
UC San Diego
UC San Diego Previously Published Works

Title
Learning From Mistakes: A Multi-level Optimization Framework

Permalink
https://escholarship.org/uc/item/2c5592c2

Journal
IEEE Transactions on Artificial Intelligence, PP(99)

ISSN
2691-4581

Authors
Zhang, Li
Garg, Bhanu
Sridhara, Pradyumna
et al.

Publication Date
2025

DOI
10.1109/tai.2025.3534151
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2c5592c2
https://escholarship.org/uc/item/2c5592c2#author
https://escholarship.org
http://www.cdlib.org/


JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020 1

Learning From Mistakes: A Multi-level Optimization
Framework

Li Zhang, Bhanu Garg, Pradyumna Sridhara, Ramtin Hosseini, Pengtao Xie, Member, IEEE

Abstract—Bi-level optimization methods in machine learning
are popularly effective in subdomains of neural architecture
search, data re-weighting, etc. However, most of these methods do
not factor in variations in learning difficulty, which limits their
performance in real-world applications. To address the above
problems, we propose a framework that imitates the learning
process of humans. In human learning, learners usually focus
more on the topics where mistakes have been made in the past to
deepen their understanding and master the knowledge. Inspired by
this effective human learning technique, we propose a multi-level
optimization framework, Learning From Mistakes (LFM), for
machine learning. We formulate LFM as a three-stage optimization
problem: 1) the learner learns, 2) the learner re-learns based on
the mistakes made before, and; 3) the learner validates his learning.
We develop an efficient algorithm to solve the optimization
problem. We further apply our method to differentiable neural
architecture search and data re-weighting. Extensive experiments
on CIFAR-10, CIFAR-100, ImageNet, and other related datasets
powerfully demonstrate the effectiveness of our approach. The
code of LFM is available at: https://github.com/importZL/LFM.

Impact Statement—Bi-level Optimization (BLO) has emerged
as a compelling approach in machine learning, offering a
hierarchical solution to complex optimization challenges. However,
conventional BLO methods often struggle with learning difficulty
variations present in real-world applications. To this end, we
introduce Learning From Mistakes (LFM), a novel framework
inspired by human learning. LFM automatically adjusts training
example weights based on learning difficulties, significantly
enhancing model robustness. Integrated into Neural Architecture
Search (NAS) and Data Re-weighting (DR), LFM demonstrates
remarkable improvements in adaptability and reliability across
scenarios like class imbalance and noisy labels. This work
marks a pivotal step towards more effective optimization of
machine learning models, crucial for addressing complex real-
world challenges.

Index Terms—Learning From Mistakes, Multi-Level Optimiza-
tion, Neural Architecture Search, Data Re-weighting.

I. INTRODUCTION

B I-LEVEL Optimization (BLO) is a hierarchical opti-
mization problem of two or more layers [1] and is

recently gaining popularity in Machine Learning (ML). In
BLO, the outer optimization problem (Upper-Level problem)
is restricted by the solution set mapping of the inner-level
optimization problem (Lower-Level problem)[2]. Common

Manuscript received XXXX; revised XXXX; accepted XXXX. Data of
publication XXXX; daeta of current version XXXX. This work was supported
by NSF IIS2405974 and NSF IIS2339216. (Corresponding author: Pengtao
Xie)

The authors are with the Department of Electrical and Com-
puter Engineering, University of California, San Diego, CA, 92093.
(E-mail: liz042@ucsd.edu; bgarg@ucsd.edu; prsridha@ucsd.edu; rhos-
sein@eng.ucsd.edu; p1xie@ucsd.edu)

This paragraph will include the Associate Editor who handled your paper.

BLO-based methods include neural architecture search (NAS)
[3], [4], [5] and data re-weighting (DR) [6], [7], [8], etc. Most
BLO-based methods update the model weights by minimizing
the training loss. In contrast, the meta parameters (architecture
parameters, weights of data examples, etc.) are learned by
minimizing the validation loss. This approach [9] has shown
success in tasks such as image classification, object detection,
etc.

Most traditional BLO approaches do not factor in variations
in learning difficulty. Consider the case of challenging images
obtained by driving the vehicle in harsh weather conditions,
complex backgrounds, etc., in deep learning-based self-driving
applications [10]; or deep learning in healthcare, where the
training data is highly heterogeneous, ambiguous, noisy, and
with an imbalanced distribution [11] - the BLO-based methods
can easily overfit and result in instability of prediction results
[12], [13].

To address the above issues, researchers propose various
DR strategies like AdaBoost [14], Focal Loss [15], and Active
Bias [16], which monotonically increase the weights of samples
with larger loss because they may be samples whose features
are difficult to learn or samples with class imbalance. Another
paradigm - Self-paced Learning [17], MentorNet [18], and
Iterative Re-weighting [19] aims to emphasize samples with a
smaller loss. The rationale is that samples with larger losses are
likely to have corrupted labels. However, both paradigms design
a specific form of the re-weighting function to weigh samples
based on expert opinion because it’s hard to determine the
relationship between data weights and loss values. Moreover,
the specificity of the weighting function limits the applicability
of the method to other situations.

Standing around the above problems, this paper proposes
an original multi-level framework, Learning from Mistakes
(LFM), inspired by the practical learning technique of humans
to calculate the weights for training samples automatically.
Over the years, humans have accumulated a lot of valuable
learning techniques. One such effective learning method is to
learn from previous mistakes. As shown in Fig. 1, initially, the
learner learns a concept and evaluates themselves through a test
to measure their level of understanding. The topics in the idea
where the learner makes more mistakes are identified as not
having been learned well by the learner. Therefore, the learner
will re-study the issue while focusing on the topics where the
learner made mistakes before. The above learning process can
prevent the repetition of similar errors in the future while also
strengthening previously well-learned issues. Inspired by this
human learning technique, we propose a methodology that
can be applied to the training process of machine learning to

https://github.com/importZL/LFM


2 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

Fig. 1. The simple process flow of human learning.

improve its performance.
The major contributions of this paper are as follows:

• Inspired by the human learning process, we propose a
novel optimization framework, Learning From Mistakes
(LFM), which can apply to the most regular model training
process of machine learning.

• We formulate LFM as a multi-level optimization frame-
work that includes three steps: learner learns; learner
re-learns to correct its mistakes; learner validates its
performance.

• We applied LFM to Neural Architecture (NAS) and Data
Re-weighting (DR), aiming to verify the effectiveness
of our method. We conducted a series of experiments,
including experiments about NAS, experiments under class
imbalance, and noisy label cases. The results demonstrate
the effectiveness of LFM in improving the robustness of
a learning algorithm on biased training samples.

II. RELATED WORKS

A. Bi-level Optimization (BLO)

BLO derives from the area of economic game theory [2]
and has been introduced in model optimization. BLO can
solve problems that involve two levels of optimization tasks,
of which one task is usually nested inside the other, including
hyperparameter optimization [20], meta-learning [21], neural
architecture search [22], data re-weighting [6], etc. These
methods optimize meta-parameters (e.g., neural architectures,
data weights, etc.) by minimizing average validation loss
in the upper-level tasks. Model weights are updated by
minimizing average training loss in the lower-level functions.
For example, Franceschi et al. [23] presented a novel BLO
framework that uses average validation loss in hyperparameter
optimization. These methods can achieve tremendous average-
case performance but are more likely to perform poorly in
worst-case scenarios. To address this problem, Shu et al.
[24] dynamically selected a sequence of validations based
on adversarial examination. While this work does not focus
on average-case performance, it also does not leverage the
evaluation results to retrain the model for further improvement.

To address the limitations, our methods can automatically
calculate a training weight for each training sample based on
the evaluation results of the validation set.

B. Neural Architecture Search (NAS)

Recently, NAS has come to the forefront of deep learning
techniques due to its success in discovering neural architectures
that can substantially outperform manually designed ones. Early
versions of NAS such as [3], [25], [26] used computationally
intensive approaches like reinforcement learning - where the
accuracy of the validation set was defined as the reward and
a policy network was trained to generate architectures that
can maximize these rewards. Another contemporary approach
[4], [27] was using evolutionary learning techniques - where
the set of all architectures represents a population, and the
fitness score is the validation accuracy of each architecture.
The architectures with lower fitness scores would be replaced
with higher fitness score architectures. However, even this
approach is computationally intensive. To address this problem,
differentiable architecture search techniques were explored [28],
[5], [29] and their results are much more promising because
of the use of weight-sharing techniques and the application of
gradient descent in a continuous architecture search space.

Differentiable architecture search (DARTS) [5] made the
first breakthrough in Differentiable NAS. Several other DARTS-
based techniques [30], [31], [32], [33] have been explored to
reduce the cost of computation for differentiable NAS. Some of
the approaches include - Progressive differentiable architecture
search (PDARTS) [30] increases the depth of architectures
progressively during the search, Partial channel connections
for memory-efficient architecture search (PC-DARTS [31])
evaluates only a subset of channels, thereby reducing the search
space’s redundancy. The LFM framework proposed in this paper
can be applied to any differentiable NAS method for further
enhancement.

C. Data Re-weighting (DR)

Data Re-weighting has been well-studied in the literature.
The broad paradigms include methods that re-weight the sam-
ples based on specific prior knowledge of the task or data. For
example, Synthetic minority over-sampling technique (SMOTE)
[6] randomly synthesizes data to supplement categories with
small samples after analyzing the data distribution first. Addi-
tionally, Zadrozny et al. [7] presented a bias correction method
for handling different distributions between training data and
test examples.

Furthermore, several works [8], [34] proposed designing a
weighting function mapping that can assign weights to samples
based on training loss. There are two different principles of the
weighting function. One principle is to increase the weights of
samples with higher losses. For example, AdaBoost [35] trains
subsequent classifiers based on data selected from more difficult
training samples, while hard example mining [36] trains
Exemplar-support vector machines (SVMs) [37] to exploit
challenging training samples and downsample the majority
category. Focal Loss [15] emphasizes more difficult training
samples based on a soft weighting scheme. These methods
heavily weigh samples with higher losses, making them suitable
for datasets with class imbalance. On the other hand, another
paradigm of methods imposes higher weights on samples with
smaller loss values. For example, Self-Paced Learning (SPL)
[17] prioritizes training easier samples first, MentorNet [18]



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 3

uses a meta-learning long short-term memory (LSTM) [38]
to calculate weights for data with potentially corrupted labels,
and curriculum learning [39] prioritizes easier training sets.
This strategy is effective for datasets with label noise. However,
practical datasets often exhibit both class imbalance and label
noise simultaneously, making it challenging to strictly increase
or decrease weights based solely on loss values. Instead, a
balanced approach is necessary based on the specific dataset
characteristics. Currently, most methods require manual design
of a specific weighting function based on domain knowledge.

Unlike the mentioned methods, our method, LFM, focuses
on the samples likely to make mistakes rather than simply
increasing or decreasing the weights of training samples based
on the losses. For data with class imbalance, the data loss
corresponding to the category with a smaller sample size must
be higher, so using label similarity, the samples’ weights of this
category are increased. And for data with label noise, even if
two training samples have the same label, their visual similarity
is likely to be smaller, so we can avoid increasing the weight
of the data with a corrupted label.

III. METHODS

In this section, we propose a framework that can imitate
human learning in the form of Learning From Mistakes and
present an optimization algorithm for solving the problem of
LFM when applying to Neural Architecture Search (NAS) and
Data Re-weighting (DR) with the fixed network.

A. Overview

Inspired by an effective human learning technique, learning
from mistakes, where the learners focus more on the topics
where they made mistakes, to deepen their understanding,
we investigate if machine learning methods can apply this
human learning strategy. We propose a novel machine learning
framework called Learning From Mistakes (LFM), wherein the
learner improves his ability to learn by focusing more on the
mistakes during revision.

The framework contains two sets of network weights W1

and W2 - that are two parts of the same learner and are
trying to learn to perform the same target task, assuming the
classification task in this paper. The primary goal of W2 here
is to help the first learner, W1, correct the mistakes (made
when studying for the first time) during the revision. Further,
to help map the topics in the test to issues in the syllabus, there
is an encoder with pre-defined neural architecture (by human
experts) with learnable network weights V , a coefficient vector
r and a learnable weight set B.

We begin by training the first network’s weights on a training
dataset. We then see what mistakes our model makes while
predicting the validation set. Then, for each training example,
we assign specific weights based on the errors made by the
model and the similarity of this example to an incorrectly
predicted validation example. More specifically, these weights
are computed based on a combination of validation performance
and the similarity between training and validation examples.
The second set of network weights is trained on these weighted
examples, making the model learn from its mistakes and correct
them. In this way, each training sample automatically assigns

Fig. 2. The process flow to calculate the weights ai for training example i.

a weight based on the model’s performance on the validation
set. Finally, the learnable weight set, encoder, and coefficient
vectors are updated based on the second model’s validation
performance.

B. The Multi-Level Optimization Framework

We organize our framework into three stages.
Stage I. In the first stage, we train the first set of network

weights W1 by minimizing the loss on the training dataset D(tr).
The optimal weights W ∗

1 (B) is a function of hyperparameter
B, which at this stage is fixed, and hence:

W ∗
1 (B) = argmin

W1

L(B,W1, D
tr) (1)

The hyperparameter B could be an architecture parameter
of the network or a weight parameter for training samples,
which is used to define the training loss but is not updated
at this stage. If we were to directly learn B by minimizing
this training loss, a trivial solution would be yielded where
B is very large and complex that would perfectly overfit the
training data but generalize poorly on unseen data.

Stage II. In the second stage, the goal is to re-weight the
training samples based on LFM for training the learner’s second
set of network weights W2. We apply W ∗

1 (B) to the validation
dataset D(val) and check its performance on the validation
examples. To make the model re-learn while paying more
attention to mistakes in the validation examples by W ∗

1 (B),
we re-weight each training example d(tr)i based on the following
metrics:

• Visual similarity between d
(tr)
i and d

(val)
j , as xij

• Label similarity of d(tr)i and d
(val)
j , as zij

• Validation performance of W ∗
1 (B) on d

(val)
j , as uj

In human learning, a question incorrectly learned previously
can be corrected during the re-learning stage by focusing more
on examples similar to the wrongly learned question. Here, the
metric xij tries to measure how similar a previously incorrectly
predicted d

(val)
j is to a training example d

(tr)
i and zij depicts

whether they describe the same topic. The term uj measures
how much W ∗

1 (B) is wrong for each validation example j.
We use these re-weighted training examples to train W2.

This allows W2 to focus on the topics that W1, after training,
could not get right.

Visual similarity measures how similar the training example
d
(tr)
i is to each validation example d

(val)
j . Let V denote an



4 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

image encoder. For each validation example d(val)j , its similarity
with d

(tr)
i is defined as the dot-product attention [40] as:

xij = align(V (d
(tr)
i ), V (d

(val)
j ))

=
exp(V (d

(tr)
i ).V (d

(val)
j ))∑N(val)

k=1 exp(V (d
(tr)
i ).V (d

(val)
k ))

(2)

where N (val) is the number of validation examples. V (d)
denotes the K-dimensional visual representation of the data
example d.

Label similarity measures the similarity between the label of
the training example and the label of each validation example.
Let zij denote the label similarity between a validation example
d
(val)
j and a training example d

(val)
j . We define zij as:

zij = I{y(tr)i = y
(val)
j } (3)

where y is the label of the corresponding data example, and
I{} is the indicator function on the condition being true or not.

The validation performance uj of W ∗
1 (B) on a validation

example d
(val)
j is the cross entropy loss on this example:

uj = crossentropy(f(d(val)j ;W ∗
1 (B)), y

(val)
j ) (4)

where f(d
(val)
j ;W ∗

1 (B)) is the predicted probabilities of
W ∗

1 (B) on d
(val)
j and y

(val)
j is the class label of d(val)j .

Let xi, zi, and u be N (val)-dimensional vectors where the
j-th element is xij , zij , and uj defined before. We calculate
the weight ai of the training example d

(tr)
i as:

ai = sigmoid((xi ⊙ zi ⊙ u)T r) (5)

where ⊙ denotes element-wise multiplication, and r is a
coefficient vector. Note ai is a function of V , W ∗

1 (B), and
r. We summarise the calculation of ai in the process flow
diagram Fig. 2.

Given the weight ai of each training example, we train the
second set of network weights W2 by minimizing the weighted
training loss, with the architecture, encoder V , and r fixed.

W ∗
2 (W

∗
1 (B), V, r) = argmin

W2

Ntr∑
i=1

aiℓ(W2, d
(tr)
i , y

(tr)
i ) (6)

Stage III. In the third and final stage, update the encoder V ,
coefficient vector r, and the hyperparameter B by minimizing
the validation loss of W ∗

2 (W
∗
1 (B), V, r).

B, V, r = arg min
B,V,r

L(W ∗
2 (W

∗
1 (B), V, r), D(val)) (7)

We summarise the above equations in the process flow
diagram Fig. 3. It shows the input data and output data in
every stage in detail.

We represent the hyperparameter B of the learner in a
differentiable way. In stages 1 and 2, B is fixed and updated
in stage 3. In this way, we turn this problem into a tri-level
optimization. As shown above, after the weights W2 of model
2 are trained by correcting the mistakes made by W1, the
parameter B will be updated accordingly since the gradient
of B depends on W2; an updated B will also render W1 to
change as well since the gradient of W1 depends on B. Along

Fig. 3. The overall process flow of our method. The red arrows indicate
stage 1 processes, the blue arrows indicate stage 2 processes, and the black
arrows indicate stage 3 processes. In each stage, the solid lines starting from
data blocks represent the beginning of each stage, indicating feeding the
corresponding data into the model, and the dashed lines represent the end of
each stage, indicating updating the corresponding model components.

with this W1 → W2 → B chain, W1 is indirectly influenced
by W2, since W2 corrects the mistakes, W1 will avoid these
mistakes in the next round of training as well. All in all, in our
end-to-end framework, model 1 will learn from its previous
mistakes and avoid making the same mistakes indirectly.

The overall algorithm of LFM is summarised in Algorithm 1.

Algorithm 1: Optimization Algorithm for LFM
1: Input: Sub-datasets Dtr, Dval. Parameter initialization

W1, W2, V , r, and B.
2: for t = 1, 2, 3, · · · do
3: Sample a batch from Dtr. Update W1 via (1).
4: Sample a batch from Dtr. Update W2 via (6).
5: Sample a batch from Dval. Update V , r, B via (7).
6: end for

C. Applications

We apply our framework for two applications: differentiable
neural architecture search (NAS) and data re-weighting (DR)
with fixed human-designed networks.

Differentiable NAS aims to search for high-performance
network architecture in a differentiable way. To apply our
framework for Differentiable NAS, we set B in Eq. 1 to be
neural architectures. Similar to DARTS [5], the search space of
B is composed of a large number of building blocks, where the
output of each block is associated with weight b indicating the
importance of the block. Similar to the above, the framework
contains two sets of network weights W1 and W2. They share
a learnable architecture parameter B. The primary goal here is
to learn an architecture that performs better. We also organized
the learning into three stages. The overall optimization problem
with learnable architecture is as follows:

B, V, r = argmin
B,V,r

L(B,W ∗
2 (W

∗
1 (B), V, r), D(val))

s.t. W ∗
2 (B) = argmin

W2

Ntr∑
i=1

aiℓ(A,W2(B), d
(tr)
i ) (8)

W ∗
1 (B) = argmin

W1

L(B,W1, D
tr)



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 5

Data Re-weighting aims to identify and remove the in-
fluence of train examples, which limits the improvement of
models’ performance. To apply our framework for data re-
weighting we specialize (1) to the following: W ∗

1 (B) =

argminW1

∑Ntr

i=1 biL(W1, d
tr), where B = {bi}Ni=1. bi is the

weight of a data sample d
(tr)
i and is used to re-weight the

training loss of each sample. After applying our framework
to Data Re-weighting, the model can automatically pay more
attention to the examples that would be more difficult to classify
during the training process. The overall optimization problem
with DR can be summarized as follows:

B, V, r = arg min
B,V,r

L(W ∗
2 (W

∗
1 (B), V, r), D(val))

s.t. W ∗
2 (B) = argmin

W2

Ntr∑
i=1

aiℓ(W2(B), d
(tr)
i ) (9)

W ∗
1 (B) = argmin

W1

Ntr∑
i=1

biL(W1, d
tr)

D. Optimization Algorithm

We promote an efficient algorithm to solve the LFM
problems when applying to NAS and DR, as described in (8)
and (9). Inspired by DARTS [5], we approximate W ∗

1 and W ∗
2

by one-step gradient descent updates for the inner optimization
equations to reduce the computational complexity. For Stage
1, we approximate W ∗

1 (B) using one step descent for the loss
on training data L(B,W1, D

tr), where the hyperparameter B
keeps fixed. For Stage 2, we use W ′

1 from the previous update
to get uj . To get the weights ai for training samples, we
compute xi and zi for each training sample dtri . Then based on
the reweighted training set, we use one-step gradient descent to
approximate W ∗

2 (B,W ∗
1 (B), V, r), where the hyperparameter

B keeps fixed. For Stage 3, we plug W ′
2 to learn hyperparameter

B , encoder V , and coefficient vector r from the validation
loss L(B,W ′

2(W
′
1(B), V, r), D(val)).

To save space, the complete derivations of these two
applications can be found in Appendix A and Appendix B of
the supplement file, respectively.

IV. EXPERIMENTS

In this section, we investigate the effectiveness of our
proposed LFM framework. We explore the performance of
LFM with searchable architectures in image classifications.
Further, we designed both class imbalance and noisy label
settings experiments on standard CIFAR-10 and CIFAR-100
benchmarks with fixed human-designed networks to verify the
effectiveness of our method when applied to data re-weighting.

A. Differentiable NAS

In this section, we applied our method to differentiable
NAS for image classification tasks. Following DARTS [5], the
approaches consist of architecture search and evaluation stages,
where the optimal cell obtained from the search stage is stacked
several times into a more extensive composite network. We
then train the resultant composite network from scratch in the
evaluation stage.

1) Datasets: The experiments were performed on three
popular NAS datasets, namely CIFAR-10, CIFAR-100, and
ImageNet. We conducted architecture searching on CIFAR-10
and CIFAR-100 datasets. For ImageNet dataset, we conduct
experiments with the model architectures searched on CIFAR-
10 and CIFAR-100 datasets. Both CIFAR-10 and CIFAR-100
datasets contain 60K images, with each class having the same
number of images. We split each dataset into a training set
with 25K images, a validation set with 25K images, and a
test set with 10K images. During the architecture search, the
training set is notated as Dtr, and the validation set is notated
as Dval. During architecture evaluation, the learned network is
trained on the combination of Dtr and Dval. Further, ImageNet
contains 1.2M training images and 50K test images with 1000
objective classes.

2) Experimental settings: Our framework is orthogonal
to existing NAS approaches and can be applied to any
differentiable NAS method. In our experiments, we applied
LFM to DARTS [5] and PDARTS [30]. The search spaces
of these methods are kept the same as their backbone. For
the encoder V , ResNets that pre-trained on Imagenet were
used. Each LFM experiment was repeated three times with
different random seeds. The mean and standard deviation of
classification errors obtained from the three runs are reported.

During the architecture search for CIFAR-10 and CIFAR-
100, the architectures of W1 and W2 are a stack of 8 cells. Each
cell consists of 7 nodes. We set the initial channel number to 16.
For the architecture of the encoder model, we experimented
with ResNet-18 and ResNet-34 [41]. The search algorithm
was based on stochastic gradient descent (SGD) optimizer,
and the hyperparameters of epochs, initial learning rate, and
momentum follow the original implementation of the respective
DARTS [5] and PDARTS [30]. During architecture evaluation
for CIFAR-10 and CIFAR-100, a more extensive network of
each category-specific model is formed by stacking 20 copies
of the searched cell.

The LFM method is used to learn the architecture B, while
the weights W1, W2, V , and r learned during the LFM search
are discarded during the architecture evaluation. All the archi-
tecture evaluations are run using the same standardized setup.
This results in a fair comparison between architectures learned
from different methods. All the models during evaluation
have the same number of parameters and hyper-parameters,
such as epochs, learning rate, and batch size. More detailed
experimental settings can be found in Appendix C.

3) Results and analysis: The experiments are performed
on three popular NAS datasets, namely CIFAR-10, CIFAR-
100 [64], and ImageNet [65]. More detailed results can be
found in the Appendix, including information about parameters,
search cost, more compared methods, and other ablation studies.
The results of the classification error(%) of different NAS
methods on CIFAR-100 are shown in Table. I. We make the
following observations from this table:

• When LFM is applied to DARTS-2nd (second-order
approximation) and PDARTS, significant reductions in
classification errors are observed. For example, when
LFM is applied to DARTS-2nd, the error rate decreases
from 20.58% to 17.70%. Similarly, in PDARTS, the



6 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

TABLE I
TEST ERROR ON CIFAR-100. LFM-PDARTS-R18 DENOTES APPLYING

LFM TO PDARTS WITH RESNET-18 AS ENCODER; SUCH FORMAT APPLY
TO OTHER RESULTS. RESULTS MARKED WITH * ARE FROM SKILLEARN [42].

Method Error(%)

*ResNet [41] 22.10
*DenseNet [43] 17.18
*PNAS [44] 19.53
*ENAS [25] 19.43
*AmoebaNet [27] 18.93
*GDAS [45] 18.38
*R-DARTS [46] 18.01±0.26
*DARTS− [33] 17.51±0.25
*DARTS+ [32] 17.11±0.43
*DropNAS [47] 16.39

Random search 21.92±0.34
Random sampling 21.37±0.48

*DARTS-2nd [5] 20.58±0.44
LFM-DARTS-2nd-R18 (ours) 17.65±0.45

*PDARTS [30] 17.49
LFM-PDARTS-R18 (ours) 16.44±0.11
LFM-PDARTS-R34 (ours) 15.69±0.15

TABLE II
TEST ERROR ON CIFAR-10. RESULTS MARKED WITH * ARE OBTAINED

FROM SKILLEARN [42]. THE OTHER NOTATIONS ARE THE SAME AS
DESCRIBED IN TABLE. I.

Method Error(%)

*DenseNet [43] 3.46
*HierEvol [48] 3.75±0.12
*PNAS [44] 3.41±0.09
*ENAS [25] 2.89±0.13
*NASNet-A [26] 2.65±0.05
*AmoebaNet-B [27] 2.55±0.05
*R-DARTS [46] 2.95±0.21
*GTN [49] 2.92±0.06
*BayesNAS [50] 2.81±0.04
*MergeNAS [51] 2.73±0.02
*NoisyDARTS [52] 2.70±0.23
*ASAP [53] 2.68±0.11
*SDARTS [54] 2.61±0.02
*DropNAS [47] 2.58±0.14
*DrNAS [55] 2.54±0.03

Random search 3.07±0.17
Random sampling 2.75±0.09

*DARTS-2nd [5] 2.76±0.09
LFM-DARTS-2nd-R18 (ours) 2.70±0.06

*PDARTS [30] 2.50
LFM-PDARTS-R18 (ours) 2.46±0.04

error rate decreases from 17.49% to 16.44% (when using
ResNet-18 as encoder V ). These results demonstrate the
effectiveness of our method in improving the performance
of architecture search. In baseline NAS approaches, all
training examples are assigned equal weights. In contrast,
our method dynamically re-weights training examples
at each stage based on the current learning capability
of the model, assigning more weight to samples that are
challenging to learn. This approach reflects a more realistic
learning scenario.

• LFM-PDARTS-R34 outperforms LFM-PDARTS-R18 by
0.75%, where the former uses ResNet-34 as the image
encoder, while the latter uses ResNet-18. ResNet-34 is a
deeper and more robust data encoder than ResNet-18. This
shows that mapping the validation examples to similar
training examples is a core component contributing to the
effectiveness of our proposed LFM method.

TABLE III
TEST ERRORS ON IMAGENET. THE FIRST THREE BLOCKS REPRESENT: 1)

MANUALLY DESIGNED NETWORKS, 2) NON-GRADIENT-BASED NAS
METHODS, AND 3) GRADIENT-BASED NAS METHODS. THE REST OF THE

NOTATIONS FOLLOW THE TABLES. I.

Method Top-1 Top-5
Error (%) Error (%)

*Inception-v1 [56] 30.2 10.1
*MobileNet [57] 29.4 10.5
*ShuffleNet 2× (v1) [58] 26.4 10.2
*ShuffleNet 2× (v2) [59] 25.1 7.6
*NASNet-A [26] 26.0 8.4
*PNAS [44] 25.8 8.1
*MnasNet-92 [60] 25.2 8.0
*AmoebaNet-C [27] 24.3 7.6
*SNAS-CIFAR10 [29] 27.3 9.2
*PARSEC-CIFAR10 [61] 26.0 8.4
*DSNAS-ImageNet [62] 25.7 8.1
*SDARTS-ADV-CIFAR10 [54] 25.2 7.8
*FairDARTS-ImageNet [63] 24.4 7.4
*DrNAS-ImageNet [55] 24.2 7.3
*ProxylessNAS-ImageNet [28] 24.9 7.5
*GDAS-CIFAR10 [45] 26.0 8.5
*DARTS2nd-CIFAR10 [5] 26.7 8.7

LFM-DARTS-2nd-CIFAR10 (ours) 25.1 7.6
*PDARTS (CIFAR10) [30] 24.4 7.4

LFM-PDARTS-CIFAR10 (ours) 24.1 6.8
*PDARTS (CIFAR100) [30] 24.7 7.5

LFM-PDARTS-CIFAR100 (ours) 24.1 6.7

• LFM-PDARTS-R34 achieves the best performance among
all methods, which demonstrates the effectiveness of ap-
plying LFM to differentiable NAS methods and improving
their performance.

The results of the classification error(%) of different NAS
methods on CIFAR-10 are shown in Table. II. As can be seen,
LFM applied to DARTS-2nd and PDARTS reduces the errors
of these baselines by roughly 0.05%. This further demonstrates
the effectiveness of our method.

The results of the classification error (%) for top-1 and top-5
of different NAS methods on ImageNet are presented in Table
III. In the methods LFM-DARTS-2nd-CIFAR10 and LFM-
PDARTS-CIFAR10, the architectures searched on CIFAR-10
are evaluated on ImageNet, while in LFM-PDARTS-CIFAR100,
the architecture searched on CIFAR-100 is evaluated on Ima-
geNet. Specifically, LFM-DARTS-2nd-CIFAR10 outperforms
the baseline DARTS-2nd-CIFAR10 by 1.6%, whereas LFM-
PDARTS-CIFAR100 outperforms its corresponding baseline
by 0.6%, and LFM-PDARTS-CIFAR10 by 0.3%. These results
demonstrate that the LFM methods consistently outperform
their corresponding baselines, highlighting the effectiveness of
our approach.

4) Ablation Studies on LFM-NAS: Ablation 1 Our method
introduces three important components to the re-weighting
parameter ai: x, u, and z. In this study, we demonstrate the
effect of ablating each component. We conducted experiments
on CIFAR-100 using ResNet-18 as the encoder, with other
details matching the base experiments described in earlier
sections. The performances of the ablated models are shown in
Fig. 4. These results highlight the effectiveness and necessity
of incorporating measurements of mistakes (u) on validation
examples, calculating visual similarity (x), and evaluating label
similarity (z) between training and validation examples within
our method.



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 7

19.1 

17.0 

19.3 

17.1 

18.8 

17.3 
17.7 

16.4 

15.0

16.0

17.0

18.0

19.0

20.0

LFM-DARTS LFM-PDARTS

Te
st

 e
rr

or
 (%

)

Without x Without u Without z With x,u,z

Fig. 4. Ablation on components of ai. The left bar column shows the
comparison of ablated models 1) without x, 2) without u, 3) without z, and 4)
the full models.

Ablation 2 For visual similarity, we utilize dot product
attention, which has demonstrated effectiveness in various
applications and is straightforward to implement. To showcase
its efficacy within LFM, we compared it with other metrics
such as cosine similarity and L2 distance. The experimental
setup closely follows the base experiments described in earlier
sections. The results, depicted in Fig. 5, show that dot product
attention used in our framework performs better than the other
two metrics.

17.9 

16.7 

18.0 

16.7 

17.7 

16.4 

15.0

16.0

17.0

18.0

19.0

LFM-DARTS LFM-PDARTS

Te
st

 e
rr

or
 (%

)

L2 Cosine Dot Product

Fig. 5. Comparison of different visual similarity metrics.

Ablation 3 We experiment to evaluate the necessity of the
second network. A degenerated way of learning a single set of
weights is to discard the end-to-end tri-level framework and
learn the weights in two separate stages: train the weights,
use them to reweight training examples, and then retrain the
weights on reweighted examples. However, in this case, the
method is no longer an end-to-end framework, which leads to
inferior performance. We experimented with this degenerated
method and its performance is worse than our tri-level end-to-
end framework. The results are shown in Table IV.

TABLE IV
TEST ERROR COMPARISON OF SINGLE NETWORK (SN) AND TWO
NETWORKS (TN) ON CIFAR-100. DARTS DEFAULTS THE DARTS

OPTIMIZED IN THE SECOND ORDER.

Method Test error(%)
SN+DARTS 19.28±0.31
TN+DARTS 17.65±0.45
SN+PDARTS 17.37±0.23
TN+PDARTS 16.44±0.11

Ablation 4 We conduct experiments to evaluate the impact
of the image encoder used in the second stage, where larger
models (ResNet-101 and ResNet-152) are applied to compute
visual similarity. Specifically, we aim to assess how the capacity
of the image encoder influences the overall model’s ability
to extract meaningful representations. The model architecture
is searched by PDARTS on the CIFAR-100 dataset, and the
discovered architecture is then applied to both the CIFAR-100
and ImageNet datasets. As shown in Table V, increasing the
size of the image encoder enhances model performance. A
more powerful encoder not only enhances feature extraction
but also improves the accuracy of identifying training examples
that significantly impact model capability. This precision in
example selection ensures that the model learns from instances
that maximize its generalization, thereby reducing overfitting
and improving robustness across datasets.

TABLE V
TEST ERROR ON CIFAR-100 AND IMAGENET TEST SETS WITH DIFFERENT

SIZE OF IMAGE ENCODERS.

Dataset Encoder Test error(%)

CIFAR-100
LFM-PDARTS-R18 16.44
LFM-PDARTS-R101 15.45
LFM-PDARTS-R152 14.88

ImageNet
LFM-PDARTS-R18 24.10
LFM-PDARTS-R101 23.52
LFM-PDARTS-R152 23.02

B. Data Re-weighting under class imbalance

1) Datasets: We apply LFM to Data Re-weighting (LFM-
DR) for image classification, specifically using long-tailed
datasets based on CIFAR-10 and CIFAR-100 to evaluate the
performance of LFM-DR. Following the approach described in
[66] for creating long-tailed datasets, we reduce the number of
training samples per class according to an exponential function
n = niµ

i, where i is the class index, ni is the original number
of samples in class i, and µ ∈ (0, 1). In this experiment, the
imbalance factor represents the degree of data imbalance and
is defined as the number of training samples in the largest class
divided by the number in the smallest class.

2) Experimental settings: Same as the article [12], we
applied LFM to ResNet-32 [41]. About the settings specified
in the LFM-DR, the ResNet-18 is used as the data encoder
when calculating the weight ai in stage 2. Finally, the learning
rate of ResNet-32 is divided by 10 after 80 and 90 epochs (for
a total of 100 epochs). The compared methods include 1) Base
Model, which uses a softmax cross-entropy loss to train ResNet-
32 on the training set; 2) Focal loss [15], Class-Balanced
[66], Learning to reweight (L2RW) [67], and Meta-Weight-
Net [12] represent the state-of-the-art of the data re-weighting
techniques. And LFM-DR represents our means of applying
LFM to DR. More detailed experimental settings can be found
in the Appendix.

3) Results and analysis: The classification accuracy results
of LFM-DR applied to ResNet-32 on long-tailed datasets of
CIFAR-10 are shown in Table. VI. As shown in the tables that:

• After applying our LFM framework to the base model, the
classification accuracy is improved significantly across all



8 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

TABLE VI
TEST ACCURACY (%) OF RESNET-32 ON LONG-TAILED CIFAR-10 AND CIFAR-100, THE BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED IN
BOLD AND italic bold, RESPECTIVELY. LFM-DR REFERS TO APPLYING LFM TO THE BASE MODEL. RESULTS MARKED WITH * ARE OBTAINED FROM [12].

Dataset Name Long-Tailed CIFAR-10 Long-Tailed CIFAR-100

Imbalance Factor 200 100 50 20 10 1 200 100 50 20 10 1
*Base Model 65.68 70.36 74.81 82.23 86.39 92.89 34.84 38.32 43.85 51.44 55.71 70.50
*Focal Loss [15] 65.29 70.38 76.71 82.76 86.66 93.03 35.62 38.41 44.32 51.95 55.78 70.52
*Class-Balance [66] 68.89 74.57 79.27 84.36 87.49 92.89 36.23 39.60 45.32 52.59 57.99 70.50
*L2RW [67] 66.51 74.16 78.93 82.12 85.19 89.25 33.38 40.23 44.44 51.64 53.73 64.11
*Meta-Net [12] 68.91 75.21 80.06 84.94 87.84 92.66 37.91 42.09 46.74 54.37 58.46 70.37

LFM-DR 73.72 78.89 83.46 86.98 89.24 92.92 39.08 43.27 47.42 56.10 59.70 70.58

Fig. 6. Confusion matrices for the BaseModel and Ours on long-tailed CIFAR-10 dataset with imbalance factor 200.

TABLE VII
TEST ACCURACY (%) COMPARISON ON CIFAR-10 AND CIFAR-100 OF RESNET-32 WITH VARYING NOISE RATES UNDER FLIP NOISE. THE BASELINES
INCLUDE BASE MODEL, REED-HARD, SELF-PACED, FOCAL LOSS, CO-TEACHING, D2L, FINE-TINING, MENTRONET, L2RW, GLC, AND META-NET.

Dataset Name Corrupted CIFAR-10 Corrupted CIFAR-100

Noise Rate 0% 20% 40% 0% 20% 40%
*Base Model 92.89±0.32 76.83±2.30 70.77±2.31 70.50±0.12 50.86±0.27 43.01±1.16
*Reed-Hard [68] 92.31±0.25 88.28±0.36 81.06±0.76 69.02±0.32 60.27±0.76 50.40±1.01
*Self-paced [17] 88.52±0.21 87.03±0.34 81.63±0.52 67.55±0.27 63.63±0.30 53.51±0.53
*Focal Loss [15] 93.03±0.16 86.45±0.19 80.45±0.97 70.02±0.53 61.87±0.30 54.13±0.40
*Co-teaching [69] 89.87±0.10 82.83±0.85 75.41±0.21 63.31±0.05 54.13±0.55 44.85±0.81
*D2L [70] 92.02±0.14 87.66±0.40 83.89±0.46 68.11±0.26 63.48±0.53 51.83±0.33
*Fine-tining 93.23±0.23 82.47±3.64 74.07±1.65 70.72±0.22 56.98±0.50 46.37±0.25
*MentorNet [18] 92.13±0.30 86.36±0.31 81.76±0.28 70.24±0.21 61.97±0.47 52.66±0.56
*L2RW [67] 89.25±0.37 87.86±0.36 85.66±0.51 64.11±1.09 57.47±1.16 50.98±1.55
*GLC [71] 91.02±0.20 89.68±0.33 88.92±0.24 65.42±0.23 63.07±0.53 62.22±0.62
*Meta-Net [12] 92.04±0.15 90.33±0.61 87.54±0.23 70.11±0.33 64.22±0.28 58.64±0.47

LFM-DR 92.85±0.11 91.28±0.58 89.06±0.17 70.93±0.44 65.88±0.27 60.73±0.51

imbalance factors. For example, on an imbalance factor
equal to 200, the test accuracy improves from 65.68%
to 73.72%, by more than 8%. Our method significantly
enhances the test accuracy of the model, demonstrating
the effectiveness of Learning From Mistakes (LFM) in
addressing class imbalance challenges within the training
set. By integrating LFM into the base model, each training
sample autonomously learns a specific weight, enabling
the model to focus more on challenging examples. This
adaptive weighting mechanism equips the learner with
enhanced capabilities to tackle complex tasks effectively.
The observed improvement in test accuracy underscores
LFM’s ability to optimize model performance amidst class
imbalance, showcasing its potential to bolster machine
learning systems for real-world applications.

• For imbalance factors between 200 and 10, our method
achieves the best performance among all baselines, demon-
strating the effectiveness of applying LFM to the base
model and improving its performance. It also shows the
superiority of our method over other comparison methods.

• When the imbalance factor is 1, which means all the
classes have the same number of training samples, after
applying our method, the model attains a comparable
performance with the base model, showing its robustness
in different situations.

• For a long-tailed CIFAR-10 dataset with imbalance factor
200, there are only 24 images in the training set of the
class with the least amount of data (class 9). While there
are 4990 images in the training set of the class with the
most amount of data (class 0). The great bias of training



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 9

TABLE VIII
TEST ACCURACY (%) COMPARISON ON CIFAR-10 AND CIFAR-100 OF WRN-28-10 WITH VARYING NOISE RATES UNDER UNIFORM NOISE. OTHERS ARE

THE SAME AS TABEL. VII.

Dataset Name Corrupted CIFAR-10 Corrupted CIFAR-100

Noise Rate 0% 20% 40% 0% 20% 40%
*Base Model 95.60±0.22 68.07±1.23 53.12±3.03 79.95±1.26 51.11±0.42 30.92±0.33
*Reed-Hard [68] 94.38±0.14 81.26±0.51 73.53±1.54 64.45±1.02 51.27±1.18 26.95±0.98
*Self-paced [17] 90.81±0.34 86.41±0.29 53.10±1.78 59.79±0.46 46.31±2.45 19.08±0.57
*Focal Loss [15] 95.70±0.15 75.96±1.31 51.87±1.19 81.04±0.24 51.19±0.46 27.70±3.77
*Co-teaching [69] 88.67±0.25 74.81±0.34 73.06±0.25 61.80±0.25 46.20±0.15 35.67±1.25
*D2L [70] 94.64±0.33 85.60±0.13 68.02±0.41 66.17±1.42 52.10±0.97 41.11±0.30
*Fine-tining 95.65±0.15 80.47±0.25 78.75±2.40 80.88±0.21 52.49±0.74 38.16±0.38
*MentorNet [18] 94.35±0.42 87.33±0.22 82.80±1.35 73.26±1.23 61.39±3.99 36.87±1.47
*L2RW [67] 92.38±0.10 86.92±0.19 82.24±0.36 72.99±0.58 60.79±0.91 48.15±0.34
*GLC [71] 94.30±0.10 88.28±0.03 83.49±0.24 73.75±0.51 61.31±0.22 50.81±1.00
*Meta-Net [12] 94.52±0.25 89.27±0.28 84.07±0.33 78.76±0.24 67.73±0.26 58.75±0.11

LFM-DR 95.56±0.11 89.66±0.58 84.78±0.17 80.64±0.44 68.71±0.27 60.74±0.51

set is the reason leading to an imbalance results. However,
as shown in Fig. 6, comparing to the base model, after
applying LFM, the problem about imbalance prediction
results on test set have been greatly mitigated. Specifically,
we improve the performance of the category with the least
amount of training data from 14.4% to 47.3%.

The classification accuracy results of ResNet-32 that are
trained in a standard way and trained in our framework on
long-tailed datasets of CIFAR-100 are also shown in Table.
VI. It can be seen that our method, LFM-DR, has shown
better performance in any case, from the imbalance factor
equal from 200 to 1. The results on long-tailed CIFAR-100
further demonstrate the effectiveness of our strategy that, after
applying our method, the robustness of the model can be
improved significantly.

C. Data Re-weighting under corrupted labels

1) Datasets: We evaluated our method on datasets with
corrupted labels in the training set, and two different types
of noises were applied to the original samples. One is the
uniform noise, which means the label of each training sample
can uniformly change to another random class with probability
p following the instruction in [72] and is the most common
phenomenon in the literature. Another type is the flip noise:
the label of each sample is independently flipped to similar
classes with total probability p [12]. Here, two specific classes
are selected as similar classes. These two types of noise are
employed for CIFAR-10 and CIFAR-100 [73].

2) Experimental settings: We use the Wide ResNet-28-10
(WRN-28-10) [74] for uniform noise, and ResNet-32 [41] for
flip noise as their base models. We use different classifier
networks as base models that aim to show that networks
with different architectures can adapt our strategy to make
an improvement. We use the same hyperparameter settings as
in class imbalance experiments. The results of each competing
method are an average of 5 trials.

3) Results and analysis: The classification accuracy results
of LFM-DR applied to ResNet-32 on datasets with flip noise
of CIFAR-10 and CIFAR-100 are shown in Table. VII. It can
be seen from these tables that:

• After adopting our strategy, the performance of the base
model has shown significant improvement, particularly

92.9 

76.8 

70.8 

92.9 91.3 
89.1 

95.5 

80.5 

73.9 

95.3 
93.3 

91.2 

60.0

70.0

80.0

90.0

100.0

0 0.2 0.4

Ac
cu

ra
cy

 (%
)

Noise ra�o

BaseModel(ResNet32) Ours(LFM-ResNet32)
BaseModel(WRN-28-10) Ours(LFM-WRN-28-10)

Fig. 7. Performance of comparison for different classifier networks (WRN-
28-10 and ResNet32) under CIFAR-10 flip noise.

70.5 

50.9 

43.0 

70.9 
65.9 

60.7 

80.0 

60.1 

52.5 

80.8 
76.1 

73.2 

30.0

50.0

70.0

90.0

0 0.2 0.4

Ac
cu

ra
cy

 (%
)

Noise ra�o

BaseModel(ResNet32) Ours(LFM-ResNet32)
BaseModel(WRN-28-10) Ours(LFM-WRN-28-10)

Fig. 8. Performance of comparison for different classifier networks (WRN-
28-10 and ResNet32) under CIFAR-100 flip noise.

evident under flip noise scenarios. The integration of
Learning From Mistakes with Data Re-weighting (LFM-
DR) resulted in notable enhancements across most datasets
and noise rates, with the exception of the corrupted
CIFAR-10 dataset at 0% noise rate. Notably, compared
to the base model, LFM-DR improved accuracy from
70.77% to 89.06% on corrupted CIFAR-10 and from
43.01% to 60.73% on CIFAR-100 at a 40% noise rate.
These results highlight the effectiveness of our method in
empowering the base model to effectively manage label
noise challenges. LFM-DR’s ability to substantially boost
accuracy under noisy conditions underscores its practical



10 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

Fig. 9. Image samples from ANIMAL-10.

utility in enhancing model robustness and reliability in
real-world scenarios.

• Compared to other mainstream methods, the robustness
of our approach can be seen in almost all situations. Our
method outperforms the method ranked second by more
than 2% for a 40% noise rate on the corrupted CIFAR-100
dataset. In other cases, our method also obtains a relatively
higher classification accuracy. This further demonstrates
the effectiveness of our approach.

• Not only for ResNet-32 but also for WRN-28-10 under
uniform noise, whose results are shown in Table. VIII,
our method shows significant performance. After applying
LFM, the base models became more robust means that
they can handle more difficult tasks in various cases. This
demonstrates the applicability of our method to different
machine learning methods.

To further demonstrate the effectiveness of our method, we
arranged experiments to compare the performance of WRN-28-
10 and ResNet32 under flip noise and the improvements after
implying our approach to the base models. As shown in Fig. 7
and Fig. 8, we can observe that, after applying our method to
the base model, the performance all increased significantly, and
performance gains for our method and base model between
two different networks take almost the same value. The results
imply that the performance improvement of LFM is available
for other network architectures.

D. Data Re-weighting on Real Dataset

To further verify the effectiveness of LFM, we conduct
experiments on the ANIMAL-10 dataset [75]. ANIMAL-10
dataset is a noisy dataset with human-labeled images. ANIMAL-
10 contains 5 pairs of confusing animals with a total of 55,000
images, of which 50,000 are training samples, and 5,000 are
test samples. The 5 pairs are as follows: (cat, lynx), (hamster,
guinea pig), (wolf, coyote), (jaguar, cheetah), (chimpanzee,
orangutan), where two animals in each pair look very similar,
as shown in Fig. 9. The overall noise rate of ANIMAL-10 is
about 8%.

In this experiment, we use Vgg19-BN [76] as the base
model and apply our LFM framework to it. The base model
was trained using SGD with a momentum of 0.9, a weight
decay of 5e − 4, and its initial learning rate is 1e − 1. The
settings of the LFM hyper-parameters are the same as in the
last experiment.

The results are summarized in Table. IX. All the methods
of comparison used Vgg19-BN as the baseline network. To
summarize, our method achieves better performance in relation
to the current state-of-the-art.

TABLE IX
CLASSIFICATION ACCURACY (%) ON THE ANIMAL-10 TEST SET.

Method Accuracy Method Accuracy
NCT [77] 84.1 PLC [78] 83.4
SELFIE [75] 81.8 CE Dropout [77] 81.3
Vgg19-BN [76] 79.4 LFM 86.4

TABLE X
TEST ERROR(%), MEMORY COST (MIB) AND COMPUTATION COST (GPU

DAYS) OF DIFFERENT MODELS ON CIFAR-100.

Method Test error Memory Cost
(%) (MiB) (days)

LFM+DARTS, no PS 17.65±0.45 23,702 5.4
LFM+DARTS+PS 18.77±0.31 12,138 1.6
DARTS 20.58±0.44 11,053 1.5
LFM+PDARTS, no PS 16.44±0.11 20,744 2.0
LFM+PDARTS+PS 16.83±0.08 10,582 0.3
PDARTS 17.49 9,659 0.3

V. CONCLUSIONS

In this paper, we proposed a novel optimization framework,
Learning From Mistakes (LFM), which is inspired by the
practical human learning skill of learning from the mistakes
corresponding to the topics the learner learns currently. To
formalize the idea of LFM, we design a multi-level opti-
mization framework to solve the problem. Compared with
other prevailing methods, LFM can develop the weighting
function without prior knowledge. It can modulate the weights
of different training samples automatically for the degree of
difficulty of its task. In our method, three metrics have been
used to measure the extent of mistakes the learner made. Our
experiments show the effectiveness of the proposed method in
generic data bias cases.

Our method requires the use of two learners who have
similar learning capabilities so that one can learn from the
mistakes of others. This increases the memory requirements
and makes the learning slow compared to the traditional
approaches. In future work, we explore reducing memory
cost during architecture search by parameter-sharing between
the three models W1, W2, and V . For W1 and W2, we let
them share the same convolutional layers but have different
classification heads. For V , we replace ResNet-18 with W1.
As shown in Table X that via parameter sharing (PS), the
memory and computation costs of our method are reduced to
a level similar to traditional DARTS and PDARTS, while our
method still achieves significantly lower test errors than DARTS
and PDARTS. A future work direction is to improve memory
usage while keeping the full performance of the LFM method.
Another direction is to extend the applicability of LFM to other
meta-learning tasks such as tasks like semantic segmentation.
LFM can also be extended to language modeling tasks as
well. Further, recent theoretical work on phase transitions
in time-varying complex networks (TVCNs) by Znaidi et
al. [79] highlights how local changes can trigger abrupt shifts
in global properties. This mirrors the behavior seen in NAS,
where small architecture adjustments can lead to significant
performance changes. The Forman–Ricci curvature framework
used in TVCNs could also be applied to NAS to identify critical
performance shifts, potentially enhancing the LFM framework
by targeting such transition points.



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 11

REFERENCES

[1] S. Dempe et al., “Bilevel optimization: Theory, algorithms, applications
and a bibliography,” Springer Optimization and Its Applications, pp.
581–672, 2020.

[2] R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-level
optimization for learning and vision from a unified perspective: A survey
and beyond,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2021.

[3] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[4] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” in Interna-
tional Conference on Learning Representations, 2018.

[5] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in International Conference on Learning Representations, 2018.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, vol. 16, pp. 321–357, 2002.

[7] B. Zadrozny, “Learning and evaluating classifiers under sample selection
bias,” in Proceedings of the twenty-first international conference on
Machine learning, 2004, p. 114.

[8] C. Elkan, “The foundations of cost-sensitive learning,” in International
joint conference on artificial intelligence, vol. 17, no. 1, 2001, pp. 973–
978.

[9] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[10] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey on
theories and applications for self-driving cars based on deep learning
methods,” Applied Sciences, vol. 10, no. 8, p. 2749, 2020.

[11] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2018.

[12] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight-net: Learning an explicit mapping for sample weighting,” in
Advances in Neural Information Processing Systems, 2019, pp. 1919–
1930.

[13] Z. Shen, P. Cui, T. Zhang, and K. Kunag, “Stable learning via sample
reweighting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 5692–5699.

[14] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern recognition, vol. 40, no. 12,
pp. 3358–3378, 2007.

[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[16] H.-S. Chang, E. Learned-Miller, and A. McCallum, “Active bias: Training
more accurate neural networks by emphasizing high variance samples,”
Advances in Neural Information Processing Systems, vol. 30, pp. 1002–
1012, 2017.

[17] M. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” Advances in neural information processing systems,
vol. 23, pp. 1189–1197, 2010.

[18] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels,”
in International conference on machine learning. PMLR, 2018, pp.
2304–2313.

[19] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” in 32nd Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[20] M. Feurer, J. Springenberg, and F. Hutter, “Initializing bayesian hyper-
parameter optimization via meta-learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[21] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International conference on machine
learning, 2017, pp. 1126–1135.

[22] Y. Hu, X. Wu, and R. He, “Tf-nas: Rethinking three search freedoms of
latency-constrained differentiable neural architecture search,” in European
Conference on Computer Vision, 2020, pp. 123–139.

[23] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” in
International Conference on Machine Learning, 2018, pp. 1568–1577.

[24] M. Shu, C. Liu, W. Qiu, and A. Yuille, “Identifying model weakness
with adversarial examiner,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 998–12 006.

[25] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International conference
on machine learning, 2018, pp. 4095–4104.

[26] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
8697–8710.

[27] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 4780–
4789.

[28] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” in International Conference on
Learning Representations, 2018.

[29] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architecture
search,” in International Conference on Learning Representations, 2018.

[30] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 1294–1303.

[31] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong,
“Pc-darts: Partial channel connections for memory-efficient architecture
search,” in International Conference on Learning Representations, 2019.

[32] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and Z. Li,
“Darts+: Improved differentiable architecture search with early stopping,”
arXiv preprint arXiv:1909.06035, 2019.

[33] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan, “Darts-: Robustly
stepping out of performance collapse without indicators,” in International
Conference on Learning Representations, 2020.

[34] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri, “Cost-
sensitive learning of deep feature representations from imbalanced data,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 8, pp. 3573–3587, 2017.

[35] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[36] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms
for object detection and beyond,” in 2011 International conference on
computer vision. IEEE, 2011, pp. 89–96.

[37] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent Systems and their applications, vol. 13,
no. 4, pp. 18–28, 1998.

[38] S. Hochreiter, “Long short-term memory,” Neural Computation MIT-
Press, 1997.

[39] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference on
machine learning, 2009, pp. 41–48.

[40] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, 2015,
pp. 1412–1421.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[42] P. Xie, X. Du, and H. Ban, “Skillearn: Machine learning inspired by
humans’ learning skills,” arXiv preprint arXiv:2012.04863, 2020.

[43] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[44] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in European Conference on Computer Vision, 2018, pp. 19–35.

[45] X. Dong and Y. Yang, “Searching for a robust neural architecture in four
gpu hours,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 1761–1770.

[46] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter,
“Understanding and robustifying differentiable architecture search,” in
International Conference on Learning Representations, 2019.

[47] W. Hong, G. Li, W. Zhang, R. Tang, Y. Wang, Z. Li, and Y. Yu,
“Dropnas: grouped operation dropout for differentiable architecture
search,” in Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, 2021, pp.
2326–2332.

[48] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” in Interna-
tional Conference on Learning Representations, 2018.



12 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

[49] F. P. Such, A. Rawal, J. Lehman, K. Stanley, and J. Clune, “Generative
teaching networks: Accelerating neural architecture search by learning to
generate synthetic training data,” in International Conference on Machine
Learning, 2020, pp. 9206–9216.

[50] H. Zhou, M. Yang, J. Wang, and W. Pan, “Bayesnas: A bayesian approach
for neural architecture search,” in International conference on machine
learning, 2019, pp. 7603–7613.

[51] X. Wang, C. Xue, J. Yan, X. Yang, Y. Hu, and K. Sun, “Mergenas: Merge
operations into one for differentiable architecture search,” in Proceedings
of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2021, pp. 3065–3072.

[52] X. Chu and B. Zhang, “Noisy differentiable architecture search,” arXiv
preprint arXiv:2005.03566, 2020.

[53] A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, I. Friedman,
R. Giryes, and L. Zelnik, “Asap: Architecture search, anneal and prune,”
in International Conference on Artificial Intelligence and Statistics, 2020,
pp. 493–503.

[54] X. Chen and C.-J. Hsieh, “Stabilizing differentiable architecture search
via perturbation-based regularization,” in International conference on
machine learning, 2020, pp. 1554–1565.

[55] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh, “Drnas: Dirichlet
neural architecture search,” in International Conference on Learning
Representations, 2020.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[57] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[58] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 6848–6856.

[59] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision, 2018, pp. 116–131.

[60] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “Mnasnet: Platform-aware neural architecture search for mobile,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2820–2828.

[61] F. P. Casale, J. Gordon, and N. Fusi, “Probabilistic neural architecture
search,” arXiv preprint arXiv:1902.05116, 2019.

[62] S. Hu, S. Xie, H. Zheng, C. Liu, J. Shi, X. Liu, and D. Lin, “Dsnas: Direct
neural architecture search without parameter retraining,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 12 084–12 092.

[63] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair darts: Eliminating unfair
advantages in differentiable architecture search,” in European conference
on computer vision, 2020, pp. 465–480.

[64] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”
Citeseer, p. 60, 2009.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, 2009, pp. 248–255.

[66] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss
based on effective number of samples,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 9268–
9277.

[67] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in International conference on
machine learning, 2018, pp. 4334–4343.

[68] S. E. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabi-
novich, “Training deep neural networks on noisy labels with bootstrap-
ping,” in ICLR (Workshop), 2015.

[69] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama,
“Co-teaching: Robust training of deep neural networks with extremely
noisy labels,” Advances in neural information processing systems, vol. 31,
2018.

[70] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. Erfani, S. Xia, S. Wijewick-
rema, and J. Bailey, “Dimensionality-driven learning with noisy labels,”
in International Conference on Machine Learning, 2018, pp. 3355–3364.

[71] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted
data to train deep networks on labels corrupted by severe noise,” Advances
in neural information processing systems, vol. 31, 2018.

[72] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning (still) requires rethinking generalization,” Communications
of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[73] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, 2009.

[74] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British
Machine Vision Conference 2016, 2016.

[75] H. Song, M. Kim, and J.-G. Lee, “Selfie: Refurbishing unclean samples
for robust deep learning,” in International Conference on Machine
Learning, 2019, pp. 5907–5915.

[76] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[77] Y. Chen, X. Shen, S. X. Hu, and J. A. Suykens, “Boosting co-teaching
with compression regularization for label noise,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 2688–2692.

[78] Y. Zhang, S. Zheng, P. Wu, M. Goswami, and C. Chen, “Learning with
feature-dependent label noise: A progressive approach,” in International
Conference on Learning Representations, 2020.

[79] M. R. Znaidi, J. Sia, S. Ronquist, I. Rajapakse, E. Jonckheere, and
P. Bogdan, “A unified approach of detecting phase transition in time-
varying complex networks,” Scientific reports, vol. 13, no. 1, p. 17948,
2023.


	Introduction
	Related Works
	Bi-level Optimization (BLO)
	Neural Architecture Search (NAS)
	Data Re-weighting (DR)

	Methods
	Overview
	The Multi-Level Optimization Framework
	Applications
	Optimization Algorithm

	Experiments
	Differentiable NAS
	Datasets
	Experimental settings
	Results and analysis
	Ablation Studies on LFM-NAS

	Data Re-weighting under class imbalance
	Datasets
	Experimental settings
	Results and analysis

	Data Re-weighting under corrupted labels
	Datasets
	Experimental settings
	Results and analysis

	Data Re-weighting on Real Dataset

	Conclusions
	References



