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Abstract

Objective.—In our previous work on image reconstruction for single-layer collimatorless 

scintigraphy, we developed the min-min weighted robust least squares (WRLS) optimization 

algorithm to address the challenge of reconstructing images when both the system matrix and 

the projection data are uncertain. Whereas the WRLS algorithm has been successful in two-

dimensional (2D) reconstruction, expanding it to three-dimensional (3D) reconstruction is difficult 

since the WRLS optimization problem is neither smooth nor strongly-convex. To overcome these 

difficulties and achieve robust image reconstruction in the presence of system uncertainties and 

projection noise, we propose a generalized iterative method based on the maximum likelihood 

expectation maximization (MLEM) algorithm, hereinafter referred to as the Masked-MLEM 

algorithm.

Approach.—In the Masked-MLEM algorithm, only selected subsets (“masks”) from the system 

matrix and the projection contribute to the image update to satisfy the constraints imposed 

by the system uncertainties. We validate the Masked-MLEM algorithm and compare it to 

the standard MLEM algorithm using experimental data obtained from both collimated and 

uncollimated imaging instruments, including parallel-hole collimated SPECT, 2D collimatorless 

scintigraphy, and 3D collimatorless tomography. Additionally, we conduct comprehensive Monte 

Carlo simulations for 3D collimatorless tomography to further validate the effectiveness of the 

Masked-MLEM algorithm in handling different levels of system uncertainties.

Main Results.—The Masked-MLEM and standard MLEM reconstructions are similar in cases 

with negligible system uncertainties, whereas the Masked-MLEM algorithm outperforms the 

standard MLEM algorithm when the system matrix is an approximation. Importantly, the 

Masked-MLEM algorithm ensures reliable image reconstruction across varying levels of system 

uncertainties.
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Significance.—With a good choice of system uncertainty and without requiring accurate 

knowledge of the actual system matrix, the Masked-MLEM algorithm yields more robust 

image reconstruction than the standard MLEM algorithm, effectively reducing the likelihood of 

erroneously reconstructing higher activities in regions without radioactive sources.

Keywords

Masked-MLEM; robust image reconstruction; system uncertainty; WRLS

1. Introduction

Generating high-quality images is an essential procedure for obtaining structural or 

functional information in many imaging modalities, such as computed tomography (CT), 

single photon emission computed tomography (SPECT), and positron emission tomography 

(PET) (Defrise & Gullberg 2006). In emission and transmission tomography, image 

reconstruction is performed using either analytical or iterative methods (Hsieh, Nett, Yu, 

Sauer, Thibault & Bouman 2013, Zeng 2001). Iterative reconstruction often yields better 

image quality and offers several advantages over analytical reconstruction. These include the 

flexibility for reconstruction using incomplete data or irregular sampling, and the capability 

to directly incorporate imaging physics and projection noise into the reconstruction process 

(Hsieh et al. 2013, Zeng 2001, Beister, Kolditz & Kalender 2012, Yan, Bui, Cong 

& Vese 2013). A popular iterative reconstruction algorithm aimed at finding the most 

likely image given the observed data is maximum likelihood expectation maximization 

(MLEM) (Shepp & Vardi 1982, Lange, Carson et al. 1984), or its variant, ordered subsets 

expectation maximization (OSEM) (Hudson & Larkin 1994). MLEM-based algorithms are 

particularly suitable for imaging problems with Poisson noise characteristics and enforce the 

non-negativity of reconstructed images, which are desirable properties in PET or SPECT 

reconstructions (Lange et al. 1984, Zeng 2001).

Mathematically, image reconstruction addresses a linear ill-posed inverse problem to recover 

an unknown image from incomplete and noisy measurements (Hsieh et al. 2013, Yan et 

al. 2013). Typically, this process is structured as a convex optimization problem using 

Tikhonov regularization, where the data fidelity term is a least-squares (LS) optimization 

problem and the additive regularization term imposes some prior knowledge on the image 

to be reconstructed (Tikhonov 1963, Panin, Zeng & Gullberg 1998, Yan et al. 2013). 

With a growing research interest in image priors, various regularization terms including 

total variation (TV), nonlocal means (NLM), and deep-learning-based priors, have been 

successfully integrated into iterative algorithms whereas assuming a known and accurate 

system response in the data fidelity term (Panin et al. 1998, Sawatzky, Brune, Wubbeling, 

Kosters, Schafers & Burger 2008, Chen, Qi, Wu, Xu & Zhou 2016, Gong, Catana, Qi & Li 

2018). In reality, the system matrix used for image reconstruction suffers from uncertainties 

due to complicated physical effects (Liu, Wang, Gao, Tian, Chen, Hu & Shi 2012). Previous 

studies has investigated the impact of noise in the system matrix and shown that these 

uncertainties in the system matrix can propagate to the reconstructed images (Qi & Huesman 

2004, Rafecas, Boning, Pichler, Lorenz, Schwaiger & Ziegler 2004). Therefore, in addition 

to incorporating projection statistical models and image priors, incorporating constraints on 
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system uncertainties is expected to further improve the fidelity of the reconstructed images 

and yield robust reconstructions.

Due to the large dimensionality and ill-posedness of the system matrix, considering 

the system uncertainties explicitly during the reconstruction process is difficult and 

computationally expensive. Because of this, only a few studies have investigated system 

uncertainties in image reconstruction (Qi & Huesman 2004, Rafecas, Boning, Pichler, 

Lorenz, Schwaiger & Ziegler 2004, Liu et al. 2012, Kucharczak, Loquin, Buvat, Strauss 

& Mariano-Goulart 2018, Zheng, Huh, Su, Wang, Lin, Vetter & Seo 2020, Lunz, 

Hauptmann, Tarvainen, Schonlieb & Arridge 2021). Instead of directly addressing the 

system uncertainties, previous studies have adopted alternative approaches to account for 

system uncertainties indirectly (Rico, Strauss & Mariano-Goulart 2009, Rico & Strauss 

2010, Kucharczak et al. 2018, Lunz et al. 2021). By transforming the system uncertainties 

to the projection confident intervals, the non-additive interval-based EM algorithm has 

been developed to reconstruct image confidence intervals based on the projection confident 

intervals, providing an estimate of the uncertainties in the reconstructed images (Rico 

et al. 2009, Rico & Strauss 2010, Kucharczak et al. 2018). An alternative approach 

to transforming system uncertainties into projection uncertainties is by training a neural 

network to learn a correction for the projection data, which can effectively provide a 

correction for the system matrix (Lunz et al. 2021). Deep-learning-based approaches take 

advantage of the learning capabilities of neural networks to model the complex system 

uncertainties and the projection uncertainties, but they require a large amount of training 

data to effectively learn and generalize.

In our previous work, we developed a min-min weighted robust least squares (WRLS) 

algorithm to directly address the uncertainties present in both the projection data and 

the system matrix (Zheng et al. 2020). We demonstrated the success of the WRLS 

algorithm in two-dimensional (2D) collimatorless scintigraphy using the CVXPY toolkit 

for iterative reconstruction (Zheng et al. 2020, Diamond & Boyd 2016). However, the 

WRLS optimization problem is neither smooth nor strongly-convex (Boyd & Vandenberghe 

2004). When applying some traditional gradient-based algorithms to solve the WRLS 

optimization problem, the non-smoothness will introduce difficulties in differentiating the 

objective function, and the lack of strong convexity will lead to multiple local optima, 

making it difficult to find the global optimum and resulting in slow convergence. As 

image dimensionality increases, the optimization landscape becomes more complex, and 

finding the global optimum is more challenging. For example, in three-dimensional (3D) 

tomographic reconstruction, the CVXPY toolkit is computationally memory-intensive and 

time-consuming to handle such a large-scale WRLS optimization problem even on a 

dedicated server. Without an efficient iterative solver, the applications of the WRLS 

algorithm will be limited.

In this study, we propose the Masked-MLEM algorithm as a generalized iterative MLEM 

approach to achieve robust image reconstruction in the presence of system uncertainties and 

projection noise. We apply the Masked-MLEM algorithm for image reconstruction using 

experimental data obtained from three distinct imaging modalities: parallel-hole collimated 

SPECT, 2D collimatorless scintigraphy, and 3D collimatorless tomography. Furthermore, we 
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validate the performance of the Masked-MLEM algorithm through Monte Carlo simulations 

using Geant4 for 3D collimatorless tomography with an ideal ring detector geometry 

(Agostinelli, Allison, Amako, Apostolakis, Araujo, Arce, Asai, Axen, Banerjee, Barrand et 

al. 2003). The images reconstructed using the Masked-MLEM algorithm are compared with 

those using the standard MLEM algorithm to examine the robustness of the Masked-MLEM 

algorithm.

2. Materials and Methods

2.1. Masked-MLEM

The Masked-MLEM algorithm is derived based on the WRLS algorithm, where “Masked” 

refers to selecting subsets in both the system matrix and the projection in order to satisfy 

the constraints on the system uncertainties, and using the selected subsets for the image 

update. To provide a comprehensive understanding of the Masked-MLEM algorithm under 

the assumption of Poisson noise in projection, we begin by revisiting the WRLS algorithm 

considering Gaussian noise in projection. In our previous work, the WRLS algorithm took 

into account the uncertainties in both the projection data y and the system matrix A by 

assuming a box uncertainty set such that element-wisely Alb ≺ A ≺ Aub, where Alb and Aub are 

the lower and upper bounds of A respectively (Zheng et al. 2020). It is noteworthy that 

in the context of matrices and vectors, the notation ≺ represents element-wise less than or 

equal to, and the reverse relationship applies as well. Essentially, the box uncertainty set 

for A leads to a feasibility finding problem given by equation (1), whose goal is to seek a 

non-negative image x that satisfies the system uncertainty constraints without optimizing an 

objective function as we define it as a constant equal to 1, thereby incorporating the system 

uncertainties into the image reconstruction process.

min
x ≻ 0

1 s.t. Albx ≺ y ≺ Aubx

min
x ≻ 0

1 s.t. Aux − yu ≺ 0,

(1)

where

Au =
Alb

−Aub
, yu = y

−y .

By relaxing the strict equality constraint Ax = y to the additional soft constraints in equation 

(1) based on the system uncertainties, the feasible reconstructed image space can be 

expanded and the reconstruction process has more flexibility to explore a larger solution 

space when the exact solution for Ax = y may not be feasible.

To find the optimal image while accounting for system uncertainties, the iterative image 

update process involves penalizing those instances of x that violate the constraints in 

equation (1) (i.e., Aux − yu ≻ 0), which forms the fundamental principle underlying both 
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the WRLS and Masked-MLEM algorithms. We first reformulate the WRLS optimization 

problem in (Zheng et al. 2020) as

min
x ≻ 0,μ ≻ 0

1
2 ∥ μ ∥Σ−1

2 s.t. I
I μ ≻ Aux − yu,

(2)

where ∑ is a diagonal matrix representing an additive Gaussian noise in y, I ∈ ℝm × m is 

the identity matrix with m being the number of measurements, and μ is a slack variable 

introduced to make the objective function convex (Boyd & Vandenberghe 2004). Instead of 

applying any optimization techniques like the CVXPY toolkit to directly solve the WRLS 

optimization problem, we decompose it into smaller subproblems and address the challenges 

posed by non-smoothness and lack of strong convexity within these subproblems. Looking 

at equation (2), if we can find some x∗ satisfying Aux∗ − yu ≺ 0 (i.e., a feasible solution for 

equation (1)), then the optimal solutions for equation (2) will be μ∗ = 0 and x∗, i.e., x∗

is the final reconstructed image. Otherwise, when some entries in the vector Aux − yu are 

positive, the objective function in equation (2) is to minimize the l∞ norm of the positive 

entries in Aux − yu (i.e., ∀i = 1,…, m, max{(alb)i
Tx − yi, yi − (aub)i

Tx, 0}, see (Zheng et al. 2020)). 

Since the l∞ norm optimization is neither smooth nor strongly-convex, solving equation (2) 

in large-scale image reconstruction problems is computationally intractable and prone to 

convergence issues.

To overcome these challenges, one optimization approach is to relax the l∞

norm with a smooth convex surrogate, such as the ℓ2 norm (i.e., ∀i = 1,…, m, 

max{(alb)i
Tx − yi, 0}2 + max{yi − aub i

Tx, 0}2). This relaxation extends the objective function in 

equation (2) to a larger and smooth function. After relaxation, instead of optimizing the 

original objective function in equation (2), we optimize the upper bound of equation (2) 

given by equation (3) (see proof below).

min
x ≻ 0

1
2 ∥ max Aux − yu, 0 ∥Σ−1

2

= min
x ≻ 0

1
2 ∥ M Au x − M yu ∥Σ−1

2 ,

(3)

where M = diag Aux − yu ≻ 0  is a diagonal matrix with its ith diagonal element taking the 

value 1 if Aux − yu i ≥ 0, and 0 otherwise, ∀i = 1,…, 2m. This matrix essentially functions 

as a ”mask” that operates on Au and yu, facilitating the selection of the positive subsets in 

Aux − yu while nullifying the non-positive subsets. Given that half of the elements in Au

and yu are negative (see their definitions in equation (1)), which mathematically makes the 

constraints in equations (1) and (2) convex but is physically trivial within the context of the 

ℓ2 norm in equation (3), we take the element-wise absolute values of MAu and Myu as M|Au|
and M|yu| to make the selected subsets in Au and yu non-negative.
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Proof.—Equation (2) 
See (Zheng et al. 2020) min

x ≻ 0 i = 1

m 1
2σi

max alb i
Tx − yi, yi − aub i

Tx, 0 2 Let 

v1 = max alb i
Tx − yi, 0 , v2 = max yi − aub i

Tx, 0  we have:

max alb i
Tx − yi, yi − aub i

Tx, 0 = max v1, v2 ≤
ℓ∞ ℓ2 v1

2 + v2
2∴ Equation (2) 

≤
ℓ∞ ℓ2 min

x ≻ 0 i = 1

m 1
2σi

max alb i
Tx − yi, 0 2 + max yi − aub i

Tx, 0 2  equation (3) ■

The form of equation (3) is a generalized data fidelity term that takes into account the 

system uncertainty Au and the additive Gaussian noise in y. It can be solved efficiently by a 

number of iterative algorithms used for LS optimization, where the modification is to apply 

a mask to select the positive subsets in Aux − yu for the image update at each iteration, as 

if the actual system matrix is M|Au| and the projection is M|yu| for LS optimization. The 

values of the unselected subsets in Au and yu are zeroed out at each iteration, and thus their 

values will not contribute to the image update. After the relaxation, the optimal solution to 

equation (3) will be different from equation (2). We have tested that the difference between 

the reconstructed images using equation (2) and equation (3) can be negligible considering 

the intrinsic image resolution and projection noise.

Inspired by equation (3), wherein we consider the actual system matrix as M|Au| and the 

projection as M|yu| in each iteration (representing a selected subset of the original Au and 

yu), when we assume Poisson noise in y, we derive the Masked-MLEM algorithm based 

on the MLEM algorithm as shown in Algorithm 1 (see Appendix A for derivation details). 

The Masked-MLEM algorithm is a generalization of the standard MLEM algorithm, i.e., 

MLEM reduces to Masked-MLEM (Dasgupta, Papadimitriou & Vazirani 2008). The validity 

of this reduction is straightforward: if we know how to solve Masked-MLEM, by setting 

Alb = A = Aub and running Masked-MLEM, we will get the solution of MLEM.

In Algorithm 1, for each iteration in the outer loop Nout, we first check the condition whether 

Auxs − yu is element-wisely non-positive. When this condition is met, we have found the 

optimal solution for equation (3) and the returned xs stands as the final reconstructed image. 

This step serves as a crucial sanity check and the actual improvements to the image come 

from the subsequent masked update phase when Auxs − yu ≻ 0. In this case, we select a mask 

M such that only the selected subsets in Au and yu will contribute to the iterative update of 

the image xs. This controlled masking strategy can be viewed as a form of regularization 

and offers a mechanism to refine and optimize the image reconstruction process, directing 

computational efforts towards
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areas of significance within the given projection data and system uncertainties. Unlike some 

deep-learning-based denoising methods, the mask M is dynamically determined at each 

iteration rather than being randomly selected. This is because the dynamic adaptability 

of the mask M is specifically tailored to the system uncertainty constraints at each 

iteration. We have checked that relying on predefined or random masking patterns can 

lead to convergence challenges and inaccurate reconstructions, potentially guiding the 

optimization process towards incorrect gradient descent directions during image updates. 

To speed up reconstruction, we can use the same M to update the image for Nin iterations, 

rather than updating M whenever the image is updated, since updating M may be 

computationally expensive for huge matrices and the selected masks at subsequent iterations 

may be similar. We have checked that the Masked-MLEM algorithm converges when 

using appropriate Au, Nout, and Nin by monitoring the loss curve during the reconstruction 

process. The reconstruction loss is defined as 
∥ xk + 1 − xk ∥2

∥ xk ∥2
, where xk + 1 and xk represent 

the reconstructed images at iteration k + 1 and k respectively, and serves as the metric 

for convergence throughout the iterations. For the convergence of the Masked-MLEM 

algorithm, Nin should be determined empirically through experimentation and should take a 

small value (usually less than 10 depending on reconstruction problems), otherwise the mask 

M will be outdated and not suitable for future image updates.

The Masked-MLEM algorithm is also compatible with ordered subsets (OS), i.e., Masked-

OSEM. If we update the image using OS from the mask M, it does not guarantee 

convergence since M varies with the image update. For the purpose of convergence, we 

use the OS to calculate masks, followed by the Masked-MLEM algorithm. The detailed 

Masked-OSEM algorithm is shown in Algorithm 2.
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2.2. System Uncertainties

To apply the Masked-MLEM algorithm, we design the system matrix upper and lower 

bounds for both collimated and uncollimated imaging modalities. For the parallel-hole 

collimated SPECT, we use the standard ray-tracing algorithm to generate the system matrix 

AS, which does not account for unwanted photon transmission through the collimator 

(Huesman, Gullberg, Greenberg & Budinger 1977, Siddon 1985, Gullberg, Zeng, Tsui & 

Hagius 1989). Because of the imperfect collimator performance of SPECT systems in 

reality, AS is too idealistic and we assume that the point spread function (PSF) of the system 

response is a Gaussian function rather than an ideal Dirac delta function. We blur each PSF 

in AS with a 5 by 5 Gaussian kernel and add the Gaussian smear to AS as the penetration 

component, resulting in a new system matrix AG. Thus the system matrix lower and upper 

bounds for the parallel-hole collimated SPECT are calculated by

Alb = AS

Aub = AS + α AG − AS ,

(4)

where α is a hyperparameter adjusting the magnitude of the Gaussian smear in AS.

For collimatorless imaging, we follow the same approach as in (Zheng et al. 2020) to 

calculate the system matrix lower and upper bounds, and add more hyperparameters to 

make the bounds more flexible (see figure 1). Without any collimation, one viable analytical 

method to calculate the system matrix A for collimatorless gamma cameras is based on solid 

angles. The element aij in A, which represents the probability that photons from the image 

voxel j reach the detector pixel i, is calculated by

aij = p2rij

4πRij
3 + 2p2rij

,

Zheng et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2024 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

where p is the detector pixel size, Rij and rij are the distance and the normal distance between 

the image voxel j and the detector pixel i. The 2p2rij in the denominator of equation (5) is 

an approximation introduced to address scenarios where the source is in close proximity to 

the facing detector pixel (i.e., Rij ≃ rij ≃ 0), in which cases the solid angle equation should 

yield 1
2  (Frame 2022). This A derived from solid angles is a weak approximation to the 

actual system matrix for collimatorless imaging, as it only takes into account the solid angle. 

A more accurate computation of A for collimatorless imaging is based on Monte Carlo 

simulations (Rafecas, Boning, Pichler, Lorenz, Schwaiger & Ziegler 2004, Rafecas, Mosler, 

Dietz, Pogl, Stamatakis, McElroy & Ziegler 2004, Yao, Ma & Shao 2009). In our simulation 

studies focusing on 3D collimatorless tomography, we employ this method by positioning 

a point source that emits 218 keV gamma rays at different locations within the imaging 

field of view (FOV) of the system and recording the resulting PSFs as the components of A. 

However, this Monte Carlo-based system matrix calculation may still introduce uncertainties 

due to factors such as phantom attenuation and scattering.

The detailed procedures to obtain the system matrix lower and upper bounds based on A are 

shown in Algorithm 3, where ϵ, η, θ, and ζ are hyperparameters used to tune Alb and Aub. The 

matrices A, Amax, A′, A, and W  in Algorithm 3 are illustrated in figure 1 and follow the same 

definitions in (Zheng et al. 2020).

The main idea of Algorithm 3 is to change the characteristics of the PSF by assuming 

that the largest response in A is accurate, while considering that the uncertainties of the 

remaining aijs are linearly proportional to their respective magnitudes. The hyperparameter 

ϵ determines the proportion of the largest response in A that is assumed to be accurate 

and retained. The hyperparameter η determines the location of A′ and the hyperparameter 

θ determines the location of A in figure 1. Both η and θ contribute to shaping the 

characteristics of the PSF. Additionally, the hyperparameter ζ controls the size of the 

uncertainty set. These hyperparameters jointly define a system uncertainty set and can be 

individually adjusted. The value of ϵ is determinate when we have knowledge of the ideal 

system response A using a perfect parallel-hole collimator. If A is already close to the actual 

system matrix, a smaller θ can be set, and vice versa. Similarly, if the uncertainty set is 
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expected to be small, a smaller ζ can be selected accordingly. Among these hyperparameters, 

η is the most sensitive and typically needs to be set close to zero. Finding the optimal 

value for η often involves trying out various smaller values through experimentation. We 

have tested in our previous study that using these hyperparameters to adjust the system 

uncertainties works for collimatorless image reconstruction (Zheng et al. 2020).

For reconstruction in collimatorless imaging, the system matrix for the standard MLEM 

algorithm is A, and the system matrix uncertainty Au for the Masked-MLEM algorithm 

is obtained by manually adjusting ϵ, η, θ, and ζ in Algorithm 3. Both A and Au set 

zero responses for the elements corresponding to the dead detector pixels or strips in 

collimatorless imaging.

2.3. Phantom Studies

We obtained experimental data from three imaging instruments involving both collimated 

and uncollimated imaging modalities to validate the Masked-MLEM algorithm: 1) Parallel-

hole collimated SPECT; 2) 2D collimatorless scintigraphy; and 3) 3D collimatorless 

tomography. Additionally, we conducted comprehensive Monte Carlo simulations using 

Geant4 to generate realistic projection data for 3D collimatorless tomography to further 

validate the effectiveness of the Masked-MLEM algorithm in handling different levels of 

system uncertainties. Due to limited access to these imaging instruments, we used four 

unique phantoms filled with both different radionuclides and activities in different imaging 

modalities. The focus of this study is to compare the standard MLEM and the Masked-

MLEM approaches, not the imaging instruments themselves.

2.3.1. SPECT—For SPECT imaging, a NEMA SPECT triple line source phantom 

(NEMA SPECT Triple Line Source Phantom ™ n.d.), filled with about 5 mCi/mL 99mTc 

pertechnetate by following a standard filling procedure, was scanned by the GE Infinia 

Hawkeye 4 SPECT/CT for 30 s per projection (GoldSeal Infinia Hawkeye 4 n.d.). The 

line sources are positioned in a right triangle configuration with one at the center and the 

other two at a distance of 75 mm from the center. Each line source has a diameter of 1 

mm and a useful height of 184 mm. The SPECT scanner uses a NaI detector consisting of 

128 by 128 detector pixels and a parallel-hole collimator (LE-HR). To obtain the projection 

data, 10% energy window was used for the 140 keV photopeak of 99mTc and no scatter 

correction was applied. We used the projection data from 60 projection angles separated 

by 6° for image reconstruction. Due to the large dimensionality of the system response, 

we used 6 subsets for the standard OSEM and the Masked-OSEM reconstructions. The 

system matrix for the standard OSEM algorithm is AS, and the system matrix uncertainty 

Au for the Masked-OSEM algorithm is obtained by adjusting α in equation (4). We ran both 

the OSEM algorithm and Masked-OSEM algorithm for 50 iterations until convergence (the 

reconstruction loss was less than 0.004) with Nout = 50 and Nin = 1 for the Masked-OSEM 

reconstruction.

2.3.2. Collimatorless Scintigraphy—For 2D collimatorless scintigraphy, a fillable 

mouse phantom with its brain, liver, and tumor filled with 261 nCi, 261 nCi, and 239 nCi of 
225Ac aqueous solution, respectively, was put on the surface of a CZT detector and measured 
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for 20 min (Fillable Mouse/rat phantom 2022). The experiment setup is shown in figure 2. 

The dimensions of the mouse phantom are 97.86 mm in length, 27.48 mm in width, and 

22.70 mm in height. The detector is composed of 5 stacked CZT crystals, with each crystal 

consisting of 16 by 16 pixels. This results in a total of 80 by 16 detector pixels. Each pixel 

has a size of 1.6 mm × 1.6 mm × 5.0 mm. The distance from the bottom of the mouse phantom 

to the surface of the detector was about 2 mm. The mouse phantom was scanned on only one 

projection and we used a 20% energy window for the characteristic X-ray peak centering 

at 90 keV and a 6% energy window for the 218 keV photopeak of 221Fr, one daughter of 
225Ac, to obtain the projection data for both MLEM reconstruction and Masked-MLEM 

reconstruction. We ran both the MLEM algorithm and Masked-MLEM algorithm for 200 

iterations until convergence (the reconstruction loss was less than 0.002) with Nout = 200 and 

Nin = 1 for the Masked-MLEM reconstruction.

2.3.3. Experimental Collimatorless Tomography—For experimental 3D 

collimatorless tomography, a fillable micro hollow sphere phantom filled with 0.53 kBq/μL
of 225Ac aqueous solution in its three different-sized spheres, was rotated at 8 angles 

separated by 45° and scanned by a 3D position-sensitive HPGe double-sided strip detector 

(DSSD) for 30 min per projection (see figure 3) (Frame, Barnowski, Gunter, Mihailescu 

& Vetter 2022, Frame, Bobba, Gunter, Mihailescu, Bidkar, Flavell & Vetter 2023). The 

detector is part of a Compton camera and consists of 37 by 37 orthogonal stripes with 

an active pixel size of 2 mm × 2 mm × 15 mm (Frame et al. 2022, Frame et al. 2023). The 

cylinder phantom has a diameter of 40 mm and a height of 82 mm, and was filled with 

water. The micro hollow spheres, from smallest to largest, have diameters of 4.3 mm, 6.2 

mm, and 7.8 mm; therefore, the total activities of 225Ac were approximately 0.6 mCi, 1.8 

mCi, and 3.6 mCi, respectively. The distance from the center of the micro hollow sphere 

phantom to the surface of the detector was about 52.5 mm. The detailed experiment setup 

for measuring the micro hollow sphere phantom is shown in (Frame et al. 2023). Given 

that the 3D position-sensitive detector could record the depth of interactions, we summed 

the counts of the single interaction events as the projection data, whose interaction depths 

were within 3 mm from the surface of the first detector of Compton cameras, and energies 

were in the 18% energy window of the characteristic X-ray peak centering at 87 keV, the 

1.1% energy window of the 218 keV photopeak of 221Fr, and the 0.6% energy window of 

the 440 keV photopeak of 213Bi. With the constraint on the interaction depth, the system 

matrix A is applicable for projections coming from a mixture of energies. We ran both the 

MLEM algorithm and Masked-MLEM algorithm for 500 iterations until convergence (the 

reconstruction loss was less than 0.002) with Nout = 500 and Nin = 1 for the Masked-MLEM 

reconstruction.

2.3.4. Simulated Collimatorless Tomography—For our simulated 3D collimatorless 

tomography study, we designed an ideal ring detector system tailored for achieving close 

proximity for small-animal-scale collimatorless imaging (see figure 4). This CZT-based 

ring detector features 64 pixels per ring and 16 longitudinal rings. The detector pixel 

size is 2 mm × 2 mm × 5 mm, aligning with state-of-the-art detection systems. The imaging 

FOV of the ring detector system spans a diameter of 40.7 mm. At the center of the ring 

detector system, we positioned a cylindrical water phantom with a diameter of 25 mm and 
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a thickness of 10 mm, i.e., the distance from the center of water phantom to the surface of 

the detector was about 20.4 mm. Within the phantom, two spheres each with a diameter of 

7 mm are situated in the central transverse plane and symmetrically positioned 7 mm away 

from the phantom’s center. The source particles, 225Ac ions with their full decay chain, were 

uniformly sampled within the aqueous solution of the spheres. We simulated 107 decayed 
225Ac particles, corresponding to a total activity of 0.45 μCi or a concentration of 1.25 μCi/ml
of 225Ac within the spheres when measuring for 10 min.

In the Geant4 Monte Carlo simulations, we used the Livermore physics list 

(G4EmLivermorePhysics) along with the decay physics lists (G4DecayPhysics and 

G4RadioactiveDecayPhysics) (Ivanchenko, Apostolakis, Bagulya, Abdelouahed, Black, 

Bogdanov, Burkhard, Chauvie, Cirrone, Cuttone et al. 2011, Beaudoux, Blin, Barbrel, 

Kantor & Zacharatou 2019). To account for experimental noise, the detected energy 

spectrum was blurred by Gaussian noise with a standard deviation of 3 keV. We used an 

8.3% energy window for the 218 keV photopeak of 221Fr to obtain the projection data for 

both MLEM and Masked-MLEM reconstructions. Additionally, the projection data were 

smoothed by a 3 × 3 Gaussian filter for denoising. To perform image reconstruction, we 

employed both the solid angle model and the Monte Carlo method to calculate the system 

matrix A. The solid angle model reflects a higher level of system uncertainty, whereas the 

Monte Carlo method represents a lower level of system uncertainty. This enables us to 

examine the effectiveness of the Masked-MLEM algorithm in addressing varying levels of 

system uncertainties. For the Monte Carlo method, 109 218 keV gamma rays were simulated 

as a point source at various positions within the imaging FOV, and the resulting projection 

data within the same energy window (the 8.3% energy window centering at 218 keV) were 

subsequently smoothed by the 3 × 3 Gaussian filter and then recorded as the PSFs for 

generating A. In both cases, the system uncertainty Au for the Masked-MLEM algorithm 

was determined based on the corresponding A. We ran both the MLEM algorithm and 

Masked-MLEM algorithm for 1000 iterations until convergence (the reconstruction loss was 

less than 0.0005) with Nout = 1000 and Nin = 1 for the Masked-MLEM reconstruction.

For all three experiment studies and the simulation study, we perform 3D image 

reconstruction and subsequently apply a 3 × 3 × 3 median filter to the 3D reconstructed 

images for denoising. In some cases, we collapse the 3D reconstructed images to the 

corresponding 2D images for comparison between the standard MLEM algorithm and 

the Masked-MLEM algorithm. For example, in collimatorless scintigraphy, we sum the 

3D reconstructed image along the normal direction of the detector surface to obtain a 

2D coronal image of the mouse phantom, since the depth reconstruction of the mouse 

phantom using only one projection is inaccurate. In this study, we do not consider any 

additional image regularizations and solely compare the reconstructed images obtained by 

the standard MLEM algorithm and the Masked-MLEM algorithm. To evaluate the quality 

of reconstructions, we normalize both the reconstructed images and the ground truth images 

by their respective maximum values, and utilize three figures of merit (FOMs) that are not 

influenced by the normalization factors: normalized root mean squared error (NRMSE), 

peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). NRMSE and PSNR 
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quantitatively measure the accuracy between the reconstructed images and the ground truth 

images, while SSIM is used to assess the similarity between them.

3. Results

In SPECT imaging, the reconstruction results of the triple line source phantom overlaid on a 

transverse slice of the CT image are shown in figure 5. We use α = 2 in equation (4) to obtain 

Au for the Masked-OSEM reconstruction. For an equitable visual assessment between the 

standard OSEM algorithm and the Masked-OSEM algorithm, we sum the 3D reconstructed 

images along the longitudinal direction to obtain a 2D transverse image of the triple line 

source phantom, as shown in the top row of figure 5. This approach allows us to visually 

compare the averaged transverse image of the triple line source phantom, mitigates noise 

in each transverse slice of the 3D reconstructed images, and avoids introducing any bias 

of selectively comparing specific reconstructed slices where the Masked-OSEM algorithm 

might outperform the standard OSEM algorithm. Notably, the FOMs are compared based on 

the original 3D reconstructed images. The reconstruction profiles along the x- and y-axes in 

the collapsed transverse image of the triple line source phantom are shown in the bottom row 

of figure 5.

For collimatorless imaging, the hyperparameters specified in Algorithm 3 are detailed in 

table 1 to obtain the system uncertainty Au for the Masked-MLEM reconstruction. These 

hyperparameters have been carefully tuned through comprehensive experimentation to 

ensure their suitability for the respective collimatorless imaging modality. In the simulated 

collimatorless tomography study, we have verified that the hyperparameter values in table 

1 are effective for reconstructing various phantoms by performing reconstructions on the 

simulated sphere phantom containing spheres of different sizes and positions.

In collimatorless scintigraphy, the projection data coming from the characteristic X-rays 

and the 218 keV photopeak of 221Fr are shown in figure 6 (a). We reconstruct the 3D 

images of the mouse phantom using the standard MLEM algorithm and the Masked-MLEM 

algorithm based on the single-angle projection data from X-rays and 221Fr, respectively. The 

2D collapsed coronal images overlaid on a coronal slice of the mouse phantom’s CT image 

are shown in figure 6 (c) and (d).

In experimental collimatorless tomography, the projection data of the micro hollow sphere 

phantom filled with 225Ac at 8 angles are shown in figure 7. The representative transverse, 

coronal and sagittal slices from the center of the reconstructed spheres are shown in figure 8.

In simulated collimatorless tomography, the reconstruction results of the 2-sphere phantom 

are shown in figure 9. When using the solid angle model to calculate A, along with the 

corresponding hyperparameter values from table 1 to determine the system uncertainty Au, 

the representative transverse and coronal slices from the center of the reconstructed spheres 

using the standard MLEM algorithm and the Masked-MLEM algorithm are shown in figure 

9 (b) and (c), respectively. Similarly, when using the Monte Carlo method to calculate A, the 

reconstructions of the spheres using the standard MLEM algorithm and the Masked-MLEM 

algorithm are shown in figure 9 (d) and (e).
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Table 2 shows the FOMs for the 3D reconstructed images of the triple line source phantom, 

the micro hollow sphere phantom, and the simulated 2-sphere phantom, as well as the 

FOMs for the 2D collapsed coronal images of the mouse phantom. These FOMs are 

computed for both the standard MLEM (OSEM) and the Masked-MLEM (Masked-OSEM) 

reconstructions.

4. Discussion

In this study, the Masked-MLEM algorithm is developed and validated on both collimated 

and uncollimated imaging instruments and compared with the standard MLEM algorithm. 

Here we are comparing the reconstruction results across different algorithms, rather 

than across different imaging instruments. The limited access to different phantoms, 

radionuclides, and total activities for evaluating the reconstruction performance on one 

imaging instrument is a limitation of the study.

In SPECT imaging, there is almost no difference between the reconstruction of the triple line 

source phantom using the standard OSEM algorithm and the Masked-OSEM algorithm (see 

figure 5 and table 2). Similar results were obtained in previous studies which selected the 

worst-case system matrix in its uncertainty set for robust reconstruction (Liu et al. 2012). 

The reasons may have the following two aspects. Firstly, the system matrix AS used for the 

simple-structured triple line source phantom is potentially already optimal or suboptimal 

within the given uncertainty set. Secondly, our definition of the system matrix upper bound, 

which adds an adjustable Gaussian smear to AS as the penetration component, may not 

accurately capture the true system uncertainties and there may be other more effective 

designs of the system uncertainties which require further exploration.

In contrast to SPECT imaging, the Masked-MLEM algorithm outperforms the standard 

MLEM algorithm in collimatorless imaging as shown in figures 6, 8, and 9. Image resolution 

is a limiting factor in collimatorless imaging because we do not have any collimation 

and only rely on solid angles, which sacrifices the image resolution for higher sensitivity. 

Therefore, the three key factors influencing collimatorless imaging are:

1. Proximity, i.e., how close the phantom is to the detector, which determines 

how ill-conditioned the system matrix is, thereby affecting the resolution of the 

reconstructed image. When the phantom is placed in close proximity to the 

detector, the system matrix becomes less ill-conditioned, resulting in improved 

image quality and reconstruction accuracy.

2. Projection Statistics, which reflects the noise level in projections and has a direct 

impact on the signal-to-noise ratio (SNR) of reconstructed images. Whereas 

collimatorless imaging captures photons coming from various angles, ensuring 

sufficient projection counts remains crucial for optimizing SNR.

3. Uniformity of Source Distribution, i.e., whether the source is uniformly 

distributed throughout the phantom or concentrated in specific regions within 

the phantom, which impacts the reconstruction accuracy. Notably, the uniform 

source distribution in this context does not imply a uniform concentration 

of radioactivity in source regions, but rather a consistent total activity across 
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all source regions. The impact on reconstruction accuracy arises from how 

the source distribution influences the consistency of acquired projection data 

in collimatorless imaging. When the source is uniformly distributed with 

comparable total activities in each source region, the projections measured from 

various angles represent the activity distribution in a balanced manner and align 

with the underlying source distribution, leading to more accurate reconstruction. 

In contrast, non-uniform source distribution with dominance in particular regions 

makes the projections more sensitive to those dominant regions. This imbalance 

can result in distorted or biased reconstructions where the features corresponding 

to the dominant regions are emphasized whereas other source regions of the 

phantom may be suppressed or misrepresented.

The collimatorless scintigraphy experiment is an example showing good proximity, good 

projection statistics, and a uniform source distribution. With the mouse phantom placed 

directly on the detector surface ensuring close proximity, and the source organs well-

separated while containing similar total activities of 225Ac (indicating a uniform source 

distribution), the projection data in figure 6 (a) distinctly highlight the source organs, 

which facilitates easier collimatorless image reconstruction and improves the reconstruction 

accuracy. In collimatorless scintigraphy, the Masked-MLEM algorithm achieves more 

accurate reconstruction of the brain, liver, and tumor of the mouse phantom with fewer 

artifacts and better FOMs compared to the standard MLEM algorithm (see figure 6 and 

table 2). Conversely, the standard MLEM reconstructions allocate higher activity values to 

adjacent organs that should not exhibit radioactivity, as evident in organs like the kidneys 

of the mouse phantom in figure 6. This primarily stems from the following two reasons. 

The foremost reason is that the system matrix A used in the standard MLEM algorithm is 

solely derived from the solid angle model, which inherently introduces uncertainties into 

the reconstruction process. On the other hand, the second reason, though present, is not 

the primary one but does make both algorithms perform worse. Given that we used the 

single-angle projection for 3D image reconstruction followed by collapsing the 3D image to 

obtain the 2D coronal image, this approach results in a highly underdetermined optimization 

problem, which leads to reconstruction ambiguities and inaccuracies because multiple 

plausible solutions can fit the limited measurements. Whether using the MLEM algorithm 

or the Masked-MLEM algorithm, the images reconstructed from the 221Fr projection are 

noisier than those from the projection of X-rays in figure 6, since the projection data of 221Fr 

have fewer counts and thus worse statistics than those of X-rays in figure 6 (a). Therefore, it 

is important to obtain sufficient counts in collimatorless projections to improve the quality of 

image reconstruction.

Optimal proximity, good projection statistics, and a uniform source distribution are ideal 

conditions for collimatorless reconstruction; however, in practice, such conditions are 

not always met. The collimatorless tomography experiment is an illustrative example of 

this. In this experimental study, although the Masked-MLEM algorithm exhibits superior 

performance compared to the standard MLEM algorithm in figure 8, both algorithms 

struggle to achieve high-resolution reconstructions in figure 8 and attain satisfactory FOMs 

in table 2. This can be explained by the poor proximity of the micro hollow sphere phantom, 

and the non-uniform activity distribution among the spheres. In regard to the latter, the total 
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activities in the two largest spheres were much higher than those in the smallest one. Due 

to this non-uniform distribution and the poor image resolution of collimatorless tomography, 

only the largest two spheres appear in the reconstruction (see figure 8). Furthermore, due to 

the dead stripes in the detector (see figure 7), certain valuable projection data are missing, 

degrading the image quality. Though reduced reconstruction quality, we experimentally 

demonstrate the feasibility of performing proximity reconstruction with a Compton camera 

system, as discussed in (Caravaca, Huh, Gullberg & Seo 2022).

The simulated collimatorless tomography study demonstrates an idealized extreme scenario 

for small-animal-scale collimatorless imaging, featuring a perfect ring detector geometry, 

close proximity from all measurement angles, and a uniform source distribution within 

the phantom. This simulation study highlights the effectiveness of the Masked-MLEM 

algorithm in handling varying levels of system uncertainties. In figure 9 (b), the MLEM 

reconstruction using the system matrix A derived from the solid angle model fails to 

reconstruct the two spheres due to the higher level of system uncertainty. Conversely, the 

Masked-MLEM reconstruction in figure 9 (c), which utilizes the system uncertainties based 

on the same A, successfully reconstructs the positions of both spheres, despite with some 

artifacts present between them. Compared to figure 9 (b), the MLEM reconstruction in 

figure 9 (d), using the Monte Carlo-calculated A with a lower level of system uncertainty, 

captures the structural details of the two spheres more effectively, although their positions 

slightly shift towards the boundaries of the imaging region of interest (ROI). Consequently, 

the Masked-MLEM reconstruction based on this refined A is similar to the MLEM 

reconstruction but more accurately positions the spheres (see figure 9 (e) and table 2). Due 

to the inherent limitations of image resolution in collimatorless imaging, both algorithms 

struggle to achieve well-defined boundaries for the spheres and fail to eliminate activities 

in the regions between them. It is noteworthy that the FOMs for the MLEM reconstruction 

using the solid angle model are much better than those for the other methods in this 

simulation study (see table 2). This is because the reconstructed images in figure 9 (b) assign 

zero activity to background regions, which enhances all three FOMs.

In both experimental and simulated collimatorless tomography studies, we notice a 

consistent shift in position towards the boundaries of the imaging ROI (see figures 8 and 9). 

This suggests that incorporating some form of collimation would be beneficial to enhance 

the accuracy of position reconstruction. How to further improve the image reconstruction 

quality in collimatorless imaging will be investigated in our future studies.

In the three experimental studies and one simulation study, the Masked-MLEM algorithm 

consistently produces robust image reconstructions by effectively minimizing the likelihood 

of erroneously reconstructing higher activities in regions without radioactive sources (see 

figures 5, 6, 8, and 9). Essentially, the Masked-MLEM algorithm can be understood as 

using the optimal system matrix A∗ within the predefined system uncertainty set (i.e., 

Alb ≺ A∗ ≺ Aub) and then performing the standard MLEM reconstruction. When A∗ is close 

to or matches the actual system matrix and we have accurate knowledge of the actual 

system matrix, the resulting Masked-MLEM reconstruction will be nearly identical to the 

standard MLEM reconstruction using the actual system matrix. This can be seen in the 
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SPECT reconstruction and the simulated collimatorless tomography study when using the 

Monte Carlo-calculated A (see figures 5 and 9). In both examples, although the system 

matrix used in the standard MLEM algorithm is not exactly the actual matrix, it does not 

introduce substantial uncertainties, and thus the Masked-MLEM reconstructions are similar 

to or slightly superior to the standard MLEM reconstructions. Although it is preferable to 

have an accurate system matrix, in many cases, we are only able to obtain an approximation 

to the actual system matrix due to complicated factors such as scattering, attenuation, and 

nonuniform detector responses, as demonstrated in the simulated collimatorless tomography 

study where inherent system uncertainties persist despite using the Monte Carlo method to 

generate the system matrix. Additionally, computing an accurate system matrix can often 

be time-consuming or impractical. The Masked-MLEM algorithm offers the capability to 

reconstruct images reliably even without accurate knowledge of the actual system matrix. 

The power of this algorithm lies in leveraging the well-defined Alb and Aub based on the 

current system matrix A, eliminating the need for time-consuming computations of an 

optimal system matrix. This allows for efficient image reconstructions that yield results 

comparable to or even superior to those obtained using the standard MLEM algorithm, 

regardless of the availability or accuracy of the system matrix.

The success of the Masked-MLEM algorithm depends heavily on the choice of the system 

uncertainty Au. Although the Masked-MLEM algorithm will choose the best system matrix 

within its uncertainty set, it’s important to note that expanding the system uncertainty set 

excessively is not advisable. On the other hand, the optimal choice of Au should be as 

restrictive as possible, including all feasible system matrices while excluding all implausible 

system matrices. We have tested that η is the most sensitive hyperparameter for tuning Au

in collimatorless imaging, and all other hyperparameters can be kept the same for different 

reconstruction problems. In this study, Au is largely defined from a mathematical point of 

view, and it will be better to understand some prior knowledge of the system uncertainties 

to define Au according to the physical effects in real applications. The box uncertainty of 

the system matrix provides the flexibility to element-wisely design the system uncertainties 

and the power to include any model for system uncertainties, which has the potential to be 

widely used in other inverse optimization problems involving system uncertainties. Although 

loading the lower and upper bounds of the system matrix consumes additional storage 

memory, the computation time per iteration in the Masked-MLEM algorithm is slightly 

shorter than or comparable to that of the standard MLEM algorithm, which is acceptable.

5. Conclusion

In this study, we develop the Masked-MLEM algorithm as a generalization of the 

standard MLEM algorithm for robust image reconstruction. The Masked-MLEM algorithm 

incorporates a box uncertainty set in the system matrix and accounts for Poisson noise in 

projection data. We validate the Masked-MLEM algorithm using data from both collimated 

and uncollimated imaging instruments by carefully designing the corresponding system 

matrix uncertainties. In cases where the system matrix does not introduce substantial 

uncertainties, the Masked-MLEM and standard MLEM reconstructions are similar, as 

observed in SPECT imaging and the simulated collimatorless tomography using the Monte 
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Carlo-calculated system matrix. However, the Masked-MLEM algorithm outperforms the 

standard MLEM algorithm in situations where the system matrix is an approximation, as 

demonstrated in other collimatorless imaging studies. In both collimated and uncollimated 

imaging, the Masked-MLEM algorithm enhances the robustness of image reconstruction, 

yielding more reliable results in the presence of varying levels of system uncertainties, and 

effectively reducing the likelihood of erroneously reconstructing higher activities in regions 

without radioactive sources. Future studies will focus on refining system uncertainties 

for SPECT imaging and designing novel imaging modalities for further improving the 

reconstructed images in collimatorless imaging.
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Appendix

Appendix A. Masked-MLEM derivation

First we need to demonstrate that

M yu ∼ Poisson M Au x .

(A.1)

Although y appears twice in yu (see equation (2)), for any element yi in y, i = 1,…, m, it can 

not appear twice in M|yu|. Using proof by contradiction, we assume that yi appears twice in 

M|yu|, i.e.,

alb i
Tx − yi > 0

yi − aub i
Tx > 0.

(A.2)

Since x ≻ 0, and element-wisely aub i ≻ alb i, and thus we have

aub i
Tx ≥ alb i

Tx > yi,

(A.3)

which leads to a contradiction with equation (A.2). This proves that M|yu| remains 

independent and identically distributed (i.i.d.) after applying the mask M. Thus M|yu|
contains a subset of y.

Assuming Poisson noise in each yi, we have
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p M|yu ∥ x ∼ ∏
M yu i ≠ 0

M Au x i
M yu i

M yu i!
e− M Au x i.

(A.4)

Similar to the derivation of the MLEM algorithm, we minimize the negative log-likelihood 

function − log p M|yu ∥ x  as shown in equation (A.5).

min
x ≻ 0

∑
(M|yu|)i ≠ 0

M Au x i − M yu ilog M Au x i

(A.5)

The Lagrangian function of equation (A.5) ℒ : ℝn × ℝn ℝ  is given by

ℒ(x, λ) = ∑
(M yu )i ≠ 0

M Au x i − M yu ilog M Au x i − λTx,

(A.6)

where λ ≻ 0 is a Lagrange multiplier corresponding to the constraint x ≻ 0.

Following the Karush-Kuhn-Tucker (KKT) conditions (Karush 1939, Kuhn & Tucker 2014, 

Boyd & Vandenberghe 2004, Yan et al. 2013), we have

• Primal feasibility: x ≻ 0;

• Dual feasibility: λ ≻ 0;

• Complementary slackness: xTλ = 0;

• Stationarity: ∇xℒ(x, λ) = M Au
T1 − M Au

T M yu
M Au x − λ = 0.

The first three conditions imply xjλj = 0, j = 1,…, n. Using the stationarity condition to 

eliminate λ, we obtain the resulting iterative relationship given by

xk + 1 = xk

M Au
T1

M Au
T M yu

M Au xk,

(A.7)

where k is the iteration number.
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Figure 1. 
System uncertainty set for collimatorless imaging (Zheng et al. 2020). The system matrix A
for collimatorless imaging may not be accurate and we assume the actual system matrix is 

in the neighborhood of A (shown as the blue cloud). The system matrix A corresponds to 

the ideal scenario where a perfect parallel-hole collimator is used. The system matrix Amax

defines the upper limit that the current system can achieve, i.e., it represents the scenario 

where every image voxel has an equally maximum probability of reaching every detector 

pixel. The system matrix A′ determines the characteristics of the PSF and the range A ± W  is 

desired to be close to the actual system matrix.

Zheng et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2024 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Experiment setup of the mouse phantom for collimatorless scintigraphy.
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Figure 3. 
(a) Experiment setup of the micro hollow sphere phantom for collimatorless tomography. (b) 

The micro hollow sphere phantom filled with 0.6 mCi, 1.8 mCi, and 3.6 mCi of 225Ac from 

smallest to largest spheres (Frame et al. 2023).
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Figure 4. 
Monte Carlo simulation setup using Geant4 for collimatorless tomography with the ring 

detector system: (a) Geant4 rendering from the x-y plane, and (b) 3D view. The CZT 

detector is shown in green and the cylindrical water phantom is shown in orange. Inside 

the phantom, two blue spheres contain 225Ac source particles uniformly distributed in the 

aqueous solution.
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Figure 5. 
Reconstruction of the triple line source phantom in SPECT imaging (shown in jet colormap). 

The top row shows the transverse images of the triple line source phantom obtained by 

longitudinally summing the 3D images reconstructed using the standard OSEM algorithm 

and the Masked-OSEM algorithm. These images are overlaid on a transverse slice of the CT 

image (shown in grayscale), which serves as the ground truth reference for the triple line 

source phantom. It is noteworthy that the reconstruction resolution of SPECT is inferior to 

the diameter of the line sources (1 mm), hence the depiction of the line sources in the CT 

image as the central gray dots. The bottom row shows the reconstruction profiles of the triple 

line source phantom in the top row.
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Figure 6. 
Reconstruction of the mouse phantom in collimatorless scintigraphy with its brain, liver, 

and tumor filled with 261 nCi, 261 nCi, and 239 nCi of 225Ac. (a) Projection data coming 

from the characteristic X-rays and the 218 keV photopeak of 221Fr where the zero response 

in certain positions was due to the dead detector pixels. It is noteworthy that the dead 

detector pixels appeared at the same positions across all five CZT crystals, and were not the 

result of a multi-stage acquisition. (b) Normalized concentrations of the source organs as the 

ground truth. The last two columns show the 2D coronal images overlaid on the CT image 

and reconstructed using (c) the standard MLEM algorithm and (d) the Masked-MLEM 

algorithm, respectively.
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Figure 7. 
Projection of the micro hollow sphere phantom filled with 225Ac at 8 angles. The projection 

counts came from the single interaction events near the detector surface (within 3 mm) with 

energies emitted from the characteristic X-rays, the 218 keV photopeak of 221Fr, and the 440 

keV photopeak of 213Bi. The zero response was caused by the dead detector strips.
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Figure 8. 
(a) Ground truth and reconstructions of the micro hollow sphere phantom using (b) the 

standard MLEM algorithm and (c) the Masked-MLEM algorithm. The phantom was filled 

with 0.6 mCi, 1.8 mCi, and 3.6 mCi of 225Ac in the smallest to the largest micro hollow 

spheres. From top to bottom, it shows the transverse, coronal and sagittal slices of the 

reconstructed spheres.
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Figure 9. 
Reconstruction of the simulated 2-sphere phantom containing 0.45 μCi of 225Ac within the 

spheres when measuring for 10 min. From left to right, it shows: (a) Ground truth of the 

phantom; (b) MLEM and (c) Masked-MLEM reconstructions when using the solid angle 

model to calculate A; (d) MLEM and (e) Masked-MLEM reconstructions when using the 

Monte Carlo method to calculate A. The reconstructed spheres are shown in transverse and 

coronal slices from top to bottom.
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Table 1.

Hyperparameters used in Algorithm 3 to determine the system lower and upper bounds for collimatorless 

imaging.

Hyperparameters
2D scintigraphy

Experimental 3D tomography
Simulated 3D tomography

X-rays 221Fr Solid angle Monte Carlo

ϵ 0.04 0.04 0.04 0.004 0.004

η 0.02 0.04 0.5 0.065 −0.015

θ 0.2 0.2 0.2 0.1 0.1

ζ 0.5 0.5 0.5 0.5 0.5
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Table 2.

FOMs for the 3D reconstructed images shown in figures 5, 8, and 9, as well as for the 2D collapsed images in 

figure 6.

Modality Images FOMs MLEM (OSEM) Masked-MLEM (Masked-OSEM)

SPECT 3D

NRMSE 0.71 0.71

PSNR 28.43 28.50

SSIM 0.95 0.96

Collimatorless scintigraphy

2D, X-rays

NRMSE 1.67 0.82

PSNR 12.13 18.36

SSIM 0.10 0.65

2D, 221Fr

NRMSE 1.67 0.85

PSNR 12.16 17.97

SSIM 0.10 0.67

Experimental collimatorless tomography 3D

NRMSE 3.48 2.81

PSNR 12.68 14.54

SSIM 0.03 0.03

Simulated collimatorless tomography

3D,
solid
angle

NRMSE 1.24 1.45

PSNR 10.90 9.51

SSIM 0.56 0.07

3D,
Monte
Carlo

NRMSE 1.43 1.47

PSNR 9.66 9.42

SSIM 0.22 0.24
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