Appendix A

Appendix A

The following is the standard unpreconditioned BiCGStab algorithm [19] for solving a

linear system Ax = b, using x0 as the initial vector:

1. r0 = b−Ax0, r∗ arbitrary, but (r∗,r0) 6= 0

2. p0 = r0

3. For j = 1, 2... until convergence do

4. α j =
(r∗,r j)
(r∗,Ap j)

5. s j = r j−α jAp j

6. ω j =
(As j,s j)
(As j,As j)

7. x j+1 = x j +α j p j +ω js j

8. r j+1 = s j−ω jAs j

9. σ j =
(r j+1,r∗)
(r j,r∗)

· α j
ω j

10. p j+1 = r j+1 +σ j(p j−ω jAp j)
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11. end

The coefficient iterates α j and σ j are derived for updating the residual vectors and the search

direction vectors. Furthermore, ω j is defined to minimize the 2-norm of the residual vector r j+1

given s j and As j .When the algorithm is used with a preconditioner M ≈ A, the right precon-

ditioning consists of solving the system AM−1,y = b,y = Mx. One way to derive the precondi-

tioned iteration is, in the above unpreconditioned version, to replace the symbol A by AM−1 and

x j by y j, and then substitute y j back by Mx j. The preconditioner M considered is the incomplete

LU factorization (ILU(0)) of the coefficient matrix A. The ILU(0) factorization of A is given by

A = LU where L and U are lower triangular and unit upper triangular matrices, Let Z be a subset

of the set of indices {(i, j) : 1≥ i, j < N, i 6= j}, where A−LU has structural zeros. Let Z̄ be the

complement of Z. Then the ILU(0) factorization of A satisfies:

For j = 1,2..,n :

• For k = 1,2.., i−1 and (i,k) ∈ Z̄: αi,k = αi,k/αk,k

• For j = k+1, ...,n and (i,k) ∈ Z̄: αi, j = αi, j−αi,kαk, j

Taking the ILU(0) factorization of A as the preconditioning matrix allows the preservation of the

exact sparsity pattern in A, and so permits the arrays storing LU and A to share the same array

of indices.
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Appendix B

Appendix B

To approximate a finite difference scheme we are going to rewrite the system of non-

isothermal equation for fluid flow in the following way:

m
∂s
∂t

+∇ · (φ1(s)5 p) = 0, (B.1)

∇ · (φ(s)5 p) = 0, (B.2)

∂

∂t
((1− s)T +bsT +aT )−∇ · (µ0(T )k2(1− s)5 pT +bk1(s)5pT ) = λ̃4T, (B.3)

where

a =
ρs

ρ

1−m
m

Cvs

Cv2

, b =
Cv1

Cv2

, λ̃ =
λµ1

ρp0KCv2

(B.4)

We are going to find a solutions for pressure, saturation and temperature in (i+1/2, j+1/2). First,

we are going to find pressure and saturation without temperature dependence, i.e in isothermal

case.

To find pressure according to (B.1) we will use local one dimensional difference scheme [73]:
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p̃i+1/2, j+1/2− pi+1/2, j+1/2

τ
=−

w̃x,i+1, j+1/2− w̃x,i, j+1/2

hx
, (B.5)

p̂i+1/2, j+1/2− pi+1/2, j+1/2

τ
=−

w̃y,i+1/2, j+1− w̃y,i+1/2, j

hy
, (B.6)

w̃x,i, j+1/2 =−
2φ(si+1/2, j+1/2)φ(si−1/2, j+1/2)

φ(si+1/2, j+1/2)+φ(si−1/2, j+1/2)

p̃i+1/2, j+1/2− p̃i−1/2, j+1/2

hx
(B.7)

ŵy,i+1/2, j =−
2φ(si+1/2, j+1/2)φ(si+1/2, j−1/2)

φ(si+1/2, j+1/2)+φ(si+1/2, j−1/2)

p̂i+1/2, j+1/2− p̂i−1/2, j+1/2

hy
(B.8)

The pressure equations (B.14) are solved using Thomas algorithm [95]. Now we are going to

use Finite-volime method scheme [48] to solve the hyperbolic saturation equation (B.1)

m
ŝi+1/2, j+1/2− si+1/2, j+1/2

τ
+

Ki+1, j+1/2−Ki, j+1/2

hx
+

Gi+1/2, j+1−Gi+1/2, j

hy
= 0, (B.9)

where

Ki, j+1/2 =−F(ŝx
upw)

p̂i+1/2, j+1/2− p̂i−1/2, j+1/2

hx
, (B.10)

Gi+1/2, j =−F(ŝy
upw)

p̂i+1/2, j+1/2− p̂i+1/2, j−1/2

hy
, (B.11)

For sx
upw approximation we are going to use the upwind scheme

ŝx
upw =


ŝi−1/2, j+1/2, p̂i+1/2, j+1/2− p̂i−1/2, j+1/2 < 0

ŝi+1/2, j+1/2, p̂i+1/2, j+1/2− p̂i−1/2, j+1/2 > 0
(B.12)

ŝy
upw =


ŝi+1/2, j−1/2, p̂i+1/2, j+1/2− p̂i+1/2, j−1/2 < 0

ŝi+1/2, j+1/2, p̂i+1/2, j+1/2− p̂i+1/2, j−1/2 > 0
(B.13)
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Since the (B.9) is implicit then for linearization we use a Newton Method [54] and for

the linear system of equation we use BiCGStab algorithm with the preconditioner ILU(0). (ref

appendix A)

To find the temperature, we need to add the heat equation to the system and add the viscosity

dependence on temperature. In the same way we’ll use Finite-volume method scheme to solve

temperature equation in (B.1)

(1− ŝi+1/2, j+1/2)T̂i+1/2, j+1/2− (1− si+1/2, j+1/2)Ti+1/2, j+1/2

τ
+ (B.14)

+a
T̂i+1/2, j+1/2−Ti+1/2, j+1/2

τ
+ (B.15)

+b
ŝi+1/2, j+1/2T̂i+1/2, j+1/2− si+1/2, j+1/2)Ti+1/2, j+1/2

τ
− (B.16)

− [
W x

i+1, j+1/2−W x
i, j+1/2

hx
+

W y
i+1/2, j+1−W y

i+1/2, j

hy
]− (B.17)

−b[
V x

i+1, j+1/2−V x
i, j+1/2

hx
+

V y
i+1/2, j+1−V y

i+1/2, j

hy
] = (B.18)

= λ̃(
T̂i+3/2, j+1/2−2T̂i+1/2, j+1/2 + T̂i−1/2, j+1/2

h2
x

+
T̂i+1/2, j+3/2−2T̂i+1/2, j+1/2 + T̂i+1/2, j−1/2

h2
y

),

(B.19)
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where

W x
i, j+1/2 =

µ0(T̂i+1/2, j+1/2))+µ0(T̂i−1/2, j+1/2)

2
∗

k2(1− ŝi+1/2, j+1/2))+ k2(1− ŝi−1/2, j+1/2)

2
∗

(B.20)

∗
p̂i+1/2, j+1/2)+ p̂i−1/2, j+1/2

2
∗

T̂i+1/2, j+1/2 + T̂i−1/2, j+1/2

2
, (B.21)

W y
i+1/2, j =

µ0(T̂i+1/2, j+1/2))+µ0(T̂i+1/2, j−1/2)

2
∗

k2(1− ŝi+1/2, j+1/2))+ k2(1− ŝi+1/2, j−1/2)

2
∗

(B.22)

∗
p̂i+1/2, j+1/2)+ p̂i+1/2, j−1/2

2
∗

T̂i+1/2, j+1/2 + T̂i+1/2, j−1/2

2
, (B.23)

In the same manner,

V x
i, j+1/2 =

k1(ŝi+1/2, j+1/2))+ k1(ŝi−1/2, j+1/2)

2
∗ (B.24)

∗
p̂i+1/2, j+1/2)+ p̂i−1/2, j+1/2

2
∗

T̂i+1/2, j+1/2 + T̂i−1/2, j+1/2

2
, (B.25)

V y
i+1/2, j =

k2(1− ŝi+1/2, j+1/2))+ k2(1− ŝi+1/2, j−1/2)

2
∗ (B.26)

∗
p̂i+1/2, j+1/2)+ p̂i+1/2, j−1/2

2
∗

T̂i+1/2, j+1/2 + T̂i+1/2, j−1/2

2
, (B.27)

We use the Finite-volume scheme for temperature (B.14)- (B.24) using Newton lineariza-

tion method and for the system of linear equations are solved by BiCGStab algorithm with the

preconditioner ILU(0).
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