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Uncertainty-aware particle segmentation
for electron microscopy at varied
length scales

Check for updates

Luca Rettenberger 1, Nathan J. Szymanski 2, Yan Zeng 3, Jan Schuetzke 1, Shilong Wang 2,
Gerbrand Ceder 2 & Markus Reischl 1

Electron microscopy is indispensable for examining the morphology and composition of solid
materials at the sub-micron scale. To study the powder samples that are widely used in materials
development, scanning electron microscopes (SEMs) are increasingly used at the laboratory scale to
generate large datasets with hundreds of images. Parsing these images to identify distinct particles
and determine their morphology requires careful analysis, and automating this process remains
challenging. In this work, we enhance the Mask R-CNN architecture to develop a method for
automated segmentation of particles in SEM images. We address several challenges inherent to
measurements, such as image blur and particle agglomeration. Moreover, our method accounts for
prediction uncertainty when such issues prevent accurate segmentation of a particle. Recognizing
that disparate length scales are often present in large datasets, we use this framework to create two
models that are separately trained to handle images obtained at low or high magnification. By testing
these models on a variety of inorganic samples, our approach to particle segmentation surpasses an
established automated segmentation method and yields comparable results to the predictions of
three domain experts, revealing comparable accuracy while requiring a fraction of the time. These
findings highlight the potential of deep learning in advancing autonomous workflows for materials
characterization.

Electron microscopy offers detailed insight into the structure, composition,
and morphology of inorganic materials. This technique is widely used to
characterize powder samples, which are prevalent at the laboratory scale as
well as in a variety of applications such as energy storage and ceramics.
Individual particles within a powder often display a wide range of shapes
and sizes, which can have a significant influence on the macroscopic
properties of the corresponding material1,2. For the evaluation of particle
morphology in powder samples, desktop Scanning Electron Microscopes
(SEMs) are becoming commonplace in laboratories and industrial settings,
allowing images to be produced at an unprecedented rate3,4. To keep pace
with this surge in data, new and improvedmethods are needed to automate
the analysis of SEM images and produce meaningful conclusions that can
aid in materials design.

A key step in analyzing SEM images is the identification of distinct
particles, otherwise knownasparticle segmentation.At present, segmentation
is often performedmanually orwith traditionalmethods such as thresholding

or edge detection5–7. Previous efforts have created hand-crafted kernels in the
form of convolution matrices, which are capable of detecting individual
particles in SEM images8. More generally, convolution matrices for particle
segmentation can be optimized through Deep Learning (DL), which has
gained traction in recent years. For segmentation in particular, Convolutional
Neural Networks (CNNs) based on the U-Net architecture have been most
widely used9. This architecture compresses the input image into a compact
feature space and then symmetrically expands it to generate the desired seg-
mentation mask. The key innovation of U-Net is the inclusion of skip con-
nections, enabling distant layers to share information and improve feature
learning and localization. Although initially designed for biological applica-
tions,U-Netmodelshavebeenextended toavarietyof applications in electron
microscopy. These include vacancy and dopant detection in Transmission
Electron Microscopy (TEM)10, as well as particle detection in SEM11,12. Such
models have been reported to provide state-of-the-art performance when
compared with more traditional methods for segmentation13–15.
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Despite the success of U-Net, recent studies reveal its limitations in
complex datasets with overlapping instances, showing inferior performance
compared to Mask R-CNN, a more resilient and modern CNN
architecture16. Further, some early work has been reported on using Mask
R-CNN to solve problems inmaterials science and chemistry, withmultiple
reviews suggesting Mask R-CNN over U-Net17–19. For example, there have
been several models trained to segment particles20–22, nanowires23, and
cavities24,25 in electron microscopy with an accuracy that exceeds more
traditional approaches.

When analyzing scans of powder samples using desktop SEMs,
both manual analysis and DL-based approaches face similar chal-
lenges due to limited resolutions and complex morphology. Chal-
lenges such as particle agglomeration, suspension stability, and the
effects of sonication complicate measurements26. Additionally,
addressing the difficulties in obtaining accurate 2D scans from three-
dimensional particles further adds to the complexity of nanoparticle
analysis with SEMs. Hence, the images frequently display a high degree
of blur, and the particles often form agglomerates where many
instances overlap. Developing a general segmentation model that can
handle these challenging cases requires new training data obtained
from a variety of samples that encompass each of the aforementioned
issues, as such datasets do not exist yet27. Further, in cases where these
issues preclude accurate segmentation, a measure of prediction
uncertainty would be beneficial to avoid making over-confident pre-
dictions that lead to incorrect conclusions regarding the data. Novel
approaches could also be further enhanced by considering the sig-
nificant uncertainty within material discovery. Further, extensive
validation by human experts remains pivotal in ensuring practical
applicability. Additionally, it remains essential formethods not only to
align with human expertise but also to demonstrate universality across
diverse chemical compounds.

In this work, we introduce an approach for segmenting particles in
desktop SEM images by enhancing the popular Mask R-CNN architecture.
To train and validate ourmodels, we collected 90 experimental SEM images
from a variety of inorganic powder samples, each hand-labeled by domain
experts to outline individual particles. These images are split into two
separatedatasets, corresponding toSEMmeasurementsperformedat lowor
highmagnification. Eachdataset is used to train our enhanced segmentation
model based onMaskR-CNN, augmented to estimate uncertainty, allowing
the trained models to output a measure of confidence associated with each
segmented particle. On a holdout set of images reserved for testing, we
demonstrate that our uncertainty-aware models outperform segmentation
methods based on the U-Net architecture. To prove plausibility and
applicability, we test our models on a second, much larger, set of 288 SEM
images obtained from LiCoO2 powder, a composition the models have not
encountered during training. This data is also labeled by three domain
experts and we show that our Mask R-CNN models produce results com-
parable to those ground-truth annotations. With this, we show that our
approach can transfer to previously unseen data. Notably, our models
completed this task in just three minutes on a desktop processor, while
domain experts required an average of 265minutes for their labeling. These
findings showcase the benefits of automated segmentation and suggest that
DLmodels are well suited for integration with high-throughput and closed-
loop workflows. All code and data discussed here are openly accessible,
including our uncertainty-aware models and datasets: https://github.com/
lrettenberger/Uncertainty-Aware-Particle-Segmentation-for-SEM. We
encourage the community to utilize this repository as a foundation for
further development and exploration.

Results
Hand-labeled training data
Using a PhenomDesktop SEM fromThermoFisher Scientific, we collect 90
images from 10 different samples, each containing one of the following
compounds: NaAlSiO4, Cu3(PO4)2, MgO, Mn3O4, Na2CO3, TiO2, BaCO3,
SiO2, CaTiO3, and BaCuO2. These images are classified into two distinct

categories: one corresponds to images acquired at magnifications below
10, 000 × (denoted as low magnification), while the other contains images
acquired at magnifications over 10, 000 × (denoted as high magnification).
We acquire 50 images at low magnification, each with a resolution of
1920 × 1200 pixels, and 40 images at highmagnificationwith a resolution of
7680 × 4800 pixels. During image capturing, additional images were added
iteratively until theDLmodel did not significantly improve in accuracywith
the inclusion of new samples. Consequently, fewer images were collected in
the high-magnification case. To avoid introducing an implicit bias into the
data, all images are resized to a uniform resolution of 1920 × 1200 pixels
before being fed into theDLmodel. Frompreliminary tests (Supplementary
Table 5), we found that performance was improved by separately training
models on the data collected at low or high magnification, as these two
regimes tend to produce visibly distinct images – for instance, with varied
amounts of blur.

All SEM images are hand-labeled by domain experts, who are assigned
the task of segmenting distinct particles within each sample. Given the
challenging nature of labeling desktop SEM images, particularly when
dealing with overlapping particles, the experts provide each segmented
particle with one of two label types. Certain labels are assigned to particles
whose boundaries can be drawnwith a high degree of subjective confidence,
while uncertain labels are given to particles with less well-defined bound-
aries. Several examples of these labels are shown in Fig. 1. After labeling, the
images are prepared for training and validation as detailed in Supplemen-
tary Table 1 and Supplementary Figure 1.

Uncertainty-aware Mask R-CNN
For the segmentation of particles in SEM images, we consider two possible
architectures: U-Net and Mask R-CNN. The first method features a
U-shaped architecture with an encoder for feature extraction and a decoder
for creating segmentation masks. It generally performs well in semantic
segmentation, where pixels are assigned to predefined categories. However,
it is not inherently designed for instance segmentation, where each indivi-
dual objectwithin a categorymust be separated. As such, it can strugglewith
overlapping objects which are highly prevalent in SEMdata. In contrast, the
Mask R-CNN architecture was developed specifically for instance seg-
mentation. It operates by initially extracting relevant features from the
provided image. These features are then used to identify regions of interest,
fromwhichboundingboxes are created and segmentationmasks are refined
to segment each individual object. This enables Mask R-CNN to perform
well on images with many overlapping instances, motivating our choice to
use this architecture for SEM analysis. Figure 2 illustrates the architecture of
the segmentation models employed in this work.

Lo
w

 M
ag

H
ig

h 
M

ag

Image Overlay

Certain Uncertain

80 µm 80 µm

3 µm 3 µm

Fig. 1 | Two examples of SEM images taken from our hand-labeled datasets
acquired at low (top) and highmagnification (bottom). In the right panels, colored
curves represent particle boundaries outlined by domain experts, with green indi-
cating certain labels and red denoting uncertain labels.
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The Mask R-CNN framework takes SEM images as input and pro-
cesses them using a ResNet-based neural network, referred to as the back-
bone, that transforms the images into feature maps, which are visual
representationsof the inputdesigned to capture itsmost significantpatterns.
Region of Interests (RoIs) are generated from these feature maps, corre-
sponding to parts of the image suspected to contain particles. Because
particles often vary in size, each ROI can have unique dimensions. To
facilitate uniform processing, ROI align transforms the ROIs to a consistent
size. These resized ROIs are then passed to a set of neural networks referred
to as heads each reserved for a single task. In the context of Mask R-CNN,
the bounding box regression head refines the ROIs to focus on specific
particle instances, while themask head segments each particle by generating
pixel-wise masks.

In addition to the well-established heads, we introduce an uncertainty
head that generates a confidence score for each segmented particle. A higher
confidence score is designed to signal more accurate predictions, while
particles with lower confidence should be taken with caution. These scores
are calibrated based on the segmentation masks and labels (certain or
uncertain) provided by domain experts on our hand-labeled set of SEM
images. Both the loss from the Mask R-CNN and our uncertainty head are
minimized during training, as outlined in Fig. 2. Further details on the
training process are also provided in the Methods section.

Segmentation results
We partition the hand-labeled SEM images into three distinct sets reserved
for training (65% of the data), validation (15%), and testing (20%) purposes.
To gauge the accuracy of each model, we employ the Aggregated Jaccard
Index (AJI+), a robust metric for instance segmentation that quantifies the
overlap between ground truth objects and their corresponding predictions,
considering both localization accuracy and segmentation quality
simultaneously28. It does so by measuring the intersections and unions
between ground truth and predicted segmentationmasks ofmatching pairs.
The AJI+ is then computed as the ratio of the total intersections to the total
unions, where unmatched objects are also accounted for by incorporating
them into the union count. A higher AJI+ value (within the range of 0 to 1)
therefore signifiesmore accurate andprecisepredictionsof segmentedareas.

Todemonstrate the superiorperformanceof ourMaskR-CNNversion
compared to conventional methods, we compare it to a widely usedU-Net-
based approach29. Details regarding the configurations of these models are
provided in Supplementary Table 2 and Supplementary Table 3. Both the
U-Net and Mask R-CNN models are trained and validated on the same
images from our hand-labeled datasets. Final results are generated from the
test dataset, fromwhich the resulting AJI+ values are plotted in Fig. 3. These

plots reveal that our Mask R-CNNmodels outperform U-Net on 14 out of
the 15 images that are tested.Whenapplied to SEMimages that are captured
at lowmagnification, the Mask R-CNNmodel yields an average AJI+ score
of 0.81, whereas U-Net provides a much lower score of 0.55. A similar
performance gap is found on the images acquired at high magnification,
with the Mask R-CNN model achieving a moderate AJI+ score of 0.51 as
compared to only 0.34 from U-Net.

To better understand why the Mask R-CNN models outperform U-
Net, we visualize in Fig. 4 the segmented areas of four samples from each
dataset used for testing. In the first sample acquired at low magnification,
there is a clear particle that is accurately segmented by Mask R-CNN but
missed by U-Net, possibly due to its small size and irregular shape. U-Net
also performs poorly on the second sample, where it appears to detect
particles based on a brightness threshold, without recognizing their actual
structure.This leads to an incorrect groupingof small particleswhich should
be separate but are mistakenly segmented as one large particle. U-Net also
produces a spurious segmentation of the background in the top right of the
image, where no particles are present. In contrast, Mask R-CNN correctly
segments all the individual particles in this sample, even separating those
clustered together. In the third sample acquired at lowmagnification,U-Net
again struggles with particle overlap. It fails to segment two of the largest
particles, whereas Mask R-CNN accurately identifies their boundaries.
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Fig. 2 | The Mask R-CNN architecture uses a ResNet-50 backbone to extract
feature maps from provided SEM images. A Region Proposal Network (RPN)
generates Regions of Interest (RoIs) from these features, which are then aligned to a
consistent size using ROI align. The Mask R-CNN heads (bounding box and seg-
mentation mask) as well as our uncertainty head process the aligned proposals to

generate predictions P̂. The bounding boxes and segmentation masks are trans-
formed into numerical ground-truth values P. The Mask R-CNN loss Lm and
uncertainty lossLu are calculated and combined to obtain the overall lossL. ForLu ,
the uncertainty head outputs P̂ as a distribution with multiple bins.

Fig. 3 | The AJI+ metric produced by segmentation models when applied to SEM
images acquired at low (left panel) and high magnification (right panel). Green
triangles correspond to results fromMask R-CNNmodels, while red circles are from
U-Net models. Results from the same image are linked with a black line. A density
representation of the AJI+ values is shown on the right axis of each panel. Horizontal
dashed lines represent average AJI+ scores from each method. Mask R-CNN is
superior to U-Net in all but one sample.
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However, both models fail to detect four of the smaller particles in this
image. Similar effects are observed in the fourth sample,whereU-Net fails to
segment two large particles while also incorrectly grouping smaller particles
that overlap but should be separate. Mask R-CNN offers improved seg-
mentation of the particles, though it still incorrectly combines two of the
particles that have substantial overlap. Overall, Mask R-CNN demonstrates
superior performance in segmenting diverse shapes and sizes. Its precision
in distinguishing closely clustered particles showcases its ability to differ-
entiate complex structures. Moreover, Mask R-CNN’s proficiency in
recognition of individual objects and differentiation from the background
signifies its potential for enhanced segmentation, even in challenging sce-
narios where other methods encounter difficulties.

The performance gap betweenU-Net andMaskR-CNNbecomes even
more pronouncedwhen thesemodels are applied to images acquired at high
magnification, which tend to have notably increased blur. U-Net inaccu-
rately segments two particles with imprecise borders in the lower right
corner of the first sample, while Mask R-CNN outlines borders that agree
well with the labels provided by domain experts. The second sample pro-
duces similar results, whereby U-Net incorrectly segments four small par-
ticles while missing a much larger one that should be segmented. Mask
R-CNNprovidesmore accurate segmentationmasks in this sample, though
it does generate one false positive surrounding a bright area of the image that
onemay suspect to be a particle. In the final two samples, we see that U-Net
incorrectly groupsmany smaller particles together into one segmented area,
similar to what was observed in the images acquired at low magnification.
The predictions from U-Net are particularly inaccurate on the fourth
sample, where the model segments very large areas of the image without
detecting many of the individual particles that exist. This shortcoming can
be attributed to the large amount of blur and low contrast in this image,
which causes the particles to blend in with the background. Mask R-CNN
successfully avoids segmenting the background in this sample and correctly
identifies several of the larger particles, though it does miss two smaller
particles. Even with difficult high-magnification images, Mask R-CNN
excels at detecting individual particles. Despite occasional false positives, it
outperforms U-Net by effectively isolating objects in blurry, low-contrast
backgrounds. The occasional disagreements between ground truth and
Mask R-CNN mainly stem from the inherent labeling uncertainty due to
limited resolutions and complex morphology. Mask R-CNN mostly iden-
tifies particle-like regions reliably, while U-Net often misclassifies noise.
This underscores Mask R-CNN’s strength in adapting to tough image

conditions, positioning it as a promising framework for precise object
delineation in complex visual environments.

Uncertainty estimation
In this section, we examine the Mask R-CNN model’s ability to assess its
own confidence in the segmentation masks it provides for each particle.
Figure 5a shows the distribution of prediction confidence generated by our
models when applied to the hand-labeled SEM images reserved for testing.
These results are categorized based onwhether the segmented particleswere
labeled as certain or uncertain by domain experts. We observe a clear cor-
relation between the prediction confidence of a particle and its associated
label. At low magnification, nearly all the particles labeled as certain by
domain experts are segmented with a confidence higher than 50% by the
Mask R-CNNmodel. For the particles labeled as uncertain, the majority of
predictions fall below50%—though somedoexistwithhigher confidence.A
similar trend is observed on the images acquired at high magnification,
where most of the particles labeled as certain are segmented with a con-
fidence exceeding 50%. We note that in this case, there are many more
particles labeled as uncertain by the domain experts, likely due to the large
amount of blur that is present at high magnification. The Mask R-CNN
accurately accounts for this effect by providing segmentation masks with
much lower confidence (often ≤ 50%).

To help visualize the role of uncertainty in particle segmentation, we
present in Fig. 5b two examples from our test set. These examples show
particles labeled as certain (green) or uncertain (red) by domain experts. For
comparison, predictions from the Mask R-CNN model are also shown,
where segmentation masks with a confidence > 50% are colored green and
those with a confidence≤ 50% are colored red. At lowmagnification, we see
that prediction confidence is correlatedwithparticle size, as the largeparticle
is segmented with a higher confidence than the small one, matching the
expert’s labels. However, it is not always the case that particle size influences
a label’s confidence. For the image acquired at high magnification, the
largest particle is segmented with a lower confidence than two smaller ones,
again matching the labels provided by domain experts. In this case, it
appears that the prediction confidence is more affected by howwell defined
the particle boundary is, regardless of its size. These results confirm that our
models can effectively distinguish between particles that should be seg-
mented with low or high certainty in a variety of images with varied quality
and particle morphology. Additional analyses displaying the prediction
accuracy split by certainty and evaluating the correlation between particle

Fig. 4 | Four samples taken from the SEM datasets
obtained at low and high magnification. The
ground truth represents overlays that are manually
created by domain experts. Overlays predicted by
U-Net and Mask R-CNNmodels are also shown. In
each image, the overlay colors are chosen arbitrarily.
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size and predicted confidence can be found in Supplementary Table 6 and
Supplementary Fig. 4.

Analysis of particle size
We apply our Mask R-CNN model to characterize the particle size dis-
tribution of a powder sample. This is done for a sample of LiCoO2, which
is commonly used as a cathode in modern batteries. The powder was
purchased from Sigma Aldrich. After dispensing the powder onto a
sample stub for SEM, the PhenomXL desktop SEM is used to acquire 288
images spanning a uniform 12 × 24 grid, with each individual image
covering an 80 × 80m region of the sample. These images are processedby
the Mask R-CNNmodel, which is trained at low magnification, allowing
us to evaluate its accuracy in segmenting particles. Further, as this type of
powder sample was not used during the training of the model, this also
evaluates the transferability to arbitrary inorganic particle detections. The
size distribution of the detected particles is computed from the segmented
areas of each image, including both certain and uncertain predictions. For
comparison, we task three separate domain experts with labeling the same
set of images. They also recorded howmuch time is required to complete
this task.

Our Mask R-CNN model predicts an average particle area of 37 m,
corresponding to an average diameter of approximately 6.7 m when
assuming spherical particles, which agrees well with the expected particle
size of typical LiCoO2 powders (ranging from 5-10 m). In comparison, the
labels providedby thedomain experts correspond to an averageparticle area
of 31 m, closely matching the prediction of Mask R-CNN. The particle size
distribution predicted by our Mask R-CNNmodel is shown in Fig. 6a, and
comparable plots representing the labels made by three domain experts are
provided inFig. 6b–d.Thekeycharacteristicsof thedistributions fromMask
R-CNN and the domain experts appear qualitatively similar, with a peak in
the number of particles that have an area of about 10 m and a long tail of
larger particles with a size reaching 200 m.

The sizesofparticles identifiedby the three experts range from0.01%to
9.41% of the total image, while Mask R-CNN predicts sizes ranging from
0.08% to 9.41%. Although Mask R-CNN can detect particles as small as
0.08% of the total image, the smallest particle annotated by the experts
(0.01%) is even smaller. Hence, detecting very small particles challenges
MaskR-CNN.However, our high-magnificationmodel is poised to address
this, ensuring thorough detection and analysis across all scales.

Interestingly, there is noticeable disagreement among the experts
themselves, whose labels produce an average particle size ranging from21 to
45 m. Using the mean AJI+ across all samples among the experts and our
model to calculate the agreements further supports this observation. The
agreement between expert 1 and expert 2 calculates to 64.61 ± 19.5, between

expert 1 and expert 3 to 57.93 ± 22.5, and between expert 2 and expert 3 to
56.32 ± 21.3. The agreement between Mask R-CNN and expert 1 is
61.00 ± 21.3, with expert 2 64.12 ± 20.9, andwith expert 3 60.31 ± 22.7. This
displays that the predictions made by the mask R-CNN model generally
agree well with labels created by the experts on average, despite the sig-
nificant variations that exist among them.

This showcases the uncertainty that is prevalent in particle seg-
mentation, which becomes increasingly difficult when dealing with
small particle size. Indeed, Experts 1 and 3 labeled several hundred
particles with a size less than 10m, while Expert 2 labeled fewer than 100
within this range. The number of particles segmented also tends to
correlate with the time spent by each domain expert, which varies from
145 min (Expert 2) to 430 minutes (Expert 3). In contrast, the Mask
R-CNNmodel is applied withoutmanual intervention and requires only
3 minutes to analyze the entire dataset on a desktop CPU. Although it
segments fewer particles than two of the experts, specifically missing
many of those with a small area, the overall distribution and average
particle size matches qualitatively well with the manually crafted labels
that take 10–100 × longer to complete. We also suspect that our model
could be refined by collecting additional training data withmore labels at
small particle size.

Discussion
In this study, we develop segmentation models that can accurately
identify distinct particles in powder samples imaged by desktop SEMs.
These models can be applied at disparate length scales, to images
acquired at low or high magnification, and are robust against mea-
surement artifacts such as image blur. They can also assess their own
confidence in the segmentation of each individual particle, which is
made possible by modifying the recently developed Mask R-CNN
architecture. The ability to gauge a prediction’s accuracy is crucial for the
practical use of these models in real-world applications, particularly in
materials science and other fields that rely on precise conclusions made
from the analysis of characterization data.

When compared to the more traditional U-Net segmentation models,
we find that our Mask R-CNN architecture provides improved perfor-
mance. This is especially true in cases involving blurry and overlapping
particles, both of which are highly prevalent in SEM images. The improved
performance of theMaskR-CNNmodels can be traced to their architecture,
which allows for the modeling of overlapping instances as isolated entities.
This differs from the U-Net models whose architecture was originally
designed for semantic segmentation, whereby pixels are assigned to pre-
defined categories. In addition, our Mask R-CNN models provide com-
parable performance to domain experts while requiring substantially less

Fig. 5 | Confidence distribution and segmentation accuracy of Mask R-CNN
Models. a Shows the distribution of prediction confidence generated by the Mask
R-CNN models when applied to particle segmentation on images obtained at low
(top panel) and high (bottom panel) magnification. The green bars correspond to
particles that were labeled as “Certain” by domain experts, while the red bars cor-
respond to particles labeled “Uncertain.” bDisplays two sample images for low and

high magnification that were segmented by the Mask R-CNNmodels are shown in
the top panels. For comparison, the labels provided by domain experts are shown in
the bottom panels. Green and red curves represent certain and uncertain labels,
respectively. Predictions from the Mask R-CNN are considered uncertain when
their confidence is ≤ 50%.
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time. The results of our tests on LiCoO2 showcase the primary advantages of
deep learning when applied to segmentation, providing an order-of-
magnitude improvement in speed while also mitigating the variability that
exists between the labels made by separate domain experts.

Despite their generally positive results, it is worth noting that our
model’s performance is not without limitations. For instance, the segmen-
tation accuracybecomesmore limitedwhendealingwith images capturedat
particularly high magnification, which often contain blurry particles with
loosely defined boundaries, which however is expected since such samples
are generally more challenging and ambiguous. Our models also tend to be
conservative in their predictions, often segmenting fewer particles than
domain experts and overlooking particularly small ones, which can be
improved with more data and model regularization techniques. These
observations highlight the need for further improvements in this area.
Further, to improve upon our method, the threshold value separating cer-
tain anduncertain predictionsmay be optimized in futureworks to enhance
predictive accuracy. Additionally, other out-of-distribution materials
besides LiCoO2 could validate our model’s robustness and reveal areas for
further improvement.

We believe the results presented in this study have significant
implications for future research and applications. They complement
recent advancements in laboratory automation, opening up the possibility
of integrating SEM/EDS measurements into autonomous workflows for
accelerated materials synthesis and characterization3,30. By providing fast
and reliable particle segmentation, our models contribute to the devel-
opment of more efficient and data-driven experiments in materials sci-
ence and chemistry. Future work might focus on enhancing the
performance of segmentation models at high magnifications, addressing
the challenges associated with image blur, and refining the models to
achieve segmentation results closer to the domain experts. The optimi-
zation of these models, and their integration with automated systems for
materials characterization, offers the potential for transformative
advancements in materials science, accelerating the pace of discovery and
innovation in the field.

Methods
Mask R-CNN architecture
Here we explain in detail the Mask R-CNN architecture employed in this
work (Fig. 2). Traditional CNNs struggle to handle the diversity of particle
sizes prevalent in SEM due to their single-scale feature representations. To
address this challenge, Mask R-CNN employs a Feature Pyramid Network
(FPN), which enhances feature extraction by providing a multi-scale
representation of the input image, enabling effective detection of objects
with different sizes. The FPN used in our work leverages multiple inter-
mediate layers of the ResNet-50 backbone to build a feature hierarchy.
Starting from the bottom of the features, the FPN uses a series of lateral
connections to create feature pyramids. The lateral connections help pro-
pagate information fromhigher-resolution layers to lower-resolution layers,
allowing each level of the pyramid to access features from all levels below it.
These connections ensure that fine-grained information is preserved at all
scales. After that, the FPN samples-up the features from higher levels of the
pyramid to match the spatial resolution of features at lower levels. This
allows for a smooth fusion of information from different scales. The
upsampled features are combinedwith the lower-level features to get a set of
multi-scale feature maps, where each map represents features at a different
spatial resolution. These featuremaps serve formulti-scale object detection,
with high-resolution maps identifying small particles and lower-resolution
maps detecting larger ones.

The multi-scale features are used for ROI proposal and alignment.
First, the Region-Proposal-Network (RPN) proposes potential regions in
the SEMimage thatmay contain objects of interest. In our case, the RPN is a
CNN that slides a small window of 3 × 3 pixels over the feature map and, at
each position, predicts multiple rectangular regions (proposals) and their
associated objectness scores. The objectness score indicates the likelihood
that some region contains an object. After generating region proposals, the
RPN uses non-maximum suppression (NMS) to filter out redundant or
overlapping proposals and retains the top-ranked ones for further proces-
sing. After the ROIs are found, ROI align is used to align and crop the
potential particles from the original SEM image at the locations of the region
proposals and resize them to a constant size, which is crucial for further
processing. In our work, ROI align resizes each region proposal to a fixed
spatial size of 7 × 7 pixels.

The aligned proposals are then processed bymultiple modules (heads)
responsible for specific tasks. The original Mask R-CNN architecture con-
sists of three heads. The bounding box regression head refines the locali-
zations of the RPN to more accurately fit the objects within the regions. In
our case, the bounding box regression head is a two-layer fully connected
neural network. The region classification head predicts a class label for each
proposed region. Since we do not need a distinction between different
classes, this head is discarded in our architecture. The last head of the
standard Mask R-CNN architecture is the mask head that generates pixel-
wise segmentations for each detected object that outputs a binary mask for
each detected object, where each pixel is either classified as belonging to the
object or not. In our work, the mask head is a four-layer CNN network.
Finally, our estimation of uncertainty is achieved through an additional
neural network output head that learns to predict the confidence for each
detected particle. In contrast to the objectness, which prioritizes regions for
further analysis based on their likelihood of containing actual objects rather
thanbackgroundor noise and acts as a selector andfilter for object detection
and segmentation, our proposed uncertainty head is an independent
component whose output does not serve as a basis for other parts of the
network and specifically focuses on discerning between certain and
uncertain instances that have been classified as objects of interest by the
objectness score, providing a nuanced measure of confidence. We realize
this through a single-layer fully connected neural network. To create the
necessary labels for this detection, the ground-truth labels of the SEM scan
are partitioned into two distinct categories: uncertain particlesψ and certain
particles ω. To further refine the estimation of confidence, we introduce
noise to each of the true labels to signify that the ground truth may not
always be correct. This noise is generated by random sampling from a

Fig. 6 | Comparison of particle size distribution in LiCoO2 sample segmented by
Mask R-CNN and domain experts. a Shows theMask R-CNNmodel trained at low
magnification, and b–d three separate domain experts. The time required by each
labelingmethod is listed near the top of each plot. The average particle size computed
from each method is denoted by the vertical dashed lines.
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Gaussian distribution. Specifically, themeanof this distribution is set at 1 for
ω particles and 0 for ψ particles. The standard deviation of this Gaussian
distribution is represented as σ. By incorporating this noise, the model
conveys that uncertain particles should have label values close to 0, indi-
cating low confidence, while certain particles should be close to 1, signifying
a high level of confidence in their detection. The output is a confidence value
γ, which is constrained to a range between 0 and 1. Any values of γ that fall
below0 are automatically adjusted to 0, and values exceeding 1 are capped at
1. In essence, this restriction ensures that the confidence value γ consistently
falls within the interval [0, 1].

Label uncertainty loss
The loss function calculation of the Mask R-CNN architecture is divided
into two components targeting specific aspects of model performance. The
first component L1 consists of the objectness classification Lo and the
bounding box regression Lb1

. The goal of Lo is to distinguish between
foreground (particles) and background regions in a predicted bounding box
and is implemented as a softmax cross-entropy loss. This component does
not encompass any uncertainty estimation; it focuses solely on learning to
differentiate regionswhere particles are fromall other entities. The objective
ofLb1

is to train themodel to accurately predict bounding box offsets for the
proposed regions. This loss is computed as as the Huber loss. Overall,L1 is
computed as a weighted sum ofLo and Lb1

:L1 ¼ Lo þ λb1Lb1
, where λb1

is a parameter that specifies the importance of the bounding box regression
within the total loss calculation. Inour case,λb1 is always 1.The computation
of L1 follows the original formulation31.

The second component L2 consists of three parts: the segmentation
loss Ls, the refined bounding box regression loss Lb2

, and the confidence
loss Lc. The segmentation loss Ls aims to generate object masks for each
ROI. Unlike traditional segmentation architectures such as U-Net, there is
no competition among classes when generating masks. Each ROI is treated
in isolation, and for each detected object the Binary Cross-Entropy Loss is
calculated. Expanding upon Lb1

, the Lb2
further refines the bounding box

coordinates for the ROIs to align them more accurately with the ground
truth bounding boxes employing the Huber Loss.

Our refinement of the Mask R-CNN architecture Lc models the
uncertainty for each particle as a regression. Our goal is to model a
bimodal distribution, with distinct peaks representing high and low
uncertainty. However, common loss functions like Mean Absolute
Error (MAE), Huber loss, and Euclidean loss are designed for unimodal
distributions, not equipped to handle this bimodal uncertainty dis-
tribution’s complexity. Inspired by approaches that discretize a mul-
timodal distribution into k bins to model the regression as a
classification challenge32, we introduce a novel approach that maps the
confidence scores γ ∈ [0, 1] to the desired kth bin using the function
⌊kγ⌋. During training a classification task, we have the batch size N 2
N and C 2 N classes. In our case, the C classes represent the k bins. To
formulate the loss function for confidence estimation, we employ a
cross-entropy loss extended with a distance regularization term to
penalize smaller distances from the ground truth less. This loss func-
tion is defined as:

Lcðx; y; ξÞ ¼ � 1
N

XN

n¼1

XC

c¼1

wc log
expðxn;cÞPC
i¼1 expðxn;iÞ

exp
�jyn � cj

ξ

� �
; ð1Þ

where x represents the model’s prediction, with a distribution for each
class, y is the target containing class indices, w is a weight vector spe-
cifying the importance for each class, ∣yn− c∣ represents the absolute
difference between the class index yn and the class c, and ξ is a para-
meter controlling how much similarity between x and y is enforced.
Like this, we map confidence scores to bins, allowing the model to
handle multimodal distributions effectively and penalize uncertainties
with different degrees. The calculation of the ground truth bins is
visualized in Fig. 7.

L2 is calculated as a sum of the individual partsL2 ¼ Ls þ Lb2
þ Lc,

and the overall loss L as the sum of both components: L ¼ L1 þ L2. The
parameters for the loss calculation areoptimized in ahyperparameter search
(Supplementary Table 3).

Combination of masks
The Mask-RCNN output consists of m independent masks, one mask for
each detected particle. Multiple post-processing steps are utilized to create a
unified segmentation mask. To output certain particles ω, themmasks are
filtered to only contain masks where the maximum value of the k bins is
greater or equal to k/2. Conversely, to obtain the uncertain particles ψ, only
those inmwhere themaximumconfidence is smaller than k/2 are observed.
Finally, if no distinction is made, m is not filtered. In the next step, the
retained masks are sorted based on their predicted objectness scores ô in
descending order. Subsequently, masks with ô smaller than specified
thresholds θω forωmasks and θψ for ψmasks are removed.We then iterate
through the remaining masks, comparing each mask with all subsequent
masks. If the Intersection-Over-Union (IoU) score between two compared
masks exceeds a predetermined threshold θ∩, we discard the second one to
remove masks that have been detected twice. In cases where the final pre-
diction should encompass both ω and ψ masks, an additional post-
processing step is carried out. Specifically, we compute the IOU score for
each pair of masks from the ω and ψ categories and if the IOU score for a
given particle pair surpasses a threshold θη, theψmask is removed to ensure
that the final prediction is not compromised by overlapping information in
which a particle is both classified as certain and as uncertain. Finally, the
segmentation masks are binarized using an activation threshold θΣ. The
parameters for the post-processing are optimized in a hyperparameter
search (Supplementary Table 4).

Training details
We enhance the original U-Net to contain a ResNet-50 backbone to
employ the same encoder for both models thus increasing comparability.
Our U-Net implementation consists of 38.5 million trainable parameters.
TheMaskR-CNNcontains 44.0million trainable parameters, fromwhich
6, 150 originate from our novel uncertainty head. We use the Adam
optimizer with a learning rate of 0.005 for the U-Net model, while the
MaskR-CNNutilizes anAdamWoptimizerwith a learning rate of 0.0001.
All samples are normalized to be in the range [0, 1]. Early stopping and
learning rate scheduling are employed. Both U-Net andMask R-CNN are
implemented in PyTorch Lightning. We conduct training on the super-
computer systemHochleistungsrechner Karlsruhe (HoreKa) at KIT. One
computational node of HoreKa is equipped with an Intel Xeon Platinum
8368 CPU (2 sockets, 76 cores per socket) and four NVIDIAA100 Tensor
Core GPUs. The analysis of the LiCoO2 powder for comparing the run-
time against human experts was conducted on an AMD Ryzen 9 5950x
CPU. To avoid initialization effects and ensure reliable metrics, we repeat
all experiments four times.We do not resize the SEM scans for training to
ensure that all details in the images remain identifiable. Due to the large
image size, the mini batch size is 1 for both the U-Net and Mask R-CNN
models. For the uncertainty estimation (Subsection 2.4), the ground truth
bounding boxes are provided to the Mask R-CNN to solely evaluate the
confidence predictions. Further, since our model outputs the confidence
as a decimal, we regard a prediction as certain if the confidence is >50%
and uncertain if it is ≤50%.

Bins
21

Fig. 7 | Visual depiction of how the ground-truth bins forLc are calculated. γ is
the certainty value, c the observed class, and ξ is the similarity-enforcing factor. The
function is discretized into k bins.
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Data availability
All code used here can be found in the GitHub repository https://github.
com/lrettenberger/Uncertainty-Aware-Particle-Segmentation-for-SEM.
The data used to train the models are available at: https://figshare.com/
projects/Uncertainty-aware_particle_segmentation_for_electron_
microscopy_at_varied_length_scales/201381 and https://github.com/
lrettenberger/Uncertainty-Aware-Particle-Segmentation-for-SEM-Data.
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