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Abstract

Unraveling Quantum Gravity through the Gravitational Path Integral: Geometries,

Entropies, and Algebras

by

Zhencheng Wang

The gravitational path integral has long served as a crucial tool in deciphering mysteries

within quantum gravity. In recent years, studies of the Anti-de Sitter/Conformal Field

Theory (AdS/CFT) correspondence have offered many valuable insights into compre-

hending those mysteries, and many fruitful results have been yielded from utilizing the

gravitational path integral within the framework of AdS/CFT.

This dissertation is devoted to studying certain aspects of the gravitational path

integral, discussing its relation with gravitational entropies, spacetime geometries, and

its algebraic aspects. We explore contexts from Euclidean to Lorentz signature, from

holographic theories to general theories, with a goal of understanding quantum gravity

in the real world.

In Part I, we discuss the fixed-(HRT)-area states in the gravitational path integral.

The fixed-area states are holographic states where the area of the Hubeny-Rangamani-

Takayanagi (HRT) surface, the holographic dual of entanglement entropy for a region in

the boundary CFT, is constrained to a small window when prepared by the gravitational

path integral. The study of those fixed-area states helps understand quantum gravity

beyond the leading semiclassical order. We first show that by decomposing a general

holographic state into fixed-area states, an important subleading correction appears to

the entanglement entropy near phase transitions. Then we explore the intrinsic spacetime

geometries of fixed-area states under Lorentz-signature time evolution.
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In Part II, we study saddle-point geometries of the real-time gravitational path in-

tegral, in the context of computing holographic Rényi entropies. Unlike their Euclidean

counterparts, these real-time saddles necessarily have complex metrics, giving an exam-

ple where the saddle point is off the original contour of integration. We first present

the formalism of this setup, illustrating the relevant variational problem, and features

of the complex saddles. Then we demonstrate explicitly the structure of those saddles

by showing examples in low dimensions by direct calculation. We also find that it is

possible to deform the original integration contour to pass through saddles of this kind

constructed in two-dimensional Jackiw-Teitelboim gravity. Finally, we show that the ex-

istence of these saddles results in a consequence which is necessary for unitarity to hold

in quantum gravity.

In Part III, we take a step towards explaining the origin of gravitational entropies,

by utilizing the mathematical tool of von Neumann algebras. In particular, we give an

explanation of the HRT formula purely from the bulk perspective, without making any

reference to holography. This is done by constructing Hilbert spaces and von Neumann

algebras from boundary conditions of the gravitational path integral with several natural

axioms. The von Neumann algebras we find from this construction allows us to define

a notion of entropy, which matches the HRT formula in the semiclassical limit. One of

the axioms we assume which is crucial for the construction of von Neumann algebras –

the trace inequality, is proven in the semiclassical limit, and it leads to novel positivity

conjectures for the gravitational action.
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5.3 Rényi entropies in 2d CFTs: A single interval . . . . . . . . . . . . . . . 184
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Chapter 1

Introduction

The pursuit of quantum gravity represents a profound endeavor to unify two pillars of

modern physics: quantum mechanics and general relativity. Despite the remarkably

deep understanding of each theory, combining them into a consistent framework remains

a significant challenge. In deciphering mysteries of quantum gravity, the gravitational

path integral has played a crucial role. In modern studies, the gravitational path integral

is often utilized as a tool in the context of holographic duality and has brought us many

insightful results.

In this Introduction, we first briefly review the holographic duality and its concrete

realization, known as the AdS/CFT correspondence. We then discuss the gravitational

path integral from various perspectives, each providing a unique insight into quantum

gravity. These perspectives are closely related to the notion of entropy in quantum grav-

ity, in particular within the context of holography. Finally, we give a brief introduction

to the von Neumann algebra, explaining the importance of this mathematical tool in the

study of quantum gravity, and this sets the stage for constructing von Neumann algebras

from the gravitational path integral.
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Introduction Chapter 1

1.1 Quantum gravity through holography

Gravity is holographic in nature. The first hint of this can be traced back to Arnowitt,

Deser, and Misner that conserved charges (for example, mass) in general relativity can

only be defined at the boundary [10]. The Bekenstein-Hawking entropy of black holes

provides further evidence: the entropy of a black hole is proportional to its horizon area,

not volume [11, 12],

SBH =
Ahor
4G

, (1.1)

where G is Newton’s constant. However, it was not until ’t Hooft and Susskind [13, 14]

that the holographic principle has been started to be taken seriously.

The first concrete realization of the holographic principle is Maldacena’s Anti-de

Sitter/Conformal Field Theory (AdS/CFT) correspondence [15], where a Type IIB string

theory in AdS5 × S5 (the bulk theory) is dual to the N = 4 SU(N) super Yang-Mills

theory living on the conformal boundary in 4 dimensions (the boundary theory) [15, 16,

17, 18]. Later, people found more concrete constructions for dualities of this kind in

various contexts, and now it is widely believed that the AdSd+1/CFTd duality should

hold for general dimension d (or at least for d ≤ 9). This correspondence gives a non-

perturbative formulation of quantum gravity.

Importantly, parameters on both sides are related: the ’t Hooft coupling of the gauge

theory λ ≡ g2
YMN is related to the string length `s by λ ∼

(
`Ads
`s

)4

, where `AdS is

the AdS length scale; N can be related to the Planck scale `P in the bulk by N2 ∼
(
`AdS
`P

)d−1

∼ `d−1
AdS

GN
. Both sides also enjoy the same symmetries: the isometry group of

AdSd+1 is SO(d, 2), the same as the conformal group in d dimensions.

The correspondence between parameters shows that this is a strong/weak duality:

the strong coupling regime on the boundary corresponds to the weak coupling regime in

the bulk, and vice versa. Although the original correspondence was established in the

2



Introduction Chapter 1

large N limit, this duality is generally believed true for general parameter ranges. From

a modern perspective, the dual CFT provides the UV completion of the gravity theory

in AdS since CFTs are themselves UV-complete quantum theories.

The most studied regime for this duality is the limit of large N (so the bulk Newton’s

constant G → 0; gravity is weakly coupled) and large λ (so `s/`AdS → 0; stringy effects

can be neglected). In this limit, the bulk theory can be well approximated by semiclassical

(super)gravity. Even in this semiclassical limit, a lot of phenomena of quantum gravity

can be revealed.

This duality connects bulk and boundary via “dictionaries”, through which many

quantities can be matched on the two sides. The most fundamental dictionary is that

the partition functions on the two sides should be equal:

ZAdS = ZCFT , (1.2)

where the right-hand side is computed from the CFT path integral, while the left-hand

side is computed from some kind of “gravitational path integral”, which will be reviewed

in section 1.21. Furthermore, if the two sides indeed describe the same theory, the Hilbert

spaces should also match:

HAdS = HCFT . (1.3)

Some examples of matching between states include that the pure AdS spacetimes cor-

respond to the CFT vacuum; the two-sided black hole corresponds to the thermofield

double state [19].

Other famous examples of dictionaries are the extrapolate dictionary and the dif-

ferentiate dictionaries, where correlation functions on two sides are related [16, 17, 20];

1As we will also see in section 1.2, when non-perturbative contributions are included, this relation is
interpreted in the sense of ensemble averages.

3
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the causal wedge/entanglement wedge reconstruction, where bulk local operators are

reconstructed from the CFT [21, 22, 23, 24, 25].

This duality has also found a correspondence of the entanglement entropy in the

boundary CFT. This is first proposed by Ryu and Takayanagi (RT) [26] that for a CFT

region R, its von Neumann entropy SR = −Tr ρR log ρR is given in the bulk by the area

of the minimal surface that is homologous to the boundary region R divided by 4G. The

RT formula can only be applied for static spacetimes or time slices of reflection symme-

try, but later it is generalized to generic spacetimes by Hubeny-Rangamani-Takayanagi

(HRT) [27]. When quantum corrections are included, it is generalized to the Faulkner-

Lewkowycz-Maldacena (FLM) [28] formula to O(1) and later to the quantum extremal

surface (QES) formula [29] to all orders in G. The QES formula can be expressed in the

following form,

SR = extγ

(
Aγ
4G

+ Sbulk

)
, (1.4)

where Sbulk is the entanglement entropy of the bulk region bounded by the QES and the

boundary region R. If we apply this formula to a two-sided black hole and choose the

region R to be the entirety of one boundary, the quantum extremal surface coincides with

the bifurcation surface, and we see the generalized entropy Sgen = Ahor
4G

+ Sout [30, 31]

reproduced from QES as a special case. A proof of the above formulae involves the

gravitational path integral, which will be reviewed in section 1.2.

1.2 The gravitational path integral

The gravitational path integral, is the path integral over all configurations of metrics

and fields that satisfy given boundary conditions. It has been a very powerful tool in

producing profound results, even just at the level of saddle-point approximation, and

4



Introduction Chapter 1

many of the results are related to gravitational entropies.

Despite the successes, the exact rules for the gravitational path integral need to be

clarified: What set of metrics should we integrate over, and what spacetime topolo-

gies should we include? Answers to these questions largely affect our understanding of

quantum gravity.

1.2.1 From black hole entropy to holographic entanglement en-

tropy

The Bekenstein-Hawking entropy, established through black hole thermodynamics,

is later computed by Gibbons and Hawking using the technique of Euclidean gravita-

tional path integrals [32]. The Bekenstein-Hawking entropy is derived from the thermal

partition function, whose dominant saddle is the Euclidean black hole.

Regarding the RT formula as a generalization of the Bekenstein-Hawking formula,

one might imagine also deriving RT from the gravitational path integral. This has been

done by Lewkowycz and Maldacena [33]. In their proof, they first use the replica trick

on the boundary CFT – a standard trick to express the entanglement entropy in terms

of a limit of Rényi entropies 1
1−n log Tr ρn, quantities that are easier to be represented

using path integrals on some replicated manifold. Then the gravitational path integral is

computed with this replicated manifold as the boundary condition. The RT formula is

reproduced from the saddle-point approximation of this calculation in the semiclassical

limit. Later, this proof is generalized to the time-dependent case [34], and to the case

with quantum corrections [35].

In recent years, the quantum extremal surface formula has brought us many remark-

able results, one of which is providing a resolution to the black hole information problem

[36, 37, 38, 39]. If we apply the QES formula to an evaporating black hole to compute

5
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the entanglement entropy of the Hawking radiation, we find a Page curve: the entropy of

radiation first goes up and then goes down, always bounded by the Bekenstein-Hawking

entropy of the black hole. This calculation resolves the issue raised by Hawking’s orig-

inal calculation [11], where the entropy of radiation keeps increasing as the black hole

evaporates, causing a violation of unitarity of quantum mechanics. This transition of

entropy from increasing to decreasing at the Page time results from a phase transition of

the quantum extremal surface. This transition is because different saddles in the grav-

itational path integral dominate at different stages of the black hole evaporation. If we

do a Lewkowycz-Maldacena style replica calculation, the disconnected saddle dominates

before the Page time, while the connected “replica wormhole” saddle dominates after the

Page time.

1.2.2 Euclidean vs. Lorentzian, and contours of integration

In the above discussion of the gravitational path integral, we did not specify the

contour of integration, which should be part of the definition of a path integral, but is

sometimes obscure. There are two natural choices for the integration contour: integrating

over real Euclidean metrics (Euclidean path integral) or integrating over real Lorentzian

metrics (Lorentzian path integral). But in general, the integration contour could be over

some family of complex metrics, and there is no first principle to determine which contour

is most fundamental.

However, some contours are problematic. It is first noted by Gibbons, Hawking, and

Perry [40] that the Euclidean gravitational action is unbounded below, and it causes the

path integral to be divergent. This indefiniteness is due to the conformal mode, and

is usually referred to as the “conformal factor problem”. The hypothesized solution by

these authors is to rotate the integration contour of the conformal mode by 90 degrees

6
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in the complex plane, and the resulting action is bounded below. Despite its success in

reproducing many physically satisfying results [41, 42, 43], it has yet to be known why

this is the right thing to do. In fact, there are examples where this contour-rotating

procedure is not applicable, and new contour-rotating prescriptions are needed [44, 45].

For this dissertation, we take the point of view that integrating over real Lorentzian

metrics gives the fundamental definition of the contour of the gravitational path inte-

gral. The reason for this viewpoint is that the Lorentzian path integral is free from the

conformal factor problem, and suitable for calculations in real time with non-analytic

sources, where it is hard to use Euclidean techniques. Furthermore, the Lorentzian path

integral may provide us a guide on how to rotate the integration contours for Euclidean

path integrals.

For any given contour of integration, when we use the saddle-point approximation,

the saddles could in general be anywhere in the complex metric space. Thus, it is impor-

tant to check what are the right saddles to include by first checking whether they give

the expected answer, and importantly, whether the original contour can be deformed

smoothly to the contour that passes through the saddle points.

1.2.3 The fixed-area states

Although the full gravitational path integral is hard to do, there exists strong evidence

[38, 46, 1, 7] that in the semiclassical limit, the full gravitational path integral can be done

by integrating over “fixed-area” saddles [47, 48] where the areas of certain codimension-2

surfaces are fixed:

Z =

∫
dA e−I(sA), (1.5)

where I(sA) is the (Euclidean) action of the fixed-area saddle sA.

The codimension-2 surfaces are usually chosen to be the extremal surfaces, as it is easy
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to be specified in a diffeomorphism-invariant way. In general, these fixed-area saddles

have conical defects at the positions where the area is held fixed, and the strengths of

the defects are determined by the values the areas are fixed at. Each of the fixed-area

saddles defines a fixed-area state [47, 48], which resembles simple tensor network models

of gravity in terms of entanglement properties. Superposing fixed-area states gives us

detailed information about gravity beyond the leading semiclassical order.

1.2.4 Non-perturbative effects, baby universes, and ensemble

of theories

Non-perturbative contributions to the gravitational path integral are usually due to

including spacetime configurations with different topologies. Sometimes including them

gives us a drastic change in results. As alluded to above, in calculating the entropy of

radiation for black hole evaporation, we get an entropy that is bounded, by including

the replica wormhole saddle which dominates at late times. The boundedness of entropy

is necessary for unitarity to hold. Meanwhile, these non-perturbative effects seem to

demonstrate that gravity behaves differently from what we expect from the CFT in the

standard AdS/CFT context. On the CFT side, partition functions factorize between

disconnected boundaries. However, due to the existence of wormholes, this is no longer

the case:

〈Z1Z2〉 6= 〈Z1〉〈Z2〉, (1.6)

where 〈·〉 denotes results from the gravitational path integral. This inconsistency is

usually referred to as the “factorization problem” [49]2. One solution to this is to interpret

the result from the gravitational path integral as the averaged result over an ensemble of

2Not to be confused with a related but different factorization problem about the quantum gravity
Hilbert space.
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CFTs [50, 51, 38, 52, 53].

In fact, just from the perspective of gravitational path integral, there is a similar

structure of ensembles due to baby universes [54, 55]. Baby universes are spatially com-

pact spacetimes without boundaries, and baby-universe-creating operators commute with

any other operators. So we can diagonalize any operators in the basis of baby-universe-

creating operators: α states. α states give rise to a structure of superselection sectors

for the quantum gravity Hilbert space. Within an α sector, the dimension of the Hilbert

space is definite, so entropy is bounded; besides, partition functions factorize between

different connected boundaries. Entropy computed by the QES formula should be in-

terpreted as the expectation value of entropy in the Hartle-Hawking state – a coherent

state of α states, and this expectation value represents the entropy in a typical α state

[54, 55].

1.3 The von Neumann algebra and quantum gravity

The von Neumann algebra is a very useful mathematical tool for studying quantum

systems and quantum field theories, and can also help us have deeper understanding of

problems in quantum gravity. In recent years, the application of von Neumann algebras,

especially of the Tomita-Takesaki theory [56], has been applied to prove many results

related to quantum field theory and quantum gravity. For example, the proof of the

averaged null energy condition and the quantum null energy condition [57, 58].

Very recently, using von Neumann algebras, people have gained more understand-

ing about the emergence of bulk spacetimes and gravitational entropies. Particularly,

Leutheusser and Liu found that there is an emergent Type III von Neumann algebra3

3To briefly summarize the type classification of von Neumann algebras: Type III von Neumann
algebras are the type of algebras for subregions in quantum field theory, where no notion of density
matrix or entropy can be defined; for Type II von Neumann algebras, we can define a notion of density
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from single-trace operators of the large N Yang-Mills theories [59, 60]. Later on, it is

found that this Type III algebra can be modified to Type II after taking the crossed

product, a standard construction in von Neumann algebra, with operators like the ADM

Hamiltonian [61, 62, 63]. Similar constructions also exist for de Sitter space, when ob-

servers are included [64].

Since the notion of entropy can be defined for Type II von Neumann algebras, these

constructions provide us with more information about the origin of gravitational en-

tropies. And indeed, the entropies defined in the aforementioned constructions match

with the usual notion of gravitational entropies up to additive constants. However, the

above construction is perturbative in N (or 1/G). For finite N , we should expect Type

I algebras to arise, possibly from non-perturbative effects, to match the Type I-ness of

the von Neumann algebras of the CFT4.

1.4 Outline and Summary

The content of this dissertation is strongly related to the topics reviewed above. It

contains three parts: The HRT Surface and the Fixed-Area States, Real-Time Replica

Wormholes, and Algebras from the Gravitational Path Integral.

Part I is devoted to studying some interesting properties of the fixed-area states,

which give us a handle on studying quantum gravity beyond the leading semiclassical

order.

In Chapter 2, we show that under certain “diagonal approximation”, near phase tran-

sitions of the holographic entanglement entropy (where the RT surface jumps from one

matrix and entropy, but pure states do not exist; Type I von Neumann algebras are the algebras for
ordinary quantum mechanics, where there exist pure states, density matrices and entanglement entropies.

4In this case, Type I algebras are expected because we are considering the CFT living on an entire
asymptotically AdS boundary. The algebras for CFT subregions are of Type III, and we should also
expect Type III von Neumann algebras to arise from gravity.

10
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homotopy class to another), there is an enhanced correction of order 1/
√
G coming from

superposition of fixed-area states, which is larger than generic corrections from the entan-

glement of bulk quantum fields (which are O(1)). This correction decays exponentially

away from the transition; thus it makes the holographic entanglement entropy a smooth

function of the size of the boundary region. We illustrate this effect with explicit calcu-

lations for boundary regions given by a pair of disconnected intervals on the boundary of

the AdS3 vacuum and for a single interval on the boundary of the BTZ black hole. The

latter case has an analog in the large-volume limit for chaotic many-body systems that

satisfies the Eigenstate Thermalization Hypothesis [65].

In Chapter 3, we explore the Lorentz-signature spacetime geometry intrinsic to fixed-

area states. This contrasts with previous treatments which focused instead on Euclidean-

signature saddles for path integrals that prepare such states. The Lorentzian spacetime

metrics are real at real times and have no conical singularities. With enough symmetry,

the classical metrics are smooth, though more generally their curvatures feature power-

law divergences along null congruences launched orthogonally from the fixed-area surface.

While we argue that such divergences are not problematic at the classical level, quantum

fields in fixed-area states feature stronger divergences. At the quantum level, we thus ex-

pect fixed-area states to be well-defined only when the fixed-area surface is appropriately

smeared.

Part II of this dissertation studies the Lorentzian gravitational path integral, in the

context of computing holographic Rényi entropies. When using the saddle-point approx-

imation in the semiclassical limit, we find that interestingly, the saddles necessarily have

complex metrics. This gives us an example where the saddles are not on the original

contour of integration.

In Chapter 4, we set up the problem, studying the real-time gravitational path integral

and constructing the variational principle that will define its saddle points. We also

11
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describe the general structure of the resulting real-time replica wormhole saddles, arguing

that a certain set of complex saddles should be dominant, and thus are accessed by

deforming the original real contour of integration. The construction of these saddles

need not rely on analytic continuation, and our formulation can be used even in the

presence of non-analytic boundary sources. Furthermore, at least for replica- and CPT-

symmetric saddles we show that the metrics may be taken to be real in regions spacelike

separated from a so-called ‘splitting surface’, and this feature is an important hallmark

of unitarity in a field theory dual.

In Chapter 5, we do direct computations for examples in two and three spacetime

dimensions, finding the exact complex saddle-point solutions, and checking that they

give the expected Rényi entropies. The examples we examined include JT gravity, and

connected and disconnected intervals for holographic 2d CFTs.

However, in general, it is very difficult to check whether these complex saddles can be

accessed by contour deformations, due to our lack of control over this infinite-dimensional

path integral and the gauge invariances. Nevertheless, in Chapter 6, we directly check

that in the simple case of two-dimensional JT gravity, where the relevant path integral

is finite-dimensional, the original contour can be deformed smoothly to a contour that

passes through this complex saddle.

Chapter 7 demonstrates an important consequence we find from the existence of these

complex saddles. It is known that the HRT surface computing the entropy of a domain

of dependence D on an asymptotically AdS boundary is causally inaccessible from D.

The result we find is a generalization of this fact to the case of Rényi number n > 1,

that in the aforementioned complex saddles, the replica-symmetric surface (the splitting

surface) is causally inaccessible from the boundary domain of dependence D. This result

is crucial for the unitarity in the dual field theory.

Part III focuses on understanding the origin of the gravitational entropy, by con-

12



Introduction Chapter 1

structing von Neumann algebras from gravitational path integrals.

Before the detailed construction of algebras, Chapter 8 presents a proof of a new

dictionary of AdS/CFT, for which we provide evidence to be true more generally, and it

will be a very important axiom for the gravitational path integral in Chapter 9. On the

CFT side of the correspondence, any two positive operators A,B will satisfy the trace

inequality Tr(AB) ≤ Tr(A) Tr(B). This relation holds on any Hilbert space H and is

deeply associated with the fact that the algebra B(H) of bounded operators on H is a

Type I von Neumann factor. Holographic bulk theories must thus satisfy a corresponding

result. In particular, we argue that the Euclidean gravitational path integral should

satisfy a corresponding condition at all orders in the semi- classical expansion and with

arbitrary higher-derivative corrections. The argument relies on a conjectured property of

the classical gravitational action, which in particular implies a positive action conjecture

for quantum gravity wavefunctions. We prove for Jackiw-Teitelboim gravity and also

motivate it for more general theories.

In Chapter 9, we study the von Neumann algebras defined by the gravitational path

integral, without taking the semiclassical limit. In general, it is extremely difficult to

compute the full gravitational path integral without such a limit, however, we deal with

this problem by constructing the algebras purely from boundary conditions, and only

specify a few axioms that the full gravitational path integral should naturally satisfy,

including the trace inequality. Our main result is that, for each compact asymptotic

boundary B, the quantum gravity path integral defines both a von Neumann algebra AB
of observables acting at B and an entropy on AB. The fact that operators in the von

Neumann algebras are bounded is closely related the trace inequality. In an appropriate

semiclassical limit this entropy is computed by the RT formula with quantum corrections.

Our result is also closely related to the fact that, in similar semiclassical limits, one

may argue that the so-called island formula computes the standard entropy of non-

13
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gravitational quantum systems entangled with a gravitational bulk without assuming

that the bulk admits a holographic dual. Since our axioms do not restrict ultra-violet

bulk structures, they may be expected to hold equally well for successful formulations

of string field theory, spin-foam models, or any other approach to constructing a UV-

complete theory of gravity.

In summary, this dissertation studies various aspects of the gravitational path in-

tegral, focusing on its relation with gravitational entropies, spacetime geometries, and

its algebraic aspects. We study in detail some properties of the fixed-area states, the

real-time replica wormholes – novel complex saddle-point geometries, and von Neumann

algebras defined by gravitational path integrals with natural axioms. While the full grav-

itational path integral is a subtle and involved object to study, we find that a considerable

amount of progress can still be made perturbatively in the semiclassical limit, with the

crutch of the holographic duality. Some of the lessons we learned from this convenient

setup can actually motivate us to study more general scenarios. In this dissertation, we

also make efforts to understand quantum gravity in Lorenzian signature, and in general

theories without assuming holography, to approach the goal of understanding quantum

gravity in the real world.

1.5 Permissions and Attributions

1. The content of Chapter 2 and Appendix A is the result of a collaboration with
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tional School of Advanced Studies (SISSA): http://jhep.sissa.it/jhep/help/
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14

http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf
http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf


Introduction Chapter 1

Dong, Donald Marolf, Pratik Rath, and Amirhossein Tajdini, and has previously

appeared in the Journal of High Energy Physics [1]. It is reproduced here with

the permission of the International School of Advanced Studies (SISSA): http:

//jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

3. The content of Chapter 4 and Appendix C is the result of a collaboration with

Sean Colin-Ellerin, Xi Dong, Donald Marolf, and Mukund Rangamani, and has

previously appeared in the Journal of High Energy Physics [6]. It is reproduced

here with the permission of the International School of Advanced Studies (SISSA):

http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

4. The content of Chapter 5 and Appendix D is the result of a collaboration with

Sean Colin-Ellerin, Xi Dong, Donald Marolf, and Mukund Rangamani, and has

previously appeared in the Journal of High Energy Physics [4]. It is reproduced

here with the permission of the International School of Advanced Studies (SISSA):

http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

5. The content of Chapter 6 and Appendix E is the result of a collaboration with Jesse

Held, Xiaoyi Liu, and Donald Marolf.

6. The content of Chapter 7 and Appendix F is the result of a collaboration with Don-

ald Marolf, and has previously appeared in the Journal of High Energy Physics [3].

It is reproduced here with the permission of the International School of Advanced

Studies (SISSA): http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf.

7. The content of Chapter 8 and Appendix G is the result of a collaboration with

Eugenia Colafranceschi and Donald Marolf.

8. The content of Chapter 9 and Appendix H is the result of a collaboration with

Eugenia Colafranceschi and Donald Marolf.

15

http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf
http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf
http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf
http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf
http://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf


Part I

The HRT Surface and the

Fixed-Area States

16



Chapter 2

Probing phase transitions of

holographic entanglement entropy

with fixed-area states

2.1 Introduction

The Ryu-Takayanagi (RT) [26, 66] prescription, or more generally that of Hubeny-

Rangamani-Takayanagi (HRT) [27], computes the entanglement entropy in some region

R of a holographic CFT at leading order in the dual bulk Newton constant G. To

this order, the entropy is given by A/4G in terms of the area A of an extremal surface

homologous to R [33]. In addition, a well-known correction at order G0 is given by the

entanglement of bulk fields [28].

However, in the context of chaotic many-body systems it was recently noted that en-

tanglement entropy can have extra correction terms near entanglement phase transitions

[67, 65]. In particular, motivated by [67], Murthy and Srednicki studied energy eigenstates

in systems satisfying the eigenstate thermalization hypothesis (ETH) [65]. Dividing the
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system into two spatial regions of volume V1 and V2 then yields a nontrivial entanglement

entropy Sent(E). Taking a large-volume limit and ignoring terms that scale no faster than

the area of the interface between V1 and V2 allows one to define a corresponding partition

of the total energy, E = E1 + E2, between the two regions. In this context, for generic

V1, V2, they show the entanglement entropy Sent(E) to be approximated to exponential

accuracy by the lesser of the microcanonical entropies S1(E1), S2(E2) determined by the

associated partition of the total energy E = E1 +E2 between the two regions. But there

is a larger correction of order
√
S1 =

√
S2 near the transition where S1(E1) = S2(E2).

Furthermore, the net effect of this correction is to make the entanglement a smooth func-

tion of all parameters, so that the apparent ‘phase transition’ in fact becomes a crossover

already at this level of analysis1.

Closely related physical settings have been considered in the holographic context for

some time. For example, one may consider a pure-state black hole, divide the boundary

into regions V1, V2, and compute the HRT entropy; see e.g. [68, 69]. One then finds that

the leading-order bulk RT/HRT computation describes a sharp RT/HRT phase transition

with no analogue of the corrections described in [67, 65]. This should not be a surprise as

RT/HRT entropy is of order 1/G so the above
√
S correction is only of order G−1/2. But

such a correction should appear in a more complete study, and one might expect similar

O(G−1/2) corrections to arise near more general RT/HRT transitions as well. These

corrections are too large to arise from the entropy of bulk fields, and so must arise from

some other aspect of the semiclassical approximation in the bulk. A related O(G−1/2)

correction was recently discussed in [38] for an analogous quantum RT transition.

Our goal below is to provide a general description of such corrections near RT/HRT

phase transitions using properties of the bulk fixed-area states introduced in [47] (see also

1In the strict limit of large volume the crossover occurs very quickly and one recovers the expected
sharp phase transition.
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[48]). For simplicity, we focus on the time-symmetric (RT) case below where one may

use real Euclidean path integrals. However, we expect that the essential argument can

be generalized to the more general HRT context using the Schwinger-Keldysh techniques

of [34]. In particular, we decompose a general bulk into states in which we have simulta-

neously fixed the areas of all extremal surfaces satisfying the homology constraint (i.e.,

we have fixed the areas of all candidate RT surfaces). For simplicity, we assume below

that there are precisely two such extremal surfaces in a given such fixed-area state, and

that their areas have been fixed to A1 and A2. We then argue that the entanglement

S(A1, A2) in the associated fixed-area state |A1, A2〉 is given by RT up to corrections of

order G0, so that

S(A1, A2) =
1

4G
min(A1, A2) +O(G0). (2.1)

We also conjecture that – again up to corrections of order G0 – the entanglement in a

more general holographic state |ψ〉 =
∫
dA1dA2ψ(A1, A2)|A1, A2〉 can be computed using

a certain ‘diagonal approximation.’ When this conjecture holds, we show to leading

order in G that the von Neumann entropy is just the expectation value of S(A1, A2) in

the natural ensemble defined by the (normalized) state |ψ〉; i.e.

S =

∫
dA1dA2|ψ(A1, A2)|2S(A1, A2) +O(G0). (2.2)

Evaluating this expression then gives the desired contribution at order G−1/2, and with

properties directly analogous to the correction of [65]. Finally, we provide some evidence

in support of our diagonal approximation by demonstrating agreement with the results

of both [65] and [38].

We begin in section 2.2 with a brief review of fixed-area states. General arguments

for (2.2) and a statement of our diagonal-approximation conjecture are then given in
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section 2.3. The rest of the paper is devoted to more detailed computations of the

effect, and to showing that our diagonal approximation reproduces results from [65] and

[38]. Section 2.4 consists of a warm-up exercise in which we study fixed-area states

associated with a single interval in vacuum AdS3. While there is no phase transition

in this context, results from this simple context will be useful studying examples of the

above phase transition in section 2.5. The first example concerns a pair of intervals on the

boundary of vacuum AdS3, while the second involves a single interval on the boundary of

the Bañados-Teitelboim-Zanelli (BTZ) black hole [70, 71]. After taking a natural large

volume limit, the latter context allows us to demonstrate explicit agreement between

our BTZ results and the predictions of [65]. A final part of section 2.5 shows that we

can also reproduce the O(1/
√
G) correction found in [38] for an analogous quantum RT

transition. We close with some final comments in section 2.6, and in particular discuss

the cutoff dependence of fluctuations in RT-areas.

Closely related work has been done independently by Xi Dong and Huajia Wang [72].

We have arranged with them to coordinate simultaneous postings of the original versions

of the papers to the arxiv.

2.2 Review of fixed-area states

We now briefly review some basic properties of fixed-area states following [47]. In

particular, after defining the fixed-area states, we will review their connection with the

probability distribution P (A∗) for a holographic state to have RT-area A∗, features of the

semiclassical approximation for such states, and the simple form of their Renyi entropies.

All of these features will play important roles in the analysis of section 2.3.

We consider a CFT state |ψ〉 prepared by a Euclidean path integral over a manifold

MCFT with boundary ∂MCFT . It is thus natural to think of |ψ〉 as a state on the surface

20



Probing phase transitions of holographic entanglement entropy with fixed-area states Chapter 2

MCFT

M †
CFT

R R̄

R R̄

Figure 2.1: The manifold MCFT (bottom) that we use in the Euclidean path
integral to prepare our holographic state |ψ〉 and the CPT-conjugate manifold

M †CFT (top). Sewing the two together along their boundaries defines the manifold

Mdouble := M †CFTMCFT . If the state is time-symmetric, then M †CFT is equivalent to
MCFT , the two manifolds are exchanged by the relevant notion of time-reversal, and
this symmetry leaves invariant the boundary ∂MCFT = ∂M †CFT of MCFT , ∂M

†
CFT .

The surface ∂MCFT is partitioned into regions R (red) and R̄ (blue).

∂MCFT .

We suppose that ∂MCFT is partitioned into regions R and R̄. For simplicity, we take

the state to be invariant under a time-reflection symmetry that leaves fixed the surface

∂MCFT . Under the AdS/CFT correspondence, we may identify MCFT with the boundary

of a bulk system, and we may similarly identify ∂MCFT , R, R̄ with corresponding (partial)

surfaces in that boundary. We will use ∂R to denote the boundary between R and R̄

within ∂MCFT . The correspondence also tells us that the norm 〈ψ|ψ〉 can be computed

using a Euclidean bulk path integral with boundary conditions defined by the closed

manifoldMdouble := M †
CFTMCFT defined by sewing togetherMCFT and its CPT-conjugate

M †
CFT along the common boundary ∂MCFT ; see figure 2.1. The assumption of time-

symmetry requires M †
CFT to be equivalent to MCFT , so that ∂MCFT is a surface of

time-symmetry in Mdouble.

Roughly speaking, given a state |ψ〉 defined as above, we wish to define associated

states |ψ〉A∗ of fixed RT area by restricting the domain of integration to metrics for which
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the area AγR of the RT surface2 γR takes on a definite value A∗, and by thus projecting

|ψ〉 onto the subspace with area A∗. In this sense, the norm of a fixed-area state is

calculated by the path integral

[]A∗〈ψ|ψ〉A∗ =

∫
Dg|AγR=A∗e

−I[g]

=

∫
Dgdµe−I[g]−iµ(AγR [g]−A∗).

(2.3)

In the second line we have introduced a Lagrange multiplier µ to enforce the constraint

on the area of γR. In practice, we will wish to restrict AγR to some window around A∗

where the width of the window is small compared to other scales of interest, but where

the window still contains many area-eigenvalues. As a result, one should think of the

measure dµ as being a broad Gaussian measure instead of being precisely flat. However,

we will take this measure to be sufficiently flat that its Gaussian nature can be ignored

in the saddle-point approximation used below.

Due to our projection, the path integral (2.3) is closely associated with the probability

P (A∗) for the holographic state |ψ〉 to have an RT area in the above window about A∗.

In particular, we have

P (A∗) =
A∗〈ψ|ψ〉A∗
〈ψ|ψ〉 . (2.4)

Since we will study (2.3) in the saddle-point approximation, our task will be to find

on-shell solutions to the Euclidean equations of motion. As is well known3, at this level

the integral over µ and the term −iµAγR [g] in the exponent allow the insertion of an

arbitrary conical defect (aka ‘cosmic brane’) at the location of the RT surface. The

defect angle is to be chosen so that the saddle-point geometry g∗ satisfies the constraint

2A better approach which avoids the need to define an RT surface for off-shell metrics may be to
build a path integral using the fixed-area action of [73]. This action singles out a preferred surface whose
area is to be fixed and then finds that the equations of motion require it to be an RT surface modulo
imposition of the homology constraint.

3Though see appendix A of [73] for a more complete justification.
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AγR = A∗. In the stationary phase approximation we thus find

A∗〈ψ|ψ〉A∗ ≈ e−I[g∗]. (2.5)

Note that I[g∗] is the full gravitational action for g∗ and in particular includes a contri-

bution from the delta-function curvature scalar on the conical singularity.

A priori, the form of (2.3) suggests an imaginary conical defect angle iµ, but as always

the relevant saddles may not lie on the original contour of integration. As a result, real

defect angles (with imaginary values of our µ) are allowed, and may arise with either

sign. Note that real µE = iµ is in fact generally required for the stationary point g∗ to

satisfy real Euclidean boundary conditions. Thus g∗ is typically a real Euclidean metric,

though it may contain either a conical deficit or a conical excess. As discussed in [47, 73],

the location of the conical deficit should be thought of as the RT surface in the conical

geometry. We will thus refer to it as such below.

Since the classical actions I(A∗) = I(g∗) are proportional to 1/G, in the semiclassical

limit G→ 0 the distribution P (A∗) becomes sharply peaked about the most likely value

Ā. This mostly likely values can be found by maximizing P (A∗), or equivalently by

minimizing the on-shell action with respect to A∗. But minimizing the action in this

way imposes the remaining Einstein equations on γR, and thus forbids any cosmic brane

sources. As a result, the most likely value Ā is just the area of γR in the dominant

bulk saddle g0 associated with the path integral that computes the norm 〈ψ|ψ〉 [47, 73]

without any a priori specification of areas.

Finally, we turn to considerations of entropy. Let us consider the normalized density

matrix ρA∗ on R defined by the CFT dual to the bulk fixed-area state |ψ〉A∗ . This density
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matrix may be written in the form

ρA∗ =
TrR̄ (|ψ〉A∗A∗〈ψ|)

A∗〈ψ|ψ〉A∗
, (2.6)

where in (2.6) we have used |ψ〉A∗ to also denote the CFT dual to the bulk fixed-area

state |ψ〉A∗ . In the above semiclassical approximation, the freedom to tune the conical

defect angle to enforce the constraint makes it straightforward to compute Renyi entropies

Sn(A∗) = 1
1−n ln TrRρ

n
A∗ . In particular, the associated saddles gn(A∗) are just n-sheeted

branched covers of the saddle g∗ used in (2.5). A straightforward computation [74] then

finds I[gn(A∗)] = nI[g∗]+(n−1)A∗
4G

, and thus Sn = A∗
4G

. In particular, the Renyi entropies

Sn(A∗) are independent of n . However, as usual, if ∂R 6= ∅ the Renyis diverge and require

either a cutoff (say, defined using a certain boundary conformal frame) or renormalization

to give finite results.

In general, one expects the RT area AγR to define superselection sectors of the quan-

tum error correcting code associated with CFT reconstruction of the bulk entanglement

wedges of R and R̄ [25]. When this is the case, the density matrix on R of a CFT state

|ψ〉 is block-diagonal AγR , so that

ρ = ⊕A∗P (A∗)ρA∗ , (2.7)

with ρA∗ given by (2.6) in terms of the corresponding fixed-area state. The representation

(2.7) motivates the idea that fixed-area states may be useful in studying the entropy of

|ψ〉. However, the arguments for (2.7) (see [25]) are based (in part via [75, 24]) on

the Faulkner-Lewkowycz-Maldacena result [28] that the leading correction to A/4G is of

order G0 and is given by bulk entanglement. As described above, we expect this to fail
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near an RT phase transition4. So while (2.7) may provide some motivation, we should

take care not to rely on it to hold exactly in the regime of interest.

We conclude this section with a remark about notation. Most of the explicit com-

putations in sections 2.4 and 2.5 will be for 3-dimensional bulk spacetimes. In such

cases codimension-2 extremal surfaces are geodesics and the associated ‘areas’ are in fact

lengths. We will thus introduce L∗ = A∗ and write all equations in those sections in

terms of L∗, referring to it as the fixed length of the RT surface. Once the reader is

aware of this convention, it should create no confusion. We will also generally drop the

subscript ∗ below.

2.3 Corrections to holographic entanglement entropy

near phase transitions

We now turn to our main task of studying entropies of holographic states near RT

phase transitions. In particular, let us suppose our holographic state |ψ〉 is associated

with a semi-classical geometry g having two candidate RT surfaces γ1, γ2 associated with

some partial Cauchy surface R of the boundary spacetime. Thus γ1, γ2 are both extremal

surfaces anchored to the boundary ∂R of R, and both are homologous to R in the sense

of [77]. Since our state is assumed to be pure, the surfaces γ1, γ2 are homologous to R̄ as

well.

We will proceed by considering a holographic state |ψ〉 and fixing the areas of both γ1

and γ2. The probabilities P (A1, A2) to obtain areas A1 and A2 can then be computed in

4Such a failure is natural as [28] builds on the semi-classical Lewkowycz-Maldacena argument [33],
which assumes a single RT surface to dominate. This assumption clearly breaks down at an RT phase
transition, and it is known that a proper treatment of cases with multiple extremal surfaces will be
subtle; see e.g. comments in [76] based on a talk by Matt Headrick, which was in turn based on private
remarks by Rob Myers.
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direct analogy to the method described in section 2.2 for fixing the area of an RT surface.

In particular, we have

P (A1, A2) =
A1,A2〈ψ|ψ〉A1,A2

〈ψ|ψ〉 , (2.8)

with 〈ψ|ψ〉 = eI+O(G0) and A1,A2〈ψ|ψ〉A1,A2 = eI(A1,A2)+O(G0) in terms of the Euclidean

actions I, I(A1, A2) of the leading saddles defined respectively by the path integral for

〈ψ|ψ〉 and by the corresponding path integral with the areas of γ1, γ2 fixed to take the

values A1, A2. Recall that in the latter case the action generally includes a delta-function

curvature contribution from both surfaces γ1 and γ2. As before, the most likely values

Ā1, Ā2 for our areas are just the values in the smooth saddle g0 that dominates the path

integral for the norm 〈ψ|ψ〉 (and with no a priori fixing of areas).

Below, we first describe some of the topological details of our setup that will prove

useful in the main argument. We then discuss and motivate our diagonal approximation

before computing the resulting O(G−1/2) correction in section 2.3.3.

2.3.1 Topological remarks

For convenience we will assume that while γ1 and γ2 are homologous, the two surfaces

lie in distinct homotopy classes5, and that each is the minimal-area such extremal surface

within its homotopy class. Having a topological distinction between the surfaces provides

a natural definition of what we mean by the corresponding extremal surfaces γ1, γ2 in the

conically-singular spacetimes associated with fixing the area of these extremal surfaces6.

Furthermore, we will assume that – at least for small defect angles and near the phase

transition – in all other homotopy classes the minimal surface γ has area strictly greater

5Recall that homotopy is a more fine-grained equivalence relation than homology.
6This is merely a matter of convenience. One could alternatively simply consider all saddle-points

of the fixed-area action described in [73], which describe spacetimes with what one may call extremal
codimension-2 conical defects anchored to ∂R. It is not strictly necessary to label such conical defects
as being associated with one of the extremal surfaces γ1, γ2 in the original smooth spacetime.
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R R̄

γ1 γ2

Σ1R Σ2R̄Σ1R̄ ∩ Σ2R

Figure 2.2: An illustration of two competing RT surfaces γ1 and γ2 near a phase
transition. In our convention, we always let Σ1R ⊂ Σ2R, as a result Σ1R and Σ2R̄ are
non-overlapping.

than either γ1 or γ2. This allows us to neglect such additional candidate RT surfaces in

the semi-classical approximation.

Even in Lorentz signature, two extremal surfaces anchored on the same boundary

set ∂R are spacelike separated in the bulk and lie on a common Cauchy surface Σ [78].

We note that this is the case even when ∂R = ∅. As a result, the associated RT area

operators Â1, Â2 for γ1, γ2 commute at all orders in the semi-classical expansion and –

at least at this level – can be simultaneously diagonalized. In particular, the possible

obstruction described in [79] does not arise. We may thus consider the doubly-fixed-area

states |ψ〉A1,A2 in which the area of γ1 is A1 and the area of γ2 is A2. Here we introduce an

appropriate UV cutoff in the boundary to render A1, A2 finite. Since both are anchored

on the same set ∂R, we use the same cutoff to define both A1 and A2.

The homology constraint means that each surface γi (i ∈ {1, 2}) must partition Σ

into two (non-overlapping) parts ΣiR,ΣiR̄ where ∂ΣiR = γi ∪ R and similarly for ∂ΣiR̄;

see figure 2.2. We will further assume that Σ1R is contained in Σ2R. At least in the

time-symmetric case, this assumption can be made without loss of generality. To see

this, note that we must have either Σ1R ⊂ Σ2R, Σ2R ⊂ Σ1R, or that γ2 enters both Σ1R
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and Σ1R̄. The first case fulfills our assumption, and in the second case the assumption

can be fulfilled by simply exchanging the labels 1↔ 2.

In the third case, the intersection γint = γ1∪γ2 partitions γ2 into two parts γ2R ⊂ Σ1R

and γ2R̄ ⊂ Σ1R̄. Similarly, we must also find that γ1 enters both Σ2R and Σ2R̄, so γint

also partitions γ1 into two parts γ1R ⊂ Σ2R and γ1R̄ ⊂ Σ2R̄. Note that γ1R and γ2R̄ must

be homologous but cannot be homotopic. Similarly, γ2R and γ1R̄ must be homologous

but cannot be homotopic.

For this case, let us choose the labels 1 and 2 so that γ2R has smaller area than

γ1R̄ and define a new surface γ3 = γ1R ∪ γ2R. Note that γ3 also satisfies the homology

constraint, but that it cannot be homotopic to either γ1 or γ2. While γ3 is not extremal,

it has area A3 satisfying A3 < A1. So the minimal surface within its homotopy class also

has area less than A1. But this contradicts the earlier assumption that the least-area

extremal surface in any other homotopy class must have area strictly greater than either

A1 or A2. Thus our 3rd case cannot exist in the time-symmetric case, and we can take

Σ1R ⊂ Σ2R without loss of generality7.

2.3.2 The diagonal approximation

Because the states |ψ〉A1,A2 are at least approximate eigenstates of Â1, Â2, any two

such states are semi-classically orthogonal unless they have fixed the same values for the

areas of both γ1 and γ2. The fixed-area states thus naturally define a decomposition of

|ψ〉 according to

|ψ〉 =
∑

A1,A2

√
P (A1, A2)

〈ψ|ψ〉 |ψ〉A1,A2 . (2.9)

7It would be interesting to understand if this result continues to hold without time symmetry. If it
does, the rest of the argument generalizes in a straightforward way to the HRT case using the Schwinger-
Keldysh techniques of [34].
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As in section 2.2, we take the states |ψ〉A1,A2
to be associated with finite intervals of A1, A2

that are small with respect to the semiclassical width of P (A1, A2) but large compared

with the spacing between adjacent area eigenstates. We thus take the intervals to be

polynomially small in G, but not exponentially small.

It now remains to compute the density matrix ρR on the region R by tracing |ψ〉〈ψ|

over the complementary region R̄:

ρR =
∑

A1,A2,A1
′,A2

′

√
P (A1, A2)

√
P (A1

′, A2
′)TrR̄

( |ψ〉A1,A2A1
′,A2

′〈ψ|
〈ψ|ψ〉

)
. (2.10)

In doing so, one must consider contributions from both diagonal terms (with A1 = A1
′

and A2 = A2
′) as well as contributions from off-diagonal terms (where either A1 6= A1

′

or A2 6= A2
′).

The diagonal terms give the average over the distribution P (A1, A2) of the (normal-

ized) density matrices ρR(A1, A2) defined by the normalized fixed-area states. Let us

therefore write

ρR =
∑

A1,A2

P (A1, A2)ρR(A1, A2) +ODR, (2.11)

where ODR is the result of summing all off-diagonal contributions.

Since A1 defines a Hermitian operator that can be reconstructed on R, we must have

ρR(A1, A2)ρR(A1
′, A2

′) = 0 for A1 6= A1
′. Note that the same need not always hold for A2

since it can be reconstructed on R only for A2 < A1. However, if we instead considered

the density matrices on R̄ that result from tracing over R, this would interchange the

roles of A1 and A2, suggesting that the full problem exhibits a greater symmetry. We

will therefore treat the ρR(A1, A2) below as if they live in orthogonal subspaces8.

Let us first discuss the contributions of the diagonal terms. In particular, we introduce

8We emphasize that this is an additional assumption and thank Geoffrey Penington for conversations
related to this point.
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the von Neumann entropies

SD = −Tr (ρD ln ρD) for ρD := ⊕A1,A2P (A1, A2)ρR(A1, A2), (2.12)

S(A1, A2) = −Tr (ρR(A1, A2) ln ρR(A1, A2)) . (2.13)

Treating the diagonal terms as living in orthogonal subspaces, a standard computation

shows these quantities to be related by

SD =
∑

A1,A2

(P (A1, A2)S(A1, A2)− P (A1, A2) lnP (A1, A2))) , (2.14)

where the 2nd term is often called the entropy of mixing. The entropy of mixing is

bounded by the logarithm of the number of values that the pair (A1, A2) can take. Since

each value (A1, A2) labels an interval that is only polynomially small in G, this bound is

of the form C lnG+ s(ψ) where C is an order-one constant and dependence on the state

ψ appears only through the order-one function s(ψ). We will thus neglect the entropy of

mixing below since it is parametrically smaller than the O(G−1/2) term we wish to study.

Now, before returning to the off-diagonal terms ODR, we also wish to compute

S(A1, A2). As reviewed in section 2.2, the fact that fixed-area states allow arbitrary

conical singularities at the associated extremal surfaces means that the semiclassical

Renyi entropies of such states are straightforward to compute. In particular, every n-

sheeted branched cover of the original Euclidean geometry defines a saddle for the nth

Renyi problem. Furthermore, comparison with tensor networks suggests that all Renyi

saddles are of this form.

In our present case, the branching can occur at either surface γ1 or γ2, or on any of

their Renyi copies. Note that the surfaces γ1, γ2 partition the time-symmetric surface Σ

into 3 parts according to Σ = Σ1R ∪ Σint ∪ Σ2R̄ where Σint = Σ1R̄ ∩ Σ2R lies between γ1
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γ1 γ2
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•
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γ1

γ1

γ1

γ2

γ2

γ2

Σ
(3)
int−

Σ
(3)
int+

Σ
(1)
int+

Σ
(1)
int−

Σ
(2)
int+

Σ
(2)
int−

Figure 2.3: Left: A two-dimensional projection of an n = 1 solution with two
extremal surfaces γ1, γ2 (having areasA1 andA2) and a surface Σint stretching between
them. Right: An n-fold cover of the figure at left for the case n = 3 after cutting

open a slit along Σint. The 2n copies of Σint are labeled Σ
(i)
int±, where i = 1, . . . , n.

Saddles for the Rényi entropy are formed by identifying Σ
(i)
int+ with Σ

(π(i))
int− for some

permutation π. After making such identifications, the number N2 = n−n2 of copies of
γ2 that remain is the number C(π) of cycles generated by π, while the corresponding
N1 = n − n1 is C(τ ◦ π) where τ is the counterclockwise cyclic permutation. The
asymmetry is due to the numbering of replicas, which breaks the natural symmetry
between the dashed lines (separating replicas) and dotted lines (separating the two
halves of each replica).

and γ2. The possible saddles can then be constructed by the following procedure. First,

cut a slit along Σint in the original spacetime g0 to define a spacetime with an internal

boundary Σint+∪Σint−, where Σint± are the two sides of the newly-opened slit along Σint.

Next consider the n-fold cover of the result that winds n times around this slit; see figure

2.3. Finally, sew the up the slit by making identifications between the n copies of Σint+

and the n copies of Σint−. Since there are n! = Γ(n + 1) ways to pair up the copies of

Σint+ and Σint−, this results in Γ(n+ 1) saddles.

However, as shown in [47] the fixed-area action of a branched cover depends only

on the action of the spacetime g0,0 that dominates the fixed-area path integral for

A1,A2〈ψ|ψ〉A1,A2 and on the conical defects and areas of the branching surfaces. As a

result, for a given branched-cover the Euclidean action depends only on the numbers

n1, n2 of times that it branches over each of γ1, γ2, irrespective of the order in which
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those branchings occur. In more detail, we take 2πn1 to be the sum of the conical

excesses around all copies of γ1, and similarly for n2.

The action for these saddles follows from the analysis of [47], which yields

I[gn1,n2 ] = nI[g0] +
n1A1 + n2A2

4G
. (2.15)

Here9 n1 + n2 ≥ n − 1, consistent with the fact that no branching occurs for n = 1.

To minimize the action, we will be interested in saddles that saturate this inequality (so

that n1 + n2 = n− 1). To understand these saddles, we may describe the above sewing

by a permutation π of the copies of Σint− relative to the copies of Σint+. As shown in

figure 2.3, any numbering of the copies of Σint± breaks a natural symmetry between γ1

and γ2. As a result, with the conventions of figure 2.3, the number N2 of copies of γ2 that

remain after these identifications is given by the number C(π) of closed cycles associated

with the permutation π (e.g., the permutation (12)(3) on 3 objects has C = 2), while

the corresponding N1 is given by the number C(τ ◦ π) where τ is the cyclic permutation

that maps copy i to copy i − 1). Since the winding numbers n1, n2 defined above are

n1 = n − N1, n2 = n − N2, we have N1 + N2 = 2n − (n1 + n2) ≤ n + 1 and we wish to

saturate this bound. As described in appendix E of [38], the number of permutations on

n objects that do so (and thus which have N1 +N2 = C(π) + C(π ◦ τ) = n+ 1) is given

by the nth Catalan number Cn = 1
n+1

(
2n
n

)
= Γ(2n+1)

(n+1)[Γ(n+1)]2
.

When A1 and A2 differ significantly, the nth Renyi is clearly dominated by a saddle

with action I = nI[g0] + n−1
4G

min(A1,A2) and we find S(A1, A2) = min(A1,A2)
4G

in direct

analogy with the case studied in [47] where only one area is fixed. On the other hand,

when A1 = A2 all of the Cn saddles with n1 +n2 = n− 1 have the same action10 I[gn−1,0]

9We thank Geoffrey Penington for pointing out an error in a previous draft and for conversations
related to the comments below.

10Because the number Γ(n + 1) − Cn of other saddles vanishes at n = 1, the other saddles can
contribute at most an O(1) correction to the von Neumann entropy. That is enough for us to drop
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and we find

Sn =
1

1− n ln
Zn
Zn

1

≈ lnCn + I[gn−1,0]− nI[g0]

1− n =
A1

4G
− 1

n− 1
ln

(
Γ(2n+ 1)

(n+ 1)[Γ(n+ 1)]2

)
.

(2.16)

in terms of the nth Renyi partitions functions Zn. Note that the final term is of order G0

and has a finite limit −2Γ′(3)
Γ(3)

+ 1
2

+2Γ′(2)
Γ(2)

= −1
2

as n→ 1. Since it is clear that the largest

correction will occur for A1 = A2, we may thus write S(A1, A2) = min(A1,A2)
4G

+O(G0) for

all A1, A2.

We now return to the off-diagonal term ODR in (2.11) and its contributions to the

Renyi entropies Sn(ρR). While we leave full consideration of such terms to future work,

we will give a plausibility argument suggesting that these contributions can be ignored for

our current purposes. To begin this plausibility argument note that, in the semiclassical

approximation, each such contribution can be written as e−I where I is the action of a

branched cover of g0 similar to those described above, but where the areas of the various

Renyi copies of γ1 can differ from each other11, and similarly for the Renyi copies of γ2.

See figure 2.4. In particular, at least at the leading semiclassical order discussed here,

such contributions are associated with the possibility of breaking replica symmetry. Since

a strict breaking of replica symmetry is impossible at n = 1, it is plausible that their

contribution will be subleading in the limit where the replica number n is taken to 1. In

particular, since for any normalized ρR the diagonal terms yield Sn,diag = O(n − 1), it

is plausible that off diagonal contributions will be of order O ((n− 1)2) or of order G0

(from corrections to the leading semiclassical terms). For now, we simply assume that

this is the case and follow up by checking consistency with results from [65] and [38] in

such contributions. But the interested reader can find more discussion in [38], and it appears that the
contribution of such saddles to the von Neumann entropy is in fact non-perturbatively small, being

proportional to e−
A1,2
4G and thus vanishing exactly when γ1,2 reach the boundary and A1,2 diverge.

11We thank Xi Dong, Geoffrey Penington, Xiaoliang Qi, and Douglas Stanford for discussions of this
point.
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• •
A1 A2

• •
A′1 A2

Figure 2.4: Using the same projection as for the n = 1 figure at left in figure 2.3, we
show two pieces of a corresponding saddle that for A1 6= A′1 describes an off-diagonal
contribution to the second Rényi entropy S2. The full saddle is constructed by sewing
the two pieces together along edges of the same color; i.e., we may first identify the
two green edges and then identify the two orange edges. Note that this particular
saddle contains only one copy of the surface γ2 and so cannot be ‘off-diagonal’ in A2.

section 2.5.

With the above assumption, the von Neumann entropy S(ρR) is given by just the

diagonal contributions SD(ρR) up to corrections of order G0 and, introducing a normal-

ization factor N , we write

S(ρR) := SD +O(G0) =
∑

A1,A2

min(A1,A2)

4G
P (A1, A2) +O(G0)

=
∑

A1,A2

min(A1,A2)

4G
Ne−(I(A1,A2)−I(Ā1,Ā2)) +O(G0)

=

∫
dA1dA2

min(A1,A2)

4G
Ne−(I(A1,A2)−I(Ā1,Ā2)) +O(G0), (2.17)

where in the last step we may approximate the sum by an integral with error smaller

than O(G0) since the spacings between values of A1, A2 included in the sum were taken

to be small compared with the natural scale of variation of I(A1, A2).
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2.3.3 The general form of corrections

The above section motivated the diagonal approximation (2.17) S(ρR) := SD+O(G0)

(with SD given by (2.14)) and derived the resulting simple form (2.17) for S(ρR) in terms

of the fixed-area actions. We will now show how this form gives an O(G−1/2) correction

to the RT entropy. This merely requires evaluating the final integral in (2.17) in the

semiclassical limit G→ 0.

Since the action I is proportional to 1/G, taking G → 0 concentrates the integral

near the areas Ā1, Ā2 that minimize the action. As usual, we can approximate I near

that minimum as quadratic:

I(A1, A2) = I(Ā1, Ā2)+
1

2

2∑

i,j=1

(
∂2I

∂Ai∂Aj

∣∣∣
Āi

)
(Ai− Āi)(Aj− Āj)+O

(
(A− Ā)3

)
, (2.18)

where the cubic and higher terms in (2.18) will contribute to (2.17) only at order G0.

We may neglect all such terms since our goal is to study corrections at order G−1/2.

It will prove useful in analyzing the examples of section 2.5 that (2.18) involves only

configurations infinitesimally close to the smooth saddle g0,0 that dominates the path

integral for 〈ψ|ψ〉, and in particular which has vanishing cosmic brane tension (and thus

vanishing conical defect) on both γ1 and γ2.

For later reference, we introduce the covariance matrix C with components

Cij =




σ2
1 rσ1σ2

rσ1σ2 σ2
2


 = G




σ̃2
1 rσ̃1σ̃2

rσ̃1σ̃2 σ̃2
2


 (2.19)

defined by (C−1)ij = ∂2I
∂Ai∂Aj

∣∣∣
Āi
. Note that since ∂2I

∂Ai∂Aj
is of order 1/G, the covariance

matrix is of order G. The final form in (2.19) displays this G-dependence explicitly, and

the parameters σ̃1, σ̃2, r are all of order G0.
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The integral defined by using (2.18) in (2.17) is naturally studied in terms of the

variables A± = A1±A2

2
for which we have min(A1, A2) = A+ − |A−| and the most likely

values are Ā± := Ā1±Ā2

2
. The integral over A+ is straightforward and gives

SD =

∫ ∞

−∞
dA−

(A− − Ā−)(σ̃2
1 − σ̃2

2) + 4(Ā+ − |A−|)σ̃2
−

16G3/2
√

2πσ̃3
−

exp

{(
−(A− − Ā−)2

2Gσ̃2
−

)}
+O(G0),

(2.20)

where 4σ̃2
− = σ̃2

1 − 2rσ̃1σ̃2 + σ̃2
2. We will also use σ2

− = Gσ̃2
− below.

The term linear in (A−−Ā−) integrates to zero by symmetry. The remaining integral

can be written in terms of the error function erf x := 2√
π

∫ x
0
dte−t

2
as

S(ρ) =
Ā+

4G
− Ā−

4G
erf

(
Ā−√
2Gσ̃−

)
− σ̃−

2
√

2πG
exp

{(
− Ā2

−
2Gσ̃2

−

)}
+O(G0)

=
min

(
Ā1, Ā2

)

4G
− σ̃−

2
√

2πG
Φ

(
Ā1 − Ā2

2σ̃−
√

2G

)
+O(G0),

(2.21)

where we have introduced

Φ(x) := e−x
2

+
√
π|x|(erf |x| − 1) (2.22)

following the notation of [65]. Note that Φ(x) is bounded by a constant of order G0,

The final expression in (2.21) thus makes manifest that we find a correction of order

G−1/2 at the transition where Ā1 = Ā2, but that the correction is exponentially small at

large |A1−A2|/σ̃−
√
G = |A1−A2|/σ−. On the other hand, the first line in (2.21) shows

that the entropy at this order is a smooth function of Ā1 − Ā2; the supposed RT ‘phase

transition’ is in fact already a crossover at this level of analysis.
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2.4 Fixed length states for a single interval in the

AdS3 vacuum

We now wish to perform explicit computations illustrating the above O(G−1/2) cor-

rection and exploring the size of fluctuations in RT-areas in various examples. However,

before doing so it is useful to analyze fixed-area states associated with a simple case in

which phase transition do not arise. We do so here, studying the particularly simple case

where we choose our boundary region R to be a single interval on the t = 0 slice of the

boundary of empty global AdS3. Since two of our examples in section 2.5 below will also

involve intervals on the boundary of either AdS3 or a BTZ quotient, we will be able to

use results obtained below to simplify the analysis of those phase transitions.

As usual, in order to find the probability that the RT surface for our single-interval

R has some fixed length L∗, we will use the saddle-point approximation and study the

action for the appropriate classical Euclidean solution. As discussed above, this solution

will have a conical defect (which in AdS3 takes the form of a spacelike cosmic string).

For pure Einstein-Hilbert AdS3 gravity, the fact that all solutions are locally equivalent

to AdS3 means that the solution with fixed length L∗ may be constructed from global

AdS3 by inserting a conical singularity along the associated RT surface and tuning the

conical angle so that the length becomes L∗ as defined by using an appropriate cutoff

with respect to the desired conformal frame at infinity.

We thus begin by recalling that the Euclidean AdS3 vacuum can be described as the

Poincaré ball with metric

ds2 =
dr2 + r2dθ2 + r2 sin2 θdφ2

(1− r2/4)2
. (2.23)

In (2.23), the coordinate ranges are θ ∈ [0, π], φ ∈ [0, 2π), and r ∈ [0, 2). The AdS
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boundary lies at r = 2 and we have set the bulk AdS length scale ` to 1.

It is then straightforward to address the case where the boundary region R is half

of a great circle on the boundary S2. With an appropriate Wick rotation, we may thus

think of this as half of the boundary circle at Lorentzian time t = 0. However, for our

current purposes it will be convenient to take this interval to be the half-circle θ ∈ [0, π]

at φ = 0; i.e., we take it to be the prime meridian instead of half of the equator.

By symmetry, the corresponding RT surface is then just the φ-axis. Fixed length

states for R will then be associated with similar Euclidean solutions in which this axis

is a conical singularity. General such solutions are then described by inserting a positive

factor α into (2.23) to yield

ds2 =
dr2 + r2dθ2 + α2r2 sin2 θdφ2

(1− r2/4)2
. (2.24)

Note that we may also write (2.24) in terms of a rescaled angular coordinate φ̃ = αφ

with φ̃ ∈ [0, 2πα) to give a perhaps-more-familiar description of this conical metric. The

cases α < 1 describe conical deficits, while α > 1 is a conical excess. Using the Einstein

equations to interpret this conical defect as a (Euclidean) cosmic string, one finds that

the string has a tension µ such that

α = 1− 4µG. (2.25)

In particular, the string tension is negative for geometries with a conical excess.

We wish to fix the length of our defect cosmic string. Of course, the actual length of

the φ-axis diverges but, as mentioned above we in fact wish to specify an appropriately

regularized notion of its length. We will do so by introducing a UV cutoff in the dual

CFT, which then defines a radial cutoff in the bulk. This requires specifying a conformal
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frame, and it is natural to take this to be the frame in which the boundary geometry is

given by the round metric on the unit-radius S2.

For α 6= 1 this round conformal frame differs from the conformal frame naturally

associated with the bulk metric (2.24). In particular, for α 6= 1 multiplying (2.24) by

(1− r2/4)2 and setting r = 2 would give a boundary metric with conical singularities at

both poles. Of course, this conical metric is related to the round metric by a conformal

(aka Weyl) rescaling of the metric. Both the associated conformal factor Ω and the polar

coordinate θ̃ associated with the standard presentation of the round metric can be found

by writing

dθ2 + α2 sin2 θdφ2 = Ω2(dθ̃2 + sin2 θ̃dφ2). (2.26)

Solving for Ω2 and θ gives

Ω2 =

(
α sin θ(1 + (tan θ

2
)2/α)

2(tan θ
2
)1/α

)2

(2.27)

and

θ = 2 tan−1

[(
tan

θ̃

2

)α]
. (2.28)

We take our UV cutoff to be given by a distance δ in the boundary as defined in

the round unit-sphere conformal frame. The associated bulk radial cutoff would then be

at z = δ where z is the Fefferman-Graham coordinate associated with the same round

conformal frame. However, for α 6= 1 the conical singularity in (2.24) makes it non-

trivial to write our metric in such coordinates. So instead of explicitly computing the

transformation between r, θ, φ and the desired Fefferman-Graham coordinates, we will

use the well-known fact that (to leading order in δ) the desired cutoff z = δ can be

identified as the greatest depth to which minimal surface anchored on a circle of size

δ (as defined in the desired conformal frame) hangs down into the bulk. In particular,
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since our conical singularity lies on the φ-axis, it should be cutoff where it intersects the

minimal surface anchored to a circle of round-frame radius δ about the pole θ̃ = 0. Note

that the bulk conical singularity will prevent the minimal surface from being smooth,

but that – as is most easily seen for the case δ = π/4 – symmetry requires the surface to

be invariant under an appropriate Z2 reflection. This condition implies that the minimal

surface must still intersect the axis orthogonally.

In the conical boundary-conformal frame, we see from (2.28) that the surface is an-

chored at θ = δα ≡ tan−1
[(

tan δ
2

)α]
. A short computation shows that the desired

minimal surface satisfies

1

r
+
r

4
=

cos θ

cos δα
. (2.29)

The intersection with the θ = 0 axis occurs at rα = 2(sec δα − tan δα), so the cutoff RT

surface (i.e., the cutoff cosmic string) has length

L = 2

∫ rα

0

dr

1− r2/4

= 2 ln
1

tan(δα/2)

= 2α ln
1

tan(δ/2)

≈ 2α ln
2

δ
.

(2.30)

To study a fixed-length state with prescribed length L∗, we then use (2.25) and (2.30) to

determine the required tension µ of the cosmic string. Below, from (2.30) we keep only

the leading order term at small δ .

We may also use the above results to compute the (cutoff) length of a RT surface

defined by an interval R of any angular size 2λ . The point here is that the isometries

of global AdS3 act as conformal transformations on the boundary S2 and can be used

to map the interval [0, π] to the interval [0, 2λ]. Such isometries are easy to describe by
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embedding Euclidean AdS3 into four-dimensional Minkowski space. In our coordinates

this embedding takes the form:

T =
4 + r2

4− r2
,

X =
4r

4− r2
sin θ̃ sinφ,

Y =
4r

4− r2
cos θ̃,

Z =
4r

4− r2
sin θ̃ cosφ.

(2.31)

While the above embedding holds only for the case α = 1 (where θ̃ = θ), we have chosen

to write the embedding in terms of θ̃ as we will eventually apply the boundary conformal

transformation to cases with general α using the round conformal frame.

It will be convenient to take the new interval R to also lie along the boundary great

circle defined by φ = 0 and φ = π. Note that such intervals all lie at X = 0 in

the embedding coordinates, and that they are thus invariant under the Z2 isometry

(T,X, Y, Z)→ (T,−X, Y, Z). We refer to this isometry as reflection in X.

Note that boosts in the Z, T plane preserve this Z2 symmetry while acting non-

trivially on the desired boundary great circle. In particular, a boost in the negative Z

direction with rapidity η acts on this circle as sin θ̃ → sin θ̃−η
1−η sin θ̃

. So to map the angular

interval θ̃ ∈ [π/2 − λ, π/2 + λ] at φ = 0 to the interval θ̃ ∈ [0, π] at φ = 0 we need only

choose η = sinλ.

Such a boost also acts on our cutoff, taking a cutoff δ associated with θ̃ ∈ [π/2 −
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λ, π/2 + λ] to a new cutoff associated with θ̃ ∈ [0, π] given by

δb =
1

2

(
sin−1 sin

(
π
2
− λ+ δ

)
− sin

(
π
2
− λ
)

1− sin
(
π
2
− λ+ δ

)
sin
(
π
2
− λ
) − sin−1 sin

(
π
2
− λ− δ

)
− sin

(
π
2
− λ
)

1− sin
(
π
2
− λ− δ

)
sin
(
π
2
− λ
)
)

=
δ

sinλ
+O(δ2).

(2.32)

Applying the associated boundary conformal transformation to the general case α 6=

1, we then find that boundary intervals of angular size λ are associated with bulk cosmic

strings of length given by (2.30) with δ replaced by (2.32) to yield

L = 2α ln
2 sinλ

δ
=: αL0(λ). (2.33)

where L0(λ) is the cutoff length of this same geodesic when there is no cosmic string.

In section 2.5 below, we will also find it useful to allow different cutoffs δL and δR at

the two ends of the cosmic string. Generalizing the above arguments then yields

L = α ln
4 sin2 λ

δLδR
, (2.34)

where α again describes the defect on this string.

It is now straightforward to compute the Euclidean action I of our solutions as a

function of λ, δ, and L = L∗ = αL0. Since this computation is somewhat of an aside

from the main thrust of this work we have relegated the details to appendix A.1. Up to

an α-independent constant (which depends on the choice of boundary conformal frame,

and thus in a fixed frame may depend on δ and λ), the action can be written in terms of

just α and L0:

I =
α(α− 2)L0

8G
. (2.35)

Since there is no RT phase transition for single intervals, we can use the results of
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[25] to write the density matrix of the dual CFT on our interval in the block-diagonal

form

ρ = ⊕αP (α)ρα, (2.36)

where P (α) is the probability for the RT surface to have length αL0. As explained in

section 2.2, in the semiclassical approximation this probability is

P (α) = N exp(−I) =

√
L0

8πG
exp

(
−(α− 1)2L0

8G

)
, (2.37)

where in the last step we have computed the appropriate normalization coefficient N

so that12
∫∞

0
P (α)dα = 1. Furthermore, in this approximation reference [47] finds each

ρα to be a maximally mixed state in a subspace whose dimension agrees with the RT

entropy L0/4G. Thus we may write

ρα = e−
αL0
4G I

exp(αL0
4G ), (2.38)

where Iexp(S) is the identity matrix in a Hilbert space of dimension eS.

The physics of the result (2.38) is most easily seen as follows. Let us focus on the case

λ = π/2 for simplicity, and let us then identify the cutoff surface near θ̃ = 0 with the

one near θ̃ = π. Except for the conical singularity, the resulting spacetime is a Euclidean

BTZ black hole with horizon length L∗ = αL and energy EBTZ =
r2
+

8G
= L2

32π2G
as defined

in the standard BTZ conformal frame. If we treat α (and thus E) as a discrete index,

we may then write the density matrix (2.36) as

ρ = NE

(
⊕Ee−βEIexp(SBTZ(E))

)
, (2.39)

12In fact, we have used the value of N for which 1 =
∫∞
−∞ P (α)dα =

∫∞
0
P (α)dα+O


e
−
L0

8G


. The

associated error is negligible in the semiclassical limit.

43



Probing phase transitions of holographic entanglement entropy with fixed-area states Chapter 2

where βBTZ = 4π2/L0 and SBTZ(E) =
√

2π2E/G is the entropy of a BTZ black hole

with energy E. The normalization coefficient NE is NE =

√
L0

8πG
e−L0/8G. In other

words, the density matrix coincides with a canonical ensemble of BTZ microstates at

inverse temperature β. This is precisely what one expects from the general discussion of

fixed-area states in section 5 of [47].

Using the above results, it is of course straightforward to compute Rényi entropies.

We find

Tr ρn =

∫
P (α)ne−n

αL0
4G e

αL0
4G dα

=

√
8πG

nL0

(
L0

8πG

)n/2
exp

(
−L0

8G
(n− 1

n
)

)
,

(2.40)

and thus

Sn :=
1

1− n ln Tr ρn

=
L0

8G

(
1 +

1

n

)
+O(ln(G))

=
c

6

(
1 +

1

n

)
ln

2 sinλ

δ
+O(ln(c)),

(2.41)

where we used the Brown-Henneaux relation c = 3`
2G

[80], with ` = 1. Of course, this

precisely matches the well-known results of [81, 82] for the dual CFT.

2.5 Examples

We now we consider several examples of the general framework discussed above. The

first two cases concern AdS3 and its BTZ quotients. In those cases we compute the

covariance matrix (2.19) by treating the conical defect as a small perturbation, working

to linear order in the (Euclidean) tension µ of the associated (spacelike) cosmic strings.

As a result, the effect of multiple such cosmic strings satisfy linear superposition, and

results for general configurations of strings can be computed from the one-interval results

of section 2.4. In practice, instead of the fixed-area action I, we find it convenient to study

44



Probing phase transitions of holographic entanglement entropy with fixed-area states Chapter 2

the action Idef = Idefect for fixed tensions µ1, µ2 of the cosmic strings along the two RT

surfaces. However, the two are related by a Legendre transform I = Idef − µ1A1 − µ2A2

(see e.g. [47, 73]). As a result, the matrix ∂2I
∂Ai∂Aj

is the inverse of ∂2I
∂µi∂µj

and we have

Cij =
∂2Idef
∂µi∂µj

= − ∂

∂µi
〈Aj〉µ1,µ2

∣∣∣
µ1=µ2=0

= − ∂

∂µj
〈Ai〉µ1,µ2

∣∣∣
µ1=µ2=0

, (2.42)

where 〈Ai〉µ1,µ2 is the most likely value of Ai in the presence of cosmic strings with tensions

µ1, µ2. Here we have used the standard Legendre transform relation
∂Idef
∂µi

= −〈Ai〉µ1,µ2 .

2.5.1 Example 1: Two intervals in the AdS3 vacuum

Our first example concerns the Euclidean global AdS3 vacuum as in section 2.4.

However, we now take the boundary region R to be given by a pair of non-overlapping

intervals on the great circle of the boundary S2 associated with φ = 0 and φ = π. For

simplicity, we choose the two intervals to be related by a π rotation. In particular, they are

each of the same angular size 2λ < π. We take both to be given by θ ∈ [π/2−λ, π/2 +λ]

and to respectively lie at φ = 0 and φ = π.

As is well known, there are two locally-minimal surfaces that satisfy the required

boundary conditions. While both are homologous to the pair of boundary intervals R,

only one of them is homotopic to R. For reasons that will shortly become clear, we denote

this homotopic surface by γd = γdiagonal while the other will be denoted γo = γoff−diagonal.

Since the RT surfaces are one-dimensional, we will again use the terms length and area

interchangeably as in section 2.4. In particular, the total lengths of the above RT surfaces

are Ld and Lo.

Each of the above RT surfaces is disconnected, and in fact consists of two geodesics.

We label the four relevant geodesics γ11, γ12, γ21, γ22, with γd = γ11∪γ22 and γo = γ12∪γ21

as shown in figure 2.5. The corresponding lengths are L11 = L22, and L12 = L21. The
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R2R1 γ11 γ22

γ12

γ21

Figure 2.5: Two competing extremal surfaces when R = R1 ∪R2 is a pair of intervals
on the boundary of the AdS3 vacuum. The homotopic RT surface γd = γ11 ∪ γ22 and
the non-homotopic RT surface γo = γ12 ∪ γ21 are shown respectively in red and blue.
The case shown sits precisely at the RT phase transition, where γd and γo are related
by a π/2 rotation.

system undergoes an RT phase transition at λ = π/4, when γd and γo are related by a

π/2 rotation. For vanishing cosmic-string tensions the solution is just global Euclidean

AdS3 and the lengths of the RT surfaces are

L̄d = 2L̄11 = 2L̄22 = 4 ln
2 sinλ

δ
(2.43)

L̄o = 2L̄21 = 2L̄12 = 4 ln
2 cosλ

δ
. (2.44)

Due to the superposition principle mentioned in the introduction to this section, it

will be convenient to allow independent cosmic string tensions µij for all i, j ∈ {1, 2}.

To compute (2.42), we need only find the response functions ∆mnLij that describe how

the lengths Lij of the geodesics in figure 2.5 change at linear order under the addition

of the sources µmn. Of the 16 response functions ∆mnLij, the four terms ∆ijLij where

we study the change in length Lij along the same defect (with tension µij) are just the

linearization of the single-interval result (2.33) from section 2.4. Furthermore, the 8 terms
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γ11 γ22

γ12

γ21

Figure 2.6: The same geodesics as in figure 2.5 after applying an AdS3 isometry to
move the boundary-anchors γ11 to the poles θ = 0, π. This configuration allows us to
compute changes in length by applying results from section 2.4.

∆mnLij where (m,n, i, j) are permutations of (1, 1, 1, 2) and (2, 2, 2, 1) (i.e., where 3 of

the 4 indices m,n, i, j coincide but the last is different) are all related to each other by

symmetry (and perhaps interchanging λ → π/2 − λ). Finally, the last 4 terms ∆ijLīj̄

(with ī 6= i and j̄ 6= j) involve diametrically opposite geodesics. As representatives of

these 3 classes of terms, we will compute ∆11L11, ∆11L12, and ∆11L22.

Let us begin by computing ∆11L12, the first-order change in the length L12 due to

the source µ11. As in section 2.4, this is straightforward if we act with an AdS isometry

to move the boundary-anchors of γ11 to the poles θ = 0, π, so that γ11 runs along the

φ-axis; see figure 2.6 below. After this transformation, the two anchors of γ12 lie at the

pole θ = 0 and at θ = ϑ with

ϑ = sin−1 2 cosλ

1 + cos2 λ
. (2.45)

In the resulting (round) conformal frame, the cutoffs at the two ends of L12 will differ.

This occurs because the boundary conformal transformation associated with the above

AdS3 isometry fails to preserve the original symmetry between the endpoints. In the new
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conformal frame the cutoffs are given by

δL ≈
δ

sinλ
(2.46)

δR =
1

2

(
sin−1 sin

(
π
2
− λ+ δ

)
+ sin

(
π
2
− λ
)

1 + sin
(
π
2
− λ+ δ

)
sin
(
π
2
− λ
) − sin−1 sin

(
π
2
− λ− δ

)
+ sin

(
π
2
− λ
)

1 + sin
(
π
2
− λ− δ

)
sin
(
π
2
− λ
)
)

≈ 2 sinλ

3 + cos 2λ
δ,

(2.47)

with δL being the cutoff at left end in figure 2.6, where γ12 meets γ11.

Now, the length of a geodesic in the position of γ12 with cutoffs δL, δR in pure AdS3

was studied in section 2.4. It was found there to be given by (2.34), where one should

insert the value α = 1 since there is no defect on γ12. And since the local metric near γ12

in coordinates (r, θ, φ) does not change when we insert a string of tension µ11 = 1−α11

4G
on

L11, the length L12 in the presence of this defect can again be obtained from (2.34) with

α = 1. However, after the addition of the defect the coordinates (r, θ, φ) are associated

with the conical conformal frame on the boundary. As a result, we must insert into (2.34)

the θ-locations 0, ϑ̂ of the γ12 anchors and the cutoffs δ̂L, δ̂R as described in the conical

conformal frame. Using again the conformal transformation (2.28), we find

ϑ̂ = 2 tan−1

(
tanα11

ϑ

2

)
, (2.48)

δ̂L = 2 tan−1

(
tanα11

δL
2

)
≈ 2

(
δL
2

)α11

, (2.49)

and

δ̂R = tan−1

(
tanα11

ϑ+ δR
2

)
− tan−1

(
tanα11

ϑ− δR
2

)

≈ α11(3 + cos 2λ) sinα11−1 λ

2(1 + cos2α11 λ)
δR.

(2.50)

Here the symbol ≈ indicates that we have dropped higher order terms in the original
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cutoff δ. The first-order change in length is thus

∆11L12 = ln
4 sin2 ϑ̂

2

δ̂Lδ̂R
− ln

4 sin2 ϑ
2

δLδR

≈ 4µ11G

(
1− ln

sin 2λ

δ

)
.

(2.51)

We now address the diametrically opposite case. In particular, we compute the change

∆11L22 in L22 when we add tension µ11 on γ11. As above, we apply an AdS3 isometry to

move the anchors of γ11 to the poles as shown in figure 2.6. Since this figure is symmetric

under exchange of the two ends of γ22, and since the left end of γ22 coincides with the

right end of γ12, after the transformation the cutoff at either end of γ22 becomes δ′ = δR

as given by (2.47) and the angular size of γ22 becomes 2λ′ = 2(π
2
− ϑ) in terms of (2.45).

Once again, we wish to hold fixed the locations and cutoffs in the round conformal

frame when we insert the cosmic string on γ11. And again we wish to apply formulae

from section 2.4 that apply in the conical-frame coordinates r, θ, φ. We will thus need

the associated conical frame cutoff δ̂ = δ̂R and angular size 2λ̂ = 2(π
2
− ϑ̂). The length

change is thus

∆11L22 = 2 ln
2 sin λ̂

δ̂
− 2 ln

2 sinλ

δ′

≈ 8µ11G

(
1 +

(
2

sin2 λ
− 1

)
ln cosλ

)
.

(2.52)

To complete our study of the 3 possible classes of changes we need only compute

∆11L11. From (2.33) we immediately find

∆11L11 = −8µ11G ln
2 sinλ

δ
. (2.53)

We are now ready to assemble the above results into complete expressions for the

first order changes in our lengths. As described above, our three representatives ∆11L11,
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∆11L12, and ∆11L22 can be used to obtain all other ∆mnLij by acting with appropriate

symmetries and/or replacing λ by π
2
− λ. After doing so, we wish to set the tension to

be constant along each of γd, γo. I.e., we impose µ11 = µ22 = µd, µ12 = µ21 = µo. Using

the notation 〈Ld〉µo,µd for the expectation value of Ld in the presence of sources, we have

〈Ld〉µo,µd = 2〈L11〉µo,µd = 2 (〈L11〉0,0 + ∆11L11 + ∆12L11 + ∆21L11 + ∆22L11) +O(µ2).

(2.54)

Thus we find

〈Ld〉µo,µd = 4 ln
2 sinλ

δ
+ 16µdG(1− ln sin 2λ+

2 ln cosλ

sin2 λ
+ ln δ)

+ 16µoG(1− ln sin 2λ+ ln δ) +O(µ2).

(2.55)

The corresponding expression for Lo is obtained from (2.55) by exchanging µd with µo

and replacing λ by π/2− λ. This yields

〈Lo〉µo,µd = 4 ln
2 cosλ

δ
+ 16µdG(1− ln sin 2λ+ ln δ)

+ 16µoG(1− ln sin 2λ+
2 ln sinλ

cos2 λ
+ ln δ) +O(µ2).

(2.56)

The two point functions are thus

〈L2
d〉0,0 − 〈Ld〉20,0 = − ∂

∂µd
〈Ld〉µo,µd

∣∣∣
µo=0,µd=0

= −16G(1− ln sin 2λ+
2 ln cosλ

sin2 λ
+ ln δ),

(2.57)

〈L2
o〉0,0−〈Lo〉20,0 = − ∂

∂µo
〈Lo〉µo,µd

∣∣∣
µo=0,µd=0

= −16G(1−ln sin 2λ+
2 ln sinλ

cos2 λ
+ln δ), (2.58)

and

〈LdLo〉0,0 − 〈Ld〉〈Lo〉0,0 = − ∂

∂µd
〈µo,µdLo〉

∣∣∣
µo=0,µd=0

= −16G(1− ln sin 2λ+ ln δ). (2.59)
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Combining these to find the variance of (L1 − L2) yields

4σ2
− = 〈(Ld − Lo)2〉0,0 − 〈Ld − Lo〉20,0

=
(
〈L2

d〉 − 〈Ld〉20,0
)

+
(
〈L2

o〉0,0 − 〈Lo〉20,0
)
− 2 (〈LdLo〉0,0 − 〈Ld〉0,0〈Lo〉0,0)

= −32G

(
ln sinλ

cos2 λ
+

ln cosλ

sin2 λ

)
(2.60)

Note that σ2
− is positive as required since cosλ and sinλ are less than or equal to one.

From (2.21), the O(G−1/2) correction to the entropy at the transition is thus

∆−1/2S =

√
σ̃2
−

8πG
=

σ−√
8πG

= 2

√
ln 2

2πG
. (2.61)

The most interesting feature of (2.61) is that it is independent of the cutoff δ. This

was a direct result of the fact that, while the cutoff appeared in each of (2.57), (2.58),

and (2.59), it cancelled in the computation of σ̃−. A related observation is that σ2
− takes

on its minimal value 16G ln 2 at the phase transition point λ = π/4, though it diverges

in the degenerate limits λ→ 0 or λ→ π/2.

Such results are in fact very natural. Since γo and γd have the same boundary anchors,

the two curves will largely coincide near infinity. Contributions to the length of these

curves from the asymptotic region will thus be highly correlated and will tend to cancel

in computations of Ld − Lo. The results above show that the divergent parts of the

fluctuations cancel entirely. Thus σ− is determined by the regions of γd and γo that

are widely separated. Since the length of such regions diverges in the limits λ → 0 or

λ → π/2 (where one curve or the other degenerates), it is no surprise that σ− diverges

in those limits as well. Further discussion of divergences in RT-area fluctuations will be

provided in section 2.6.
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star

Σ

Figure 2.7: The Penrose diagram of a pure-state geometry in which matter (a ‘star’)
collapses to become a BTZ black hole. On the surface Σ the geometry displays a long
‘throat’ region where the metric is very well-approximated by exact BTZ. On Σ, all
details of the original star that collapsed to form the black hole are hidden at the
bottom of this throat.

2.5.2 Example 2: BTZ black hole

Our next example is a generic pure microstate of a one-sided non-rotating BTZ black

hole. The RT phase transition in this context was previously studied in e.g. [83, 68,

69]. Since the bulk spacetime has dimension 3, our RT surfaces will again be spacelike

geodesics.

In the region outside the horizon, the corresponding bulk geometry should well-

described by the BTZ metric

ds2 = −(r2
BTZ − r2

+)dt2 +
dr2

BTZ

r2
BTZ − r2

+

+ r2
BTZdϕ

2, (2.62)

where r+ is the horizon radius and the black hole has total energy E =
r2
+

8G
as in section

2.4. Inside the horizon the geometry may reflect the details of the microstate. But as

shown in figure 2.7, any classical interior solution will evolve to have the same long throat

at late times, with any microstate-dependence hidden at the bottom of the throat. One

thus expects such a long throat to be common to generic microstates. Noting that this

throat also appears in the two-sided eternal BTZ black hole, and that in the eternal
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BTZ case spacelike geodesics starting and ending in the same boundary region never

pass behind the horizon (see e.g. [84]), it follows that all relevant geodesics will lie in the

exterior region. We thus restrict attention to the geometry described by (2.62).

By analytic continuation t → iτ , the associated Euclidean solution will also contain

a region described by the metric

ds2 = (r2
BTZ − r2

+)dτ 2 +
dr2

BTZ

r2
BTZ − r2

+

+ r2
BTZdϕ

2, (2.63)

though this will not cover the entire spacetime. In particular, the metric (2.63) will

generally hold only in some range τ ∈ (−τ−, τ+) where τ− and τ+ are not to be identified13.

We will consider single intervals R in the boundary at t = 0 = τ , for which the RT

surfaces will also lie in the bulk surface t = τ = 0 that appears in both the Lorentzian

and Euclidean sections.

As shown in figure 2.8, we take γ1 to be the minimal curve in the t = τ = 0 surface

that is homotopic to R, and γ2 to be the corresponding minimal curve homotopic to R̄.

Note that both γ1 and γ2 are homolologous to both intervals R, R̄. Denoting the angular

sizes of R, R̄ respectively by π + η and π − η, symmetry dictates that there will be an

RT phase transition at η = 0. As in section 2.5.1, we will insert cosmic strings on γ1, γ2

and compute the induced changes in their lengths L1, L2. And just as in sections 2.4

and 2.5.1, we will again use a UV regulator defined by a scale δ on the boundary in the

conformal frame where the boundary metric is dτ 2 + dϕ2.

To compute the desired response functions ∂
∂µi
〈Lj〉µ1,µ2 , we must gain control not only

over the original BTZ metric (2.63), but also over solutions deformed by the addition of

cosmic strings. If we were to strictly confine our analysis to the region −τ− < τ < τ

where the metric (2.63) applies, this would require a choice of boundary condition at

13See e.g. [85, 86, 87] for discussions of particular such Euclidean geometries.
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R R̄γ1 γ2

Figure 2.8: Two competing candidate RT surfaces in the BTZ black hole spacetime.

τ = τ±. We do not wish to rely on an ad hoc such choice. But as noted above, in the

relevant region of the geometry one expects our spacetime to agree precisely with the

eternal two-sided BTZ black hole. We will therefore assume that this remains true after

the addition of at least weak-tension cosmic strings. As a result, we simply compute

∂
∂µi
〈Lj〉µ1,µ2 in the full Euclidean BTZ geometry given by (2.63) and by taking τ to have

the appropriate period βBTZ = 2π
r+

.

As in well-known, the BTZ geometry is a quotient of global AdS3 [71]. Lifting the

geodesics γ1, γ2 to the AdS3 cover will allow us to directly apply our previous results

from section 2.4. In practice, this lift is accomplished by simply ignoring the fact that

φ is periodic identified in the BTZ metric14. Taking the anchors of both geodesics γ1, γ2

to be at ϕ = ±
(
π+η

2

)
, we see that γ1 lifts to an infinite set of geodesics γ1,k anchored

at ϕ = ±
(
π+η

2

)
+ 2πk, while γ2 lifts to geodesics γ2,k anchored at ϕ =

(
π+η

2

)
+ 2πk and

ϕ = −
(
π+η

2

)
+ 2π(k + 1). Note that the geodesics γ2,−1, γ2,0 lie on either side of γ1,0.

The results of section 2.4 were written in terms of a different set of coordinates on

Euclidean AdS3. Taking the angular coordinate τ above to be proportional to φ of section

14Since the τ -circle is contractible in BTZ, the coordinate τ remains periodic with period βBTZ in the
AdS3 cover.
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·
·
·

···
···

γ1,0

γ2,−1

γ2,0

γ1,−1

γ1,1

γ1,kγ2,k

Figure 2.9: RT surfaces in the AdS3 covering space of a BTZ black hole. One RT
surface in BTZ corresponds to infinitely many ones in the covering space. The dashed
lines denote the horizon. Since we are studying a one-sided black hole, only half of
the space (we take it to be the left half) is relevant to us.

2.4, one may solve for the relation between our (rBTZ , ϕ) and the (r, θ) of section 2.4. In

particular, on the AdS boundary one finds

θ(ϕ) = tan−1 (sinh(r+ϕ)) +
π

2
. (2.64)

Thus if R is the interval −π
2
− η

2
< ϕ < π

2
+ η

2
at τ = 0, it also corresponds to the infinite

set of intervals π
2
− θk < θ < π

2
+ θk with

θk = tan−1
(

sinh
(

(
π

2
+
η

2
+ 2πk)r+

))
. (2.65)

For simplicity, we begin by focusing on the case k = 0. For this case, a cutoff δ

defined in terms of the angle ϕ at the endpoints of R maps to a cutoff

δ0 =
1

2

(
θ(
π

2
+
η

2
+ δ)− θ(π

2
+
η

2
− δ)

)

≈ r+ cosh
(
(π

2
+ η

2
)r+

)

1 + sinh
(
(π

2
+ η

2
)r+

)δ
(2.66)
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in terms of the angle θ. With vanishing cosmic string tension the length of γ1 is thus

L̄1 := 〈L1〉µ1=0,µ2=0 = 2 ln
2 sin θ0

δ0

= 2 ln
2 sinh

(
(π

2
+ η

2
)r+

)

r+δ
. (2.67)

Since interchanging R and R̄ changes the sign of η, applying this transformation to (2.67)

yields the length of γ2:

L̄2 := 〈L1〉µ1=0,µ2=0 = 2 ln
2 sinh

(
(π

2
− η

2
)r+

)

r+δ
. (2.68)

We now compute the first-order changes ∆iLj (i, j ∈ {1, 2}) in the length change of

γj due to adding a cosmic string with tension µi on γi. In the covering space description,

we could compute the change in length of any of the geodesics γj,n. However, the covering

space description of inserting a cosmic string of tension µi on γi is to in fact insert cosmic

strings of this same tension µi on each of the geodesics γi,k. At linear order in µi we may

compute the effect of each such cosmic string separately and then simply sum the change

induced in our given γj,k.

However, performing the above sum is equivalent to inserting a cosmic string on a

given geodesic (say, γ1,0 or γ2,0), computing the first order change in length for each γ1,n

or each γ2,n, and again summing the results. We will find this perspective to be more

convenient in making use of our results from section 2.4. We will thus study the first-

order changes ∆1L1,k, ∆1L2,k in the lengths of γ1,k, γ2,k associated with putting a cosmic

string on γ1,0. We can then later then obtain results for strings on γ2,0 by changing the

sign of η.

We begin with ∆1L1,k. As in section 2.4, we apply an AdS3 isometry to move the

anchors of γ1,0 to the θ = 0 and θ = π so that γ1,0 now lies along the φ-axis; see figure

2.10. Before applying this transformation, the angular coordinates θ of the endpoints of
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γ1,0

γ2,0

γ2,k
γ1,k

Figure 2.10: The representative geodesics γ1,0, γ2,0, γ1,k and γ2,k from figure 2.9 are
shown after applying an AdS3 isometry to move γ1,0 into the standard position along
the φ-axis.

γ1,k are

θ
(k)
L/R = tan−1

(
sinh[r+(∓π

2
∓ η

2
+ 2πk)]

)
+
π

2
(2.69)

with φ = 0. After the transformation, they become

θ̃
(k)
L/R = π − sin−1

− sin
(
π − θ(k)

L/R

)
+ cos θ1

1− sin
(
π − θ(k)

L/R

)
cos θ1

, (2.70)

with φ = π. The cutoffs will again become some δ̃
(k)
L and δ̃

(k)
R .

We now wish to add a cosmic string of tension µ1 = 1−α1

4G
on the φ axis, holding fixed

both the cutoffs and the anchors for the geodesics in the round conformal frame. But we

will also need the values of these parameters in the conical frame, which by (2.28) are

the ‘hatted’ values

θ̂
(k)
L/R = 2 tan−1

(
tanα1

θ̃
(k)
L/R

2

)
(2.71)

δ̂
(k)
L/R ≈

2α1 cotα1
θ̃
(k)
L/R

2

sin θ̃
(k)
L/R(1 + cot2α1

θ̃
(k)
L/R

2
)

δ̃
(k)
L/R. (2.72)
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The above results allow us to read off the change in length by making appropriate

use of (2.34). This is most straightforward for the case k = 0 where geodesic γ1,0 of

interest lies on the conical singularity. That was the setting considered in the derivation

of (2.33), so we need only recall that our conical parameter is α1 = 1 − 4µ1G and that

at α1 = 1 the length is L̄1 as given by (2.67). Eq. (2.33) then gives L1,0 = α1L̄1 from

which we find

∆1L1,0 = −8µ1G ln
2 sinh

(
(π

2
+ η

2
)r+

)

r+δ
. (2.73)

In contrast, for k 6= 1 we study geodesics γ1,k with no conical singularity. In vacuum

AdS3, the length of such geodesics is given by (2.34) with α = 1 and cutoffs δR = δ̃R and

δL = δ̃L defined in the round frame. We wish to hold fixed these round-frame cutoffs when

computing ∆1L1,k. But when we add a conical singularity elsewhere in the spacetime,

the length of γ1,k is given by (2.34) (still with α = 1 in that expression) if we insert the

cutoffs δR = δ̂
(k)
R , δL = δ̂

(k)
L and the angular size λ = λ̂(k) :=

θ̂
(k)
L −θ̂

(k)
R

2
associated with the

conical frame. As a result, for k 6= 0 we find

∆1L1,k = ln
4 sin2 θ̂

(k)
L −θ̂

(k)
R

2

δ̂
(k)
L δ̂

(k)
R

− ln
4 sin2 θ̃

(k)
L −θ̃

(k)
R

2

δ̃
(k)
L δ̃

(k)
R

= 4µ1G


2 +

sin
θ̃
(k)
L +θ̃

(k)
R

2

sin
θ̃
(k)
L −θ̃

(k)
R

2

ln
tan

θ̃
(k)
L

2

tan
θ̃
(k)
R

2

+O(µ2
1)




= 4µ1Gf(k, η) +O(µ2
1),

(2.74)

where f(k, η) is

f(k, η) =2− 1− 2 cosh[2kr+π] + cosh[r+(π + η)]

2 sinh2[(π + η) r+
2

]

ln

(
cosh[(π + η) r+

2
]− cosh[((4k − 1)π − η) r+

2
]
)

sinh2[((2k + 1)π + η) r+
2

](
cosh[(π + η) r+

2
]− cosh[((4k + 1)π + η) r+

2
]
)

sinh2[kr+π]
.

(2.75)
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Note that f(k, η) vanishes exponentially as k →∞. In particular, limk→∞ |f(k+1,η)
f(k,η)

| < 1,

so the sum
∑∞

k=1 f(k, η) converges. Furthermore, (2.74) is completely independent of the

choice of cutoffs.

For k 6= −1, 0 the computation of ∆1L2,k proceeds in precisely the same way. Indeed,

it is identical to the computation of (2.74) with k replaced by k + 1/2 in all expressions

and with η replaced by −η in the expressions for θ
(k)
L/R and the associated cutoffs (but

with η unchanged in the expressions for θ1 and δ1). As a result, we find

∆1L2,k = 4µ1Gg(k, η) +O(µ2
1), (2.76)

with

g(k, η) = 2− cosh[r+π]− 2 cosh[(1 + 2k)r+π] + cosh[r+η]

cosh[r+π]− cosh[r+η]

ln
er+η(e2kr+π − 1)(e2(1+k)r+π − 1)

(e(1+2k)r+π − er+η)(er+(1+2k)π+r+η − 1)
.

(2.77)

Note that g(k, η) is an even function of η as required by the symmetry of figure 2.9.

The remaining cases ∆1L2,0 and ∆1L2,−1 are identical by symmetry; see again figure

2.9. Let us concentrate on ∆1L2,0. This case differs from the above in that γ2,0 meets the

conical singularity at the boundary. After using an AdS isometry to place the conical

singularity on the φ-axis as usual, the left anchor of γ2,0 becomes θ̃L = π and the right

anchor becomes θ̃R = θ̃
(1)
L . The transformed cutoffs are δ̃L = δ

sin θ0
(with θ0 again given by

(2.65) with k = 0) and δ̃R = δ̃
(1)
L . As usual, we hold these quantities fixed in the round

conformal frame, but we will need to insert the conical frame values into (2.33). After
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inserting the cosmic string on γ
(0)
1 , the conical frame parameters become

θ̂L = π, θ̂R = θ̂
(1)
L ,

δ̂L = 2

(
δ̃L
2

)α1

= 2

(
δ

2 sin θ0

)α1

and δ̂R = δ̂
(1)
L .

(2.78)

We thus find

∆1L2,0 = 4µ1G

(
1− ln

cosh r+π − cosh r+η

r+δ sinh r+π

)
. (2.79)

Combing these results and applying symmetries as needed to obtain changes not

directly computed above yields a complete first-order expression for the length of γ1:

〈L1〉µ1,µ2 =L̄1 + ∆1L1,0 + 2∆2L1,0 + 2
∞∑

k=1

∆1,kL1,0 + 2
∞∑

k=1

∆2,kL1,0 +O(µ2)

=(2− 8µ1G) ln
2 sinh

(
(π

2
+ η

2
)r+

)

r+δ
+ 8µ2G

(
1− ln

cosh r+π − cosh r+η

r+δ sinh r+π

)

+ 8µ1G
∞∑

k=1

f(k, η) + 8µ2G
∞∑

k=1

g(k, η) +O(µ2)

(2.80)

Since L2 can be obtained from L1 by changing the sign of η and exchanging µ1 and µ2,

we also find

〈L2〉µ1,µ2 =(2− 8µ2G) ln
2 sinh

(
(π

2
− η

2
)r+

)

r+δ
+ 8µ1G

(
1− ln

cosh r+π − cosh r+η

r+δ sinh r+π

)

+ 8µ2G
∞∑

k=1

f(k,−η) + 8µ1G
∞∑

k=1

g(k, η) +O(µ2)

(2.81)
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It is now straightforward to compute the desired two-point functions:

〈L2
1〉0,0 − 〈L1〉20.0 = − ∂

∂µ1

〈L1〉µ1,µ2

∣∣∣
µ1=µ2=0

= 8G

(
ln

2 sinh
(
(π

2
+ η

2
)r+

)

r+δ
−
∞∑

k=1

f(k, η)

)

(2.82)

〈L2
2〉0,0 − 〈L2〉20,0 = − ∂

∂µ2

〈L2〉µ1,µ2

∣∣∣
µ1=µ2=0

= 8G

(
ln

2 sinh
(
(π

2
− η

2
)r+

)

r+δ
−
∞∑

k=1

f(k,−η)

)

(2.83)

〈L1L2〉0,0 − 〈L1〉0,0〈L2〉0,0 = − ∂

∂µ1

〈L2〉µ1,µ2

∣∣∣
µ1=µ2=0

= 8G

(
ln

cosh(r+π)− cosh(r+η)

r+δ sinh(r+π)
− 1−

∞∑

k=1

g(k, η)

)
.

(2.84)

In particular, the variance of L− = (L1 − L2)/2 is

σ2
− =2G

(
ln

4 sinh2(r+π) sinh
((

π
2

+ η
2

)
r+

)
sinh

((
π
2
− η

2

)
r+

)

(cosh(r+π)− cosh(r+η))2 + 2

−
∞∑

k=1

(f(k, η) + f(k,−η)− 2g(k, η))

)
.

(2.85)

While the full expressions above are somewhat complicated, one should recall that

both f and g fall off exponentially. As a result, at large r+ one can ignore the sum over

images. In particular, in that limit σ2
− is given by just the first line in (2.85). As in

section 2.5.1, the variance σ2
− is independent of the cutoff δ, though δ appears linearly in

〈L2
1〉0,0 − 〈L1〉20.0, 〈L2

2〉0,0 − 〈L2〉20.0, and 〈L1L2〉0,0 − 〈L1〉0,0〈L2〉0,0.

2.5.3 Agreement with ETH

As described in section 2.5.2, we may think of the analysis performed there as ap-

plying to a generic microstate of the BTZ black hole with some given energy E. From

the perspective of the dual CFT this is just a generic state with the given energy. Fur-

thermore, as noted in the introduction, when the volume of the CFT becomes large this
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reduces to the setting analyzed by Murthy and Srednicki [65] using the eigenstate ther-

molization hypothesis (ETH). We now confirm that our results coincide with theirs in

the desired limit.

In particular, [65] considered a system of total volume V partitioned into two parts

with volumes V1 + V2 = V . In the limit where V1, V2 are both large, and ignoring terms

that scale with subleading powers of V , we may also identify separate energies E1, E2 and

density-of-states functions15 S1(E1), S2(E2) for the two parts that satisfy E ≈ E1 + E2

and S(E1, E2) ≈ S1(E1)+S2(E2) . Here S(E1, E2) is the logarithm of the total number of

states with the given partition of the energy E, and we use the symbol ≈ to make explicit

that we have kept only terms that are extensive in the sense that they proportional to

one of the volumes V1 or V2. As in section 2.5.2, we take subsystem 1 to be associated

with the boundary interval R and subsystem 2 to be associated with R̄.

Typical microstates with energy E will have subsystem energies Ē1, Ē2 determined

by the constraint E = Ē1 + Ē2 and the usual thermodynamic equilibrium condition

1

T1

:=
dS1

dE1

|Ē1
=
dS2

dE2

|Ē2
=:

1

T2

, (2.86)

which allows us to define a temperature T = T1 = T2. The analysis of [65] found such

states to have entanglement

Sent(E) = min
(
S1(Ē1), S2(Ē2)

)
−
√

2K

π
Φ

(
S2(E − Ē1)− S1(Ē1)√

8K

)
, (2.87)

where Φ is again given by (2.22) and

1

K
:= T 2

(
d2S1

dE2
1

|Ē1
+
d2S2

dE2
2

|Ē2

)
. (2.88)

15These are the usual thermodynamic entropies defined as the logarithm of the number of states of
each subsystem with the given energies.
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Comparing (2.87) with our expression (2.21), we see that they agree if

S1(Ē1) =
L̄1

4G
, S2(Ē2) =

L̄2

4G
, K =

σ̃2
−

32G
. (2.89)

Our main task is thus to identify the functions S1(E1), S2(E2) for the relevant limit

of the BTZ system studied in section 2.5.2. Doing so requires an understanding of black

hole geometries that have independent energies E1, E2 in regions R and R̄ at the given

time t = 0 (though energy will flow between these regions under time evolution due to the

intrinsic couplings between the two). In particular, we must allow the energy densities

at t = 0 to differ between R and R̄.

The limit studied by [65] involves taking a large volume. But since our system is to

be thought of as dual to a conformal field theory, any large volume limit is equivalent

to the limit of high temperatures (or, perhaps better, the limit of large energy densities)

taken with the volume V held fixed. We may then define the energy E1 of region R by

integrating the CFT energy density over R, and similarly for the energy E2 of R̄. To

define a good operator in the CFT we should also apply an appropriate smoothing at

the boundary ∂R between R and R̄, though this is often not needed if we simply discuss

expectation values. In either case, we find E ≈ E1 + E2 in the desired limit.

To leading order in the limit of large volumes or high temperatures, we can study

the thermodynamics of each region R and R̄ by treating the regions as homogeneous

independent CFTs. The density of states of each region is then given by the thermal

entropy of the CFT at energy Ei on a space of volume Vi; i.e.

Si(Ei) ≈ 2π

√
cEiVi

6
, (2.90)

where we have used the Cardy approximation appropriate to our high temperature limit
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and c = 3
2G

is the CFT central charge since we have set the bulk AdS scale ` to one16.

It is now manifest that we will find S1(Ē1) = Ā1

4G
and S2(Ē2) = Ā2

4G
, though this can

also be verified by direction computation using (2.67) and (2.68) in the limit of large

E =
r2
+

8G
. Furthermore, the standard deviation σ̃− of our fixed-area discussion is easily

extracted from the two-point functions (2.82), (2.83), and (2.84). At leading order in

large r+ we find

σ̃2
−

32G
≈ (π2 − η2)r+

8Gπ
. (2.91)

It thus remains only to compute (2.88) and compare with (2.91). In terms of the

parameter η from 2.5.2 and the bulk Newton constant G and the energy E1, Cardy’s

formula (2.90) becomes

S(Ē1) =
π + η

4G

√
2π

π + η
E1, and (2.92)

S(Ē2) =
π − η
4G

√
2π

π − η (E − E1). (2.93)

Using (2.88) then gives

K =
(π2 − η2)r+

8Gπ
, (2.94)

which agrees with (2.91) as desired. So in the relevant limit our analysis does indeed

reproduce the results of [65].

16One can of course also derive this result from the AdS3 bulk. To do so, one notes that a general
solution to Einstein-Hilbert AdS3 gravity is just a BTZ black hole with some choice of conformal frame.
As we are interested in thermal entropies, so that the full CFT can be in a mixed state, one then
computes the RT entropies for R and R̄ using surfaces that are homotopic to R, R̄ as a function of
the BTZ parameters and this conformal transformation. Holding the UV cutoff fixed, at leading order
in large energy density maximizing the RT areas at fixed energies E1, E2 will give the desired result.
Indeed, in a general theory of gravity one should expect the generic high energy-density state with
energies E1, E2 at t = 0 to strongly resemble a black hole of total energy E1V

V1
in region R but to also

strongly resemble a black hole of total energy E2V
V2

in region R̄. This can be seen, for example, by
considering the thermofield-double-like state defined by a Euclidean path integral where the period of
Euclidean time is tuned independently in R and R̄ to obtain the desired energies and using a Euclidean
version [88] of the fluid-gravity correspondence [89, 90, 91]. The corresponding Renyi problem was
recently discussed in [47].
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2.5.4 Comparison with a simple quantum RT transition

In the above sections we have examined corrections to the RT entropy near RT phase

transitions. However, such phase transitions are very similar to the phase transitions

associated with quantum extremal surfaces discussed in e.g. [37, 36, 38, 39]. Let us

in particular consider the simple model described in section 2 of [38], which considers

a black hole in Jackiw-Teitelboim gravity with an end-of-the-world brane behind the

horizon. The end-of-the-world-brane can appear in any of k flavors. There is then a

quantum RT phase transition associated with whether the entropy ln k of the state on

the end-of-the-world brane exceeds the Bekenstein-Hawking entropy SBH of the black

hole. When SBH is the larger of the two, the (quantum) RT surface is the emptyset

and the entire spacetime lies in the entanglement wedge of the boundary. In contrast, if

the end-of-the-world brane entropy is larger, the quantum RT surface lies instead at the

black hole horizon and an ‘island’ [92] forms inside.

Although this is technically a quantum-RT transition, quantum mechanics plays very

little role in the discussion. In particular, for the non-trivial extremal surface the entropy

is well approximated by A/4G. And for the trivial extremal surface, the (generalized)

entropy is effectively a constant determined by the choice of end-of-the-world brane state.

It may thus be reasonable to expect that our arguments above would apply to this case

as well. We confirm this below, though we leave a full discussion of quantum phase

transitions for future work.

In particular, in the semiclassical limit of large temperature 1/(βG) � 1 and with

large end-of-the-world brane tension µEOW � 1/(βG) , the details of their phase transi-

tion are studied in appendix F of [38] via a careful computation using the replica trick.

At the phase transition, the actual entropy is again found to be smaller than A/4G by a
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correction

∆−1/2S =

√
2π

βG
. (2.95)

We wish to verify that this result also follows from (2.21) if we simply set A2 = ln k

(without fluctuations). As a result, 4σ2
− = σ2

1 and it remains only to determine the width

of fluctuations in the horizon area A1.

This width can be extracted from their n-replica partition functions

Zn = eS0

∫
dsρ(s)y(s)n, (2.96)

where

ρ(s) =
s

2π2
sinh(2πs), (2.97)

y(s) = e−
βGs2

2 21−2µEOW

∣∣∣∣Γ
(
µEOW −

1

2
+ is

)∣∣∣∣
2

. (2.98)

In the limit µEOW � 1/βG, the integrand can be approximated by

ρ(s)y(s)n ∼ s

2π2
y(0)ne2πs−nβGs2/2. (2.99)

The saddle point is

s(n) =
2π

nβG
. (2.100)

We may thus define an on-shell action In by inserting s(n) into the exponent of (2.99) to

find

In =
2π2

nβG
. (2.101)

The n-replica saddle-points should represent smooth geometries, but taking a Zn quotient

of such geometries should give spacetimes with a single boundary and a Zn conical defect.

The fixed-defect-angle action I1(n) in such cases is generally In/n (see [33] and also [73]

66



Probing phase transitions of holographic entanglement entropy with fixed-area states Chapter 2

for further details of such actions). We thus find

I1(n) :=
In
n

=
2π2

n2βG
, (2.102)

where the conical defect tension µ satisfies

n =
1

1− 4µG
. (2.103)

It now straightforward to analytically continue the result (2.102) to all real µ. As

in section 2.3, the variance of the RT area A1 can be obtained by taking the second

derivative of I1 with respect to µ:

σ2
1 =

(
∂2I1

∂µ2

)

T→0

=
64π2G

β
. (2.104)

Inserting (2.104) into (2.21) gives (2.95) in agreement with [38]

2.6 Discussion

Our work above studied corrections to the Ryu-Takayanagi entropy of holographic

systems near an RT-phase transition in the semiclassical limit. Using a decomposition

into fixed-area states we found that, when a so-called diagonal approximation holds, the

result can be written in the form (2.21). In particular, at the phase transition where the

mean value Ā1− Ā2 vanishes, we find a correction of order G−1/2 controlled by the width

σ− = G1/2σ̃− of the fluctuations in (A1 −A2)/2. This correction is parametrically larger

than corrections associated with the entropy of bulk quantum fields.

However, it also decays exponentially in |A1 −A2| as one moves away from the tran-

sition. In particular, just as in [65], with this correction the entanglement becomes a
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smooth function of all parameters. The RT ‘phase transition’ has thus become a crossover

already at this level of analysis, though in the limit G → 0 the crossover happens very

quickly and one recovers the sharp transition of the standard classical RT-surfaces.

This behavior is very different from the O(N) corrections described in [93] for 2d

Yang-Mills. Although that theory admits a ‘bulk’ closed string expansion, the strings

are light. As a result, they give rise to D-brane-like (and thus O(N)) contributions to

general entropies [94, 95], regardless of proximity to a phase transition. In contrast,

stringy modes appear to play no role in our effect.

The interesting question that we have not addressed is just when this diagonal ap-

proximation should hold. We conjecture that it holds for arbitrary holographic states,

but this remains to be verified. What we have done in this regard is to compare our

(2.21) with the exact results at this order that are known in two cases. The first was the

large mass limit of (pure microstates of) BTZ black holes. If we take the black hole to be

in an energy eigenstate, then since the dual theory is conformal this limit is equivalent

to the large volume limit studied by Murthy and Srednicki in [65]. We found in section

2.5.3 that our results coincide with theirs in the desired limit.

Now, one might ask if the condition that the black hole is an energy eigenstate might

enforce our diagonal approximation even if the approximation were to fail more generally.

And indeed, for classical saddles that contribute to holographic Renyi computations, one

expects the areas A1, A2 to be functions of the energies E1, E2 of the two parts of the

system (R and R̄). As a result, since E1 + E2 = E is fixed, given two pairs of areas,

(A1, A2) and (A′1, A
′
2) either the pairs coincide (A1 = A′1 and A2 = A′2), or both areas

differ (A1 6= A′1 and also A2 6= A′2). But as described in section 2.3.2, the saddles that give

possible off-diagonal contributions require at least one area in each Renyi copy to coincide

with one area in the next. So there are no off-diagonal contributions with A1 6= A′1 and

also A2 6= A′2 and the diagonal approximation should hold.
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On the other hand, one can give a state-counting argument that generalizes the

argument of [65] to generic states with a given expectation value of the energy, but

which leaves the result unchanged17. This removes the above constraint and allows off-

diagonal saddles to contribute. Yet we continue to find agreement with the computations

of section 2.5.2. Indeed, our analysis made no use of any assumption regarding the width

of fluctuations in the total energy of the black hole.

We take this as encouraging evidence in favor of our conjecture. However, one can

expect the diagonal approximation to fail for carefully chosen non-generic states, and

there remains the possibility that at least some holographic states are non-generic in just

the required way – though this cannot be the case for pure microstates of BTZ.

We also performed what appears to be an independent check on our conjecture by

comparing (2.21) with the results of [38] for their quantum RT-transition. While we have

not analyzed quantum transitions in detail, one would expect analogous results to hold,

and especially so for the special case considered in [38] where the quantum contributions

are fixed and do not fluctuate. And indeed we find our (2.21) to exactly reproduce the

G−1/2 correction of [38].

A by-product of the computations in our examples was to investigate the cutoff de-

pendence of fluctuations in RT-areas. In AdS3, we found RT-surfaces anchored to the

boundary to have fluctuations whose variance is of order − ln δ, and thus whose width

is of order
√
− ln δ. They thus diverge as δ → 0, but do so more slowly than the RT-

lengths themselves (which are of order ln δ). Furthermore, given two extremal surfaces

γ1, γ2 anchored at the same boundary points, the difference in their lengths L1 − L2 has

finite (cutoff-independent) fluctuations as δ → 0.

It is straightforward to see that similar results must hold in complete generality and

in all dimensions. First, recall from section 2.5 that fluctuations are related to expected

17We thank Chaitanya Murthy and Mark Srednicki for sharing their notes on this point.
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RT-areas via

〈AiAj〉0,0 − 〈Ai〉0,0〈Aj〉0,0 = − ∂

∂µi
〈Aj〉µ1,µ2

∣∣∣
µ1=µ2=0

. (2.105)

In general, the divergences (or cutoff-dependences) of the variance RT-area fluctuations

will agree with those of RT-areas A at general tensions µ, so that the width of such

fluctuations scales like A1/2. This result is also to be expected physically, as the fluctua-

tions should be local. Since uncorrelated fluctuations add in quadrature, summing such

fluctuations over all area elements of the RT-surface must again give fluctuations in the

total area A that scale like A1/2.

In contrast, the cancellation of divergences that occurs in fluctuations of A1 − A2

occurs precisely because the surfaces γ1, γ2 largely coincide near the AdS boundary, so

that correlations between their area-fluctuations are naturally strong. That fluctuations

of A1 − A2 will always be finite can be seen by recalling that any two extremal surfaces

γ1, γ2 with the same boundary anchor set ∂R in fact coincide near the boundary to all

orders in the Fefferman-Graham expansion that give divergent contributions to A1 and

A2 [96]. Since this is the case for all smooth geometries with arbitrary matter sources,

it will remain true in the conical limit where the sources become cosmic branes. Thus

A1 − A2 is manifestly finite at general tensions µ1, µ2. Using (2.105) to write

〈(A1 − A2)2〉0,0 − 〈A1 − A2〉20,0 =

(
∂

∂µ2

− ∂

∂µ1

)
〈A1 − A2〉µ1,µ2

∣∣∣
µ1=µ2=0

, (2.106)

we see immediately that the desired fluctuations are finite as well. The same argument

indicates that one should be able to construct a holographically-renormalized bulk action

for spacetimes with finite-tension cosmic branes anchored on the boundary, and similarly

for spacetimes with boundary-anchored fixed-area surfaces. We hope to return to the

explicit construction of such actions in subsequent work.
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It would also be interesting to explore other properties of fluctuations about holo-

graphic bulk saddles. In particular, we saw above that fluctuations smooth out the

classically-sharp RT phase transition of the entanglement entropy into a smooth crossover.

But in addition to this entropy, RT phase transitions also control the size and shape of

the bulk entanglement wedge that can be recovered from a given boundary region R.

Fluctuations in bulk geometry should thus play a key role in smoothing out such transi-

tions in the bulk reconstruction map. Indeed, a natural extrapolation of our use of the

diagonal approximation in section 2.3 would be to also assume that we may approximate

the bulk reconstruction map at any Ā1 − Ā2 by using ρD from (2.12), and taking the

map to be the standard one determined by min(A1, A2) for each term in the sum over

fixed-areas A1, A2. This seems like to follow from the diagonal conjecture for entropy via

a suitable generalization of the arguments in [75] and [24], though we leave exploration

of the implications this conjecture and full justification for future work.
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Chapter 3

The spacetime geometry of

fixed-area states in gravitational

systems

3.1 Introduction

The study of entropy and quantum entanglement is a central focus of modern treat-

ments of the AdS/CFT correspondence and its possible generalizations. In general, for a

given boundary region R, the Hubeny-Rangamani-Takayanagi (HRT) [27] generalization

of the Ryu-Takayanagi formula [66] tells us that the entropy of region R in the dual

CFT is given by A[γR]
4G

where G is the bulk Newton constant and A[γR] is the area of the

smallest extremal surface γR satisfying both ∂γR = ∂R and the requirement that R and

γR be homologous within some Cauchy surface [77, 78]. The proof of this relation [34]

generalizes the Lewkowycz-Maldacena argument [33] for the time-symmetric case.

As a result, the area A[γR] of the HRT surface γR plays a critical role in many

discussions of AdS/CFT. It is thus natural to study bulk states in which the distribution
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of A[γR] is sharply peaked with only very small fluctuations. Such ‘fixed-area’ states were

introduced in Refs. [48, 47] to reproduce the entanglement properties of simple tensor

network models of quantum error correction1 [98, 99] and have since proved to be useful

for a variety of constructions and analyses; see e.g. [79, 73, 100, 38, 7, 72, 101]. This

is in part due to the fact that the replica trick is particularly straightforward to apply

to fixed-area states, as there is a sense in which the usual back-reaction associated with

replica numbers n 6= 1 vanishes for fixed-area states [48, 47].

Our goal here is to explore and elucidate the spacetime geometries associated with

such states. While the original works [48, 47] observed that saddles for Euclidean path

integrals preparing such states will generally feature conical singularities at the fixed-area

surface, the spacetime geometry intrinsic to fixed-area states has received relatively little

attention. This has led to some confusion in the literature, especially with regard to

the relation between fixed-area states and the microcanonical thermofield-double in the

presence of a time-translation symmetry [102]. We now discuss this apparent puzzle as

an appetizer to our general treatment of the spacetime geometry of fixed-area states.

A possible confusion: the Microcanonical TFD vs Fixed-area

states

Fixed-area states may be constructed by starting from a seed state |ψ〉 and applying

a quasi-projection operator that, for a given boundary region R, restricts the probability

distribution of the HRT area to be sharply peaked around a particular value A0. From

Refs. [48, 47], it is also known that the entanglement spectrum of a fixed-area state

is quite flat, so that the eigenvalues of the modular Hamiltonian K̂R are also sharply

peaked.

1Though one may also construct similar tensor network models with more general entanglement
properties by adding additional degrees of freedom to the tensor network [97].
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Figure 3.1: Left: Starting from a TFD state with inverse temperature β0, fixing
the area of the HRT surface γR, corresponding to the time slice τ = 0, results in
a Euclidean saddle with a conical singularity (red) with opening angle 2πm, where
m = β0

β . Right: The same state prepared as a microcanonical TFD state by imposing
asymptotic fixed energy boundary conditions. This results in a smooth Euclidean
saddle with boundary length β. The Z2 symmetric Cauchy slice Σsym (green and
blue) on both saddles has identical data and thus, results in identical Lorentzian
spacetimes upon time evolution.

74



The spacetime geometry of fixed-area states in gravitational systems Chapter 3

A particularly simple case is one in which the seed-state |ψ〉 is a thermofield-double

(TFD) state for which the bulk geometry has a static Killing field with bifurcate horizon;

i.e., in the bulk |ψ〉 describes a standard 2-sided black hole. Since |ψ〉 is the TFD state,

the norm 〈ψ|ψ〉 is computed by a Euclidean thermal path integral with boundary S1×X

for some X, where the metric on this boundary is also a product. It is easiest to visualize

the associated bulk saddles when the bulk is 2-dimensional as in the case of Jackiw-

Teitelboim gravity (where by ‘area’ we mean the value of the dilaton). In that case, a

bulk saddle can be represented as a disk in which there is a preferred point that represents

the Euclidean horizon, see Fig. 3.1.

We wish to consider the state constructed from |ψ〉 by fixing the area of the Euclidean

horizon. In this case, the Euclidean horizon coincides with the HRT surface for the region

defined by taking all of X at some point (which we may call τ = 0) on the S1. As

described in Ref. [47], the corresponding fixed-area state is defined by the path integral

with the same asymptotically AdS boundary conditions as the one that defines |ψ〉, but

where the area of this HRT surface is also fixed to some A0 as a boundary condition.

Since we do not integrate over that area, saddles for this path integral need not satisfy

the corresponding equation of motion at the HRT-surface. In particular, such saddles

need not be smooth, and can instead have a conical singularity of arbitrary (constant)

strength along the HRT surface.

If we consider saddles that preserve all symmetries, then in many cases there will be

an analogue of Birkhoff’s theorem which states that, at least locally, the possible bulk

solutions are just the set of appropriately-symmetric (Euclidean) black holes. Fixing

A[γR] to some A0 will then select precisely one such solution. But the period β of the

smooth Euclidean black hole with horizon area A0 will not generally match the period

β0 of the S1 at infinity. Nevertheless, we can use the freedom to introduce a conical
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singularity at γR (in this case with deficit angle 2π
(

1− β0

β

)
) to change the period of this

solution to match β0; see Fig. 3.1.

On the other hand, as discussed in Ref. [47], one expects that in the leading semiclas-

sical approximation the above fixed-area state will be equivalent to the microcanonical

thermofield double so long as the area A0 chosen above is not too small (so that the

microcanonical ensemble is dominated by AdS-Schwarzschild black holes). The point

here is that the seed state |ψ〉 above was chosen to be the usual (canonical) thermofield

double, and so has modular Hamiltonian

K̂R = βH + logZ, (3.1)

where H is the boundary Hamiltonian and the second term makes up the normalization.

Furthermore, for each energy E (again chosen to not be too small), the entropy is maxi-

mized by states that are well-described by an AdS-Schwarzschild black hole with horizon

area A determined by E. As a result, restricting the canonical TFD to a narrow band of

energies is essentially the same as restricting to a narrow band of areas.

The interesting point then is that the restriction on energies can be implemented by

performing an inverse Laplace transform. This can be done semiclassically by integrating

over boundary length β to find a saddle with definite energy. Unlike the above fixed-area

saddle, the corresponding Euclidean geometry is just a smooth disk with period β at

infinity determined as usual by the energy, or equivalently by the horizon area. See e.g.

[103, 45]. Note also that in this case the period at infinity was not fixed as a boundary

condition, but was determined dynamically by the saddle-point conditions.

Naively, it may appear that the conical defect appearing in the fixed-area state de-

scription might leave some singular imprint on the Lorentzian spacetime described by

that state. In contrast, it is clear that no such issue arises for the microcanonical TFD.
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Nevertheless, we will argue that these indeed lead to the same smooth Lorentzian classical

solution.

Note in particular that the fixed-area Euclidean solution has a Z2 symmetry that

leaves invariant a particular slice, Σsym. The Z2 symmetry implies that Σsym has van-

ishing extrinsic curvature2 Kij = 0, so the data on Σsym also provides Cauchy data for a

Lorentzian solution. Furthermore, the U(1) symmetry of the Euclidean solution means

that the induced metric hij on Σsym is just the usual induced metric on the surface of

time-symmetry associated with the black hole of area A0. In particular, the conical sin-

gularity leaves no imprint on either hij or Kij. Thus, the resulting Lorentzian spacetime

is completely smooth until one reaches the usual black hole singularities. In particular,

this Lorentzian spacetime is completely smooth at the HRT surface of interest. And since

the corresponding Σsym in the microcanonical TFD saddle has precisely the same hij and

Kij, it defines precisely the same Lorentzian solution.

Now, the above setting is not generic, and it turns out that the Lorentzian solutions

generally become singular when the U(1) symmetry is broken. but these are power law

singularities, not conical singularities or strict shockwaves. We will describe the details

of these singularities in Sec. 3.4.4 below.

Overview

Our treatment begins in Sec. 3.2 with a brief review of fixed-area states and their

preparation via path integrals. As mentioned above, a common algorithm [48, 47, 73]

for constructing fixed-area states involves first using a standard Euclidean (or, more

generally, complex) path integral to construct a more familiar semiclassical bulk state

and then modifying this prescription to fix the area of A[γR]. This then allows us to

2Subtleties in this argument associated with the fact that Σsym passes through the defect will be
discussed in Sec. 3.2.1 below.
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study the spacetime geometry of the fixed-area state in terms of the boundary conditions

imposed on the above Euclidean path integral. Sec. 3.2 extends previous such discussions

by using Schwinger-Keldysh-like constructions to study the spacetime geometry intrinsic

to the fixed-area state itself and to cleanly separate this geometry from that associated

with sources used to prepare the state.

While fixed-area states can be of use in constructing replica saddles, and while real-

time replica saddles require complex metrics [6, 4], we will show that the spacetime

metrics in fixed-area states are generally real at real times. Furthermore, they have no

conical singularities.

As emphasized earlier, a U(1) symmetric Euclidean solution results in a smooth

Lorentzian spacetime. We thus analyze various examples where this U(1) symmetry is

broken to demonstrate the features of generic fixed-area states. Our main analyses will

be performed at the classical level, though we will comment on quantum effects at the

end.

We first discuss a warmup example in Sec. 3.3 where we consider a non-gravitational

scalar field theory in 1 + 1 dimensions. This highlights the prominent features that we

expect from fixed-area states such as the existence of power law divergences in the scalar

field on the lightcone of the fixed-area surface.

We then move on to a general discussion of the structure of the Lorentzian space-

times of fixed-area states in gravitational theories. We propose a general ansatz for

the form of the classical solution in Sec. 3.4.1. We then construct detailed examples in

Jackiw-Teitelboim (JT) gravity and AdS3×X for compact X in Sec. 3.4.2 and Sec. 3.4.3

demonstrating the validity of our ansatz. The general structure of the above-mentioned

singularities on the light cone of the fixed-area surface are analyzed in Sec. 3.4.4. We

close with some final discussion in Sec. 3.5 including comments on higher derivative and

quantum corrections.
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3.2 Schwinger-Keldysh path integrals for fixed-area

states

As described in Sec. 3.1, fixed-area states are simply states of gravitational systems

in which the distribution of some HRT-area operator A[γR] is sharply peaked, i.e. the

width ∆A is small. Let us first discuss precisely what we mean by sharply peaked.

As anticipated in Ref. [104] and as established in Refs. [105, 106], in the semiclassical

approximation the action of A[γR]
4G

is given by a so-called boundary-condition-preserving

kink transform, which in particular induces a relative boost between the two entanglement

wedges of some rapidity s. From the uncertainty relation, we have

∆A∆s & O(G), (3.2)

where s is the relative boost between the two entanglement wedges on either side of the

HRT surface. Depending on the value of ∆A, we can classify fixed-area states into two

types: pseudo-eigenstates and squeezed states.

Pseudo-eigenstates are very sharply peaked and have ∆A ∼ O(Gα) with α ≥ 1. This

leads to ∆s → ∞ in the semiclassical limit. As a result, we do not expect a single

geometry to describe such states. On the other hand, squeezed states have ∆A ∼ O(Gα)

with α ∈ (1
2
, 1). Such states are expected to have a semiclassical description, and yet have

∆A parametrically smaller than states usually constructed by Euclidean path integrals

[103]. Here we shall focus on such squeezed states and describe their associated Lorentzian

spacetimes.

Now, fixed-area geometries must of course have a specified value of A[γR]. But as

noted above, so long as we consider the squeezed state case (so that A[γR] is not specified

too precisely), we expect that the state can remain semiclassical. And since there are no
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other constraints, one further expects that all other aspects of the semiclassical spacetime

geometry can be chosen arbitrarily (so long as they solve the equations of motion).

However, as described in Refs. [48, 47, 73], one is typically interested in starting with some

semiclassical bulk state |ψ〉, perhaps constructed using a gravitational path integral, and

then applying a projection-like operator3 ΠR that restricts this state to a range of A[γR]-

eigenvalues of some small width ∆A about a central value A0. We will thus investigate

the spacetime geometries of fixed-area states that arise from such constructions and in

particular their relation to the path integral boundary conditions used to define |ψ〉.

Recall that the squeezed state regime α ∈ (1
2
, 1) described above suffices to fix the

value of A in the semiclassical limit G → 0. In particular, in that limit we may use

the recipe described in Refs. [47, 73] for studying |ψ〉A0 := ΠR|ψ〉. The recipe begins by

supposing that we have already constructed a gravitational path integral that computes

the original state |ψ〉, which in particular means that we are given boundary conditions

for that path integral. From the bulk point of view we can think of the new state

|ψ〉A0 as being created from |ψ〉 by the insertion of additional sources on γR, though

of course the location of γR must be determined dynamically in a manner that takes

into account the back-reaction from those sources. As explained in Refs. [47, 73], in the

saddle-point approximation this means that saddles for |ψ〉A0 can be taken to satisfy the

same asymptotic AdS boundary conditions as |ψ〉 (with precisely the same sources at

the asymptotic boundary), so long as we also 1) impose the usual equations of motion

away from γR, 2) allow the bulk to have a codimension-2 conical singularity of arbitrary

strength on a locus γR homologous to R and satisfying ∂γR = ∂R, 3) choose the strength

of the conical singularity so that A[γR] = A0, and 4) impose appropriate boundary

conditions at γR.

3We use the term “projection-like operator” to mean a Hermitian operator for which the variance
of A[γR] is small in the state |ψ〉A0 := ΠR|ψ〉. We do not require Π2

R = ΠR. In particular, we might

consider a Gaussian ΠR = e−
(A[γR]−A0)2

2σ2 with some small width σ.
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In particular, in Euclidean signature, Appendix A of Ref. [73] shows that the Eu-

clidean Einstein-Hilbert action (including the delta-function term in the Ricci scalar

associated with the conical singularity at γR) defines a good variational principle for this

problem when the metric near γR takes the following form:

ds2 = dzdz̄ + T
(z̄dz − zdz̄)2

zz̄
+ hijdy

idyj + 2iWjdy
j(z̄dz − zdz̄), (3.3)

T = ô(1), ∂rT =
ô(1)

r
, ∂rhij =

ô(1)

r
, ∂rWj =

ô(1)

r
, (3.4)

where z is defined as z = reimθ with θ ∼ θ + 2π, and T , hij, and Wj are functions of all

coordinates (z, z̄, yi). Furthermore, ô(1) denotes terms that vanish in the r → 0 limit at

least as fast as some power law rη with η > 0.4 We refer to the conditions imposed by

Eq. (3.3), (3.4) as boundary conditions to be imposed on Euclidean metrics at γR.

We emphasize that the conical singularities on the surfaces γR are associated with

insertions of the operator ΠR and, as such, they represent features of the way that the

state |ψ〉A0 is being prepared rather than a feature intrinsic to the state itself. Indeed, if

we can find another state |ψ̃〉 described by a smooth bulk saddle which yields the same

fixed-area state up to quantum corrections

|ψ̃〉A0 = ΠR|ψ̃〉 ≈ ΠR|ψ〉 = |ψ〉A0 , (3.5)

but where the saddle-point value of A[γR] in the state |ψ̃〉 is already A0, then the fixed-

area saddle with asymptotically-AdS boundary conditions associated with the state |ψ̃〉

will be smooth regardless of the strength of the conical singularity in the original saddle

defined by the asymptotically-AdS boundary conditions associated with |ψ〉.

To study the geometry intrinsic to the state |ψ〉A0 , we should instead compute corre-

4This fixes a typo in v1 of Ref. [73].
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lation functions in this state (which in the semiclassical limit should then factorize into

a product of one-point functions). We thus consider

A0〈ψ|gµ1ν1(x1) . . . gµnνn(xn)|ψ〉A0 = 〈ψ|ΠRgµ1ν1(x1) . . . gµnνn(xn)ΠR|ψ〉, (3.6)

where issues related to the gauge-dependence of the gµiνi(xi) will not affect our discussion

and will thus be ignored. Note that it is critical that there are two insertions of the

operator ΠR in Eq. (3.6). In particular, even if ΠR were an exact projector, the fact

that ΠR will generally not commute with gµiνi(xi) would make it difficult to use such

a property to remove either copy of ΠR. Note also that the operators that sample the

desired geometry naturally live between the two projectors.

We may thus construct a path integral that computes Eq. (3.6) by first constructing

path integrals for the bra and ket wavefunctions A0〈ψ| = 〈ψ|ΠR and |ψ〉A0 = ΠR|ψ〉

and then using these wavefunctions as boundary conditions for a path integral that

computes correlators of the gµiνi(xi). The first step above is identical to constructing path

integrals for the unconstrained bra and ket states 〈ψ| and |ψ〉, except for the insertion of

a constraint on the area of γR. Thus the final path integral involves constraints on two

such surfaces γR (though these surfaces may sometimes coincide).

We should of course add suitable sources T µiνi(xi) to the action with respect to which

we can vary to obtain the desired insertions of gµiνi(xi). However, we see that in an

appropriate sense we will make such variations only in the region between the two surfaces

γR. Saddles for this problem will thus have two codimension-2 conical singularities, and

it is only the region of the spacetime that in some sense lies between those singularities5

that can be directly interpreted as the geometry intrinsic to the fixed-area state |ψ〉A0 .

In particular, in the leading saddle-point approximation we can simply set the sources

5We will explain the correct sense in more detail shortly. This sense will be clearest in Lorentz
signature where the Cauchy problem is well-posed.
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T µiνi(xi) to zero and take the insertions of gµiνi(xi) to report the saddle-point value of

the metric at the point xi. In that sense it is in fact sufficient to study the path integral

that computes the norm

A0〈ψ|ψ〉A0 = 〈ψ|Π2
R|ψ〉. (3.7)

3.2.1 Saddle points for fixed-area path integrals

We now wish to describe the saddle points of this path integral. The constraints

on the areas of the γR surfaces mean that we do not integrate over these areas and,

as a result, two of the Einstein equations need not be satisfied by our saddles, one

at each of the two γR surfaces. As explained in Refs. [48, 47, 73], this extra freedom

allows conical singularities of arbitrary strength on each γR-surface. While the conical

deficit or excess must be constant along each such surface, the fact that the constraints

remove two Einstein equations means that the strengths of the singularities on the two

γR surfaces may be chosen independently. Furthermore, the idea that our path integral

may be thought of as computing matrix elements associated with the bra and ket states

A0〈ψ|, |ψ〉A0 , and that each contributes one of the conical singularities, suggests that one

should be able to cut the saddle M into two pieces M1,M2 along some codimension-1

surface Σcut (so that ∂M1 ⊃ Σcut ⊂ ∂M2) such that M1,M2 each contain only one

of the γR surfaces, see Fig. 3.2. We will thus impose this requirement below, with the

understanding that we think of each piece as being closed so that Σcut ⊂M1,M2. Thus,

this condition can be satisfied in the degenerate case where the two γR surfaces at least

coincide (in part or in whole) by taking Σcut to pass through the locus of this coincidence.

Note that this restriction requires the tangent spaces of the surfaces γR to coincide at

any point where the two surfaces intersect.

Now, in many cases the state |ψ〉 will have been constructed by specifying boundary
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Figure 3.2: The saddle point manifoldM for 〈ψ|Π2
R|ψ〉 can be split into two partsM1

and M2 along a slice Σcut such that there are two conical defects (red) at γR, with
one on the bra side of the cut and the other on the ket side. On the right, we have
added a regulator ε that moves each of the resulting singularities away from the cut.
The original M should be understood as the limit ε → 0 where the two γR surfaces
coincide.

conditions on a Euclidean asymptotically-AdS boundary. But we may nevertheless be

interested in the metric gµiνi(xi) at real times ti. In this case our path integral will

integrate over spacetimes which follow a Schwinger-Keldysh-like contour through the

plane of complex times. Nevertheless, since ΠR is Hermitian the expression Eq. (3.7) is

manifestly real. As a result, the path integral will have a Z2 symmetry that exchanges the

parts of the boundary associated with boundary conditions for 〈ψ| and for |ψ〉 and which

simultaneously acts by complex-conjugation. Since this symmetry acts as a reflection

(and conjugation) on the asymptotically AdS boundary, any bulk saddleM that preserves

this conjugation symmetry must have a codimension-1 surface Σsym that is invariant

under the action of this Z2 symmetry6 as shown in Fig. 3.3. We will consider only such

6The argument uses the fact that our asymptotically AdS boundary conditions requireM to have a C1

conformal compactification so that at each point on the boundary the conformally rescaled spactime can
be approximated by a Euclidean half-space. One may then show the existence of Σsym by exhaustively
studying the symmetries of the Euclidean plane.
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Figure 3.3: (a) The saddle point for 〈ψ|ΠR(0)O(t0)ΠR(0)|ψ〉 has two conical defects
(red) at γR on the bra and ket side respectively. It has a Z2 symmetry that leaves
invariant the Cauchy slice Σsym (green). This slice splits the saddle into two parts
M1 and M2. The region of the saddle point shaded light blue can be thought of as
the spacetime inherent to the fixed-area state, while the yellow portion is involved in
the preparation of the state. We may take the blue portion to lie at real Lorentzian
times and the yellow portion to lie at real Euclidean times. In that sense, the two blue
portions each involve the same interval of real Lorentzian times and should perhaps be
drawn as being degenerate with each other, but we have separated the pieces for ease of
visualization. (b) The corresponding Schwinger-Keldysh contour in the complex-time
plane.

saddles below.

For the moment, let us assume Σsym does not intersect either surface γR so that it

lies in a smooth region of the saddle-point spacetime. In this case, Σsym has a well-

defined induced metric hij and extrinsic curvature. We will use the symbol KE
ij to denote

the extrinsic curvature defined using Euclidean conventions, and we will use KL
ij = iKE

ij

to denote the extrinsic curvature defined using Lorentz-signature conventions. Since all

equations of motion are satisfied on Σsym, the data hij, K
E
ij (or hij, K

L
ij), i.e., the metric

and extrinsic curvature will clearly satisfy the relevant constraint equations. Furthermore,

the invariance of Σsym under the conjugation symmetry means that hij must be real
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and the real part of KE
ij must vanish. This of course simply means that KE

ij is purely

imaginary, or equivalently that KL
ij is real. In other words, just as in the analysis of

real-time replica wormholes in Ref. [6], symmetry requires Σsym to define Cauchy data

appropriate to the Lorentz-signature initial value problem.

Let us now consider the case where Σsym intersects some γR at some point x. In this

case one might worry that the extrinsic curvature of Σsym at x is not well-defined. In

particular, consider surfaces Σ± on either side of Σsym, where we take the conjugation

symmetry to interchange Σ+ and Σ−. When there is a conical singularity at x, the sur-

faces Σ± will have different extrinsic curvatures at x even in the limit where Σ± → Σsym.

Indeed, with Euclidean signature conventions the real parts of their extrinsic curvatures

will have delta-functions along γR of opposite signs. In contrast, the conjugation symme-

try requires that the imaginary parts of their KE
ij tensors match, so this imaginary part

is continuous and unambiguous.

Since the two surfaces γR are in principle independent, the case where they intersect is

just a degenerate limit of the more general case where they do not. As noted above, when

they do not intersect the conjugation symmetry requires the real part of the extrinsic

curvature of Σsym to vanish. We will thus define this to also be the case when the γR

intersect. In effect, this is the statement that we should define the extrinsic curvature on

Σsym by first regulating the problem in a manner that separates the γR surfaces (with

Σsym lying between them) as shown in Fig. 3.2. We then take a limit where the regulator

is removed.7 But in practice it suffices to simply compute the (well-defined) imaginary

part of KE
ij and to take the real part of KE

ij to vanish.

Now, when γR intersects Σsym at x, the conical singularity on γR also means that

7Similar reasoning tells us that we can always take the conical singularities to lie inside the Euclidean
region. This means that the boundary conditions described by Eqs. (3.3) and (3.4) suffice to treat them.
The case where the conical singularities lies at the boundary between the Euclidean and Lorentzian
region is to be regarded as a limit of the case where the singularities lie entirely in the Euclidean region
of the contour.
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Figure 3.4: The saddle can be extended in the real time direction by evolving using
the data on Cauchy slice Σsym. As an example, we depict the Schwinger-Keldysh
contour for forward evolution up to surface Σ2 and backward evolution up to surface
Σ1.

some equations of motion are not satisfied at x. However, the fact that we required the

existence of Σcut means that the conjugation symmetry must exchange the two surfaces

γR. As a result, each point of the fixed-point set Σsym that intersects one copy of γR

must in fact intersect both copies. Furthermore, as noted in Ref. [73] (see footnote 15),

conical singularities can be thought of as arising from spacelike cosmic-brane sources that

lie along γR. The effective stress tensor of such branes has non-zero components only

tangent to γR, and in particular tangent to Σsym at any point of intersection. But the

constraints on initial data on Σsym are associated with components of the equations of

motion normal to Σsym, so they receive no contributions from such sources – i.e., even

when γR intersects Σsym the initial data on Σsym satisfies the constraints that guarantee

the initial value problem of the desired theory to be well-posed.

As a result, given any conjugation-symmetric saddle for the path integral that com-

putes Eq. (3.7), we are free to extend it in the real time direction by evolving forward in

time from Σsym up to some new Cauchy surface Σ2 and then backwards from Σ2 back

to Σsym. Indeed, we could just as well evolve backward in time from Σsym to some Σ1

87



The spacetime geometry of fixed-area states in gravitational systems Chapter 3

and then forwards again from Σ1 to Σsym as shown in Fig. 3.4, or we could even insert

additional timefolds and evolve forwards and backwards in any manner that we like. The

new piece of this spacetime corresponding to our excursion along the real-time axis will

be real and Lorentz signature, and will satisfy all of the equations of motion. In particu-

lar, it will be free of conical singularities. Futhermore, extending the saddle in this way

leaves the action of the saddle unchanged because the factors of eiS associated with the

forward-in-time parts of this evolution will precisely cancel the factors of e−iS associated

with the backwards-in-time evolution. It is the geometry along this real-time excursion

that we explore in more detail below. As a final remark we note that this part of the

spacetime lies between the two surfaces γR in the sense that it lies between two copies of

the Cauchy surface Σsym, while the copies of γR lie in the two regions between the copies

of Σsym and the Euclidean asymptotically AdS boundary.

3.3 Warmup: Scalar Field Theory in 1+1 dimensions

We would like to understand fixed-area states in the absence of a U(1) symmetry. In

order to do so, we first discuss a related-but-simpler problem involving a free scalar field

φ in 1+1 dimensions on a fixed conical background. Due to the fixed background, this

example cannot be directly interpreted as involving a fixed-area state. Nevertheless, the

analysis will highlight the key ideas needed for our discussion of dynamical gravity in

Sec. 3.4. There we will analyze the general structure of fixed-area states and illustrate it

with various examples.

As discussed in Sec. 3.2, saddles for Euclidean path integrals preparing fixed-area

states typically contain conical singularities. Here we study a toy model of the influence

of such singularities on solutions to equations of motion by considering saddles for a

scalar field path integral on a fixed conical background. We can choose the time-contour
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Figure 3.5: Left: Euclidean preparation of the state of a scalar field on a conical
background of opening angle 2πm. A source for the scalar field (pink) is present at
the asymptotic boundary and which breaks the U(1) symmetry of the geometry. This
prepares initial data for Lorentzian evolution on the Z2 symmetric slice defined by the
union of the blue half-line at θ = 0 line and the green half-line at θ = π. Note that
there is really only a single blue half-line; the marks on the diagram indicate that the
two copies are to be identified. Right: The initial data prepared by the Euclidean
solution is used to generate the Lorentzian solution in Minkowski space by solving the
equation of motion as described in the main text. The solution at the small black dot
in region II is obtained by propagating the data along left and right-moving light rays
(for a free massless field).
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of the background so that the saddle is purely Euclidean, or we can choose a contour for

which the saddle contains pieces that evolve in real Lorentzian time.

We take the background Euclidean geometry to be the simple U(1)-symmetric cone.

However, we will impose boundary conditions for the scalar field that break this U(1)

symmetry as shown in Fig. 3.5. In particular, the boundary conditions will preserve a Z2

conjugation symmetry. Although the geometry in this example is flat, we will sometimes

refer to these boundary conditions as ‘sources’ using the terminology common in the

AdS/CFT context.

Any scalar field saddle on the Euclidean cone determines values of the scalar field φ

on the Z2 symmetric Cauchy slice. Assuming that the saddle respects this Z2 symmetry,

the real part of the normal derivative of φ must vanish.

As a result, the data on this slice gives Cauchy data for a real solution to the equations

of motion for our scalar in 1 + 1-dimensional Minkowski spacetime (with no conical

singularity). We will see that such solutions have power-law singularities on the past and

future lightcones of the point x = 0. We present the analysis for a massless scalar field

in Sec. 3.3.1 and for a massive scalar field in Sec. 3.3.2, both of which have qualitatively

similar properties.

Since gravity is non-dynamical in this example, at some level we have simply chosen

the Lorentzian spacetime by hand to be a singularity-free Minkowski space. But one may

view this choice as arising from a natural analogue of the discussion surrounding Fig. 3.3.

If a regulator was introduced to split the original Euclidean conical singularity (say,

with conical deficit δ) into two singularities (both with deficits δ/2) while preserving Z2

symmetry, then the symmetric slice would have vanishing extrinsic curvature and induced

metric dx2. This is precisely the data for the t = 0 slice of Minkowski space. One may

also think of the Lorentz-signature Minkowski space as being generated by analytically-

continuing the geometry from the Euclidean region between the singularities.
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3.3.1 Massless Field

Consider a free massless real scalar field on a fixed conical background. The Euclidean

action is given by

Smassless =
1

2

∫
d2x
√
g(∂φ)2, (3.8)

with the standard metric given by

ds2 = dr2 +m2r2dθ2, θ ∈ [0, 2π). (3.9)

In this coordinate system, the time-reflection symmetric slice corresponds to θ = 0 and

θ = π as shown in Fig. 3.5.

In order to have a non-trivial classical solution, we turn on sources for the scalar field

at some large distance cutoff boundary, r = rc, and solve the equations for r ≤ rc. A

simple source we consider which breaks the U(1) symmetry is the boundary condition

φb(θ) ≡ φ(rc, θ) = 2rk/mc cos(kθ) (3.10)

with some positive integer k. This source satisfies ∂θφb|θ=0,π = 0, as would any real source

that preserves the Z2 symmetry θ → −θ. As a result, the slice defined by θ = 0, π provides

initial data for a real Lorentzian solution. Solving the equation of motion associated with

Eq. (3.8) is straightforward. Furthermore, in order for our action to yield a well-defined

variational principle for the scalar field, we require the solution to be finite at r = 0.

This uniquely determines the solution to be

φ(r, θ) = 2rk/m cos(kθ). (3.11)
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The desired Lorentzian initial data is found simply by setting θ = 0, π in Eq. (3.11).

Defining the coordinate X = r when θ = 0 and X = −r when θ = π, we can write the

full initial value of φ in the form

φ0(X) = 2Xk/mΘ(X) + 2(−1)k(−X)k/mΘ(−X). (3.12)

When combined with the condition ∂Tφ(T,X)|T=0 = 0, the data φ(T = 0, X) =

φ0(X) determines a unique Lorentzian solution on Minkowski space (which we take to

have the standard metric ds2 = −dT 2 + dX2).

While this example is simple enough that we could explicitly solve for φ(T,X) ev-

erywhere, it will be instructive to first find the corresponding solutions in the left and

right Rindler wedges marked as regions I and III in Fig. 3.5. The point here is that, by

causality, the analytic continuation θ → θ + it of Eq. (3.11) is guaranteed to coincide in

regions I and III with the Lorentzian solutions constructed above. This follows from the

fact that the analytic continuation gives a Lorentzian solution with the correct initial

data on both the positive and negative X-axes at t = 0, together with the fact that such

data defines a unique solution in each Rindler wedge8. More explicitly, the above analytic

continuation will give φ(X,T ) in e.g. region I using X = r cosh(mt), T = r sinh(mt). The

solutions in regions I, III are thus given by

φ(U, V ) = V k/m + (−U)k/m, (Region I) : V > 0 and U < 0, (3.13)

φ(U, V ) = (−1)k
(
(−V )k/m + Uk/m

)
, (Region III) : V < 0 and U > 0, (3.14)

8 Simple attempts to extend the argument to include the origin X = T = 0 will fail for the simple
reason that the background Euclidean cone is not analytic at this point due to the delta-function Ricci
scalar supported at the tip of the cone. However, we describe a more sophisticated such extension in
Appendix B.2.
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where U, V are the null coordinates

V = T +X, U = T −X. (3.15)

The key issue is then to find the solutions in regions II and IV. Since the initial data

is real, on general grounds we must find a real solution everywhere in the Lorentzian

manifold. On the other hand, starting from Eq. (3.13) and Eq. (3.14), one might naively

expect to find a complex solution when k/m is not an integer, as this is certainly the

result of e.g. analytically continuing V across the horizon at V = 0.

Luckily, the massless field is simple enough to allow us to clarify this issue by finding

the explicit solutions in the past and future wedges. As is well-known, the most general

solution to the massless 1 + 1 Klein-Gordon equation is given by

φ(U, V ) = f(V ) + g(U) (3.16)

for arbitrary functions f, g. Since the data in the left and right Rindler wedges fully

determines both f and g, the full solution must be

φ(U, V ) = V k/m + (−1)k(U)k/m, (Region II) : V > 0 and U > 0, (3.17)

φ(U, V ) = (−1)k(−V )k/m + (−U)k/m, (Region IV) : V < 0 and U < 0. (3.18)

Eqs. (3.17) and (3.18) are clearly real, solve the equation of motion, and induce the

correct initial data on the surface T = 0. Thus they give the desired solutions. We also

describe an alternate construction of the same solution in Appendix B.1.1 by using a

plane-wave basis.

The important feature of Eqs. (3.17), (3.18) is that they display power law behaviour

near the horizons. Furthermore, for generic values of m, sufficiently high derivatives of
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φ(U, V ) diverge. This can already be seen from the initial data at T = 0 in Eq. (3.12),

which due to the time-symmetry of our solutions is closely related to the data on the

horizons U = 0 and V = 0. A similar feature will be true of the metric in the fixed-area

states studied in Sec. 3.4.4, where it will lead to divergent tidal forces.

3.3.2 Massive Field

We now consider the case of a real massive scalar with a mass µ in a “fixed-area” state

in 1+1 dimensional Minkowski space. This example will play a key role in understanding

higher dimensional examples in the presence of gravity. In particular, as we will see later,

the equations near the horizon for a scalar field coupled to gravity in AdS behave similar

to the example studied below. Here the various coordinates and both the Euclidean and

Lorentzian metrics are chosen to be the same as in Sec. 3.3.1.

The equation of motion for the massive field is given by

(∇2 − µ2)φ = 0. (3.19)

In Euclidean signature, we impose the following boundary conditions at r = rc,

φ(rc, θ) = 2Ik/m(µrc) cos(kθ). (3.20)

The regular solution at the origin consistent with this boundary condition is

φ(r, θ) = 2Ik/m(µr) cos(kθ). (3.21)

In much the same way as in the massless case, by changing coordinates to (U, V ) and

performing an analytic continuation one may show the Lorentzian solution in the Rindler
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wedges to be given by

φ(U, V ) = Ik/m(µ
√
−UV )

(
(−V/U)

k
2m + (−U/V )

k
2m

)
, V ≥ 0, U ≤ 0,

φ(U, V ) = (−1)kIk/m(µ
√
−UV )

(
(−V/U)

k
2m + (−U/V )

k
2m

)
, U ≥ 0, V ≤ 0, (3.22)

where Iν(x) is the modified Bessel function of the first kind. Note that as µ → 0, these

solutions approach the massless solutions Eq. (3.13) and Eq. (3.14) (up to a multiplicative

constant associated with the different normalizations of Eq. (3.10) and Eq. (3.20)).

Given the solutions in the Rindler wedges, we can solve the equations of motion to

extend the solution into regions II and IV. In fact, this example is simple enough that we

can simply guess the solution. This is what we do below. But the interested reader may

consult Appendix B.1.2 for a derivation of the result along the line X = 0 performed by

expanding the solution in terms of plane waves.

If we guess that solutions in regions II and IV have the form (V/U)
k

2mG(
√
UV ), then

the equation of motion sets the function G to be a linear combination of Bessel functions

Jk/m(µ
√
UV ) and Yk/m(µ

√
UV ). One can check that only Jk/m(µ

√
UV ) is consistent

with continuity of the solution across the horizons (as U, V → 0), and thus with the

absence of delta-function sources in the equations of motion. The solution is thus given

by

φ(U, V ) = Jk/m(µ
√
UV )

(
(V/U)

k
2m + (−1)k(U/V )

k
2m

)
U ≥ 0, V ≥ 0, (3.23)

φ(U, V ) = Jk/m(µ
√
UV )

(
(U/V )

k
2m + (−1)k(V/U)

k
2m

)
U ≤ 0, V ≤ 0. (3.24)

Note that in (for example) region II, the limit UV → 0 gives φ(U, V ) ∼ V k/m +

(−1)kUk/m which coincides with Eq. (3.17). So for the types of sources we have con-

sidered, the leading behaviour of the solution near the lightcone is determined by the
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massless solution. In particular, the power law divergences found in Sec. 3.3.1 are not

tied to the massless nature of that example, but are generic for all masses. We will find

a similar feature to be true in arbitrary theories of gravity coupled to matter.

3.4 Fixed-area states in gravity

We now turn our attention to the Lorentzian geometry of fixed-area states in the

presence of dynamical gravity. We will show how to obtain the Lorentzian metric from

the Euclidean path integral which prepares the fixed-area state. In Sec. 3.4.1, we begin

with a discussion of the general structure of fields as power series expansions near the HRT

surface in both Euclidean and Lorentzian signature. Then, we illustrate the prescription

for constructing the Lorentz-signature fixed-area state solutions in two simple examples.

In Sec. 3.4.2, we construct exact fixed-area solutions in JT gravity coupled to a scalar field.

In Sec. 3.4.3, we construct fixed-area solutions in AdS3 gravity coupled to a scalar field by

including the effects of backreaction perturbatively. This example illustrates the generic

features of fixed-area states in higher dimensional gravity since it arises from dimensional

reduction. Thus, it complements the example in JT gravity. Finally, Sec. 3.4.4 discusses

singularities on the horizons of fixed-area states in the presence of arbitrary boundary

sources.

3.4.1 General Lorentzian solutions

Before discussing the structure of the Lorentzian solutions, let us first review the

structure of Euclidean conical solutions as analyzed in Ref. [73]. The metric near the
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codimension-2 defect at the HRT surface γR takes the form

ds2 = dzdz̄ + T
(z̄dz − zdz̄)2

zz̄
+ hijdy

idyj + 2iWjdy
j(z̄dz − zdz̄), (3.25)

where yi denotes the transverse directions and (z, z̄) represent the normal directions to

γR. Note z may be written as z = reimθ with θ ∼ θ + 2π. The quantities T, hij and

Wj are functions of all the coordinates (z, z̄, yi). For Einstein gravity minimally coupled

to scalar matter with standard two-derivative actions, the metric components in general

have the following power series expansion in terms of powers of z, z̄ in a neighbourhood

of γR:

T =
∞∑

p,q,s=0
pq>0 or s>0

Tpqs(y
i)zp/mz̄q/m(zz̄)s, (3.26)

Wi =
∞∑

p,q,s=0

Wi,pqs(y
i)zp/mz̄q/m(zz̄)s, (3.27)

hij =
∞∑

p,q,s=0

hij,pqs(y
i)zp/mz̄q/m(zz̄)s, (3.28)

where 2πm is the opening angle of the conical defect at γR. Any scalar matter field φ

has a similar series expansion near the conical defect:

φ =
∞∑

p,q,s=0

φpqs(y
i)zp/mz̄q/m(zz̄)s. (3.29)

In particular, it was demonstrated in Ref. [73] that such a power series expansion near γR

provides a good variational ansatz for finding Euclidean conical solutions with specified

asymptotic boundary conditions.

As discussed previously, the Euclidean solution can be analytically continued to obtain

a solution in each of the Rindler wedges defined by the HRT surface γR. We promote
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Figure 3.6: The Lorentzian spacetime can be divided into four wedges with respect
to the HRT surface γR labelled I-IV. The power series expansion we propose is valid
in the regions shaded pink and blue. The solution in the pink region is obtained
by analytically continuing the Euclidean solution. The solution in the blue region is
obtained by a simple transformation of the analytically continued solution.

the complex coordinates z, z̄ to lightcone coordinates U, V and assuming that the power

series expansion is valid in a tubular neighbourhood |zz̄| ≤ r2
0 around γR, we obtain a

Lorentzian solution in a corresponding hyperboloidal region −r2
0 ≤ UV < 0 as shown in

Fig. 3.6 (shaded pink). For any field φ(U, V ), we obtain a power-series expansion in the

Rindler wedges of the form

φ(U, V ) =
∑

p,q,s

φpqsV
p/m(−U)q/m(−UV )s, U ≤ 0, V ≥ 0,

φ(U, V ) =
∑

p,q,s

(−1)p+qφpqs(−V )p/mU q/m(−UV )s, U ≥ 0, V ≤ 0, (3.30)

In order to construct the solution in the future and past wedges, we first demonstrate

a simple procedure for generating new solutions to the equations of motion. Given a

solution for a field φ(U, V ) in terms of the coefficients φpqs, another solution is given by
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the set of coefficients φ̃pqs = eiα1peiα2qφpqs, where α1,2 are arbitrary constants. This can

be easily seen in the case when m is chosen to be irrational, since terms of the form

V p/mU q/m are linearly independent for different values of p, q. In this case, at any given

order the equations of motion generate a relation for the coefficient φpqs in terms of a

combination of homogenous product of coefficients such as φp1q1s1φp2q2s2 with p1 + p2 = p

and q1 + q2 = q. This makes it clear that multiplying the coefficients by a phase that

linearly depends on p or q doesn’t alter the defining relation arising from the equation of

motion. Thus, the new set of coefficients φ̃pqs also solves the equation of motion.

For rational values of m, one can take the limit from irrational m and the limit is

well-behaved as demonstrated in Ref. [73]. Since the Lorentzian equations of motion

we are analyzing here are Wick-rotated versions of the Euclidean equations of motion

analyzed there, the same arguments go through in our case.

In general, this new solution would not be as useful since it is complex while one

is usually interested in a real solution given real initial data. However, in our problem,

this transformation will turn out to be useful in generating real solutions in the past and

future wedges. In particular, we propose that the solution in these regions take the form:

φ(U, V ) =
∑

p,q,s

(−1)s+qφpqsV
p/mU q/m(UV )s, U ≥ 0, V ≥ 0,

φ(U, V ) =
∑

p,q,s

(−1)p+sφpqs(−V )p/m(−U)q/m(UV )s, U ≤ 0, V ≤ 0, (3.31)

The above power series can be obtained from Eq. (3.30) by applying a phase rotation to

the coefficients that is linear in p, q as described above. This ensures that it solves the

equations of motion. It is also easy to check that this ansatz agrees with Eq. (3.30) on

all horizons, and so satisfies the desired initial data on these null surfaces. Uniqueness

of the null initial value problem then guarantees that the correct solution will be of this
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form. Indeed, one can directly check that the solutions in Sec. 3.3 take this form. We

now demonstrate this procedure in more detail in various explicit examples in JT gravity

and AdS3.

3.4.2 Example 1: JT Gravity + Matter

We begin with an example involving JT gravity minimally coupled to a massless real

scalar field. We use Φ to represent the dilaton in order to distinguish it from the matter

field φ. This case is sufficiently simple that the equations of motion can be solved exactly

with arbitrary boundary sources [107]. We first solve for the dilaton profile in Euclidean

signature, and then obtain the Lorentzian solution using the initial value formulation.

The Euclidean metric for a fixed-area state in AdS2 is

ds2 =
dzdz̄

(1− zz̄/4)2
, (3.32)

where z = reimθ and z̄ = re−imθ with m chosen to satisfy boundary conditions at Eu-

clidean infinity. On the cutoff surface zz̄ = r2
c = 4(1−mε)2 where ε is small, we impose

a boundary condition on the matter field φ,

φ = 2rk/mc cos(kθ). (3.33)

The equation of motion for the massless scalar field is invariant under conformal trans-

formations and thus, the solution is the same as the solution on a flat cone in Sec. 3.3.1.

Thus, we obtain the solution

φ = zk/m + z̄k/m. (3.34)
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The stress tensor for this solution is

Tzz(z) = (k/m)2z2(k/m−1), Tz̄z̄(z̄) = (k/m)2z̄2(k/m−1), Tzz̄ = 0, (3.35)

and the dilaton equation of motion is [107]

−(1− zz̄/4)−2∂µ
(
(1− zz̄/4)2∂νΦ

)
= Tµν . (3.36)

We thus find

Φ =

∫ z

dx
(1− z̄x/4)(x− z)

(1− zz̄/4)
Tzz(x) +

∫ z̄

dx
(1− zx/4)(x− z̄)

(1− zz̄/4)
Tz̄z̄(x) + Φ0

= (z2k/m + z̄2k/m)
(k/m) ((1 + 2k/m) + (1− 2k/m)zz̄/4))

2(1− 4k2/m2)(1− zz̄/4)
+ Φ0, (3.37)

where Φ0 can be any solution to pure JT gravity without matter, i.e.,

Φ0 =
a+ dzz̄

1− zz̄ , (3.38)

for any constants a and d. Note that the ambiguity in choosing the lower limits of the

integrals can be absorbed into Φ0, and possible linear terms of the form bz + cz̄ in the

numerator of Φ0 are discarded since they do not respect the Z2 symmetry and periodicity

θ → θ + 2π.

We choose to study an example where the pure gravity solution is the fixed-area state

defined by a Euclidean black hole at inverse temperature β, so that [107]

Φ0 = mΦb
1 + zz̄/4

1− zz̄/4 , (3.39)
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with β/ε the length of the boundary curve and Φb/ε the boundary dilaton value.9

The next step is to inspect the initial value for the dilaton on the T = 0 surface,

which will then be used to construct the Lorentzian solution. The Z2 symmetric slice is

given by the union of the surfaces θ = 0 and θ = π. For 0 < X < 2 we take X = r, and

for −2 < X < 0 we take X = −r. The initial value for Φ is thus

Φ|T=0(X) =
(
X2k/mΘ(X) + (−X)2k/mΘ(−X)

) (k/m) ((1 + 2k/m) + (1− 2k/m)X2/4)

(1− 4k2/m2)(1−X2/4)

+mΦb
1 +X2/4

1−X2/4
. (3.40)

In the Lorentzian spacetime, the metric may always be written in the form

ds2 = − dUdV

(1 + UV/4)2
, (3.41)

with the asymptotic boundaries being located at UV = −4.

We start by finding the solution for the scalar field. Since this field satisfies the

massless wave equation, and since this wave equation is conformally invariant, the result

is identical to that in the non-gravitational example in Sec. 3.3.1, i.e.,

φ(U, V ) = V k/m + (−U)k/m, (Region I) : V > 0 and U < 0, (3.42)

φ(U, V ) = V k/m + (−1)k(U)k/m, (Region II) : V > 0 and U > 0, (3.43)

φ(U, V ) = (−1)k
(
(−V )k/m + Uk/m

)
, (Region III) : V < 0 and U > 0, (3.44)

φ(U, V ) = (−1)k(−V )k/m + (−U)k/m, (Region IV) : V < 0 and U < 0. (3.45)

9One may observe that, in our full solution (3.37), as we approach the cutoff surface zz̄ → rc, the
dilaton Φ does not approach a constant. This may appear inconsistent with the usual boundary condition
Φ|r=rc = const in JT gravity. However, we can instead choose to reformulate the boundary conditions
by finding a surface on which the dilaton is in fact constant in our solution and then using the scalar
field profile on the given surface as the boundary condition we impose for the scalar field. We simply
choose the above formulation for convenience.
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This yields the stress tensor

TUU(U) = (k/m)2
(
U2(k/m−1)Θ(U) + (−U)2(k/m−1)Θ(−U)

)
, (3.46)

TV V (V ) = (k/m)2
(
V 2(k/m−1)Θ(V ) + (−V )2(k/m−1)Θ(−V )

)
, (3.47)

TUV = 0. (3.48)

Following Ref. [107], the dilaton solution in the Lorentzian spacetime can then be com-

puted as

Φ =

∫ U

dx
(1 + V x/4)(U − x)

(1 + UV/4)
TUU(x) +

∫ V

dx
(1 + Ux/4)(V − x)

(1 + UV/4)
TV V (x) + Φ̃0, (3.49)

where

Φ̃0 =
A+BU + CV +DUV

1 + UV/4
. (3.50)

The full Lorentzian solution can then be constructed by performing the integrals

in Eq. (3.49) and choosing integration constants to the prescribed initial values from

Eq. (3.40). Doing so leads us to the result

Φ = f(U, V )
(k/m) ((1 + 2k/m)− (1− 2k/m)UV/4)

2(1− 4k2/m2)(1 + UV/4)
+mΦb

1− UV/4
1 + UV/4

, (3.51)
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where

f(U, V ) = V 2k/m + (−U)2k/m, (Region I): U < 0, V > 0 (3.52)

f(U, V ) = V 2k/m + U2k/m, (Region II): U > 0, V > 0 (3.53)

f(U, V ) = (−V )2k/m + U2k/m, (Region III): U > 0, V < 0 (3.54)

f(U, V ) = (−V )2k/m + (−U)2k/m, (Region IV): U < 0, V < 0. (3.55)

One can then verify that the above expressions solve the equations of motion, and one

can also check that the solution satisfies the general power series expansion described in

Sec. 3.4.1. Importantly, despite the appearance of singularities on the lightcone of the

HRT surface, the solution is smooth in the interior of both the past and future wedges.

3.4.3 Example 2: AdS3 coupled to a massless scalar field

We now consider an example of a fixed-area state geometry for AdS3 gravity minimally

coupled to a real scalar field. The corresponding Euclidean problem was analyzed in detail

in Ref. [33] for the case m = 1/n with n ∈ Z+ where it was interpreted as a Euclidean

replica geometry. Here we extend the calculation in Ref. [33] to conical defects with

arbitrary strength m and focus on the Lorentzian solution whose initial data agrees with

the Euclidean solution on the surface of time-symmetry.

An interesting feature of this example is the connection to gravity in higher dimen-

sions. As mentioned in Ref. [33], solutions of the form AdS3 × S3 × T 4 give rise to three

dimensional gravity coupled to two massless real scalar fields. One obtains scalar fields

φ1 and φ2 from the metric components of T 4 when parametrized in the form

ds2
T 4 = e2φ1dy2

1 + e2φ2dy2
2 + e−2φ1dy2

3 + e−2φ2dy2
4. (3.56)
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Studying the fixed-area state solution of the scalar field and metric components in this

example is thus directly related to fixed-area states in pure gravity in higher dimensions.

In particular, as we will discuss, the Lorentz-signature singularities of the scalar field that

arise from the presence of the conical defect in the Euclidean preparation correspond to

geometric singularities (and generally to Weyl curvature singularities) of the higher-

dimensional gravity theories. For simplicity and clarity, we will set φ2 = 0 and denote

φ = φ1 as the only relevant scalar field.

We now turn to the actual preparation of our fixed-area state solution. As usual,

we start in Euclidean signature and use the result to determine the initial data for the

Lorentzian scalar field and metric. Following Ref. [33], we solve the Euclidean equation

of motion for the massless real scalar field and the metric perturbatively by assuming

that the source for the scalar field is small. To zeroth order, the metric of Euclidean

AdS3 with a conical defect of strength m is given by

ds2 =
dr2

r2 + 1
+m2r2dθ2 +m2(r2 + 1)dy2, (3.57)

where θ ∈ [0, 2π). Here we set lAdS = 1. The transverse coordinate y does not play a

role for the class of solutions considered here and can be chosen to be either compact or

non-compact. The factor of m2 in the last term in Eq. (3.57) is chosen to ensure that

when y is compact with fixed period, the conformal structure of the boundary torus is

independent of m.

We turn on a non-trivial source for the scalar field by imposing the following boundary

condition at a cutoff surface r = rc,

φ|r=rc = 2η cos(kθ). (3.58)
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The equation we are solving is

∇µ∇µφ = 0, (3.59)

and the solution is then given by

φ = 2η cos(kθ)
fm,k(r)

fm,k(rc)
, fm,k(r) = rk/m2F1

(
k

2m
,
k

2m
+ 1,

k

m
+ 1,−r2

)
. (3.60)

Using the solution for the scalar field, the stress tensor can be decomposed in terms of

Fourier modes,

Tµν = ∇µφ∇νφ−
gµν
2

(∇φ)2 (3.61)

= T 0
µν + T+

µνe
2ikθ + T−µνe

−2ikθ. (3.62)

We can then use the above result to solve the metric equations at leading order in η.

Following the ansatz in Ref. [33], we write the perturbed metric as

ds2 =
dr2

r2 + 1 + g(r, θ)
+m2r2dθ2 +m2(r2 + 1)(1 + v(r, θ))dy2, (3.63)

where g(r, θ), v(r, θ) consist of three fourier modes in the angular direction, e.g.,

g(r, θ) = g0(r) + g+(r)e2ikθ + g−(r)e−2ikθ. (3.64)

The Einstein equations after dimensional reduction are then given by,

Rµν −
gµν
2

(R + 2) = 8πGTµν , Tµν = ∇µφ∇νφ−
gµν
2

(∇φ)2. (3.65)

106



The spacetime geometry of fixed-area states in gravitational systems Chapter 3

By using the ansatz in Eq. (3.63), one can find integral expressions for g(r, θ) and v(r, θ).

However, the closed form solutions for v(r, θ) or g(r, θ) will not be important for the

discussion of the Lorentzian evolution. The interested reader may refer to Appendix B.3

for more details.

So far, we have considered the equations and solution in Euclidean signature. In order

to write down the Lorentzian solution, we follow identical steps to Sec. 3.3. Let us first

discuss the undeformed metric in the Lorentzian signature. The initial slice is given by

the union of the slices θ = 0 and θ = π. By continuing θ → θ + it, on the θ = 0, π slices

we find

ds2
L = −m2r2dt2 +

dr2

r2 + 1
+m2(r2 + 1)dy2. (3.66)

By rescaling the coordinates, the metric can be written in the more suggestive form

ds2
L = −r2dt̃

2
+

dr2

r2 + 1
+ (r2 + 1)dỹ2, t̃ = mt, ỹ = my, (3.67)

which is just the familiar Lorentz signature AdS3 metric with a rescaled transverse coor-

dinate y → my. In particular, the geometry in Eq. (3.67) is manifestly smooth in Lorentz

signature.

In order to make the Lorentzian solution more explicit, let us write the undeformed

metric (3.66) in global coordinates

ds2
L = − 4dUdV

(1 + UV )2
+m2

(
1− UV
1 + UV

)2

dy2, (3.68)
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where

U = − r

1 +
√

1 + r2
e−mt, V =

r

1 +
√

1 + r2
emt, (3.69)

are the global null coordinates. As in the discussion of Sec. 3.3, the Lorentzian solution

for the scalar field inside the “Rindler” wedges is straightforward to obtain by analytically

continuing Eq. (3.60) to find

φ =
η

fm,k(rc)

(−2U)k/m + (2V )k/m

(1 + UV )k/m
2F1

(
k

2m
,
k

2m
+ 1,

k

m
+ 1,

4UV

(1 + UV )2

)
,

U < 0, V > 0,

φ =
η

fm,k(rc)
(−1)k

(2U)k/m + (−2V )k/m

(1 + UV )k/m
2F1

(
k

2m
,
k

2m
+ 1,

k

m
+ 1,

4UV

(1 + UV )2

)
,

U > 0, V < 0.

(3.70)

We can now obtain the solution in the past and future wedges by solving the equations

of motion and ensuring continuity of the fields across the horizons. Doing so yields

φ =
η

fm,k(rc)

(−2U)k/m + (−1)k(−2V )k/m

(1 + UV )k/m
2F1

(
k

2m
,
k

2m
+ 1,

k

m
+ 1,

4UV

(1 + UV )2

)
,

U < 0, V < 0,

φ =
η

fm,k(rc)

(−1)k(2U)k/m + (2V )k/m

(1 + UV )k/m
2F1

(
k

2m
,
k

2m
+ 1,

k

m
+ 1,

4UV

(1 + UV )2

)
,

U > 0, V > 0.

(3.71)

One can check that the above expressions are consistent with the general power

series expansion described in Sec. 3.4.1. Again, in generic situations, we find power law
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divergences on the lightcones.

One can also analyze the behaviour of the Euclidean metric components g(r, θ), v(r, θ)

near r = 0 based on the analysis in Appendix B.3. The dependence on r, θ immediately

gives us the dependence on U, V in a near-horizon region of the Rindler wedges (UV < 0)

by analytic continuation. We find power-series expansions of the form

g±(U, V ) = (−UV )k/m
∞∑

n=1

g±n (−UV )n, g0(U, V ) = (−UV )k/m
∞∑

n=0

g0
n(−UV )n (3.72)

v±(U, V ) = (−UV )k/m
∞∑

n=0

v±n (−UV )n, v0(U, V ) = (−UV )k/m
∞∑

n=1

v0
n(−UV )n (3.73)

where g±,0n , v±,0n are coefficients found by solving the Euclidean equations of motion,

Eq. (B.37) – Eq. (B.42), in a power series expansion near r = 0. Given these solutions

in the Rindler wedges, the by-now-familiar ansatz defined by Eq. (3.30) and Eq. (3.31)

gives the solutions in the past and future wedges. In particular, when UV > 0 we find

the solutions have the following form

g±(U, V ) = (UV )k/m
∞∑

n=1

g±n (−UV )n, g0(U, V ) = (UV )k/m
∞∑

n=0

g0
n(−UV )n (3.74)

v±(U, V ) = (UV )k/m
∞∑

n=0

v±n (−UV )n, v0(U, V ) = (UV )k/m
∞∑

n=1

v0
n(−UV )n (3.75)

We can check this by plugging the stress tensor inside the horizon regions and solving

for the metric components directly in Lorentzian signature.

3.4.4 Divergence structure of fixed-area states

As we saw in the examples above, for general sources at the Euclidean boundary,

fixed-area states lead to power-law divergences on the codimension-2 conical defects.

Similar divergences then also appear on the lightcones emanating from the HRT surface
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in the Lorentzian spacetime. We now generalize these results to arbitrary dimension and

study the divergence structure of the general solution.

Euclidean signature

As usual, we begin by studying the divergence structure in Euclidean signature. We

consider Einstein-Hilbert gravity coupled to classical scalar fields. We expect other clas-

sical matter fields to give similar results.

In quasi-cylindrical coordinates the metric near the codimension-2 defect can be al-

ways be written as Eq. (3.25),

ds2 = dzdz̄+T
(z̄dz − zdz̄)2

zz̄
+ hijdy

idyj + 2iWjdy
j(z̄dz − zdz̄), (3.76)

where T, hij,Wj are functions of all coordinates (z, z̄, yi). The metric components have

series expansions in terms of powers of z1/m, z̄1/m and zz̄ near r = 0 as given in Eq. (3.26)-

(3.29).

As noted before, in the presence of a U(1) symmetry, all fields are smooth near r = 0

and there is no singularity in any derivative of the fields. Furthermore, when m = 1
n

for

integer n there is a smooth n-fold cover (as in the Lewkowycz-Maldacena discussion of

gravitational Renyi entropies [33]), so again there are no power law divergences (even

in the quotient). But more generally we will find divergences. Thus, in the following

discussion, we consider a generic situation where 1
m

is not an integer and where every

coefficient in the power-series expansion of any metric component and matter field is

non-zero.

Analyzing the Christoffel symbols we find

Γρµν ∼ r1/m−1, (3.77)
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where we use the ∼ notation to keep track of the leading, non-smooth term appearing

in various quantities like metric components, derivatives of the matter field, etc. In

the case m > 1, the explicit r1/m−1 term in fact represents the most singular term in

the Christoffel symbols. For the Riemann tensor, there are terms involving the square

of Christoffel symbols and terms involving the second derivatives of the metric. From

Eq. (3.77), it is easy to see that the former terms at most are of order r2/m−2. It turns

out that the latter terms give the most singular terms in the Riemann tensor. In order

to see this, let us define

Aµνρσ ≡ Rµνρσ − ΓλµσΓλνρ + ΓλµρΓ
λ
νσ. (3.78)

We find

Azz̄zz̄ = T,zz̄ +
1

2

(
T
z

z̄

)
,zz

+
1

2

(
T
z̄

z

)
,z̄z̄
∼ r

2
m
−2, (3.79)

where we have used

T = T110(zz̄)1/m + T101z̄z
1/m+1 + T011z̄

1/m+1z + · · · . (3.80)

Similarly we find

Azz̄zj =
1

2

(
i(Wj z̄),zz̄ + i(Wjz),zz − T,zi −

(
T
z̄

z

)
,z̄i

)
∼ r1/m−1, (3.81)

and

Azz̄ij, Aijkl ∼ r1/m, (3.82)
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while

Aaijk ∼ r1/m−1, (3.83)

where a = z, z̄. The most singular term comes from hij,ab and is given by

Aaibj =
1

2
(gaj,ib + gib,aj − gab,ij − gij,ab) ∼ r1/m−2. (3.84)

So in this case the most singular component of the Riemann tensor is

Raibj ∼
r1/m

r2
. (3.85)

This behavior can be confirmed for the ten-dimensional Riemann tensor in the example

of AdS3 × S3 × T 4 discussed in Sec. 3.4.3. In that case, the coefficient of Eq. (3.85)

contains ( 1
m
− 1) and therefore when m = 1 there is no singularity.

The degree of singularity in Eq. (3.85) naively implies that the Ricci tensor has

similar singularities. For instance Rzz contains terms like hij∂2
zhij which naively can

be as singular as r1/m−2. However, it was shown in Ref. [73] for pure gravity with a

cosmological constant that solving the Einstein equations sets

hij,000hij,100 = hij,000hij,010 = 0. (3.86)

This means that due to the equation of motion, the leading term for the Ricci tensor

must be of form r2/m−2 which are less singular than terms in Rzizj. If the matter coupled

to gravity is classical, we expect that Rµν ∼ Tµν and Tµν ∼ ∂µψ∂νψ where ψ ∼ r1/m near

r = 0. Therefore in this case, the most singular terms that scale as r1/m−2 must be in

the Weyl tensor and not the Ricci tensor.
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Lorentzian signature

Generalizing the analysis of divergences to Lorentzian signature is now straightfor-

ward. Continuing z → V, z̄ → −U , the Lorentzian metric takes the form

ds2 = −dUdV−T (V dU − UdV )2

UV
+ hijdy

idyj + 2iWjdy
j(V dU − UdV ), (3.87)

where since T vanishes on the horizons V = 0 and U = 0, we see that U and V asymp-

totically become affine parameters as one approaches either horizon. We now repeat the

analysis of the components of the Riemann tensor. The main difference from the Eu-

clidean analysis is that U, V are independent. As a result, we consider the derivative of

the metric as U → 0 for a fixed V (and similarly V → 0 for fixed U). Note that Eq. (3.25)

was originally an expansion for the metric in r =
√
zz̄. A point with a fixed V and U → 0

eventually ends up in the small UV region where Eq. (3.25) is a valid expansion. We

use this expansion in the Lorentzian signature to find the leading singularity as U → 0.

However, the dependence on V at fixed V can be arbitrary and we only keep track of

powers of U .

We find:

AV UV U ∼ U1/m−1, AV UV j ∼ U1/m, AV UUj ∼ U1/m−1,

AUV ij ∼ U1/m, Aijkl ∼ U1/m, AV ijk ∼ U1/m, AUijk ∼ U1/m−1

AUiUj ∼ U1/m−2, AUiV j ∼ U1/m−1, AV iV j ∼ U1/m. (3.88)

Therefore, the most singular components of the Riemann tensor are RUiUj ∼ U1/m−2.10

Although the Riemann tensor itself can be divergent at the horizon (depending on

m), the displacement of nearby geodesics passing through the horizon will be negligible.

10As discussed previously, if m = 1/n for integer n, the singular terms in the Riemann tensor vanish.
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This can be seen if we integrate the geodesic deviation equation near U = 0 twice to find

the tidal displacement for nearby geodesics. The most singular term in the displacement

goes as U1/m which vanishes for U = 0. Thus, we see that fixed-area states have relatively

mild divergences when working in the classical limit.

3.5 Summary and Discussion

Our work above studied the spacetime geometry intrinsic to fixed-area states at lead-

ing order in the bulk Newton constant G. While the saddle point geometries typically

used to prepare such states contain conical singularities, they represent sources involved

in the preparation and are not part of the fixed-area spacetime itself. Instead, the fixed-

area spacetimes satisfy the usual equations of motion without conical singularities.

With either fine-tuning or enough symmetry, the fixed-area spacetimes can be com-

pletely smooth at leading order in G. More generally, however, derivatives of fields may

diverge on null congruences fired orthogonally from the fixed-area surface. In particular,

as described in Sec. 3.4.4, for states defined by cutting open Euclidean path integrals

without a U(1) symmetry, one typically finds the curvature tensor to diverge as U1/m−2

as these null congruences are approached, where U is the affine null parameter orthog-

onal to the null congruence and 2πm is the opening angle of the Euclidean saddle that

prepares the fixed-area state. The singularities are integrable, meaning that the total

tidal distortion experienced by freely-falling particles crossing the null congruence is fi-

nite. Thus such singularities need not necessarily destroy infalling observers and, in fact,

so long as the coefficients of such singularities are small the effect on such observers can

be negligible.

Importantly, in our example in Sec. 3.4.2 we found that the equations of motion could

be solved in a manner that continues the solution beyond the power-law divergences on
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the lightcones of the HRT surface. The resulting solution then had a large smooth region

in both the past and future wedges. While these regions are harder to analyze in higher

dimensional contexts, as in the three-dimensional analysis of section 3.4.3 they will remain

amenable to study via both standard perturbation theory and a near-horizon power series

expansion. This provides strong evidence that a large smooth region will continue to exist

in both the past and future wedges.11 Furthermore, while the singularities we find at the

horizons do in principle raise concerns regarding our control over the effect of any UV

corrections on solutions in the past and future wedges, these concerns can be tamed by

smearing out the HRT surface in the transverse directions and thus effectively introducing

a UV cutoff.

Such singularities can be strong enough that they remove the spacetime from the

realm in which the initial value problem for the Einstein-Hilbert gravity is well-posed.

For example, in 3+1 dimensions standard such results require the curvature to be ap-

propriately square-integrable [108, 109]. This is clearly violated for sufficiently large m.

However, in our context this may not be a problem as we impose additional boundary

conditions at the fixed-area surface (and, in effect, on the orthogonal null congruences)

adapted from the Euclidean analysis of Ref. [73]. These conditions are chosen to make

the Einstein-Hilbert variational principle well-defined, and one may hope that they simi-

larly repair the initial value problem. However, we leave the detailed study of such issues

for future work.

Additional singularities will arise once we consider quantum corrections. One way

to see this is to recall the example of a bifurcate Killing horizon in which the Euclidean

saddle had a U(1) symmetry. Such saddles were just familiar Euclidean black holes with

conical singularities inserted at the horizon so that they could match boundary conditions

11Though a spacelike singularity may develop after some proper time since, even before fixing the
area, we might consider a state that describes a black hole.
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with some period β0 unrelated to the usual inverse temperature β of the Lorentz-signature

fixed-area geometry. At the quantum level, this clearly prepares quantum fields around

this black hole in a state of inverse temperature β0 which differs from the inverse Hawking

temperature β. This is well-known to give a singular stress tensor at the black hole

horizon, and in fact the special case β0 = ∞ corresponds to the Boulware vacuum

state for the black hole. The Boulware vacuum is much like the Rindler vacuum on

Rindler space, for which the stress tensor features a quadratic divergence at the horizon

[110]. The associated back-reaction on the metric would then force the Ricci-tensor to

be quadratically divergent as well, so that general integrated tidal distortions diverge

logarithmically. This suggests that using fixed-area states beyond leading order in G

will require taming this divergence by smearing out the fixed-area surface along the

orthogonal two spacetime dimensions; see also related comments in Ref. [73]. This may

also be related to issues regarding quantum corrections to HRT-areas seen in Ref. [61].

We hope to return to further study of such quantum corrections in the future.

It would also be useful to generalize our results to include perturbative higher-

derivative corrections and non-minimal couplings. In this context, the area is replaced by

a more general geometric entropy functional [111, 112]. Nevertheless, in the leading semi-

classical approximation, states of fixed geometric-entropy states are again constructed by

using Euclidean saddles with conical defects [73]. The general arguments described here

should thus go through in a similar fashion. In particular, there is a similar power-series

expansion for metric quantities in a conical defect spacetime in higher-derivative theories

[73]. This will again give power-series solutions in the past and future wedges just as

described in Sec. 3.4.1. However, an important difference in this case is that the power

series expansion involves more singular terms. To resolve this, one may again consider a

smeared version of the fixed geometric-entropy state in order to obtain reasonable initial

data for Lorentzian evolution. It would be interesting to understand such solutions in
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greater detail in future.

A final open question involves the states where we fix the area of an HRT surface γR

that is anchored to an asymptotically AdS boundary (say, at the edges of a boundary

subregion R). In this case, the area is divergent. While one can renormalize the HRT-

area by subtracting its expectation value, fluctuations of this renormalized area remain

divergent; see e.g. [7]. As a result, projecting onto a small window of HRT-area eigenval-

ues would remove the state from the CFT Hilbert space.12 A useful notion of fixed-area

state in this context will thus require the introduction of an appropriate boundary UV

cutoff.

This then raises the question of how such UV issues will manifest themselves in the

boundary-anchored versions of the calculations described in this work. One possibility is

that, in the absence of a UV regulator, a singular shock will arise at the boundary anchors

and will propagate into the bulk toward both past and future. On the other hand, related

UV concerns arise in the study of the flow by taking Poisson brackets with the HRT area

operator [104, 105, 106]. But in that context, at least in AdS3, the behavior turns

out to be milder. Indeed, in that context Ref. [105] showed that the bulk itself remains

smooth, and that the CFT singularity is dual only to a singularity in the manner that the

bulk and boundary are attached. It thus seems likely that boundary-anchored fixed-area

geometries will be similar. A better understanding of the area operator from the CFT

perspective, perhaps along the lines of Ref. [113], may also be useful for understanding

such issues.

12The situation is much like that for the operator : φ2(x) : in the theory of a free scalar field.
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Chapter 4

Real-time gravitational replicas:

Formalism and a variational

principle

4.1 Introduction

The path integral formulation of quantum theories has inherent advantages in Eu-

clidean signature. In particular, the fact that the Euclidean action is non-negative in

stable quantum field theories allows for a straightforward saddle point analysis. The

presence of non-trivial saddles provides important insights into non-perturbative dynam-

ics of the theory, as illustrated by the instanton solutions in non-abelian gauge theories.

A direct first-principles Lorentzian path integral perspective on some of these issues is

not as well developed for the simple reason that the rules for carrying out the stationary

phase approximation have not been satisfactorily clarified.

However, despite a corresponding possible lack of rigor, path integrals may still be

used to compute real-time correlation functions. To this end one often uses the Schwinger-
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Keldysh formalism [114, 115] (involving a mixture of Euclidean and Lorentzian path

integrals) or one of its out-of-time-order generalizations [116, 117, 118]. A purely Lorentz-

signature path integral may also be used if one explicitly specifies the relevant quantum

state.

Similar prescriptions also exist for computing the Rényi or von Neumann entropies

that capture fine-grained notions of quantum information. To illustrate the point, con-

sider the computation of such entropies in a quantum field theory in some time-dependent

state ρ(t). The state may be obtained from some past initial condition followed by evolu-

tion ρ(t) = U(t; t0) ρ0(t0)U(t; t0)† in Lorentzian time t, potentially with a time-dependent

Hamiltonian. The quantities of interest depend only on the information at the prescribed

time t, and require no knowledge of the state at any future instant of time. The Rényi

entropies which capture moments of the spectrum of the density operator Tr(ρ(t)n) are

naturally described using an n-fold replication of the system along with n-copies each

of the forward and backward time evolution. Thus we can view the quantities as being

defined on a suitable timefolded contour, see fig. 4.1.

Analogous statements also hold when computing spectral moments Tr(ρnA) of reduced

density matrices restricted to some spatial domain A of the constant t time-slice. The

main difference is that this case involves a non-trivial gluing of the timefolds due to

implementing the partial trace over the complement Ac of A. In the path integral, this

partial trace requires sewing together along Ac the U(t; t0)† and U(t; t0) parts of each copy

of the time-evolved state (i.e., of each copy of the piece shown at left in fig. 4.1). The

remaining A regions of the U(t; t0)† and U(t; t0) parts of each copy are then connected

cyclically as before (see again the right panel of fig. 4.1). Readers seeking more detailed

reviews may consult e.g. [34, 119].

Note that nowhere in the above discussion were we required to invoke a Euclidean

formulation of the theory. However, in practice it is sometimes efficacious to perform
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ρ0 ρ0 ρ0 ρ0 ρ0

U(t; t0) U(t; t0)†

Figure 4.1: A schematic illustration of the real-time (Schwinger-Keldysh) contours
for the computation of the density matrix ρ(t) (left) and its powers (right). The past
boundary condition is supplied by the prescribed initial state ρ0 and the direction of
time evolution is explicitly indicated by the arrows. Forward evolution corresponds
to the ket part of the state while backward evolution corresponds to the bra part.
The reduced density matrix ρA(t) associated with some spatial domain at t = 0 is
obtained by sewing together the U(t; t0) and U(t; t0)† parts of the left panel along the
complementary t = 0 domain Ac, while leaving open the parts along A. It’s powers
thus involve similar contractions between the two parts of any given copy, while the
A parts are again contracted with neighboring copies as shown at right.

computations entirely in Euclidean space. This is particularly so if the quantity is being

computed at a moment of time reflection symmetry. But analytic continuation can

also be employed even in certain circumstances with explicit time dependence. Classic

examples of the latter include computations of the growth of entanglement entropy in

two dimensional CFTs following a global [120] or local [121] quantum quench. In such

cases, one may proceed by identifying related Euclidean configurations and computing the

entropies therein as a function of Euclidean time t
E
. At the end of the day, the result of

the Euclidean computation is then analytically continued to non-trivial Lorentzian times

t by Wick rotating t
E
→ i t. This allows one to obtain the desired real-time evolution of

the entropies.

The reasons for employing the Euclidean crutch are two-fold. Firstly, at a technical

level one can exploit the fact that the replication is geometrically easy to understand as

the construction of a branched cover geometry, and in particular one that is branched
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over a codimension-2 locus. The spectral moments of the density matrix are then given

by partition functions on the branched cover. Secondly, one can evaluate such partition

functions in a semiclassical approximation using a saddle-point analysis which, as for the

instantons, is facilitated in the field theory context by the boundedness of the Euclidean

action. A key fact that will play a crucial role below is that the resulting entropies

are manifestly real in this computational scheme since they are written in terms of real

Euclidean configurations.

The Euclidean perspective can thus be an efficient technical tool to eke out the answer

for real-time quantities of interest. Unfortunately, it also has some major disadvantages.

The first is that it is not obviously useful in contexts with general smooth-but-nonanalytic

sources. And for related reasons, it can be difficult to use when Lorentzian sources are

only approximately known (perhaps because they have been computed numerically).

But from the conceptual point of view the main issue with a Euclidean approach is that

the real-time dynamics lies obscured. While this lacuna is not particular to entropic

quantities – the real-time dynamics of instantons is also not well understood – it ends up

being striking in this context, especially when we also allow gravity to be dynamical, as

for instance in the duals of holographic field theories.

To illustrate this, recall that holographic entanglement entropy prescriptions [66, 27]

posit that the von Neumann entropy is computed by the area of a bulk codimension-2

extremal surface at leading (planar) order in an expansion at large central charge ceff, or

equivalently at small bulk Newton constant GN with the bulk AdS scale `AdS held fixed.1

The time-reflection symmetric RT prescription [66] is justified by a gravitational version of

the replica construction [33] (following earlier such constructions [122, 123, 124, 125, 126]).

The construction proceeds by noting that the standard AdS/CFT dictionary requires the

1It is convenient to define ceff =
`d−1
AdS

16πGN
as the effective central charge of a CFTd dual to gravity in

AdSd+1.
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dual gravitational spacetime to be the lowest action saddle-point solution to the Euclidean

quantum gravity path integral whose boundary is the branched cover geometry described

earlier.2 The analysis of [33], which at its core is a generalization of the Gibbons-Hawking

prescription for computing partition functions in Euclidean quantum gravity [32], focused

on recovering the von Neumann entropy by noting that the gravitational replica construc-

tion takes a particularly simple form when analytically continued to replica numbers n

close to 1. But this prescription also helps one understand the gravity dual of Rényi

entropy [74].

This Euclidean quantum gravity perspective has been enormously helpful in clarifying

various aspects of the holographic entanglement. For instance, it was used to establish

that subleading corrections are given in terms of bulk entanglement across the homology

surface3 [28]. More generally, the quantum extremal surface prescription of [29] argues

that, to all orders in a perturbative expansion at large central charge, the von Neumann

entropy is given by extremizing the generalized entropy which is the combination of the

leading order classical area term and the subleading bulk entanglement entropy. And this

stronger result is likewise justified by an analogous variational argument in the Euclidean

path integral [35, 38, 39].

While the standard derivation of the quantum extremal surface proposal stems from

the Euclidean path integral, its physical implications are most striking in the realm of

real-time evolution in the context of the black hole information paradox. As argued

2Technically, one has to worry about the fact that in gravitational theories (in contrast to quantum
field theories) the Euclidean action is of indefinite sign owing to the conformal mode. The standard
prescription [40] is to analytically continue the conformal mode to a presumed steepest-descent contour
(which involves purely imaginary scale factors at 2nd order about familiar solutions). We will assume
that such a prescription has been employed to render the semiclassical Euclidean quantum gravity path
integral sensible.

3The homology surface is a partial Cauchy surface of the bulk geometry whose boundaries are the
extremal surface and the subregion of interest on the asymptotic boundary of the spacetime. The
entanglement wedge is the bulk domain of dependence of this region cf., [127]. The notion of homology
surface was originally introduced in [77] in contexts restricted to time-reflection symmetry.
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originally by [37, 36] the quantum extremal surface associated with the entire boundary

in an evaporating black hole undergoes a dynamical phase transition after which the en-

tanglement wedge of the boundary no longer includes a portion of the black hole interior

(called a quantum extremal ‘island’ in [92, 128]). This in particular reproduces the ex-

pected Page curve [129] of the evaporating black hole. A summary of these developments

from the past year can be found in the review [130].

Figure 4.2: A replica wormhole spacetime that contributes in to the Euclidean path
integral for the computation of spectral traces of density matrices.

As described above, the justification in most of the literature for the use of these

quantum extremal surfaces has been based on Euclidean gravitational replica saddle-point

geometries. Given the boundary replica spacetime, the presence of dynamical gravity in

the bulk allows non-trivial replica symmetric configurations that connect different replica

copies, leading to replica wormholes [38, 39]; see the schematic illustration in fig. 4.2.

Such configurations are allowed because the quantum gravity path integral instructs us

to sum over all geometries which can connect the given boundaries. In general there may

be several different ways to do so respecting the boundary conditions and symmetries,

perhaps allowing several different topologies for the Euclidean bulk. These geometries

can, and often do, exchange dominance as one varies parameters. In particular, [38, 39]
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argued that this leads to the aforementioned phase transition associated with the Page

curve.

While replica wormholes define sensible Euclidean manifolds, the real-time dynamics

of the above phase transition remains obscure. And while the technical construction in

[38, 39] exploited specific features of low dimensional gravity models, as emphasized in

[54] the basic lesson is that one should expect non-trivial replica wormhole contributions

to general Euclidean path integrals.4

These developments thus suggest an important link between gravitational entropy

and spacetime wormholes. But while this connection has been well fleshed out in the

Euclidean context, the corresponding real-time story remains more obscure. Indeed, it

is a classic result that replica-wormhole-like topologies do not admit smooth Lorentz-

signature metrics. This is particularly clear if we assume replica symmetry, which for

an n-fold replica would require the replica-invariant surface to have 2n distinct timelike

normals with the property that no such normal can be deformed to any other while

remaining timelike. Such surfaces cannot occur in smooth Lorentz-signature manifolds

when n ≥ 2. So one may ask what form any corresponding real-time saddles might take.

Since black hole evaporation involves dynamical time-dependent geometries, a clearer

understanding of the real-time description is imperative if we are to fully fathom the

impact of spacetime wormholes on black hole information.

With these motivations in mind, let us revisit the real-time setup for computing

entropies in gravitational theories.5 Given a timefold replica contour at the boundary,

our task is to ascertain the stationary points of the bulk Lorentzian Einstein-Hilbert

4Although we have couched our discussion in the holographic setting (in which the bulk spacetime is
asymptotically AdS), the democratic nature of gravity makes it clear that similar statements apply in
other contexts. See [131, 132, 133, 134, 135, 136, 137, 138, 55] for analyses of replica wormholes with
other asymptotic boundary conditions.

5As argued in [55], this prescription is properly taken to compute ‘swap entropies.’
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action.6 In the AdS/CFT context this problem was examined in [34] for use in deriving

the covariant holographic entanglement entropy proposal. The authors of that work

used the real-time AdS/CFT prescription of [139, 140] to motivate the resulting bulk

spacetimes, primarily focusing on the von Neumann entropy (n → 1). In the latter

limit one has the advantage that the field equations may be analyzed perturbatively in

the replica parameter (n − 1), which allows for considerable simplification. While the

construction is in no way restricted to this regime, the analysis for n > 1 was not hitherto

carried out in detail (though see Appendix A of [34]).

We will undertake a careful examination below of real-time gravitational replica sad-

dles at finite n−1, arguing that the Einstein-Hilbert action does in fact admit stationary

points but that the associated spacetimes have complex-valued metrics. In particular,

in our formalism the time coordinate will remain real but the metric will take complex

values in the spacetime interior (though boundary conditions will require the induced

metric to remain real on e.g. timelike asymptotically-AdS boundaries). In simple cases

the complex nature of the bulk can be encapsulated in an appropriate iε condition.

The appearance of complex solutions should come as no surprise. From the Schwinger-

Keldysh point of view, it is natural to construct the quantum state ρ0 of fig. 4.1 from an

imaginary-time path integral, so that real spacetimes cannot describe the full timefolded

field theory contour. More generally, while one may expect the real-time equations of

motion governing stationary points to be real, there is no reason to expect this for the

boundary conditions imposed by attaching any particular quantum state. Indeed, vac-

uum states for harmonic oscillators famously tend to impose positive-frequency boundary

conditions which render any associated solutions intrinsically complex.7 See e.g., section

6While the discussion here can be generalized to other gravitational theories to include higher deriva-
tive couplings or matter fields, for the sake of simplicity we will focus on just Einstein-Hilbert dynamics.

7Real-time correlation functions in thermal states of holographic field theories have also been argued to
be computed on complex gravitational Schwinger-Keldysh geometries [141]. But while detailed analysis
of observables shows consistency with field theory expectations [142, 143], a first-principles argument
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4.3 of [144] for a discussion in language closely connected to that used here. In partic-

ular, it is the complex nature of such real-time stationary points that allows them to

contribute anything other than a pure phase, and thus to reproduce Euclidean results in

appropriate contexts.8 Indeed, any stationary point that is invariant under the natural

CPT-conjugation symmetry of any Rényi calculation (associated with exchanging the

bra and ket parts in fig. 4.1) must contribute a real amplitude eiSL , thus necessitating

an imaginary Lorentzian action SL. This is in fact a manifestation of the general phe-

nomenon noted some time ago [145] that singularities in the Lorentz-signature causal

structure are associated with imaginary contributions to the Lorentzian action.

The goal of this work is to set up the variational problem for the determination of the

gravitational replica saddle which computes the nth (swap) Rényi entropy of an appropri-

ate density matrix ρ0. This sets the stage for constructing examples of such saddles in the

companion paper [4]. Lorentz-signature replica wormholes and the associated Lorentzian

path integrals were also recently discussed in [55], though the form of the saddle-point

geometries was not analyzed in detail.

We begin in section 4.2 with a discussion of the relevant Lorentzian path integrals,

emphasizing the space of bulk configurations over which we choose to sum. With replica

boundary conditions, the bulk configurations are naturally called Lorentz-signature replica

wormholes. We then set up an associated variational problem in section 4.3. In partic-

ular, the Einstein-Hilbert action extends naturally to our somewhat-singular Lorentzian

configurations using ideas from [145] associated with the complex generalization of the

Gauss-Bonnet theorem. And borrowing from the Euclidean discussion of [73] allows us

that they are unique saddle point of the gravitational path integral does not yet exist. Nevertheless, we
will argue in appendix C.2 that these geometries do provide an useful arena to illustrate some of the
ideas we discuss.

8In many cases this again leads to an iε prescription. Thus the above comment is then largely
equivalent to noting that one might regularize the sewing of bra spacetimes to ket spacetimes by including
a small Euclidean piece of spacetime, and that doing so would then require excursions into complex time.
This one again suggests that the final solution is complex.
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to introduce boundary conditions that make the associated variational principle well-

defined. In the process we will elaborate on the symmetries of the replicas and general

expectations for the saddle-point spacetimes. For completeness, we also present a brief

discussion of initial conditions for our path integrals in section 4.4. Elements of these

discussions are already present in [34] (see also [55]); our aim here is to elaborate on

certain aspects for clarity, and to describe in detail the real-time variational problem for

replica wormhole saddles. We close with a summary and discussion of future directions in

section 4.5. The appendices contain some additional details of corner term contributions

and an example with smooth complex valued metrics.

4.2 Path integrals for the density matrix and replicas

As described above, we would like to compute entropies (or, more precisely, swap

entropies [55]) in holographic field theories without employing analytic continuation. To

do so, let us first discuss the situation for standard quantum mechanical theories on a

fixed spacetime (and thus without dynamical gravity) in section 4.2.1. We then address

the case of dynamical gravity in section 4.2.2.

4.2.1 Replica path integrals in standard quantum theories

We begin by discussing the path integral that computes matrix elements of ρ(t). Given

an initial state ρ0 at time t0,9 we can construct the density matrix ρ(t) on a Cauchy slice

Σt by applying time-dependent Hamiltonian evolution to write ρ(t) = U(t; t0) ρ0 U(t; t0)†.

Taking a partial trace ρA(t) = TrAc(ρ(t)) then gives its restriction to a subregion ρA(t),

where A and Ac are complementary to each other at time t. Here U(t; t0) includes any

explicit sources that may be introduced in the course of the evolution. Note that the path

9We will discuss initial states in section 4.4 below.
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integral constructing the elements of the density matrix ρ involves a piece implementing

U(t; t0) for the forward evolution of its ‘ket’ |ψ〉 as well as another implementing U(t; t0)†

for the backward evolution for its ‘bra’ 〈ψ|. One may think of the former as integrating

over fields in a ‘ket spacetime’ and the latter as integrating over fields in a ‘bra spacetime,’

with configurations weighted by ei(S
k−Sb), with Sk, Sb being the standard actions for fields

on the ket and bra spacetimes respectively.

To construct the reduced density matrix ρA , one traces ρ(t) over the Hilbert space

associated with the region Ac. This is implemented in the path integral by identifying

the associated ket and bra spacetimes at the final time along Ac.10 The result of this

sewing is a time-folded (Schwinger-Keldysh) spacetime B over which the path integral is

to be performed, see fig. 4.3.

t

A
@A

Ac

⌃t⌃t

t

Figure 4.3: The timefolded Schwinger-Keldysh geometry B computing the matrix
elements of ρA for a quantum theory on a fixed background. The forward and back-
ward evolutions are glued together on the partial Cauchy slice Σt , except for a cut
around A. We have also indicated the past light-cones from the entangling surfaces
which serve to demarcate the Milne and the Rindler wedges defined in the main text.
In the gravitational context, the boundary geometries will be of this form.

The time-folded spacetime B has three causal domains of interest. Focusing on the

ket piece of the contour we have:

1. The set J−[∂A] describing the causal past of ∂A. We will refer to J−[∂A] as the

10One can equivalently project ρ against the maximally entangled state supported on two copies of
Ac, though this requires a notion of CPT conjugation to turn kets into bras.
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Milne wedge.

2. The past domain of dependence D−[A] of A. We will refer to this region as the

Rindler wedge of A.

3. The analogous Rindler wedge of Ac defined as past domain of dependence D−[Ac]

of Ac.

These regions are separated by ‘Rindler horizons’ defined by the past-directed null con-

gruences orthogonal to ∂A. The same regions are present on the bra piece of the contour.

In particular, note that the causal nature of the Schwinger-Keldysh construction ensures

that we consider only regions to the past of A and Ac on both bra and ket pieces of the

contour, since we have not evolved the system beyond the Cauchy surface at time Σt.

4.2.2 Replica path integrals with dynamical gravity

We now discuss contexts with dynamical gravity, following the same basic approach

as in section 4.2.1. For simplicity, we assume the system to be asymptotically AdS, and

thus to have a well-defined notion of a boundary spacetime (at least in some given con-

formal frame). It is also convenient to assume some notion of AdS/CFT duality (though

perhaps involving an ensemble of dual field theories as in [51], and as suggested by gen-

eral discussions in [146, 147, 148, 54, 55]) so that we can motivate our bulk construction

using the dual CFT.

In particular, we first describe a bulk path integral that may be said to compute

the bulk description of matrix elements of the dual field theory restricted density matrix

ρA(t). The boundary conditions for this path integral will be defined by the Schwinger-

Keldysh contour B associated with matrix elements of ρA(t) described in section 4.2.1

above. Here A, Ac are complementary regions within some boundary Cauchy slice Σt.
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Figure 4.4: The bulk domains of interest in the Lorentzian construction for either the
ket or the bra spacetime. Given a partition of Σt into regions A and Ac, any bulk
Cauchy surface Σ̃t with ∂Σ̃t = Σt admits a decomposition Σ̃t = RA ∪ RAc . These
domains are separated by a bulk codimension-2 surface γ, which is anchored on the
entangling surface. On saddle point solutions this surface approaches the extremal
surface as n→ 1.

We will also need some further elements to describe the bulk geometries M (with

∂M = B) over which our path integral will sum. As in the boundary, the bulk spacetimes

M will consist of bra and ket parts. Focusing first on the ket part, we imagine that we

can use a standard bulk path integral to evolve the initial state wavefunction of the bulk

forward (in the usual ADM sense) up to a bulk Cauchy slice Σ̃t with ∂Σ̃t = Σt . The

slice Σ̃t is not uniquely determined given Σt , but since Cauchy surfaces are achronal the

surface Σ̃t must be everywhere spacelike separated from Σt ; see fig. 4.4. At an extreme,

we can take Σ̃t to be null, straddling the past boundary of the bulk domain of influence

of Σt .

We now partition Σ̃t into two regions by introducing a bulk codimension-2 surface γ

lying in Σ̃t (and thus which is codimension-1 in Σ̃t). Following [55], we will call γ the

splitting surface, though we will sometimes also refer to γ as the cosmic brane.11 The

11It is perhaps natural to reserve the term ‘cosmic brane’ for the case where γ is associated with a
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location of γ in a saddle-point geometry may eventually be determined dynamically from

the variational principle, though for the moment we simply sum over all possible choices

of γ (and also over all inequivalent choices of Σ̃t , see further discussion below). The two

resulting parts of Σ̃t will be called the homology surfaces RA and RAc respectively of A

and Ac, with ∂RA = A∪γ and ∂RAc = Ac ∪γ. This partition will also endow the bulk

with three distinguished causal domains: the causal past J̃−[γ] of the separatrix cosmic

brane γ, and the past domains of dependence D̃−[RA] and D̃−[RAc ] of the two homology

surfaces. We will refer to the latter domains as the past homology wedges. We illustrate

these bulk regions in fig. 4.4.

A Ac

RA

⌃̃t

@A
A

@A

RA

Ac

⌃̃t

identify

Figure 4.5: Bulk configurations relevant to computing the bulk dual of the boundary
density matrix ρA(t). The forward evolution for |Ψ〉 (left) proceeds up to Σ̃t , while
the backwards evolution for 〈Ψ| starts there (right). We have identified the bra and
ket spacetime along RAc in accord with the prescription for the bulk dual of ρA(t).
Further gluing the two spacetimes together along RA and summing over all metrics
would compute the trace of ρA(t).

The bra part of the geometry is constructed similarly, except that one now evolves

non-trivial delta-function in the Ricci scalar while using ‘splitting surface’ to include the case where the
coefficient of this delta-function vanishes.
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back to the initial state wavefunction. At the AdS boundary, the gluing between the bra

and ket spacetimes is determined by the regions A and Ac on the boundary. It is natural

to extend this gluing into the bulk by identifying the bra and ket spacetimes along RAc

and summing over bulk geometries to obtain the bulk dual of the reduced density matrix

ρA . Note that this sum over geometries can be said to implicitly sum over all inequivalent

choices of Σ̃t and γ, or alternatively to implicitly sum over all inequivalent choices of the

resulting RA and RAc .

In the above, we have basically chosen the bulk configurations over which we sum

to mimic the boundary contour B, replacing the sewing across the boundary region Ac

with sewing across the homology surface RAc . One can attempt to motivate this in

a neighborhood of the boundary by the usual Fefferman-Graham expansion. And one

can further motivate this prescription by cutting open bulk path integral computations

of traces of powers of the density matrix in familiar cases as in [47] (in the discussion

surrounding its figure 3). But for the present work we will simply declare the above

to be our recipe, leaving for the future any attempt to upgrade the above naturalness

arguments into a complete derivation. This will then lead to an ansatz for a bulk path

integral that compute boundary (swap) Rényi entropies by summing over what we call

Lorentz-signature replica wormholes. As we show in section 4.3, the key point will then be

that such replica wormholes lead to a well-defined Einstein-Hilbert variational problem.

Furthermore, when appropriately complexified, such real-time replica wormholes can

provide stationary points that allow our path integral to be studied semiclassically.

To summarize, bulk configurations of the path integral associated with matrix ele-

ments of ρA have the following ingredients:

• An initial state wavefunction (or an Euclidean end-cap geometry, see section 4.4),

prescribing the state ρ0 from which we evolve.
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• Lorentzian sections of the geometry for the ket and bra parts, with the flow of time

dictated by the evolution direction specified at the boundary.

• A gluing condition across a homology surface RAc , with the flow of time reversing

as we cross the gluing surface.

We now have the ingredients in place to set up the replica computation and define

the bulk path integral for Tr(ρnA). To define the boundary conditions for the bulk path

integral, we begin with n-copies of the bra and ket boundary geometries, each constructed

in section 4.2.1 above. Labeling the boundary ket spacetimes as Bk
i and the boundary bra

spacetimes as Bb
i (with i = 1, 2, · · · , n), we sew these geometries into a Rényi boundary

spacetime Bn by gluing Bk
i onto Bb

i along Ac, and onto Bb
i−1 along A. Here additions

involving the index i are performed modulo n.

Turning now to the bulk, each path integral configuration will be formed from n

bulk ket pieces Mk
i and n bulk bra pieces Mb

i , with i = 1, 2, · · · , n. We will sew these

geometries into a bulk Rényi configuration by gluing Mk
i onto Mb

i along RAc , and onto

Mb
i−1 along RA. As in [55], we use the term Lorentz-signature replica wormholes to refer

to any bulk spacetime of the above form, regardless of whether or not it is a stationary

point of a variational principle. We depict such a configuration for n = 2 in fig. 4.6.

Note that above-described space of configurations for the bulk replica path integral

has the following discrete symmetries:

• A cyclic Zn replica symmetry that acts by shifting the bra and ket spacetimes by

i→ i+ 1, mod (n).

• For each copy i of the density matrix we have a Z2 involution associated with the

CPT map (which involves anti-linear complex conjugation). This map exchanges

corresponding bras and kets, with the ith such CPT map acting as Mk
j ↔ Mb

i−j

(using addition modulo n).
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Figure 4.6: The form of configurations over which we sum in the bulk path integral
for Tr(ρ2

A(t)). We again use the conventions described in fig. 4.5.
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By definition, our path integral sums over real such Lorentz-signature replica worm-

holes. However, in looking for saddle points Mn we will wish to deform the contour

of integration to allow complex metrics. Indeed, it is familiar from standard quantum

mechanics that processes forbidden by standard classical evolution are dominated by a

complex saddle-point, as in the use of Euclidean paths to compute quantum tunneling.

And in the gravitational Rényi context, it is clear that smooth Lorentz-signature metrics

cannot yield saddles since for n > 1 the causal structure at γ is ill-defined. But we

may hope to find complex saddles when the time coordinate remains real by allowing the

metric to be complex.

It will thus be of interest below to study the action of the above symmetries on

complex saddles. In doing so, in order to preserve the reality of Tr(ρn), the CPT maps

should be extended so that they complex-conjugate the metric as well. Note that complex

spacetimes which are symmetric under all of these symmetries remain real on the gluing

surfaces (i.e., along RA and RAc on each of the 2n copies of the spacetime), and this

will in particular be true of symmetric saddles.12 Furthermore, we expect deformations

(of the location) of the homology surfaces RA and RAc that do not affect γ to describe

unitary evolution of the bulk that will cancel exactly between the bra and ket spacetimes

on either side of the surface. We thus correspondingly expect that while the saddle-

point dynamics may in some sense determine γ, it should not lead to preferred choices

for RA,RAc . Symmetric saddle-points should thus remain real and Lorentz-signature

within the entire homology wedges of RA,RAc so that the actions for these regions

cancel between the bra and ket spacetimes for all choices of RA,RAc . We will justify this

expectation more fully when we study the variational principle below, but the upshot

is that for symmetric saddles the homology wedges D̃−[RA] and D̃−[RAc ] will remain

12We will focus below on the solutions that preserve replica symmetry: it would be interesting to
understand whether solutions that break the aforementioned symmetries could play a role analogous to
replica symmetry breaking saddles; see e.g., [38, 72, 7, 101].
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well-defined, and that such saddles will be complex only outside these homology wedges

(in a region that we may still call the past Milne wedge J̃−[γ] of γ).

4.3 The variational problem

Section 4.2 described the branched and time-folded bulk spacetimes over which our

replica path integral will sum, but we have not yet addressed the bulk dynamics in detail.

Of course, we wish to take this to be described by the Einstein-Hilbert action. But while

this action is familiar when evaluated on smooth Lorentz-signature spacetimes, it may

not be immediately clear how to define contributions to this action from the region

near γ. Furthermore, the choice of action is intimately tied to the construction of a

good variational problem. In particular, to ensure a good semiclassical limit we must

show that varying our action within the class of allowed variations leads precisely to an

appropriate formulation of the Einstein equations (without extra constraints).

We address these issues below. We begin in section 4.3.1 by quickly discussing the

spacetime away from γ. We then define contributions to our Einstein-Hilbert action

from the region near γ in section 4.3.2 and discuss boundary conditions to be imposed

at γ in sections section 4.3.3 and section 4.3.4. Together, these yield a well-defined

variational principle as desired. All of this treats the full n-fold replica geometry Mn

with boundary Bn. section 4.3.5 then briefly describes the implications when one imposes

replica symmetry and describes the bulk using the geometry M̂n = Mn/Zn associated

with a single fundamental domain.
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4.3.1 The action and variations away from the splitting surface

Heuristically, we define the gravitational dynamics by the real-time path integral:

Z[Bn] :=

∫

n

[Dg] ei S, (4.1)

with the subscript n reminding us that we are computing the path integral over bulk

replica wormholes with the gluing conditions specified above and with boundary condi-

tions defined by Bn. We will take

S = Skgr − Sbgr + Sγ, (4.2)

where Skgr is the standard gravitational action for the ket parts of the spacetime, Sbgr is the

standard gravitational action for the bra parts of the spacetime, and Sγ is a contribution

to S from the splitting surface γ that we will address more carefully below. If we can

define and solve the variational problem for the bulk geometry Mn, the Rényi entropies

will be obtained from the standard formula

S
(n)
A =

1

1− n log

(
Z[Bn]

Z[B]n

)
=

1

n− 1
(In − n I1) , (4.3)

where In := − logZ[Bn] ≈ −i S[Mn].

The gravitational action with which we work is the Einstein-Hilbert action, sup-

plemented with the usual Gibbons-Hawking term at any boundaries. We also include

additional counter-terms Sct at the asymptotic boundary as required. For any bra or ket
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piece M of Mn we thus have

Sgr[M] =
1

16πGN

∫

M
dd+1x

√−g
[
R +

d(d− 1)

`2
AdS

]
+

1

8πGN

∫

B
ddx

√
|γ|K

+
1

8πGN

∫

RA∪RAc
ddx
√
hK + Sct ,

(4.4)

where B is the asymptotic boundary M. Note in particular that we include a Gibbons-

Hawking term on the gluing surfaces RA,RAc . If the metric and extrinsic curvature are

continuous, these Gibbons-Hawking terms will cancel between the bra and ket parts of

the spacetime when computing Sgr = Skgr − Sbgr. Continuity of the metric is required

by the sewing along RA ∪ RAc , but continuity of the extrinsic curvature should not be

assumed a priori. For future reference our notation is as follows: gAB denotes the metric

in the bulk spacetime M, γµν that on the asymptotic boundary B, and hij the metric

induced on the homology surfaces RA ∪ RAc . We will later also introduce a metric qIJ

on γ.

Varying the exponent of (4.1) with respect to the metric at generic points results in

the standard Einstein-Hilbert equations of motion. However, we should more carefully

consider variations at the various copies of Σ̃t where different branches of the spacetime

join. This is especially true in the vicinity of the splitting surface which, in the limit

n→ 1, will give us the Hubeny-Rangamani-Takayanagi (HRT) surface [27]. Nevertheless,

we begin by addressing the simpler cases of RA,RAc ⊂ Σ̃t , saving consideration of the

region near γ for sections section 4.3.2-4.3.4.

Recall then that our action (4.4) included Gibbons-Hawking terms at RA,RAc for

both the bra and ket parts of the spacetime. The gluing conditions at RA,RAc require

continuity of the metric, so such terms will cancel between the bra and ket parts if

the extrinsic curvature is also continuous. But, recognizing that the support of the

gravitational path integral may include rather wild non-smooth geometries, we should use
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the variational principle to derive any conditions on the extrinsic curvature at RA,RAc .

Having included these Gibbons-Hawking terms, it is straightforward to do so. As is

well-known, working about a spacetime that satisfies the Einstein equations away from

RA,RAc , and γ, variations that preserve boundary conditions on Bn give

δSgr[M] =
1

16πGN

∫

RA∪RAc

√
hπij δh

ij , πij = Kij −K hij , (4.5)

where hij is again the induced metric on RA ∪ RAc and now πij is its the conjugate

momentum. Variations of Sgr = Skgr − Sbgr thus involve the change ∆πij in πij when

passing from a bra to a ket spacetime across RA or RAc . Stationarity of Sgr implies

∆πij = 0. Since the gluing already requires continuity of the induced metric, we see that

the extrinsic curvature must be continuous as well.

This fact has important consequences for the causal structure of saddles with replica

and CPT symmetry. As noted at the end of section 4.2, imposing both symmetries

forces the induced metric to be real on RA and RAc . Moreover, it requires the extrinsic

curvature defined there from the bra side to be the complex conjugate of that defined

from the ket side. But we have seen that stationarity also compels these complex con-

jugate extrinsic curvatures to agree, so saddle-point geometries must have real extrinsic

curvatures on RA and RAc . Since the saddle-point geometry will satisfy the usual hyper-

bolic equations of Einstein-Hilbert gravity away from Σ̃t , Cauchy evolution toward the

past from RA,RAc obliges the metric to remain real throughout the homology wedges

of RA,RAc in saddles preserving both replica and CPT symmetries. This completes

the previously advertised argument that symmetric saddles have well-defined homology

wedges as expected from more general considerations mentioned above.

As in the Euclidean discussion of [33], there are two ways to proceed with specifying

the remainder of the variational problem:
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1. We could work with the full n-fold geometryMn which defines a stationary point of the

variational principle satisfying the full asymptotic boundary conditions Bn. For reasons

that will be clear below, we henceforce refer to Mn as the covering space geometry. If

desired, we may attempt to simplify the problem of solving the equations of motion by

imposing on Mn any of the symmetries described above.

2. Alternately, if we are interested only in symmetric saddles we can impose Zn replica

symmetry from the outset and consider the quotient spacetime M̂n =Mn/Zn. Clearly,

Mn is an n-fold cover of M̂n. We will refer to M̂n as a single fundamental domain

below following the terminology of [149]. The fundamental domain will include a single

bra branch and a single ket branch. Note that there is only one splitting surface γ inMn,

so it must remain fixed under the action of the replica symmetry group. As a result, one

expects the quotient spacetime to have an explicit source of curvature (a cosmic brane)

localized along γ. As in [33], the fundamental domain description is particularly useful

in analytically continuing to non-integer n (when effects that break replica symmetry can

be ignored).

Note that the covering space perspective is the more general of the two, in that it

also allows discussion of saddles that break replica symmetry. Such saddles have recently

been shown to be important near phase transitions [38, 72, 101]. Furthermore, working in

the covering space provides the cleaner description of the physics as it avoids introducing

artificial singularities at γ. We therefore focus on this perspective through section 4.3.4

below. However, we will return to the quotient M̂n = Mn/Zn in section 4.3.5 since

(as in [33]) in simple cases this perspective greatly simplifies analytic continuation to

non-integer n.
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4.3.2 Contributions to the action from the splitting surface

It remains to discuss contributions to S in (4.2) from the region near the cosmic brane

γ. We focus here on defining such contributions, postponing to sections section 4.3.3

and section 4.3.4 the description of boundary conditions at γ that make the variational

principle well-defined. In particular, here we wish to understand whether there are delta-

function-like contributions to the Ricci scalar at γ that should be taken to give finite

contributions Sγ to Sgr.
13 At first sight, the situation may appear especially confusing

due to the fact that γ lies at the boundary between the bra and ket parts of the spacetime,

and thus at the locus where the action changes sign.

However, things are simpler than they appear. Since we expect no strong curvatures

from the directions along the brane, any such delta-functions contributions will be as-

sociated with the metric transverse to the brane. The problem thus becomes effectively

two-dimensional in the plane normal to γ, which we recall has Lorentz signature. We

may thus define the contribution Sγ from a small tubular region Uε containing γ by

using a generalization of the Gauss-Bonnet theorem. Topologically, we require Uε to be

the product Ũε × γ for an appropriate two-dimensional space Ũε, so that we may apply

our Gauss-Bonnet theorem to the latter.

The idea of using a generalization of the Gauss-Bonnet theorem was suggested in e.g.,

[145]. However, we use a slightly different generalization due to the fact that γ lies on

a timefold. The required generalization may be motivated by analytically continuing a

Euclidean metric as t
E
→ it

L
in the ket parts of the spacetime, but using the complex

conjugate t
E
→ −it

L
in the bra parts of the spacetime. This is the same change of sign

that creates the timefold as it gives t
L
< 0 in both the bra and ket parts (though we

13We should emphasize here that our preceeding discussion makes clear that there are no singularities
along the past light-cone of γ. The delta function curvature singularities are localized solely on the
codimension-2 fixed point locus.
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think of the bra parts as coming from t
E
> 0). It is then associated with particular signs

in our Gauss-Bonnet theorem. As in [145], the resulting Gauss-Bonnet theorem will also

involve various factors of i =
√
−1.

To describe the relevant signs, it is useful to introduce η = ±1 taking the positive

sign on the ket parts of the spacetime and taking the negative sign on the bra parts of

the spacetime. This allows us to define the action contribution from Uε by

iSγ := lim
ε→0

i

16πGN

∫

Uε

dd+1x η
√−gR

:= lim
ε→0

−i
8πGN

∫

∂Uε

ddx η
√
|h|K +

1

4GN

χ(Ũε)Aγ.

(4.6)

The extrinsic curvature term in (4.6) is subtle and requires detailed comment. First,

in Lorentz signature it receives imaginary delta-function-like contributions from subman-

ifolds of ∂Uε where ∂Uε changes from spacetime to timelike (or vice versa). This is most

easily seen in the 1 + 1 case where K can be written as the derivative of the boost pa-

rameter θ (aka rapidity) describing the tangent to ∂Uε. Since null tangents have θ =∞,

the boost parameter θ has a pole at such transitions. Furthermore, in the ket part of the

spacetime and when a timelike portion of ∂Uε is attached to a spacelike portion of ∂Uε

that lies to its past, the above analytic continuation recipe makes θ real on the timelike

portions (where the normal is spacelike) but yields θ ∈ iπ
2

+ R on spacelike portions

(where the normal is timelike). Integrating through the transition in a ket part of the

spacetime thus yields a finite contribution iπ
2
, or −iπ

2
in the alternate case where the

timelike portion of ∂Uε is attached to a spacelike portion of ∂Uε that lies to its future.

In higher dimensions the contribution is similarly ±iπ
2
A‖, where the longitudinal area A‖

becomes Aγ in the limit ε→ 0. Contributions from the bra parts of the spacetime take

the complex-conjugate form. These localized contributions (from both the ket and bra

parts) are shown explicitly as the last term in (4.6) and are therefore no longer included
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in the extrinsic curvature term there.

The other subtlety involves the possibility of explicit corner contributions to the

extrinsic curvature term when ∂Uε is not smooth. In particular, such terms arise if Uε

fails to have orthogonal intersection with RA ∪RAc so that there is an abrupt change in

the normal to ∂Ũε when crossing from a ket spacetime to the attached bra spacetime.14

The interested reader can find a discussion of such terms in appendix C.1, but for the

moment we simply choose ∂Uε smooth to avoid such terms.15 In particular, we take ∂Uε

to be of the form depicted by the blue surface in fig. 4.7.

The extrinsic curvature thus gives both real and imaginary contributions to (4.6).

However, for spacetimes that are symmetric under both the Zn cyclic symmetry and the

conjugation symmetry, the imaginary contributions from the extrinsic curvature term

cancel between the bra and ket parts of the spacetime. Such spacetimes thus have real

weight eiS as required by the conjugation symmetry. As discussed in appendix C.2, the

spacetime of [143] realizes the framework described here in an n = 1 Schwinger-Keldysh

example that illustrates the reality of eiS in a particularly explicit manner.

Before proceeding, we emphasize that (4.6) is to define the action in the full region Ũε.

Thus while the Gibbons-Hawking term in (4.4) was written as an integral over RA∪RAc ,

for consistency it should be understood as being defined by integrating only over the parts

Rε
A ∪Rε

Ac of RA ∪RAc that lie outside Uε and then taking the limit ε→ 0.

Due to the above subtleties, in calculating the path integral weight for a conjugation-

symmetric saddle it will often be simplest to compute just the ket contributions to S

(including the ket contributions to (4.6)), and then to use the conjugation symmetry to

14This can happen with the surface ∂Ũε either remaining entirely spacelike, or having both spacelike
and timelike pieces. In the latter case, there are the contributions from the change in the signature
described above. In addition one also encounters corner terms from the intersection of the timelike part
of ∂Ũε with RA ∪ RAc . These however give a real contribution and thus cancel out in between the ket
and the bra.

15A good general discussion can be found in [150] though such contributions have been considered
various earlier discussions eg., [151, 152, 34].
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However, things are simpler than they appear. Since we expect no strong curvatures from

the directions along the brane, any such delta-functions contributions will be associated with

the metric transverse to the brane. The problem thus becomes e↵ectively two-dimensional

in the plane normal to g, which we recall has Lorentz signature. We may thus define the

contribution Sg from a small tubular region U✏ containing g by using a generalization of

the Gauss-Bonnet theorem. Topologically, we require U✏ to be the product Ũ✏ ⇥ g for an

appropriate two-dimensional space Ũ✏, so that we may apply our Gauss-Bonnet theorem to

the latter.

The idea of using a generalization of the Gauss-Bonnet theorem was suggested in e.g., [47].

However, we use a slightly di↵erent generalization due to the fact that g lies on a timefold.

The required generalization may be motivated by analytically continuing a Euclidean metric

as tE ! �itL in the ket parts of the spacetime, but using the complex conjugate tE ! +itL
in the bra parts of the spacetime. This is the same change of sign that creates the timefold

as it gives tL < 0 in both the bra and ket parts (though we think of the bra parts as coming

from tE > 0). It is then associated with particular signs in our Gauss-Bonnet theorem. As

in [47], the resulting Gauss-Bonnet theorem will also involve various factors of i =
p
�1.

To describe the relevant signs, it us useful to introduce ⇠ = ±1 taking the positive sign on

the ket parts of the spacetime and taking the negative sign on the bra parts of the spacetime.

This allows us to define the action contribution from U✏ by

iSg := lim
✏!0

i

16⇡GN

ˆ

U✏

⇠
p�gR := lim

✏!0

�i

8⇡GN

ˆ

@U✏

⇠
p

|h| K � 1

4GN
�(Ũ✏). (3.6)

Someone please check all i’s and signs above.

The extrinsic curvature term in (3.6) is subtle and requires detailed comment. First, in

Lorentz signature it receives imaginary delta-function-like contributions from submanifolds

of @U✏ where @U✏ changes from spacetime to timelike (or vice versa). This is most easily

seen in the 1 + 1 case where K can be written as the derivative of the boost parameter ✓

(aka rapidity) describing the tangent to @U✏. Since null tangents have ✓ = 1, this ✓ has a

pole at such transitions. Furthermore, in the ket part of the spacetime and when a timelike

portion of @U✏ is attached to a spacelike portion of @U✏ that lies to its past, the above analytic

continuation recipe makes ✓ real on the timelike portions (where the normal is spacelike) but

yields ✓ 2 i⇡2 + R on spacelike portions (where the normal is timelike). Integrating through

the transition in a ket part of the spacetime thus yields a finite contribution i⇡2 , or �i⇡2 in the

alternate case where the timelike portion of @U✏ is attached to a spacelike portion of @U✏ that

lies to its future. In higher dimensions the contribution is similarly ±i⇡2 Atransverse, where the

transverse area Atransverse becomes AfixM in the limit ✏ ! 0. Contributions from the bra

parts of the spacetime take the complex-conjugate form.

The other subtlety involves the possibility of explicit corner contributions to the extrinsic

curvature term when @U✏ is not smooth. In particular, such terms arise if U✏ fails to have

orthgoonal intersection with RA [ RAc so that there is no abrupt change in the normal to

@Ũ✏ when crossing from a ket spacetime to the attached bra spacetime. The interested reader

– 16 –

Figure 4.7: Regulating the fixed point locus in the spacetime by excising a tubular
neighbourhood around it. fig. 4.8 displays a slice through this at fixed yI for ease of
visualization.

Rε
ARε

Ac γ

Uε

∂Ũε

Σ̃ε
t

Figure 4.8: The local geometry in the cosmic brane excised spacetime shown at fixed
yI . The inner boundary consists of half of ∂Ũε (blue), along with two regions we call
RεA,RεAc (solid red and brown lines). The latter are regulated versions of RA,RAc
with the differences indicated by dashed lines. The Gibbons-Hawking term associated
with RA ∪ RAc in (4.4) should understood as the ε → 0 limit of the integral over
RεA ∪RεAc .

Figure 4.9: The local geometry near the cosmic brane and the boundary conditions
in Lorentz signature. We have exhibited here the regulated ket spacetime Mk

ε which
is obtained from Mk by excising a topological half-disc ribbon around the fixed point
locus γ (i.e., half of the exicison domain Uε).

write the bra contributions as the complex conjugates. In doing so, one may wish to

employ an alternate accounting scheme in which the splitting surface contribution (4.6)

is absorbed into the contributions from the ket and bra parts of the spacetime. This

alternate scheme is described in appendix C.1. We also discuss there the inclusion of

explicit corner terms that necessarily arise if one wishes to avoid the presence of timelike

pieces of ∂Uε.
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It now remains to evaluate (4.6) on interesting configurations and to understand the

implications for our variational principle. Our approach will be to use previous work on

the Euclidean replica problem to motivate a useful ansatz for the metric near γ, and then

to check that this ansatz allows for stationary points of the full action S under variations

of the metric near γ.

4.3.3 Imaginary-time boundary conditions at the splitting sur-

face

As stated above, we will first review the boundary conditions at γ associated with the

analogous variational problem in Euclidean signature. Although we are interested here

in the covering space perspective, and while the covering space is smooth in Euclidean

signature, it will nevertheless be useful to allow a localized delta-function source of cur-

vature at γ in the (generally off-shell) metric configurations that we consider. As is well

known, this gives a conical defect, though the condition that the defect should vanish on-

shell can be recovered from an equation of motion associated with variations with respect

to the area Aγ of γ. This perspective will be useful in the real-time context where the

real Lorentz-signature replica wormholes require causal singularities so that, with replica

boundary conditions, there are simply no smooth Lorentz-signature metrics on which to

base a discussion of the real-time variational problem. Interpreting the vanishing-defect

condition as an equation of motion rather than a boundary condition will thus allow us

to formulate a variational principle on the original contour of integration defined by real

Lorentz-signature metrics, even if the final stationary points can be accessed only by

deforming this contour into the complex plane.

We parameterize the Euclidean conical defect by using 2πm to denote the full angle

around the cone, by which we mean that small circles of radius r about the defect have
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circumference 2πmr. Thus the case m = 1 is smooth. For later use, we allow m to be

independent of the replica number n.

As discussed in [153], a convenient set of quasi-cylindrical coordinates generalizing the

notion of Gaussian or Riemann normal coordinates can be constructed using geodesics

launched orthogonally from the conical defect. We pick (r, t
E
) to parameterize the normal

plane and yI to be longitudinal along the cosmic brane. In such coordinates, with the

cosmic brane located at r = 0, the metric can be taken to have the form

ds2 = dr2 +
(
m2 +O(rα)

)
r2 dt2

E
+O(r0) dyIdyJ +O(r2) dt

E
dyI . (4.7)

Here t
E

is an angular coordinate taking values in [0, 2π) and the yI denote an arbitrary

set of coordinates on the conical defect. We take the rates of radial fall-off to be as

prescribed in (4.7) with the constraint α > 1. The metric coefficients may contain

arbitrary functions of (r, t
E
, yI) subject to periodicity under t

E
→ t

E
+ 2π. As a result,

all the functions can be expanded in a Fourier series involving only integral powers of

eitE .

It will be useful below to pass to complex coordinates. If this is an n-replica cal-

culation, it will be useful to choose coordinates v, v̄ adapted to a single replica in the

sense that v, v̄ are periodic in t
E

with period 2π
n

, and also such that v, v̄ are real on the

CPT-invariant surfaces.16 In particular, we take v = r
1
m̂ eintE with m̂ := m

n
. In terms of

this v, v̄, the metric (4.7) becomes

ds2 = m̂2(vv̄)m̂−1 dvdv̄ + T
(v̄ dv − v dv̄)2

(vv̄)2−m̂ + qIJ dy
IdyJ + 2iWJ dy

J v̄dv − vdv̄
vv̄

,

T = O(rα) = O(vv̄)
αm
2n = O(vv̄)

αm̂
2 , qIJ = O(r0) = O(vv̄)0 ,

WJ = O(r2) = O(vv̄)
m
n = O(vv̄)m̂ .

(4.8)

16Thus our v, v̄ are not the z, z̄ of [73].
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Since vv̄ is real and positive, we may define fractional powers (e.g., (vv̄)m̂) to be real and

positive as well. Note that periodicity in t
E

requires the metric functions T, qIJ ,WJ to

contain only integer powers of v1/n and v̄1/n, except where they appear in the manifestly

real combination vv̄. Furthermore, replica symmetry solutions will involve only integer

powers of v, v̄ (except in the combination vv̄).

Having specified the local geometry (4.8) in the vicinity of the splitting surface, we

can proceed to show that Einstein-Hilbert variational problem is well-defined. To this

end, let us first focus on the modified variational problem defined as in [33] by using the

Einstein-Hilbert action but removing the delta-function curvature contribution normally

associated with the conical singularity. We denote the resulting brane-excised Euclidean

action by Ǐm,n. One may think of Ǐm,n as being defined by simply dropping the Sγ term

from (4.2) without changing the definition of the other terms.17 Although the parameters

m,n play very different roles – with m controlling the conical singularity and n controlling

only our description of the spacetime through the definition of the coordinates v, v̄ – it

will be useful to keep both labels in Ǐm,n for comparison with the real-time discussion

below.

The analysis of [73] then shows that, for fixed m and n, requiring the behavior (4.8)

suffices to make Ǐm,n a good variational principle for the Einstein equations.18 Indeed,

although different coordinates were used to describe the covering spacetime, our Ǐm,n

agrees precisely with the object called Ĩm in [73]. We also recall from their analysis that

the Hamilton-Jacobi variation of the brane-excised Einstein-Hilbert action with respect

17In particular, at finite regulator ε there will still be no Gibbons-Hawking term at ∂Uε.
18 This was understood much earlier in many contexts (see e.g. [154, 33]), though we are not aware of

a fully general prior study of the case m > 1. We also comment that this variational principle provides
what one may call an equation of motion for the splitting surface given by equation (A.66) of [73], that
in some sense determines the location of γ relative to other features of the spacetime. For example, in
the limit n→ 1, this condition requires γ to be extremal.
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to m is just − Aγ
4GN

, where Aγ is the area of the cosmic brane γ

− δǏm,n
δm

=
Aγ

4GN

. (4.9)

In particular, this holds for arbitrary real m.

As a result, if one happened to be interested in a related problem that fixed the

area Aγ of γ but left the opening angle 2πm of the conical singularity unconstrained,

one could construct a good variational principle IA for that problem via the Legendre

transform

IA = Ǐm,n + (m− 1)
Aγ

4GN

. (4.10)

The ambiguity in the Legendre transform (associated with adding an arbitrarym-independent

function of Aγ) has been fixed by requiring the value of (4.10) to agree with that of the

standard Einstein-Hilbert action in the case m = 1 (when there is no conical singu-

larity). This then has the consequence that (4.10) in fact agrees with the standard

Einstein-Hilbert action for all m. In particular, for any m the term (m− 1)Aγ in (4.10)

precisely restores the contribution Sγ associated with a possible conical defect.

The above argument provides an especially clean way to see that, if one uses the stan-

dard Einstein-Hilbert action, requiring stationarity under constrained variations that fix

Aγ imposes the equations of motion away from γ but allows a general conical singularity

at γ. If one further also requires stationarity under variations of Aγ (which then amount

to Hamilton-Jacobi variations of (4.10) with respect to Aγ), one obtains the condition

m = 1 that requires the spacetime to be smooth.

In summary, we see that an alternate way to impose the condition that the full n-

replica geometry be smooth at γ is simply to require that it provide a stationary point of

the Einstein-Hilbert action ((4.10)) with respect to variations of Aγ. In particular, from
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(4.9) we see that the action (4.10) is also stationary under variations of m so that we

may consistently treat the smoothness condition m = 1 as an equation of motion that

follows from the gravitational dynamics rather than as an a priori boundary condition.

Indeed, since the support of any path integral measure will not be concentrated on

smooth configurations, it is natural to take the equation-of-motion perspective to be

more fundamental than simply imposing smoothness as a boundary condition.

4.3.4 Real-time boundary conditions at the splitting surface

With this understanding we can now turn to the real-time context. While we wish

to avoid analytic continuation of our physical metric, its boundary conditions, or any

relevant real-time sources, we are nevertheless free to use the Euclidean analysis as mo-

tivation for a choice of real-time boundary conditions at γ. As in the imaginary time

case, we will first discuss a brane-excised variational principle which in some sense allows

an arbitrary fixed ‘defect’ at γ. We will then use this brane-excised action to show that

similar boundary conditions promote the S of (4.2) to a well-defined variational principle

that can be formulated on real Lorentz-signature replica wormhole spacetimes. In this

latter variational principle, the defect parameter m is free to vary, but is then determined

on-shell by an equation of motion associated with varying the area Aγ of the splitting

surface. Furthermore, while real replica wormholes cannot make the action stationary at

γ, we will see that complex replica wormholes can do so, and that they are also com-

patible with the full set of stationarity conditions at the level of counting the relevant

equations. This sets the stage for the construction of examples in the companion paper

[4], which will demonstrate that the desired complex saddles do in fact exist (at least in

the contexts studied there).

To begin our real-time analysis, we remind the reader that we consider here the real-
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time covering-space description of the n-replica saddle, which thus has n bra spacetime

pieces and n ket spacetime pieces glued together along appropriate surfaces RA,RAc .

For the moment, we do not require any particular symmetries of this spacetime.

Let us first focus on one of the ket spacetimes (which is associated with the more

familiar eiS
k
gr in the path integral), with the understanding that the complex-conjugate

boundary conditions will hold on the bra spacetimes. As stated above, our Lorentzian

approach will be motivated by Wick-rotation of the Euclidean results discussed in sec-

tion 4.3.3. In particular, it is natural to associate any particular pair of bra and ket

spacetimes with a single fundamental domain of some replica-symmetric Euclidean so-

lution under the Zn cyclic symmetry. Recall that the Euclidean metric near γ in any

such fundamental domain can be described by (4.8). Now, note that taking the above

Euclidean complex coordinates v, v̄ to be x+ i te, x− i te and Wick-rotating te → it would

define ‘light-cone’ coordinates19 x̃± = x ± t. Applying this transformation v → x̃− and

v̄ → x̃+ to (4.8) yields the metric (with m̂ ≡ m
n

)

ds2 = σ(x̃+, x̃−) dx̃+dx̃− + T
(x̃+ dx̃− − x̃− dx̃+)2

(x̃+x̃−)2−m̂

+ qIJ dy
IdyJ + 2WJ dy

J x̃
+dx̃− − x̃−dx̃+

x̃+x̃−
,

with

σ(x̃+, x̃−) ≡ m̂2(x̃+x̃−)m̂−1 ,

T = O(rα) = O(x̃+x̃−)
αm
2n = O(x̃+x̃−)

αm̂
2 ,

qIJ = O(r0) = O(x̃+x̃−)0 ,

WJ = O(r2) = O(x̃+x̃−)
m
n = O(x̃+x̃−)m̂ .

(4.11)

19This choice differs by signs from the standard null coordinates x± ≡ t± x = ±x̃±. It is also worth
noting that the Euclidean time coordinate te here is a Cartesian coordinate, in contrast to the angular
coordinate t

E
used in (4.7).
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Furthermore, the analogue of the Euclidean metric being periodic in t
E

with period

2π is to require that the metric functions T, qIJ , WJ involve only integer powers of (x̃±)
1
n ,

except perhaps in the combination x̃+x̃−. In other words, we require these coefficients to

be functions of the triple ((x̃+)
1
n , (x̃−)

1
n , x̃+x̃−) that are analytic in the first two arguments

in some neighborhood of the origin x̃+ = 0 = x̃−. Note that such local analyticity is

to be expected at any source-free regular point of the equations of motion and does not

restrict the use of non-analytic sources at the asymptotic boundary. (Replica-symmetric

solutions will involve only integer powers of x̃±, again with the possible exception of

appearance in the combination x̃+x̃−.)

Let us first consider the case where m̂ is a positive integer, and in particular the case

m̂ = 1 (where m = n). For appropriate T , qIJ , and WJ , the metric (4.11) can then

be both real and completely smooth away from the timefold. In particular, this case

includes real Lorentz-signature replica wormhole spacetimes of the sort that define the

domain of integration for the Lorentz-signature path integral described in section 4.2.

On the other hand, for more general values of m̂ (or for more general choices of T , qIJ ,

and WJ), metrics satisfying (4.11) are at best a complex deformation of the above real

Lorentz-signature replica wormholes. This deformation will be of interest below, though

it has several subtleties that require comment.

(a). The first subtlety is that (4.11) can involve negative powers of x̃+x̃−, in which case

it is singular when either x̃+ or x̃− vanish. More generally, we should expect a

solution to the Einstein equations that behaves like (4.11) near γ to be singular on

the past light cone of γ. This is an interesting difference from the Euclidean case,

where the metric is smooth away from the tip of the cone. Note that for m = 1

(and thus for m̂ = 1
n
) the singularity was obtained by making a complex coordinate

transformation and analytically continuing a smooth Euclidean solution, so in that
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case this appears to be a form of coordinate singularity. It should thus be harmless

for m = 1, though see further discussion in section 4.5. Note that for n > 1 the

choice m = 1 forbids taking m̂ = m
n

to be a positive integer, and is thus intrinsically

complex.

(b). The second subtlety is that, since x̃+ and x̃− can be negative (and in particular

since x̃+x̃− is negative in the Milne wedge), fractional powers can be complex and

require appropriate definition.

In fact, motivated by the Euclidean description, we will deal with both issues in

much the same way, choosing our ket spacetime definitions for general m̂, T , qIJ , WJ

to match what would be obtained by analytically continuing t through the upper half-

plane (since tE → it and the ket part of the spacetime comes from tE < 0.). This

amounts to introducing the iε prescriptions x̃± → x̃± ∓ iε (with ε > 0) and taking the

powers of x̃± appearing in (4.11) to be analytic functions. Thus for negative x̃+ we

have (x̃+)
1
n = e−

iπ
n |x̃+| 1n and for negative x̃− we find (x̃−)

1
n = e+ iπ

n |x̃−| 1n . In particular,

(x̃+x̃−)
1
n remains real at positive at t = 0, so that (4.11) is compatible with the previously

advertised requirement that the metric and its extrinsic curvature be real and positive

on RA and RAc . Nevertheless, it is forced to be complex in the Milne wedge to the ‘past’

of γ.

We take the above specifications to be part of the boundary conditions at γ for our

real-time variational problem. In particular, this refines the definition of the real Lorentz-

signature replica wormhole configurations that specify the original domain of integration

for our Lorentz-signature path integral. As noted above, reality generally requires m̂ to

be an integer. Metrics with other values of m̂ simply do not lie in the original domain of

integration.

Nevertheless, metrics with general m̂ are allowed to appear in complex deformations
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of that domain. In particular, the iε prescription included in our proposal for general m̂

turns out to be very useful. For any fixed m,n it will imply that the above are indeed

a valid set of boundary conditions for a variational problem associated with the brane-

excised Einstein-Hilbert action Šm,n := S − Sγ on the timefolded bulk spacetime. This

timefolded spacetime only retains the t ≤ 0 regions in both the ket and bra spacetimes,

and we may think of the excision as removing a small disk-shaped region of size20 ε around

the origin x̃± = 0, though we eventually take ε→ 0 at the end of the computation.21

The fact that Šm,n gives a valid variational principle for fixed m,n can be read di-

rectly from the Euclidean analysis of [73]. Since the arguments of that reference simply

manipulated power series expansions in their z
1
n , (z̄)

1
n , it is immediate that every step of

can be ‘Wick rotated’ and rewritten in terms of x̃± to yield an equally-valid treatment

of the real-time boundary conditions above. And as in footnote 18, this in a certain

sense provides an equation of motion for the splitting surface γ. Furthermore, by the

same argument we can read from [73] that the Hamiltonian-Jacobi variation of Šn,m with

respect to m yields

δŠn,m
δm

= −i Aγ
4GN

. (4.12)

Now, we in fact wish to show that metrics of the form (4.11) promote the full ‘Einstein-

Hilbert action’ S = Šm,n + Sγ to a well-defined variational principle. And as in the

imaginary-time context, we will now allow m to vary as well. We thus need to consider

the piece Sγ associated with the region near γ. To this end, in some ket part of our

spacetime, let us consider a small semicircle Cε about the origin in the lower half of the

(real) x̃± plane (i.e., of the form described by the orange curve in fig. 4.8). In particular,

we take the curve to have orthogonal intersection with RA,RAc so that there is no delta-

20Since we are Lorentz signature, this ‘size’ does not in any way measure proper distance from γ.
21The reader might find it helpful to recall our definition I = −iS below (4.3), which makes it natural

to talk about I for the Euclidean computation, but stick to S for the Lorentzian on-shell action.
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function contribution to the right-hand-side of (4.6) from ‘corners’ where the normal to

Cε changes when crossing from a ket to a bra spacetime across RA,RAc .

In the limit of small ε, non-vanishing contributions to the integrated extrinsic curva-

ture will come only from the explicit terms in (4.11); terms associated with T , qIJ , and

WJ decay too quickly to contribute. By inspection, one sees that the explicit terms in

(4.11) are invariant under both replica and conjugation symmetry. This means that their

contributions to the real part of the integrated extrinsic curvature must cancel between

the bra and ket parts of our spacetimes. We may thus focus on the imaginary parts.

Now, as noted below (4.6), there are in fact two kinds of contributions to

Im
∫
Cε
ddx
√
hK, which is to be computed using the outward pointing unit normal. The

first comes from computing the extrinsic curvature in the past Milne region where the

metric can be complex. But the second is associated with loci where the spacetime metric

is real and of Lorentz signature but Cε transitions from being spacelike to being timelike

(or vice versa). Noting that the relevant terms in (4.11) are real outside the past Milne

region, we choose Cε to coincide with the surface x̃− − x̃+ = ε in the past Milne region

(and a bit outside) but to otherwise be an arbitrary smooth curve that meets the timefold

orthogonally. This in particular requires Cε to be spacelike just outside the past Milne

wedge (and on either side) but timelike where it meets the timefold. Since we currently

focus on a ket part of the spacetime, the contribution to Im
∫
Cε
ddx
√
hK from outside

the past Milne wedge is thus

− Im

∫

Cε

ddx
√
hK

∣∣∣∣
outside past Milne wedge

= 2× π

2
× Aγ = πAγ (4.13)

from the associated transitions.

The contribution to Im
∫
Cε
ddx
√
hK from the past Milne wedge is also straightfor-

ward to compute. Since
√
hK is real for any spacelike surface outside the Milne wedge
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(again restricting to contributions from the explicit terms in (4.11) both here and below),

we may in fact integrate
√
hK over any surface cutting across the Milne wedge that be-

comes spacelike in the Rindler wedges. For simplicity, we choose this to be the surface

x̃− − x̃+ = −2t = ε. The explicit terms in the metric (4.11) then give

− Im

∫

t=− ε
2

ddx
√
hK = Im

∫

t=− ε
2

dx dd−1y
√
q(y)

∂

∂t
log
√
σ(x̃+, x̃−)

=
m̂− 1

2
Im

∫

t=− ε
2

dx ∂t log
(
x̃+x̃−

)
×
∫
dd−1y

√
q(y)

=
m̂− 1

2
Im

∫

t=− ε
2

dx ∂x
(
log x̃+ − log x̃−

)
× Aγ

= 2π
m̂− 1

2
Aγ = (m̂− 1)πAγ .

(4.14)

The factor of Aγ comes from integrating
√
q over the longitudinal coordinates yI as

indicated. In passing from the third to the fourth line we have used the fact that x̃± have

opposite iε pole prescriptions so that their logarithms give oppositely-signed imaginary

parts (which then reinforce each other due to the explicit minus sign in the x̃− term in

line three).

Summing the two contributions above in (4.13) and (4.14) gives

Im

∫

Cε

ddx
√
hK = −π m̂Aγ. (4.15)

But since the full replica geometry involves n copies of Mk ket spacetimes and n copies

of Mb bra spacetimes, we must include such a semicircle through each in order to form

the boundary of a disk around the origin. Comparing with (4.6) and setting χ(Ũε) = 1

yields

iSγ =
i

16πGN

∫

Uε

η
√−g R = −(n m̂− 1)Aγ

4GN

= −(m− 1)Aγ
4GN

. (4.16)

We now conclude our argument by making several observations. The first is simply
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that comparing (4.12) and (4.16) shows – again in parallel with the Euclidean case –

that for any n the full action S is a Legendre transform of Šm,n with respect to m. So

by the usual argument S yields a well-defined variational principle with the ‘conjugate’

boundary conditions still defined by (4.11) but where we fix Aγ and instead allow m to

vary (still holding n fixed). In particular, we see that any stationary point of Šm,n will

automatically make S stationary with respect to variations of m.

Second, we note that we may consider boundary conditions defined by (4.11) for fixed

n but with both Aγ and m free to vary. Given the observation above, to investigate the

status of S for such boundary conditions we need only compute

δS

δAγ
=
δSγ
δAγ

= i
m− 1

4GN

, (4.17)

where in the first step we have again assumed that we evaluate the result on a stationary

point of Šm,n. We see from (4.17) that stationary points of Šm,n with m = 1 are also

stationary points of S. We have thus shown by direct computation that S does indeed

yield a well-defined variational principle with boundary conditions defined by (4.11) and

with n fixed but with m free to vary. And we have also shown that stationarity with

respect to Aγ is equivalent to m = 1, and thus to m̂ = 1/n. In particular, this is the

real-time analogue of the stationarity condition that requires the metric to be smooth in

the purely Euclidean context and in any single replica real-time context (i.e., for which

n = 1).

Let us conclude this section with a summary of the requirements for a covering space

description of a replica wormhole spacetime to yield a saddle point of our variational

principle associated with the full action S for some n. First, it must satisfy the usual

Einstein equations away from the timefold surfaces RA, RAc , and γ. Second, the extrin-

sic curvatures at RA, RAc must be continuous when passing from any bra part of the
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spacetime to any ket part. Third, near γ it must take the form (4.11) with m̂ = 1/n

and with the iε prescriptions given above.22 Finally, it must be consistent with whatever

initial conditions are used to specify the quantum state. This last requirement will be

discussed further in section 4.4, though we first briefly address the fundamental domain

description of our saddles in section 4.3.5.

4.3.5 The view from a single fundamental domain

Despite the elegance of the above covering space description, imposing replica sym-

metry allows one to reconstruct the full solution from a single fundamental domain. It

is thus often useful to formulate the entire problem in terms of one such domain M̂n,

containing only a single bra spacetime and a single ket spacetime sewn together along

RA and RAc . As in [33], this can be particularly useful for analytically continuing to

non-integer n as the parameter n now only appears in the metric through the combina-

tion m̂ = m
n

, which is already allowed to be an arbitrary positive real number. Below,

we also require the spacetime to be invariant under CPT conjugation.

The desired variational principle follows immediately from our discussion above. We

simply define the allowed fundamental domains M̂n to be quotients M̂n = Mn/Zn

of the replica- and conjugation-symmetric covering spaces Mn satisfying the boundary

22 It would be interesting to attempt to strengthen the above argument and show that the full m̂ = 1/n
‘boundary conditions’ associated with (4.11) – and in particular the iε prescription associated with the
poles and branch cuts – are in fact consequences of the equation of motion associated with stationarity
of the action under varying the area of γ. In particular, the iε prescription is precisely the condition that
powers of x̃± define positive frequency functions. And as noted in section 4.4 below, for the case where
we compute Rényi entropies of the vacuum state, we expect this state to enforce boundary conditions
on the ket spacetime that in some sense require positive frequency solutions. Furthermore, since the iε
prescription is needed only on the past light cone of γ, it is a UV issue that one expects to be independent
of the choice of state. We thus suspect that a full analysis of the equations of motion and the initial
conditions for good quantum states could derive this condition from an entirely real-time point of view.
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conditions of section 4.3.4. We then define the action

Sfund
n

(
M̂n

)
=

1

n
Sn (Mn) = 2i Im

(
Skgr,n

)
− i
(

(m̂− 1
n
)Aγ

4GN

)
, (4.18)

where Skgr,n is the action (4.4) evaluated on the ket part of M̂n, and where in the last

step we have used (4.16). This Lorentz-signature action is always purely imaginary so

that the associated weights in the path integral are real. In particular, since saddles will

again have m̂ = 1/n, the Rényi entropies (4.3) computed by any given such saddle take

the form

S
(n)
A = 2

n

n− 1
Im
(
Skgr,n − Skgr,1

)
. (4.19)

This is manifestly real, and coincides with the Euclidean answer when analytic contin-

uation can be performed. This will be verified explicitly in [4] for the examples studied

there.

4.4 State preparation

Thus far we have imagined starting from an initial (perhaps mixed) state ρ0 at some

t0 and evolving it to the time t of interest taking into account any real-time sources

between t0 and t. By ‘time’ t, we in fact mean that we choose some Cauchy surface Σt ,

and similarly for t0. To be definite, we take t to lie to the future of t0. In the holographic

context these will refer to boundary Cauchy surfaces, and we will allow boundary sources

which will affect the quantum state of the bulk within their causal future.23

While this setting is natural, it raises the question of precisely how the state ρ0 is

23The effects of such sources on the saddle-point geometries used to calculate Rényi entropies need
not be confined to this causal future. The point here is that such solutions are not constructed by
solving a Cauchy problem with initial data in the past. Instead, they involve timefolded spacetimes with
boundary conditions on both sides. Furthermore, the equations of motion may fail to be hyperbolic in
any complex parts of the spacetime.
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to be specified. In the discussion above, we have generally supposed that we have been

given the explicit matrix elements of ρ0 in a basis defined by field eigenstates at the time

t0. However, at least in field theoretic contexts, we should admit that it can be difficult

to obtain such a description for interesting states. Let us therefore briefly remark on

other methods that can be used to specify ρ0, and which are also readily incorporated

into our discussion.

One strategy is to choose a familiar state that allows for a particularly simple treat-

ment and then to construct more complicated states by adding sources between t0 and t.

For example, one might take the initial state to be the vacuum, and perhaps also taking

t0 to lie in the far past. This has several advantages. In the free field limit, the vacuum

initial conditions require positive-frequency boundary conditions at the initial time, cf.,

[144] for a discussion in language similar to that used here. Similarly, for vacuum gravity

in AdS3 the geometry in the far past should be diffeomorphic to global AdS3 with all

boundary gravitons being of positive frequency. In higher dimensions or when matter

fields are coupled to gravity, we still expect an analog of the positive-frequency bound-

ary condition to hold, though making it precise might require employing a suitable ‘iε’

prescription.24

Alternately, it may be useful to consider states that can be prepared by slicing open a

Euclidean path integral. One can then implement the past boundary condition by simply

attaching this Euclidean path integral. At the semiclassical level, this will then require

the bulk spacetime to satisfy appropriate Euclidean boundary conditions in the far past.

The vacuum can of course be treated in this way, as can the thermofield double state,

or deformations of these states by operator insertions in the Euclidean section; see e.g.

related discussions in [155, 156, 157, 158].

24In an asymptotically flat spacetime it will suffice to ensure that the linearized gravitational solutions
in the far past only have support on positive frequency incoming radiative modes.
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It can thus be useful to allow Euclidean sections of an a priori real-time path integral

for use in preparing states. However, we emphasize that this is a not matter of neces-

sity, but is only a matter of expedience. Such Euclidean sections are a useful technical

simplification to enable us exploit known features of the Euclidean path integral to give

a geometric picture of the initial condition. In particular, the use of such Euclidean sec-

tions will not restrict in any way the possible presence of non-analytic sources between

t0 to t.

A particularly simple example is provided by the gravitational Schwinger-Keldysh ge-

ometries discussed in [141, 142, 143] which capture the real-time evolution of the thermal

density matrix of the boundary CFT (see also [159]) in the absence of any sources in

the Lorentzian evolution. This example is described in appendix C.2, where it is used to

illustrate some of the general features discussed above.

4.5 Discussion

Our work above provides a framework for discussing replica wormholes within a real-

time formalism, and in particular in contexts that may include non-analytic sources. We

described a Lorentz-signature bulk gravitational path integral with boundary conditions

associated with computing (swap) Rényi entropies in a dual field theory, and which

allows configurations with the topology of replica wormholes. Real Lorentz-signature

configurations of this type contain timefolds and a cosmic brane ‘splitting surface.’ We

carefully formulated a variational principle for such spacetimes that yields the Einstein-

Hilbert equations of motion away from the timefolds and the splitting surface, and which

imposes natural constraints at these surfaces. In particular, stationarity at the splitting

surface forbids having a delta-function contribution to the scalar curvature as defined by

a Lorentz-signature (or more generally, complex) generalization of the 2d Gauss-Bonnet
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theorem. Explicit examples of such real-time replica wormhole saddles will be presented

in a companion paper [4]. And while we focused here on bulk gravity described by an

Einstein-Hilbert action, the generalization to include perturbative higher curvature terms

is straightforward using results from appendix B of [73].

The fundamental formulation of our real-time path integral involved only real Lorentz-

signature configurations. However, solutions to the above stationarity conditions are

necessarily complex. Accessing the associated saddles thus requires deforming the original

real contour of integration. This should not be a surprise. While real-time equations of

motion must be real, this need not be true of the boundary conditions imposed by any

particular quantum state. Indeed, instantons that describe gravitational tunneling are

famously associated with Euclidean stationary points that again can be accessed only by

deforming the original contour of integration specified by a Lorentzian path integral.

Importantly, however, at least for replica-symmetric saddles (preserving both a Zn

cyclic symmetry and conjugation symmetry) we found that the metrics to be real in the

region spacelike separated from the splitting surface. As a result, contributions of such

spacelike-separated regions to S cancel between the bra and ket parts of the spacetime.

In particular, so long as they remain spacelike separated from the splitting surface, we

can move the bulk timefold along RA,RAc forward or backward in time as we please

without changing the path integral weight of our replica-wormhole. This remains true

even if we move RA,RAc at the AdS boundary, where such deformations correspond to

changing the time t at which our (swap) Rényi is computed. This feature is an important

hallmark of unitarity in a dual field theory interpretation, which would indeed require

such Rényi’s to be time-independent.

The above argument suffices to show critical features of unitarity at boundary times

that are spacelike separated from the splitting surface, and in contexts where the bulk

computation is controlled by a single replica- and conjugation-symmetric saddle. But it
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is clearly of interest to understand whether and how bulk replica wormholes implement

the expected unitarity more generally. In particular, since the formal n → 1 limit of

an on-shell splitting surface is an extremal surface, and since extremal surfaces must

be spacelike separated from any part of the AdS boundary not causally related to their

boundary anchors [78, 127], it is natural to ask whether general on-shell splitting surfaces

with any n > 1 must also be spacelike separated from corresponding regions of AdS

boundary. And it is also clearly important to understand the possible effect of saddles

in which replica symmetry is broken.

Now, as a matter of principle, an inherently real-time prescription for constructing

saddle-point geometries of gravitational replica path integrals is critical to describing

physics in the presence of non-analytic sources. However, in some contexts it will in

practice be convenient to proceed by studying a related Euclidean problem and analyt-

ically continuing the resulting Euclidean saddle. This may in particular be useful when

the initial state can be prepared using a Euclidean path integral and when any sources

are analytic functions of time. In that context, one may imagine computing entropies

associated with general Euclidean choices of the region A and then analytically contin-

uing parameters to obtain entropies for general Lorentzian regions as in [39, 134, 160].

Analytically continuing the Euclidean replica geometry in this way must give a solution

to the variational problem described in section 4.2. Indeed, if the analytic continuation

is performed using the prescription described below (4.8) then it is manifest that the

result will satisfy the conditions at the real-time splitting surface associated with (4.11).

And it is also manifest that analytic continuation of a Euclidean saddle will solve the

standard Einstein equations away from γ.

Of particular interest may be the way that such analytic continuations glue together

the bra and ket parts of the resulting Lorentz-signature spacetime. This gluing is nat-

urally described by a smooth excursion into the space of complex metrics, which then

163



Real-time gravitational replicas: Formalism and a variational principle Chapter 4

becomes our iε prescription in the limit where the curve connecting the Lorentz-signature

bra and ket branches becomes very tight.

A particularly clean example was described in [143] based on earlier work of [141]

for the case of replica number n = 1. The context there involved computing boundary

correlation functions of light fields in a thermal state in the limit of vanishing bulk Newton

constant GN with a bulk theory described by pure AdS gravity. As this example may

provide inspiration for future work, we recall it briefly in appendix C.2, commenting

briefly on the extension to general n and emphasizing the way that it displays the reality

of the weight eiS and the associated facets of unitarity described above.

Let us now conclude with a few further brief comments on future directions. First,

while it sufficed for our current purposes, there is admittedly something unsatisfying

about using an iε prescription to define the boundary conditions at γ for general m̂.

It would thus be interesting to understand whether the allowed configurations could be

generalized in some natural way so that our iε prescription arose from solving the Einstein

equations subject to boundary conditions imposed by natural quantum states. Indeed,

the latter are naturally complex. One can certainly imagine that such a prescription

would follow for vacuum states (as it does in the free field case, see e.g. section 4.3 of

[144]), and since the iε prescription controls a UV singularity on a lightcone one may

hope that it in fact follows for more general states due to the requirement that they agree

with the vacuum in the UV.

Second, it is clearly of interest to extend our analysis beyond leading order in the bulk

Newton constant GN to include one-loop back-reaction from quantum fields. Here one

would like to understand the relationship to classic discussions [161, 162] of back-reaction

in the presence of Lorentz-signature topology change. But the extension to include one-

loop back-reaction is also important for many applications to black hole evaporation

(where one expects the relevant replicas to be saddles only for the one-loop-corrected
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effective action [37, 36]. In particular, if one can extend the above discussion of dual field

theory unitarity to the bulk one-loop level, it should provide a bulk argument that black

hole evaporation not only yields a Page curve as in [39, 38] but that it implements fully

unitary evolution as expected for a field theory dual.
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Chapter 5

Real-time gravitational replicas:

Low dimensional examples

5.1 Introduction

Real-time computation of correlation functions, both time-ordered and out-of-time-

order, as well as density operator matrix elements and their moments, in any quantum

system either with or without dynamical gravity, requires the use of a suitable timefolded

contour, with segments of forward and backward evolution. One often however eschews

the use of such contours, relying instead on computations in the Euclidean domain,

and then analytically continuing the answers thus obtained into the real-time domain

(see e.g., [120, 121] for non-gravitational theories as well as the more recent analysis in

gravitational context in [160]), a strategy that works well when the quantum evolution

is not subject to non-analytic sources. While this is strategy is efficient in extracting

information about the non-perturbative aspects of the theory, it does not lend insight

into the physical dynamical evolution directly.

These issues have been well appreciated in the context of quantum field theory for
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many decades, but have come to fore with recent analyses of new semiclassical configu-

rations that address the black hole information problem. Inspired by the Euclidean path

integral arguments [33, 28, 74, 35] that helped derive the static holographic entangle-

ment entropy formula [66] and its quantum generalization [29], recent investigations in

low-dimensional gravity theories have argued for the contribution of replica wormhole

saddles [38, 39] in the gravitational path integral. For a review of these developments in

the context of the black hole information problem, see [130]. Furthermore, as argued for

in [54] such replica wormhole configurations are quite generic in the Euclidean formalism.

Motivated by these developments, and by earlier efforts [34] to derive the covariant

holographic entanglement entropy prescription of [27], in a companion paper [6] we out-

lined the general formalism for understanding the stationary phase approximation of the

real-time gravitational functional integral. In addition, connections to the black hole

information problem and baby universes have also been discussed recently in [55]. Our

goal in this current paper is to exemplify the formal discussion in [6] with some concrete

examples. For technical reasons our examples will rely on gravitational dynamics in low

dimensions, especially in 2 and 3 spacetime dimensions, where one can write down ex-

plicit geometries that provide the appropriate stationary points. It should however be

clear from our discussion that the construction can in principle be carried out, at least

numerically, in higher-dimensions with dynamical gravitational degrees of freedom.

The specific class of problems we study herein are those that correspond to computa-

tion of Rényi entropies in holographic field theories in low dimensions, specifically AdS2

and AdS3. We recall that in the field theory one is instructed to consider path integral

contours of the form illustrated in fig. 5.1. Reduced density matrices ρA(t) associated

with spatial subregions A on a Cauchy slice Σt are obtained by sewing together the ket

and bra parts along the complementary domain Ac, leaving open the parts along A.

Traces of powers of ρA(t) are computed by taking n-copies of the geometry and cyclically
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ρ0 ρ0 ρ0 ρ0

U(t; t0) U(t; t0)†

Figure 5.1: An illustration of the real-time contours for the computation of the
density matrix ρ(t) (left) and traces of its powers (Tr(ρ(t)3) on right) . The past
boundary condition is supplied by the prescribed initial state ρ0 and the direction of
time evolution is explicitly indicated by the arrows.

gluing the parts associated with A across the copies in a replica Zn symmetric manner.

This boundary geometry provides the asymptotic boundary conditions for our AdS grav-

ity dual, which we seek to determine. In what follows we will adhere to the terminology

of [6] referring to the n-fold replica boundary geometry as the branched cover spacetime

Bn, its dual bulk gravity stationary phase solution as the covering space geometry, Mn,

and the quotient of the bulk geometry by the Zn replica symmetry as the fundamental

domain, M̂n =Mn/Zn.

The boundary and bulk spacetimes are composed of elementary building blocks which

are the ket (Bk and Mk) and bra components (Bb and Mb), which we indicate with k and

b superscripts, respectively. We will be interested in computing the Rényi (or swap)

entropy, which will be obtained from the stationary phase evaluation of the gravitational
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path integral. The nth Rényi entropy will be given by

S(n) =
1

1− n log

(Z[Bn]

Z[B]n

)
=

1

n− 1
(In − n I1) ,

In := − logZ[Bn] =





SEgr[Mn] , Eulidean

−i Sgr[Mn] , Lorentzian

(5.1)

where B = B1. The Lorentzian action with the general time-ordering necessary to com-

pute replica path integrals takes a Schwinger-Keldysh form:

Sgr[Mn] = Skgr[Mn]− Sbgr[Mn] , (5.2)

where we have forward evolution for the ‘kets’ (k) and backward evolution for the ‘bras’

(b), resulting in the relative sign above. As argued in [6] (and earlier in [34, 55]), the

on-shell action In in the Lorentzian context is real, and is given by

In = 2 Im(Skgr[Mn]) =⇒ S(n) =
2

n− 1

[
Im(Skgr[Mn])− n Im(Skgr[M])

]
, (5.3)

whereM =M1. While the general arguments for these statements were presented in our

companion paper [6], we will verify these statements explicitly in some specific contents

herein.

The examples we discuss in the bulk of the paper are the following. In section 5.2 we

examine the computation of Rényi entropy in an excited state with a localized dilaton

excitation in Jackiw-Teitelboim (JT) gravity [163, 164]. This provides a concrete context

to contextualize the general discussion of [6] and understand the geometry in some detail.

To orient the reader we present both the Euclidean approach as well as the real-time

computation, for the state we consider will be time-reversal symmetric, thereby providing
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a further check on the results we obtain. In section 5.3 and section 5.4 we then turn to

examples in 2d CFTs starting first with the case of a single-interval in section 5.3. This

example has been well studied both in field theory and gravity and we again use it

to provide an illustration of the geometry of the real-time gravitational solution. In

section 5.4 we then turn to a more interesting case, that of two disjoint intervals in a

CFT on R1,1. We first begin by illustrating the geometry and the computation of the

second Rényi entropy when the two intervals lie on a fixed time slice, and subsequently

generalize to the case when the intervals are relatively boosted with respect to each other.

We conclude with a brief discussion of other interesting avenues to explore in section 5.5.

We include in the appendices various technical details that enter into our calculations.

appendix D.1 computes the Lorentzian on-shell action for a semi-infinite interval in a 2d

CFT using a Rindler regulator to contrast with the discussion in the main text. In

appendix D.2 we give further details for the evaluation of the Lorentzian on-shell action

for disjoint intervals supplementing the discussion in section 5.4.2. appendix D.3 is a

quick overview of the Schottky construction of the covering space geometry (both on the

boundary and in the bulk) for the computation of second Rényi entropy for 2 disjoint

intervals. For this case we present an explicit evaluation of the Euclidean action from the

bulk solution in appendix D.4 (as far as we are aware this computation has not hitherto

been reported in the literature). Finally, appendix D.5 summarizes some familiar sign

conventions and useful identities that we employ in the course of our calculation.

5.2 A toy model in 2d gravity

As our first example, we will consider a two dimensional scenario and examine the

real-time contours for computing moments of the density matrix. The particular example

we pick is the ground state of JT gravity. In Euclidean signature one may prepare this
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state by considering the thermal AdS2 geometry with the Euclidean time identified with

period β and taking β →∞. For finite β we may also slice open this geometry to expose

the thermofield double (or Hartle-Hawking) state |TFD(β)〉 at temperature T = β−1 at

time t = 0 (which we can think of as a pure entangled state of two quantum systems,

one on each asymptotic boundary of the Lorentzian geometry). If we focus on one of

the boundaries we end up with a thermal density matrix ρ
β
(t = 0) at temperature β by

the usual thermofield double construction. The entropy we compute may be viewed as

the thermal entropy of this density matrix in the limit β → ∞ or equivalently as the

entanglement entropy between the two boundaries [165, 166, 167]. For earlier investiga-

tions of entanglement entropy in JT gravity see [168, 169] and [170] which computes the

subleading corrections and discusses a Lorentzian interpretation of the Euclidean replica

trick.

We will focus on computing the moments Tr(ρn
β
(t = 0)) at β = ∞. The geometry

computing this is obtained by stringing together n-copies of that preparing ρ
β
(t = 0)

cyclically and gluing them together. Once again in Euclidean signature we know the

resulting spacetime: the n-fold replica geometry is thermal AdS2, albeit now with a

thermal circle that is n times larger [33].

As described in [6] once one has the ansatz for the geometry Mn which is dual to

the n-fold replica, we can either work in the covering space, or take a replica Zn quotient

and work in a single fundamental domain M̂n = Mn/Zn. In the present example the

covering spacetime Mn is simply AdS2. When we take the Zn quotient we will obtain

the fundamental domain M̂n which has a fixed point of the Zn action at the locus

γ = {x = t = 0}. We will describe below the real-time geometry, delineating the various

domains of interest, and then proceed to compute the on-shell action. To help orient the

reader given that the configuration is time-reversal symmetric about t = 0 (in fact it is

globally static), we will describe both the Euclidean and the Lorentzian constructions
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and computations therein.

Before proceeding, it is worth recording the actual answer for the moments of the

ground state density operator are not all that illuminating. The ground state entropy

in JT gravity is set by the value of the dilaton, and since there is a finite large β limit

it gives Tr(ρ(t)n) = Tr(ρ(t)). Nevertheless, the example is instructive to consider, as

it provides for useful illustration of the general issues encountered in real-time replica

geometries which are easy to discern and intuit.

5.2.1 The Hartle-Hawking state in JT gravity

The two-dimensional JT gravity is a dilaton-gravity theory with the following action

in Lorentz signature:1

SJTgr =
φ0

16πGN

[∫

M
d2x
√−g R + 2

∫

B
dx
√−γK

]

+
1

16πGN

[∫

M
d2x
√−g φ (R + 2) + 2

∫

B

√−γ φ (K − 1)

]
,

≡ S0 + Sφ ,

(5.4)

where S0 is the topological 2d gravity action and Sφ the dilatonic contribution. The

classical equations of motion obtained by varying the dilaton and metric demand

R + 2 = 0 , (∇µ∇ν − gµν)φ = 0 , (5.5)

respectively. We now proceed to solve these in Euclidean signature where the geometries

are familiar and thence explain the Lorentz counterparts.

1We will only quote explicitly the Lorentz signature action for the gravitational dynamics. The
Euclidean action is given by SEgr = −Sgr with the Lagrangian density evaluated on the appropriate
signature metric in both cases; see appendix D.5.1. The overall negative sign is consistent with the
general intuition the Euclidean action is the Hamiltonian for imaginary time evolution.
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r=ε

M̂3

Figure 5.2: The Poincaré disc geometry dual to the thermofield double (or
Hartle-Hawking) state of JT gravity and its n-fold replica depicted here for n = 3. We
have shaded the single fundamental domain obtained by taking the replica quotient
and indicated the interior boundary at r = ε one introduces while computing the
on-shell Euclidean action contribution from a single fundamental domain.

Replicas in Euclidean signature

The thermofield double state where the Euclidean time coordinate t
E

has period β is

simply thermal AdS2 by virtue of the first equation in (5.5). The n-fold replica is likewise

the same geometry albeit now with the thermal circle being n-times larger.

Covering space: It is useful to write down the geometry using the Poincaré disc model,

and parameterize the Euclidean covering space Mn by complex coordinates z, z̄ as

ds2 =
4 dz dz̄

(1− z z̄)2
= 4

dr2 + 1
n2 r

2 dτ 2

(1− r2)2
, z = r ei τ/n , (5.6)

with the identification τ ∼ τ + 2π n on the Poincaré disc to account for the n-fold cover.
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A general solution for the dilaton can be easily written down:2

φ =
1

1− zz̄
[
α−(1 + zz̄)− i α0 (z − z̄) + α+ (z + z̄)

]
. (5.7)

The covering space is an n-fold branched cover over a single Euclidean-AdS2 geometry;

we will require that the fields respect the replica Zn symmetry which acts by τ → τ +2π.

The dilaton solution (5.7) will be admissible only it is invariant under z → z e2πi/n. This

forces α+ = α0 = 0 and thus the solution for the dilaton in covering space AdS2 is simply

φ = α
1 + zz̄

1− zz̄ , (5.8)

where we have renamed α− → α for simplicity.

A single fundamental domain: The Zn replica symmetry acts on this geometry

by τ → τ + 2π, or equivalently as z → z e2πi/n. Consequently, we can let v = zn be

coordinates on a single fundamental domain AdS2/Zn. On the quotient space the metric

and dilaton are then given by

ds2 =
4 (vv̄)

1−n
n

n2
(

1− (vv̄)
1
n

)2dvdv̄ = 4
n2 dr2 + r2 dτ 2

n2(1− r2)2
, (5.9a)

φ = α
1 + (vv̄)

1
n

1− (vv̄)
1
n

. (5.9b)

2The easiest way to obtain the solution is to view Euclidean-AdS2 as a hyperboloid embedded in
R2,1. The embedding coordinates are {X0, X±1} with the mapping

X0 = −i z − z̄
1− zz̄ , X−1 =

1 + zz̄

1− zz̄ , X1 =
z + z̄

1− zz̄
to the Poincaré model. It is easy to see that (5.5) requires φ = α−X−1 + α0X0 + α+X1.
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We have depicted the replica geometries of interest in Euclidean signature in fig. 5.2. In

what follows we will find it more convenient to use a Cartesian chart for the fundamental

domain, so will let {v, v̄} ≡ {x+ i t
E
, x− i t

E
}.

Lorentz signature replicas

γ

Milne wedge

Rindler wedge

t
t

Figure 5.3: The domains in the Lorentzian geometry dual to a single fundamental
domain M̂n. We have indicated both the ‘ket’ and ‘bra’ components of the spacetime
Mk and Mb which are each a copy of the AdS2 geometry past of the Cauchy slice
at t = 0. The geometry M̂n has a fixed point locus of the replica Zn action at the
splitting surface γ. The ket and bra geometries are real in the Rindler wedges, regions
spacelike separated from γ, but are complex in the Milne wedge, the causal past of
γ.

In Lorentz signature we work with coordinates {t, x} with light-cone like combinations

x̃± = x ± t which are adapted to be positive in the spacelike domain as they will be

natural analytic continuations of Euclidean variables. The metric in the covering space

is that of AdS2 itself, with no identifications. It is more interesting to examine the

geometry in a single fundamental domain. Owing to the time translational symmetry of

the background, we may analytically continue and obtain the metric and dilaton profiles
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on M̂n to be:

ds2 =
4 (x̃+x̃−)

1−n
n

n2
(

1− (x̃+x̃−)
1
n

)2 dx̃
+dx̃− , (5.10a)

φ = α
1 + (x̃+x̃−)

1
n

1− (x̃+x̃−)
1
n

. (5.10b)

The metric and dilaton profile in (5.10) clearly solves (5.5). However, it remains to

fix the value of α. Since we wish to model the ground state, we should impose a positive

frequency condition as described in [6]. But (5.10) is not positive frequency, so the only

allowed solution is α = 0 for which φ = 0 everywhere. This is somewhat degenerate in

our description, but we can certainly study the limit α → 0 for all replica numbers n.

Note that this is in fact precisely the way in which our Euclidean analysis was performed.

One can add excitations to this state by allowing for time-dependent sources to be

turned on in the real-time evolution. In this example one can give a clear picture of the

positive-frequency boundary conditions necessary to define the initial state ρ0. Let us

consider this for finite α, after which we can again take the limit α → 0. A massless

scalar field Φ, by virtue of its conformal invariance satisfies the standard wave equation

(−∂2
t + ∂2

x)Φ = δ(t − t0, x) in the AdS2 geometry. The solution in the presence of the

source term will be given by

Φ(t, x) =
1

2π

∫ −e−iω(t−t0)−ikx

−ω2 + k2
dωdk . (5.11)

The positive frequency mode here can be isolated by an iε prescription; we pick the

ω = −|k| pole when integrating over ω. The result is the familiar retarded solution for
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the scalar field (γ is the Euler-Mascheroni constant)

Φ(t, x) = i sgn(t− t0)

(
1

2
log
(
(t− t0)2 − x2

)
+ γ

)
. (5.12)

We will not be considering excitations of the thermofield double state for simplicity,

but the above analysis makes clear that we can easily add additional fields coupled

gravitationally and study their effects.

Let us examine the Lorentzian geometry: the metric (5.10a) describes the metric on

the ‘ket’ part of a single fundamental domain which we denote as Mk, see fig. 5.3. As

described in [6] the cyclic Zn replica symmetry together with the CPT symmetry that

exchanges the bra and ket Mk ↔ Mb requires that the geometric configurations be real in

the homology wedge which is the region of spacetime spacelike separated from the fixed

point locus γ, also referred to as the splitting surface [6]. Since the fixed point locus γ

in the present case is at x = t = 0, the homology wedges are the past Rindler wedges

|x| > |t| with t ≤ 0. This is ensured in (5.10) by the choice of analytic continuation: x̃±

are both positive in the right Rindler wedge, and both negative in the left Rindler wedge.

However, the solution is complex in the Milne wedge, the causal past of γ where x̃− > 0

and x̃+ < 0. Additionally, we need to choose α to be real owing to the Z2 symmetry at

t = 0. This may be achieved by our choice of the initial state.

We can exhibit a manifestly real form of the configuration in the right Rindler wedge

by the following coordinate transformation:

t = (n ρ)n sinh t
R
, x = (n ρ)n cosh t

R
, ρ ∈ R≥0 and t

R
< 0 . (5.13)
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which maps (5.10) into

ds2 = 4
n2 dρ2 − ρ2 dt2

R

(1− n2ρ2)2
, φ = α

1 + n2 ρ2

1− n2 ρ2
. (5.14)

One can pass to the other wedges by effectively rotating t
R

by a phase as we cross the

past horizon of γ, with the result,

left Rindler wedge : t = (nρ)n sinh t
L
, x = −(nρ)n cosh t

L
, ρ ∈ R≥0 and t

L
< 0 ,

lower Milne wedge : t = −(i nρ)n cosh t
M
, x = (i nρ)n sinh t

M
, ρ ∈ R≥0 and t

M
∈ R .

(5.15)

5.2.2 The Rényi entropy computation

Now that we have our replica spacetime we need to evaluate the on-shell action. We

will first do so in the Euclidean setting just to remind ourselves of the expected answer,

and then proceed with the real-time computation.

Euclidean action calculation

The on-shell Euclidean action we need to evaluate is

Z = e−I = e−S
E
gr
∣∣
on-shell

= e−S0−Sφ
∣∣
on-shell

. (5.16)

Recall that the counter-terms are designed to make the action finite, and recall also that

our limit α → 0 sends φ → 0 everywhere. Thus limα→0 Sφ = 0. It thus remains only to

evaluate the contribution from S0.

The boundary conditions we need are that the radial coordinate is cut-off at r = rc

and the proper length of the boundary thermal circle is β/ε with the boundary value of

the dilaton being φb = φc/ε.
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In this example it is simplest to work in the covering space, where S0 can be trivially

evaluated. One simply notes that the Gauss-Bonnet theorem gives us the gravitational

contribution to be the Euler character of a disc, and hence

S0

∣∣
on-shell

= − φ0

16πGN

× 4π = − φ0

4GN

. (5.17)

One can also directly verify this result by computing the Einstein-Hilbert and Gibbons-

Hawking terms in S0 separately with a radial cut-off at rc and the thermal periodicity

as required. One has the extrinsic curvature K = 1+r2
c

2 rc
for the constant r = rc slice and

thus

S0

∣∣
on-shell

= − φ0

16πGN

[∫

Mn

d2x
√
g R + 2

∫

Bn
dx
√
γ K

]

= − φ0

16πGN

×
[ ∫ rc

0

4r dr

n (1− r2)2
× (−2) + 2

2rc
1− r2

c

1 + r2
c

2n rc

]
×
∫ 2πn

0

dτ

= − φ0

4GN

.

(5.18)

In principle there is a further contribution from the dilaton action (the Schwarzian

term). For the thermofield double state at β →∞ however this can be checked to vanish

at tree level (Schwarzian fluctuations will give the near-extremal result [167]).

Let us also check the result directly by working in a single fundamental domain. We

will again use the Gauss-Bonnet theorem, but we will be careful to excise the contribution

from the cosmic brane, the singular codimension-2 locus of the replica Zn symmetry fixed

point at r = 0. The fastest way to proceed is to excise a disc Dε of radius r = ε around

the origin. One then computes S0 in terms of the Euler character of the resulting annulus

and the contribution from the inner boundary term at r = ε which is another copy of the
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Gibbons-Hawking term now on a circle of radius ε. To wit,

S0

∣∣
on-shell

= −n (S0)fund

= −n φ0

16πGN

(∫

M̂n

d2x
√
g R + 2

∫

B
dx
√
γ K − 2

∫

r=ε

dx
√
hK

)

= − nφ0

16πGN

(
0− 2

(
2ε

1− n2ε2

)(
−1 + n2ε2

2n ε

)∫ 2π

0

dτ

)

= − φ0

4GN

.

(5.19)

where we used the fact that the Euler characteristic of the annulus vanishes and K =

−1+n2ε2

2n ε
on the regulating surface at r = ε (note the change in orientation of the normal

gives us an extra negative sign).

With the on-shell action at hand we can compute the nth Rényi entropy for the

thermofield double (Hartle-Hawking) state. Since In = I1 it immediately follows from

(5.1) that

S(n) =
φ0

4GN

. (5.20)

which is the promised temperature independent answer.

Lorentzian action calculation

Let us now compute the result for the on-shell action in Lorentz signature. Again, the

limit α → 0 sends φ → 0 at all points, so we should understand Sφ as vanishing in the

limit. To compute the gravitational contributions, we will work in a single fundamental

domain. Recall that the metric on M̂n is given by (5.10). We will organize the compu-

tation as follows: M̂n has two components Mk corresponding to the forward evolution

of the ket and Mb corresponding to the backward evolution of the bra. The direction of
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Milne wedge

Rindler wedge

γ

∂Uε

γ−ε γ+
ε

Figure 5.4: The geometry in the vicinity of the splitting surface γ in the Lorentzian

geometry dual to a single fundamental domain M̂n. We have excised a neighbourhood
Uε of γ with boundary ∂Uε to regulate the contribution from the fixed point locus.
We take ∂Uε to be parametrized by an arbitrary curve x̃+ = U(x̃−) in the x̃± plane.

time evolution being reversed in the two, one needs to compute as described in (5.3)

Sfund
n (M̂n) =

1

n

[
Skgr,n − Sbgr,n

]
=⇒ In = −i n Sfund

n = 2n Im(Skgr,fund) . (5.21)

We can thus focus on computing the imaginary part of Skgr,fund from the ket. In

implementing this computation, we will organize the pieces in the following manner: we

first excise a region Uε around x̃± = 0, the fixed point locus γ with boundary ∂Uε. This

cut-off region with the topology of a disc, intersects the Cauchy slice at t = 0 on two

corners γ±ε , respectively, as depicted in fig. 5.4. We will take ∂Uε to be parameterized by

a function x̃+ = U(x̃−). We can implement the Gauss-Bonnet theorem on the lower-half

plane after excising Uε, provided we include a boundary term at the excision surface

∂Uε and the corner terms where this cut-off region meets the Cauchy surface at t = 0.

Specifically, focusing on the gravitational contribution of the JT action (5.4) we have

S0 =
φ0

16πGN

[∫

M
d2x
√−g R + 2

∫

B
dx
√−γK

]

=
φ0

16πGN

[
4π χ− 2

∫

∂Uε

dx
√
hK − Scorner

]
,

(5.22)
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with χ being the Euler character. The bulk term encoded in χ does not give any imaginary

contribution – these are completely subsumed into the Gibbons-Hawking term on the

Cauchy slice and the corner term. We will evaluate these in turn.

To facilitate the computation for the metric (5.10a) let us write the prefactor as

σ(x̃+, x̃−) and compute the extrinsic curvature of the surface ∂Uε. Given the normal

vector

nµ∂µ =

√
U ′(x̃−)

σ

∂

∂x̃+
−
√

1

σ U ′(x̃−)

∂

∂x̃−
, (5.23)

one finds:

K =
1

2 (U ′ σ)
3
2

[
σ U ′′ − U ′

(
∂σ

∂x̃−
− U ′ ∂σ

∂x̃+

)]
. (5.24)

Factoring in the induced measure
√
h =

√
σ U ′ we end up with the Gibbons-Hawking

contribution evaluating to

2

∫

Uε

dx
√
hK =

∫
dx̃−

(
U ′′

U ′
− ∂ log σ

∂x̃−
+ U ′

∂ log σ

∂x̃+

)
≡ T0 + T− + T+ , (5.25)

where we have chosen to split the integrand and label the three integrals as T0,± for

convenience. We now note the following T0, which is an integral of our cut-off function

U(x̃−) alone, can be seen to be purely real. We can pick for instance a smooth function

and realize that the integral is over some domain of the form: x̃− ∈ [−δ, x∗ + δ] with x∗

being a zero locus of U(x) and δ > 0. Important to this argument is the fact that the

integrand can be made a regular function of x̃−. Furthermore,

T+ =

∫
dx+ ∂ log σ

∂x̃+
, (5.26)

which is obtained by a x̃− ↔ x̃+ swap from T− and we record that σ(x̃−, x̃+)) is a

symmetric function. We will see below that Im(T− + T+) = 2 Im(T−), so we will simply
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focus on its evaluation for now.

Plugging in the conformal factor σ from (5.10a) we have

T− = −
∫

dx̃−
∂ log σ

∂x̃−
=

∫
dx̃−

n x̃−

(
1 + n− 2

1− (x̃+x̃−)
1
n

)
. (5.27)

We see that the integral over x̃− has a pole at the origin which needs to be accounted

for. We will do so using an iε regulator and defining the integrand by a principal value

prescription. Recall,

1

x± iε = P 1

x
∓ i πδ(x) . (5.28)

The natural choice of the contours is such that x̃− → x̃− + iε [6]. We then have

T− =
1

n

∫
dx̃−

[
P 1

x̃−
∓ i πδ(x̃−)

](
1 + n− 2

1− (U(x̃−) x̃−)
1
n

)
,

=⇒ Im(T−) = − 1

n
(n− 1) π .

(5.29)

In evaluating the integral we have finally restricted to the cut-off surface and used the

smoothness of U(x) to obtain the final result. The evaluation of T+ proceeds similarly

with the iε prescription reading now x̃+ → x̃+ − iε. The relative sign of the iε implies

that the imaginary part from T− is doubled, so that

Im

[
2

∫

∂Uε

dx
√
hK

]
= 2π

(
1

n
− 1

)
. (5.30)

The final piece we need is the corner term where the spacelike Cauchy surface Σ̃t

intersects with the chosen cut-off ∂Uε. As explained in [6] this contribution arises when

the regulator surface ∂Uε does not intersect the Cauchy surface orthogonally.3 For our

3We pause to note here that these contributions have been discussed earlier in [152] (in the context
of applications to black hole entropy computations) and were treated in full generality quite elegantly
in [150]. We also note its use in the holographic entanglement entropy computations in [34].
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purposes we simply need to know that the integral of the extrinsic curvature along the

boundary in two dimensions is the same as adding up the infinitesimal rotation angles

of the normal nµ. At the corner the boost angle associated with the normal vector

jumps by a factor i π
2

as originally computed in [151]. Specifically, at each corner γ± we

get a contribution from the relative boost that arises in going from the ket to the bra

component Mk of M̂n
4

∫ √
−hK = cosh−1

(
nk
ε · nb

ε

)
= i

π

2
. (5.31)

We have two corners γ±ε with opposing orientations and hence

Im(Scorner) = Im

(
2

∫

γ+
ε

√
−hK + 2

∫

γ−ε

√
−hK

)
= 2π . (5.32)

Adding all the contributions from (5.30) and (5.32), we get the full Lorentzian action,

In = −2n
φ0

16π GN

Im

[
2

∫

∂Uε

√
hK + Scorner

]
= − φ0

4GN

. (5.33)

This indeed is the expected answer for one immediately recovers from the above the

result for the nth Rényi entropy obtained from the Euclidean computation (5.20).

5.3 Rényi entropies in 2d CFTs: A single interval

As our next example we will examine the much studied example of a single-interval

Rényi entropy in the vacuum state of a two dimensional conformal field theory on the

4There is a useful heuristic for this calculation which underlies the complex Gauss-Bonnet theorem
employed in [145] – the cut-off surface has to pass from the timelike Milne region to the spacelike Rindler
region and each crossing involves a iπ2 jump in the normal (see also [152]). This is the piece we pick up
in the corner contribution if we have a non-orthogonal intersection at the Cauchy slice; see Appendix A
of [6] for a brief discussion.
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plane. This computation which was first carried out in [171] and re-examined in [81]

exploits the fact that the computation of the Rényi entropies can either be viewed as

the computation of the partition function on a n-folded branch cover, or equivalently as

the correlation function of Zn twist operators. The key point is that the n-fold branched

cover of the complex plane is a genus-zero Riemann surface which can be uniformized by

a simple map.

To be concrete let us consider the CFT2 on R1,1 and letA be a codimension-1 spacelike

region on some Cauchy surface with ∂A comprising of two-points a1 = (0, 0) and a2 =

(t0, x0) with t0 < x0. The CFT computation gives (δ is a UV regulator)

S
(n)
A =

1

1− n log Tr(ρnA) =
1

1− n log 〈Tn(a1) T−n(a2)〉

=
c

12

(
1 +

1

n

)
log

(
|a2 − a1|2

δ2

)
=

c

12

(
1 +

1

n

)
log

(
x2

0 − t20
δ2

)
.

(5.34)

Here Tn, T−n are the Zn twist operators and we have exploited the fact that the partition

function on the n-fold cover Bn can be mapped to a two-point function of these twist

operators.

We would like to reproduce this answer from a gravity computation. We will take

the bulk theory to be Einstein-Hilbert gravity in AdS3 which has by the classic analysis

of [80] an asymptotic Virasoro symmetry with central charge c = 3`AdS

2GN
. We will use this

relation explicitly and rewrite the strength of the gravitation interaction `AdS

16πGN
= 1

24π
c.5

5We will set `AdS = 1 in most of our analysis below, but will quote the result in terms of the
dimensionless CFT central charge.
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5.3.1 The boundary replica geometry

Let us first examine the boundary replica geometry in Euclidean signature obtained by

Wick rotating t→ −i t
E
.6 The original geometry B is the complex plane with coordinates

{v = x+ i t
E
, v̄ = x− i t

E
}, and hence the branched cover replica space Bn is topologically

a sphere, with branch points at a1 and a2 where it has a conical excess given by 2π(n−1).

Let z be the complex coordinate on the covering space. The complex structure on Bn,

v−a1

v−a2
, defines a uniformization map to the smooth covering space, which itself is a complex

plane with coordinate z defined by

z =

(
v − a1

v − a2

) 1
n

(5.35)

In the z-plane the n-sheets of the branched cover are mapped to n wedges with opening

angle 2π
n

as depicted in fig. 5.2. The uniformization map can be viewed as a conformal

transformation since

dzdz̄ = Ω2 dv dv̄ , Ω2 ≡ 1

n2

|a2 − a1|2∣∣∣(v − a1)1− 1
n (v − a2)1+ 1

n

∣∣∣
2 . (5.36)

The passage to Lorentz signature can be achieved by the inverse Wick rotation and

in terms of our light-cone coordinates x̃± = x± t, the metric is

ds2 =
|a2 − a1|2

n2

dx̃+ dx̃−

(x̃− − a1)
1
2
− 1

2n (x̃− − a2)
1
2

+ 1
2n (x̃+ − a1)

1
2
− 1

2n (x̃+ − a2)
1
2

+ 1
2n

. (5.37)

Note that the Wick rotation is carried out with respect to the time-coordinate on the

base space B where the physical quantum fields reside. The Lorentzian metric on Bn/Zn
6For any t0 < x0 we can pick a Cauchy surface of R1,1 to be defined by x

x0
= t

t0
– its normal is a

timelike vector: x0
∂
∂t + t0

∂
∂x . We can Wick rotate this vector and obtain the Euclidean spacetime of

interest. It is simpler to visualize the case when t0 = 0. However, for the SL(2) invariant CFT2 vacuum,
all foliations by slices of constant − x

x0
+ t

t0
are equivalent by the underlying boost invariance.
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Σt

a1

a2

complex complex

real

real

real

real

Figure 5.5: Causal domains on the boundary ket spacetime Bk for a two dimensional
field theory with the region A taken to be a spacelike segment of a boosted Cauchy
slice. We indicate the regions where the resulting metric is real and complex, respec-
tively. In general the metric is not guaranteed to be real in regions that are in the
causal past of the entangling surface ∂A which here comprises of the two points a1

and a2.

is not real everywhere: it is complex in regions that lie in the causal past of ∂A. For

the present example this is the domain that is timelike separated from one endpoint, but

spacelike separated from the other as depicted in fig. 5.5.7

In arriving at this answer we have used the Euclidean construction of the branched

cover as a crutch, but one can verify this directly by taking n-copies of the ket and bra

spacetimes with the replica gluing conditions. A simple way to see this is to consider a

conformal transformation which makes A a semi-infinite interval, mapping in the process

its past domain of dependence to a Rindler wedge of the resulting Minkowski spacetime

(on B) [124]. The n-fold cover is obtained by gluing the Rindler wedges of A cyclically

across the replica bras and kets (while those of Ac are glued together within the bra-ket

combination of each replica copy). The combination of Zn replica symmetry and the Z2

CPT-conjugation swapping bras and kets, ensures that the resulting spacetime has a real

7As noted in [6] the boundary conditions at the asymptotic AdS boundary are specified by a real
boundary metric (with conical singularities at the entangling surface). The reason for the complex metric
in (5.37) is because we have made a specific choice for the boundary conformal frame which is related
to the real boundary metric by a complex Weyl factor. We have analytically continued the Euclidean
boundary geometry (5.36) obtained via the uniformization and it is this choice that is responsible for
the complex Weyl factor.
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Lorentz signature geometry in the Rindler wedges, but not necessarily so in the Milne

wedges [6]. The example above makes this manifest.

5.3.2 The bulk Rényi geometries

Given the boundary geometry Bn we are tasked with constructing the bulk dualMn.

We will first describe the geometry in Euclidean signature and then outline the Lorentzian

description. The covering space geometryMn is simply AdS3, since the z-plane is a copy

of C. It is more interesting to examine the geometry of the fundamental domain M̂n

where the boundary has the conical singularities associated with the branch points.

We will proceed by exploiting the fact that the Fefferman-Graham expansion con-

verges in AdS3 (since all geometries are locally diffeomorphic to AdS3). Using the gen-

eral results of [172] one can write the metric dual to the state of interest in terms of

the boundary stress tensor data (this was used by [173] to compute holographic Rényi

entropies in AdS3). The physical state we are considering on one fundamental domain of

the CFT is the state obtained by acting on the vacuum with the twist operators (which

thence create the appropriate monodromy around the branch points).

The standard Fefferman-Graham expansion in AdS3 with boundary metric γij and ρ

being the Fefferman-Graham radial coordinate, is given as [172]

ds2 =
dρ2

4 ρ2
+

1

ρ

[(
1− ρ

4
Tr(T )

)
δ k
i +

ρ

4
T k
i

]
γkl

[(
1− ρ

4
Tr(T )

)
δl j +

ρ

4
T lj

]
dxi dxj .

(5.38)

Working in the complex coordinates v, v̄ the geometry takes the form:

ds2 =
dρ2

4 ρ2
+
dv dv̄

ρ
− 1

2

[
Tvv̄ dvdv̄ − Tvv dv2 − Tv̄v̄ dv̄2

]

+
ρ

8

[(
Tvv Tv̄v̄ + T 2

vv̄

)
dvdv̄ − 2Tvv̄

(
Tvv dv

2 + Tv̄v̄ dv̄
2
)]
.

(5.39)
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For the case of interest we need to know the boundary stress tensor, which is easily ob-

tained by the conformal map (5.35). One has the result given in terms of the Schwarzian

map for the diagonal components, viz.,

Tvv = Sch(z, v) =
1

2

(
1− 1

n2

) |a2 − a1|2
(v − a1)2(v − a2)2

,

Tv̄v̄ = Sch(z̄, v̄) =
1

2

(
1− 1

n2

) |a2 − a1|2
(v̄ − a1)2(v̄ − a2)2

.

(5.40)

The off-diagonal term is instead given by the conformal anomaly term:

Tvv̄ = −2 ∂v∂v̄ log Ω = π

[(
1− 1

n

)
δ(|v − a1|) +

(
1 +

1

n

)
δ(|v − a2|)

]
. (5.41)

Plugging in these expressions into (5.39) we obtain the metric on a single fundamental

domain M̂n in Euclidean signature.

One can exhibit the fact that the Euclidean geometry onMn is smooth by construct-

ing an explicit diffeomorphism (see [174]) from the (ρ, v, v̄) coordinates above to a new

set of coordinates (ξ, y, ȳ). All we need is for this diffeomorphism to act as the desired

conformal transformation implementing the uniformization. Explicitly, we have

ξ =

√
ρΩ

1 + ρΩ2 |∂z log Ω|2
, y = z +

ρΩ2 ∂z̄ log Ω

1 + ρΩ2 |∂z log Ω|2
, (5.42)

which maps the metric on the covering space to the standard Poincaré metric:

ds2 =
dξ2 + dydȳ

ξ2
. (5.43)

On this covering space the replica Zn symmetry acts as z → e
2πi
n z or equivalently y →

e
2πi
n y. The fixed points of the symmetry are the branch points v = a1 and v = a2 on the

boundary, and a bulk locus γ which in this particular case is a geodesic that connects
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the two boundary points. In the regular (ξ, y, ȳ) coordinates this is the geodesic that

connects the north and south poles of the boundary Riemann sphere.

The Lorentzian geometry on the ket part, Mk, of a single fundamental domain M̂n

can be obtained from the above. One might naively think this is simply an analytic

continuation of the (v, v̄) coordinates. However, we should exercise some care since the

naive analytic continuation of the Tvv̄ component of the stress tensor which has delta

function sources would indicate that we have shockwaves propagating along the past-

light cones of the branch points. This is incorrect and inconsistent with the boundary

conditions of the variational problem described in [6]. The single fundamental domain

has a fixed point locus from the replica Zn action, and a complex metric in the causal

past of ∂A, but no singularities along the light-cone. Instead the correct metric in real-

time is one where we Wick rotate Tvv → Tx̃− x̃− and Tv̄v̄ → Tx̃+x̃+ but define the analytic

continuation of Tvv̄ → Tx̃−x̃+ to only have delta function singularities at the fixed point

locus. To wit, (with T−+ ≡ Tx̃−x̃+ etc)

T−+ = 2πi

[(
1− 1

n

)
δ(x̃− − a1) δ(x̃+ − a1) +

(
1 +

1

n

)
δ(x̃− − a2) δ(x̃+ − a2)

]
,

T−− =
1

2

(
1− 1

n2

) |a2 − a1|2
(x̃− − a1)2 (x̃− − a2)2

,

T++ =
1

2

(
1− 1

n2

) |a2 − a1|2
(x̃+ − a1)2 (x̃+ − a2)2

,

(5.44)

in terms of which we can parameterize the bulk real-time metric on Mk as

ds2 =
dρ2

4ρ2
+
dx̃+ dx̃−

ρ
+

1

2

(
−T−+ dx̃

− dx̃+ + T−− (dx̃−)2 + T++ (dx̃+)2
)

+
ρ

8

[(
T−−T++ + T 2

−+

)
dx̃+dx̃− − 2T−+

(
T−− (dx̃−)2 + T++ (dx̃+)2

)]
.

(5.45)

The choice of analytic continuation made in (5.44) is really a question of correctly
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interpreting the codimension-2 delta functions therein. One can justify this by an integral

representation in momentum space. We recall that the T−+ component is determined by

the conformal factor Ω since

T−+ = 2 ∂−∂+ log Ω(x̃+, x̃−)

= 2

(
1− 1

n

)
∂−∂+ log

√
(x̃− − a1)(x̃+ − a1)

+ 2

(
1 +

1

n

)
∂−∂+ log

√
(x̃− − a2)(x̃+ − a2).

(5.46)

We need to define the argument of the logarithm by analytic continuation, which we

do by using a Fourier transform trick. Consider the following regulated integral which

in Euclidean space, x ≡ (x, t
E
), provides the standard integral representation of the

modified Bessel function of the second kind K0(x) = − log(|x|) + constant:8

log(|x|) = − lim
m→0

1

2π

∫
d2p

eip·x

|p|2 +m2

→ − lim
m→0

i

2π

∫
d2p

eip·x

p2 +m2 − iε̃

= − lim
m→0

i

4π

∫
dp+dp−

e−
i
2

(p+x̃−+p−x̃+)

p+p− −m2 − iε̃ .

(5.47)

Using the last line of the expression above it can be checked that one does recover (5.44)

from (5.46).

5.3.3 Rényi entropies from gravity

We will now outline the computation of the Rényi entropies from the bulk geometries

constructed in section 5.3.2. We will first revisit the computation in Euclidean signature

as before just to set the stage and then proceed to describe how the Lorentzian com-

8The Pauli-Villars mass term here is introduced to remove the IR divergence. We are also allowing
for a constant shift which will not affect the analysis.
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putation works. The logic we follow will roughly parallel the discussion in section 5.2.2

though we now have to deal with the fact that the geometry in a single fundamental

domain is more complicated.

Euclidean on-shell action in a fundamental domain

We will compute the Rényi entropies using (5.1). As remarked above, we carry out

the computation of In in a single fundamental domain and then scale it up to the covering

space. In evaluating the fundamental domain action, as explained in [33], we need to

ensure that we do not include the contribution from the cosmic-brane, i.e., from the

delta-function singularities arising as a result of taking the quotient. We thus want to

evaluate

In = SEgr[Mn] = n În ≡ nSEgr[M̂n]

∣∣∣∣
cosmic brane excised

. (5.48)

We will start by outlining the contributions to SEgr[M̂n] and then note the pieces that we

need to remove to excise the cosmic brane contribution.

The on-shell action in gravity has three distinct contributions: a bulk term from

the Einstein-Hilbert action, a boundary Gibbons-Hawking term, and finally boundary

counterterms necessary to regulate the divergences. For definiteness we will regulate

the spacetime by cutting-off the radial coordinate at ρ = ρc and thence take the limit

ρc → 0 at the end of the computation. Denoting the induced metric on the cut-off

timelike boundary Bc by γµν we have the action as the sum of the aforementioned three

contributions:

SEgr[M̂n] = − 1

16πGN

[∫

M̂n

d3x
√
g (R + 2) + 2

∫

Bc

√
γ K −

∫

Bc

√
γ (2 + γR log ρc)

]
.

(5.49)

We can evaluate each of these in turn. Firstly, since R = −6 it follows that the bulk
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contribution can be evaluated explicitly to be

∫

M̂n

d3x
√
g (R + 2) = −4

∫

M̂n

√
g

= −
∫

dvdv̄

∫ ρ∗

ρc

dρ

[
1

ρ2
+

Tr(T )

4ρ
+

det(T )

16

]

= −
∫

dvdv̄

[
1

ρc
− Tr(T )

4
log

ρ∗
ρc
−
√
|Tvv|2

]
.

(5.50)

In this expression ρ∗ is the value of ρ at the origin of AdS3. In the Fefferman-Graham

chart this is the point where the determinant of the metric vanishes. Explicitly one finds

ρ∗ =
8

Tr(T ) +
√

Tr(T )2 − 4 det(T )
. (5.51)

The boundary terms follow easily once we note that K = − 2√
g
ρ
∂
√
g

∂ρ
+ 2 evaluated at

ρ = ρc and that the curvatures of the induced metric on the cut-off boundary are related

to the stress tensor. One has

2

∫

Bc

√
γ K = −4

∫

Bc
d2x
√
γ

(
1√
g
ρ
∂
√
g

∂ρ
− 1

)

= 2

∫

Bc
dvdv̄

1

ρc
.

(5.52)

The counterterm piece evaluates to

∫

Bc
d2x
√
γ (2 + γR log ρc) =

∫
dvdv̄

(
1

ρc
− Tr(T )

4
(1 + log ρc)

)
. (5.53)

Putting the pieces together we find

SEgr[M̂n] = − c

24π

∫
dvdv̄

[
Tr(T )

4
(1 + log ρ∗) +

√
|Tvv|2

]
. (5.54)

Now as remarked we need to exclude the contribution from the cosmic brane. In
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the form written above in (5.54) this term is completely isolated in the contribution to

Tr(T ). Dropping these terms will in fact suffice to extract for us the part that is the

cosmic-brane excised action. As a result:

În = − c

24π

∫
dvdv̄

√
|Tvv|2 . (5.55)

We can evaluate this integral using the explicit form of the stress tensor quoted in (5.40).

One has

În = − c

48π

(
1− 1

n2

)∫
dvdv̄

(a2 − a1)2

|v − a1|2 |v − a2|2

= − c

48π

(
1− 1

n2

)∫
dvdv̄ ∂vQ ∂v̄Q , Q(v, v̄) ≡ log

∣∣∣∣
v − a1

v − a2

∣∣∣∣
2

= − c δ

96π

(
1− 1

n2

)[∮

a1

Q∂|v|Q+

∮

a2

Q∂|v|Q
]

=
c

6

(
1− 1

n2

)
log
|a2 − a1|

δ
.

(5.56)

This integral has been evaluated by using the fact that Q(v, v̄) is a Green’s function on

the plane with sources at a1 and a2. Massaging the integral and integrating by parts,

we find source δ-function contributions and the above boundary terms. We discard the

former since the conical singularities on Bn/Zn also ought not be included in the cosmic-

brane excised action. This leaves us with a contour integral around each branch point

which we have evaluated with a UV regulator δ. Finally, from (5.1) and (5.48) we obtain

on using I1 = 0, the expected answer (5.34) of the nth Rényi entropy, viz.,

S
(n)
A =

n

n− 1

[
În − I1

]
=
c

6

(
1 +

1

n

)
log
|a2 − a1|

δ
. (5.57)
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Lorentzian on-shell action in a fundamental domain

Let us now turn to the computation of the on-shell action for the real-time geometry

(5.45). The on-shell Lorentzian action we need is given by (5.21) which we rewrite here

for convenience as

In = −i SLgr[Mn] = −i n
[
Skgr[M̂n]− Sbgr[M̂n]

]
cosmic-brane excised

= 2n Im
(
Skgr,fund

)
.

(5.58)

We will as before focus on the ket part of the geometry and try to directly isolate the

imaginary part of the on-shell Lorentzian action. In fact, we have already computed the

various pieces hitherto in the Euclidean context and we can simply take the contributions

from (5.50), (5.52), and (5.53) and continue {v, v̄} → {x̃−, x̃+}. We would now find prior

to excising the cosmic-brane contribution the following integral to evaluate:

Skgr[M̂n] =
c

24π

∫
dx̃− dx̃+

[
−Tr(T )

4
(1 + log ρ∗) +

√
T++ T−−

]
. (5.59)

where the stress tensor components are given in (5.44). In writing this expression we

have performed the radial integral and converted the computation of the on-shell action

into an integral over the boundary directions alone. This is somewhat different from the

basic philosophy outlined in [6], so let us pause a moment to record them.

The evaluation of the on-shell action with a neighbourhood of the cosmic brane excised

is easiest to implement in coordinates which are adapted to the brane. In the present

case the locus is a curve in three dimensions. We pick coordinates yi tangent to the brane

and a Gaussian normal chart in the normal plane (which is locally R1,1). The regulator

around the brane then is a simple matter of excising a disc shaped domain in the normal

plane.
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However, this coordinate chart which is adapted to γ is not the Fefferman-Graham

chart used in (5.45). This may a-priori seem surprising since the normal plane for each

fixed ρ is parameterized by x̃± and the cosmic brane is located at the same coordinate

positions in this Minkowski plane. This is misleading, since the range of ρ is constrained

to lie within the interval ρ ∈ [ρc, ρ∗] and the right-end point ρ∗ is a non-trivial function

of x̃± from (5.51). In our coordinates, the radial direction in the normal R1,1 plane is

an admixture of the Fefferman-Graham radial coordinate ρ and a timelike combination

made up from x̃±. Adapting coordinates to the cosmic brane locus is in principle possible,

but quite messy, since the stress tensor is a non-trivial function of x̃±.9

Rather than attempt to convert this to the Gaussian normal chart in the neighbour-

hood of γ, we will instead demonstrate a direct way to compute the on-shell action

in Lorentz signature. Our starting point is the integral in (5.59) and we first excise a

neighbourhood of the cosmic brane. This removes the piece Tr(T ) which only has delta

function support on γ owing to (5.44). Dropping this piece in the excised geometry we

have

Skgr,fund =
c

24π

∫

t<0

dx̃− dx̃+
√
T++ T−−

=
c

48π

(
1− 1

n2

)
(a2 − a1)2 I(a1, a2) ,

I(a1, a2) ≡
∫

t<0

dx̃− dx̃+

(x̃− − a1)(x̃+ − a1)(x̃− − a2)(x̃+ − a2)
.

(5.60)

We need to evaluate thus the integral I defined above and extract an imaginary piece

from it. As a warm up consider first the simpler case of a semi-infinite interval, where

9If the boundary stress tensor is constant, then the transformation is straightforward, and can be
inferred from the BTZ solution.
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a2 →∞ and a1 = 0 which will serve to exemplify the general case. We have then

I
half-line

= lim
a2→∞

a2
2 I(0, a2) =

∫

t<0

dx̃+ dx̃−

x̃+ x̃−
(5.61)

which the reader will recognize bears a close resemblance to the integral we computed

in section 5.2.2. We will proceed similarly here using an iε prescription to pick out the

projection onto the vacuum state of the CFT. It will be convenient to introduce an IR

cut-off L which will enter the answer for the semi-infinite interval. We integrate up on

Mk up to a UV cut-off restricting |x̃+| > δ and obtain

I
half-line

= lim
δ→0

lim
L→∞

[
I

left
+ I

strip
+ I

right

]
x

t
x̃+

x̃−

I
rightI

left

I
left

=

∫ −δ

−L

dx̃+

x̃+

∫ L

x̃+

dx̃−

x̃−
=

[
− log

L

δ

][
−iπ + P

∫ x̃+

L

dx̃−
x̃−

]

I
right

=

∫ L

δ

dx̃+

x̃+

∫ L

x̃+

dx̃−

x̃−
=

∫ L

δ

dx̃+

x̃+
log

(
x̃+

L

)

I
strip

=

∫ L

δ

dx̃−

x̃−

∫ δ

−δ

dx̃+

x̃+
=

[
log

L

δ

] [
iπ + P

∫ δ

−δ

dx̃+

x̃+

]

(5.62)

where we have used (5.28) and as before analytically continued x̃− → x̃− + iε while

x̃+ → x̃+ − iε. We see then that the imaginary parts as before add from the first and

third integrals which leads to the final result

In
∣∣
half-line

= 2n Im(Skgr,fund) =
c

48π

(
1− 1

n2

)
4π n log

L

δ
=

c

12

(
n− 1

n

)
log

L

δ
(5.63)

which one can check leads to the correct Rényi entropy (5.34).10

10Note that the result appears to be missing a factor of 2, but this is consistent since in the limit of a
semi-infinite interval we only pick up the contribution from one branch point. We evaluate the integral
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Armed with this understanding it is now clear how to evaluate the integral I(a1, a2).

We again introduce UV and IR regulators δ and L, respectively, and break up the inte-

gration range t < 0 into five domains

D = D1 ∪D2 ∪D3 ∪D
strips

,
x

t
x̃+

x̃−

D1 D2 D3

(5.64)

Three of the domains are analogous to the regions to the left and right of the fixed

point in the half-line case considered above. They are demarcated by constant x̃+ lines:

D1 : x̃+ ∈ (−L, a1 − δ), D2 : x̃+ ∈ (a1 + δ, a2 − δ) and D3 : x̃+ ∈ (a2 + δ, L) and x̃− runs

up from x̃+ to some IR cut-off value L. We also now have two strips D
strips

once we excise

the triangular domains around the fixed points at a1 and a2. We will as before consider

the contributions from each region separately. Writing I = I1 + I2 + I3 + I
strips

we have

I1 =

∫ a1−δ

−L

dx̃+

(x̃+ − a1)(x̃+ − a2)

∫ L

x̃+

dx̃−

(x̃− − a1)(x̃− − a2)

=
1

|a2 − a1|

∫ a1−δ

−L

dx̃+

(x̃+ − a1)(x̃+ − a2)

[
−P

∫ L−a1

x̃+−a1

dx̃−1
x̃−1

+ P
∫ L−a2

x̃+−a2

dx̃−2
x̃−2

] (5.65)

where we have taken partial fractions introducing x̃−i = x̃− − ai and used the principal

value prescription. This term has no imaginary part as should be clear from the fact

that we are in the left homology wedge in D1. Similarly we can evaluate the contribution

from D3 to be purely real, for

I3 =

∫ L

a2+δ

dx̃+

(x̃+ − a1)(x̃+ − a2)

∫ L

x̃+

dx̃−

(x̃− − a1)(x̃− − a2)

=
1

|a2 − a1|

∫ L

a2+δ

dx̃+

(x̃+ − a1)(x̃+ − a2)
log

(
x̃+ − a1

x̃+ − a2

) (5.66)

a different way in appendix D.1 to double check this factor.
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where we have dropped terms that vanish as L → ∞. We do pick up imaginary parts

from the region D2 and the strips. The region D2 picks out the contribution from the

right branch point at a2 as

I2 =

∫ a2−δ

a1+δ

dx̃+

(x̃+ − a1)(x̃+ − a2)

∫ L

x̃+

dx̃−

(x̃− − a1)(x̃− − a2)

=
2πi

|a2 − a1|2
log
|a2 − a1|

δ

+
1

|a2 − a1|

∫ a2−δ

a1+δ

dx̃+

(x̃+ − a1)(x̃+ − a2)

[
log

(
x̃+ − a1

L− a1

)
+ P

∫ L−a2

x̃+−a2

dx̃−2
x̃−2

]

(5.67)

The final contribution comes from the strips which lie a distance ai + δ around x̃− = 0.

These do give non-vanishing imaginary contributions as one of the strips captures the

left branch point. To wit,

I
strips

=

∫ a1+δ

a1−δ

dx̃+

(x̃+ − a1)(x̃+ − a2)

∫ L

a1+δ

dx̃−

(x̃− − a1)(x̃− − a2)

+

∫ a2+δ

a2−δ

dx̃+

(x̃+ − a1)(x̃+ − a2)

∫ L

a2+δ

dx̃−

(x̃− − a1)(x̃− − a2)

=
2πi

|a2 − a1|2
log
|a2 − a1|

δ

− 1

|a2 − a1|
P
∫ δ

−δ

dx̃+

x̃+

[
P
∫ a2

a1

dx̃−

x̃− − a2

− log
|a2 − a1|

δ

]

(5.68)

Putting together all the contributions we find

Im(Skgr,fund) = 4π log
|a2 − a1|

δ
, (5.69)

which as one can readily verify leads to the expected result for the Rényi entropy (5.34).

At various points above we have taken the interval to lie on the t = 0 slice in R1,1 for

illustrative purposes. This is however unnecessary, and the result holds for any boosted
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slice, owing to the boost invariance of the vacuum state of the CFT.

5.4 Rényi entropies in 2d CFTs: Disjoint intervals

The examples we have discussed thus far comprise of situations where the entropies

are computed at a moment of time symmetry. While we see that even in these examples

the real-time computations require a careful analysis, we now turn to an example where

time reflection symmetry is explicitly broken (in a controllable manner). We explore the

Rényi entropy for a 2d CFT in its vacuum state on the plane, with the region A taken

to be the disjoint union of N intervals.

In the Euclidean set-up the computation of the nth Rényi entropy requires us to

compute the CFT partition function on a n-sheeted branch cover of the plane with 2N

branch points. This is a genus (n − 1)(N − 1) surface, albeit one at a special point

in moduli space since the moduli are specified by 2N − 3 parameters (using conformal

invariance to fix 3 points). Unfortunately, one does not have readily available partition

functions for generic 2d CFTs on higher genus Riemann surfaces.

Nevertheless one can make progress in certain circumstances. For instance, the prob-

lem was first analyzed using replica methods in CFT in [175] for free 2d CFTs for which

the higher genus partition functions are available. One can likewise study large c holo-

graphic CFTs. In fact, the first non-trivial computations of holographic Rényi entropies

were undertaken in [123], who analyzed the N = 2 example for large c CFTs and explic-

itly demonstrated the holographic entanglement entropy phase transition. Subsequently,

[126] analyzed the problem in detail in the gravitational context, constructing the dual

gravitational solutions as handlebody geometries, and evaluated the on-shell action to

extract the answer. A complementary CFT analysis using properties of Virasoro vacuum

blocks was also concurrently given in [125]. We will adapt the discussion of [126] to the
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real-time setting after reviewing the ingredients of Schottky uniformization that enter

the computation in Euclidean signature. We will keep our discussion general in the main

text, though for ease of presentation we will use the 2nd Rényi entropy n = 2 for N = 2

intervals to illustrate the general arguments.11

5.4.1 Rényi from Schottky uniformization

We give a quick overview of the Schottky uniformization exploited in [126] to compute

the holographic Rényi entropies for disjoint intervals. For the vacuum entanglement

entropy of N intervals A = ∪Ni=1 (a2i−1, a2i), we must compute the partition function on

the n-fold cover Bn,N branched over the N intervals. The manifold Bn,N is a compact

Riemann surface of genus (N − 1)(n− 1) with complex structure

zn =
N∏

i=1

(
v − a2i−1

v − a2i

)
. (5.70)

Following [126] we will assume that the dominant bulk saddles are replica Zn symmetric

handlebodies.

A Riemann surface of genus g can be constructed by starting with the Riemann sphere

C and quotienting it by a Schottky group Γ ⊂ PSL(2,C), which is a discrete subgroup

freely generated by g loxodromic elements, constrained such that the closure of the set

of fixed points ∆ of its action is not the entirety of C. The Riemann surface is C̃/Γ

with C̃ = C − ∆. Operationally, one picks 2g non-intersecting circles {Ci, C̃i}, lets the

generators γi of Γ act by mapping the interior of the disc bounded by Ci to the exterior

of the disc bounded by C̃i, along with γi(Ci) = C̃i. The quotient operation then cuts

11Details of the geometry for N = n = 2 are given in appendix D.3. In appendix D.4 we explicitly
evaluate the on-shell action in Euclidean signature for this case. In the bulk of our discussion we will
sidestep the evaluation of the Rényi entropies, concentrating on obtaining its variation with respect to
one of the endpoints.
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out the 2g discs to the interior of these circles and identifies the circles themselves, thus

creating the handles.

This construction on the Riemann sphere extends to the bulk of Euclidean AdS3

where the PSL(2,C) map acts as on the coordinates (ξ, y, ȳ) as

y → (a y + b)(c̄ ȳ + d) + ac̄ ξ2

|c y + d|2 + |c|2 ξ2
, ξ → ξ

|c y + d|2 + |c|2 ξ2
,



a b

c d


 ∈ PSL(2,C) .

(5.71)

The quotient acts smoothly in the bulk (because Γ has loxodromic elements). However,

given a choice of Γ which determines the Schottky uniformization of Bn,N there may be

multiple bulk geometries. These are handlebodies where g commuting cycles of Bn,N
smoothly pinch off in the bulk.

To determine all the bulk handlebodies that respect the replica Zn symmetry, we

need to decide which cycles are contractible. Around any single branch point, which is a

localized source of stress-energy (see e.g., (5.40)), we know the inverse map y = π−1(v)

of the quotient π : C 7→ C̃/Γ, has local solutions (v − ai)
1
2
± 1

2n , where we coordinatize C

with {v, v̄} as before. However, around a loop C that contains two or more branch points

one picks up a monodromy M(C) ∈ PSL(2,C).

For example with N = 2, the region A = A1 ∪A2 ≡ (a1, a2) ∪ (a3, a4), the boundary

manifold for n = 2 is a genus 1 Riemann surface, a torus. There are two distinct bulk

geometries that should be considered as the dual handlebody – we either let the a-cycle

of the torus shrink smoothly, or let the b-cycle shrink. The two choices can equivalently

be characterized by the choice of cycles around which we impose trivial monodromy as

depicted in fig. 5.6.

202



Real-time gravitational replicas: Low dimensional examples Chapter 5

a1 a2 a3 a4 a1 a2 a3 a4

(a) (b)

Figure 5.6: The choices of cycles around which we can impose trivial monodromy
to construct the dual handlebody. (a) trivial monodromy around the two cycles that
circle the branch cut, denoted by Cd, which corresponds to the disconnected RT surface
in the limit n → 1; (b) trivial monodromy around the cycle that circles around both
branch cuts and the cycle that passes through the branch cuts and laces through all
the n sheets, denoted by Cc, which corresponds to the connected RT surface in the
limit n→ 1.

To solve the monodromy problem, we realize that the map y(v) satisfies

{y(v)), v} = T (v) , Tvv(v) =
2N∑

i=1

[
∆n

(v − ai)2
+

pi
v − ai

]
, (5.72)

where T (v) is the source of the stress-energy on a single sheet arising from the branch

structure and ∆n is the conformal weight of the defect

∆n ≡
1

2

(
1− 1

n2

)
(5.73)

This stress-energy is yet to be fully determined, parameterized as it is by a set of accessory

parameters, pi, which carry information about the covering space topology. Once we solve

for these parameters we should have the necessary information to determine the geometry.

One proceeds by solving an auxiliary homogeneous linear differential equation for a

function ψ(v), from whose linearly independent solutions, ψ1,2(v), one can recover y(v),
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viz.,

ψ′′(v) +
1

2
Tvv(v)ψ(v) = 0 , y(v) =

ψ1(v)

ψ2(v)
. (5.74)

We have 2N accessory parameters pi. To fix them, consider one sheet of the Riemann

surface which is a copy of a sphere with 2N punctures. Let C = {Ca, a = 1, . . . N} be the

set of cycles which contain an even number of punctures. The accessory parameters are

fixed by demanding that the solution has trivial monodromy around v =∞ and around

the remaining N − 1 independent cycles Ca. The absence of monodromy around v =∞

gives three relations:

2N∑

i=1

pi = 0 ,
2N∑

i=1

piai = −2N ∆n ,
2N∑

i=1

pia
2
i = −2∆n

2N∑

i=1

ai. (5.75)

By replica symmetry one has actually specified the (n− 1)(N − 1) cycles on Bn,N which

have trivial monodromy. Demanding these cycles be contractible in the bulk we have

completed the specification of a smooth handlebody.

Note that once we have specified the set of monodromies we fix the accessory pa-

rameters, since this suffices to characterize the covering space Riemann surface topology.

This implies that T (v) in (5.72) is now completely determined. This will be sufficient for

us to understand the computation of the dual geometry, and in particular the on-shell

action.

While the accessory parameters were introduced here to solve the uniformization

problem, physically they specify the stress-energy source on a single sheet necessary to

build up the Riemann surface. As a result, it should be no surprise to learn that they

directly determine the on-shell action of gravity, and thus the Rényi entropies. For a

given collection of cycles C which are contractible one has the result (5.76) obtained in

204



Real-time gravitational replicas: Low dimensional examples Chapter 5

[126] (using results of [176])

S(n) = min
C
{S(n)

C } ,
∂

∂ai
S

(n)
C = − c n

6 (n− 1)
pCi . (5.76)

where C represents the different sets of choices of cycles which can be made contractible.

We present the details for N = n = 2 in appendix D.3 where the branched cover is a

torus.

We will broadly content ourselves with obtaining the variation of the Rényi entropy

with respect to the endpoint, viz., the second expression in (5.76). There is one special

case where S
(n)
C itself is directly computable, which is the second Rényi entropy for two

disjoint intervals N = n = 2. In appendix D.4 we evaluate the on-shell action of gravity

(for the connected phase) to obtain S(2) directly, cf., (D.45). We will return to this issue

in section 5.4.2.

5.4.2 The action from a single fundamental domain

Let us assume that one has solved the monodromy problem and thus determined the

accessory parameters by picking a set of contractible cycles. Furthermore, recall that we

can use the Fefferman-Graham expansion quite effectively to compute the bulk geometry,

cf., (5.39) and (5.45) for the Euclidean and Lorentzian signature metrics, respectively.

We also know that the computation of the on-shell action in these coordinates is straight-

forward and one obtains the final results quoted in (5.54) and (5.59), respectively.

Inspired by their simplicity we can address the problem as follows. Focus for the

present on the Euclidean geometries where in the v-plane corresponding to a single sheet

of the Riemann surface, we have a set of branch points, which are a source of stress-

energy. The stress tensor is parameterized in terms of the accessory parameters pi. Once

we solve the monodromy problem and fix these pi we have determined on a single sheet
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the local sources of energy-momentum that we need to turn on to construct the Riemann

surface. With this knowledge we can immediately compute the on-shell action using

(5.54) in Euclidean signature.

As a quick check, let us look back at the single-interval case discussed in the main

text. We have two branch points, and a single choice of cycle C1 which encircles both

branch points. It is trivial to check that p1 = −p2 = 2 ∆n

a2−a1
are fixed uniquely, and thus

we recover T (v) quoted in (5.40) which we used to compute the on-shell action in (5.56).

In fact we will borrow extensively from the one-interval analysis for general n,N below.

The Euclidean computation

We start with the assumption that we have been given the stress tensor on a single

fundamental domain (5.72). This stress tensor is localized on the branch points and

excising the sources at these loci, we have to evaluate (5.55), i.e.,

În = − c

24π

∫

Rε
dvdv̄

√
Tvv Tv̄v̄ , (5.77)

where Rε is a domain of the complex v-plane with infinitesimal discs Dε
i of size ε around

each of the branch points v = ai excised. We will attempt to evaluate not this integral,

but rather its derivative with respect to the branch point location, viz.,

∂

∂ai
În = − c

48π

∫

Rε
dvdv̄

[√
Tv̄v̄
Tvv

∂Tvv
∂ai

+

√
Tvv
Tv̄v̄

∂Tv̄v̄
∂ai

]
+ boundary term , (5.78)

where the boundary term arises from the variation of the discs Dε
i about v = ai.

To evaluate the variation of În with respect to the location of the branch points we

are going to employ a trick which will reduce the calculation as in the single-interval case

to the evaluation of contour integrals on the boundaries of the discs about each branch
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point, Cεi = ∂Dε
i . To facilitate this analysis let us first introduce a function T which

satisfies:

∂vT(v, v̄) =
√
Tvv , ∂v̄T(v, v̄) =

√
Tv̄v̄ . (5.79)

We can formally write it as a contour integral

T(v, v̄) ≡
∫

C

√
Tvv dv +

∫

C

√
Tv̄v̄ dv̄ = t(v) + t(v̄) . (5.80)

To define T completely we need to specify the integration contour C. It will however

transpire that we will only care about the fact that this contour gets close to the branch

points at ai.

By a local analysis in the neighbourhood of each branch point we may deduce that

∂vT = si

[ √
∆n

v − ai
+

pi

2
√

∆n

+O(v − ai)
]
, (5.81)

and similarly for ∂v̄T. Here si = ±1 is a sign, s2
i = 1, which will drop out in our final

answer. Integrating these up we have the local behaviour near v = ai

T(v, v̄) = si

[√
∆n log |v − ai|2 − Ci({aj}) +

pi

2
√

∆n

(v + v̄ − 2 ai) +O
(
|v − ai|2

)]

(5.82)

with undetermined constants Ci({aj}).

While the local analysis thus gives an estimate for the function T, the function is as

yet undetermined owing to the information hidden in the constants Ci which as indicated

above depend on the locations of the branch points. It is this dependence that makes

the explicit evaluation of În quite tricky to obtain (though see appendix D.4 for the

N = n = 2 case). We will see that these constants will drop out in our evaluation

of the derivatives ∂
∂ai
În. Given the estimate (5.82), we may immediately compute the
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derivatives with respect to the branch point locations aj obtaining

∂T

∂aj
= −si

[√
∆n

(
1

v − ai
+

1

v̄ − ai

)
+

pi√
∆n

]
δij − si

∂Ci
∂aj

+O(|v − ai|). (5.83)

Note that the derivative of the accessory parameter with respect to the branch point has

been ignored as it is of order v − ai.

We will now argue that these local estimates will suffice to compute the variation of

the on-shell action with respect to the branch points. One has under the variation of a

branch point, a bulk and a boundary contribution that we will study independently, and

write (cf., appendix D.5.2)

∂În
∂ai

= − c

24π

[
Ibulk
i + Ibdy

i

]

Ibulk
i ≡

∫

Rε
dv dv̄

∂

∂ai

(
∂T

∂v

∂T

∂v̄

)

Ibdy
i ≡ −2i

∮

Cεi

dv
∂T

∂v

∂T

∂v̄
.

(5.84)

Consider first the bulk integral. Using the fact that by definition T is a sum of a

holomorphic and an anti-holomorphic piece (5.80), we may rearrange the derivatives in

the bulk integral, write it as an integral of a total divergence, and convert it to a boundary

integral over the circles Cεi :

Ibulk
i =

∫

Rε
dv dv̄

[
∂

∂v

(
∂T

∂ai

∂T

∂v̄

)
+

∂

∂v̄

(
∂T

∂ai

∂T

∂v

)]

= i

2N∑

j=1

∮

Cεj

[
∂T

∂ai

∂T

∂v̄
dv̄ − ∂T

∂ai

∂T

∂v
dv

] (5.85)
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We may now deduce using (5.82) and (5.83) that

∮

Cεj

∂T

∂ai

∂T

∂v
dv = −s2

j

∮

Cεj

[( √
∆n

v − ai
+

√
∆n

v̄ − ai
+

pi√
∆n

)
δij +

∂Cj
∂ai

+ · · ·
]

[ √
∆n

v − aj
+

pj

2
√

∆n

+ · · ·
]

= −2πi

(
3

2
pi δij +

√
∆n

∂Cj
∂ai

)
.

(5.86)

Putting together the complex conjugate contribution yields

Ibulk
i = −4π

(
3

2
pi +

√
∆n

2N∑

j=1

∂Cj
∂ai

)
. (5.87)

The boundary term may be evaluated directly to give

Ibdy
i = −2i

∮

Cεi

dv

[ √
∆n

v − ai
+

pj

2
√

∆n

+ · · ·
] [ √

∆n

v̄ − ai
+

pj

2
√

∆n

+ · · ·
]

= 2π pi. (5.88)

Hence we have

∂În
∂ai

=
c

6

(
pi +

√
∆n

2N∑

j=1

∂Cj
∂ai

)
. (5.89)

To complete the argument we need to deduce the value of
∑2N

j=1
∂Cj
∂ai

, which we may

do by judiciously combining t and T. We use the fact that the product ∂t
∂ai

∂vT dies off
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as v−2 at large v to deduce

0 =

∮

|v|=Λ

∂t

∂ai
∂vT

= −
∑

j

∮

Cεj

[( √
∆n

v − aj
+

pj

2
√

∆n

)
δij +

1

2

∂Cj
∂ai

] [ √
∆n

v − aj
+

pj

2
√

∆n

]

= −2πi

(
pi +

√
∆n

2

2N∑

j=1

∂Cj
∂ai

)

=⇒
√

∆n

2N∑

j=1

∂Cj
∂ai

= −2 pi .

(5.90)

The asymptotic behaviour thus constrains the derivatives of the constants Cj allow-

ing us to evaluate the quantity we want without detailed knowledge of these constants

themselves. Consequently, we have as our final result:

∂În
∂ai

= − c
6
pi (5.91)

This indeed reproduces the result quoted in (5.76) for

∂

∂ai
S(n) =

n

n− 1

∂

∂ai
[În − I1] = − n

6(n− 1)
c pi . (5.92)

The Lorentzian computation

One reason for our going over the Euclidean computation in some detail was to sim-

plify the ingredients to obtain the result directly in Lorentz signature. We will continue

with the computation in a single fundamental domain, and exploit the Fefferman-Graham

form of the metric (5.45) and distill the computation of the action as in the one-interval

case to evaluating an integral of the form (5.59). In making these observations we are

assuming that the form of the boundary stress tensor on a single fundamental domain is
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known, i.e., one has solved the corresponding monodromy problem. Note that the lat-

ter is strictly a non-gravitational computation and thus can be carried out in Euclidean

signature, and the result used to set-up the boundary conditions for our Lorentzian grav-

itational analysis.

In the process of deriving (5.59) we have integrated over the bulk radial coordinate and

thus have a purely boundary integral to evaluate. As explained earlier in section 5.3.3

this method is conceptually different from the way we set-up the computation of the

action in [6] where we adapted coordinates to the cosmic-brane in the bulk. While

that analysis makes it easier to see where the imaginary part of the Lorentzian action

arises from (viz., from the normal bundle to the splitting surface), we found the chart

adapted to the cosmic brane hard to relate to the coordinates induced by the Schottky

construction. All told the final result for the stress tensor is a function of the location

of the end-points of our regions ai and the stress tensor is parameterized by both ai and

the accessory parameters pj(ai). The contribution from the trace of the stress tensor in

(5.59) is delta-function localized at the entangling surfaces (i.e., at x̃+ = x̃− = ai if the

intervals are all at t = 0) and should be dropped in the computation of the cosmic-brane

excised action. We are then left with evaluating

Skgr,fund =
c

24π

∫

R

dx̃− dx̃+
√
T++ T−− (5.93)

with

T−−(x̃−) =
2N∑

i=1

[
∆n

(x̃− − ai)2
+

pi(aj)

x̃− − ai

]
,

T++(x̃+) =
2N∑

i=1

[
∆n

(x̃+ − ai)2
+

pi(aj)

x̃+ − ai

]
.

(5.94)

Once again we refrain from evaluating (5.93) but will take inspiration from the Euclidean
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x

t
x̃+

x̃−

a1 a2 a3 a4

Figure 5.7: The domain of integration R for (5.95) is the lower half space t < 0 with
half-discs Uδi around each ai removed. The imaginary contributions to ∂

∂ai
Im(Skgr,fund)

arise from the causal past of ai.

computation and evaluate its variation of its imaginary part with respect to ai, i.e.,

∂

∂ai
Im(Skgr,fund) =

c

24π
Im

(
∂

∂ai

∫

R

dx̃− dx̃+
√
T++ T−−

)
(5.95)

The region R is a part of the space with t < 0 with neighbourhoods Uε
i around each ai

excised.

Even before we set out to compute (5.95) let us convince ourselves that the general

arguments of [6] suffice to give us the desired result. To infer this let us look back to the

Euclidean computation described in section 5.4.2 and note that the final result (5.91)

indicates that the variation of the stress tensor integral, ∂
∂ai

∫
dvdv̄

√
Tvv Tv̄v̄, evaluates

simply to 4π pi. We view this result as saying that the local contribution arises from the

Euler character which changes because of the source of energy-momentum tensor at the

branch points.

To motivate this interpretation we recall again that we have carried out the integral

over the radial coordinate and are left with an integral along the boundary directions

to evaluate in (5.77). On the contrary, [6] used a Gaussian normal chart adapted to

the splitting surface to argue for the use of the complex Gauss-Bonnet theorem for the

bulk Einstein-Hilbert action (supplemented by boundary terms). Continuing to carry

out the integration as we have done, when we consider the variation of the bulk action
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with respect to the parameter ai we isolate the section of the splitting surface that is

anchored at ai on the boundary.

This can be understood as follows: variation with respect to ai is a pure boundary

term from the bulk perspective since one is evaluating the change of the on-shell action

with respect to modified boundary conditions. Even if we had carried out the computa-

tion using the Gauss-Bonnet theorem adapting coordinates to the splitting surface, we

would have only picked up the contribution from the vicinity of the boundary – there

would have been no bulk integral to compute. The essential upshot of the Euclidean

calculation is that the net variation is localized in the vicinity of the branch point at ai.

The simplicity of the result suggests a natural interpretation based on the above: there

is a local contribution to the Euler character set by pi.

Given this interpretation, we can deduce that one indeed obtains the expected result

for Skgr,fund, viz.,

24π

c

∂

∂ai
Im(Skgr,fund) = −2π pi , (5.96)

by invoking the complex version of Gauss-Bonnet theorem. Let us see this in a bit

more detail. An imaginary contribution to (5.93) can arise because of the singularities

at x̃+ = x̃− = ai which extend into the bulk along the splitting surface. The precise

value of this imaginary part depends on the terms in the metric involving the accessory

parameters pi. These, by themselves, are hard to isolate in the on-shell action directly (see

below). However, they can be straightforwardly extracted by considering the variation

with respect to an endpoint ai. In the process of taking the variation we effectively localize

the computation to the neighbourhood of the branch point. In fact, in the Fefferman-

Graham parameterization of the bulk geometry, the terms of interest are completely

localized onto a neighbourhood of the branch point at the boundary of the spacetime.

With this picture in mind, one can trace the imaginary part to the contribution from

213



Real-time gravitational replicas: Low dimensional examples Chapter 5

the cut-off surfaces around the ai at the asymptotic boundary of the spacetime. Suppose,

for example, we take the cut-offs to be half-discs Uδ
i as illustrated in fig. 5.7. This choice

(or indeed any other cut-off choice), will intersect the past light-cone from ai. Indeed, the

local structure is dictated completely by these light-cone crossings. The complex Gauss-

Bonnet theorem would suggest that we pick up a factor of −2πi from such crossings. For

∂Skgr,fund

∂ai
using the Fefferman-Graham coordinate chart we can deduce that there is no bulk

radial integral to perform along the splitting surface. However, from the earlier Euclidean

analysis one learns that the contribution to the Euler characteristic is augmented by the

local source of stress energy , which is captured by pi. Putting these pieces together one

is thus led to the final result quoted in (5.96).

One can understand the localized nature of the contribution by referring back to

the one-interval computation in section 5.3.3 (which was also reduced to computing an

integral along the boundary). There we had carried out the integral over the domain R

directly after having used the fact that the accessory parameters p1 and p2 are fixed to

be p1 = −p2 = 2 ∆n

a2−a1
. In that case we obtained imaginary contributions from light-cone

crossings (using the principal value prescription) leading to (5.69). One can readily check

that this result agrees with (5.96). In the evaluation of the gravity action itself we see

parts where the imaginary parts cancel – for example in the domain D1 in (5.65) which

is crossed by the past directed light-rays from both a1 and a2. Such partial cancellations

do not occur in the variation ∂
∂ai

Im(Skgr,fund) which is another reason to consider it.

We emphasize the use of the complex Gauss-Bonnet theorem in the evaluation of

the (5.95) as it illustrates quite generally the moral of the discussion in [6]. One can of

course check that these statements hold by choosing an explicit regulator. For instance,

in appendix D.2 we employ the light-cone regulators following the one-interval discussion.
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At the end of the day we find indeed

∂

∂ai
Im(Skgr,fund) = − c

12
pi =⇒ ∂

∂ai
S(n) = − n

6(n− 1)
c pi . (5.97)

Generalizations

We can use the mnemonic that the variation of the action with respect to the end-

points gives an imaginary contribution to the Lorentz signature on-shell action as in

(5.97) for more general configurations. For instance, while we have explicitly carried out

the integrals when all the intervals are taken to lie at t = 0, we can more generally take

the regions to be spacelike regions on an arbitrary boundary Cauchy slice. In this case

the accessory parameters pi are complex even in Euclidean signature. We expect that

they should analytically continue to real accessory parameters in Lorentz signature and

lead to real stress-energy sources, and real values for the entropies.

To see this in a particular example, consider the case of two intervals N = 2, one

relatively boosted with respect to the other. In Euclidean signature, working with the

invariant cross-ratio χ, the boost corresponds to rotating the finite interval (0, χ), allowing

χ to have a non-zero imaginary part. For example, for n = 2, the branched cover geometry

for the computation of the second Rényi entropy is a torus with a general complex

structure and the dual geometry is the rotating BTZ black hole in a suitable conformal

frame.12 This rotation has no effect on the monodromy differential equation which did

not require any assumption of the reality, nor does it affect our conditions to determine

the accessory parameter by demanding trivial monodromy around certain cycles. The

main difference is that with χ complex, the accessory parameter pχ is likewise manifestly

complex. The entropies are nevertheless real; this implies that we should integrate up

12This can be seen directly from the analysis in appendix D.3: the cross-ratio χ is complex if one of the
end-points is displaced in real-time, and the complex structure τ(χ) then is no longer purely imaginary.
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(5.97) along a suitable contour choice to obtain the physically relevant real answers.

In the Lorentzian context, our analytic continuation v → x̃− should be accompanied

by χ → χ− for χ being rotated in the Euclidean time direction (as usual we treat χ

and χ̄ as independent in the analytic continuation). The restriction to spacelike intervals

demands that χx > χt > 0. With this choice the accessory parameter pχ is real in

Lorentz signature, as is therefore the source of energy-momentum necessary to construct

the branched cover geometry. The computation of the on-shell action proceeds as before,

and the result for the variation of the entropies with respect to the accessory parameters

is manifestly real. Integrating with respect to χ− leads to the expected real answers for

the entropies.

There is one limiting case to consider of our example, viz., the limit χ → 1 whence

χ− = xχ− tχ → 1. The interval A1 has left endpoint at (t, x) = (0, 0) and right endpoint

at
(
χ+−χ−

2
, χ

++χ−

2

)
, while A2 runs from (0, 1) to infinity. Now as χ− → −1, the two

intervals start to approach null separation. In the limit there is no spacelike surface

containing both intervals and we should see this in the result, cf., [177]. Indeed, focusing

on the SL(2,C) invariant mutual Rényi information (MRI), cf., (D.17) which is a function

of χ alone, purity of the global state demands that

I(n)(χ) = I(n)(1− χ) +
c

6

(
1 +

1

n

)
log

(
χ

1− χ

)
(5.98)

In Euclidean signature (5.98) implies that I(n) diverges as χ → 1, for using I(n)(0) = 0

we have

I(n)(χ) ∼ − c
6

(
1 +

1

n

)
log(1− χ) , 1− χ� 1 (5.99)

Equivalently, this divergence can also be seen in the accessory parameter – from (D.25)

we find that pχ ∼ 1
2(χ−1)

as χ → 1 in the connected phase (which dominates in this
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regime). This holds under the analytic continuation χ→ χ− and is the signature of the

intervals failing to be on a common Cauchy slice. We expect that the result of the two

interval case generalizes to arbitrary intervals, with divergences encountered when the

intervals enter into each other’s causal domains.

One interesting generalization to consider is to directly evaluate the on-shell action

Im(Skgr,fund) itself. As mentioned earlier, we have been able to carry out the evaluation of

the bulk Euclidean action, SEgr, for the case n = N = 2. The reader can find a detailed

account of the computation in appendix D.4. We work in the Fefferman-Graham gauge

(in a suitable boundary conformal frame), evaluate the bulk action with a suitable cut-

off of the radial coordinate (see fig. D.4), and exploit some useful incomplete elliptic

function integral identities. The mechanics of this computation being highly adapted to

the Euclidean setting, we were unable to translate it directly to the Lorentzian context,

in particular, were unable to extract the desired imaginary pieces from the light-cone

crossings. It should be possible to do better by working in a bulk coordinate chart

adapted to the splitting surface as envisaged in [6].

Alternately, one could at least see how to integrate up (5.76) (the latter is blind to

the spacetime signature, compare the Lorentzian (5.97) and Euclidean results (5.92)) to

obtain the Rényi entropy S(n). As mentioned above for generic intervals with relative

boosts this will require understanding an appropriate contour prescription. For two

disjoint intervals with the intervals on a time symmetric slice (real cross-ratio χ) this

was carried out numerically in [126], see Figure 5 of that paper. We note that the

expressions for the accessory parameters themselves are quite simple when the intervals

are far separated (for instance, for N = n = 2 from (D.25) we have pχ ∼ − 3
64
χ for

χ� 1), but since the Rényi entropies are not invariant under change of conformal frame,

one should pass again to working with the MRI I(n) which likewise has a simple variation,

∂
∂χ
I(2)(χ) ∼ c

64
χ for small χ. If we consider relatively boosted intervals then χ becomes
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complex. However, as we noted above, the accessory parameters are expected to be real

in Lorentz signature and one should be able to obtain Im(Skgr,fund) without too much

trouble. Moreover, this observation suggests that the contour prescription for computing

the on-shell action with complex χ in Euclidean signature should be inherited from the

Lorentzian geometry.

5.5 Discussion

We have exemplified the general discussion of [6] with some explicit low-dimensional

examples, demonstrating a first-principles evaluation of stationary points of the real-time

gravitational path integral. In particular, the on-shell action for these configurations was

evaluated directly in Lorentz signature and shown to agree with the result obtained by

analytically continuing the Euclidean saddle-point computations to real-time.

While our investigations were confined to analysis of the Rényi or swap entropies

in simple states (thermofield double in JT-gravity and the vacuum state in AdS3), it is

clear that the principles outlined in [6] hold more generally. The essential point is that

the contributions to the gravitational path integral are localized and isolated by suitable

use of the complex Gauss-Bonnet theorem. In particular, entropies can be extracted by

performing the analysis in Euclidean signature and thence analytically continuing the pa-

rameters to the real-time domain (say by moving the entangling surfaces appropriately).

While this has been the modus operandi for computations of von Neumann and Rényi

entropies both in field theory and gravity thus far, our results demonstrate the rationale

behind the agreement. In particular, they lend support to the recent investigations in

the gravitational context for the evolution of the fine-grained von Neumann entropy in

the context of the black hole information problem.

There are several directions that would be interesting to pursue in the future. It would
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for instance be helpful to understand the evolution of entropies following a quantum

quench directly in Lorentz signature. These were first investigated in two dimensional

CFTs in [120, 121] and studied in holography using properties of Virasoro conformal

blocks in [68]. Reanalyzing the results of the latter discussion directly in real-time would

pave the way for more general gravitational analysis such as the fine grained entropies in

black hole collapse (which has been discussed in [178]).

Of direct relevance to the black hole information problem would be to construct the

real-time replica wormholes relevant to obtaining the Page curve from an evaporating

black hole (even in a simple model). This investigation will be aided by computation of

the bulk quantum corrections to the entropies which we have not attempted to do here.

Ideally, it would be useful to extend the gravitational computations to higher di-

mensional scenarios with dynamical gravitational degrees of freedom. The non-trivial

aspect here would be to deal with the gravitational backreaction. Developing numerical

techniques to determine complex geometries for the class of real-time boundary value

problems would greatly facilitate such explorations.
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Chapter 6

Gravitational Renyi entropies from

real-time path integrals: Complex

saddles and contour deformations in

JT gravity

6.1 Introduction

Studies of quantum gravity are often formulated using path integrals, after which

computations are performed at the semiclassical level. Typically this involves the iden-

tification of interesting stationary points of the associated action, perhaps with some

discussion of whether and when such saddles should dominate the computation.

Applying the saddle-point approximation to the Euclidean gravitational path integral

has brought us many important results, with the thermal partition function as a clas-

sic example [32]. Recent applications include calculations of holographic entanglement

entropy [33, 111, 28, 35], and of entropy of Hawking radiation for an evaporating black
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hole [38, 39]. Nevertheless, Euclidean gravitational path integrals famously suffer from

the conformal factor problem [40], where the (off-shell) action could be made arbitrarily

negative by conformal transformations. The hypothesized solution in [40] is to rotate the

integration contour of the conformal mode such that it is parallel to the imaginary axis.

Despite its success in giving many physically satisfying results, this contour-rotating pro-

cedure is ad hoc in nature, and lacks justification from first principles. In fact, in cases

where the conformal modes are coupled to other modes, this prescription fails and other

kinds of contour-rotating prescription are needed [44, 45]. In this paper, we take the

point of view that Lorentzian gravitational path integral is the most fundamental, where

the integration contour is over all real Lorentz-signature metrics. This point of view has

been argued in many previous works. The reason for us to take this point of view is that,

first of all, there is no obvious reason to rule out the Lorentzian path integral; secondly,

for computations in real time without analytic sources, it is hard to apply Euclidean

techniques.

Furthermore, the Lorentzian gravitational path integral can in principle be taken as a

guidance for choosing contours for the Euclidean gravitational path integral. This could

be done by deforming properly the Lorentzian contour to include certain sets of real

Euclidean configurations. This has been done for reproducing quantities related to black

hole thermodynamics [46].

A first examination of Lorentzian path integral is to study its saddle points. In the

discussion of saddle-point geometries, it appears that in certain scenarios they necessarily

have complex spacetime metrics, and these complex saddles have produced many physi-

cally expected results [6, 4, 32, 145, 50]1. Despite their existence and physical importance,

it is still somewhat mysterious whether they are accessible by smoothly deforming the

original integration contour.

1For a recent discussion of admissibility of complex metrics, see [179, 180].
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In this paper, we verify this for one of the examples presented in [4], i.e. complex sad-

dles in the computation of Rényi entropies of the Hartle-Hawking state in two-dimensional

Jackiw-Teitelboim (JT) gravity. The general formalism of this setup has been discussed

in a previous paper [6]. While it is hard to consider the path integral and contour defor-

mation in standard Einstein gravity, the path integral greatly simplified in JT gravity,

where after gauge-fixing, we are left with a only finite dimensional integral over the

dilaton field.

We begin with a short introduction to the saddle-point approximation in section

6.2 and classical JT gravity in section 6.3. In section 6.4, we go into the semiclassical

calculation of the wavefunction of the Hartle-Hawking state in a different basis to as our

initial state for the replica calculation. Finally in section 6.5, we take replicas of the

resulting semiclassical state, compute the Rényi entropies, and show the solutions match

those found in [4].

6.2 Saddle-point Methods: A brief review

Consider an integral of the form

∫

Γ

dz f(z) exp[λg(z)], (6.1)

where λ is a constant, f(z) and g(z) are complex-valued functions, and Γ is an appropriate

contour of integration through the complex plane. The saddle-point approximation is

valid when λ is large. For many cases of interest, the contour Γ is the real axis. More

generally, we need to properly choose Γ to avoid divergence at infinity.

In general, the saddles do not lie on original contour of integration, and we need to

properly deform the original contour to pass through the saddle points for the approxi-
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mation to hold. Luckily, there are theorems from either Morse theory or Picard-Lefshetz

theory about saddle point approximation that can help us understand this and greatly

simplify the analysis for the particular case to be studied below. We will review them,

mainly following the results summarized in [181] and [46].

Suppose that the argument of the exponent in equation (6.1) has a stationary point p

in C which in general could lie off of the original contour of integration Γ. There are two

contours of interest associated with p: the steepest descent contour Jp (also called the

downward flow) and the steepest ascent contour Kp (also called the upward flow). They

are obtained by following from p upward or downward the gradient flow of the magnitude

of the integrand. These gradient flows can be solved from the flow equations2,

dz

dt
= ±∂g

∂z̄
,

dz̄

dt
= ±∂g

∂z
. (6.2)

where the positive and negative sign choices correspond to Kp and Jp respectively. From

the flow equations, it follows that the phase of the integrand is constant along them,

d Im g

dt
=

1

2i

d(g − g)

dt
=

1

2i

(
∂g

∂z

dz

dt
− ∂g

∂z̄

dz̄

dt

)
= 0. (6.3)

This will be an important property in utilizing the saddle-point approximation.

Given the two contours Jp and Kp, the relevant theorem states that, without changing

the value of the integral, Γ can be deformed to a contour Γ̃ consisting of np copies of each

Jp, where np is the intersection number of Kp and ΓR.

2To solve the flow equations, we first need to analyse the asymptotic behaviors of the flow lines as
the parameter t in [181] goes to infinity, which is related to the eigenvalues of the Hessian matrix at the
saddle point. Then we do a coordinate transformation τ = τ(t) such that τ(∞) = 0. Finally we taylor
expand the new differential equation with respect to τ near τ = 0 so that we keep ourselves away from
the singular point of the ODE. But in our case, since there is only one variable to be integrated, it turns
out that solving contours of constant phase is much easier than solving the flow equation. As a result,
in the following context, we find the flow lines by solving Imλg(z) = Imλg(z0) where z0 is the saddle
point of λg(z).
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This theorem tells us that whether or not a stationary point of the action contributes

to the semiclassical approximation of the path integral is diagnosed by whether or not Kp
intersects the original contour Γ since, in the case we consider we have only cases np = 0

or np = ±1. After identifying the saddle points with np 6= 0, we can deform the contour

of integration to a new one that is a combination of the steepest descent contours of the

aforementioned saddles. We will illustrate this in an example in section 6.4.2. Saddle

point approximation then tells us that we can approximate the original integral equation

(6.1) by

∫

Γ

dz f(z) exp[λg(z)] ∼
∑

p

np

√
2π

λ|g′′(zp)|
f(zp) exp[λg(zp)], λ→∞, (6.4)

where zp is the relevant saddle point of the exponent in equation (6.1). Here since the fac-

tors in front of the exponential are O(1) correction and are only related to normalization,

we will just drop them unless f(z0) is 0.

Similar results hold for higher-dimensional integrals. For a contour integral in the

d-dimensional complex plane Cd, the steepest ascent (descent) contour Kp (Jp) which

has the same real dimension as Γ is generated by the gradient flow from the stationary

point p. Alternatively, it is always possible to write them as multiple one-dimensional

integrals, and do them once at a time. For gravitational path integrals, d is technically

infinite, but our analysis will not be significantly changed.

6.3 Preliminaries of JT Gravity

In this section, we will first give a brief introduction of classical JT gravity in Lorentz

signature and the structure of its phase space, based on what has been studied in [182].

After this, we set up the stage for the path integral to be studied, by explaining variables
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of integration, gauge fixing and boundary conditions.

6.3.1 Classical JT Gravity

In Lorentz signature, the action of JT Gravity is given by

S = Sg + SΦ, (6.5)

where

Sg = Φ0

[∫

M

√−gR + 2

∫

∂M

√
|γ|K

]
, (6.6)

is the topological part of the action, with Φ0 is a positive constant and

SΦ =

∫

M

√−gΦ(R + 2) + 2

∫

B

√
−hΦ(K − 1) + 2

∫

Γ

√
|q|ΦK + Scorner, (6.7)

is the dynamical dilaton part. In the above equations, ∂M is the entire boundary of

the spacetime M, B is the asymptotic timelike boundary, Γ is any finite boundary,

with γ, h, and q the determinants of the induced metric on each respectively3. As

commented in [6] and calculated in [152, 183], there are corner terms due to the extrinsic

curvature being some delta function when the unit normal of the boundary changes

direction discontinuously at some two surface or when the unit normal crosses a null line.

Varying this action gives the equations of motion

R = −2,
(
∇α∇β − gαβ

)
Φ = 0, (6.8)

the first of which restricts the spacetime background to AdS2. We also impose the usual

3The reason for the distinction between asymptotic and finite parts of the boundary is that the bound-
ary terms require a counterterm − 1

2

∫
B
√
−hΦ only on the asymptotic timelike pieces of the boundary.
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asymptotic boundary conditions for the metric and dilaton

htt|B = 1/ε2, Φ|B = φb/ε. (6.9)

To write down solutions of JT gravity, it is more convenient to use the embedding

space, the (1+2)-dimensional Minkowski space ds2 = −dT 2
1 − dT 2

2 + dX 2, where AdS2

spacetime can be viewed as a hyperboloid

T 2
1 + T 2

2 −X 2 = 1, (6.10)

and the dilaton solution is

Φ = AT1 +BT2 + CX (6.11)

where A,B,C can be any real numbers. But our boundary condition is satisfied only

when the vector nµ = (−A,−B,C) is spacelike or null. Without loss of generality, we

can perform an SO(1, 2) isometry and restrict the dilaton to take the form

Φ = ΦhT1. (6.12)

There are specific coordinate systems of interest. For global coordinates,

T1 =
√

1 +X2 cosT, T2 =
√

1 +X2 sinT, X = X. (6.13)

As a result, the metric and dilaton profile are given by

ds2 = −(1 +X2)dT 2 +
dX2

1 +X2
, Φ = Φh

√
1 +X2 cosT. (6.14)
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Figure 6.1: Two sided black hole solution in JT gravity (the shaded region). The
spacetime is truncated at where Φ = −Φh, which we call the “inner horizon” (the red
dashed lines) in Reissner-Nordstrom language. The dashed black lines are the “outer
horizon” where Φ = Φh. The blue dot denotes the location of the bifurcation horizon.

We can also define “Schwarzschild” coordinates in the exterior region in figure 6.1 by

T1 = r/rs, T2 =

√
(r/rs)

2 − 1 sinh (rst) , X =

√
(r/rs)

2 − 1 cosh (rst) . (6.15)

This gives us the metric and dilaton profile

ds2 = −(r2 − r2
s)dt

2 +
1

r2 − r2
s

dr2, Φ = φbr, r > rs. (6.16)

where rs is the Schwarzschild radius and Φh = φbrs is the horizon dilaton value.

Since the boundary conditions (6.9) are not enough to determine the dynamics out-

sided the shaded region, the dynamical problem with such boundary conditions is only

well-defined in this region, called the two-sided black hole solution, where the horizon

dilaton value is Φh = φbrs. The spacetime is truncated at the “inner horizons” where

Φ = −Φh, c.f. figure 6.1. On both asymptotic boundaries the Schwarzschild time can

take any real value, while the global time satisfies −π/2 < T < π/2.
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Figure 6.2: Comparison of different definitions of the time shift. Left: The time
shift δHJ defined in [182]. Right: The time shift δ defined in this work. In both
panels, the blue line represents a constant global time slice. The red line represents
a geodesic that has the same left end point as the blue line and is orthogonal to the
surface of constant dilaton. The left figure is adapted from [182]. The minus sign in
the right panel comes from the fact that δHJ < 0 for this blue time slice but the length
is positive.

6.3.2 Gauge Fixing and the Phase Space of JT Gravity

To perform the path integral, we need to fix a gauge and identify relevant physical

degrees of freedom. First of all, since two-dimensional solutions in Einstein gravity are

always locally AdS2, we will gauge-fix the metric of the solutions to always take the form

as in the first equation in (6.14). Here we assume that the spacetime is of trivial topology,

leaving the higher topology discussion for future work. With this, the aforementioned

boundary conditions tell us that the dilaton solution takes the form as in the second

equation of (6.14). We also restrict our spacetime region to the two-sided black hole

solution as shown in figure 6.1.

This solution has a symmetry of time evolution generated by HL −HR, where

HL = HR =
Φ2
h

φb
(6.17)

is the left and right boundary Hamiltonians. We identify configurations related by such

symmetry, and as a result, we are left with one physical time evolution, which is generated

by the full Hamiltonian

H = HL +HR =
2Φ2

h

φb
. (6.18)
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As noted in [182], there is an additional degree of freedom which is needed to define a

proper even-dimensional phase space for JT gravity. We will refer to this additional phase

space variable as the “time shift” δ which is defined operationally in [182]. This time

shift describes the difference between Schwarzschild times on the left and right boundaries

connected by spacelike geodesics which are orthogonal to the surface of constant dilaton

at the boundary; see the left panel in figure 6.2. In [182], δ is dynamic, in a sense that

it is zero at global time T = 0, and evolves to non-zero at other times. We will refer to

this time shift as δHJ .

In this work, we would like to adopt a different definition, such that δ is an overall

shift of time, which is constant and uniquely labels different classical solutions to the JT

gravity equations of motion.

As such, we define δ as a uniform translation of the boundary time. To account for

this translation, we define a new time coordinate t̃ that is defined globally and approaches

the Schwarzschild time (up to a sign) at the boundaries offset by some value δ. A constant

t̃ slice corresponds to a constant T slice in the bulk. This new time coordinate is defined

through4

cosT = sech

[
Φh

φb
(t̃− δ)

]
. (6.19)

In this newly defined coordinate, the bifurcation surface is located at t̃ = δ, X = 0,

as shown in the right panel in figure 6.2. Also from this figure we can see that −2δHJ =

2(δ− t̃), i.e., δHJ = −δ+ t̃. This is to say, δHJ = −δ when t̃ = 0. Here we note again that

δHJ depends on the time coordinate while δ is a constant throughout the spacetime.

The time shift δ is the canonical conjugate of H [182], i.e.,

{H, δ} = {2Φ2
H

φb
, δ} =

4ΦH

φb
{ΦH , δ} = 1. (6.20)

4As a comparison, we remind the reader that at the boundary cosT = sech(rst).
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For later convenience, we also define a new variable

Q0 ≡
4Φh

φb
δ, (6.21)

which is canonically conjugated to the extremal value of the dilaton Φh:

{Φh, Q0} = 4
Φh

φb
{Φh, δ} = 1. (6.22)

We are also interested in studying the phase space on a constant t̃ slice. Thus we

define a phase space variable

Φt̃ = Φh sech

[
Φh

φb

(
t̃− δ

)]
(6.23)

so that according to equation (6.14), on every constant t̃ slice, Φ = Φt̃

√
1 +X2. .

In the following context, we work in the semiclassical scheme. We promote the Hamil-

tonian H, the dilaton Φh and the time shift δ, as well as the quantities Q0 and Φt̃, to

operators. Correspondingly, we have5

Ĥ =
2Φ̂2

h

φb
, Q̂0 = 4

Φ̂h

φb
δ̂, (6.24)

as well as the commutation relation

[Φ̂h, Q̂0] = i. (6.25)

Denoting the time-evolution operator as U = e−iĤt̃, we can write down the time evolution

5Since Q0 is a product of two variables that are conjugate to each other classically, there are many
ways to promote it to an operator. Here we make one particular choice, but the choice does not affect
our semi-classical calculation.
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of the operator Q̂0 in the Heisenberg picture,

Q̂t̃ = U †Q̂0U = eiĤt̃Q̂0e
−iĤt̃ =

4Φ̂h

φb
(δ̂ − t̃), (6.26)

where we have used the Baker–Campbell–Hausdorff formula and the fact that [Ĥ, Q̂0] =

4iΦ̂h/φb in the last step. We can see that Q̂0 = Q̂t̃=0. Furthermore,

[Φ̂h, Q̂t̃] = [Φ̂h, Q̂0] = i. (6.27)

As we will see in section 6.4, the conjugate variable of Φt̃ is actually 4 sinh
Qt̃
4

.

In section 6.4, we will study the eigenstates of operators Q0 and Qt̃. Suppose
∣∣Q; t̃

〉

is the eigenstate of the operator Q̂t̃ with eigenvalue Q, whilde |Q; 0〉 is the eigenstate of

the operator Q̂0 with the same eigenvalue Q, i.e.,

Q̂0|Q; 0〉 = Q|Q; 0〉, Q̂t̃|Q; t̃〉 = Q|Q; t̃〉. (6.28)

The first equation yields

U †Q̂0UU †|Q; 0〉 = QU †|Q; 0〉. (6.29)

Comparing this with the second equation in equation (6.28), we get

|Q; t̃〉 = U †|Q; 0〉. (6.30)

6.3.3 Variational Principle, Boundary Conditions and Actions

In our later compution of path integrals, we are interested in a particular kind of

boundary conditions for JT gravity. As shown in figure 6.3, besides the usual asymptotic

timelike boundaries, we choose two Cauchy slices ΣH and Σt̃ as our finite spacelike
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boundaries with the following boundary conditions:

• On ΣH , we fix the metric to be ds2
ΣH

= dx2

1+x2 and extrinsic curvature K = 0 for

x 6= 0. We fix Φ = Φh and nµ∇µΦ = 0 6 at x = 0;

• On Σt̃, we fix the induced metric to be ds2
Σt̃

= dX2

1+X2 and the dilaton profile to be

Φ = Φt̃

√
1 +X2.

t̃1

Σt̃

t̃

δαα

ΣH

Figure 6.3: The classical spacetime configuration whose action is used to calculate the
transition amplitude 〈Φt̃|Φh〉. In this figure, ΣH and Σt̃ are Cauchy slices where we
fix Φh and Φt̃ respectively. ΣH is one finite boundary passing through the bifurcation
horizon and intersecting the asymptotic boundaries at time t̃1, while Σt̃ is the other
finite boundary with time t̃. α is the boost angle.

Since the extrinsic curvature is not fixed at one point on ΣH , this results in the

pentagon-shaped region in figure 6.3. One can check that for this kind of boundaty

conditions, the usual Gibbons-Hawking boundary term in the action is still enough to

give a good variational principle7.

As we can see, the Cauchy surface Σt̃ is a geodesic, and Φt̃ = Φh cosT . The bifurcation

surface X = T = 0 is also an extremal surface for the dilaton.

6Since the normal vector nµ is not well-defined at x = 0, we should interpret nµ in this equation as
defined at some x = ε and take the limit ε→ 0.

7With the Gibbons-Hawking term, variation of the action gives δS ∼∫
∂M

√
γ
(
2KδΦ + (nν∇νΦ) γαβδγαβ

)
. Although fixing K = const. in general does not give a

good variational principle, it does in the special case where we fix K = 0 and fix Φ on the part of
boundary where K is not fixed.
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Next we compute the action of the classical solution that satisfies the above boundary

conditions. Without loss of generality, in this calculation we assume Σt̃ lies to the past

of ΣH (t̃ < 0). Since R = −2 on shell, the Einstein-Hilbert term vanishes, and we only

need to evaluate the remaining Gibbons-Hawking term. Since K = 0 on Σt̃ and ΣH

except for at the extremal surface, it only receives contribution from the center point,

the asymptotic timelike boundaries and the corners where the spacelike and timelike

boundaries meet.

Since K is not fixed at the extremal surface, in general there will be a “kink”. As-

suming the rapidity changes 2α (whose exact value will be determined later) as we move

along ΣH from right to left, the contribution to the action from the kink is

Skink = 2Φh(2α), (6.31)

since the spacetime there is locally flat and the integral of K is given by the change in

rapidity in two-dimensional flat spacetimes [152].

Due to the left-right symmetry, the Cauchy slice ΣH is composed of two semi-infinite

geodesics which can be both conveniently expressed as t = −α/rs in Schwarzschild

coordinates on both sides. They touch the asymptotic boundaries at boundary time

t̃1 = δ − α/rs = δ − αφb/Φh.

On the asymptotic boundaries r = rc, we have

K =
rc√
r2
c − r2

s

= 1 +
1

2

r2
s

r2
c

+ · · · . (6.32)

As a result, its contribution to the Gibbons-Hawking term is

Sb = 2

∫

B

√
hΦ(K−1) = 2×2

∫ t̃1

t̃

dt̃
√
r2
c − r2

s (φbrc)

(
1

2

r2
s

r2
c

+ . . .

)
=

2Φ2
h

φb
(t̃1− t̃), (6.33)
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where the extra prefactor 2 in the second step comes from the fact that there are two

timelike boundaries in figure 6.3.

We still need to calculate the contribution from the four corners where spacelike and

timelike boundaries meet. There is no real contribution from the two upper corners

where a half geodesic (Schwarzschild time t = const.) is joined to the cutoff surface

(Schwarzschild radius r = const.), since they are orthogonal to each other8 [183]. At the

lower two corners, the corner term is given by

Sc = 4φbrs sinT = 4Φh tanh

(
Φh

φb
(t̃− δ)

)
. (6.34)

The detailed calculation is given in Appendix E.1 for interested readers.

Now we are ready to write down the total Lorentzian action

SL[Φt̃,Φh, t̃] = Skink + Sb + Sc = 4Φhα+
2Φ2

h

φb

(
−α φb

Φh

+ δ − t̃
)

+ 4Φh tanh

(
Φh

φb
(t̃− δ)

)

(6.35)

with δ related to Φh and Φt̃ through (6.23). Note that for every set of Φt,Φt̃, t̃, there are

two possible δ since coshx is an even function on R,

δ = t̃± φb
Φh

cosh−1 Φt̃

Φh

. (6.36)

In our later discussion of path integral, this would mean that for any given Φh, Φt̃ and t̃,

there are two saddle point contributions that we need to consider. With the full action,

8There is still an imaginary part contribution
∫

corner
K = −iπ2 from each corner; see e.g. [152] for

details. We ignore this contribution since it is constant for any Φh, Φt̃ and t̃, and can be absorbed into
normalization. But as we will see in section xxx, this imaginary contribution is important in replica
calculations.
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we are able to determine α using Hamilton-Jacobi theory. For either choice of δ,

∂SL[Φt,Φh, t̃]

∂H
=

φb
4Φh

∂SL[Φt,Φh, t̃]

∂Φh

= δ. (6.37)

Solving the ODE gives

α =
Φh

φb
δ, (6.38)

where we have chosen the integration constant such that ΣH joins the asymptotic bound-

aries at t̃ = 0.

With this value of α, the full Lorentzian action is

SL[Φt,Φh, t̃] =
2Φ2

h

φb

(
2δ − t̃

)
+ 4Φh tanh

[
Φh

φb
(t̃− δ)

]
. (6.39)

6.4 The Hartle-Hawking Wavefunction

In this section, we use path integral to prepare the initial state for future calculation.

In our following path integral of JT gravity, we always take the semiclassical limit φb →

∞, with Φ0

φb
, Φh
φb
,

Φt̃
φb

finite. Therefore our path integral is well approximated by saddle-

point contributions.

6.4.1 Expression of the Hartle-Hawking Wavefunction

Before replica calculation, we would like to first prepare a state for us to use as the

initial conditions for the Lorentzian path integral. This initial state is taken to be the

Hartle-Hawking state that is evolved to the past or future of the bifurcation surface.

We start from the Hartle-Hawking state in the basis of eigenstates of the Φ̂h operator
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computed in [182] via semiclassical Euclidean path integral,

ΨHH [Φh] = 〈ΦH |HH〉 = exp

(
2πΦ0 + 2πΦh −

β

2

Φ2
h

φb

)
, (6.40)

where the inverse temperature β defines the circumference of the thermal circle of the

Euclidean manifold. We would like to evolve this wavefunction in Lorenztian time to

some surface of constant t̃ and express it in the basis of eigenstates of the Φ̂t̃ operator.

ΨHH [Φt̃] = 〈Φt̃|HH〉 =

∫
dΦh 〈Φt̃|Φh〉〈Φh|HH〉. (6.41)

When computing 〈Φt̃|Φh〉, we use the semiclassical approximation to express it in terms

of the action of some classical solution,

〈Φt̃|Φh〉 = exp
(
−iSL[Φh,Φt̃, t̃]

)
. (6.42)

Here, SL is the Lorentzian JT action evaluated on-shell between a Cauchy slice of con-

stant time t̃ and a constant Schwarzshild time slice which passes through the bifurcation

surface, as described in section 6.3.39.

However, if we try to combine equations (6.41) and (6.42) and find its saddle point,

the integrand has a branch cut that we need to integrate through. Besides, as mentioned

before, there are always two saddle points for given Φh and Φt̃. These issues bring us

more subtleties to deal with.

To circumvent these issues, we can rewrite equation (6.41) by inserting a resolution

of the identity 1 =
∫
dQ|Q; t̃〉〈Q; t̃| to get

9The sign choice in the exponent is consistent with the action calculation in section 6.3.3, where in
computing the integrals, we implicitly assume that the Cauchy slice where we fix Φt̃ to be a constant
lies to the past of the bifurcation surface.
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〈Φt̃|HH〉 =

∫
dΦhdQ〈Φt̃|Q; t̃〉〈Q; t̃|Φh〉〈Φh|HH〉. (6.43)

Since Q̂t̃ is defined in the way that it is the canonical conjugate of Φh, we know that

〈Q; t̃|Φh〉 = 〈Q; t̃ = 0| exp

(
−i2Φ̂2

h

φb
t̃

)
|Φh〉 = exp

(
−iQΦh − i

2Φ2
h

φb
t̃

)
, (6.44)

where we have used equation (6.30) in the first step. Thus, equation (6.43) becomes

〈Φt̃|HH〉 =

∫
dΦhdQ〈Φt̃|Q; t̃〉 exp

[
−i
(
QΦh +

2Φ2
h

φb
t̃

)]
ΨHH [Φh], (6.45)

where ΨHH [Φh] is given by equation (6.40). Now, similarly to equation (6.42), we identify

the overlap between states of definite Φt̃ and states of definite Q to the exponentiation

of some action

〈Φt̃|Q; t̃〉 = exp
(
−iSL[Φt̃, Q, t̃]

)
. (6.46)

It is not hard to get SL[Φt̃, Q, t̃] from the Lorentzian action equation (6.39). First,

Since Q̂t̃ can be seen as the canonical momentum of Φh, the action SL[Φt̃, Q, t̃] is related

to SL[Φt̃,Φh, t̃] by a Legendre transformation, so we can simply add a boundary term

−QΦh to account for it. Besides, since ΣH joins the asymptotic boundaries at t̃ = 0

while the state |Q; t̃〉 lives in a Cauchy slice with time t̃, we need to evolve the state |Φh〉

to time t̃. With all these in mind, we finally have

SL[Φt̃, Q, t̃] = SL[Φt,Φh, t̃]−QΦh −
2Φ2

h

φb
t̃ = −4Φt̃ sinh

Q

4
, (6.47)

where we have used equation 6.39. Obviously, this action satisfies the Hamilton-Jacobi
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equation with

∂SL[Φt̃, Q, t̃]

∂Q
= −Φh,

since Φh = Φt̃ coshQ/4.

Finally, we get the path integral expression for the Hartle-Hawking wavefunction:

〈Φt̃|HH〉 =

∫
dΦhdQ〈Φt̃|Q; t̃〉〈Q; t̃|Φh〉〈Φh|HH〉

=

∫
dΦhdQ exp

(
4iΦt̃ sinh

Q

4

)
exp

(
−iQΦh − i

2Φ2
h

φb
t̃

)
ΨHH [Φh]

=

∫
dΦhdQ exp

[
i

(
4Φt̃ sinh

Q

4
−QΦh −

2Φ2
h

φb
t̃

)
+

(
2πΦ0 + 2πΦh −

β

2

Φ2
h

φb

)]
.

(6.48)

In the next subsection, we will evaluate this wavefunction using the saddle point approx-

imation method.

However, rigorously speaking, the LHS and RHS of equation (6.46) always differ by

an O(1) factor, which is related to normalization and is subleading in the semiclassical

limit. In our case, this prefactor is indeed important since it eliminates a saddle that

would otherwise have some finite contribution to the above integral. In order for the

state |Q; t̃〉 to be delta-function normalized,

〈Q; t̃|Q′; t̃〉 =

∫
dΦt̃〈Q; t̃|Φt̃〉〈Φt̃|Q′; t̃〉 = δ(Q−Q′), (6.49)

we need to add an additional factor in equation (6.46) and thus (6.48),

〈Φt̃|Q; t̃〉 =

√
cosh

Q

4
exp
(
−iSL[Φt̃, Q, t̃]

)
. (6.50)

The existence of this factor reflects the fact that in computing 〈Φt̃|Q; t̃〉, the ket state is

not exactly |Q; t̃〉, but
√

cosh Q
4
|Q; t̃〉.
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6.4.2 Evaluating the Hartle-Hawking Wavefunction in the Sad-

dle Point Approximation

We will begin by first doing the Φh integral in equation (6.48). This integral is of

Gaussian form, so the saddle point contribution is exact. Taking a derivative of the

logarithm of the integrand of equation (6.48) with respect to Φh and setting it equal to

zero identifies the saddle point to be

ΦSP
h = −φb

2πi+Q

4t̃− iβ . (6.51)

So the result of the integral is

〈Φt̃|HH〉 =

∫
dQ

√
cosh

Q

4
exp

{
φb

[
2π

Φ0

φb
+
i

2

(
8

Φt̃

φb
sinh

Q

4
−
(
2π − iQ

)2

4t̃− iβ

)]}
.

(6.52)

Here we put φb in the front of the exponent in order to see the semiclassical limit directly.

Similarly, the saddle points of the Q integral are the solutions to

2π − iQ
−4t̃+ iβ

+ i
Φt̃

φb
cosh

Q

4
= 0, (6.53)

where we took a derivative of the exponent in the integrand with respect to Q.

There is no analytic solution to this transcendental equation, thus we analyze the

solutions numerically. Note that there is always a trivial saddle Q = −2πi and that there

are infinitely many solutions to the above equation when Φt̃ 6= 0. Here we focus on the

case t̃ < 0.

For each choice of β, t̃,Φt̃, we first find the solutions to equation (6.53) in the complex

Q plane, then find the contours of constant phase by equating the imaginary part of the

exponent in equation (6.52) to that at each saddle point. Finally we determine whether
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the contour is the steepest descent/ascent contour by comparing the real part of the

exponent with that at the saddle point. As foreshadowed in section 6.2, whether the

saddle point contributes to our gravitational integral or not depends on the intersection

number np of the upward flow and the original contour of integration, the real line in our

case. For instance, in the first panel in the first row of figure 6.4, for the trivial Q = −2πi

saddle, the red line is the steepest ascent contour and it intersects with the real line once,

so this saddle contributes to our integral with factor 1. While for the upper two saddles,

their corresponding upward flow lines do not intersect with the real line thus they do not

contribute to our integral.

After checking numerically for a wide range in our parameter space {β, t̃,Φt̃, φb}, we

find that only saddles with −2π ≤ ImQ < 2π could contribute to our integral. Thus we

restrict ourselves to this region in presenting our numerical results below. Besides, we

found that for fixed {β, t̃, φb} and various Φt̃, there is a general pattern of the position

of the relevant saddles. Therefore, without loss of generality, we only present in figure

6.4 one parameter choice with β = 5, t̃ = −1, φb = 10. Although φb only appears as

an overall factor in the action and its value does not affect our analysis, it is worth

mentioning again that the semiclassical limit is characterized by φb →∞.

As shown in figure 6.4, for Φt̃ ≤ 0, only the saddle Q = −2πi contributes to this

integral. Since the normalization factor in 6.50 is exactly 0 at this saddle point, the

transition amplitude vanishes in the semiclassical limit. This corresponds to the fact

that there is no classical solution with Φt̃ ≤ 0 since the boundary condition is φb > 0.

For Φt̃ > 0, there exists a threshold, below which there are two saddle contributing to

the integral (6.52): the trivial saddle and the non-trivial saddle with −2π < ImQ < 2π.

Above this threshold, only the non-trivial saddle with −2π < ImQ < 2π contributes to

the integral. At this threshold, the downward flow that starts at the non-trivial saddle

ends at the trivial saddle. This situation is called the Stokes ray in [181]. In the next
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(d) �t̃ > threshold

Figure 4: First row: saddle points (dots) and their steepest descent (light blue lines) and ascent (red lines)

contours in the Q integral. The green dots are the saddles whose corresponding steepest ascent contour

intersects with the original contour of integration — the gray contour. Second row: relevant saddle (green

dots) and the corresponding deformed contours (blue lines). In each case, according to Cauchy–Goursat

theorem and Morse theory, we can deform the original contour of integration to the steepest descent contour

passing through the relevant saddle without changing the result of the integral. The third case is a bit tricky,

we need to consider the union of the associated steepest descent contours. Obviously they cancel each other

in the lower right part, so we can also think of deforming the original contour to the combination of the two

half-branches on the top. Here the boundary conditions are given by t̃ = �1,� = 5,�b = 10. The values for

�t̃ are �5, 0, 5, 15, respectively. The threshold occurs at �t̃ ' 5.1663.

5 Complex saddles from Rényi Entropy calculation

In this section we compute the Rényi entropies Sn for the Hartle-Hawking state in JT gravity. As we will see,

the saddle point geometry we find is complex, and can be matched with the the saddle found in [7].

5.1 Real-time replicas: formalism

review To compute the Rényi entropy using the Schwinger-Keldysh contour, we need n copies of the ket state

and n copies of the bra state, glued in a fashion as shown in Figure 5. As a result, all the kets and bras share

the same dilaton value at the horizon, denoted as �h,n. If we take our initial state as the Hartle-Hawking

state and express it in the |�t̃i basis, we need to integrate over 2n �t̃’s and one �h,n.

– 13 –

Figure 6.4: First row: saddle points (dots) and their steepest descent (light blue lines)
and ascent (red lines) contours in the Q integral. The green dots are the saddles whose
corresponding steepest ascent contour intersects with the original contour of integra-
tion — the gray contour. Second row: relevant saddle (green dots) and the corre-
sponding deformed contours (blue lines). In each case, according to Cauchy–Goursat
theorem and Morse theory, we can deform the original contour of integration to the
steepest descent contour passing through the relevant saddle without changing the
result of the integral. The third case is a bit tricky, we need to consider the union
of the associated steepest descent contours. Obviously they cancel each other in the
lower right part, so we can also think of deforming the original contour to the combi-
nation of the two half-branches on the top. Here the boundary conditions are given by
t̃ = −1, β = 5, φb = 10. The values for Φt̃ are −5, 0, 5, 15, respectively. The threshold
occurs at Φt̃ ' 5.1663.
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section, we will integrate over Φt̃, so we do not need to analyze the saddle points in this

case since it is of measure zero.

As a result, when Φt̃ > 0, the initial state is given by

〈Φt̃|HH〉 = exp

{
φb

[
2π

Φ0

φb
+
i

2

(
8

Φt̃

φb
sinh

QSP

4
−
(
2π − iQSP

)2

4t̃− iβ

)]}
, (6.54)

where QSP is the non-trivial solution to equation (6.53) with −2π < ImQSP < 2π. When

Φt̃ ≤ 0, we have 〈Φt̃|HH〉 = 0 to leading order.

6.5 Complex saddles from Rényi Entropy calculation

In this section we compute the Rényi entropies Sn for the Hartle-Hawking state in

JT gravity. As we will see, the saddle point geometry we find is complex, and can be

matched with the the saddle found in [4].

6.5.1 Real-time replicas: formalism

To compute the Rényi entropy using the Schwinger-Keldysh contour, we need n copies

of the ket state and n copies of the bra state, glued in a fashion as shown in Figure 6.5.

As a result, all the kets and bras share the same dilaton value at the horizon, denoted as

Φh,n. If we take our initial state as the Hartle-Hawking state and express it in the |Φt̃〉

basis, we need to integrate over 2n Φt̃’s and one Φh,n.

6.5.2 The fixed-area state wavefunction for one ket/bra

To start with, we focus on one ket/bra, computing the overlap between initial state

and the fixed-area state |Φh,n〉. Inserting two resolutions of identity 1 =
∫
dΦt̃|Φt̃〉〈Φt̃| =
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•
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|Φk,1

t̃
〉

|Φb,1

t̃
〉

|Φk,2

t̃
〉
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t̃
〉

|Φk,3

t̃
〉

|Φb,3

t̃
〉

Figure 6.5: The bulk replica manifold Mn for computing the Rényi entropy when
n = 3. The ket and bra spacetimes are identified in a manner as shown in the figure.
As a result, there is only one splitting surface, where the dilaton value is fixed to be
Φh,n. The initial states for kets and bras are the Hartle-Hawking state expressed in

different basis |Φk,i

t̃
〉 or |Φb,i

t̃
〉, as shown in the figure.

∫
dQ′|Q′; t̃〉〈Q′; t̃|, we have

〈Φh,n|HH〉 =

∫
dΦt̃dQ

′〈Φh,n|Q′; t̃〉〈Q′; t̃|Φt̃〉〈Φt̃|HH〉

=

∫
dΦt̃dQ

′ exp

[
i

(
Q′Φh,n +

2Φ2
h

φb
t̃

)]
exp (iSL)

exp

[
2πΦ0 +

i

2

(
8Φt̃ sinh

QSP

4
− φb

(
2π − iQSP

)2

4t̃− iβ

)]

=

∫
dΦt̃dQ

′ exp

[
2πΦ0 + i

(
Q′Φh,n +

2Φ2
h

φb
t̃− 4Φt̃ sinh

Q′

4

−(2π − iQSP)2φb

2(4t̃− iβ)
+ 4Φt̃ sinh

QSP

4

)]
,

(6.55)

where the state |Φt̃〉 lives at past boundary at Σt̃, and the state |Φh,n〉 lives at the future

boundary anchored at t̃ = 0 on B. Again, here QSP = QSP(Φt̃, t̃, φb, β) is the same as in

equation (6.52) which is the saddle point for the Q integral.
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We first do the integral over Φt̃, which we remind the reader is from 0 to ∞. The

saddle point occurs at

− 4 sinh
Q′

4
+
φb(2iπ +QSP)

4t̃− iβ
∂QSP

∂Φt̃

+ 4 sinh
QSP

4
+ Φt̃ cosh

QSP

4
· ∂Q

SP

∂Φt̃

= 0. (6.56)

The saddle point value of Φt̃ turns out to be the one such that

QSP(ΦSP
t̃ , t̃, φb, β) = Q′, (6.57)

where we have used (6.53) to simplify the equation. Consequently, we get

〈Φh,n|HH〉 =

∫
dQ′ exp

[
2πΦ0 + i

(
Q′Φh,n +

2Φ2
h,n

φb
t̃+

(2π − iQ′)2φb

2(−4t̃+ iβ)

)]
, (6.58)

The saddle point for this integral is

(Q′)SP =
−4t̃Φh,n + i(−2πφb + βΦh,n)

φb
. (6.59)

Using the definition equation (6.21), the corresponding time shift is

δ =
i(−2πφb + βΦh,n)

4Φh,n

. (6.60)

Note that this δ is purely imaginary, so time-reflection symmetry is preserved in this

case. Finally, we have

〈Φh,n|HH〉 = exp

(
2πΦ0 + 2πΦh,n −

βΦ2
h,n

2φb

)
. (6.61)

This is exactly the Hartle-Hawking wavefunction in the Φh,n basis.

In using the saddle point approximation for the Φt̃ integral, we do not need to solve

244



Gravitational Renyi entropies from real-time path integrals: Complex saddles and contour
deformations in JT gravity Chapter 6

equation (6.57), since terms involving Φt̃ cancel out in the resulting action. However, we

still need to verify the validity of saddle point approximation by solving for the saddle and

analyzing the steepest descent and ascent of it like in section 6.4.2. Since the Φt̃ integral

is over the positive real half line, we change to a new variable P = log Φt̃ ∈ (−∞,+∞)

for convenience. As a result, we must include a factor eP in the integrand, but this will

not change the position of the saddle point in the φb →∞ limit.

Although we are not able to find analytic expressions, we are able to do the calculation

numerically. For a wide range of parameter choices of (t̃, β, Q′), and for regions that are

not too far from the real axis, there exist only one saddle point for the P integral. The

saddle point is in general complex. We also find that the steepest ascent contour crosses

the real P axis once, which means this saddle contributes to our path integral with factor

1.

One of the technical points of this calculation is to find QSP when Φt̃ is complex. We

choose QSP in this case to be the saddle point in the Q integral that, when tuning Φt̃, is

continuously connected to the Q saddle when Φt̃ is real.

In figure 6.6, we show saddle points, the steepest and ascent contours for several

different choices of parameters.

6.5.3 Contribution from the splitting surface

To compute the Rényi entropy, we sew the n bras and n kets together, and integrate

over Φh,n. However, the saddles when n = 1 are no longer saddles for general n since

there is a difference in action, which is given by

∆I = −4π(n− 1)Φh,n. (6.62)

This difference has appeared in previous replica calculations, e.g. [33, 34].
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Figure 6: Saddle points (green dots) and their steepest descent (red lines) and ascent (light blue lines)

contours in the P integral, where P = log�t̃. The rest of our parameters do not a↵ect our results, and we fix

them to be �b = 10, �h = 3. As we can see, in all eight panels, the steepest ascent contours cross the real

axis (the original contour, gray colored), which means the saddle points contribute to our path integral.

Figure 7: the region on one copy of the ket spacetime bounded by ⌃H and C✏ (the part of @U✏ in one ket)

where ⌘ = ±1 taking the positive sign on the ket parts of the spacetime and taking the negative sign on the

bra parts of the spacetime. We choose @U✏ to be orthogonal to ⌃H , so it is smooth when passing from one

copy to another one, and we don’t receive any corner-term contribution from there.

To evaluate the first term in equation (5.9), we consider the region on one copy of the ket spacetime

bounded by ⌃H and C✏ (the part of @U✏ in one ket, as shown in figure 7) and apply the Gauss-Bonnet theorem

again. Since the spacetime is locally flat near the bifurcation surface, for each ket we have

2i

Z

⌃H

dx K + 2i

Z

C✏

dx K = iSkink + 2i

Z

C✏

dx K = 4⇡. (5.10)

so

2i

Z

C✏

dx K = 2i(�⇡i � 2↵). (5.11)

– 16 –

Figure 6.6: Saddle points (green dots) and their steepest descent (red lines) and
ascent (light blue lines) contours in the P integral, where P = log Φt̃. The rest of
our parameters do not affect our results, and we fix them to be φb = 10, Φh = 3. As
we can see, in all eight panels, the steepest ascent contours cross the real axis (the
original contour, gray colored), which means the saddle points contribute to our path
integral.

To derive this difference, we use Gauss-Bonnet theorem following [6, 4]. In the replica

manifold Mn, we excise a small disk denoted Uε around the splitting surface; see figure

6.7. The contribution to the action from Uε is

iSΥ = lim
ε→0

[
i

∫

Uε
d2x η

√−gΦR

]

= lim
ε→0

[
−2i

∫

∂Uε
dx η

√
|h|ΦK + 4πχ(Ũε)Φh,n

]
(6.63)

where η = ±1 taking the positive sign on the ket parts of the spacetime and taking the

negative sign on the bra parts of the spacetime. We choose ∂Uε to be orthogonal to ΣH ,

so it is smooth when passing from one copy to another one, and we don’t receive any

corner-term contribution from there.

246



Gravitational Renyi entropies from real-time path integrals: Complex saddles and contour
deformations in JT gravity Chapter 6

Figure 6.7: the region on one copy of the ket spacetime bounded by ΣH and Cε (the
part of ∂Uε in one ket)

To evaluate the first term in equation (6.63), we consider the region on one copy of

the ket spacetime bounded by ΣH and Cε (the part of ∂Uε in one ket, as shown in figure

6.7) and apply the Gauss-Bonnet theorem again. Since the spacetime is locally flat near

the bifurcation surface, for each ket we have

2i

∫

ΣH

dxK + 2i

∫

Cε
dxK = iSkink + 2i

∫

Cε
dxK = 4π. (6.64)

so

2i

∫

Cε
dxK = 2i(−πi− 2α). (6.65)

Since χ(Ũε) = 1, the full action from Uε is

iSΥ = −2inΦh,n [(−πi− 2α)− (−πi− 2α)∗] + 4πΦh,n

= 4πΦh,n − 4nΦh,n(π + 2 Imα)

(6.66)

Note that iSΥ contains all the action contribution from the splitting surface, including

the “kink terms” that we already computed. So we have another way to write iSΥ:

iSΥ = in(Skink − S∗kink) + ∆I

= inΦh,n(4α− 4α∗) + ∆I

= −8nΦh,n Imα + ∆I.

(6.67)

Comparing the above two equations we get ∆I = 4π(1− n)Φh,n.

247



Gravitational Renyi entropies from real-time path integrals: Complex saddles and contour
deformations in JT gravity Chapter 6

6.5.4 Saddle point for replica calculation

The path integral for n replicas is

Zn =

∫
dΦh,n〈Φh,n|HH〉2ne∆I =

∫
dΦh,n exp

(
Φh,n(4π − nβΦh,n

φb
)

)
, (6.68)

whose saddle point is given by

(Φh,n)SP =
2πφb
nβ

. (6.69)

Plugging this back in the Φt̃ saddle we find before, we get

Φt̃ = (Φh,n)SP sech

[
− t̃(Φh,n)SP

φb
+ i

β(Φh,n)SP − 2πφb
4φb

]
=

2πφb
nβ

sech

[
−2πt̃

nβ
− iπ

2

(
1− 1

n

)]
.

(6.70)

As we can see, Φt̃ is real when n = 1, but complex for general values of n.

At the saddle point, we find that

In =
4π2φb
nβ

, (6.71)

which gives the Rényi entropy that matches the result found in:

Sn =
1

1− n(In − nI1) =

(
1 +

1

n

)
4π2φb
β

. (6.72)

Next we will show that the saddle point we find (6.70) is exactly the same as the

real-time replica wormhole solution found in [4]. The manifold has the same structure as
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shown in Figure 6.5. On each sheet, the metric and dilaton are

ds2 =
4 (x̃+x̃−)

1−n
n

n2
(

1− (x̃+x̃−)
1
n

)2dx̃
+dx̃−,

φ = α
1 + (x̃+x̃−)

1
n

1− (x̃+x̃−)
1
n

,

(6.73)

where x̃± = xP ± tP . The splitting surface is located at x̃+ = x̃− = 0, and each ket/bra

piece of spacetime lie to the past of some Cauchy surface that passes through t = 0 on

both boundaries and the splitting surface.

To compare solutions, we need to first figure out what our time shift δ corresponds to

in the solution (6.73). It is easy to compute δ using the Euclidean path integral, which

is shown in figure 6.8. There the periodicity for the Euclidean boundary time τ is nβ.

Following the procedure in [182], we shoot a geodesic from τ = 0 on the boundary, we

end up with τ = nβ
2

. Since the time shift is defined in terms of the Lorentzian time

t = iτ , we get

δHJ =
i∆τ − iβ/2

2
=
i(n− 1)β

4
(6.74)

where we subtracted i∆τ by iβ/2 due to the KMS relation relating the time coordinates

on left and right boundaries in Lorentzian signature. Since δ = −δHJ at t = 0, this time

shift is exactly the same as that in our current work

δ =
i(−2πφb + βΦh,n)

4Φh,n

= −i(n− 1)β

4
. (6.75)

We first define the global time coordinate T that lives on the m-th ket

cosT = sech

(
Φh

φb
(t̃− δ)

)
. (6.76)
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Figure 6.8: The replica manifold in Euclidean signature for n = 3.

and convert it to the x̃± coordinates

tanT =
(x̃+)1/n − (x̃−)1/n

1 + (x̃+x̃−)1/n
(6.77)

X =
(x̃+)1/n + (x̃−)1/n

1− (x̃+x̃+)1/n
. (6.78)

But note that in the saddle (6.73) the splitting surface can be approached in the real

section of the metric, i.e. at x̃+ = x̃− = 0. In our solution, it is located at t̃ = δ,X = 0,

which is no longer in the real section since δ is purely imaginary.
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Chapter 7

Time-independence of gravitational

Rényi entropies and unitarity in

quantum gravity

7.1 Introduction

Many points of view have long motivated the idea that, in order to describe measure-

ments of distant observers, black holes can be modeled as a quantum system with density

of states eSBH whose evolution is unitary up to possible interactions with other quantum

systems; see e.g. [184, 185, 186] for reviews. Here SBH is the Bekenstein-Hawking en-

tropy of the black hole. Following [55], we refer to the above idea as Bekenstein-Hawking

unitarity (or BH unitarity).1 This property would in particular imply that Hawking

radiation from evaporating black holes must carry information in a manner famously

described by Page [129]. The recent replica wormhole derivations [39, 38] of the expected

‘Page curve’ for the entropy of this radiation thus provide strong evidence that there is

1It was instead called ‘the central dogma’ in [130] in analogy with the term’s use in biology.
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a sense in which BH unitarity holds.

Our goal here is to provide additional support for the idea that time evolution in

quantum gravity is implemented by unitary operators on appropriate Hilbert spaces. For

simplicity, we consider asymptotically AdS spacetimes. In that context one may think

of this program as further verifying properties predicted by unitarity in some dual field

theory description. But one may also take point of view that the bulk theory decomposes

into superselection sectors defined by states in a so-called ‘baby universe’ sector of the

theory, and that we verify predictions of the hypothesis that time evolution is unitary in

each such superselection sector; see [146, 147, 148], related remarks in [50, 51, 38], and

axiomatic arguments in [54, 55].

In this context, recall that a key hallmark of unitarity is the preservation of the

eigenvalues of any density matrix in an isolated system.2 This can be readily probed, and

in some cases proven, by checking time-independence of the associated Rényi entropies

Sn = − 1
n−1

log
(

Tr[(ρ(D))n]
[Tr(ρ(D))]n

)
.

In the context of Einstein-Hilbert gravitational systems, an analogous result was

established in [78, 127]. These works considered the Hubeny-Rangamani-Takayanagi

(HRT) surface γHRT [27] associated with the entropy S(D) of a domain of dependence D

on an asymptotically AdS boundary. They then used the bulk Raychaudhuri equation to

show that γHRT must be causally inaccessible from D when the Lorentzian bulk spacetime

satisfies the null energy condition. As a result, no choice of boundary conditions on D

can influence the HRT entropy determined by the area of γHRT . In other words, the

2In particular, this result (or even just preservation of von Neumann entropy) implies that time
evolution maps pure states to pure states. If one also assumes time evolution to be a quantum channel,
then the channel must in fact be unitary for this property to hold. This conclusion follows from the
so-called Stinespring dilation theorem [187], which allows any quantum channel to be represented by
tensoring the given system with some ancilla state, acting with a unitary on the joint system, and then
tracing out the ancilla. If this procedure maps pure states to pure states, then the joint-system unitary
cannot create entanglement with the ancilla and must thus define a unitary on the original system alone.
We thank Geoffrey Penington for discussions regarding this point.
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von Neumann entropy is invariant under any time evolution for which the system can

be said to remain closed. But corresponding results remain to be established for Sn(D)

with n > 1.

This work begins to bridge this gap by studying saddle points of the real-time gravi-

tational path integral for Sn(D). In the context of an AdS bulk that is dual to a unique

field theory, this Sn(D) is the standard Rényi entropy. But in general the quantity Sn(D)

computed by these path integrals is more accurately described as a so-called swap Rényi

entropy3 [55]; see also [188].

Indeed, for reasons that we now describe, it would be even better to call the Sn(D)

we study an ‘annealed swap Rényi entropy.’ In a baby universe scenario for the bulk,

this Sn(D) is expected to closely approximate the average over superselection sectors

of the corresponding Rényi entropy in each sector [54, 55]. However, it will differ from

this average for two reasons: The first is that it is an ‘annealed average,’ meaning that

we actually study the average exp(−Sn) and then take a logarithm. The second is a

similar issue due to the fact that the normalization Trρ can vary among members of the

ensemble, but we normalize only by the average of Trρ. I.e., denoting averaging over

superselection sectors by an overline, our gravitational Reńyi gives

Sn := − 1

n− 1
log


 Tr [(ρ(D))n][

Tr (ρ(D))
]n


 . (7.1)

Expression (7.1) can also be used to relate our gravitational Reńyi to averages of Tr [(ρ(D))n]

over any ensemble of dual theories. In either context, we will use the term annealed swap

Reńyi to refer to all of the complications of (7.1).

We consider contexts where the real-time (swap) replica path integral is dominated by

3From the purely bulk perspective, the term ‘swap entropy’ is physically most appropriate when we
couple the AdS system to a non-gravitational bath and compute a (swap) entropy for some subset of
the bath. We will nevertheless also use it in the above context where no bath is present.
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a saddle that preserves both replica and conjugation symmetry. Examples of such real-

time saddles were recently presented in [4]. Such path integrals and their saddles were

described in [34, 55] and especially [6]. While parts of the saddle-point spacetime have

a complex-valued metric, with the above symmetries there is a real Lorentz-signature

metric on the regions spacelike separated from the replica-invariant surface γ (aka ‘the

splitting surface’) [6]. And while the real-time saddles described in [6] are singular at γ,

we show that there is an appropriate sense in which γ remains extremal for n > 1.

For theories that satisfy the null energy condition on-shell, by making one assumption

it will then follow from the results of [78, 127] that γ must again be causally inaccessible4

from D. Although the argument is more subtle than in the HRT context, this will then

again imply the Renyi entropies Sn(D) to be independent of any choices within D. The

key point is that our saddles will extend into the future only up to some surface ΣM− that

is spacelike separated from γ. In particular, much as in a Schwinger-Keldysh contour,

our saddles will contain both future-directed pieces of spacetime and past-directed pieces

of spacetime that meet in a timefold on ΣM− . The replica and conjugation symmetries

require the solutions on future- and past-directed pieces to be related by complex con-

jugation, so that coincide in the region spacelike related to γ where the solution is real.

Since the future- and past-directed pieces are weighted respectively by eiS and e−iS in

the path integral, the contributions from the region spacelike separate from γ cancel,

and the result is unchanged if we simply take ΣM− to lie along the past light cone of γ.

But doing so removes the entirety of D from the boundary so that the remaining saddle

is manifestly independent of choices within D.

Furthermore, the reader may recall from [29] that one may use the generalized second

law (GSL) to upgrade the arguments of [78, 127] to include quantum corrections. The

4Since only part of the spacetime is real and of Lorentz signature, this phrase remains to be properly
defined. It will be discussed briefly in section 7.1.1 and in more detail in section 7.2.4.

254
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same will again be true for our n > 1 Rényi problem. (One may of course consider the

the generalized second law to follow from the quantum focussing condition of [189].)

Throughout this work we focus on the case of Einstein-Hilbert gravity with mini-

mal couplings to any matter fields, though as noted in [6] the generalization to higher-

derivative gravity is straightforward. For the interested reader, a brief summary of the

argument for extremality of γ can be found in section 7.1.1 below. Other readers may

prefer to proceed directly to the main discussion of sections 7.2-7.4.

The main text will begin with a brief review of the real-time gravitational path integral

for Sn(D) following [34, 55] and especially [6]. This material is presented in section 7.2,

along with a description of the relevant saddle points. Section 7.2.4 then argues at the

classical level that the splitting surface γ is extremal in saddles that preserve replica

and conjugation symmetry. It also discusses the precise sense in which this requires γ to

be causally inaccessible from D and in which it makes Sn(D) independent of sources on

D or choices of Cauchy surfaces ΣD for D. Section 7.3 then follows with the upgraded

argument that includes quantum corrections. As a supplement to the quantum argument,

appendix F.1 illustrates the stationarity of SQFT at γ an example in which the quantum

corrections come from a bulk QFT that happens to be holographic; i.e., in which the

matter entropy is described by an HRT surface in a higher-dimensional spacetime. We

close with a broader discussion of unitarity in quantum gravity in section 7.4.

7.1.1 Summary of the extremality arguments

Let us briefly explain why γ should be extremal in our Rényi problem. As described

in [6], in a saddle point geometry Mn for the real-time n-replica path integral, the

metric near the splitting surface must have an asymptotic expansion of a certain form.

This expansion appears singular as presented in [6], but as explained there it in fact
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matches the form that would be obtained by applying a particular Wick rotation to a

smooth Euclidean space ME
n , and in particular to a Euclidean space with no conical

singularities. It is merely that the Wick rotation makes use of singular coordinates on

the smooth geometry ME
n . Furthermore, the fact that the original real-time saddle

Mn preserves replica symmetry requires ME
n to have a Zn symmetry that preserves the

splitting surface γ, but that rotates the tangent space at each point of γ in the plane

orthogonal to γ. Since the codimension-2 extrinsic curvature of γ must be invariant

under this Zn rotation, it must in fact vanish. In particular, the trace of the extrinsic

curvature vanishes and γ is extremal in ME
n .

While the splitting surface γ is necessarily singular in the original real-time solution,

the above facts imply that there is an arbitrarily smooth5 spacetime ŜR (the ‘right shadow

of Mn’) with an extremal surface γ such that ŜR coincides with any single sheet of the

original real saddle Mn in a connected region spacelike separated from γ that contains

the boundary domain D. Furthermore, ŜR can be constructed by finding ‘smoother’

coordinates in the original real-time solution without reference to analytic continuation

on ME
n . We will refer to this region of Mn as the ‘right wedge6’ of Mn, which is why

and we call ŜR the ‘right shadow.’ Although its geometry depends on n, we suppress the

label n on ŜR.

Finally, as noted in [6] the above symmetries require the metric to be real and Lorentz

signature in the region spacelike separated from γ. As a result, we may take ŜR to be

both real and Lorentz-signature; indeed, this is what gives a well defined notion of ‘the

region spacelike separated from γ’ used above. In addition, since the null convergence

condition holds where ŜR coincides with the original saddle Mn, by taking limits it

also holds on the closure of this region in ŜR. But in real Lorentz-signature spacetimes

5I.e., ŜR can be chosen to be Cm for arbitrary m.
6As an n-replica geometry, Mn in fact contains n such regions, but we may choose any one to call

the right wedge.

256
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satisfying the null convergence condition, refs. [78, 127] showed any extremal surface

anchored to the boundaries of Cauchy surfaces of D to be causally inacessible from D.

The fact that ŜR andMn coincide in the region spacelike separated from γ then provides

a sense in which this conclusion also holds in Mn; see section 7.2.4 for details.

The above perspective on the classical case now suggests a generalization that includes

quantum corrections. If the splitting surface is also a stationary point of the generalized

entropy Sgen[γ] = A
4G

+ SQFT , then the quantum focussing condition of [189] (or, indeed,

just the GSL as in [29]) will again allow us to conclude that γ must be causally separated

from D [29].

One would thus like to argue as in the classical case that replica symmetry requires

Sgen to be stationary on γ. However, for any codimension-2 surface γ (which will generally

differ from γ), the bulk entropy SQFT [γ] refers to the entropy of quantum fields on a

partial Cauchy surface stretching from γ to some boundary region. As shown in figure

7.5, this choice manifestly breaks replica symmetry and thus appears to invalidate the

desired argument. Indeed, as shown in the same figure, the very requirement that γ can

be connected to this boundary region by a partial Cauchy surface means if SQFT [γ] is

defined at all, then SQFT [γ′] will not be defined for any γ′ related to γ by a non-trivial

replica symmetry.

However, within the region where it is defined, SQFT can be computed by considering

the response of the partition function for bulk quantum fields to a change in boundary

conditions that does respect replica symmetry.7 As a result, one may extend the definition

of SQFT in a manner that preserves replica symmetry. We use this observation below to

show that replica symmetry requires both A and SQFT to be separately stationary on

the splitting surface γ, so that Sgen = A/4G+ SQFT is stationary as well.

7This is just the usual replica trick applied to quantum fields propagating on the real-time replica
wormhole geometry; see section 7.3.
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7.2 Real-time path integrals with splitting surfaces

This section provides an extremely brief summary of the real-time gravitational path

integral computation for Sn(D) and the relevant saddles following [34, 55] and especially

[6]. The general structure of such path integrals is described in section 7.2.1, while

boundary conditions at a special ‘splitting surface’ are described in section 7.2.2. Saddles

are further discussed in section 7.2.3. The reader may also wish to consult [4] for concrete

examples.

7.2.1 Real-time Rényi path integrals

The boundary conditions for a gravitational path integral are typically chosen by

first considering a corresponding non-gravitational problem. This long tradition is often

justified by appealing to AdS/CFT or a broader holographic principle, but as described

in [55], in many cases it also follows from a certain operational perspective associated

with coupling non-gravitational systems to the gravitational system of interest.8 But

any of these perspectives motivates us to begin with a discussion of real-time Rényi path

integrals for systems in which gravity is not dynamical.

To be specific, let us first consider the real-time path integral computation of Sn(D) in

a non-gravitating relativistic quantum field theory on some Lorentz signature spacetime

B. Recall that, given a (perhaps improperly normalized) density matrix ρ(D) on a domain

of dependence D, we define

Sn(D) := − 1

n− 1
log

(
Tr [(ρ(D))n]

[Tr (ρ(D))]n

)
. (7.2)

Furthermore, given a pure state |ψ〉 on the entire system, one can define the density

8Though this may then be associated with refinements in the interpretation, such as replacing en-
tropies by so-called swap entropies.
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matrix ρ(D) associated with some domain of dependence D ⊂ B by tracing |ψ〉〈ψ| over

some Cauchy surface ΣD̄ for the region D̄ ⊂ B that is spacelike separated from D. Powers

(ρ(D))n can then be computed by evaluating each copy of ρ(D) on some cauchy surface

ΣD of D and performing appropriate index contractions. And we may similarly compute

Tr[(ρ(D))n] by contracting the final two free indices. Unitarity of the QFT then requires

the result to be independent of the choices of ΣD̄ and ΣD. It also requires the result to

be unchanged by the addition of any sources on either D or D̄.

As a result, if we are given a representation of |ψ〉 as a path integral over some mani-

fold B− with boundary ∂B− containing ΣD̄∪ΣD, it is straightforward to construct a path

integral for Tr[(ρ(D))n]. In general, the manifold B− might be Euclidean, Lorentzian,

complex, or a Schwinger-Keldysh-like combination of these options. However, the nota-

tion B− reflects the fact that in many cases one would like to prepare some state in the

past and then evolve it forward in time to ΣD̄ ∪ ΣD. In such cases B− will contain at

least the (real and Lorentz-signature) region of B− immediately to the past of ΣD̄ ∪ΣD.

As shown in figure 7.1, the path integral for Tr[(ρ(D))n] is thus naturally represented

as a path integral over a spacetime Bn constructed by cutting open n copies of B− and

n copies of an appropriate adjoint manifold9 B†− and pasting them together in a manner

that – at least in simple cases – results in Bn having only a single connected component.

However, even when B− is real and Lorentz-signature near ΣD̄ ∪ΣD, the Rényi manifold

Bn fails to have a standard causal structure on ΣD̄∪ΣD, and in particular at ∂ΣD̄ = ∂ΣD.

But the path integral remains well-defined, since on these surfaces it merely implements

the above contractions.

We now turn to the corresponding gravitational problem in which one defines Rényis

9The path integral weight for a region of in the adjoint B†− is the complex conjugate that for the

corresponding region of B−. In particular, sources in B†− are the complex conjugates of sources in B−,

and in terms of the Lorentz-signature action SL regions of B†− are weighted by e−iSL instead of eiSL .
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B†−
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B†−identify
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yΣD

ΣD

ΣD

Figure 7.1: The manifold Bn used compute the path integral for Tr[(ρ(D))n] in a
non-gravitating QFT. Here ΣD is a Cauchy surface of D and the figure shows n = 3.

via the standard formula

Sn(D) =
1

1− n log

(
Z[Bn]

Z[B]n

)
=

1

n− 1
(In − n I1) , (7.3)

where Z[Bn] is the gravitational path integral over spacetimes with a fixed asymptotically-

AdS boundary Bn of the form constructed above. In particular, Bn has a Zn replica

symmetry that cyclicly permutes copies of B− ∪ B†−, as well as a conjugation symmetry

that exchanges each copy of B− with an associated B†− (and thus complex-conjugating

all sources). However, the individual bulk configurations that contribute to Z[Bn] are

allowed to break either or both symmetries. In the semiclassical limit, we can evaluate

the above Rényis using In := − logZ[Bn] ≈ −i SL[Mn] for the appropriate saddles Mn.

Now, the bulk spacetimes over which we integrate must be compatible with the struc-

ture of Bn near ΣD̄ ∪ ΣD. Following [55, 6] we specify the desired bulk spacetimes by

first considering the set M− of bulk spacetimes M− that contribute to the gravitational

path integral with asymptotic boundary conditions B−, and thus which also end on some

bulk surface ΣM− with boundary ∂ΣM = ΣD̄ ∪ ΣD at which the induced metric is to be

fixed as an additional boundary condition. The path integral Z[Bn] will then be defined

to sum over bulk spacetimes Mn constructed by choosing 2n of the above spacetimes
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M i
−, M̃

i
− ∈ M− for i = 1, . . . n and applying a cut-and-paste procedure to M i

− and the

adjoint manifolds M̃ †i
− analogous to that described for Bn above. Here, however, for

each final bulk surface ΣM i
−
,ΣM̃†i−

we may choose an arbitrary10 ‘splitting surface’ γi, γ̃i

that partitions ΣM i
−
,ΣM̃†i−

into two pieces (in analogy with the way that ∂ΣD partitions

ΣD̄ ∪ΣD into ΣD̄ and ΣD). Furthermore, since the bulk manifolds ΣM i
−
,ΣM̃†i−

are gener-

ally distinct, the bulk metric generally fails to be continuous where two such surfaces are

pasted together. WhenMn is discontinuous in this way, we take it to have zero amplitude;

i.e, the process of pasting together such surfaces leads to an appropriate delta-function

that concentrates the path integral’s integration measure on those Mn for which the

bulk metric is continuous at each ΣM i
−
,ΣM̃†i−

. This will also result in various constraints

relating the induced metrics on the splitting surfaces γi, γ̃i, though the detailed form of

such constraints depends on the particular pattern of cut-and-paste operations required

to form a given Mn.

It remains to further specify the path integral weight for Mn. Since the action is

local, we can specify the weight for each region of Mn independently. For regions away

from ΣM i
−
,ΣM̃†i−

, this is just the relevant weight e±iSL for the corresponding region of

M i
−, M̃

†i
− . Indeed, we will use the same rule for regions that intersect ΣM i

−
,ΣM̃†i−

but

which remain away from all splitting surfaces γi, γ̃i. In doing so, we should recall that

the action SL controlling the weight for M i
−, M̃

†i
− must include a Gibbons-Hawking term

since such pieces each individually describe contributions to a path integral with fixed

induced metric on ΣM i
−
,ΣM̃†i−

. See figure 7.2 for an illustration of Mn.

It now remains to specify the action for regions that include a splitting surface γi, γ̃i.

For Einstein-Hilbert gravity we may follow the guiding principle that, while the above

cut-and-paste operations will introduce singularities at the codimension-2 surfaces γi, γ̃i,

10In particular, such splitting surfaces may have multiple connected components. This allows for the
Rényi equivalent of ‘islands’ [92].
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Time-independence of gravitational Rényi entropies and unitarity in quantum gravity Chapter 7

ΣD̄ ΣD ΣD̄ ΣD
ΣM1

−,L

γ1

ΣM1
−,R

Σ
M̃
†1
− ,L

γ̃1

Σ
M̃
†1
− ,R

M1
− M̃

†1
−

identify

ΣD̄ ΣD ΣD̄ ΣD
ΣM2

−,L

γ2

ΣM2
−,R

Σ
M̃
†2
− ,L

γ̃2

Σ
M̃
†2
− ,R

M2
− M̃

†2
−

identify

ΣD̄ ΣD ΣD̄ ΣD
ΣM3

−,L

γ3

ΣM3
−,R

Σ
M̃
†3
− ,L

γ̃3

Σ
M̃
†3
− ,R

M3
− M̃

†3
−

identify

id
en

ti
fy

id
en

ti
fy

identify

Figure 7.2: A typical bulk configuration of the gravitational path integral that com-
putes Tr[(ρ(D))n] for n = 3.
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it is only the structure in the transverse two-planes to γi, γ̃i that will be singular. As

a result, it suffices to understand the result for two-dimensional Mn in detail, and then

to simply integrate that result along the γi, γ̃i. Furthermore, in two dimensions one can

use the Gauss-Bonnet theorem to write the integral of
√−gR over any region U in terms

of the Euler character χ(U) and an integral of the extrinsic curvature over the surface ∂U

(which by definition avoids the codimension-2 singularities at γi, γ̃i). While the Gauss-

Bonnet theorem is most familiar in the Euclidean context, there is a generalization to

complex two-dimensional spacetimes that in particular includes the case relevant to small

regions U around each γi, γ̃i where the metric is real and (at least at points away from

U) has Lorentz signature. See [6] for details and [145] for an earlier use of the complex

Gauss-Bonnet theorem to evaluate the gravitational action at a related singularity; see

also the examples in [4].11

In summary, we may follow [6] in writing the desired path integral as

Z[Bn] :=

∫

n

[Dg] ei S, (7.4)

where the subscript n is a reminder that we integrate over spacetimes Mn of the form

described above satisfying boundary conditions defined by Bn. In particular, the above

action takes the form

S(Mn) =
n∑

i=1

[
SL(M i

−)− SL(M̃ †i
− )
]

+ Sγ, (7.5)

where γ is the union of γi, γ̃i modulo the identifications induced by the manner in

which the M i
−, M̃

†i
− are pasted together to form Mn. For Einstein-Hilbert gravity, the

11 If one wishes to generalize this argument to include higher derivative corrections, the complex
Gauss-Bonnet theorem may no longer suffice to determine the action completely. However, one may still
follow the Lorentz-signature version of the minimal-subtraction prescription described in the appendices
of [73], together with the Legendre transforms also described in [73].
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contribution Sγ is defined by using the complex Gauss-Bonnet theorem and integrating

along γ as outlined above; see [6] for details. As a reminder, for AdS Einstein-Hilbert

gravity with AdS scale `AdS the Lorentzian action of each piece is

SL[M−] =
1

16πGN

∫

M−

dd+1x
√−g

[
R +

d(d− 1)

`2
AdS

]
+

1

8πGN

∫

B−
ddx

√
|γ|K

+
1

8πGN

∫

ΣM−

ddx
√
hK + Sct(B−) ,

(7.6)

where B− is the asymptotic boundary of the piece M− (including any Euclidean or

complex-signature regions of this asymptotic boundary), Sct denotes an appropriate set

of counter-terms, and the full boundary of M− is ∂M− = B− ∪ ΣM− .

7.2.2 Boundary Conditions at the Splitting Surface

In describing the bulk spacetimes Mn that contribute to our path integral, we have

thus far glossed over one important detail. The issue is that we should require the Mn

to satisfy boundary conditions at γ for which the above S defines a good variational

principle. It was shown in [6] that this is indeed the case if, on each piece M i
−, M̃

†i
− and

near any component of γ, one introduces coordinates yI along γ and x̃± in the transverse

space (with the component of γ lying at x̃± = 0) and requires the metric in this region
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to take the form

ds2 = σ(x̃+, x̃−) dx̃+dx̃− + T
(x̃+ dx̃− − x̃− dx̃+)2

(x̃+x̃−)2−m̂

+ qIJ dy
IdyJ + 2WJ dy

J x̃
+dx̃− − x̃−dx̃+

(x̃+x̃−)1−m̂ ,

with

σ(x̃+, x̃−) ≡ m̂2(x̃+x̃−)m̂−1 ,

T = O
(

(x̃+x̃−)
αm̂
2

)
,

qIJ = O
(
(x̃+x̃−)0

)
,

WJ = O
(
(x̃+x̃−)m̂

)
,

(7.7)

for some α > 1 and some m̂ > 0. The metric coefficients T, qIJ ,WJ depend smoothly on

the yI coordinates. Note that, following the conventions of [6], σ is positive for m̂ = 1.

One should thus think of x̃± as analogues of the Minkowski-space coordinates x ± t as

opposed to the more standard null coordinates t± x.

It remains to specify some further details. For positive x̃± the fractional powers

above are defined by taking the positive real root. But for negative x̃+ we take (x̃+)m̂ =

e−im̂π |x̃+|m̂ and for negative x̃− we define (x̃−)m̂ = e+im̂π |x̃−|m̂.

In addition, the notationO((x̃+x̃−)q) in principle allows terms of the form (x̃+x̃−)qf( x̃
+

x̃− )

for any smooth f . However, if there are 2k pieces M i
−, M̃

†i
− that meet at the relevant

component of γ (so that this component is formed by identifying 2k splitting surfaces

γi, γ̃i), then we also require the metric functions T, qIJ , WJ to involve only integer pow-

ers of (x̃±)
1
k , except perhaps in the combination x̃+x̃−. In other words, we require these

coefficients to be functions of the triple ((x̃+)
1
k , (x̃−)

1
k , x̃+x̃−) such that these functions

are analytic in the first two arguments in some neighborhood of the origin x̃+ = 0 = x̃−.

As remarked in [6], such local analyticity is to be expected at any source-free regular
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point of the equations of motion and does not restrict the generality of any saddle points

that we will find. (Configurations invariant under the local Zn replica symmetry will have

k = n at each component of γ and will be further restricted by the condition that they

involve only integer powers of x̃±, again with the possible exception of their appearance

in the combination x̃+x̃−.)

7.2.3 Real-time Rényi saddles

We now briefly review general features of the saddle points Mn of the gravitational

Rényi path integral Z[Bn]. The fact that [6] showed the definitions of the previous sec-

tion to lead to a good variational principle means that Mn is a stationary point when

it satisfies the standard (and, in our conventions, Lorentz signature) Einstein equations

away from ΣM i
−
,ΣM̃†i−

together with two simple additional conditions on ΣM i
−
,ΣM̃†i−

. The

first condition is just that where ΣM i
−

is sewn to some ΣM̃†j−
(but away from γ), the

codimension-1 extrinsic curvatures of these surfaces must agree (e.g., when both are

computed using future-pointing normals). The second condition is that for each compo-

nent of γ we must impose km̂ = 1, where k, m̂ are the parameters defined in and below

equation (7.7). The latter condition comes from varying the action with respect to the

area element on γ, and may be thought of as the condition that the Ricci scalar contain

no delta-function at this surface. As a result, that despite the singular form of (7.7),

there remains some physical sense in which we might think of the metric as being in

some sense“smooth.”

Recall that k ∈ Z+, and also that the case k = 1 describes a simpler construction

for which splitting surfaces were not in fact required. In this sense we have k ≥ 2

at a nontrivial component of γ. So at a nontrivial such component, the saddle-point

condition km̂ = 1 forbids m̂ from being an integer. Examination of (7.7) then shows
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that the metrics for such saddles are always complex-valued. Following [6], we assume

that the original real contour of integration can be deformed to pass through such complex

saddles, though it would be useful to investigate this more carefully in the future.

We will focus below on saddles Mn that preserve both replica and conjugation sym-

metry. One consequence of replica symmetry is that all components of γ have k = n.

Another is that, as noted below (7.7), there must be a region around γ where the func-

tions T, qIJ ,WI are analytic in x̃± up to functions of the product x̃+x̃−.

Finally, when combined with conjugation symmetry, replica symmetry imposes a

further constraint where any ΣM i
−

is sewn to some ΣM̃†j−
. At such loci, any quantity

on ΣM i
−

must be the complex conjugate of the corresponding quantity on ΣM̃†j−
. In

particular, since our sewing conditions require the induced metrics on these surfaces to

agree, it follows that the induced metrics on ΣM i
−
,ΣM̃†j−

must be real. And since the above

saddle-point conditions require the extrinsic curvatures to agree on the part of this seam

away from γ, such extrinsic curvatures must be real as well. We conclude that replica-

and conjugation-invariant saddles have real initial data on each ΣM i
−
\γi,ΣM̃†j−

\γ̃j. Since

the relevant equations of motion are the Lorentz-signature Einstein equations, we expect

that we can use this initial data to construct real Lorentz-signature spacetimes that we

may call the domain of dependence of each ΣM i
−
\ γi,ΣM̃†j−

\ γ̃j. This is clear when the

induced metric on ΣM i
−
\γi,ΣM̃†j−

\ γ̃j is positive definite, in which case we have defined

good Cauchy data on this surface. Furthermore, in that case uniqueness of the initial

value problem tells us that this is in fact the desired saddle in the stated region. In other

words, replica- and conjugation-invariant saddles must be real in what we may call ‘the

region spacelike separated from γ.’

However, it remains to consider the case where the induced metric on ΣM i
−
\γi,ΣM̃†j−

\

γ̃j fails to be positive definite. Such cases are not at all pathological, and in fact are easily

generated from the positive-definite cases above. In such cases, the fact that the saddle
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is real in the region spacelike separates from γ means that a factor of eiS from some part

of this region in a ket spacetime will exactly cancel against the corresponding e−iS factor

from the corresponding region of a bra spacetime. As a result, without changing the

action or the validity of the saddle we can deform the original ΣM i
−
\γi,ΣM̃†j−

\ γ̃j to an

arbitrary surface spacelike separated from γ that connects γ with ΣD. In particular, the

deformed surface may contain timelike or null regions, in which case the induced metric

will fail to be positive definite. We will assume that all cases where the induced metric

fails to be positive definite can be obtained in this way. This is the one assumption

foreshadowed in the introduction. It was also implicit in [6].

7.2.4 Time independence of classical (annealed) swap entropies

Having reviewed real-time gravitational Rényi path integrals and their saddles in

section 7.2, we are now ready to verify the claim that – in any saddle that preserves

replica and conjugation symmetry – the splitting surface γ can be treated as an extremal

surface in a real Lorentz signature spacetime. A critical point is the observation reviewed

above that such saddles do in fact have real and Lorentz signature metrics in the domains

of dependence of the surfaces ΣM i
−
\ γi,ΣM̃†j−

\ γ̃j.

Indeed, we will now use this observation to introduce what we will call a real ‘shadow’

of the replica wormhole described above. To begin, recall that γ partitions each boundary

ΣM i
−
,ΣM̃†j−

into a piece that ends on ΣD and a piece that ends on ΣD̄. Let us refer to

the pieces ending on ΣD as the ‘right’ pieces ΣM i
−,R

,ΣM̃†j− ,R
and the pieces ending on ΣD

as the ‘left’ pieces ΣM i
−,L
,ΣM̃†j− ,L

. Note that the initial data sets on any two right pieces

are related by replica and conjugation symmetry, and that the same is true of the initial

data sets on any two left pieces.

Consider then the initial data on some ΣM i
−,R

. Since this data is real, the fact that
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−

Figure 7.3: The ‘right shadow’ SR (shaded in gray) is the maximal AdS-Cauchy
development of ΣM i

−,R
. Note that SR includes regions both to the past and to the

future of ΣM i
−,R

. The region to the past also lies in M i
− (shaded pink), while the

region to the future does not. The intersection of SR and M i
− has both shadings.

the Lorentz-signature Einstein equations have a good initial value problem allows us to

construct a unique solution SR (the ‘right shadow’) describing the maximal AdS-Cauchy

development12 of ΣM i
−,R

. Furthermore, SR must agree with the saddle point solutionMn

on the domain of dependence of ΣM i
−,R

in M i
−. In particular, near γ the shadow SR can

be described by (7.7), where to be definite we choose x̃± > 0 in SR (corresponding to

our choice to think of this as the right wedge). However, since it lies in M i
− the latter

region exists only to the past of ΣM i
−,R

, while SR includes a region to the future as well;

see figure 7.3.

Now, in the region x̃± > 0 we are free to introduce new coordinates X̃± = (x̃±)1/n.

12By an AdS-Cauchy development, we mean the analogue of a Cauchy development defined using the
asymptotically AdS boundary conditions on D. In other words, the surface ΣMi

−,R
is allowed to be an

AdS-Cauchy surface for this development in the sense of [78].
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Recalling that m̂ = 1/n, in terms of such coordinates the metric (7.7) becomes just

ds2 = dX̃+dX̃− + n2T

(
X̃+ dX̃− − X̃− dX̃+

)2

X̃+X̃−

+ qIJ dy
IdyJ + 2n W̃J dy

J
(
X̃+dX̃− − X̃−dX̃+

)
,

with

T = O
(

(X̃+X̃−)
α
2

)
,

qIJ = O
(

(X̃+X̃−)0
)
,

W̃J =
WJ

X̃+X̃−
= O

(
(X̃+X̃−)0

)
.

(7.8)

Furthermore, the conditions on the coefficients T, qIJ ,WI now state that they should be

functions of the triple
(

(X̃+)n, (X̃−)n, X̃+X̃−
)

that are analytic in the first two argu-

ments, at least in some neighborhood of X̃+ = X̃− = 0. As a result, the metric admits

an extension ŜR to at least some negative values of both X̃+ and X̃−.

We would like to control the form of the extension ŜR . The idea is to use the fact

that we are interested in the saddleMn which solves the Einstein equations for X̃± 6= 0.

In particular, in the Euclidean context ref. [73] found a power series solution near

the splitting surface which (at least at the level of function counting) had sufficient free-

dom to accommodate general smooth boundary conditions and which obeyed boundary

conditions given by the Wick rotation of (7.7). Since the formal manipulation of power

series is unchanged by Wick rotations, this immediately provides a similarly general so-

lution to the Einstein equations in our context. We will thus now assume that any actual

saddleMn defined by sufficiently smooth boundary conditions can be described by such

a power series. While it would be interesting to prove this statement rigorously, that task

is beyond the scope of this work. We therefore leave it for appropriate mathematicians

to investigate in the future.
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In terms of X̃±, and after the relevant Wick rotation and imposing replica symmetry

and the condition m̂ = 1/n, the power series solution from [73] may be written as sums

over integers p, q, s of the form

T ∼
∞∑

p,q,s=0
pq>0, or s>0

Tpqs(X̃
+)pn(X̃−)qn(X̃+X̃−)s, (7.9)

W̃I ∼
∞∑

p,q,s=0

WI,pqs(X̃
+)pn(X̃−)qn(X̃+X̃−)s, (7.10)

qIJ ∼
∞∑

p,q,s=0

qIJ,pqs(X̃
+)pn(X̃−)qn(X̃+X̃−)s. (7.11)

In particular, the restriction pq > 0, or s > 0 in the sum for T means that for n > 1

the leading term will be X̃+X̃−. The coefficient T
X̃+X̃−

in (7.7) is thus smooth at X̃± = 0.

Using the above power series expansion, we may choose the extension ŜR to negative

X̃± to be arbitrarily smooth. And since it satisfies the Einstein equations on SR, we

may choose the extension to satisfy the Einstein equations as well.13 We also take ŜR to

satisfy standard causality assumptions such as those used in [78, 127], perhaps at the cost

of limiting the extension to negative values of X̃± that are very close to γ. In particular,

there is no need for the extension ŜR to be maximal in any sense.

By counting powers of X̃± is also easy to see that the codimension-2 extrinsic cur-

vature of γ in ŜR must vanish in ŜR.14 Indeed, for even n comparing (7.7) with (7.9),

(7.10), and (7.11) shows that every term in (7.7) is even under X̃± → −X̃±, so we are

free to take ŜR to have an exact Z2 symmetry about γ when n is even.15

13For this it suffices to first smoothly extend the initial data on some Cauchy surface and to then solve
the Einstein equations.

14Aside from the terms independent of X̃±, for integer n > 1 almost every term in (7.7) is at least
quadratic in X̃+X̃−. The single exception is the leading contribution from WJ . But the term associated
with the leading contribution from WJ is invariant under X̃± → −X̃± and so cannot contribute to the
extrinsic curvature of the set γ at X̃± = 0.

15 For odd n, the fact that X̃± = (x̃±)1/n maps positive real x̃± to positive real X̃± and also maps
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For integer n > 1 we have now argued that γ has vanishing extrinsic curvature in an

arbitrarily smooth spacetime ŜR which satisfies standard causality assumptions as well as

the vacuum Einstein equations (and thus also the null convergence condition). In other

words, the associated matter stress tensor vanishes identically and thus satisfied the null

energy condition. Note that this result at X̃± = 0 follows from smoothness and from

the corresponding result at positive X̃±. The results of [78, 127] then require D to be

causally inaccessible from γ.

This is essentially the desired result, though we should carefully state what this means

for the original saddle Mn on which the metric in some regions is complex-valued. In

order to do so, let us first return to Ŝn and note that the boundary of the future of γ

cannot intersect D, and neither can the boundary of the past. This is because D is an

open set on the asymptotically AdS boundary, so such an intersection would require that

D also intersect the interior of the causal past or future, contradicting the statement that

it is causally inaccessible from γ.

On the other hand, since the Cauchy surface ΣM i
−,R

intersects D, and since standard

asymptotically AdS boundary conditions hold at D, the maximal AdS-Cauchy develop-

ment SR of ΣM i
−,R

must contain part of D. In fact, since ΣM i
−,R

intersects D on a Cauchy

surface for D, it intersects every connected component of D. Thus SR in fact contains

at least part of every such connected component.

However, the boundary of the future of γ in ŜR is precisely the boundary of SR.

Since this boundary cannot intersect D, it follows that any connected component of D

negative real x̃± to negative real X̃± means that in that case we can instead take the extension ŜR in
the region where X̃± are both negative to coincide with the ‘left shadow’ SL defined in analogy with
SR but using the maximal Cauchy development of ΣMi

−,L
. Both properties are easy to see in the case

whereMn is the Wick rotation of someME
n , as comparison with [6] shows that ŜR can be defined by a

different Wick-rotation ofME
n that preserves smoothness. In effect, this is the Wick-rotation that would

be obtained by interpreting the smoothME
n as an n = 1 geometry that computes the norm of some pure

state by slicing it into two pieces, representing a single bra and a single ket, each of which contains n/2
replicas and such that the two pieces are related by a Z2 symmetry that complex-conjugates all sources.
See figures in appendix F.2.
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which intersects SR is in fact fully contained in SR. And since this was the case for all

such components, we in fact conclude that D is fully contained in the maximal Cauchy

development of ΣM i
−,R

.

This, then, is the desired result. For brevity, we will refer to it as stating that ‘D

is causally inaccessible from γ in Mn’. This phrasing is motivated by the fact that,

in any real Lorentz-signature globally-hyperbolic spacetime, any region R of a Cauchy

surface Σ must be causally inaccessible from the maximal Cauchy development of the

complementary region R̄ = Σ \R.

However, the key point is that the solution is real on the maximal AdS Cauchy devel-

opment of ΣM i
−,R

, ΣM̃†j− ,R
. But our symmetries require the solution on any AdS-Cauchy

development of ΣM i
−,R

to be the complex conjugate of that on the corresponding develop-

ment of ΣM̃†j− ,R
. Thus the solutions on these developments agree and their contributions

cancel in (7.5). Thus we obtain the same action if we choose ΣM i
−,R

, ΣM̃†j− ,R
to lie on the

past light cone of γ. But this has the effect of removing D entirely from the boundary

Bn and thus makes manifest that the contribution of our saddle is independent of any

choices within D. See figure 7.4.

7.2.5 Generalizations to include matter

The above arguments establish our result for vacuum Einstein-Hilbert gravity. Since

we considered spacetimes of arbitrary dimension, we may then use Kaluza-Klein to deduce

corresponding results for of Einstein-Hilbert gravity coupled to appropriate Kaluza-Klein

matter, and in particular for the truncation of such theories to modes that preserve

any symmetries of the internal manifold. Since non-linearities contribute only higher-

order terms to our expansions above, this suggests that the exact form of the matter

couplings is not relevant. We therefore expect our result to hold for arbitrary two-
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D D
γ γ• •

M i
− M̃

†(i−1)
−

Σ1
Mi
−,R

Σ2
Mi
−,R

Σ1

M̃
†(i−1)
− ,R

Σ2

M̃
†(i−1)
− ,R

Figure 7.4: In every saddle, the sheets M i
− and M̃

†(i−1)
− are sewn together by

identifying an achronal surface ΣM i
−,R

in M i
− with an achronal surface Σ

M̃
†(i−1)
− ,R

in M
†(i−1)
− . These surfaces have boundaries consisting of γ and ΣD; i.e.,

∂ΣM i
−,R

= ∂Σ
M̃
†(i−1)
− ,R

= γ ∪ ΣD. However, the action of saddles with replica and

conjugation symmetry is independent of the choice of this achronal surface, and the
action is also independent of the choice of Cauchy surface ΣD for D. As a result,
without changing the action we may deform any such Σ1

M i
−,R

and Σ1

M̃
†(i−1)
− ,R

to sur-

faces Σ2
M i
−,R

and Σ2

M̃
†(i−1)
− ,R

on the past lightcone of γ. This makes manifest that the

contribution of our saddle is independent of any choices within D.
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derivative theories of matter minimally-coupled to Einstein-Hilbert gravity for which the

matter sector satisfies the null energy condition. However, we leave a detailed proof of

this generalization for future work.

7.3 Time independence of quantum-corrected (an-

nealed) swap Rényis

Having established time-independence of gravitational annealed swap Rényis at lead-

ing order in GN , it is of interest to consider quantum corrections. We focus here on

corrections associated with matter fields, leaving aside subtleties associated with quan-

tum corrections from gravitons. We expect that such subtleties can be dealt with using

the techniques of [35], but we will not attempt to do so here.

In the classical case, we found that we could use a smooth real Lorentz signature

‘shadow spacetime’ to describe the area of any surface in Mn that was causally inac-

cessible from γ. Moreover, replica symmetry of the classical replica saddle Mn led to

a power series expansion of this area near γ which showed γ to be extremal. The null

curvature condition onMn then required D to be contained in the maximal AdS-Cauchy

development of ΣM i
−

, a situation that we summarize by saying that D is causally inac-

cessible from γ.

We would like to simply extend this argument to include quantum corrections, replac-

ing the null curvature condition with the quantum focussing condition (QFC) of [189].

This condition involves the entropy SQFT of quantum fields onMn, which may be subtle

in regions where the metric is complex. But it should have familiar properties in the

regions where Mn is real and Lorentz signature.

Let us begin by studying the first-order quantum corrections about a classical saddle
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replicaMn. Then since the smooth shadow SR is related by Cauchy evolution to a subset

of a single sheet of Mn., we may again describe the desired matter entropy SQFT as a

function on SR.

The remaining steps in the classical argument then followed from properties of power

series expansions near γ. These expansions were motivated by requiring the relevant

quantities to satisfy the classical equations of motion. But to apply analogous reasoning

in the quantum case we would need to understand the power series expansion for SQFT .

Since we do not have classical equations of motion to solve for SQFT , we will need to

pursue another approach.

We describe two such approaches below in section 7.3.1 and 7.3.2. Each alone ad-

dresses only special cases. The first explicitly assumes that Mn can be Wick-rotated to

define a smooth Euclidean (or perhaps complex) manifold, while the second works directly

in Lorentz signature but assumes the QFT to be holographic and works in the approxi-

mation where SQFT can be computed using the classical Hubeny-Rangamani-Takayanagi

prescription in the associated higher-dimensional spacetime. However, after presenting

these arguments, we will show in section 7.3.3 that they can be combined to argue for

general Lorentz-signature matter QFTs that the entropy SQFT is in fact extremal on γ,

and thus that D is causally inaccessible from γ as desired. We then comment briefly on

how the argument extends to higher order quantum corrections.

7.3.1 Argument via Wick rotation

As stated above, for our first approach we explicitly assume that Mn can be an-

alytically continued to define a smooth Euclidean (or perhaps complex) manifold ME
n

by Wick rotating x̃± to complex coordinates v, v̄ and defining the smooth coordinate

z = vn, z̄ = v̄n, with the understanding that we rotate the timelike coordinate x̃+ − x̃−
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into the lower half plane in the ket spacetime and that we rotate x̃+− x̃− into the upper

half plane in the bra spacetime. Indeed, the coordinates z, z̄ are just the analogous Wick

rotation of X̃±. As a result, the metric (7.7) and the expansions (7.9), (7.10), (7.11)

show that – if the spacetime is sufficiently analytic for the Wick rotation to be defined –

the result will be smooth at the origin z, z̄ = 0.

Furthermore, since Wick rotation preserves the replica symmetry that was assumed

for the real-time saddleMn, the resultingME
n is replica-invariant. This is clearly compat-

ible with the Wick-rotation of the expansions (7.9), (7.10), (7.11), which are manifestly

invariant under z → e
2πi
n z after the above rotation of X̃± to z, z̄.

We may thus proceed to discuss the analytic continuation of SQFT to ME
n . Let us

begin by further discussing SQFT in the real-time saddle Mn. Recall that SQFT [γ] is

the entropy on an achronal surface Σγ stretching from γ to a Cauchy surface ΣD for

some replica of D on the boundary. Furthermore, the notion of achronal surface is

nominally defined only in region where the metric is real and Lorentz signature. We

will call this replica D1 below and take it to lie on the boundary of M1
−. As a result,

with our conventions for sewing together bra and ket spacetimes to make Mn, this D1

also lies on the boundary of M̃ †n
− (and not on the boundary of M̃ †1

− ). Given this choice,

one can generally find achronal surfaces Σγ of the above form when γ in the domain of

dependence of ΣM1
−,R

or ΣM̃†n− ,R, but not when it lies in the domain of dependence of

ΣM i
−,R

for i 6= 1 or ΣM̃†j− ,R
for j 6= n; see figure 7.5.

On the other hand, analytic continuation is trivial when z is real and positive, as

z = z̄ > 0 is the surface ΣM1
−,R

on which the time coordinate x̃+ − x̃− vanishes. Thus

the surface lies in both Mn and ME
n .

Furthermore, on ΣM1
−,R

we may compute SQFT [γ] by using a second replica trick. By

this we mean that we take m copies of the Euclidean spacetime ME
n on which we wish

to define the matter entropy SQFT , cut them open, and then sew them back together
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• •
γ γ

• •
γ γ

M 1
− M̃ †1

−

M 2
− M̃ †2

−

ΣD1
•

γa
• γb

•

γc
•

γd
•

• • •

• •
γ γ

Mn
− M̃ †n

−

ΣD1
•

γe
•

Figure 7.5: After choosing a particular replica D1 of D and an associated Cauchy
surface ΣD1 , one can find an achronal surface Σγ from some codimension-2 surface γ
to ΣD1 only when γ is in the domain of dependence of ΣM1

−,R
or Σ

M̃†n− ,R
, but not in

the domain of dependence of ΣM i
−,R

for i 6= 1 or Σ
M̃†j− ,R

for j 6= n. The blue and red

surfaces are such Σγ in the successful cases. We also show typical surfaces (orange,
brown, and magenta) that would connect other regions to ΣD. These latter surfaces
must pass through regions with complex metric where achronality is not defined. Here
the M i

−, M̃
†j
− are sewn together as in figure 7.2. Thus, for example, the orange surface

can be traced from γc ⊂ M2
− across the seam at the upper right of this sheet into

M †1− , across that sheet moving to the left through the complex region to the past of

γ, across the seam at the upper left of M †1− into M1
−, and finally across M1

− moving
to the right through the complex region to the past of γ to reach ΣD.
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using replica boundary conditions. This introduces a conical singularity at γ, but since

we are only using this second replica trick to compute the matter entropy of a QFT on

a fixed background we do not otherwise alter the metric (i.e., there is no ‘backreaction’

from this new conical singularity). Computing the matter QFT path integral over the

m-replica spacetimes and taking an appropriate m → 1 limit gives SQFT . Furthermore

this second replica trick calculation can be performed for any γ in ME
n satisfying the

homology constraint and so can be used to extend the definition of SQFT to all of ME
n .

Indeed, since there is no obstacle to the replica-trick computation giving an analytic

result, we take it to be the desired analytic extension.

Note that this new replica trick explicitly preserves the Zn replica-symmetry of the

original ME
n . We have thus defined SQFT as an analytic replica-symmetric function on

ME
n . As a result, given any codimension-2 surface γ about which this Zn acts as a

rotation, first-order variations of SQFT [γ] must be invariant under such rotations and

must thus vanish.

Applying this argument to the replica-invariant splitting surface γ shows that SQFT

is extremal on γ as desired. Returning to Lorentz signature and assuming the quantum

focussing condition16 [189] on the shadow SR, it immediately follows that this closed

inequality holds on the closure of SR, and thus on the relevant outgoing null congruences

from γ. As a result, the generalized second law must hold on this null congruence [189].

We may then use the argument of [192] that, as in the classical case, γ must be causally

separated from D.

Unitarity of the bulk QFT then allows us to again deform each ΣM i
−,R

to the past

light cone of γ without changing Sn(D). As before, this makes manifest that Sn(D) is

16Since we consider only first-order backreaction to Einstein-Hilbert gravity, one might think that one
need only assume the quantum null energy condition (QNEC) of [189]. This is true whenMn spacetime
dimension 3 or less. But in higher dimensions the QNEC is not generally well-defined in curved space due
to curvature-dependent UV divergences that depend on the choice of renormalization scheme [190, 191].
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independent of the choice of either ΣD or any sources within D.

7.3.2 Argument for holographic matter

We argued in section 7.3.1 above that, when Mn can be appropriately Wick-rotated

to a Euclidean spacetime ME
n , our matter entropy SQFT is stationary to first-order

variations about γ. We now give a different argument that works directly in the original

real-time saddle Mn when the matter QFT happens to be holographic and SQFT is

computed using the classical Hubeny-Rangamani-Takayanagi (HRT) prescription in the

associated higher-dimensional asymptotically-AdS spacetime Nn having boundary Mn.

For simplicity we also assume that it is sufficient to treat Nn as a solution to the vacuum

Einstein equations (with a cosmological constant). See appendix F.1 for a simple example

that illustrates the discussion below.

Let us discuss relevant features of Nn and the associated HRT prescription. Recall

that Mn had an asymptotically-AdS boundary. But if Mn were the boundary of a

smooth bulk spacetime Nn, then of course ∂Mn would be empty. The resolution was

explained in [193], which is to understand that the boundary ofMn must extend into the

bulk as a dynamical object on which the bulk spacetimes can in some sense be said to end

as well. For example, in simple cases this internal ‘boundary’ may be a string-theoretic

orbifold or orientifold. More generally, at a phenomenological level one can simply model

the object (whatever it may be) as an ‘end-of-the-world brane’ [194].

The key point for our purposes is the implication for the form of the homology con-

straint that should be satisfied by HRT surfaces γN for SQFT [γ]. Recall that this is the

entropy in Mn on a partial Cauchy surface Σγ stretching from γ to ΣD. Although one

may still say that γN must be homologous to Σγ, if one thinks of the bulk as containing

an end-of-the-world brane this is now homology in the sense of manifolds with boundary.
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In other words, one requires only that there be a bulk surface ΣN for which ∂ΣN is

γN ∪ Σγ up to additional contributions that coincide with the end-of-the-world brane.

In certain microscopic descriptions this is clear from the fact that the end-of-the-world

brane is really just a place where the bulk spacetime pinches off smoothly, but dualities

require it to be true more generally. Perhaps the more fundamental point is that the

end-of-the-world brane is dynamical, so that points on its world-volume behave in much

the same way as other points in the bulk.

Let us now discuss the form of Nn in more detail. Note that the relationship of Nn
to Mn is directly analogous to that of Mn to Bn. It is true that the metric on Mn is

complex in regions that we might say lie to the past of γ while the metric on Bn is real,

but this point will not affect the discussion. In particular, we have takenMn to preserve

all of the symmetries of Bn, so we will assume Nn to preserve these symmetries as well.

The same argument as in section 7.2.3 then requires the metric on Nn to be real and

Lorentz signature in regions causally inaccessible from γN , and the asymptotic form of

the metric near γN will be again follow (7.7), (7.7). We may thus construct a shadow SNR
and an extended shadow ŜNR of Nn using the recipe for SR and ŜR from section 7.2.4. We

may also note that γN is homologous to Σγ for γ = γ in the sense defined above (since

the relation between these surfaces is analogous to the relation between γ and ΣD).

As a result, by the same logic as was to discuss γ in that section 7.2.4, we find that

the replica-invariant surface γN in Nn must be extremal in SNR . Using this argument

in the bulk of Nn tells us that γN is extremal under bulk variations. So since it is

homologous to Σγ for γ = γ, it is a candidate HRT surface for Σγ (i.e., for the surface

Σγ with γ = γ). Let us thus follow section 7.2.4 in assuming it to be the smallest such

surface, in which case it must be the actual HRT surface for Σγ.

However, since the extremality argument used only properties of Nn that are also

true of Mn – an in particular properties of Mn that were already used in section 7.2.4

281
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– we may also conclude γN to be extremal with respect to variations of its boundary

γ ⊂ SR. Since we work in the approximation where SQFT [γ] is proportional to the area

of the associated HRT surface in Nn, it follows that SQFT [γ] is stationary to first order

about the surface γ = γ. But this γ was also a classical extremal surface, so this tells

us that it is in fact a quantum extremal surface. If we assume the quantum focussing

condition we may thus again repeat precisely the arguments at the end of section 7.3.1

to conclude that γ is causally inaccessible from D.

7.3.3 General Argument

The holographic argument in section 7.3.2 served mainly to illustrate the general point

made at the very beginning of our discussion of quantum corrections. In particular, once

some control was obtained over the asymptotic form of SQFT [γ] near the surface γ = γ,

we were able to show stationarity of SQFT at γ using precisely the same argument given

for stationarity of the area at γ in section 7.2.4. The assumption that the QFT was

holographic served only to allow us to extract the desired asymptotic expansion from the

existing literature.

Furthermore, in both sections 7.2.4 and 7.3.2, the desired asymptotic expansion was

obtained by finding a self-consistent power series solution to the appropriate equations

of motion. And in fact this was done by noting that Wick rotation is straightforward to

any order in a series expansion, so that it was sufficient to transcribe the series solutions

described for the Euclidean context in [73]. Despite the use of this Wick rotation, the

resulting series should provide a good asymptotic expansion for the desired quantity in

any Lorentz-signature theory, even in the presence of non-analytic sources.

We thus wish to now implement the analogous steps in a general quantum field theory.

In that context the (variational) derivatives of SQFT may again be said to be described
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by ‘equations of motion’ which related them to certain correlation functions defined by

the appropriate modular Hamiltonian and the stress tensor; see e.g. [195]. In principle,

it should be possible to use this structure together with stress tensor conservation to

construct the desired power series description of variations of SQFT about γ. In practice,

of course, this is a highly non-trivial task.

Luckily, as described above, the general form of this expansion must be the same

whether or not the theory admits a Wick rotation to Euclidean signature. Let us there-

fore assume that it does, and the rotation can be taken to have the form described in

7.3.1 above. Then the expansion can be Wick rotated as well, and as in section 7.3.1 it

must be the series expansion of some analytic replica-invariant functional SQFT on an

analytic Euclidean (or complex) spacetime. In particular, in this case both SQFT and

the spacetime are analytic functions of the z, z̄ obtained from Wick rotation of X̃±. An-

alyticity and replica symmetry then require SQFT to be stationary under first variations

of z, z̄ about γ, and thus also require SQFT to be stationary under first variations of X̃±

about γ. But since such variations are determined by the series expansion, and since

we argued this expansion to have the same form in the general case as in the analytic

case, SQFT will be stationary on γ for any QFT. By assuming the quantum focussing

condition, we may then again argue as above that γ will remain causally inaccessible

from D under back-reaction from first-order quantum corrections.

7.3.4 Higher order quantum corrections

The argument given above clearly extends to higher order quantum corrections.

Working out the detailed expansions will become more cumbersome at higher orders,

as one must take into account higher and higher levels of back-reaction of the quantum

fields on the bulk geometry. But expansions of both the area and SQFT near the splitting
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surface of such back-reacted saddles must nevertheless exist, and they will satisfy the

same replica symmetry and compatibility with Euclidean expansions described above.

So again both must be extremal at γ in saddles preserving both replica and conjugation

symmetry.

7.4 Discussion

Our work above studied saddle points of real-time gravitational path integrals asso-

ciated with the (annealed swap) Rényi entropy Sn(D) for domains of dependence D on

some asymptotically anti-de Sitter boundary for integer n > 1. For simplicity we con-

sidered pure Einstein-Hilbert gravity (in any dimension), but many other cases follow by

dimensional reduction. In addition, footnote 11 describes how it may be generalized to

gravity theories with perturbative higher derivative corrections by making use of further

results from [73]. So long as the full system satisfies an appropriate analogue of the GSL,

extending the arguments to any theory of matter governed by a local two-derivative action

with perturbative higher-derivative terms appears to be merely a technical exercise.

We first worked at the level of the leading order terms in the stationary phase approx-

imation, but we then included quantum corrections to all orders. We explicitly assumed

our theory to satisfy the quantum focussing condition. When the saddle preserves replica

and conjugation symmetries, we then showed under a certain technical assumption that

the splitting surface γ to be causally inaccessible from D. As a result, we could deform

the saddle without changing Sn(D) to make manifest that Sn(D) is independent of both

the choice of any sources on D and the choice of any Cauchy surface ΣD for D. One

may thus say that (annealed swap) Rényi entropies are time-independent in the sense

associated with unitary quantum theories living on the asymptotic boundary. However,

this argument involved a technical assumption (see the end of section 7.2.3) about so-
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Time-independence of gravitational Rényi entropies and unitarity in quantum gravity Chapter 7

lutions to the gravitational initial value problem for which the induced metric on the

initial surface may fail to be positive definite. This assumption deserves to be better

understood.

Recall then that unitarity is a key property of quantum mechanics, and that the study

of quantum gravity has long sought to understand whether and in what sense unitarity

might hold. In particular, in a baby universe scenario one should distinguish between

unitary evolution of the full quantum gravity Hilbert space and unitarity ‘from the per-

spective of an asymptotic observer,’ by which we mean unitarity on each superselection

sector for the algebra of asymptotic observables.

Now, it is natural for the above notions of unitarity to be closely related in a theory of

quantum gravity. After all, one expects the gravitational Hamiltonian to be a boundary

term, and thus to lie in any algebra of asymptotic observables. But this then immediately

implies that it preserves the associated superselection sectors [196, 197].

In particular, a full proof of this unitarity follows if one adopts the axiomatic frame-

work for gravitational path integrals described in [54]. The axioms of that reference

are stated in terms of Euclidean path integrals, so we should in fact add the additional

axiom that Lorentzian time-evolution is given by a Wick rotation of that framework.

Under such assumptions, section 4.1 of [54] shows that the gravitational Hamiltonian

is self-adjoint and lives in the algebra of boundary observables, so that eiHt is unitary

and preserves superselection sectors. In fact, section 4.1 of [54] also shows the density of

states in each superselection sector to be bounded by eSBH . So then BH unitarity holds

whenever this bound is saturated.

On the other hand, the current understanding of quantum gravity path integrals

is sufficiently poor that such formal arguments are naturally regarded with suspicion.

Furthermore, the conformal factor problem of Euclidean gravity [32, 198] then amplifies

such concerns when Euclidean path integrals appear to play a fundamental role (though
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there are good reasons to suspect that this is not a serious issue in the end [199, 200,

201, 202, 203]). As a result, more concrete tests of unitarity – such as the derivations of

the Page curve and the tests described here – provide important pieces of evidence that

the above formal arguments are physically meaningful. It thus remains of great interest

to move beyond the limitations of the current work to address more general situations.

One extension turns out to be straightforward. This is the generalization to the case of

non-integer replica numbers n > 1. At some level, time-independence of Rényi entropies

for non-integer n must follow by analytic continuation from the integer n result derived

here. But one may also give a more direct argument using the Lewkowycz-Maldacena

trick of describing a replica-invariant saddle Mn by its Zn quotient M̃n = Mn/Zn.

In terms of M̃n = Mn/Zn, the boundary conditions for M̃n do not depend on n,

but M̃n has a conical singularity whose strength does depend on n. While Lewkowycz

and Maldacena worked in Euclidean signature, the analogous trick can also be used

directly in Lorentz signature using the associated notion of ‘conical singularity’ (see e.g.

[6]). This description is then straightforward to analytically continue to non-integer

n. Furthermore, all of the power series expansions used in our work continue to hold

on such M̃n in the obvious way. For 2 > n > 1 one finds that the Riemann tensor

can be singular at X̃± = 0 but, for vacuum Einstein-Hilbert gravity with cosmological

constant, the equations of motion require the Ricci tensor to be proportional to the

metric. In particular, Rabk
akb = 0 for any null vector ka, so one may continue to use

the Raychaudhuri equation as in [78, 127]. With this understanding one may repeat our

arguments verbatim for non-integer n > 1. Once again, the conclusion is that Sn(D)

depends only on D and not on the choice of a particular Cauchy surface ΣD ⊂ D.

On the other hand, new input will clearly be required to generalize the symmetry-

based arguments of this work to address saddles in which replica symmetry is broken.

And while replica-invariant saddles appear to dominate in many situations, it has recently
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been shown [38, 72, 7, 101] that replica-breaking saddles have important effects near HRT

phase-transitions. Furthermore, even a small sub-dominant effect that violates unitarity

would be of great interest. We will therefore return to the question of replica-breaking

saddles in a forthcoming work.
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Chapter 8

A trace inequality for Euclidean

gravitational path integrals (and a

new positive action conjecture)

8.1 Introduction

The Anti-de Sitter/Conformal Field theory correspondence (AdS/CFT) [15] predicts

exact equivalence between appropriate conformal field theories and their dual bulk string

theories. Using the bulk to reproduce detailed properties of specific CFTs typically

requires using intricate properties of the stringy description. However, it is often the case

that fundamental properties of CFTs can already be seen in the approximation where

the bulk theory is described by semiclassical gravity, perhaps coupled to appropriate

matter fields. Important examples of such properties include CFT microcausality, strong

subadditivity of entropy, and the fact that larger regions of the CFT define larger algebras

of observables. In particular, these features are associated with results for asymptotically

locally anti-de Sitter (AlAdS) bulk spacetimes satisfying the null energy condition. The
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corresponding bulk results are, first, that any causal bulk curve between boundary points

is deformable to a causal curve lying entirely within the boundary [204], second that

strong subadditivity holds for HRT surfaces [78], and third that entanglement wedges

nest appropriately [78, 205, 206]. Quantum effects in the bulk typically preserve such

properties so long as they satisfy the quantum focussing conjecture [189].

The goal of the present work is to use the semiclassical bulk approximation to study

the dual bulk implementation of the CFT inequality

TrD(BC) ≤ TrD(B) TrD(C), (8.1)

which relates traces of positive operators B,C on any Hilbert space H. For positive

B = b†b, C = c†c, some readers may prefer to write this in the form

TrD(bc†cb†) ≤ TrD(b†b) TrD(c†c), (8.2)

so that the argument of the trace on the left-hand-side is also a positive operator. Recall

that positive operators are self-adjoint by definition [207], and that ‘positivity’ requires

the eigenvalues to be non-negative. In (8.1) and (8.2), we use the symbol D to denote

the non-gravitational CFT dual of a bulk theory, and we write TrD to emphasize that the

trace is the standard trace on the D side of the duality. In particular, TrD denotes the

familiar operation computed by introducing any orthonormal basis |i〉D on the D Hilbert

space and performing the sum

TrD(O) :=
∑

i

D〈i|O|i〉D. (8.3)

For simplicity of presentation we confine ourselves to the AdS/CFT context below, but

similar discussions clearly apply to other gauge/gravity dualities as well, such as those
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described in e.g. [208, 209]. To avoid infrared divergences, we assume D to be defined

on a spatially compact spacetime. Since we consider path integrals dual to some TrD B,

we may then take all of our Euclidean boundaries to be compact.

The inequality (8.1) is easily proven using standard Hilbert space operations in D.

One first notes that the inequality is trivial when TrD(B) = +∞, so this leaves only the

case of finite TrD(B). One then observes that, when TrD(B) is finite, the positivity of B

requires the operator B to have a largest eigenvalue Bmax. We then simply choose the

{|i〉} in (8.3) to be eigenstates of C with eigenvalues Ci ≥ 0 and write

TrD(BC) =
∑

i

Ci D〈i|B|i〉D ≤
∑

i

BmaxCi = Bmax Tr(C) ≤ TrD(B) TrD(C). (8.4)

Indeed, this argument also shows that the bound (8.1) is quite weak, and that it is

saturated only when B,C are both proportional to a common projection of rank one.

For B = C, this latter observation is equivalent to the familiar statement that the purity

of a density matrix is 1 only when the density matrix is pure, and thus when it is

proportional to a projection of rank one.

While the bound (8.1) may be weak, stronger bounds typically involve further details

of the spectrum of B,C and are thus more difficult to study. One example is the bound

Bmax Tr(C) also derived in (8.4). Another is the even stronger von Neumann trace

inequality Tr(BC) ≤∑iBiCi, where we have now introduced the full set of eigenvalues

Bi of B, and both Ci and Bi have been ordered so that Ci ≥ Cj and Bi ≥ Bj when

i ≥ j. These more intricate bounds on the CFT trace are correspondingly more awkward

to study on the gravitational side of the AdS/CFT duality.

However, despite its weakness, the bound (8.1) can be used to derive fundamental

consequences. One example is the fact that the algebra B(H) of bounded operators on

any Hilbert space is a type I von Neumann factor. This can be shown by first noting
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that the commutant of B(H) is trivial, so that B(H) must be a factor of some type. One

then considers any projection P and sets C = B = P . Since P 2 = P , the bound (8.1)

requires Tr(P ) ≥ 1 for any P . In contrast, when factors of some type other than I are

present in a von Neumann algebra, any faithful normal semi-finite trace on the algebra

will always assign arbitrarily small traces to some family of projections having arbitrarily

small trace [210]. This result is a key motivation for our study.

Our goal here is to show how (8.1) arises from the bulk point of view. In doing so we

will work at the level of the semiclassical approximation to the Euclidean path integral

for a low-energy bulk effective theory. The semiclassical bulk description will necessarily

involve gravity, but our analysis will not depend on the details of any UV completion.

Now, in fact, gravitational path integrals that include sums over topology are generally

not dual to single CFTs as they fail to factorize over disconnected boundaries (see e.g.

the classic discussion of [49]. However, if a non-factorizing bulk path integral makes

sense, we expect it to behave like those discussed in [54, 211] where the path integral

decomposes into a sum over so-called baby universe α-sectors in which factorization holds;

see also [146, 147] for earlier discussions of this idea. We then expect (8.1) to be satisfied

separately in each α-sector.

Furthermore, if an inequality of the form (8.33) holds in each member of an ensemble

then, so long as the ensemble has non-negative probabilities to realize each of its mem-

bers, a similar inequality will hold for ensemble averages. We might write this averaged

inequality in the form

〈TrD(bc†cb†)〉 ≤ 〈TrD(b†b) TrD(c†c)〉. (8.5)

Here it will of course be important that the right-hand side is a single ensemble correlation

function and not a product of ensemble averages.
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It is therefore interesting to understand if a given bulk theory satisfies a corresponding

inequality, which we might write in the form

ζ
(
M̃bc†cb†

)
≤ ζ

(
M̃b†b t M̃c†c

)
, (8.6)

where t denotes disjoint union and M̃bc†cb† is a smooth closed manifold specifying bound-

ary conditions for our bulk theory on a Euclidean Asymototically locally Anti-de Sitter

boundary that can be broken into four pieces Mb,Mb† ,Mc,Mc† such that connecting Mb

and Mb† gives a new smooth closed manifold Mbb† that is invariant under a reflection-

symmetry that exchanges the b and b† pieces (and which complex-conjugates any complex

boundary conditions) and similarly for Mcc† . (This notation will be explained in more

detail in the sections below.) Note that, in general, the right-hand side may involve

spacetime wormholes, and we should expect there to be cases where such wormholes are

important in enforcing the inequality (8.6). In (8.6), we are allowed to the case where

M̃bc†cb† , though when M̃bc†cb† is a disjoint union of its bb† and cc† parts, those parts are

precisely M̃b†b, M̃c†c and (8.6) becomes a trivial equality. We will thus not consider that

case further.

There is, however, an important issue of a normalization that remains to be addressed.

The reader will immediately note that equations (8.1) and (8.6) fail to be invariant under

rescaling the trace or the bulk path integral by a constant factor λ. This failure arises

because the left-hand-side scales with λ while the right-hand-side scales with λ2. As a

result, if we are to compute TrD B via a gravitational path integral, it is important to

fix the overall normalization. We do so by requiring the path integral over all compact

Euclidean spacetimes (with no boundaries) to be 1. This is, of course, equivalent to

first allowing an arbitrary normalization and then dividing the result by the norm of the

Hartle-Hawking no boundary state [212]. It is thus also equivalent to simply defining
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our path integral to sum only over Euclidean spacetimes in which every bulk point is

connected by some path to a point on the (asymptotically locally AdS) boundary at

which boundary conditions are specified. This coincides with the traditional treatment

of the gravitational path integral in AdS/CFT [17].

Our discussion begins with an analysis of simple cases and simple bulk theories in

section 8.2. We first show that, in the context of black hole thermodynamics, standard

results for either Jackiw-Teitelboim (JT) [163, 164] or Einstein-Hilbert gravity imply the

bulk version of the inequality (8.6) to hold at all orders in the semiclassical expansion

and at all orders in any perturbative higher-derivative corrections. By referring to the

black hole thermodynamics context above, we mean that the operators B,C in (8.6) are

both functions of the Hamiltonian H and that relevant path integrals are dominated by

Euclidean black hole saddles. We focus on the simple case of pure Jackiw-Teitelboim (JT)

gravity, where there are no other operators to consider and where all bulk saddles contain

black holes. However, the arguments in 8.2.1 also apply to black hole thermodynamics

more generally. We then also show that, due to the simplicity of JT gravity, for any

UV completion where the path integral can be studied in the manner described by Saad,

Shenker, and Stanford [51], we can show in interesting semiclassical limits that (8.6) holds

even when the theory is coupled to matter (so long as the matter coupling is dilaton-free

and the matter satisfies a positive action condition).

In Section 8.3, we then proceed to discuss (8.6) for operators B,C in more general

theories and more general phases (perhaps not dominated by black holes). Since the

inequality (8.6) holds for any quantum theory, it will be enlightening to look again at the

D side of the duality to see how the standard non-gravitatioanl Euclidean path integral

for D can be used to provide an alternate derivation of (8.6) at leading order in the

semiclassical approximation (without yet invoking any possible gravitating bulk dual).

This is done in section 8.3.1, where we assume only that each member of the relevant
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class of Hamiltonians for the theory is bounded below and that the theory is 2nd order in

derivatives. Higher derivative corrections can then be incorporated perturbatively. We

do not study quantum corrections in this context since we will treat such corrections by

a different argument in our discussion of gravitating bulk duals.

This sets the stage for us to address the general derivation of (8.6) from the gravita-

tional side of the duality. We open this discussion in section 8.3.2 by showing that the

basic outline of the non-gravitational argument of section 8.3.1 can be easily adapted to

the gravitational context. However, a crucial ingredient in this argument turns out to be

the fact that the non-gravitational Euclidean action is bounded below. This property is

of course well-known to fail off-shell in gravitational theories; see e.g. [40]. We deal with

this issue in stages by phrasing the argument of section 8.3.2 in terms of a series of as-

sumptions about the gravitational path integral which will turn out to be plausible (and,

in some cases, provably true) despite the fact that the gravitational action is unbounded

below. The main discussion focuses on two-derivative theories of gravity (like Einstein-

Hilbert or JT), though arbitrary higher derivative corrections are allowed so long as they

are treated perturbatively. When our assumptions are satisfied, the argument establishes

(8.6) at all orders in the semiclassical expansion.

We then separate out discussion of the status of those assumptions (and the associ-

ated issues surrounding the conformal factor problem of Euclidean gravity), placing this

material in section 8.3.3. These assumptions imply a new positive action conjecture that

generalizes the original conjecture of Hawking [40] in several ways. We prove this con-

jecture to hold in JT gravity minimally-coupled to positive-action matter, and we also

motivate the conjecture more generally. Finally, we close in section 8.5 with a summary

and brief discussion of future directions.
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8.2 Simple cases and simple theories

Asymptotically Anti-de Sitter Jackiw-Teitelboim gravity is a simple 2d toy model of

gravitational systems in which many explicit computations are possible. Section 8.2.1

considers the theory of “pure” JT gravity which contains only a metric g and a dilaton

φ, with no additional matter fields. The addition of matter fields will be discussed in

section 8.2.2 using ideas from [51]. We use conventions in which the pure JT action on

a disk takes the form

I = −φ0

[∫

M

√
gR + 2

∫

∂asM

√
hK + 2

∫

∂fM

√
hK − 2

∑

i

αi

]

−
[∫

M

√
gφ(R + 2) + 2

∫

∂M

√
hφ(K − 1)

]
. (8.7)

Here φ0 is a constant, h is the induced metric on a boundary, and K is the extrinsic

curvature (a scalar, since the boundary is one-dimensional) defined by the outward-

pointing normal. The detailed boundary conditions to be used will be described in

appendix G.1.1.

8.2.1 The Trace Inequality in gravitational thermodynamics:

Jackiw-Teitelboim gravity and beyond

Pure JT gravity has no local degrees of freedom, and in fact there is very little to

compute. In particular, our 2-dimensional bulk must have a 1-dimensional boundary, so

the only compact connected boundary is a circle. The JT path integral is then specified

by the constant φ0 in (8.7), a function φb on this circle having dimensions of length and

prescribing boundary conditions for the dilaton, and the length β of the circle (as defined

using a rescaled unphysical metric). However, one may change the conformal frame at

infinity without changing the path integral and, by doing so, one can reduce the general
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computation to the case where φb is any given positive constant φ̄b [213]. This result

is reviewed in appendix G.1.4. As a result, in the rest of this section we simply choose

some fixed value of this constant φ̄b and consider all circles to be labelled only by their

length β in the corresponding conformal frame.

If one were to treat JT gravity non-perturbatively at a level where it is equivalent

to a theory of a single matrix (see e.g. [211]), then (8.6) would follow by using this

equivalence to transcribe into bulk language the quantum mechanics derivation given in

section 8.1. Here we instead wish to focus on semiclassical treatments of JT gravity. The

idea is to gain insight into calculations we can also hope to control in higher dimensional

gravitational theories.

In higher dimensions, the semiclassical limit can be characterized by taking G → 0.

However, in JT gravity two of the above-mentioned parameters, φ0 and φ̄b, each take on

aspects of the role played by G in higher dimensions. As a result, JT gravity admits

many notions of semiclassical limit. One of these is given by taking φ0 large with φ̄b fixed

while another is the limit of large φ̄b with fixed φ0. Establishing (8.6) in both cases then

clearly also establishes the desired result in any limit where both φ0 and φ̄b become large.

As one can see from (8.7), the entire affect of φ0 is to weight spacetimes in the path

integral by e4πφ0χ, where χ is the Euler character of the spacetime. As a result, since

we use the normalization described in the introduction in which disconnected compact

universes do not contribute, the limit φ0 → ∞ with all other parameters held fixed is

dominated by disk contributions. Furthermore, there is a factor of e4πφ0 for each disk.

The number of disks is determined by the number of circular boundaries for the path

integral, which is necessarily larger on the right-hand-side of (8.6) (where Mbc†cb has been

split into Mb†b and Mc†c) than on the left (where Mbc†cb remains intact). The right-hand-

side is thus clearly larger than the left-hand-side in the limit where φ0 is taken large with

all else fixed. This establishes the desired inequality (8.6) in this context.
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However, as mentioned above, we can instead choose to keep φ0 finite and to study

the limit φ̄b → ∞ (with all else fixed, including the inverse temperature β, which we

henceforth require to be finite). Let us use Z(β) to denote the path integral defined by a

circular boundary of length β. In the dual quantum mechanical system one would write

Z(β) = TrD(e−βH). (8.8)

Since the only objects we can compute are linear combinations of (8.8) with different

values of β, the only operators in D that we can study are functions of H, where H is

the Hamiltonian of D. The change of conformal frame mentioned above that removes the

dependence on general functions φb is sufficiently local that no further operators would

have been found for more general (position-dependent) choices φb. For later use we note

that at leading semiclassical order (with the above normalization of the action) one finds

[213]

Z(β) ≈ e4πφ0e4π2φ̄b/β. (8.9)

We will first discuss the trace inequality (8.6) for the simple case where B = e−β1H

and C = e−β2H . In doing so, it will be useful to recall that a partition function Z(β)

allows one to compute an associated entropy S(β) using

S(β) := −β2 d

dβ

(
β−1 lnZ(β)

)
≈ 4π(φ0 + 2πφ̄b/β). (8.10)

It turns out that the condition S ≥ 0 is sufficient to derive the trace inequality (8.6)

in the current context. To see this note that, for B,C as above, our (8.6) is equivalent to

lnZ(β1 + β2) ≤ lnZ(β1) + lnZ(β2). (8.11)
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In other words, (8.6) is equivalent to the requirement that lnZ(β) be a superadditive

function of β. However, since β > 0, non-negativity of (8.10) is equivalent to stating

that β−1 lnZ(β) decreases monotonically for β ∈ (0,∞). We may thus derive (8.11) from

such non-negativity as follows:

lnZ(β1 + β2) = β1
lnZ(β1 + β2)

β1 + β2

+ β2
lnZ(β1 + β2)

β1 + β2

≤ β1
lnZ(β1)

β1

+ β2
lnZ(β2)

β2

= lnZ(β1) + lnZ(β2). (8.12)

Furthermore, for S > 0 we see that (8.6) becomes a strict inequality.

Since (8.10) is in fact positive, it follows that (8.6) is satisfied at this order for B =

e−β1H , C = e−β2H . Indeed, we see that the inequality cannot be saturated for any β1, β2.

As a result, when treated perturbatively, higher order corrections cannot lead to violations

of (8.1).

Now, as described in [214], negative entropies do arise in non-perturbative regimes

if one takes the path integral for the no boundary baby universe state to compute the

entropy (8.10). But the entropies in individual super-selection sectors (which are dual

to entropies of individual CFTs) should be positive even at the non-perturbative level;

see again the discussion of superselection sectors, ensembles, and factorization in section

8.1. Furthermore, as described there, we would still expect the trace inequality to hold in

the form (8.6), which requires us to include contributions from spacetime wormholes on

the right-hand-side. Including simple such wormholes did indeed ameliorate the negative

entropy issues discussed in [214]. Consistency with the dual matrix ensemble of [51] then

requires that the remaining issue to be resolved by the inclusion of higher topologies

and the appropriate non-perturbative completion, though this remains to be explicitly

analyzed.

The simple argument given above for the case B = e−β1H , C = e−β2H can be extended
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to general functions of H constructed as linear combinations of the e−βH . A straightfor-

ward way to do so is to realize that, in any dual quantum-mechanics theory, we may first

analytically continue e−βH in β to construct the operators eitH , whence for each real E

one may define the operators

δ(H − E) :=
1

2π

∫

Γ

dt eitHe−itE. (8.13)

In (8.13), since we wish δ(H−E) to be the inverse Laplace transform of e−βH , we should

take the contour of integration Γ to be above any singularities that may arise. This is

equivalent to choosing the contour for β = −it to be to the right of any singularities.

Linearity then implies the traces of the operators (8.13) to be given by the Fourier

transform of Z(−it) := TrD e
itH , which we take to be given by the continuation of (8.9);

i.e.

Z(−it) ≈ Z(β) ≈ e4πφ0ei4π
2φ̄b/t. (8.14)

Combining these results yields

TrD δ(H − E) :=
1

2π

∫
dt Z(−it)e−itE ≈ e4πφ0

2π

∫
dt ei4π

2φ̄b/te−itE, (8.15)

where as in (8.13) the contour is taken to lie above the singularity at t = 0, though we

may otherwise choose it to run along the real t-axis.

For fixed real E > 0, in the limit of large φ̄b, we may then evaluate the remaining inte-

gral using the leading-order stationary phase approximation. The exponent is stationary

at t = ±i
√

4π2 φ̄b/E, where the integrand on the far right of (8.15) takes the values

e±4π
√

φ̄bE. Since our contour lies above the singularity at t = 0, it is then clear that the

contour can be deformed to run through the saddle at t = i
√

4π2 φ̄b/E, which would in

any case give the larger saddle-point contribution. A more detailed analysis also shows
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that the steepest ascent curve from this saddle lies along the positive t-axis and thus

intersects the contour of integration as desired1. As a result, the leading semiclassical

approximation gives

TrD δ(H − E) ≈ e4πφ0e4π
√

φ̄bEθ(E) = eS(E)θ(E), (8.16)

where in the first step we have dropped a factor of 1/2π since it is subleading at leading

semiclassical order. In (8.16) we have used the symbol θ(E) denotes the usual Heaviside

step function and S(E) is defined as

S(E) := S(β)|
β=2π
√

φ̄b/E
. (8.17)

As usual the definition (8.17) is made because, at leading semiclassical order, the expec-

tation value of E in the ensemble defined by e−βH is given by

E = β−1(S − lnZ) ≈ 4π2 φ̄b/β
2, (8.18)

and because solving (8.18) for β yields the relation β = 2π
√

φ̄b/E used in (8.17).

Given any function f on the real line, we can now define an operator f(H) via

f(H) :=

∫
dE f(E)δ(H − E). (8.19)

Let us do so for two functions f1, f2, and let f1f2 denote the product of these functions.

1For a more detailed discussion of steepest descent and ascent curves, see e.g. [181]. Interestingly, in

this case the steepest descent curve is just the circle tt∗ = 4π2 φ̄b
E , which can be thought of as running

from the upper saddle at t = i
√

4π2 φ̄b/E to the lower saddle at t = −i
√

4π2 φ̄b/E. But the part of the

axis inside the circle can nevertheless be deformed to pass through the above saddle.
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As a consequence of (8.13) one finds

δ(H − E1)δ(H − E2) = δ(H − E1)δ(E1 − E2), (8.20)

which further implies that we have

f1(H)f2(H) = (f1f2)(H), (8.21)

where (fg)(H) is again defined as in (8.19) but using the function (fg)(E) := f(E)g(E)

in the integral over E.

Linearity and (8.15) then require

TrD f1(H) =

∫

E>0

dE f1(E)eS(E), TrD f2(H) =

∫

E>0

dE f2(E)eS(E), and

TrD (f1f2)(H) =

∫

E>0

dE (f1(E)f2(E)) eS(E). (8.22)

Furthermore, for fixed f1, f2 in the limit of large φ̄b, these integrals can be performed in

the saddle point approximation. Since each integral is real, it must be dominated by the

largest saddle on the positive real axis. Denoting the relevant values of E as E1, E2, E12,

we then have

TrD [f1(H)] ≈ f1(E1)eS(E1), TrD [f2(H)] ≈ f2(E2)eS(E2),

TrD [(f1f2)(H)] ≈ (f1(E12)f2(E12)) eS(E12). (8.23)

But since E1 dominates the first integral, we have f1(E1)eS(E1) ≥ f1(E12)eS(E12), and

similarly f2(E2)eS(E2) ≥ f2(E12)eS(E12). Thus we find

TrD [(f1f2)(H)] ≤ (f1(E1)f2(E2)) eS(E1)+S(E2)−S(E12)
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≈ e−S(E12) (TrD [f1(H)]) (TrD [f2(H)]) . (8.24)

Finally, we note that in our semiclassical limit the quantity S(E12) will be large and

positive for any fixed E12 > 0. Thus we have e−S(E12) � 1. In particular, this factor will

be much more important than any subleading terms in our approximations.

This then establishes the trace inequality (8.6) for arbitrary f1, f2 at leading order in

the limit of large φ̄b. In fact, we have shown the inequality to hold strictly in this limit,

in the sense that it cannot be saturated. As a result, quantum corrections cannot violate

the trace inequality (8.6) when they are treated perturbatively. The same is true for any

perturbative higher-derivative corrections one may wish to add.

While the above discussion was phrased in terms of JT gravity, the only properties

we actually used were that B,C were chosen to be functions of H and that S(E) > 0

for all E. As a result, the same arguments also apply verbatim to such B,C when D is

dual to a higher-dimensional gravity theory so long as each path integral is dominated

by a black hole saddle (so that S = A/4G > 0). The one subtlety is that, due to the

Hawking-Page transition, if one wishes to see the fact that S(E) > 0 at small E one will

need to appropriately analytically continue to low energies the large-energy saddles that

dominate the high-temperature phase; see e.g. the discussion of microcanonical entropy

from the gravitational path integral in [103].

In this section we have considered choice of B,C that each define connected parts of

the boundary. For example, the operators B = e−β1H and C = e−β2H are each associated

with a single line-segment. As described in the introduction, when e.g. B instead contains

several disconnected components, it may be important to include spacetime wormholes

in the analysis. Since such cases quickly become cumbersome, we will not attempt treat

them via explicit calculations of the form described above. However, such cases are

readily included in the analysis of section 8.2.2 below.
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8.2.2 Adding matter using the Saad-Shenker-Stanford pardigm

Jackiw-Teitelboim gravity turns out to be a simple enough theory that we can also

establish (8.6) for the case where it has a dilaton-free coupling to positive-action matter.

Here we require only that the theory admit a UV-completion in which the JT path

integral can be treated in the manner described by Saad, Shenker, and Stanford in [51]

and in which a semiclassical treatment remains valid. By a ‘dilaton-free coupling,’ we

simply mean that the matter action depends only on the JT metric and does not depend

on the dilaton. Furthermore, the specific positive-action matter requirement is that the

classical matter action should be bounded below by zero on all asymptotically AdS2

Euclidean spacetimes with arbitrary topology and arbitrary number of boundaries.

The present discussion will require certain details regarding the formulation and prop-

erties of JT gravity. In order not to distract from the main thrust of this work, we relegate

the more technical analyses to appendix G.1. However, we recall here that the action for

pure JT gravity on an asymptotically AdS2 spacetime takes the form

I = −φ0

[∫

M

√
gR + 2

∫

∂M

√
hK

]

−
∫

M

√
gφ(R + 2) + 2

∫

∂M

√
hφ(K − 1). (8.25)

We refer the reader to appendix G.1 for a discussion of the boundary conditions under

which (8.25) can be used, though in this section we will refer to the associated conditions

as the requirement that the AdS2 boundary be “smooth.”

As in section 8.2.1, there are various possible notions of a semiclassical limit for this

theory. And, again as in section 8.2.1, the effect of φ0 is to weight topologies by a factor

of e4πφ0χ so that taking φ0 large with all else fixed immediately yields (8.6). We will thus

follow section 8.2.1 in showing that (8.6) also holds when we take φ̄b large while holding
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all other parameters fixed (including both φ0 and the inverse temperature β).

If one examines the action (8.25), one sees that it is strictly linear in φ. This remains

true in the presence of our dilaton-free matter couplings. Following [51], it is then natural

to define the “Euclidean” JT path integral by integrating φ over strictly imaginary values,

so that the integrals over φ give delta-functions of R+ 2. The path integral then reduces

to an integral over (real) R = −2 constant curvature Euclidean spacetimes and over any

matter fields.

The bulk term in (8.25) vanishes for such spacetimes, so the JT action becomes a

sum of boundary terms – one for each S1 connected component of the boundary – each

of which that can be written in terms of a Schwarzian action [213]. We will assume the

remaining integrals to have a good semiclassical limit in the sense that, when φ̄b → ∞

with all else fixed, the result of the integrals is well approximated by e−I0 where I0 is

the minimum-action configuration of metrics and matter fields that satisfy the boundary

conditions.

Due to the simplicity of JT gravity, with this assumption one can again quickly see

that (8.6) holds as φ̄b →∞. The point is that, as shown in appendix G.1.4, in this context

the action is bounded below by −4πφ0χ−
∑

j 4π2φ̄b/βj where χ is the spacetime’s Euler

character and βj is the preiod of the jth circular boundary. Since χ ≤ n for any 2d

manifold with n circular boundaries, we thus find a topology-independent lower bound

−∑j

(
4πφ0 + 4π2φ̄b/βj

)
. It should be no surprise that this is just the action of the

Euclidean black hole with inverse temperature β.

Furthermore, since the matter action is non-negative, the full coupled matter-plus-

gravity action is also bounded below by −∑j

(
4πφ0 + 4π2φ̄b/βj

)
. It turns out that this

is also a good estimate of the actual minimum of the action at large φ̄b. To see this, let us

use gmin to denote the Poincaré disk metric (representing Euclidean JT black holes with

periods βj) that saturates this bound. We then choose any matter field configuration that
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satisfies the required boundary conditions when taken together with gmin. Since φ̄b is just

an overall coefficient in front of the Schwarzian action (G.36), our gmin cannot depend on

φ̄b. Our full field configuration thus has action I = −∑j

(
4πφ0 + 4π2φ̄b/βj

)
+ Imatter,0

where the last term is manifestly independent of φ̄b. But the true minimum I0 of the full

action must be less than or equal to this result, showing that I0 satisfies

−
∑

j

(
4πφ0 + 4π2φ̄b/βj

)
≤ I0 ≤ −

∑

j

(
4πφ0 + 4π2φ̄b/βj

)
+ Imatter,0. (8.26)

In particular, in the limit of large φ̄b we see that I0 will scale linearly in φ̄b with coef-

ficient −∑j 4π2φ̄b/βj. The inequality (8.6) then follows immediately by noting that if

βB, βC , βBC are the lengths of the relevant boundaries then we must have βBC = βB+βC ,

and thus also

1

βBC
=

1

βB + βC
<

1

βB
+

1

βC
. (8.27)

Again, since this also forbids saturation of the trace inequality at this order, (8.6) must

continue to hold in the presence of both higher-order semiclassical corrections or pertur-

bative higher-derivative corrections.

8.3 The trace inequality in general semiclassical grav-

ity theories

The remainder of this work is devoted to arguing that the bulk analog (8.6) of the trace

inequality (8.6) should hold in general semiclassical theories of gravity and for general

operators B,C. After the discussion of sections 8.1 and 8.2, this should not be a surprise.

When the path integrals are dominated by black holes, it is natural to expect the behavior

seen in section 8.2 where very general computations are semiclassically controlled by black
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hole thermodynamics whence (as described in section 8.2.1) the trace inequality follows

from positivity of the microcanonical entropy S(E). Furthermore, when the gravitational

path integrals are not dominated by black holes, it is natural for the bulk to behave like

a standard quantum system so that the argument in (8.4) should apply. Putting these

together should be expected to yield an argument for general theories of gravity.

What makes this discussion subtle is our lack of understanding of the Euclidean

gravitational path integral, as well as the associated conformal factor problem that makes

the Euclidean action unbounded below (see e.g. [40]). We therefore address these issues

in stages below. We first return to the non-gravitational setting in section 8.3.1 and

find a path integral derivation of our trace inequality in the semiclassical limit. We

then show in section 8.3.2 that the broad outline of this non-gravitational path-integral

argument can be transcribed to the gravitational case, so long as one makes a number of

assumptions concerning both the gravitational action and the treatment of the conformal

factor problem. We take care, however, to formulate such assumptions in such a manner

that they remain plausible despite the above-mentioned fact that the gravitational action

is not bounded below. This plausibility argument is then made in section 8.3.3, which

in particular shows these assumptions to imply a new positive-action conjecture that

extends the original positive-action conjecture of Hawking [32, 40] in several ways. The

conjecture can then be verified for JT gravity with minimal (or, more generally, dilaton-

free) couplings to positive-action matter. Furthermore, in simple contexts, for more

general theories it can be related to positivity of the Hamiltonian with general boundary

conditions.
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8.3.1 Trace Inequality from the Semiclassical Euclidean Path

Integral: The non-gravitational case

We now return to the non-gravitational context to describe a Euclidean path integral

derivation of (8.6) in the semiclassical limit. We will restrict to the case where both B

and C are defined by real sources. We will also assume that, with any fixed set of allowed

real-valued sources, the corresponding Euclidean action is both real and bounded below.

We will also assume that each such path integral is dominated by a saddle (or by a set

of saddles) in the semiclassical limit, and in particular that the action of any configuration

is always greater than or equal to the action of the dominant saddle. The latter will be

true under assumptions that prevent the action from being minimized on the boundaries

of the space of allowed field configurations. Such assumptions are reasonable since regions

near such boundaries typically have infinite measure, so that minimizing the action on

such boundaries typically causes the path integral to diverge. We leave the exceptional

cases open for future study.

Our restriction to real sources means that our path integrals are manifestly real. Such

integrals can only be dominated in the semiclassical limit by real saddles corresponding to

global minima of the action over the contour of integration. In particular, all saddles (as

well as more general configurations) discussed below will lie on the contour of integration

that defines the path integral. This means that no issues of contour deformations can be

relevant to our discussion.

We will also consider only cases where the right side of (8.6) is dominated by a single

saddle. Contexts with more than one equally-dominant saddle typically describe phase

transitions; see e.g. the classic discussion of Hawking and Page [215]. Close to such a

phase transition one typically finds that formally non-perturbative effects associated with

addition saddles and/or mixing between saddles are more important than perturbative
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corrections; see e.g. recent discussions in [67, 216] for condensed matter analogues and

in [38, 7, 72, 206]. We thus save further consideration of this case for future study.

It will be enough for our purposes to work at leading order in the semi-classical

expansion, so that the path integral is approximated by e−I , where I is the Euclidean

action of the dominant saddle. This is to be a model for the leading-order analysis of

(gravitating) bulk duals in section 8.3.2, though in that section we will use a rather

different method to include quantum corrections.

We have already mentioned that we are interested in quantum field theories with

sources, say in d Euclidean spacetime dimensions. In quantum field theories, the UV

structure of the Hilbert space can be sensitive to the choice of sources, and in fact

to various time-derivatives of such sources when d is large. We will therefore further

restrict discussion to the case where the Hilbert space of interest can be thought of

as being defined by a set of time-translation-invariant boundary conditions that define

an associated “cylindrical” Euclidean manifold C∞ = B × R with translation-invariant

sources and where B is an appropriate (d − 1)-dimensional manifold and × denotes the

Cartesian product of metrics as well as of the underlying manifolds.

The equivalent definition in Lorentz signature would thus restrict us to considering

Hilbert spaces defined by static metrics2. In particular, note that the Z2 relection sym-

metry of the R factor implies that C∞ also admits a Z2 “time-reversal” symmetry. We

refer to C∞ as the infinite cylinder. It will be useful to define corresponding finite cylin-

ders Cε = B× [0, ε], and to define B0 to be the boundary of Cε at the zero of the interval.

2 While it is also of interest to discuss time-dependent Lorentz-signature QFTs, upon analytic continu-
ation to Euclidean signature such time-dependence is generally associated with complex-valued Euclidean
sources. Complex sources raise further issues for the saddle-point approximation associated with the
possible existence of saddles at points in the complex plane away from the original contour of integration.
Such issues are beyond the scope of the current work, so we save that setting for future investigation.
The same comment applies to stationary but non-static background metrics, to vector-valued sources
with non-trivial time-components, and to other boundary conditions not naturally described as being of
the form B ×R due to breaking time-reversal symmetry.
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Due to the time reversal symmetry of C∞, we will need this definition only for positive

values of ε.

We emphasize that this is a restriction on the background fields that define the

Hilbert space and not on the background fields used to construct any particular state.

Of course, the two must be compatible, so in practice we will consider only states that are

prepared by manifolds-with-boundary where a neighborhood of each boundary contains

a rim diffeomorphic to a finite cylinder Cε (or, more properly, to the part of this cylinder

associated with the half-open interval [0, ε)).

In most of this section we will also assume that the Euclidean action I for our theory

is the integral of a local Lagrangian L, with L built from fields and their first derivatives

only. In particular, on a manifold M with boundary we assume that I =
∫
M
L without

additional boundary terms. Of course, many potential such boundary terms can be

absorbed into L by the addition of a total divergence (so long as this divergence is again

built from fields and their first derivatives). We note that the above condition implies

that the equations of motion are of no more than 2nd order. However, at the end of this

section we will see that perturbative higher derivative corrections can be easily included

as well.

We begin by considering positive operators B and C. Such operators may always be

written B = b†b, C = c†c for appropriate b, c. We wil l assume that the operators b and

c are each computed by some (perhaps complex) linear combination of Euclidean path

integrals with real sources. For simplicity, we begin with the case where each operator b, c

is computed by a single Euclidean path integral and save for later the study of non-trivial

linear combinations. However, in contrast to section 8.2.1, we now include the case where

the boundary associated with TrD(BC) may be disconnected.

We use the notation Mb,Mc,MB,MC to denote the manifolds over which the path

integrals for b, c, B, C are performed, together with the appropriate set of sources. To re-
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Figure 8.1: Upper left panel: A source-manifold with boundary Mb is shown with
its input and output boundaries ∂M in

b , ∂M
out
b and the associated rims (grey shading).

Each boundary (red) has a Cε rim (grey). The × symbol indicates a localized feature
of a source. Upper right panel: Mb† is constructed from Mb by interchanging the
labels ∂M in

b , ∂M
out
b but keeping all sources unchanged. If one always draws ∂M in

b at
the bottom and ∂Mout

b at the top, one can think of this as acting with a reflection
in the vertical direction. Lower panels: The closed source manifolds M̃b and M̃b†

(which are diffeomorphic for real sources).

mind the reader of this, we will sometimes refer to Mb,Mc,MB,MC as source manifolds.

In particular, we take such source manifolds to specify the full set of background struc-

tures (e.g., spin-structures, etc.) which are required to define the theory3. A graphical

representation of such a source manifold is provided on the upper left panel of figure 8.1.

Since b is an operator on a given Hilbert space, we may take the boundary ∂Mb to be

the disjoint union of two parts ∂M in
b , ∂M out

b describing the input and output of b, and

where the sources near both ∂M in
b and ∂M out

b are associated with the same Hilbert space

that defines the theory. In particular, we assume that Mb may be chosen to be some Cε

in some neighborhood of each of ∂M in
b and ∂M out

b so that, in particular, the boundary

∂M in
b (or ∂M out

b ) agrees with B0. As mentioned above, we refer to this as requiring Mb to

have rims, and we make analogous requirements for the source-manifolds with boundary

3The restrictions imposed above, and in particular the implicit assumption that the theory be invari-
ant under time-reversal, imply that our theory cannot depend on a choice of orientation. See related
comments in footnote 2.
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associated with any operator discussed below. Since the theory is non-gravitational, one

should regard points on Mb and Cε as being labelled. The agreement of ∂M in
b , ∂M out

b

with B0 thus defines a particular diffeomorphism φb : ∂M in
b → ∂M out

b . We then define a

closed source manifold M̃b (without boundary, so that ∂M̃b = ∅) by using φb to identify

∂M in
b with ∂M out

b . The trace of b (Tr(b)) is then computed by the path integral over the

resulting M̃b; see figure 8.1.

It is useful to take the definition of Mb to include the partition of ∂Mb into ∂M in
b

and ∂M out
b . We may then describe b† as being computed by the path integral over Mb† ,

where (since we restrict to real sources) Mb† is constructed from Mb by interchanging the

labels ∂M in
b , ∂M out

b but keeping all sources unchanged; see again figure 8.1.

Corresponding assumptions and definitions will also be made for any other operator

c and the associated Mc, ∂Mc, and M̃c. In particular, since b and c both act on the

same Hilbert space H, the inputs of b must be identical to those of c, and similarly for

the outputs. As a result, the labelling of points on B) also defines source-preserving

diffeomorphisms φbc : ∂M in
b → ∂M out

c and φcb : ∂M in
c → ∂M out

b . We may then use φbc

(or φcb) to define the source manifold Mbc (or Mcb) by identifying the input of Mb with

the output Mc (or vice versa). The path integral over Mbc then clearly computes the

operator bc. Using both φbc and φcb to make identifications allows us to further construct

the closed source manifold M̃bc, over which the path integral computes Tr(bc). Note that

swapping b and c would define the source manifold Mcb associated with the operator cb,

but that M̃cb = M̃bc so that Tr(bc) = Tr(cb) as expected; see figure 8.2.

In order to derive (8.6), we will thus need to compare the Euclidean path integrals

over M̃B, M̃C , and M̃BC . Recall that we require B = b†b, C = c†c where b, c can again be

written as Euclidean path integrals, say over Mb,Mc. In direct parallel with the above

construction of Mbc from Mb,Mc, we may also choose MB to take the form Mb†b. The

trace Tr(B) is then the path integral over the corresponding closed source manifold M̃b†b.
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Figure 8.2: The source manifolds with boundary Mb, Mc can be used to construct
Mbc , Mcb, and Mbb† as well as the closed source manifolds M̃bc = M̃cb as shown. In
all cases the output boundaries are drawn at the top and the input boundaries are
at the bottom. Note that Mbb† and M̃bb† are both symmetric under reflections of the
vertical direction.

Since the sources on Mb are real, they must agree with those on Mb† up to an appropriate

diffeomorphism. Thus MB admits a Z2 symmetry that exchanges the b and b† regions of

MB = Mb†b; see again figure 8.2.

Before proceeding, we pause to comment on our depiction in the figures of the source

manifolds Mb, etc. Below, we will wish to show features of individual configurations of

fields that appear in the path integral (in addition so the source features shown thus far).

Such information makes the figures correspondingly more complicated, so that it is useful

to make our illustrations more clean, even at the expense of making them more abstract.

See figure 8.3 for the dictionary relating figures thus far to those that will appear below.

At leading semi-classical order, comparing path integrals over M̃B, M̃C , and M̃BC is

equivalent to comparing the dominant saddles σB, σC , and σBC on these source manifolds.

We begin with an observation, which we codify as a lemma to facilitate future reference:
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Figure 8.3: This figure illustrates the scheme that we adopt below to depict source
manifolds along with particular configurations on such manifolds that arise in the
associated path integrals. It also shows the connection to the old scheme. Left
panel: A configuration for the path integral performed over a source-manifold Mb

will be described by the coloration assigned to that manifold. The left hand side of
the equivalence uses the old scheme with a two-dimensional depiction of the source
manifold, but now with the coloration added. The right hand side uses the new
scheme in which the source manifold is drawn as one-dimensional and the × is the only
indication of structure associated with the sources. Right panel: A configuration for
the path integral performed over the closed source-manifold M̃b is shown using both
schemes.

Lemma 1 Consider an operator D = d†d, where d is computed by a Euclidean path

integral over a source manifold Md. The source manifold M̃D = M̃d†d then clearly enjoys

a Z2 reflection symmetry as discussed above. This symmetry is in fact preserved by any

saddle σD that dominates the path integral over M̃D. In cases where the minimum value

of the action is shared by several saddles, the symmetry is preserved by at least one such

σD.

To prove Lemma 1, we begin by considering an arbitrary saddle σ0
D for TrDD. Let

σ0
d be the part of this saddle on Md, and let σ0

d† be the part on Md† . Furthermore, let

Φd : Md →Md† be the map that defines the Z2 symmetry of M̃D.

If the saddle σ0
D breaks the Z2 symmetry of the background fields, then σ0

d and σ0
d† will

not be related by Φd. In this case we can use σ0
d and σ0

d† to build new configurations for

the path integral over M̃D. In particular, as illustrated in figure 8.4, the action of Φd on

σ0
d defines a new configuration σRd =: Φd(σ

0
d) on Md† , and gluing this to σ0

d defines a new
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configuration σdD for the path integral over M̃D. We can also define a corresponding σd
†
D by

gluing σ0
d† to its image under the inverse of Φd. Note that σdD, σd

†
D will not generally solve

the equations of motion at the surface where Md meets Md† , and in fact that derivatives

of fields in σdD, σd
†
D will not generally be continuous at these surfaces.

By construction, both σdD and σd
†
D are invariant under Φd. The key observation needed

to prove our Lemma is then that the action S is additive, in the sense that

I(σ0
D) = I(σ0

d) + I(σ0
d†), while (8.28)

I(σdD) = I(σ0
d) + I(Φd[σ

0
d]) = 2I(σ0

d) and (8.29)

I(σd
†
D ) = I(σ0

d†) + I(Φ−1
d [σ0

d† ]) = 2I(σ0
d†). (8.30)

This additivity follows from the fact that S =
∫
L, together with the requirement that

L depend only on fields and their first derivatives. The point is that σ0
D must be smooth

since it solves the Euclidean equations of motion with smooth boundary conditions. (We

assume these equations to be elliptic.) Furthermore, by construction, the values of fields

at the boundaries of σ0
d will agree with those at the boundaries of Φd[σ

0
d], and similarly for

σ0
d† and Φ−1

d [σ0
d† ]. This means that the fields defined by either σdD or σd

†
D are continuous.

And while the first derivatives may not be continuous at the boundaries of Md and

Md† , they have well-defined limits from each side; i.e., the first-derivatives have at worst

step-function discontinuities. This means that L is bounded, and in particular has no

delta-function contributions at the boundaries between the Md and Md† regions of MD.

It follows that the action does indeed satisfy (8.28)-(8.30). Comparing these equations

shows that the smaller of I(σdD) and I(σd
†
D ) must be less than or equal to I(σ0

D), and that

it is strictly less if I(σ0
d) 6= I(σ0

d†). Furthermore, if the final σdD, σd
†
D are not saddles then

they cannot minimize the action and the action of the dominant saddle must be even
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smaller; i.e.,

I(σdom
D ) ≤ min{I(σdD), I(σd

†
D )} ≤ I(σ0

D). (8.31)

As a result, if σ0
D is a dominant saddle, then σdD, σd

†
D are also saddles with I(σdD) =

I(σd
†
D ) = I(σ0

D). Noting that σdD, σd
†
D are invariant under the Z2 symmetry then establishes

Lemma 1.

We are now in a position to prove our main result (8.6) at leading semi-classical

order. As stated above, at this order, comparing path integrals over M̃B, M̃C , and

M̃BC is equivalent to comparing the dominant saddles σB, σC , and σBC on these source

manifolds. In particular, at this order we have

TrB = e−I(σB), TrC = e−I(σC), and TrBC = e−I(σBC). (8.32)

We are interested in the case M̃B = M̃b†b, M̃C = M̃c†c, so that we may also write

M̃BC = M̃d†d using d = bc† and the fact that M̃b†bc†c = M̃cb†bc† (which in turn follows

from the fact that our gluing operation is invariant under cyclic permutations). Applying

Lemma 1 to M̃BC = M̃d†d, we may take σBC to have a Z2 conjugation symmetry that

exchanges d = cb† and d† = bc†. We may then cut the saddle σBC into the 4 pieces

kb, kb† , kc, kc† associated with the Mb,Mb† ,Mc,Mc† regions of M̃BC . Here we use the

symbol k (with subscripts) for configurations that are not given to us as saddles of the

original path integrals.

We may now glue the resulting kb and kb† together to define a Z2-symmetric config-

uration k̃B = kbb† for the path integral over M̃B; see figure 8.5. Note that Z2 symmetry

requires the fields on kB to be continuous at the boundaries between kb and kb† . Thus the

action I(kB) is well-defined. We may also define the analogous configuration kC = kcc†

for the path integral over M̃C , whose action I(kC) is again well-defined.
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Furthermore, as in the proof of Lemma 1 we have I(kB)+I(kC) = I(σBC). And since

the dominant saddles σB, σC must have actions no larger than I(kB), I(kC), using the

leading semiclassical approximation (8.32) we find

Tr(BC) ≤ Tr(B) Tr(C) (8.33)

as desired.

However, so far we have required each operator b, c to be given by a single path

integral. We would also like to discuss operators given by a linear combination of path

integrals. I.e., we wish to allow b =
∑

i bi, and c =
∑

i ci, where each of the bi, cj are

single path-integrals as above. This generalization is straightforward when there is a

single dominant saddle σBC for 〈TrD(BC), which we as usual assume to be the case.

To proceed, we first write B =
∑

ij bib
†
j, C =

∑
ij cic

†
j, and BC =

∑
i,j,k,l bib

†
jckc

†
l .

We then note that a dominant saddle σBC for TrD BC will be associated with some

particular term bib
†
jckc

†
l (and also with its equally-dominant conjugate if this term is

not real) . As in the proof of Lemma 1 we may then cut this saddle into two pieces

corresponding to Mb†jck
and Mc†l bi

. Gluing each of these to its reflection then defines

Z2-symmetric configurations for the diagonal terms given by path integrals over M̃bjb
†
jckc

†
k

and for M̃bib
†
i clc
†
l
. Since the original saddle σBC was dominant (with some action I(σBC))

and our saddles are real, additivity again requires that the pieces corresponding to Mb†jck

and Mc†l bi
both have actions 1

2
I(σBC) , and that the new Z2-symmetric configurations are

saddles with actions equal to I(σBC). (This follows from the analogue of (8.31) when σ0
D

is dominant so that the left and right hand sides are equal.) As a result, the new saddles

may be used as dominant saddles. Using either saddle in this way then reduces us to

consideration of a single Z2-symmetric saddle, whence the rest of the argument follows

as above.
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It now remains to study higher-derivative corrections about a saddle σBC . We will

use I0 to denote the original action without such corrections. We will treat corrections

to I0 perturbatively, which means that at each order the saddles are found by solving a

2nd derivative equation of motion with sources determined by the lower-order parts of

the solution.

At the off-shell level needed for our argument, at each order n in perturbation theory

we may treat the action as being a 2nd order polynomial functional In of the fields. The

coefficients of the quadratic terms in this functional are given by the second variations of

I0 about the lower order saddle. The action is thus positive semi-definite for perturbations

about a dominant saddle. The coefficients in the linear term are given by varying the

higher derivative corrections at linear order. We shall assume that any zero-modes of the

linearized theory about σBC are associated with symmetries of I0 that are preserved by

the higher-derivative terms, and thus in particular that they are preserved by the linear

term in In. It then follows that In is bounded from below, and that it is in fact minimized

at the desired saddle.

Furthermore, in a perturbative treatment there can be no danger of violating (8.33)

unless it is saturated by the classical 2-derivative theory. As a result, if we again suppose

that the dominant 2-derivative saddle for each path integral is unique4, then we need

only consider perturbations around saddles σ̃B, σ̃C , σBC , where σ̃B, σ̃C are constructed

from σBC by using the above cut-and-paste procedure. In particular, at any point pB on

the B side of M̃BC , the sources for the first correction will precisely match those at a

corresponding point pB on M̃B, and similarly on any point pC on the C side. It follows

that the setting for computing the first-order corrections is of precisely the same form as

4In particular, it is unclear how to control the possibility that two a priori unrelated saddles might
have precisely the same action at the two-derivative level, but might then have this degeneracy lifted by
higher derivative corrections in a manner unfavorable to our argument. We leave consideration of this
interesting-but-finely-tuned possibility open for future study.

318



A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)
Chapter 8

the zero-order problem defined above, where the sources for this problem on M̃BC may

again be reproduced by gluing M̃B to M̃C . We may thus argue in exactly the same way

that (8.33) also holds at first order in higher derivative corrections, and in fact iteratively

at every higher order as well.

8.3.2 The trace inequality for semiclassical gravity

We now turn our attention to bulk gravity theories. For convenience of notation

we continue to suppose that the bulk theory is dual to a hypothetical non-gravitational

theory D, or to an ensemble of such theories, though in the end our arguments will be

entirely in the bulk. In particular, the arguments apply even to bulk theories for which

dual non-gravitational boundary theories are not known to exist.

On the D side of the duality, the path integrals for 〈TrD(B),TrD(C)〉, and 〈TrD(BC)〉

may be formulated as path integrals over source manifolds M̃B, M̃C , and M̃BC just as

in section 8.3.1, and in particular with M̃B = M̃b†b, M̃C = M̃c†c and M̃BC = M̃d†d for

d = cb†. We again confine the discussion to the case where the boundary conditions

defined by any such source manifold are real. By this we mean that, if the formalism

allows complex bulk configurations k to be considered, then if kB satisfies the boundary

conditions defined by M̃B, so does the complex conjugate k∗B. We also again require each

of the associated source-manifolds-with-boundary Mb,Mc to have Cε rims for some ε > 0

as described in section 8.3.1.

The AdS/CFT dictionary of [17] (or its extrapolation to ensembles) then states that

〈TrD(B) TrD(C)〉, and 〈TrD(BC)〉 may equivalently be computed as bulk path integrals

that sum over all bulk spacetimes with boundary conditions determined by the above

source manifolds M̃B, M̃C , and M̃BC . As stated in the introduction, we take this bulk

path integral to be normalized by dividing by the no-boundary state or, equivalently,
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we take the bulk path integral with boundary conditions set by some M̃ to sum only

over bulk spacetimes in which every point can be connected to the boundary at M̃ .

Disconnected closed universes are not included in our sum.

At leading semiclassical order the basic structure of our arguments will closely follow

those of section 8.3.1. In particular, we will again restrict to situations far from phase

transitions by requiring the bulk path integral for 〈TrD(B) TrD(C)〉 to have a single

dominant saddle. However, we will need to deal with two new inter-related further

complications. The first is that gravitational actions are generally not bounded below

on the space of real Euclidean fields. The second is that, as a result of the issue just

described, the so-called “Euclidean” gravitational path integral cannot actually be taken

to be defined as the integral over real Euclidean fields.

To allow the casual reader to focus on the big picture, the present section presents

an overview of the argument for (8.6) and deals with the above issues by simply making

assumptions about the gravitational path integral as needed. We then return to address

those assumptions in section 8.3.3.

We begin by discussing the leading-order result, in which we take each path integral

to be dominated by a smooth bulk saddle. Higher order corrections will be discussed

later, at the end of this section.

We are free to call the dominant bulk saddles for each path integral σB, σC , and σBC

in direct analogy with section 8.3.1. We thus have

TrD B = e−I(σB), TrD C = e−I(σC), and TrD BC = e−I(σBC). (8.34)

In particular, we suppose that the semiclassical approximation to our path integral sat-

isfies the following assumption:

Assumption 1 For a bulk path integral specified by boundary conditions defined by a

320



A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)
Chapter 8

(compact) closed source manifold M̃ with real sources, we assume that there is a class of

configurations KM̃ such that i) the bulk fields described by any k ∈ KM̃ are continuous, ii)

the bulk action I is a real-valued functional on KM̃ and iii) in the semiclassical limit, the

path integral is dominated by a real saddle σ ∈ KM̃ that minimizes the action I over KM̃ .

In particular, we have I(σ) = mink∈KM̃ I(k). Furthermore, if KM̃ includes a complex

configuration k, then the complex conjugate k∗ also lies in the same KM̃ . We similarly

assume that the class KM̃ is invariant under a corresponding action of any symmetry of

M̃ .

As described in section 8.3.1, this assumption is naturally satisfied in contexts where the

Euclidean path integral over real fields converges. In that case, KM̃ is just the class of

real field configurations. But this is not generally the case in gravitational theories. We

thus emphasize that Assumption 1 does not require KM̃ to contain all real configurations,

and in fact does not generally require configurations k ∈ KM̃ to be real at all (except

for the dominant saddle in the semiclassical limit). Instead, it requires only that I(k)

be real-valued on KM̃ . This flexibility will be useful in later sections where we discuss

several different possible choices of KM̃ associated with different approaches to defining

the path integral.

Since the present section addresses a general theory of gravity, we will make no

attempt to write down an explicit action. However, we do require the action to satisfy

the following additivity property which can be checked in any particular theory (and

which will be discussed for familiar examples in section 8.3.3):

Assumption 2 Consider two boundary source manifolds M̃bc, M̃c†d, where M̃bc is given

by cyclicly gluing together the input and output boundaries of some Mb,Mc, and where

M̃c†d is similarly constructed from Mc† ,Md. Given any real saddles σbc ∈ KM̃bc
, σc†d ∈

KM̃
c†d

, we assume there is a prescription for slicing σbc into two pieces kb, kc, and of
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similarly slicing σc†d into two pieces kc† , kd which satisfy

I(σbc) = I(kb) + I(kc), and I(σc†d) = I(kc†) + I(kd). (8.35)

We emphasize that this condition needs only be satisfied by real saddles and not by general

configurations in KM̃bc
and KM̃

c†d
. We also assume that the slicing prescription preserves

any symmetries of the bulk saddle σbc.

As shown in figure 8.6, the cutting of σbc into kb, kc generally creates new boundaries

not restricted by properties of M̃bc. As a result, we require the action I to be defined

on such bulk configurations. This may require the specification of appropriate boundary

terms at the new boundaries, as well as possible corner terms where the new boundaries

intersect M̃bc; see related discussions in [183, 217, 218].

Furthermore, suppose that there is a diffeomorphism Φ from the new boundaries of kc

to the new boundaries of kc† that preserves the values of all bulk fields (though which need

not preserve normal derivatives of bulk fields). Then we can glue the new boundaries of

kb to those of kd to create a new configuration kbd ∈ KM̃bd
whose actionwe assume to be

I(kbd) = I(kb) + I(kd); (8.36)

see again figure 8.6.

As in section 8.3.1, we first consider the case where each object in (8.6) is computed

by a single path integral, returning later to cases that involve linear combinations of path

integrals. We will need the analogue of Lemma 1 for the gravitational context:

Lemma 2 Consider an operator D = d†d in D, where d is computed in D by a Euclidean

path integral over a source manifold Md with real sources. The source manifold M̃D =

M̃d†d then clearly enjoys a Z2 symmetry as discussed above. This symmetry is in fact
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preserved by any bulk saddle σD that dominates the bulk path integral for TrD M̃D. In

cases where several allowed bulk saddles share this minimum value of the action, the

symmetry is preserved by at least one such σD.

Using assumptions 1 and 2, we can give a proof of Lemma 2 that directly parallels

the proof of Lemma 1 in section 8.3.1. The argument is depicted in figure 8.7. We first

consider an arbitrary saddle σ0
D that lies in KM̃D

and use assumption 2 to divide it into

k0
d† , k

0
d. Note that the values of the bulk fields on the new boundaries of k0

d† agree with

those on the new boundaries of k0
d by continuity on Σ0

D; see again Assumption 1. But

we can use the reflection symmetry of M̃D to construct a reflected saddle σRD that again

lies in KM̃D
, and which we then divide into kR

d† , k
R
d . Because k0

d and kR
d† are related by

the reflection symmetry, the field values on their new boundaries agree. We may thus

paste these pieces together to form a new configuration kdD ∈ KM̃D
with an explicit bulk

reflection symmetry, and we may also construct the analogous kd
†
D ∈ KM̃D

from σRd and

σ0
d† . As in section 8.3.1, the additivity properties (8.35), (8.36) applied to the current

pieces then imply that either I(kdD) ≤ I(σ0
D) or I(kd

†
D ) ≤ I(σ0

D). As a result, if σ0
D

is a dominant saddle, then either kdD or kd
†
D must be an equally-dominant saddle that

preserves the desired symmetry.

Lemma 2 will soon allows us to prove the trace inequality (8.6) at leading semi-

classical order. As stated above, at this order we have

TrD B = e−I(σB), TrD C = e−I(σC), and TrD BC = e−I(σBC). (8.37)

We are interested in the case M̃B = M̃b†b, M̃C = M̃c†c, so that we may also write

M̃BC = M̃d†d using d = bc† and the fact that M̃b†bc†c = M̃cb†bc† . (This follows from the

fact that our gluing operation is invariant under cyclic permutation of the parts to be

glued). Applying Lemma 2 to M̃BC = M̃d†d, we may take σBC to have a Z2 symmetry
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that exchanges d = bc† and d† = cb†. We may then cut the saddle σBC into the two pieces

kB, kC associated with the MB,MC source manifolds. Furthermore, since Assumption 2

required the slicing prescription to preserve symmetries of the original bulk saddle, the

boundaries ∂kB, ∂kC will be invariant under corresponding reflection symmetries. This

will in particular be true for the new boundaries created by slicing σBC into parts.

We now make a final monotonicity assumption regarding our action.

Assumption 3 Consider again the setting of assumption 2 and the pieces kb, kc described

there. Let ∂newkb denote the new boundaries of kb created by slicing σbc in two; i.e., these

are the boundaries of kb that were not boundaries in σbc. We assume that when kb is

invariant under a Z2 symmetry, we may use this symmetry to glue any point of ∂newkb

to its image to define a configuration k̃b ∈ KM̃b
associated with the bulk path integral for

TrD(b); see figure 8.8. We further assume that this gluing operation does not increase the

action. In other words, we assume

I(k̃b) ≤ I(kb). (8.38)

Before using this assumption, it is important to explain why the relation (8.38) is

natural, and in particular why it is not generally an equality. In the nongravitational

discussion of section 8.3.1, the topology of any saddle was always that of the correspond-

ing source manifold M̃ that defined the relevant path integral. As a result, the equivalent

of ∂newkb always separated cleanly into input and output boundaries. In particular, in

the non-gravitational case the reflection symmetry that acted on ∂newkb had no fixed

points. Thus the equivalent of k̃b was always smooth.

In the gravitational context, we may indeed expect that I(k̃b) = I(kb) when k̃b is

smooth. However, the dimensionality of the bulk saddle is typically greater than that

of the source manifold. In particular, the topology of source manifold no longer dictates
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the topology of the bulk. As a result, the construction of k̃b from kb will introduce a

conical deficit of π at any fixed points of the reflection symmetry that lie on the new

boundary ∂newkb of kb; see again figure 8.8. In such cases, the monotonicity assumption

(8.38) amounts to the condition that conical deficits give a non-positive contribution to

the Euclidean gravitational action. This is consistent with the standard sign choices for

the Euclidean Einstein-Hilbert and Jackiw-Teitelboim actions (see e.g. [40]). In fact, for

later purposes it is useful to add a further assumption which essentially states that the

contribution of conical deficits is strictly negative:

Assumption 4 Consider again the context of Assumption 3. If the reflection symmetry

of kb has fixed points on ∂newkb, then we in fact have

I(k̃b) < I(kb). (8.39)

Assumption 4 will be of use when we consider perturbative corrections, though we will

set it aside for now.

Returning to the main argument, we may use the above procedure to construct con-

figurations k̃B, k̃C for TrD(B), TrD(C) from the pieces kB, kC that were cut from σBC .

We then apply Assumption 3, replacing b in (8.38) by either B or C. Finally, we apply

the minimization assumption (Assumption 1) to find that the dominant saddles σB, σC

for TrD(B), TrD(C) satisfy

I(σBC) = I(kB) + I(kC) ≥ I(k̃B) + I(k̃C) ≥ I(σB) + I(σC) (8.40)

By (8.37), this is then equivalent to the desired trace inequality (8.6). The important

steps of the above argument are illustrated in figure 8.9.

The above reasoning suffices for the case where B,C each represent a single boundary
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condition. The remaining case where they are linear combinations of boundary conditions

then follows just as at the end of section 8.3.1. Starting with a general saddle for any term

in the sum associated with TrD(BC), Assumptions 1 and 2 imply that there is another

saddle with equal or lesser action that is associated with one of the diagonal terms in the

sum. And this diagonal term can then be used as above to construct saddles σB, σC for

TrD B,TrD C that satisfy (8.40). So, again, the desired result holds.

We may also address perturbative quantum corrections to (8.6). This turns out to

be straightforward since we take the path integral for 〈TrD(BC)〉 to be dominated by a

single saddle. A key point is that perturbative quantum corrections are explicitly given

by quantum field theory in the curved spacetime backgrounds defined by our saddles. In

particular, they are computed by non-gravitational path integrals, or by path integrals

that include only perturbative gravitons, of the general form described in section 8.3.1,

but where the leading-order bulk saddles σBC , σB, σC now play the role of M̃BC , M̃B, M̃C

from section 8.3.1.

A second key point is that, in any strict perturbative framework, quantum corrections

can lead to violations of (8.6) only if this inequality is saturated at leading semi-classical

order. Since we assume unique saddles σBC , σB, σC for, respectively, TrD(BC), TrD(B),

and TrD(C), our arguments above require that σB, σC can be obtained by slicing σBC into

two pieces, each of which is separately invariant under a reflection symmetry. The saddle

σB is then obtained by using the reflection symmetry of the B piece to glue together any

new boundaries created by the slicing operation. The saddle σC is also constructed in

the analogous fashion.

Furthermore, the above argument also shows that strict saturation of (8.6) at leading

semiclassical order requires one to be able to reconstruct σBC from σB, σC by a procedure

directly analogous to that building M̃BC from M̃B, M̃C (shown previously in figure 8.5);

i.e., σB = k)B and σC = kC . Moreover, the objects kB, kC used to construct k̃B =
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σB, k̃C = σC now play the roles of MB,MC from section 8.3.1. Thus, for example, the

quantum correction to TrD B is precisely Trpert bulk Bpert bulk where this is a trace over

the perturbative bulk Hilbert space and where Bpert bulk is an operator on that Hilbert

space. Furthermore, the reflection symmetry of σB implies the operator Bpert bulk to

be positive. Indeed, since the analogous statements hold for C and BC, the simple

quantum-mechanical argument given by (8.4) can be used to write

Trpert bulk(Bpert bulkCpert bulk) ≤ (Trpert bulk Bpert bulk)(Trpert bulk Cpert bulk). (8.41)

Thus we see that, at each order in the semiclassical expansion, quantum corrections

cannot induce violations of (8.6).

Since we have not specified the gravitational theory, it is not natural at this stage

to separate out discussions of higher derivative terms. We will instead address related

issues in section 8.3.3 when we discuss the status of our assumptions in various classes

of theories.

8.3.3 The status of our assumptions in general gravitational

theories

We now turn to a discussion of assumptions 1-4 from section 8.3.2 for general theories

of gravity. These assumptions require the semiclassical approximation to Euclidean quan-

tum gravity to be determined by minimizing an action functional over appropriate classes

KM̃ of spacetimes satisfying boundary conditions given by some M̃ . At first glance, this

idea may appear to be famously false in Euclidean Einstein-Hilbert gravity due to the

conformal factor problem [40]. In particular, one can find smooth Euclidean bulk space-

times satisfying arbitrary boundary conditions that make the Euclidean Einstein-Hilbert
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action arbitrarily negative, so that minimal action configurations do not exist.

Any attempt to establish the assumptions used in section 8.3.2 must thus begin with

some viewpoint on how the conformal factor problem is to be addressed. We have already

discussed the Saad-Shenker-Stanford paradigm for JT gravity (with dilaton-free matter

couplings) in section 8.2.2, where we showed that it leads to the desired trace inequal-

ity in the semiclassical limit. While we see no simple argument that such a paradigm

satisfies our assumption 3 or assumption 4, we argue below that our assumptions are

in fact satisfied within two other (perhaps overlapping) paradigms for dealing with the

conformal factor issue. The first, which we call the Gibbons-Hawking-Perry paradigm,

is a hypothetical non-linear generalization of the contour rotation prescription described

in [40] for linearized fluctuations about Euclidean Schwarzschild. The second follows

[46] in taking the Lorentzian path integral to be fundamental, evaluating the Lorentzian

path integral with “fixed-area boundary conditions,” and arguing that the result reduces

to an integral over Euclidean spacetimes that are on-shell up to the presence of conical

singularities.

We discuss each of these paradigms in turn below. The first discussion (section

8.3.3) is necessarily brief and schematic due to the hypothetical nature of the supposed

extension of known results. More details will be provided when considering the second

paradigm in section 8.3.3. This will allow key elements of the assumptions either to be

proven or to be reformulated as precise conjectures concerning the classical action which

should be amenable to future mathematical and numerical studies.

The Gibbons-Hawking-Perry Contour Rotation Paradigm

As shown long ago by Gibbons, Hawking, and Perry [40], at the linearized level for

familiar cases one can obtain physically reasonable results (see also [219, 41, 42, 43,

220, 221, 222, 223, 224, 44, 45]) by ‘rotating the contour of integration.’ This in fact

328



A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)
Chapter 8

means that one defines the path integral to integrate over some non-trivial contour Γ

in the space of complex metrics. In the linearized cases mentioned above, the action

is real and bounded-below on the Γ chosen in [225]. This last point contrasts with the

Saad-Shenker-Stanford paradigm which also uses a non-real contour, but on which the

action is manifestly complex. In the case considered by Gibbons, Hawking and Perry,

the action also diverges to +∞ in all asymptotic regions of Γ. As a result, the action

on Γ is necessarily minimized at some finite smooth saddle-point that dominates the

path integral in the semi-classical limit. If this same structure persists in the non-linear

theory, then Assumption 1 is clearly satisfied if we simply redefine configurations on Γ to

be ‘real’ for the purposes of that assumption. See also the discussions of contour rotation

for the full theory in [200, 226].

Now, Assumptions 3 and 4 require the full space KM̃ to admit configurations with

conical singularities. If the saddles are known to be smooth, and if the construction of Γ

respects symmetries of the boundary conditions, then we can takeKM̃ to be given by those

spacetimes lying on Γ which can be formed from smooth spacetimes by applying a single

cut-and-paste operation of the type described in Assumption 2. This choice allows us to

restrict attention to spacetimes that are ‘not too wild’ and on which we can hope to have

some control over the action as a function on KM̃ . Furthermore, if the specification of the

desired contour Γ is sufficiently local in spacetime, then cutting spacetimes γ1, γ2 ∈ Γ into

pieces and pasting them together to build a new configuration γ will also naturally yield

γ ∈ Γ. As a result, the above definition of KM̃ would then be manifestly invariant under

such operations. So long as the spacetimes satisfy appropriate boundary conditions,

Assumption 2 will then be satisfied if our action includes appropriate boundary terms.

Explicit discussions of such boundary conditions and boundary terms for JT and Einstein-

Hilbert gravity will appear in section 8.3.3 below.

It thus remains only to discuss Assumptions 3 and 4. As described between (8.38)
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and (8.39), for Euclidean geometries in Einstein-Hilbert gravity the two sides of (8.38)

differ only by contributions from the conical singularities. A standard calculation shows

that this gives an extra factor of e−A/4G on the left hand side, where A is the area of the

conical singularity. Similarly, in JT gravity (normalized as in (8.25)), the difference is a

factor of e−4πφ evaluated at the singularity. As a result, in either of these theories, so

long as A (or φ) is positive on the contour Γ, these assumptions will be satisfied as well.

As a final comment on this paradigm, let us address the question of perturbative

higher derivative corrections to either JT gravity or Einstein-Hilbert gravity. Rather

than attempt to discuss Assumptions 1-4 for the full path integral with higher-derivative

corrections, we will instead take perturbative treatment of such terms to mean that

their corrections to the two-derivative theory are computed by first finding saddles that

would dominate the semiclassical computation in the two-derivative theory, and then

using the higher derivative terms to compute perturbative corrections to the relevant

actions. So long as we suppose that the dominant 2-derivative saddle for each path

integral is unique, we may then argue that the trace inequality (8.6) is preserved by

higher derivative corrections in direct analogy with the non-gravitational discussion at

the end of section 8.3.1. The only comment needed to promote that argument to the

gravitational context is to again note that assumption 3 (applied at the level of the

two-derivative theory) means that we may indeed confine discussion of higher derivative

corrections to perturbation theory about saddle points for TrD(B) , TrD(C) in the two-

derivative theory that are constructed from the two-derivative saddle for TrD(BC) using

the cut-and-paste procedure above. As in the non-gravitational discussion at the end of

section 8.3.1, we leave open for future study the more general but finely-tuned case where

the saddles fail to be unique.
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Euclidean path integrals from fixed-area Lorentzian path integrals

While the discussion of the Gibbons-Hawking-Perry paradigm in section 8.3.3 was

straightforward, it also relied on the conjectured existence of a hypothetical contour Γ

with certain properties. Furthermore, since the form of the presumed Γ is not known, it

is difficult to perform further checks within that approach. In contrast, we shall see that

the paradigm described in [46] allows a more detailed discussion of assumptions 1-4 and

also presents more well-defined opportunities for further consistency checks.

The treatment of [46] considered the special case of computing partition functions

Z(β) = Tr(e−βH) for time-independent gravitational systems. However, it did so by

taking the Lorentz-signature path integral to be fundamental, and to be defined as an

integral over spacetimes that were both real and Lorentz-signature up to the presence of

certain codimension-2 singularities that one may call “Lorentzian conical singularities”

following [6, 4]; see also [227, 228, 229, 230, 231, 232], as well as [200, 226] and [233, 234,

235] for earlier arguments that treating the Lorentzian formalization as fundamental is

essential to resolving the Euclidean conformal factor problem. As a result, much as in

section 8.2.1, Z(β) was first written as an integral transform of distributional quantities

that one may call Tr(eitH). Due to their distributional nature, the quantities Tr(eitH) are

generally not well-defined for any fixed t, though integrating over t gives a well-defined

result.

The suggestion of [46] was to first integrate over the real Lorenz-signature metrics

while holding fixed the areas of the codimension-2 conical singularities. In practice, this

was done using the stationary phase approximation. It is an interesting point that the

Jackiw-Teitelboim and Einstein-Hilbert actions define good variational principles with

such fixed-area boundary conditions [73], and that the associated saddles may have ar-

bitrary conical singularities at the fixed-area surface (as suggested in [48, 47]); similar
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statements also hold in the presence of perturbative higher derivative corrections [73].

Evaluating the above-mentioned integral transform then led to a result that could be

expressed as a final integral over Euclidean-signature metrics that satisfied the Euclidean

equations of motion everywhere away from the fixed-area codimension-2 conical singular-

ities, and which were thus known as Euclidean fixed-area saddles. Since the saddles were

parameterized by the here-to-fore-fixed areas of the conical singularities, the final inte-

gral was simply an integral over the associated areas. For simple gravitational partition

functions, this process was shown in [46] to yield the standard results.

Let us therefore imagine that, in the semiclassical limit, a similar paradigm can be

applied to any Euclidean path integral. In particular, given any operator B in the dual

theory D, we imagine that TrD B can be computed semiclassically as

TrD B ≈
∫

A∈R+

dA e−ĨA(sA), (8.42)

where A ≥ 0 parameterizes the possible codimension-2 areas of a set of conical singu-

larities, ĨA is an action that gives a good variational principle when the area A is fixed,

and the argument sA denotes the real Euclidean saddle of ĨA having the lowest action

ĨA(sA) for the given value of A that is consistent with satisfying the boundary condi-

tion at infinity. This paradigm can also be applied to JT gravity with matter (where a

codimension-2 surface is a discrete set of points) by replacing the area A by the value

of the dilaton φ summed over conical singularies. Here we assume φ0 + φ ≥ 0 at each

singularity.

In writing (8.42), it is assumed that the integral on the right-hand-side converges and

that no further contour rotations are required. This is not at all obvious from a cursory

study of the gravitational action. However, as argued in [47] (see also [48]), the quantities

eĨA(sA)/TrD B are expected to represent the probabilities p(A) of finding an extremal
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surface with area A in a quantum gravity state with boundary conditions determined by

the operator B. Since probabilities sum to unity, this would then require the right-hand-

side of (8.42) to converge as desired. This idea has by now been investigated in a variety of

contexts which appear to support this conclusion; see e.g. [38, 7, 236, 1, 46, 62, 237, 238].

For clarity, we formalize this assumption as follows:

Assumption 5 We assume that, in the UV-completion of either JT gravity or Einstein-

Hilbert gravity with minimally-coupled matter, the integral over fixed-area-saddles on the

right-hand-side of (8.42) converges and gives a good approximation to the left-hand-side

in the semiclassical limit.

Assumption 5 is now almost sufficient to allow us derive assumptions 1-4 for both

JT and Einstein-Hilbert gravity. However, recall that – just as in the non-gravitational

setting of section 8.3.1 – the cut-and-paste operations of section 8.3.2 can produce sur-

faces on which certain equations of motion do not hold, and in particular at which first

derivatives of fields fail to be continuous (though such derivatives admit well-defined

limits when approaching the surface from either side).

As a result, we will need to further strengthen Assumption 5. We motivate the final

version using an idea similar to the motivation for Assumption 5 itself. In particular, let us

note that there is a set of diffeomorphism-invariant observables defined by the conformal

geometry of a minimal surface anchored to particular cuts of the asymptotically AdS

boundary. Furthermore, the same is true for the minimal surface that is anchored to

both the fixed-area surface and to particular cuts of the asymptotically AdS boundary,

and it is again true when the surface is minimal only within any given homotopy class.

Similarly, as will be discussed further in the next paragraph, one would expect states to

be orthogonal when they have distinct such conformal geometries. One therefore expects

that one can assign a probability to each possible conformal geometry in this context,
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and that the full path integral is given by integrating over such conformal geometries

in analogy with (8.42). (As we will see below, it will be convenient to take the slicing

prescription of Assumption 2 to be defined by minimal surfaces.)

Here we have restricted discussion to conformal geometries on the minimal surface

since requiring the surface to be minimal is a form of gauge-fixing. After such gauge-

fixing, the full induced metric will not form a set of commuting observables. Instead,

one component of the induced metric becomes a function of the other coordinates and

momenta by solving the Hamiltonian constraint. Since it is canonically conjugate to the

trace of the extrinsic curvature (which has been fixed to zero), one solves this constraint

for the conformal factor of the induced metric. The remaining conformal geometry on

the minimal surface continues to define a set of commuting observables.

The above comments then motivate the following assumption, which is a generaliza-

tion of Assumption 1:

Assumption 6 Let KM̃,A be the class of spacetimes that i) satisfy asymptotic boundary

conditions specified by M̃ , ii) satisfy fixed-area boundary conditions at A, iii) have fields

that are continuous everywhere, and iv) satisfy the conditions to be a fixed-area saddle

everywhere except on a single codimension-1 minimal surface Σ anchored both to the

fixed-area surface and to some cut of the boundary. As usual, we restrict to the case

where the sources on M̃ are real. In this case we assume that the fixed-area action on

KM̃,A is minimized by real saddles; i.e., every k ∈ KM̃,A has action equal to or greater

than that of some real saddle ks ∈ KM̃,A of the fixed-area action ĨA.

Note that minimal surfaces in Euclidean signature are often well-defined even when the

spacetime is not smooth. We assume that this is the case in the above context though,

if needed, we could further elaborate on this definition by requiring the spacetime to be

built from smooth spacetimes using cut-and-paste along minimal surfaces.
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Now, as discussed recently in both [239, 63] in the context of JT gravty, there are

various subtleties and possible choices involved in using minimal surfaces to construct

observables (or, equivalently in the language of those references, to fully fix a gauge in

the Euclidean path integral). Such subtleties may in the end require further refinements

to assumption 6. But it is also plausible that such issues are not important at the

level of our current discussion. We have thus formulated assumption 6 without taking

such issues into account. Similarly, while minimal surfaces are smooth when the bulk

spacetime dimension satisfies D ≤ 7 [240], they can be singular for D ≥ 8 [241]. This

is another reason why a useful conjecture for D ≥ 8 could require further modification

and/or additional work to describe a useful notion of the Einstein-Hilbert action on KM̃,A.

However, at least for 10 ≥ D ≥ 8 it turns out that such singularities are non-generic

[242, 243].

Returning to the discussion of Assumption 6, and in order to both gather further

supporting evidence for it, let us note that a particular consequence of this assumption

is a new positive action conjecture:

Assumption 7 Let KM̃,A be as in Assumption 6. Then the fixed-area action ĨA is

bounded below on KM̃,A.

This remains to be proven in general. However, we will argue in section 8.4 that this

assumption should hold for any gravitational theory when the gravitational Hamiltonian

is bounded below in an appropriate sense. We will also show there that it is equivalent

to what is naturally called a positive-action conjecture for gravitational wavefunctions.

Furthermore, the results of appendix G.1 show explicitly that this conjecture holds

for JT gravity with dilaton-free couplings to matter. In JT gravity, the value of the

dilaton at a point plays the same role as the area of a codimension-2 surface in higher

dimensional gravitational theories; see e.g [213, 182]. Furthermore, in the same way that
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we might fix the area of a disconnected codimension-2 surface in higher dimensions, in

JT we should allow the specification of a fixed-dilaton (fixed-φ) set, in the sense that we

fix the sum φtotal =
∑

i φi where φi are the dilaton values at each of the singular points.

In discussing JT gravity we thus write KM̃,φtotal
instead of KM̃,A.

The important point in the JT argument is that, since the bulk spacetime dimension

is D = 2, the minimality of a codimension-1 surface Σ implies that its extrinsic curvature

tensor vanishes. As a result, for any k ∈ KM̃,A the spacetime metric is in fact C1 (except

at the fixed-dilaton conical singularity) and the Ricci scalar cannot contain codimension-

1 delta-functions localized on Σ. Since R = −2 on each side of Σ, we then find R = −2

on Σ as well (again, except at the fixed-dilaton conical singularity). Furthermore, as

reviewed in appendix G.1.3, if we ignore the conical singularities then the JT action on

KM̃,φtotal
would be given by the Schwarzian action. It would thus be bounded below by

the analysis of appendix G.1.4.

But it is also easy to include the contribution from the conical singularities. This

is just Ising = −2π
∑

i φiδi, where δi is the conical deficit at each singularity. Conical

excesses are also allowed, but those are just deficits with δi < 0. Since each deficit

must satisfy δi ≤ 2π we have the bound

Ising ≥ −4π
∑

i

φi = −4πφtotal. (8.43)

Combining this with the bound on the Schwarzian action and the positivity of the matter

action then establishes Assumption 7 in this context.

Having motivated Assumptions 5 and 6, we now turn to the issue of showing that –

together with known results for JT and Einstein-Hilbert gravity – they imply Assump-

tions 1-4. Note that Assumptions 5 and 6 immediately imply Assumption 1, as they were

designed to do. Furthermore, assumptions 3 and 4 were already shown to be true for
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JT and Einstein-Hilbert gravity by the discussion of section 8.3.2 (between (8.38) and

(8.39)).

This then leaves only Assumption 2. There are two parts to showing that this as-

sumption holds. The first is to specify a cutting rule for Assumption 2 so that pasting the

various pieces together yields a spacetime that satisfies the desired asymptotic bound-

ary conditions and, in particular, for which the new spacetime has a sufficiently smooth

asymptotic boundary for which the action is finite and for which the action defines a good

variational principle. As noted above, for either JT or Einstein-Hilbert gravity, it will be

convenient to take the cuts to be defined by minimal surfaces. For JT gravity, appendix

G.1.1 then shows that the associated cut-and-paste construction preserves the boundary

conditions of the variational principle (which were also shown to imply finiteness in ap-

pendix G.1.3). For Einstein-Hilbert gravity, this property is even easier to verify and is

established in appendix G.2.

The second task is then to establish the additivity property (8.36). This is again

straightforward for both JT and Einstein-Hilbert gravity. The main point is that, since

the boundaries we sew together are now taken to have K = 0, there can be no delta-

function contribution to the Ricci scalar at the seam where the sewing occurs – though,

as described in appendix G.1.2, in JT gravity it turns out that even when the slicing

surfaces are not minimal the delta-function in the Ricci scalar is such that it does not

spoil (8.36).

Furthermore, the matter action is additive for the reasons explained in section 8.3.1.

It thus remains only to show additivity for the boundary terms at asymptotic bound-

aries. One such term is always the Gibbons-Hawking term, while the rest are boundary

counter-terms. Due to the condition that each operator have an appropriate “rim”, the

boundary metric and other analogous boundary conditions are manifestly smooth. Thus

the boundary counter terms are integrals of smooth functions and their additivity is also
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manifest.

The final term to consider is then the Gibbons-Hawking term. For a regulated version

of the spacetime where the boundary has been moved inward to a finite value ε of the

appropriate Fefferman-Graham coordinate (or of the defining function of the conformal

frame in the language used for JT gravity in appendix G.1), the extrinsic curvature of

the regulated boundary generally has a delta-function at the seam; see figure 8.10. But

since the strength of this delta-function is always determined by the angles at which the

asymptotic boundary meets the seam, we can render this part of the action additive by

simply adding an appropriate ‘corner term’ to the definition of the action for the cut

space.

This procedure is discussed in great detail for JT gravity in appendix G.1.2. The

Einstein-Hilbert case is then discussed in appendix G.2. Appendix G.2 in fact shows

that, with the usual boundary conditions and the choices we have made, the above delta-

function turns out to make no contribution to the action in the limit ε → 0. Thus the

corner terms also vanish in the ε → 0 limit and are not strictly needed in the Einstein-

Hilbert case. As a result, for JT and Einstein-Hilbert gravity we have now shown that

Assumptions 5 and 6 do in fact imply Assumptions 1-4.

8.4 On a positive-action conjecture for quantum grav-

ity wavefunctions

As a slight aside from the main discussion, this section elaborates further on the status

of Assumption 7 in Einstein-Hilbert and other theories of gravity. We will first describe

how it is equivalent to what is naturally called a positive-action conjecture for quantum

gravity wavefunctions. We then point out that, at least when the the surface Σ is a slice
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of a foliation of the bulk spacetime that is smooth away from Σ and which also smoothly

foliates a compact AlAdS boundary, the conjecture is implied by the requirement that

the gravitational Hamiltonian H is bounded-below. While the known asymptotically

AdS positive energy theorems [244, 245, 246] are not sufficient to prove positivity of H

at this level, the connection nevertheless provides additional physical reasons to believe

that Assumption 7 will hold.

Recall that Assumption 7 referred to bulk spacetimesM which have only asymptotic

boundaries, but which may contain a surface Σ on which derivatives of fields are not

continuous. Furthemore, away from Σ the Euclidean equations of motion are satisfied.

As a result, if we cut the spacetime along Σ then each piece gives a smooth extremum

of the standard Euclidean action so long as an appropriate boundary term is included

at the cutting surface Σ and corresponding boundary conditions are imposed at Σ. In

particular, even though M may have a conical singularity, the resulting pieces do not

(though the boundaries of these pieces at Σ may contain ‘corners’ at which the extrinsic

curvature of Σ contains delta-functions; see figure 8.11).

For Einstein-Hilbert gravity, it is convenient to take this boundary term to be a

Gibbons-Hawking term at Σ, and thus to think of the resulting action as defining a

variational principle for the space of configurations defined by fixing the induced metric

on Σ to its value in M. Note that such pieces are precisely the spacetimes that appear

as saddles in Euclidean path integral computations of gravitational wavefunctions in the

metric representation, where for a (d + 1)-dimensional bulk, one thinks of the state as

a functional Ψ(g(d)) of the d-dimensional (Riemannian-signature) metric induced on a

Cauchy surface. Furthermore, the induced metric g(d) on Σ that minimizes this action

will correspond to the peak of that wavefunction, which one expects to be finite in the

semiclassical limit. As a result, one could also motivate Assumption 7 from the belief

that semiclassical Euclidean path integral calculations of such wavefunctions should give
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sensible answers.

Now, much as in the discussion of section 8.3.2, if Σ divides M into two pieces M1

andM2, we can also glueM1 to a reflected manifoldMR
1 with the same action to define

a new member Mdouble
1 of an appropriate space KM̃,A. Moreover, as argued in section

8.3.3, Einstein-Hilbert gravity satisfies the additivity condition (8.36), so that

I(Mdouble
1 ) = 2I(M1). (8.44)

In particular, having a lower bound for I(Mdouble
1 ) is equivalent to having a lower bound

for the action I(M1) of the piece M1. Furthermore, using

I(M) = I(M1) + I(M2), (8.45)

having a uniform lower bound for all such pieces would imply a lower bound for the

action on KM̃,A.

In fact, we can also drop the requirement that Σ be minimal. The reason for this

is explained in detail for JT gravity in appendix G.1.3, though it holds equally well for

general theories of gravity. As described there, if one thinks of each piece M1,M2 as

being part of a larger saddle that extends beyond Σ, then the Hamiltonian constraint

requires the on-shell action to be invariant under continuous deformations of Σ that do

not move the anchor set ∂Σ on the asymptotic boundary. More specifically, the previous

statement is true so long as the action includes sufficient ‘corner terms’ so that it defines

a good variational principle under boundary conditions for Σ consistent with the desired

deformation.

It thus follows that Assumption (7) is in fact equivalent to the following conjecture

which, due to the above-mentioned connection with Ψ(g(d)), we call the positive-action
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conjecture for quantum gravity wavefunctions:

Conjecture 1 Consider the space of smooth Euclidean spacetimes having both an Asymp-

totically locally AdS (AlAdS) boundary (associated with some cosmological constant Λ <

0) and an additional finite-distance boundary at some surface Σ. In the usual way, we

use a Fefferman-Graham expansion to fix a ‘boundary metric’ at the AlAdS boundary.

We also impose some class of boundary conditions at the ‘corners’ where Σ meets the

AlAdS boundary. We require that the boundary conditions allow Σ to be deformed to a

minimal surface. Note, however, that we impose no boundary conditions on Σ.

Let us now further restrict to such spacetimes that solve the vacuum Euclidean Ein-

stein equations with cosmological constant Λ. On such solutions we consider the Euclidean

Einstein-Hilbert action with cosmological constant Λ, together with the standard Gibbons-

Hawking term on all smooth parts of the boundary, the standard boundary counter-terms

on the AlAdS boundary, and ‘corner terms’ appropriate to the above-chosen boundary

conditions at the corners. For fixed such boundary conditions we require the above action

functional is bounded below.

Here the qualification that the corner boundary conditions must allow Σ to be deformed

to a minimal surface is needed in order to preserve equivalence with Assumption 7, but

is not obviously critical for the existence of a lower bound. We also emphasize that we

have not fixed a particular induced metric on Σ, so that our lower bound is required to

be independent of that induced metric. Furthermore, if conjecture 1 holds then one can

clearly also couple the system to positive-action matter with similar results.

This conjecture generalizes Hawking’s original positive action conjecture [40] from

asymptotically flat to AlAdS spacetimes, and also by introducing the finite boundary

Σ (appropriate to thinking of the spacetime as a Euclidean saddle for Ψ(g(d)) instead

of a partition function). Such generalizations are natural in the spirit of the original
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conjecture. The above conjecture is also weaker than that of [40] in the sense that we

require only that each set of boundary conditions lead to a lower bound, but we allow

this lower bound to depend on the choice of boundary conditions and, in particular, we

allow the possibility that for some boundary conditions the greatest lower bound is less

than zero.

The positive action conjecture for asymptotically Euclidean spacetimes was proven

by realizing that the Euclidean action in that context is equal to the Hamiltonian for a

higher-dimensional Lorentzian-signature theory of gravity evaluated on a Riemannian-

signature Cauchy surface [247]. This trick fails in the asymptotically AdS context, so a

new proof strategy is needed.

While it is unclear to us how to give a complete proof in general, there is a simple

context in which the conjecture follows from having a lower bound for the gravitational

Hamiltonian. To see the connection, consider a bulk spacetime M subject to boundary

conditions as stated in the conjecture, and suppose thatM admits a smooth foliation such

that Σ = Σ1∪Σ2 with Σ1 diffeomorphic to Σ2 and with both Σ1,Σ2 being limiting cases of

the slices in the foliation. We will refer to Σ1 as the time t1 and to Σ2 as the time t2 with

slices in the foliation labeled by t ∈ (t1, t2). Consider then the action I[t1,t] of for the region

defined by slices with t ∈ [t1, t]. Clearly the zero-volume region [t1, t1] has I[t1,t1] = 0.

Furthermore, the usual Hamilton-Jacobi argument gives ∂t2I[t1,t2] = H(t2), where H(t2)

is the standard (time-dependent) gravitational Hamiltonian defined by the boundary

conditions on the asymptotic boundary and evaluated on the initial data defined by the

surface Σt2 . As a result, if the boundary Hamiltonian H(t) has a t-independent lower

bound E0, then the action will satisfy

I[t1,t2] ≥ |t2 − t1|E0. (8.46)
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For any given t it is natural to believe the corresponding H(t) to be bounded below so,

since we consider a case in which the range of t is compact, it is also natural to expect

this lower bound to be uniform5.

However, there are many situations which are not of the above form. Consider, for

example, Euclidean AdS3 in the conformal frame where the boundary metric is that of

S2. Slicing the S2 along surfaces of constant polar angle θ, the boundary anchor sets ∂Σt

are then circles of time-dependent size that pinch off at the poles. Furthermore, due to

the Casimir energy of AdS3 [249, 250], the lower bound on the Hamiltonian diverges as

the size of the circle shrinks to zero.

While spherical AdS3 gives an example where H(t) has no uniform bound, it is nev-

ertheless a context where the total action is finite and, moreover, where one very much

expects the given spacetime to minimize the action. We are therefore hopeful that further

study of this example may suggest how the above sketch of a proof might be improved

to deal with more general contexts. We may also hope to learn to deal with the loci

where the bulk topology forces the above foliations break down. However, we leave such

investigations for future work.

8.5 Discussion

The above work discussed the trace inequality

TrD(BC) ≤ TrD(B) TrD(C), (8.47)

5However, it should be noted that due to issues related to footnote 2 in section 8.3.1, the boundary
conditions on certain slices of a Euclidean solution may not be simply related to boundary conditions
for any Lorentz-signature gravitational Hamiltonian. Stability of the Lorentz-signature theory is thus
insufficient to motivate the above belief. Furthermore, the known AlAdS positive-energy theorems
address only a limited set of AlAdS boundary conditions. Indeed, techniques that follow [248] are likely
limited to contexts that allow supersymmetry.
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which applies to positive operators B,C on any Hilbert space H. The symbol D denotes

the non-gravitational CFT dual of a bulk theory, and we write TrD to emphasize that the

trace is the standard trace on the D side of the duality. In particular, TrD denotes the

familiar operation computed by introducing any orthonormal basis |i〉D on the D Hilbert

space and performing the sum (8.3). Averaging over an ensemble gives

〈TrD(BC)〉 ≤ 〈TrD(B) TrD(C)〉. (8.48)

Our goal was to understand the status of the above inequality on the bulk side of the

AdS/CFT duality. In particular, we studied the conjectured inequality

ζ
(
M̃bc†cb†

)
≤ ζ

(
M̃b†b t M̃c†c

)
, (8.49)

where t denotes disjoint union. Here M̃bc†cb† is a smooth closed manifold specifying

boundary conditions for our bulk theory on a Euclidean Asymototically locally Anti-de

Sitter boundary that can be broken into four pieces Mb,Mb† ,Mc,Mc† . Furthermore, we

require that connecting Mb and Mb† gives a new smooth closed manifold Mbb† that is

invariant under a reflection-symmetry that exchanges the b and b† pieces (and which

complex-conjugates any complex boundary conditions) and similarly for Mcc† .

At the level of the semiclassical expansion, and when the operators B,C define Eu-

cldean bulk path integrals with connected boundaries, we argued that the natural bulk

dual of (8.49) was in fact satisfied to all orders in the semiclassical expansion in two

important contexts. The first is the case of JT gravity with a dilaton-free coupling to

two-derivative matter, with the possible further addition of perturbative higher deriva-

tive terms. The second is given by Einstein-Hilbert gravity minimally coupled to two-

derivative matter, where again higher derivative terms can also be included perturba-

344



A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)
Chapter 8

tively.

In all cases we assumed the bulk path integral defined by M̃bc†cb† (dual to 〈TrD(BC)〉)

to be dominated by a single bulk saddle. When several bulk saddles are equally dominant,

formally non-perturbative effects associated with addition saddles and/or mixing between

saddles can be more important than perturbative corrections and are subtle to analyze;

see e.g. recent discussions in [67, 216] for condensed matter analogues and in [38, 7, 72,

206]. We thus save further consideration of this case for future study.

For pure JT gravity, much can be said using explicit calculations based on standard

Euclidean saddles. In addition, the non-perturbative definition of the Euclidean path

integral described by Saad, Shenker, and Stanford [51] can be used to give a general

derivation of (8.49).

For more general cases the Euclidean path integral is sufficiently poorly understood

that we cannot use the term “proofs” to refer to our arguments. Instead, we proceeded

by stating various assumptions that we argued were plausibly true in regimes where a

Euclidean gravitational path integral emerges from a more UV-complete theory. In par-

ticular, we considered three rather distinct paradigms for such path integrals. One of

these was the possible extension of the Saad-Shenker-Stanford approach mentioned above

[51] to (some UV-completion of) JT gravity coupled to positive action matter. Another

paradigm a nonlinear generalization of the Gibbons-Hawking-Perry contour rotation pre-

scription [40]. The third was the paradigm described in [46] that took a real-time for-

mulation as fundamental but then described a procedure for transforming semiclassical

computations into what were often sums over Euclidean saddles. We argued that all

three paradigms lead to a bulk version of (8.47) in the semiclassical context described

above.

A significant restriction in our arguments was that we considered only boundary con-

ditions which are real in Euclidean signature, and which thus cannot include Lorentzian
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components. There is a sense in which extending our analysis of general gravitational

theories to complex boundary conditions would be trivial, since we need only suitably

extend the various assumptions we made along the way. This, however, would miss an

important point that arise for both the non-gravitational path integrals studied in sec-

tion 8.3.1 and the JT case analyzed semiclassically in section 8.2.1. Once the sources are

complex, the relevant saddles will generally not lie on the original contour of integration.

In that context, the most direct analogue of the argument given here would attempt to

show that cutting and pasting a valid complex saddle (through which the integration can

be deformed to pass) for the left-hand-side of (8.49) yields a configuration k that lies

on the steepest descent curve Γds through the dominant saddle for the right-hand-side

(so that dominant saddle then has lower action). Since it is not at all clear to us why

that k should lie on the relevant Γsd, we have not attempted to formulate a gravitational

argument in this language. Instead, we leave further consideration of complex sources

for future work.

While it may be difficult to verify our assumptions about the Euclidean path integral,

such assumptions imply other properties of the classical Euclidean action that are more

amenable to study in the near future, and which in particular might be investigated nu-

merically. The most tangible prediction is the positive action conjecture for gravitational

wavefunctions described in section 8.4. This conjecture generalizes Hawking’s original

positive action conjecture [40] to the AdS context, and also generalizes it further by al-

lowing spacetimes with an extra finite-distance boundary. However, we require only that

the action be bounded below for each set of AlAdS bondary conditions, and not that the

action be strictly non-negative. As some evidence in support of this conjecture, we were

able to prove that the corresponding result holds in the simpler case of JT gravity (with

general dilaton-free couplings to positive-action matter).

Let us now return to the discussion of (8.49). The main physical lesson from our
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investigations appears to be that this inequality is closely associated with positivity of

entropy in the sense of having a positive density of states. To be more precise, we saw

in various ways that the right-hand-side of (8.47) tends to be much larger than the left

when the spectral densities of B and C are large. This is manifest from the CFT-side

argument surrounding equation (8.4), as well as from the thermodynamic discussion

in section 8.2.1. However, a corresponding feature also appeared in our gravitational

arguments where in the Einstein-Hilbert case we found the left-hand-side to be suppressed

relative to the right by a factor of e−A/4G associated with the area of an extremal surface.

Similarly, in the JT context with the action (8.25) we found a similar suppression by

e−4πφ0 . These expressions are readily recognized as being associated with the RT/HRT

entropy [26, 66, 27] of a boundary region.

While the inequality (8.47) is not at all highly constraining for familiar quantum

mechanical operators, we noted in the introduction that it can have fundamental impli-

cations. For example, it is deeply associated with the fact that the algebra of bounded

operators on a Hilbert space is a type I von Neumann algebra. We will return both to

this connection and to the fundamental status of (8.47) in bulk gravitational theories in

a forthcoming work [251].
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Figure 8.4: For D = dd†, and when considering the path integral that computes
TrDD, a saddle σ0

D with no reflection symmetry can be used to construct two reflection
symmetric saddles. The top figure shows such a situation where the background fields
(denoted by the × symbols) are left-right symmetric but the saddle (described by the
colorations) is not. The background fields for the top figure define TrDD, and the
background fields on the left and right halves define respectively d, d†. To construct
the new saddles, one simply cuts σ0

D into pieces σ0
d, σ

0
d† , operates on each with the

reflection maps Φd or Φ−1
d , and forms new saddles σdD, σ

d†
D by sewing together each

such reflection with the corresponding σ0
d, σ

0
d† . Here the vertical arrows indicate the

actions of Φd and Φ−1
d , each of which acts as a left/right reflection on its argument

(which is then glued to another copy of the corresponding σ0
d, σ

0
d†). The resulting

reflection-symmetric saddles are called σdD, σ
d†
D . Equations (8.28)-(8.30) then require

one of σdD, σ
d†
D to have action no greater than that of the original saddle σ0

D.
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Figure 8.5: For B = bb†, C = cc†, a Z2-symmetric saddle σBC for TrD BC (shown at
left) can be cut into four pieces kc, kc† , kb, kb† . The pieces can then be recombined to
make a pair of Z2-symmetric configurations k̃B and k̃C (shown at right) that contribute
to the path integrals for, respectively, TrD B and TrD C.
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Figure 8.6: Real bulk saddles σbc and σc†d for TrD bc and TrD c
†d can be cut into

pieces. Note that the cutting step generally creates new boundaries (dashed lines) not
restricted by the asymptotically AdS boundary conditions. When the data on the two
new boundaries are related by a diffeomorphism Φ, the pieces can be pasted together
to make a bulk configuration kbd for TrD bd.
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Figure 8.7: When D = d†d, an arbitrary bulk saddle σ0
D for TrDD can be reflected

to give another saddle σRD for the same bulk path integral. We can cut σ0
D into

parts k0
d, k

0
d† , and we can similarly cut σRD into kRd , k

R
d† . Gluing k0

d to kR
d† defines a

Z2-symmetric configuration kdD for TrDD, and similarly gluing kRd to k0
d† defines a

Z2-symmetric kd
†
D . One of these must have action less than or equal to that of the

original saddle σ0
D. If σ0

D was dominant, Assumption 1 would imply that we have now
constructed two Z2-symmetric saddles both having precisely the same action as σ0

D.
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Figure 8.8: We consider a bulk saddle σbc with a Z2 reflection symmetry that preserves
both Mb and Mc. Such a saddle can be cut into two reflection-symmetric pieces
kb and kc. This creates new boundaries but, in each piece, the reflection symmetry
allows one to remove the new boundaries by making identifications. The results define
configurations k̃b ∈ KM̃b

, k̃c ∈ KM̃c
that satisfy boundary conditions appropriate to

computing TrD(b), TrD(c). If the reflections have fixed points on the new boundaries
of kb, kc, then k̃b, k̃c will have conical singularities with deficit angle π.

352



A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)
Chapter 8

Figure 8.9: This diagram depicts a bulk version of the CFT argument shown in figure
8.5. Upper left panel: The boundary source manifolds Mb, Mb† , Mc and Mc† which
are glued together to form M̃BC . Upper middle panel: By Lemma 2 we can consider
a dominant bulk saddle σBC for the bulk path integral with boundary conditions M̃BC

such that σBC has a Z2 reflection symmetry. Upper right panel: The saddle σBC
can be cut into two pieces kB, kC . These pieces are not generally related by any
symmetry. Instead, by Assumption 2, the new boundaries ∂newkB = ∂newkC created
by the cut are invariant under the Z2 reflection symmetry and I(σBC) = I(kB)+I(kC).
Lower panel: By gluing every point of ∂newkB to its image under the Z2 symmetry
we define a configuration k̃B for the bulk path integral with boundary conditions
M̃B. In particular, this operation identifies pairs of red dots to construct M̃B. The
configuration k̃C is also constructed in the same way from kC . Assumptions 3 and 1
then implyI(σBC) = I(kB) + I(kC) ≥ I(k̃B) + I(k̃C) ≥ I(σB) + I(σC), where σB, σC
are the dominant saddles for TrD B,TrD C.
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Figure 8.10: Our cut-and-paste construction can join pieces of the asymptotic bound-
ary together in a way that is not smooth. We illustrate this here for a two-di-
mensional example (e.g., as appropriate to JT gravity). In particular, when two
pieces are sewn together, two corners (with, say, associated interior intersection an-
gles π/2 + α1, π/2 + α2) of the individual pieces can merge. When this occurs, the
extrinsic curvature density

√
hK of the resulting ∂M will contain a delta-function of

strength α1 + α2.

Figure 8.11: A cone is shown along with a minimal surface Σ anchored both to the
conical defect and to the asymptotic boundary. Slicing the cone open along Σ gives a
spacetime without conical defects, but where the new boundary may contain ‘corners’
(represented a red dots) at which the extrinsic curvature contains delta-functions.
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Chapter 9

Algebras of boundary observables

from gravitational path integrals:

Understanding

Ryu-Takayanagi/HRT as entropy

without invoking holography

9.1 Introduction

The last few years have seen significant progress in our understanding of gravitational

entropy. An important step forward was the discovery of non-trivial quantum-extremal

surfaces in the context of black hole evaporation [37, 36] and their relation to gravitational

replica calculations [39, 38]. These results in turn relied on the general connections

between gravitational replicas and (quantum) extremal surfaces derived in [33, 34, 35].

As is by now well-known, these observations led to gravitational computations consistent
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with the so-called Page curve [252, 253] expected from the idea that black holes are

unitary quantum systems with a finite number of internal states that is well-approximated

by eSBH , where SBH is the appropriate Bekenstein-Hawking entropy.

The analysis of Hawking radiation is particularly clean in settings where the emit-

ted Hawking radiation is transferred from an asymptotically anti-de Sitter (AdS) grav-

itational system to a quantum mechanical system in which gravity is completely non-

dynamical. Such systems have often been called ‘baths’ in the recent literature. In this

context, and in appropriate semiclassical limits following [33, 34], the above results im-

ply that the usual von Neumann entropy of the bath can be studied using what [92]

termed ‘the Island Formula,’ which is a special case of the quantum-corrected Ryu-

Takayanagi/Hubeny-Rangamani-Takayanagi (RT/HRT) formula [26, 66, 27] (with quan-

tum corrections understood in the sense of [29]).

While such arguments were motivated by considerations related to the AdS/CFT

correspondence [15] (or equivalently from gauge/gravity duality or gravitational holog-

raphy), the final versions of the arguments rely only on properties of the gravitational

path integral. In particular, at least for bath entropies described by the Island Formula,

one may safely interpret the result in terms of standard von Neumann entropies without

assuming the gravitational bulk system to admit a holographic field theory dual. The

only subtlety here is that (see e.g. [51, 54, 55]) the semiclassical bulk gravitational theory

appears to allow baby-universe superselection sectors (often called α-sectors) of the form

described in [146, 147], and that the Island Formula in fact describes an average over

such bulk α-sectors that characterizes the von Neumann entropy Sα of the bath state ρα

in a typical α-sector [54, 55]. This explains the observation of [188] that the computation

fails to take the form expected for the von Neumann entropy of the bath computed in

the total bath state ⊕αρα.

The fact that one need not assume a holographic dual field theory in order to interpret
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R R̄

Figure 9.1: We consider boundary regions R, R̄ associated with ‘complete boundaries’
in the sense that ∂R = ∅ = ∂R̄. We also require R, R̄ to be compact.

QES computations for a bath in terms of standard bath entropies suggests that this lesson

may hold more generally. In particular, in order to avoid divergences, let us take the

boundary region R to be compact and without boundary ∂R = ∅; see figure 9.1. In this

context we might expect that purely-bulk arguments can be used to construct a Hilbert

space HR associated with R, or perhaps a set of Hilbert spaces Hi
R associated with R,

such that the associated RT/HRT formula can be understood in terms of −TriρiR ln ρiR,

where ρiR is the density matrix describing the bulk quantum state on Hi
R and Tri is the

standard Hilbert space trace on Hi
R. Here the label set index for the index i may include

both continuous and discrete subsets.

In certain limiting cases, related results were recently established by Chandrasekaran,

Penington, and Witten [62], and especially by Penington, and Witten [63]. However, the

fact that their von Neumann algebras were type II rather than type I meant that their

results were not given directly by standard Hilbert space traces. A related comment is

that the results of [62, 63] were valid only in a bulk semiclassical limit in which Hilbert

space densities of states diverge.

In contrast, we wish to consider a context in which Hilbert space densities of states

are finite so that the above entropies will not require renormalization. This then requires

appropriate couplings to be finite as well. We wish to define entropies in this setting
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which, if we later take an appropriate limit, will be well approximated by RT/HRT

entropies. In our finite-coupling regime, a primary question will be how the choice of

boundary regions R, R̄ can define the desired Hilbert spaces Hi
R. In particular, we will

be far from the semiclassical regime in which entanglement wedges are well-defined; see

e.g. the discussion in the final paragraph of [25].

Of course, the bulk path integral at finite coupling is poorly understood. Rather than

attempt to find and study a UV-completion for any specific model, we instead proceed

by simply supposing that we are given a UV-complete finite-coupling bulk AlAdS theory

with an object that can be called a ‘Euclidean path integral’ that satisfies a simple set of

axioms1. Most of our axioms are commonly assumed for asymptotically-AdS gravitational

theories, and were in particular used in [54]. However, we also include a separate axiom

enforcing the trace inequality recently discussed in [256]. This inequality will play a

critical role in our work below.

This framework allows us to answer the above challenge by constructing von Neumann

algebras AR, AR̄ of observables associated with the regions R and R̄ and by showing these

algebras to contain only type I or II factors. The elements of these algebras may be called

‘boundary observables’ in the sense of [196], though we again emphasize that they are

defined without assuming the existence of a dual field theory. Indeed, it seems natural to

expect the required axioms to hold for successful ultraviolet (UV) completions of general

asymptotically-AdS gravitational systems, whether the completion be called string field

theory, spin-foam loop quantum gravity, or by some other name.

Our construction also leads to an associated von Neumann entropy on R which can be

studied using a standard gravitational replica trick. As usual, in appropriate semiclassical

settings, this entropy is given by the RT/HRT formula with corrections from both quan-

1The Euclidean setting is convenient, but need not be fundamental. We are hopeful that Euclidean
path integrals can generally be derived from Lorentzian path integrals using arguments along the lines
of those described in [46]; see e.g. [254] and [255] for recent comments on such ideas.
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tum [28] and higher-derivative effects (see e.g. [111, 112, 257]). Furthermore, AR,AR̄
decompose into direct sums/integrals of type I or II von Neumann factors. The corre-

sponding Hilbert space on which these algebras act must decompose into a sum/integral

of terms Hi (say, labelled by an index i), and for the type I factors, each of the sectors

is a tensor product Hi
R̄
⊗ Hi

R such that AiR acts only on Hi
R and Ai

R̄
acts only on Hi

R̄
.

We also show that AR and AR̄ are commutants. It will then follow that the RT/HRT

prescription computes appropriate semiclassical limits of

∑

i

p̃iSvN(ρi)−
∑

i

p̃i ln p̃i +
∑

i

p̃iS
i
0, (9.1)

where pi is the probability to find the system in the subspace Hi, ρi is the (normalized)

density matrix induced on Hi
R by the projection of the full state to Hi, the Si0 are a set

of positive constants, and we have defined the quantities

p̃i =
eS

i
0pi∑

j e
Si0pi

. (9.2)

In (9.1), the sums should be understood as also including integrals over any continuous

subsets of the label set for the index i. Further simplifications of (9.1) will appear in

[258].

Our work below begins in section 9.2 with an overview of relevant axioms for a (UV-

completion of a) Euclidean gravitational path integral and the construction of the relevant

sectors of the gravitational Hilbert space. The von Neumann algebras AR, AR̄ are then

defined in section 9.3 for the case where each of R, R̄ are a union of spatially-compact

asymptotically AdS boundaries with, for simplicity, R diffeomorphic to R̄. The type I/II

structure and the associated decomposition of appropriate sectors of the bulk Hilbert

space are then derived in section 9.4.
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9.2 The Path Integral and the Hilbert Space

The goal of this section is to write down a set of axioms for an object that we will call

the Euclidean path integral for a UV-completion of some AlAdS theory of gravity, and

to then use those axioms to construct the sectors of the Hilbert space that we will study

in sections 9.3 and 9.4 below. We emphasize that we will require only that such axioms

hold, and that any object satisfying the axioms may be called a Euclidean path integral,

regardless of whether it is in fact computed as an integral over anything resembling

Euclidean geometries. We also emphasize that there may well be many other properties

that a good bulk theory should satisfy and which are not captured by our axioms; i.e.,

we suggest our axioms to be necessary, though probably not sufficient, for a theory to be

satisfactory. What we find to be of most interest below is just how much can be derived

from the above simple Axioms 1-6.

Section 9.2.1 briefly motivates and then records the desired axioms. The relevant

Hilbert space sectors are then constructed in section 9.2.2. Much of the analysis below

follows [54].

9.2.1 Motivation and axioms

While in the end we will not strictly require that our path integral be formulated as a

sum over geometries, we would like our axioms to apply to any such cases that exist. Let

us thus briefly consider a path integral that actually integrates over a set of fields, among

which the (Euclidean-signature) metric, in order to motivate a reasonable set of axioms

below. We will take the metric-integral to include a sum over all possible topologies.

The bulk fields will be collectively denoted φ, for which the corresponding Euclidean

action will be S[φ]. To every smooth closed (i.e., ∂M = ∅) AlAdS boundary M at which

appropriate (potentially complex) boundary conditions are specified, a Euclidean path
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integral would then assign the complex number

ζ(M) :=

∫

φ∼M
Dφe−S[φ]. (9.3)

Here we use the symbol M to denote not just the boundary manifold, but also the relevant

boundary conditions for the bulk field φ. The notation φ ∼M in (9.3) indicates that we

integrate only over bulk fields φ satisfying such conditions.

In order to avoid overuse of terms involving the word ‘boundary,’ we henceforth refer

to the boundary conditions on bulk fields as sources, and we refer to M as a (boundary)

source manifold to remind the reader of our inclusive terminology. This terminology will

seem natural to practitioners of AdS/CFT, though long experience in that context has

established that, even without invoking such a duality, the boundary conditions for bulk

fields play precisely the same role as sources for familiar non-gravitational quantum field

theories. In the AlAdSd context with d even, the appropriate notion of sources/boundary

conditions will typically be given by equivalence classes under Weyl transformations.

It is reasonable to expect ζ(M) to be finite for smooth M , and for ζ(M) to enjoy some

degree of continuity under appropriately-small deformations of the boundary conditions

described by M . For the present purposes we allow the sources described by M to be

complex, though one can also restrict the discussion to real boundary conditions (or to

complex linear combinations thereof). For complex sources, expression (9.3) suggests

that [ζ(M)]∗ = ζ(M∗) where ∗ denotes complex conjugation and, in particular, M∗ is the

same manifold as M but with complex-conjugated sources.

Let us imagine that we cut the path integral (9.3) into two parts along a slice Σbulk

through the bulk spacetime. By this we mean that we slice each configuration φ that

enters into the path integral into two parts, and that in all cases we call the cut Σbulk

even though the geometry of Σbulk, and in fact the topology of Σbulk, will depend on φ.
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Σbulk

M2

M1

|ψ2⟩

|ψ1⟩

Figure 9.2: A slice Σbulk (red line) of the path integral intersects the AlAdS boundary
M (blue line) at a codimension-2 surface ∂Σbulk (yellow points) which splits M into
two parts denoted by M1,M2. Each half of the path integral defines a quantum state
ψi by computing the wavefunction of ψi on Σbulk. These wavefunctions can be thought
of as the result of Euclidean evolution from the boundary conditions Mi, and the path
integral can then be regarded as computing the transition amplitude 〈ψ2|ψ1〉.

We will, however, require the intersection ∂Σbulk of Σbulk with the AlAdS boundary M

to be independent of φ. In the usual way, it is natural to take each of the two resulting

pieces of the path integral to compute the wavefunction (or the complex conjugate of a

wavefunction) of a state in a Hilbert space H∂Σ defined by the choice of ∂Σ. The original

(uncut) path integral then computes the inner product in H∂Σ of the two states thus

defined. In particular, when the states are identical, the original uncut path integral

computes the norm of the state and thus should give a non-negative result.

Furthermore, it natural to generalize the above discussion by replacing M with a

finite formal linear combination of source manifolds

M :=
n∑

I=1

γIMI , (9.4)
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for some n ∈ Z+ with γI ∈ C, in which case we simply use linearity to define

ζ(M) :=
∑

I

γnI=1ζ(MI). (9.5)

In this case we also define

M∗ :=
n∑

I=1

γ∗IM
∗
I . (9.6)

In particular, some such formal sums can again be ‘sliced’ into two pieces, and when

the two pieces are isomorphic (up to the appropriate complex conjugation), we again

expect ζ(M) to compute a non-negative norm. Below, we will use the notation Xd

to denote the set of smooth d-dimensional source manifolds M (without boundaries)

appropriate to some given theory. We then use the notation Xd to denote formal finite

linear combinations of such manifolds with coefficients in C as in (9.4) (with MI ∈ Xd).

Members of both Xd and Xd will be denoted M to avoid cumbersome notation. As

above, we will extend any function ζ : Xd → C to Xd via (9.5).

This brief discussion motivates us to require the following four axioms for the UV-

completion of any (d+ 1)-dimensional AlAdS2 Euclidean quantum gravity path integral

ζ(M):

Axiom 1 Finiteness: For some space of d-dimensional source manifolds Xd, we are

given a function ζ : Xd → C; i.e., ζ(M)is well-defined and finite for every M ∈ Xd.

Although we do not specify the detailed nature of the allowed sources, the sources should

be given by fields on an underlying manifold and Xd should include any smooth manifold

with smooth sources fields of the allowed types.

2We also expect our axioms to apply to UV-completions of bulk gravitational theories of spacetimes
asymptotic to Md+1 × X where Md+1 is AlAdSd+1 and X is a fixed compact manifold of arbitrary
dimension, as well as to other asymptotic structures such as those described in [209].
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×
(
γ1 + γ2

)
N1 N2

(
γ∗1 + γ∗2

)
N∗

1 N∗
2

=

γ∗1γ1 N∗
1 N1

+ γ∗1γ2 N∗
1 N2

+ γ∗2γ1 N∗
1N2

+ γ∗2γ2 N2N∗
2

Figure 9.3: A reflection-symmetric M ∈ Xd is shown for a case where M is a sum of
4 terms.

Axiom 2 Reality: For every M ∈ Xd, we have both M∗ ∈ Xd and [ζ(M)]∗ = ζ(M∗),

where M∗ is defined by (9.6).

Axiom 3 Reflection Positivity: Suppose for some n ∈ Z+ that M ∈ Xd can be written

in the form M =
∑n

I,J=1 γ
∗
IγJMI,J where γI ∈ C, γ∗I denotes the complex conjugate of γI ,

and where each MI,J can be sliced into two parts N∗I , NJ ; see figure 9.3 By such a slicing,

we mean that there is a smooth codimension-1 hypersurface ΣI,J in MI,J that partitions

MI,J into N∗I and NJ , so that N∗I and NJ are source manifolds with boundaries. In

particular, the above notation requires that the same source manifold-with-boundary N∗I

is obtained from slicing MI,J for each J , and the same source manifold-with-boundary NJ

is obtained by slicing MI,J for each I. In particular, slicing the diagonal closed manifold

MI,I along ΣI,I yields N∗I and NI . The notation N∗I indicates that each diagonal source
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manifold MI,I admits a diffeomorphism φI,I that both acts as a reflection about ΣI,I

and which complex-conjugates all sources. When these conditions hold, ζ(M) is a non-

negative real number.

Cϵ0 Cϵ

Figure 9.4: The source manifold M = Mε0 contains a cylinder Cε0 of length ε0.
Changing the length of this cylinder to ε defines a new source manifold Mε.

Axiom 4 Continuity: Suppose that a source manifold M ∈ Xd contains a region dif-

feomorphic to an (orthogonal) cylinder source manifold-with-boundary Cε0 of some length

ε0; see figure 9.4. The term (orthogonal) cylinder source manifold-with-boundary indi-

cates Cε0 is topologically of the form B× [0, ε0] and that Cε0 admits a Killing field ξ which

generates a local symmetry of Cε0 and the sources it represents, with ξ orthogonal to ∂Cε0.

By a local symmetry, we mean that at each point in the interior of Cε0 the flow along ξ is

well-defined for at least some finite values of the Killing parameter, though of course the

boundaries ∂Cε0 prohibit Cε0 from enjoying a translational symmetry along these flows.

The statement that Cε0 has length ε0 means that the two copies of B in ∂Cε0 are related

by flow through a Killing parameter ε0, though the actual value of ε0 is not meaningful

since we have not fixed a preferred normalization for the Killing field ξ. For simplicity

we will drop the qualifier ‘orthogonal’ when discussing cylinders Cε below.

Let us now write M = Mε0 and define a related family of manifolds Mε by replacing

the Cε0 contained in Mε0 with the analogous cylinder Cε. The resulting ζ(Mε) is then

required to be a continuous function of ε.
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The reader will note that our continuity condition is extremely weak, and that one

generally expects rather stronger continuity conditions to hold. However, axiom 4 has

the benefit of being simple to state for general boundary dimension d, and it will turn

out to be sufficient for our purposes below.

Axioms 1, 2, and 3 are requirements explicitly stated in [54]. However, [54] also

implicitly used additional assumptions to deal with spacetime wormholes. In particular,

as explained in [54], axioms 1-3 imply that the set of real source manifolds M ∈ Xd are

associated with a collection of symmetric operators defined on a common dense domain

in a natural quantum gravity Hilbert space, and that any two such operators commute

on this domain. Ref [54] then suggested that each of these symmetric operators had a

unique self-adjoint extension (i.e., that each was essentially self-adjoint) and that these

extensions were again mutually commuting. This outcome will seem natural to many

physicists, though the above results are not sufficient to prove that it actually occurs3.

However, if this suggestion holds then the self-adjoint extensions can be simultaneously

diagonalized on the full quantum gravity Hilbert space. The simultaneous eigenspaces

of these operators are then called “baby universe superselection sectors,” and have the

property that closed manifolds define operators proportional to the identity on each such

sector. As a result, each sector is associated with a modified path integral that exhibits

the following factorization property for closed source manifolds M1,M2 ∈ Xd:

ζ(M1 tM2) = ζ(M1)ζ(M2), (9.7)

where the symbol t denotes the disjoint union of source manifolds-without-boundary.

Such superselection sectors are often called α-sectors, and play the role of the α-states

3See in particular [259] for an example where symmetric operators that commute on a common
invariant dense domain are essentially self-adjoint but where their self-adjoint extensions nevertheless
fail to commute.
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described in [146, 147]. Once this structure is established, it is then sufficient to deal

with each baby universe superselection sector individually.

It is tempting to expect that the bulk path integrals of UV-complete theories generally

lead to a framework of the above form. Note that this form allows the case suggested in

[260] where there is only one such superselection sector, so that each M ∈ Xd defines an

operator proportional to the identity on the entire Hilbert space. However, we emphasize

that in the presence of multiple such superselection sectors, it would be natural to simply

work with each such sector separately and thus to frame arguments in terms of path

integrals satisfying (9.7). As a result, rather than introduce further complicated axioms

which would imply the general sum over superselection sectors described above, we will

simply assume that we start with a path integral satisfying the factorization property

(9.7). In particular, we include the following axiom:

Axiom 5 Factorization: For source manifolds M1,M2 ∈ Xd, the function ζ satisfies

(9.7).

Finally, in certain contexts (which will be clarified below) it was recently argued in

[256] that a certain so-called trace-inequality (equation 9.8 below) holds for any gravita-

tional path integral to all orders in the semiclassical approximation (and to all orders in

perturbative higher dervative terms). It is therefore natural to suppose this inequality

to hold non-perturbatively as well4. In our present notation, this assumption takes the

following form:

Axiom 6 Trace Inequality: Suppose that some M ∈ Xd can be cut into two pieces,

N1, N2, with boundaries ∂N1 = ∂N2 of the form B t B, where t denotes disjoint union

and where the notation B again includes a specification of sources at B. When M is a

4The skeptical reader may wish to know that the trace inequality (Axiom 6) actually follows from
axioms 1-5. This will be explained in [258].
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linear combination of manifolds, we require B to be the same for every term in the linear

combination. Suppose further that by gluing together the two copies of B bounding N1 we

can form a smooth closed source manifold M1, and that we can similarly form a smooth

M2 from N2. In such cases we require that

ζ(M) ≤ ζ(M1)ζ(M2). (9.8)

We emphasize that, due to axiom 5, in a theory with baby universe superselection

sectors we would in fact be assuming that the inequality (9.8) holds in each such sector

separately. Indeed, it is worth remarking that the analogue of (9.8) generally fails in a

superposition of such superselection sectors. To see this, consider a family ζα of func-

tions on Xd satisfying the above axioms, and define ζsup =
∫
dα ζα for some normalized

probability measure dα. For simplicity, let us consider the case where B is empty so that

N1, N2 are already closed manifolds that we may call M1,M2, and let us further consider

the special case M∗
1 = M2. Then by axiom 5 we have

ζsup(M) =

∫
dα ζα(M) =

∫
dα |ζα(M2)|2. (9.9)

But for any probability measure dα the variance of ζα(M2) must be non-negative:

∫
dα |ζα(M2)|2 − |

∫
dα ζα(M2)|2 ≥ 0. (9.10)

Furthermore, (9.10) can be saturated only when ζα(M2) is independent of α for almost ev-

ery α, in which case the superposition is effectively trivial. For non-trivial superpositions

we thus find

ζsup(M) =

∫
dα|ζα(M2)|2 > |

∫
dαζα(M2)|2 = ζsup(M1)ζsup(M2), (9.11)
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which would violate (9.8).

We also comment that (9.11) is consistent with the analysis of [256], as [256] consid-

ered only cases in which the source manifold M is connected. In the context of connected

source manifolds M , [256] argued in that, when the bulk path integral admits a semi-

classical limit defined by Einstein-Hilbert or Jackiw-Teitelboim gravity with perturbative

corrections, the inequality (9.8) should hold to all orders in the relevant expansions.

9.2.2 Sectors of The Quantum Gravity Hilbert Space

As noted at the beginning of this section, one expects to be able to obtain states of

any quantum gravity theory by ‘cutting open’ the associated path integral. The details of

this construction will be described below. As remarked in the introduction, our approach

will be to remain agnostic about the inner workings of the path integral, and simply to

view it as a function ζ : Xd → C satisfying axioms 1-6.

We refer the reader to [54] for further discussion of what it means to cut open a

quantum gravity path integral. However, at an abstract level it is clear that doing

so requires that we cut any closed AlAdS boundary M into two pieces N1, N2 with

∂N1 = ∂N2. We should then associate quantum gravity states with these two pieces such

that the inner product of the two states is ζ(M).

However, there are several subtleties in this process that merit discussion. The first

such subtlety arises when there are open sets in N1, N2 that contain ∂N1 = ∂N2 and

which admit non-trivial symmetries. In that case, there is more than one way to glue the

pieces N1, N2 back together to obtain a smooth manifold. Furthermore, each such gluing

g generally leads to a different closed manifold Mg, only one of which can be the original

M from which the pieces N1, N2 were cut. As a result, it is not sufficient to think of N1, N2

as diffeomorphsim equivalence classes of source manifolds with boundaries. Instead, we
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see that we should think of the points on ∂N1 = ∂N2 as being labelled, so that M can

be reconstructed by gluing N1 to N2 along their boundaries in the manner dictated by

matching identical labels. As a result, we will henceforth use the notation N to denote

a manifold with boundary ∂N , together with a labelling of points on ∂N .

Now, suppose that we are given two manifolds N1, N2 with labelled boundaries

∂N1, ∂N2, such that the boundary labels define a diffeomorphism φ : ∂N1 → ∂N2. (Recall

that diffeomorphisms are required to be surjective.) We can then use this φ to glue N1

to N2 to define a closed manifold M without boundary. However, there is no guarantee

that the resulting boundary fields on M will be smooth, or indeed that they will even be

continuous. As a result, ζ(M) may not be well-defined.

We will deal with this issue by using the following simple expedient: Rather than

attempting to construct the entire quantum gravity Hilbert space, we will instead con-

struct only sectors that are associated with certain types of data on the codimension-2

boundaries ∂N . In particular, we will consider only source manifolds-with-boundary N

that are rimmed in the following sense:

Definition 1 A source manifold N with boundary ∂N will be said to be rimmed when

there is a neighborhood Nε of ∂N on which the sources are real and such that Nε is

diffeomorphic to some cylinder source manifold Cε of the form defined in Axiom 4. The

region Nε is then called a rim of N .

We also make the following definitions:

Definition 2 We will say that two rimmed source-manifolds N1, N2 with boundaries

∂N1, ∂N2 agree on their boundaries when they admit rims N1ε, N2ε that are related by

a diffeomorphism that preserves both sources and the labels on ∂N1, ∂N2. By the local

translation symmetry, the data on all of N1ε, N2ε is determined by data at ∂N1, ∂N2, so

we will write ∂N1 = ∂N2 to denote the above agreement on the rims N1ε, N2ε. We will
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MN∗
1 N2

N∗
1 N2

MN∗
2 N1

N1N∗
2

Figure 9.5: Gluing N1 to N2 and then N∗1 to N∗2 defines source manifolds-with-
out-boundary MN∗1N2 and MN1N∗2 that are related by a diffeomorphism that complex–
conjugates sources. As depicted here, the relevant diffeomorphism acts as a reflection
about the plane indicated by the dashed line. Thus (MN∗1N2)∗ = MN1N∗2 , where “=”
means that the two are related by a diffeomorphism.

similarly use the symbol ∂N to denote the manifold at the boundary of source manifold-

with-boundary N together with enough information about the sources on N to reconstruct

sufficiently small rims Nε.

The utility of restricting to rimmed source-manifolds is that, when two rimmed source-

manifolds N1, N2 admit agree at their boundary (∂N1 = ∂N2), it is then clear that they

can be glued together to define a smooth source manifold-without-boundary that we may

call MN1N2 , so that ζ(MN1N2) is well-defined. And since definition 1 required sources on

the rim-regions to be real, we can similarly construct a smooth source-manifold MN∗1N2 .

For future use we note that since this gluing operation acts symmetrically on N1, N2, we

have

MN1N2 = MN2N1 . (9.12)

Due to this symmetry, we also have

(MN1N2)∗ = MN∗1N
∗
2
; (9.13)

see figure 9.5. Here we recall that the action of ∗ on a source manifold-with-boundary N

was defined in Axiom 3 to include a reflection as well as complex-conjugation of sources.

In particular, for a given such choice of ∂N (in the sense of Definition 2) we can
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define a sector H∂N of the quantum gravity Hilbert space by considering the space Y d
∂N

of rimmed source manifolds N having the given boundary ∂N . From Y d
∂N , we can then

construct the space Y d of finite formal linear combinations N =
∑n

I=1 γINI with γI ∈ C

and NI ∈ Y d
∂N . We then associate a (not necessarily distinct) state |N〉 with each

N ∈ Y d
∂N . Two such states |N1〉, |N2〉 are defined to have (pre-)inner product

〈N1|N2〉 := ζ(MN∗1N2), (9.14)

where MN∗1N2 ∈ Xd is defined by using the distributive law MN1(αN2+βN3) = αMN1N2 +

βMN1N3 and similarly for M(αN∗1 +βN∗3 )N2 . The inner product is Hermitian due to (9.12),

(9.13), and Axiom 2, and the inner product is positive semi-definite by Axiom 3. We may

then say that (9.14) defines a pre-Hilbert space H∂N . Taking the quotient by the space

N∂N of any null vectors and completing the result then yields a Hilbert space H∂N that

we call the ∂N -sector of the full quantum gravity Hilbert space. Below, we will use the

notation |N〉 to denote both elements of the pre-Hilbert space H∂N and the associated

equivalence class in H∂N , though the distinction should always be clear from the context.

Indeed, since Y d
∂N allows only finite linear combinations, it may often be the case that

N∂N is empty and the quotient is trivial.

The above expedient will allow us to proceed quickly to constructing and studying

algebras of operators on H∂N without characterizing in detail either the degree of dif-

ferentiability of sources on M required for ζ(M) to be finite or the manner in which

divergences arise when such conditions fail. If our goal is to construct those states which

are associated with static Lorentz-signature boundary conditions, then one may expect

that our restriction to rimmed surfaces gives the full such Hilbert space. One argument

for this comes from AdS/CFT, in which case the rims correspond to insertions of e−εH for

some ε. Since e−εH is invertible, even at fixed finite ε the rimmed surfaces will generate a

372



Algebras of boundary observables from gravitational path integrals: Understanding
Ryu-Takayanagi/HRT as entropy without invoking holography Chapter 9

complete set of states. However, even without relying on AdS/CFT, since we allow the

rim Nε to be arbitrarily small, and since we require the path integral to be continuous

in ε, the restriction to rimmed surfaces should still allow full information to be obtained

about the sector of the theory associated with a given ∂N of the type described above.

There are, however, two shortcomings to our approach. The first is that we obtain

no information about inner products 〈N1|N2〉 when ∂N1 6= ∂N2. Such inner products do

not necessarily vanish, especially in low dimensions. Indeed, for d = 1 both AdS/CFT

and the associated semiclassical bulk computations suggest that the inner product can

be non-zero even when the sources on MN∗1N2 are discontinuous (so long as MN∗1N2 is a

well-defined toplogical manifold).

The second shortcoming is that, while we expect to construct all states associated with

static Lorentz-signature boundaries, at least in high dimensions we expect to miss sectors

of the quantum gravity Hilbert space associated with non-static boundaries. Based on

both the AdS/CFT context and the divergences that manifest themselves in the associ-

ated semiclassical bulk computations, we expect this issue to be related to what one finds

when studying quantum fields on curved spacetime, where in high dimensions the space

of states on a given Cauchy slice Σ (say, specified by the correlation functions of fields

and their derivatives on Σ) can depend not only on the metric induced on Σ but also

on various normal derivatives of background fields (sources) evaluated at Σ. It would be

interesting to return to both of these issues in the future, though a full analysis of the

second issue seems likely to require a Lorentz-signature analysis.

9.3 Algebras of boundary observables

We have thus far described how our path integral ζ can be used to construct sectors

H∂N of the quantum gravity Hilbert space. But it can also be used to construct operators,
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and this construction will be useful in understanding the further structure of H∂N and

the relation to RT entropy. To understand such operators, let us again consider the space

of rimmed surfaces Y d
∂N for some choice of codimension-2 boundary ∂N . We will now

further suppose that ∂N is the disjoint union of two pieces, ∂N = B1 t B2, with both

B1, B2 being compact and closed (in the sense that ∂B1 = ∂B2 = ∅). Then any N ∈ Y d
∂N

defines an operator from HB1 to HB2 by gluing surfaces along B1.

We may thus construct operators that preserve a given sector HB by considering the

case B1 = B2 = B. In this case, we may endow the surfaces Y d
BtB with a multiplication

operation which then promotes the space of formal linear combinations Y d
BtB to an

algebra. In fact, we introduce two such algebras below that we call ABL and ABR in

section 9.3.1 below. After defining these surface algebras, we will show that they admit

representations on HBtB in section 9.3.2 and that they lead to associated von Neumann

algebras ABL and ABR whose properties will be studied in section 9.4.

9.3.1 Surface algebras and a trace

To understand the difference between ABL and ABR, recall that points on B tB are

labelled, which in particular means that the two copies of B are distinguished. We will

refer to the first copy as the ‘left boundary’ and the second copy as the ‘right boundary.’

The two algebras ABL and ABR then differ according to whether multiplication is defined

by gluing As a result, as a shorthand we will use the notation HLR below to refer to

HBtB.

On the set Y d
BtB we may define the left product (·L) as the operation that takes as

input an ordered pair of rimmed surfaces a and b, and which constructs the surface a ·L b

that results from gluing the left boundary of b to the right boundary of a (see figure 9.6).
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a

L R

b

L R

a

R

b

L

= a ·R b

b

R

a

L

= a ·L b

Figure 9.6: For two elements a, b ∈ Y d
BtB (shown on the left), we define the left and

right products a ·L b and a ·R b by the gluing procedures shown above.

For simplicity, we will adopt the notation

ab := a ·L b . (9.15)

We similarly define the right product (·R) as the operation that, given an ordered pair of

surfaces a and b, glues the right boundary of b to the left boundary of a. Note that

a ·R b = b ·L a = ba (9.16)

We can also extend this product to linear combinations a, b ∈ Y D
BtB by defining it to

satisfy the distributive law. The set Y d
BtB equipped with the left product then forms an

algebra ABL which we call the left surface algebra. Similarly, the right product on Y d
BtB

leads to the right surface algebra ABR. Since every element of Y d
BtB has a finite rim at

each boundary, gluing two surfaces a, b together always results in a surface larger than

either a or b, so that neither of these algebras can contain an identity element.

However, the algebras ABL and ABR do admit a natural involution ? satisfying

(a ·L b)? = b? ·L a? = a? ·R b?, (9.17)
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so that ? defines an anti-linear isomorphism between the left and right algebras. To define

the operation ?, recall that Axiom 3 introduced a complex conjugation operation ∗ on

N ∈ Y d
BtB. In particular, N∗ was defined so that MN∗N has a reflection symmetry that

complex conjugates all sources. This means that N∗ is the same manifold as N (with the

same labels on ∂N), and that ∗ acts on scalar sources by standard complex-conjugation

(though the operation on vector, tensor, and spinor sources is more complicated).

In addition, Y d
BtB admits a natural transpose operation t that simply swaps the left

and right boundaries of any N ∈ Y d
BtB while preserving all sources and leaving the

labels on ∂N otherwise unchanged. The transpose and complex conjugation operations

commute, and for any a in either algebra we may then define

a? := at∗. (9.18)

Due to the inclusion of the transpose operation, we then immediately find (9.17).

A final consequence of the labelling of points on B is that, by writing ∂N = B t

B we also mean that the labels on the two copies of B agree up to the distinction

between the left and right boundaries. To be precise, we mean that these labels define a

diffeomorphism φLR from the left boundary to the right boundary that preserves enough

information about sources near each boundary to reconstruct infinitesimal rims at each

B. This φLR can then be used to identify the left and right boundaries of any a ∈ Y d
BtB,

and thus to define a source manifold5 M(a) ∈ Xd (i.e., without boundary) from any

a ∈ Y d
BtB. We can also extend this operation to linear combinations a ∈ Y d

BtB by

linearity, so that we then find M(a) ∈ Xd.

This observation allows the path integral to define a useful trace operation tr on both

5Though there are similarities, this is a different gluing operation than the one used to construct
MN1N2

, so we use a correspondingly similar-but-different notation M(a).
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a =

RL

×
a⋆ =

RL

×
b =

RL

L R

⟨a|

|b⟩

⟨a|b⟩ = tr(a⋆b) = ζ

[ ]
×

Figure 9.7: For the operators a, a? and b shown on the top, tr(a?b) is computed on
the bottom. This is equal to the inner product 〈a|b〉 for corresponding states |a〉 and
|b〉.

ABL and ABR, which associates to any a ∈ Y d
LR the finite number

tr(a) := ζ (M(a)) . (9.19)

Note that since M(ab) = M(ba), we clearly have

tr ab = tr ba, (9.20)

and similarly for the right product. While the trace operation is defined directly for any

a ∈ Y d
LR (without using properties of either the left or right algebras), the result (9.20)

makes it reasonable to refer to this operation as a trace on both ABL and ABR.

Before proceeding to the next step of our analysis it will also be useful to note that,

for a, b ∈ Y d
LR, as shown in figure 9.7 we have

〈a|b〉 = ζ (M(a?b)) = tr(a?b). (9.21)

This relation will be used to translate certain Hilbert space statements into operator
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statements and vice versa. In particular, for a = b we have

tr(a?a) = ζ (M(a?a)) = 〈a|a〉 ≥ 0, (9.22)

where we remind the reader that the inequality on the right was a consequence of axiom

3.

9.3.2 Representation of the surface algebras on HLR

Our axioms can also be used to define a representation ÂBL of the algebra ABL from

section 9.3.1 that acts on the Hilbert space HLR. The first step in this construction is to

consider a, b ∈ Y d
LR and to define the action of an operator âL on |b〉 in the pre-Hilbert

space HLR by

âL |b〉 = |ab〉 , ∀ |b〉 ∈ HLR; (9.23)

see figure 9.8 Here we have used the condensed notation ab := a ·L b defined above. When

a is a simple surface a ∈ Y d
LR, this ÂBL acts on |b〉 ∈ HLR by just gluing the surface a to

the left boundary of b. Note that, consistently with the definition of a representation, we

find

(âLb̂L) |c〉 = |abc〉 = âL(b̂L |c〉). (9.24)

The next step is to show that âL annihilates any null space NLR = NBtB of any

pre-Hilbert space states with vanishing norm, so that âL yields a well-defined operator

on HLR/NLR. We will also need to extend the definition of âL to the full Hilbert space

HLR in a manner consistent with (9.24). Both of these steps are straightforward due to

the trace inequality. To see this, recall that for a, b ∈ Y d
LR we have âL|b〉 = |ab〉, and thus

|âL|b〉|2 = 〈ab|ab〉 = tr(b?a?ab) = tr(bb?a?a) ≤ tr(bb?) tr(a?a) = tr(a?a)〈b|b〉. (9.25)
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Figure 9.8: For surfaces a, b, the left panel shows the action âL (in the representation
ÂBL of the left algebra) on |b〉 ∈ HLR, while the right panel shows the associated action

of âR (in the right representation ÂBR of the right algebra).

In the second step of (9.25) we have used (9.21) with a and b both replaced by ab. The

third step then used cyclicity of the trace ((9.20)), and the fourth and fifth steps then

follow directly from axiom (9.8) and another use of (9.21). The result is that a is bounded

by
√

tr a?a on HLR.

In particular, if |b〉 ∈ NLR then 〈b|b〉 = 0. The result (9.25) then clearly requires

âL|b〉 to have zero norm as well. Thus âL preserves NLR and induces an operator on

the quotient HLR/NLR. We can then apply (9.25) on this quotient to show that the

operator âL is bounded by
√

tr a?a on the dense subspace HLR/NLR of HLR. It thus

admits a unique continuous extension to the entire space HLR, which is again bounded

by
√

tr a?a; see e.g. [259]. We will continue to use the symbol âL for this extension.

Continuity implies that such extensions also satisfy (9.24), which makes clear that we

have constructed a representation of ABL on HLR as desired. We call this representation

ÂBL .

Since the operators in ÂBL are bounded, it is easy to discuss their adjoints. Any such

operator is defined by some a ∈ Y d
LR, and for b, c ∈ Y d

LR we must have

〈b|â†L|c〉 = (〈c|âL|b〉)∗ = tr (c?ab)∗ = tr (b?a?c) = 〈b|â?L|c〉. (9.26)
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Here the 3rd step follows from(9.21) and the relation (〈c|d〉)∗ = 〈d|c〉 with d = ab. Since

(9.26) holds on a dense set of states and both â?L and â†L are bounded, we must in fact

have â?L = a†L on all of HLR.

The right algebra ABR admits a similar representation ÂBR in HLR defined by gluing

surfaces to the right boundary of HLR. For a, b ∈ Y d
LR we have

âR |b〉 = |a ·R b〉 = |b ·L a〉 = |ba〉 , ∀ |b〉 ∈ HLR. (9.27)

This action satisfies

(b̂RĉR) |a〉 = |(b ·R c) ·R a〉 = |a ·L (b ·R c)〉 = |a ·L c ·L b〉 = b̂R(ĉR |a〉) (9.28)

as required. The extension to the full space HLR then proceeds precisely as above. The

discussion of adjoints is analogous to the left case and we again find â?R = a†R. Perhaps

the most interesting point to mention is that operators in the right representation ÂBR

always commute with operators in the left-representation ÂBL . In particular, for a ∈ ABR,

b ∈ ABL , and c ∈ Y d
BtB we clearly have

âRb̂L|c〉 = |bca〉 = b̂LâR|c〉. (9.29)

Furthermore, the operators âR, b̂L are bounded (and thus continuous) on HLR and the

above states |c〉 are dense in HLR. We may thus take limits to conclude that (9.29) in

fact holds for |c〉 ∈ HLR.

It will also be useful to note that our trace operation tr on ABL defines a trace on the

representation ÂBL . We of course wish to declare that

tr âL := tr a. (9.30)
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The important property of the definition (9.30) (which we show below) is that it satisfies

tr a = tr b whenever âL = b̂L. This is equivalent to saying that the trace is faithful in

the sense that tr a = 0 when âL = 0.

This property can be established using the continuity axiom 4. In particular, let Cβ ∈

Y d
LR be the cylinder of length β defined by B as in Axiom 4, and consider aC2β ∈ Y d

LR.

Since C2β = CβCβ, and since our Cβ is real, we have

tr (aC2β) = tr (CβaCβ) = 〈Cβ|âL|Cβ〉. (9.31)

Clearly the right-hand side vanishes for all β if âL = 0. However, axiom 4 requires the

β → 0 limit of (9.31) to give tr(a):

tr(a) = lim
β↓0
〈Cβ|âL|Cβ〉, (9.32)

where the notation β ↓ 0 emphasizes that Cβ is defined only for β > 0 so that the limit

is necessarily taken from above. Thus, as desired, we find tr(a) = 0 when âL = 0.

9.3.3 The von Neumann algebras ABL and ABR
We are now ready to use the representation ÂBL to define a von Neumann algebra

ABL (and to similarly construct a related von Neumann algebra ABR from the right rep-

resentation ÂBR). Much as in the construction of HLR from the pre-Hilbert space HLR,

this will involve two steps. The first is to take the quotient of ÂBL by the null space NL
of a ∈ ABL that act on HLR as the zero operator. The second is then to complete the

quotient ÂBL/NL by taking its closure in the weak operator topology or, what is known

to be equivalent in the context, the strong operator topology6 Due to the von Neumann

6The weak operator topology means that for a net of operators Tα, Tα → T if and only if 〈x |Tα| y〉 →
〈x|T |y〉 for every |x〉, |y〉 ∈ H. In contrast, the strong operator topology means that Tα → T if and only
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bicommutant theorem (see e.g. section 0.4 of [262]), we can also equivalently define ABL
as the double commutant of ÂBL/NL within the algebra B(HLR) of bounded operators

on our Hilbert space. This in particular means that each operator in the resulting von

Neumann algebra ABL is again bounded. Of course, corresponding statements hold for

the right algebras as usual.

For every operator a in a von Neumann algebra, the adjoint a† also lies in the von

Neumann algebra. So the adjoint operation continues to act as an involution on ABL .

We also introduced a trace operation tr on the operators in ÂBL in (9.30), which we

in particular showed is well-defined and finite on the quotient ÂBL/NL. In the theory of

von Neumann algebras one generally allows traces of some operators to diverge. One

thus defines a trace as a function taking values in the closed interval [0,+∞] (i.e., one

allows some traces to be +∞). Nevertheless, even in this sense, a trace is usually well-

defined only on postive elements of the von Neumann algebra. This restriction is closely

related to the familiar fact that the quantity
∑

iA
i
i is manifestly well-defined for a finite-

dimensional square matrix Aij, and that for infinite-dimensional positive matrices Aij

the fact that each Aii is non-negative means that if
∑

iA
i
i does not converge to a finite

number, then we may say that it ‘converges’ to +∞. But when Aij is not positive, an

infinite sum of the form
∑

iA
i
i can be oscillatory and need not converge in any sense.

We will thus attempt to extend our notion of tr only to positive elements a ∈ ABL ,

which in this context means that a is a positive operator on HLR. To define a useful such

extension, we need to find a function from the positive elements a ∈ ABL to [0,+∞] that

agrees with our previous definition of tr for a ∈ ÂBL and which satisfies other properties

to be discussed below.

It will thus be productive to consider alternative representations of the operation tr

if Tα|y〉 → T |y〉 for every |y〉 ∈ H. The two associated notions of closure agree for convex sets bounded
operators; see e.g. theorem 5.1.2 of [261].
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on ÂBL . We begin by returning to the relation (9.32), which was argued above to hold for

all a ∈ Y d
LR. This will turn out to be a step toward the definition of our trace on ABL ,

though we will now pause briefly to further rewrite the identity (9.32) in order to make

certain properties manifest.

Let us first introduce the normalized cylinders C̃β ∈ Y d
LR defined by

C̃β ≡ Cβ/||Cβ||, (9.33)

where ||Cβ|| denotes the operator norm on HLR. One may expect that the continuity

axiom (Axiom 4) requires ||Cβ|| → 1 as β → 0. This is correct, but the proof is somewhat

technical and we relegate it to appendix H.1. As a further remark, note that C̃β is

normalized so as to have operator norm 1, but that the state |C̃β〉 is typically still not

normalized with respect to the Hilbert space inner product. In fact, the norm of |C̃β〉

generally diverges as β → 0.

For a ∈ Y d
LR, we may replace Cβ on the right-hand-side of (9.32) with C̃β and use

the above observation to write

lim
β↓0
〈C̃β|âL|C̃β〉 = lim

β↓0

〈Cβ|âL|Cβ〉
||Cβ||2

= tr(âL). (9.34)

In particular, the second step uses the fact that both ||Cβ||2 and 〈Cβ|âL|Cβ〉 have limits

that converge to finite values, and that ||Cβ||2 → 1.

The formulation in terms of C̃β is useful because the operator norm of C̃β is clearly 1.

We show below that for positive âL this requires 〈C̃β|âL|C̃β〉 to be a decreasing function

of β, which means that for positive âL we can also write (9.34) as a supremum over β:

tr(âL) = sup
β>0
〈C̃β|âL|C̃β〉. (9.35)
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This is an improvement over (9.32) because the supremum operation is better behaved

than taking general limits.

To show that 〈C̃β|âL|C̃β〉 is a decreasing function of β, note that for β′ > 0 we may

write

|C̃β+β′〉 = |C̃βC̃β′〉 = ̂̃Cβ′R|C̃β〉. (9.36)

Let us also recall from (9.29) that ̂̃Cβ′R commutes with any âL. Furthermore, both âL

and ̂̃Cβ′R are positive, so in particular they are both self-adjoint. We may then use

the fact that commuting self-adjoint operators can be diagonalized to introduce a set

of common eigenstates |λ, κ〉 where λ ≥ 0 is the eigenvalue of Ĉβ′R and κ ≥ 0 is the

eigenvalue of âL. Since the operator norm of ̂̃Cβ′R is 1, the parameter λ takes values only

in the interval [0, 1]. We will also define a measure dµ(λ, κ) that gives a resolution of the

identity 1 =
∫
dµ(λ, κ)|λ, κ〉〈λ, κ|.

The argument is now straightforward as we may use self-adjointness of ̂̃Cβ′R to write

〈C̃β+β′ |âL|C̃β+β′〉 = 〈C̃β| ̂̃Cβ′RâL
̂̃Cβ′R|C̃β〉

=

∫
dµ(λ, κ)〈C̃β| ̂̃Cβ′RâL

̂̃Cβ′R|λ, κ〉〈λ, κ|C̃β〉

=

∫
dµ(λ, κ)λ2κ|〈C̃β|λ, κ〉|2

≤
∫
dµ(λ, κ)κ|〈C̃β|λ, κ〉|2 = 〈C̃β|âL|C̃β〉, (9.37)

where we pass from the 3rd to the 4th line by using λ2 ≤ 1.

This shows that 〈C̃β|âL|C̃β〉 increases monotonically as β decreases and thus that

(9.35) holds for positive elements of ÂBL . We may then extend tr to any positive element

in the left von Neumann algebra via the analogous expression

tr(a) := sup
β>0
〈C̃β|a|C̃β〉 for a ∈ AL, (9.38)
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and similarly for ABR. In particular, the limit on the right-hand-side in fact exists for all

positive bounded operators a. To see this, we note that the quantity 〈C̃β|a|C̃β〉 is positive

for all β, so taking the supremum necessarily yields a value in [0,+∞] as desired.

Now, in the theory of von Neumann algebras, what we have shown thus far is sufficient

to qualify tr as what is called a weight on ABL . For tr to qualify as what is usually called

a trace requires an additional property, which is that it give identical results for both a†a

and aa† for any a ∈ ABL . T

To show this, it will be useful to find yet another characterization of our trace on

ABL . We begin by again recalling that 1 − C̃2β′ is positive, so that a†a − a†C̃2β′a is also

positive. Thus for any |b〉 ∈ HLR we have

〈b|a†a|b〉 − 〈b|a†C̃2β′a|b〉 ≥ 0. (9.39)

Taking |b〉 = |C̃β〉 then gives

〈C̃β|a†a|C̃β〉 ≥ 〈C̃β|a†C̃2β′a|C̃β〉 (9.40)

for all β, β′. In particular, taking supremums yields

tr(a†a) = sup
β>0
〈C̃β|a†a|C̃β〉 ≥ sup

β,β′>0
〈C̃β|a†C̃2β′a|C̃β〉. (9.41)

We can in fact show that (9.41) is an equality using Axiom 4 and the fact that ABL
can be characterized as the closure of ÂBL in the strong operator topology. This will then

give the desired reformulation of our trace that will allow us to prove tr (ab) = tr (ba).

The above characterization of ABL means that for fixed β and any ε > 0 there is an

operator âL ∈ ÂBL such that a|C̃β〉− âL|C̃β〉 has magnitude less than ε. Using ||C̃2β′|| = 1
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we then find

|〈C̃β|a†C̃2β′a|C̃β〉 − 〈C̃β|â†LC̃2β′ âL|C̃β〉| ≤ 2ε||a||
√
〈C̃β|C̃β〉+ ε2. (9.42)

Furthermore, since Axiom 4 requires 〈C̃β|â†LC2β′ âL|Cβ〉 to be continuous in β′, for small

enough β′ we have

|〈C̃β|â†LC2β′ âL|Cβ〉 − 〈C̃β|â†LâL|Cβ〉| ≤ ε. (9.43)

Combining (9.42) (both as written and for β′ = 0) with (9.43) for small enough β′ then

yields

|〈C̃β|a†C̃2β′a|C̃β〉 − 〈C̃β|a†a|C̃β〉| ≤ |〈C̃β|a†C̃2β′a|C̃β〉 − 〈C̃β|â†LC̃2β′ âL|C̃β〉|

+ |〈C̃β|a†a|C̃β〉 − 〈C̃β|â†LâL|C̃β〉|

+ |〈C̃β|â†LC̃2β′ âL|C̃β〉 − 〈C̃β|â†LâL|C̃β〉|

≤ 4ε||a||
√
〈C̃β|C̃β〉+ 2ε2 + ε, (9.44)

which clearly vanishes as ε → 0. This shows that supβ′>0〈C̃β|a†C̃2β′a|C̃β〉 cannot be

smaller than 〈C̃β|a†a|C̃β〉, and thus that the inequality in (9.41) is saturated. We have

thus established that for all a ∈ ABL (or correspondingly ABR) our trace may be written

in the form

tr(a†a) = sup
β,β′>0

〈Cβ|a†C2β′a|Cβ〉. (9.45)

To establish cyclicity, we again use that a is a strong operator topology limit of a

sequence an ∈ ÂBL . This means that an|ψ〉 converges in the Hilbert space norm to a|ψ〉

for all |ψ〉, and in particular for |ψ〉 = |C̃β〉. Thus we may write

〈C̃β|a†C̃2β′a|C̃β〉 =

(
lim
n→∞
〈C̃β|(̂an)

†
L

)
C̃2β′

(
lim
m→∞

(̂am)L|C̃β〉
)
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=
(

lim
n→∞
〈anC̃β|

)
C̃2β′

(
lim
m→∞

|amC̃β〉
)

= lim
n→∞

lim
m→∞

〈anC̃β|C̃2β′ |amC̃β〉. (9.46)

In passing to the final line we have used the fact that bounded operators and normalizable

states define continuous functions on the Hilbert space to take the limits outisde the inner

product, and to write them in an arbitrary order (i.e., this observation also shows that

the limits written in this way commute). Furthermore, we may also write

〈anC̃β|C̃2β′|amC̃β〉 = tr
(
C̃βa

?
nC̃2β′amC̃β

)
= tr

(
C̃β′amC̃2βa

?
nC̃β′

)
= 〈amC̃β′ |C̃2β|a?nC̃β′〉.

(9.47)

This shows that we can exchange a?n and am in (9.46) if we also exchange β with β′. In

other words, we have shown

〈C̃β|a†C̃2β′a|C̃β〉 = 〈C̃β′|aC̃2βa
†|C̃β′〉 (9.48)

for all β, β′ and all a ∈ ABL . Combining this result with (9.45) then establishes the desired

cyclic identity

tr a†a = tr aa†. (9.49)

We emphasize that our trace will generally give +∞ for some positive elements of

ABL . In particular, the identity operator lies in ABL/R since it can be written in the form

1 = lim
β→0

Cβ. (9.50)

But we also see that

tr 1 = lim
β1,β2→0

〈C̃β′|Cβ|C̃β′〉 = lim
β1,β2→0

||Cβ′||−2 tr (Cβ+β′) . (9.51)
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Using the result limβ′→0 ||Cβ′|| = 1 from appendix H.1 then makes it clear that right-

hand-side diverges in familiar semiclassical theories of gravity.

9.3.4 An Alternative Definition?

In the above, we used the Hilbert space HLR to construct the von Neumann algebras

ABL and ABR. But HLR is just a sector of the full quantum gravity Hilbert space HQG.

It is thus interesting to ask if a different result might be obtained by using HQG, even if

our axioms do not suffice to characterize this space in detail.

The natural analogue of our construction above would be to fix a B and then define

a representation of ABL on every sector of the form HBtB′ for any B′, where we include

the case B′ = B. This representation will again defined operators âL by gluing any

a ∈ ABL to the left boundary of states in HBtB′ . We then quotient by the null space NL
of elements a ∈ ABL that annihilate every |b〉 ∈ HBtB′ . Since âL is again bounded, it

suffices to act with âL on the dense subspace of states |b〉 defined by linear combinations

of surfaces. And, in fact, it suffices to check whether any matrix element of the form

〈b|âL|c〉 is non-zero for any two rimmed surfaces b, c. Since c has a rim, we can always

write c = Cβc
′ for some β > 0. As a result, we have

〈b|âL|c〉 = 〈b|âL|Cβc′〉 = tr(b?aCβc
′) = tr(c′b?aCβ) = 〈bc′?|âL|Cβ〉, (9.52)

where the right-hand side is now a matrix element in the sector HLR studied above. As

a result, the null space NL defined by considering the full Hilbert space HQG is identical

to that defined by studying only HLR.

It then remains to take the closure of ABL/NL in the weak operator topology. Here

it is not enough to work with a dense set of states, as the w.o.t. closure defined by a

dense set of states is typically much larger than that defined by a Hilbert space. This is
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like when one considers a dense set of states D, and then realized that each such state

defined a linear functional on D, which is thus a member of D′. Taking the w.o.t. closure

then gives all of D′ ⊃ H, while using D = H gives D′ = H.

This means that there is a difference between working on HLR and all of HQG. In

particular, there may not be a common Cβ that we can factor out to write (9.52).

It thus seems like the completion defined by HQG may be larger than that defined

by HLR, in that a sequence that converges in the latter may in fact have multiple limit

points in the former. However, it also appears that if we take the resulting multiple

operators on HQG and restrict them all to act on HLR that they will all act in the same

way. So in that sense we will not lose anything by using just HLR if we want to describe

algebras on HLR. Probably this is only worth a very brief comment in the final version

of the paper.

9.4 Type I or II von Neumann factors, Hilbert space

structure, and entropy

9.4.1 Properties of the trace

It follows immediately from our work above that tr has the following 3 useful prop-

erties on ABL :

1. Linearity: tr(a+ b) = tr(a) + tr(b), and tr(λa) = λ tr(a) for any positive a, b ∈ AL
and λ ≥ 0.

2. Invariance under unitaries: tr(U †aU) = tr a for any positive a ∈ AL and any

unitary U ∈ A. Since U †U = 1, this clearly follows from the cyclic property

tr(aa†) = tr(a†a). In fact, given property 1, this invariance can be shown to be
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equivalent to the cyclic property.

3. Faithfulness: tr(a) = 0 if and only if a = 0.

We can also establish two further properties:

5. Semifiniteness: for any positive operator a ∈ A, there exists a nonzero positive

operator b ∈ A with b < a and tr(b) <∞. The notation b < a means that a− b is

positive.

6. Normality: For an increasing bounded sequence of positive operators ρα in AL with

supremum ρ = supα ρα, we have tr ρ = supα tr ρα.

The proofs of properties 4 and 5 are short, but they are somewhat technical. To avoid

distraction from the main results we thus relegate them to appendix H.2.

The first two properties are actually the minimal requirements for the map tr to be

a trace on a von Neumann algebra. The faithfulness property gives a sense in which our

trace is non-degenerate. Semifiniteness guarantees that not all operators have infinite

trace, and the normality condition describes a sense in which the trace is continuous.

The latter properties are important since there is no normal semifinite trace on a type

III von Neumann factor. Establishing 4 and 5 above thus tells us that our von Neumann

algebra contains only Type I and Type II factors. Furthermore, for such factors there is

a unique faithful, normal, semifinite trace up to an overall factor about which more will

be said below. See e.g. .

According to the commutation theorem for semifinite traces, a von Neumann algebra

A with a semifinite trace tr is the commutant of its opposite algebra Aop (A with reversed

multiplication rule) when acting on the Hilbert space H =
{
a ∈ A : tr a†a <∞

}
. The

algebras ABL and ABR are opposite algebras of each other, and HLR is just the Hilbert

space whose norm is defined by tr. Thus we proved ABL and ABR are commutants of
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each other. Alternately one can check that our algebras satisfy the conditions for the

commutation theorems in [263], and thus are each others commutants.

9.4.2 ABL/R only contains Type I or II factors

In general, our algebra has a direct sum structure,

ABL/R =
⊕

β

(
ABL/R

)β
, (9.53)

where each
(
ABL/R

)β
is a factor, and this direct sum could also be an integral when the

parameter β is continuous. The reason why the algebra has a direct sum structure is

because althoughABL andABR are commutants, there could still be non-trivial center oper-

ators. Different eigenvalues of the center operators correspond to different superselection

sectors of the algebra. For the same reason, the Hilbert space takes the form

HLR =
⊕

β

Hβ
LR, (9.54)

and for any type I factor in this direct sum, the corresponding Hilbert space takes the

form

Hβ
LR = Hβ

L ⊗Hβ
R. (9.55)

For any type I or II factor, the faithful, normal, semifinite trace is unique up to an overall

constant. For every sector β, the Hilbert space trace Tr is given by TrO =
∑

i〈i|O|i〉

for any orthonormal complete basis |i〉. For every sector β, the trace defined by the von

Neumann algebra is related to the Hilbert space trace via

tr = eS
β
0 Trβ . (9.56)
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9.4.3 Entropies from algebras

For any positive operator ρ, we can define the Renyi entropies Sn(ρ) = 1
1−n ln tr ρn,

which gives the von Neumann entropy SvN(ρ) = − tr ρ ln ρ after analytic continuation

as n → 1. In the semiclassical limit, Lewkowycz and Maldacena showed that the above

procedure gives the Ryu-Takayanagi formula as the von Neumann entropy. In terms of

the Hilbert space, for a density operator ρ, the von Neumann entropy is given by

∑

β

p̃βSvN (ρβ)−
∑

β

p̃β ln p̃β +
∑

β

p̃βS
β
0 (9.57)

where pi is the probability to find the system in the subspace Hβ
LR, ρβ is the (normalized)

density matrix by the projection of the full state to Hβ
LR, the Sβ0 are a set of positive

constants, and we have defined the quantities

p̃β =
eS

β
0 pβ∑

β e
Sβ0 pβ

.

Thus we have given a bulk Hilbert space interpretation of the Ryu-Takayanagi formula,

without making reference to holography.
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Appendix to Chapter 2

A.1 Action calculations for one interval case

This appendix derives the Euclidean action (2.35) for the one-interval case. The

action contains three parts: the Einstein-Hilbert term, the Gibbons-Hawking term and

the counterterms. The action also depends on the choice of cutoff δ introduced in section

2.4.

While one could calculate the bulk action using the metric (2.24), it turns out to be

easier to use the cylindrical coordinates in which the metric takes the form

ds2 = (1 + r2)dx2 +
dr2

1 + r2
+ α2r2dφ2 (A.1)

Our cutoff spacetime is then bounded by the extremal surfaces x = −1
2
αL0 and x = 1

2
αL0,

which in the Poincaré ball coordinates are anchored to the boundary cutoff surfaces

described in section 2.4. In order to arrive at a description where the coordinate ranges
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are independent of α, we introduce x̃ = x/α ∈ [−L0/2, L0/2] which yields

ds2 =
dr2

1 + r2
+ α2

[
(1 + r2)dx̃2 + r2dφ2

]
. (A.2)

The metric (A.2) can be written in the Fefferman-Graham form by defining

z :=
2

α

1

r +
√

1 + r2
, (A.3)

which yields

ds2 =
1

z2

(
dz2 + (1 + α2z2/4)2dx̃2 + (1− α2z2/4)2dφ2

)
. (A.4)

Here z = 0 is the AdS boundary and z = 2/α is the φ-axis. The associated boundary

metric is just a cylinder of length L0 and circumference 2π. For convenience, we may

now identify the extremal surfaces x̃ = ±L0/2 so that the boundary becomes a torus.

While actions I computed in this conformal frame may differ from those computed in

the round conformal frame, the difference arises only from the conformal anomaly. Since

the anomaly is the same for each state (i.e., for each α), this contributes only an overall

normalization constant (which might depend on δ and λ) to our probabilities P (α) ∼ e−I ,

and in any case the normalization must be later fixed to yield
∫
dαP (α) = 1.

We are thus free to use the above toroidal frame for any value of λ. The action

consists of an Einstein-Hilbert term (with a cosmological constant), a Gibbons-Hawking

term, and a counter-term. Since R−2Λ = −4+16πµGδ(xµ−xµstring), the Einstein-Hilbert

term may be further divided into two parts. The contribution from string itself is clearly

Istring = −µαL0 =
(α− 1)αL0

4G
. (A.5)
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Since a radial cutoff at z = ε yields r = 1
αε

(1 − α2ε2/4 + O(ε4)), the Einstein-Hilbert

(with cosmological constant) contribution from the region away from the string is

IEH1 = − 1

16πG

∫
d3x
√
g(−4)

=
αL0

2G

∫ r(ε)

0

αrdr =
α2L0

4G

(
1

α2ε2
− 1

2

)
.

(A.6)

To calculate the Gibbons-Hawking term, we first need to calculate the extrinsic curvature

on the surface r = r(ε). The unit normal to that surface is

nµ∂µ =
√

1 + r2∂r, (A.7)

so the trace of the extrinsic curvature is

K = nρ∂ρ ln
√
g + ∂ρn

ρ

=
√

1 + r2∂r ln(αr) + ∂r
√

1 + r2 = 2 +O(r−4) = 2 +O(ε4)

(A.8)

Since a constant r surface has area 2πα2L0r
√

1 + r2 = 2πα2L0r
2
√

1 + r−2 = 2π
ε2
L0+O(ε2),

the Gibbons-Hawking term is

IGH = − 1

8πG

∫
d2x
√
hK

= − L0

2Gε2
+O(ε2),

(A.9)

where
√
h is the area element of the induced metric on the surface r = constant. Finally,

the counterterm is

ICT =
1

8πG

∫
d2x
√
h

=
L0

4Gε2
+O(ε2).

(A.10)

Summing these terms and taking ε→ 0 gives the total action (2.35).
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B.1 Scalar field solution via Fourier expansion

B.1.1 Massless Field

Let us now take a moment to construct the solutions in Eqs. (3.17), (3.18) directly,

without recourse to analytic continuation. As is well-known, the space of solutions to the

Klein-Gordon equation in 1+1 dimensional Minkowski space has a basis given by plane

waves. A general solution φ(T,X) may thus be written in the form

φ(T,X) =

∫ +∞

−∞
a(ζ)ei(|ζ|T−ζX)dζ +

∫ +∞

−∞
a∗(ζ)e−i(|ζ|T−ζX)dζ. (B.1)

The initial condition is given by Eq. (3.12):

φ0(X) = 2Xk/mΘ(X) + 2(−1)k(−X)k/mΘ(−X), ∂Tφ|T=0 = 0, (B.2)
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which yields

a∗(ζ) = a(−ζ), (B.3)

and

a(ζ) =
Γ
(
k+m
m

)
|ζ|− k+m

m
(
−
(
(−1)k + 1

)
sin
(
πk
2m

)
+ (−i)

(
(−1)k − 1

)
sgn(ζ) cos

(
πk
2m

))

2π
.

(B.4)

This result simplifies for even and odd k:

a(ζ) = −Γ(1 + k/m) sin
(
πk
2m

)

π
|ζ|−k/m−1, k ∈ 2Z (B.5)

a(ζ) = i
Γ(1 + k/m) cos

(
πk
2m

)

π
sign(ζ)|ζ|−k/m−1, k ∈ 2Z + 1. (B.6)

Here in finding Eq. (B.5) and Eq. (B.6), we rotated the contour of integration to make

the integrals convergent. For k ∈ 2Z, the field φ(U, V ) is given by

φ(U, V ) =

∫ +∞

−∞

(
−Γ(1 + k/m) sin

(
πk
2m

)

π
|ζ|−k/m−1

)
(
ei(|ζ|T−ζX) + e−i(|ζ|T−ζX)

)
dζ

= |V |k/m + |U |k/m, (B.7)

where we used

∫ +∞

0

dζζ−k/m−1(eiζV + e−iζV ) = 2|V |k/m cos

(
πk

2m

)
Γ(−k/m). (B.8)
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In Eq. (B.8), an analytic continuation in k/m is needed to make sense of the integral.

Similarly for odd k we find

φ(T,X) =

∫ +∞

−∞

(
i
Γ(1 + k/m) cos

(
πk
2m

)

π
sign(ζ)|ζ|−k/m−1

)
(
ei(|ζ|T−ζX) − e−i(|ζ|T−ζX)

)
dζ

= sign(V )|V |k/m − sign(U)|U |k/m. (B.9)

Thus, we see that both solutions agree with the solution we found previously by using

appropriate analytic continuations.

B.1.2 Massive Field

In Sec. 3.3.2, we guessed the solution in the future wedge for the massive scalar field

theory using the separation of variables and continuity of the solution. Here we derive

the same solution directly by performing a Fourier transform.

Doing the Fourier transform directly on the initial data is not easy in this case. One

way to go around this is to use the integral representation of the Bessel function,

Iν(x) = −i2−ν−1xν
∫

Γ(s)

Γ(s+ 1/2)Γ(1/2− s)Γ(1 + ν − s)

(
x2

4

)−s
ds, (B.10)

where the integral runs over the imaginary line with a positive real part.

Using this representation, the calculation is almost the same as the massless case.

For simplicity, let’s set k to be even, although the analysis is quite similar for odd k.

Defining V = T +X,U = T −X, ν ≡ k/m, we have

φ(T = 0, X) = 2Ik/m(µ|X|) = −i
∫

Γ(s)

Γ(s+ 1/2)Γ(1/2− s)Γ(1 + ν − s)22s−ν |µX|ν−2sds.

(B.11)
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As a result,the Fourier coefficients are given by

a(ζ) =
1

4π

∫ +∞

−∞
φ(T = 0, X)e−iζXdX

= − i

2π

∫
ds

Γ(s)22s−νµν−2s

Γ(s+ 1/2)Γ(1/2− s)Γ(1 + ν − s) (B.12)

(
−Γ(1 + ν − 2s) sin

(
π(ν − 2s)

2

)
|ζ|−ν+2s−1

)

=

∫
ds b(s)|ζ|2s−ν−1, (B.13)

where b(s) ≡ i
Γ(1+ν−2s)22s−ν sin(π(ν−2s)

2 )Γ(s)

2πΓ(s+1/2)Γ(1/2−s)Γ(1+ν−s) µν−2s. Therefore, the field is given by

φ(T,X) =

∫
ds b(s)

∫
|ζ|2s−ν−1

(
e
i
(√

ζ2+µ2T−ζX
)

+ e
−i
(√

ζ2+µ2T−ζX
))

dζ. (B.14)

This integral is hard to do in general, so for a simpler case, we instead check that

Eq. (B.14) reduces to Eq. (3.23) when X = 0. In this case we have

φ(T, 0) =

∫
b(s)ds

∫
|ζ|2s−ν−1

(
e
i
(√

ζ2+µ2T
)

+ e
−i
(√

ζ2+µ2T
))

dζ

=

∫
b(s)ds

∫
µ2s−ν | sinh(y)|2s−ν−1

(
eiµT cosh(y) + e−iµT cosh(y)

)
cosh(y)dy

= 2

∫
b(s)ds

∫
µ2s−ν2s−ν/2−1/2 Γ(s− ν/2)√

π
×

×
(
−Ks−ν/2+1/2(−iµT )(−iµT )−s+ν/2+1/2 −Ks−ν/2+1/2(iµT )(iµT )−s+ν/2+1/2

)

= −2

∫
b(s)ds

∫
µ2s−ν Γ(s− ν/2)√

π

∫
ds̃

1

4πi
Γ(s̃)Γ(s̃− s+ ν/2− 1/2)×

×
[(

iµT

2

)1−2s̃

+

(−iµT
2

)1−2s̃
]
.

(B.15)

The first simplification is that

√
πΓ(1 + ν − 2s)22s−ν = Γ(ν/2 + 1/2− s)Γ(ν/2 + 1− s), (B.16)
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and

Γ(ν/2 + 1− s)Γ(s− ν/2) = π/ sin(π(s− ν/2)). (B.17)

Using these identities and integrating over s (and wrapping poles to the left), we find

−
∫
b(s)µ2s−νΓ(s− ν/2)Γ(s̃− s+ ν/2− 1/2) = −iΓ(1− s̃)Γ(s̃+ ν/2− 1/2)

Γ(3/2− s̃+ ν/2)
.

Defining s1 = s̃− 1/2, and using Γ(1/2− s1)Γ(1/2 + s1) = π/ cos(πs1) we have

φ(T, 0) = −
∫
ds1

i

2π

Γ(1/2− s1)Γ(1/2 + s1)Γ(s1 + ν/2)

Γ(1 + ν/2− s1)
2 cos(πs1)

(
µT

2

)−2s1

= −
∫
ds1

i

π

Γ(s1 + ν/2)

Γ(1 + ν/2− s1)

(
µT

2

)−2s1

= 2Jk/m(µT ), (B.18)

as expected from by Eq. (3.23) by setting V = T, U = T and considering even k.

B.2 Finding Solutions by Analytic Continuation in

JT gravity

This appendix illustrates how the Lorentz signature solutions can be found by first

regularizing the Euclidean conical singularities in a way that splits it (symmetrically)

into two such singularities as in figure 3.2, and then analytically continuing the region

between them.

For a Euclidean JT gravity solution with a conical defect, we have

ds2 = m2(r2 − r2
s)dτ

2 +
dr2

r2 − r2
s

, (B.19)
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Figure B.1: Left: We take solutions corresponding to a conical defect of opening angle
2πm and cut pieces of it, denoted I and III, slightly greater than half so as to avoid
the defect. We then patch it onto a portion of the smooth AdS2 solution, labelled II,
by imposing matching conditions on the geodesic and at the asymptotic boundary.
This leads to a regularized split solution which can be analytically continued to a
Lorentzian spacetime. In the limit δ → 0, we obtain the same solution that we expect
from initial data evolution.
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Φ = mΦbr, (B.20)

where the periodicity of τ is 2π/rs. When m = 1, the solution is smooth, so rs = 2π
β

.

The boundary condition is that the boundary length is β
ε
. This means that we should

put the cutoff at r = rc = 1
mε

, and the dilaton value there is Φb
ε

.

We cut the solution at the following geodesic:

r(λ) =
1

m

√
δ2 + (mrs)2 coshλ,

τ(λ) =
1

rs
arctan

(mrs
δ

tanhλ
)
,

(B.21)

where δ indicates how far the geodesic is from the center of the disk. At r = 1
mε

, the

affine parameter is

λc = cosh−1 1/ε√
δ2 + (mrs)2

. (B.22)

In the middle region, we have a JT solution without a defect:

ds2 = (r̄2 − r̄2
s)dτ̄

2 +
dr̄2

r̄2 − r̄2
s

, (B.23)

Φ = Φ̄br̄, (B.24)

where the periodicity of τ̄ is 2π/r̄s. We cut it at the geodesic

r̄(λ̄) =
√
δ̄2 + r̄2

s cosh λ̄,

τ̄(λ̄) =
1

r̄s
arctan

( r̄s
δ̄

tanh λ̄
)
.

(B.25)

At the cutoff r̄ = r̄c = 1
ε
, the affine parameter is

λ̄c = cosh−1 1/ε√
δ̄2 + r̄2

s

. (B.26)
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We now glue these solutions together to regularize the conical defect solution to have

a neighbourhood of a smooth solution near the Z2 symmetric slice. The first matching

condition is that the affine parameters are the same:

λc = λ̄c, (B.27)

from which we get

δ̄ =
√
m2r2

s − r̄2
s + δ2. (B.28)

The second matching condition is that the total boundary length is β
ε
:

4

(
π

rs
− τ(λc)

)
+ 4

(
π

2r̄s
− τ̄(λ̄c)

)
= β. (B.29)

To leading order in ε, we know that the relation between rs and r̄s can be solved from

π(rs + r̄s)− 2r̄s tan−1
(mrs

δ

)
− 2rs tan−1

( r̄s
δ̄

)
= 0. (B.30)

This is in general hard to solve, but we can see that in the limit δ → 0, we have r̄s = mrs.

The last matching condition is that, the dilaton values should be the same at the

boundary. Thus, we have

Φ̄b = Φb. (B.31)

If we now analytically continue the middle region to Lorentzian signature, we obtain

a smooth black hole with r̄s = mrs, which means β̄ = β
m

. The boundary dilaton is

Φ̄b = Φb. Note that for this kind of spacetime that we constructed, the dilaton field

only matches along the geodesic when we take δ → 0 limit. This is of course, as we

expect from fixed-area state in pure JT gravity with U(1) symmetry, identical to the

microcanonical TFD at the temperature β̄.
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More generally, this technique of regularizing the conical defect solution and analyt-

ically continuing from the neighbourhood of the Z2 symmetric slice might be useful. In

certain situations, it may be simpler than solving the initial value problem.

B.3 Solving the AdS3 metric perturbatively

In Sec. 3.4.3, we solved for the scalar field in AdS3 and described the solution for the

backreacted metric. In this appendix, we write down all the equations for the metric

components explicitly and show that they can be solved perturbatively as claimed in

Sec. 3.4.3.

The solution for the scalar field to leading order is

φ = 2η cos(kθ)
fm,k(r)

fm,k(rc)
, fm,k(r) = rk/m2F1

(
k

2m
,
k

2m
+ 1,

k

m
+ 1,−r2

)
. (B.32)

From this solution, the stress tensor is decomposed into Fourier modes as

Tµν = ∇µφ∇νφ−
gµν
2

(∇φ)2 = T−µνe
−2ikθ + T+

µνe
2ikθ + T 0

µν . (B.33)

Following [33], the ansatz for the metric to first order in η2 is

ds2 =
dr2

1 + r2 + g(r, θ)
+m2r2dθ2 +m2(1 + r2) (1 + v(r, θ)) dy2, (B.34)

where g(r, θ), v(r, θ) are the metric perturbation, and have the following Fourier expan-

sion,

g(r, θ) = g+(r)e2ikθ + g(r)0 + g−(r)e−2ikθ, v(r, θ) = v+(r)e2ikθ + v0(r) + v−(r)e−2ikθ

(B.35)
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Plugging the stress tensor in the Einstein’s equation (we set 8πG = 1)

Rµν −
gµν
2

(R + 2) = Tµν , (B.36)

one finds that Fourier modes decouple to the first order. For the yy-components, we have

4k2g−(r) +m2r(1 + r2)g−′(r) = 2r2T−yy =
η2

f 2
m,k(rc)

(1 + r2)
(
k2fm,k(r)

2 −m2r2(1 + r2)f ′ 2m,k
)
,

(B.37)

g0′(r) =
2r

m2(1 + r2)
T 0
yy =

η2

f 2
m,k(rc)

∂r
(
r(1 + r2)fm,k(r)f

′
m,k(r)

)
, (B.38)

4k2g+(r) +m2r(1 + r2)g+′(r) = 2r2T+
yy =

η2

f 2
m,k(rc)

(1 + r2)
(
k2fm,k(r)

2 −m2r2(1 + r2)f ′ 2m,k
)
,

(B.39)

where in Eq. (B.38), the equation of motion for the scalar field is used. These equations

are all first order differential equations and therefore, the solutions can be written in terms

of integrals involving fm,k(r) and its derivatives. Using the solutions for g±(r), g0(r), the

rr components of Einstein’s equations give the differential equations for v±, v0,

− 4k2(1 + r2)v− + 2m2r2g−(r) +m2r(1 + r2)2v−′(r) = 2m2r2(1 + r2)2T−rr, (B.40)

2rg0(r) + (1 + r2)2v0′(r) = 2T 0
rrr(1 + r2)2, (B.41)

− 4k2(1 + r2)v+ + 2m2r2g+(r) +m2r(1 + r2)2v+′(r) = 2m2r2(1 + r2)2T+
rr, (B.42)
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where

T 0
rr =

η2

m2r2(1 + r2)f 2
m,k(rc)

(−k2fm,k(r)
2 +m2r2(1 + r2)f ′m,k(r)

2), (B.43)

T−rr =
η2

2m2r2(1 + r2)f 2
m,k(rc)

(k2fm,k(r)
2 +m2r2(1 + r2)f ′m,k(r)

2), (B.44)

T+
rr =

η2

2m2r2(1 + r2)f 2
m,k(rc)

(k2fm,k(r)
2 +m2r2(1 + r2)f ′m,k(r)

2). (B.45)

Therefore, the equations for v±(r), v0(r) are also first order and the solutions can be

written in terms of integrals of the stress tensor or power series expansions. We also

checked that the power series solutions of g±,0, v±,0 satisfy other components of Einstein’s

equations and therefore, the verified the consistency of the metric ansatz. The form of

the power series expansions have been listed in Eq. (3.74).
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C.1 An alternate accounting scheme

nk
+εnk

−ε

nb
+εnb

−ε γ−ε γ+
ε

Rε
A

Rε
Ac

γ

t

Uε

∂Ũε

Σ̃ε
t

Figure C.1: A choice of ∂Ũε (orange curve) whose intersection with Σ̃t is not orthog-
onal. We have indicated its timelike normal at the locus where the regulating surface
intersects the bulk Cauchy slice both into the ket part of the spacetime, as well as
the corresponding normal from the bra side. The latter has been reflected up into the
future to make clear that in the limit of the smooth join the inner product is between
anti-parallel vectors owing to the opposite time-orientation on Mb relative to that on
Mk.

As described at the end of section 4.3.2, it is sometimes useful to absorb the brane

contribution Sγ into the contributions from the ket and bra parts of the spacetime. For
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instance, one can redefine the terms in (4.2) to

S =

(
Skgr +

1

2
Sγ

)
−
(
Sbgr −

1

2
Sγ

)
≡ S̃kgr − S̃bgr . (C.1)

In order that (C.1) agree precisely with (4.2), we take S̃kgr = limε→0 S̃
k,ε
gr with

S̃k,εgr =
1

16πGN

∫

Mk
ε

dd+1x
√−g

[
R +

d(d− 1)

`2
AdS

]
+ Sεbdy + Sεcorner ,

Sεbdy =
1

8πGN

∫

B
ddx

√
|γ|K +

1

8πGN

∫

Σ̃ε
t
∪∂Uε

√
|h|K

Sεcorner =
1

16πGN

∫

γ+
ε ∪γ−ε

dA cosh−1
(
nk
ε · nb

ε

)
,

(C.2)

with a complex-conjugate prescription for S̃bgr. Here γµν is the induced metric on the

boundary B and hij that on the interior boundary. K is the trace of the extrinsic curvature

defined using the appropriate normal. We have also allowed for possible ‘corner’ terms

associated with choosing ∂Uε to have non-orthogonal intersection with the bulk timefold

Σ̃t as shown in fig. C.1 (the orange curve).

We consider the case where the regulating surface ∂Uε is everywhere spacelike. By

doing so we no longer pick up the poles in the boost angle at the past light cone. The

contribution (4.13) now instead can be attributed to this corner term (cf., for instance

[152] where this was discussed earlier). The explicit expression for the corner contribution

is given in terms of the inner product (or relative boost) between the unit normals nk
ε and

nb
ε to the regulator surfaces Uε on the ket and the bra geometries, respectively. Though

we integrate the corner contribution over the regulated codimension-2 fixed point loci

γ±ε , the essential contribution can be understood from the 1 + 1 dimensional example,

where each corner contributes i
16GN

to S̃k,εgr . We could also consider a more general non-

orthogonal intersection as mentioned in footnote 14, where the final result works out
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albeit with a slightly modified accounting of the contributions.

The boundary terms and the corner terms are written out here in the standard metric

formulation above. The corner terms were derived in [150] using the differential formu-

lation of the action (using a non-holonomic tetrad basis) which has the added advantage

of seeing quite explicitly that they are essential to having a well-defined variational prin-

ciple. As in section 4.3.2, the extrinsic curvature terms Sεbdy receive subtle contributions

when the boundary transitions from being spacelike to timelike, though these again have

a simple universal form in the differential formalism [150].

C.2 Smoothing the bra-ket gluing via excursions into

the complex plane

In this appendix we recall a particularly clean example from [141, 142, 143] of the

gluing of the bra and ket branches of a saddle-point. In this case the gluing is performed

by making a smooth excursion into the space of complex metrics, which smooths out

both the timefolds and the cosmic brane splitting surface described in the main text.

As discussed in the aforementioned references, the fact that the construction solves the

field equations with the correct boundary conditions is critical for obtaining the proper

physics for boundary correlators. This example also gives a very explicit illustration of

the reality of the weight eiS associated with replica-symmetric saddles.

We will borrow from the example discussed in [141, 142, 143] which corresponds to the

case of replica number n = 1. The context there involved computing boundary correlation

functions of light fields in a thermal state in the limit of vanishing bulk Newton constant

GN . As a result, back-reaction from the quantum fields could be neglected. The problem

thus reduced to studying quantum fields on a fixed bulk background that (for n = 1)
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was just the (d + 1)-dimensional AdS-Schwarzschild black hole with specified inverse

temperature β. For a thermal problem, one may think of starting with the Euclidean

solution, constructing the full complex black hole geometry by analytic continuation, and

then choosing to deform the original Euclidean slice of this complex geometry as desired

into an arbitrary contour of real bulk dimension d + 1. For the purposes of studying

boundary correlation functions of light fields at general Lorentzian times t > 0, it was

useful in [143] to take the resulting slice at the AdS boundary to extend to t = +∞

along the positive real Lorentzian axis as shown in the left panel of fig. C.2. The right

panel shows the generalization of the boundary geometry to n = 3. In both cases, we can

think of the boundary conditions as forcing t to follow a certain contour in the complex

time-plane.

ρ0 ρ0 ρ0 ρ0

U(t; t0) U(t; t0)†

Figure C.2: The thermal density matrix of a field theory can be prepared from a
Euclidean path integral on a B = S1

t
E
× Σt with tE = β + it. Its time evolution ρ(t)

in real-time is indicated on the left. On the right we depict the gluing of three copies
of this real-time density matrix to compute the third moment Tr(ρ(t)3). Since there
are no sources in the Lorentzian evolution the forward backward evolution legs of this
real-time contour cancel pairwise leaving behind a path integral that is localized on
the Euclidean section, now on a thermal circle that it three times larger. This is a
consequence of the standard collapse rules of real-time path integral contours.

If we are interested only in the computation of the moments Tr(ρ(t)n), then the real-
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Figure C.3: Gravity dual of the field theory computation illustrated in fig. C.2. The
bulk thermal density matrix ρ(t) is obtained by slicing open the Euclidean black hole
spacetime, with suitable real-time evolution ending on the cuts thus created. The
cuts are pinned at the tip of the Euclidean cigar, which corresponds to the bifurcation
surface of the black hole. Lorentzian sections are the time-evolution of the initial
state, which geometrically gives rise to the domain of outer communication This is a
particularly convenient choice. One can also include part of the real-time black hole
interior. This does not matter as the unitary evolution cancels between the bra and
ket pieces as described. For our choice we have two such copies one for the ket and
another for the bra as indicated on the left panel. On the right we illustrate the ansatz
for the computation of Tr(ρ(t)3); we have copies of the density matrix constructed
gravitationally sewn together capturing the kinematic data. Dynamics dictated by
the gravitational equations of motion, will ensure the absence of any singularity at
the splitting surface γ as discussed in the text.
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time evolution pieces between the bras and kets of neighbouring copies of ρ(t) cancel

pairwise using unitarity of the evolution in the form U(t, 0)U †(t, 0) = 1. This leaves

behind a path integral contour that is localized on the Euclidean section alone. However,

now the Euclidean thermal circle is n-times larger, and indeed we recover the fact that

the moments of the thermal density matrix are simply partition functions at a rescaled

temperature.1

Let us now turn to the holographic description of this example. We first consider the

saddle-point spacetime that computes Tr ρ(t) as described in the papers referenced above.

The above cancellations imply that it is related to the Euclidean AdS-Schwarzschild black

hole. However, in order to allow the insertion of operators at non-zero real times t, it

is useful to describe the saddle using a different contour through the complexified AdS-

Schwarzschild spacetime that also has real Lorentz-signature pieces.

Indeed, a key part of the geometry of [143] may represented by a two-sheeted Lorentz-

signature spacetime where the sheets are respectively associated with the bra and ket

parts of ρ(t). Rather than terminate the Lorentzian evolution at the time t of interest

along the boundary, we choose to extend the spacetime to future timelike infinity along

both the ket and the bra segments. In the bulk, we similarly take the bra and ket

spacetimes to be sewn to each other long the future event horizon, so that the Lorentzian

part of each sheet corresponds to the t > 0 part of the AdS-Schwarzschild domain of

outer-communication; see fig. C.3 (Figure 2 of [143]). As we discuss below, this allows

for a simple presentation of the bra-to-ket sewing using a complexified coordinate chart.

This two-sheeted Lorentzian geometry is then glued at t = 0 onto the Euclidean black

hole solution, which is the familiar Gibbons-Hawking cigar spacetime of [32].

1Note that these statements are a simple consequence of unitary evolution and an important con-
sistency requirement of the real-time path integral contours. In Schwinger-Keldysh computations they
are usually referred to as collapse rules, see [117, 118] for a general discussion and implications in the
context of Schwinger-Keldysh and out-of-time-order observables.
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The sewing of bra to ket along the future horizon can be performed cleanly and

explicitly using ingoing Eddington-Finkelstein coordinates (which are regular in this part

of the complexified geometry). We promote the radial coordinate r to be complex and

take the Lorentzian bra and ket spacetimes to lie on the edges of a branch cut along

the positive real r-axis. We then sew the branches together by choosing a curve in the

complex r-plane that circles the branch point at r = r+ as shown in fig. C.4. This is

conveniently described by introducing a new coordinate ζ that is sensitive to the branch

cut, taking values in 1 + iR along the ket piece and values 0 + iR along the bra piece.

Focusing on the thermal state defined by the Rindler patch of AdS2 for simplicity2

we can write the spacetime metric for the Lorentzian part of the evolution as

ds2 = −r2
+ csc2(πζ)

(
dt2 +

2πi

r+

dt dζ

)
, (C.4)

where we have chosen ζ = 1
2πi

log
(
r−r+
r+r+

)
which makes explicit the placement of the

aforementioned logarithmic branch cut. On the individual ket and bra copies we could

revert to the standard Rindler coordinates and write the metric as

ds2 = −(r2 − r2
+) dt2 + 2 dt dr . (C.5)

The metric here is written in ingoing coordinates which is convenient for gluing the bra

and ket copies across the future horizon.

The fact that geometry is a saddle point to the Einstein-Hilbert action follows im-

2In higher dimensions we have for the Schwarzschild-AdSd+1 geometries from [143]

ds2 = −r(ζ)2 f(r) dt2 + i β r(ζ)2 dt dζ + r2(ζ) dx2
d−1 , f(r) = 1− rd+

rd
,

ζ =
i d

2π(d− 1)

(
r

r+

)d−1

2F1

(
1, 1− 1

d
, 2− 1

d
;
rd

rd+

)
.

(C.3)

where the branch-cut of the hypergeometric function has been placed to run from r+ to ∞.
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r+

∞+iε
Re(ζ)=0

Re(ζ)=1
∞−iε

Im(r)

Re(r)

Figure C.4: The complex r plane with the locations of the two boundaries and the
horizon marked. The grSK contour is a codimension-1 surface in this plane (drawn
at fixed v). The direction of the contour is as indicated counter-clockwise encircling
the branch point at the horizon.

mediately from the fact that the local equations of motion are satisfied everywhere. In

particular, the smoothness of the gluing ensures that the space has no (complex) coni-

cal singularities. In (C.4) we have exploited a set of complex coordinates to go around

the location of the cosmic brane. The gluing along the future horizons is essentially

passing from one sheet to another smoothly.3 We also make use of the fact that, while

our coordinates (v, r) are not in fact smooth at γ (the bifurcation surface), one expects

(as motivated in [143]) that the complexified domains of outer communication described

by fig. C.4 can be smoothly glued onto the Euclidean cigar. Intuitively, one imagines

the Lorentzian evolution on the ket (bra) part starting (terminating) at the t
E

= 0 − ε

(t
E

= 0 + ε). The Euclidean cigar smoothly connects up these initial and final Cauchy

slices. However, as written our coordinate chart (C.4) does not explicitly include the

Euclidean section – it would be useful to tighten the argument to exhibit the entire

spacetime including the initial state preparation as a complex curve in the complex (v, r)

space.

To compute the on-shell action we follow the contour integral prescription of [143] for

the Lorentzian part (t > 0). One should also include the contribution from the initial

state ρ0, which, as we know, is just the Gibbons-Hawking computation of the black hole

3Note that the passage to the complex coordinates enables us to see smoothness explicitly. One can
also choose to work with real sections gluing the bra and ket copies in a replica symmetric manner along
the future horizon. This is the viewpoint originally advocated in [159].
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entropy and follows from the Euclidean path integral on the cigar. We will include this

in the final answer.

Focusing for the present on the real-time section (defined using the above complex

regulator), we upgrade the Einstein-Hilbert action to

Sgr =
1

16πGN

[∮

C
dζ

∫
ddx
√−g R + 2

∮

C
dζ

∫
ddx

√
|h|
(
K − 2(d− 1)− 1

d− 2
hR

)]

(C.6)

where we have separated out the radial integral from the other directions and have

explicitly included the boundary counter-terms (the boundary cosmological constant and

the Einstein-Hilbert term). The contour C we integrate over runs counterclockwise from

the bra boundary to the ket boundary encircling the branch point at the horizon, see

fig. C.4. The contour integral picks up the discontinuity across the cut. However, for the

metric functions in (C.4) there is none as the metric enjoys periodicity under ζ → ζ + 1.

So the on-shell action receives no contribution from the Lorentzian sections and collapses

completely onto the initial state.4

Since the initial state path integral coincides with the usual thermal path integral,

we correctly obtain the usual thermal partition sum Tr(e−βH) = e−I1

log Tr(ρ(t)) = log Tr(ρ0) = log Tr(e−βH) = 4π ceff Vd−1

(
4π

d β

)d
(C.7)

as indeed expected from the Schwinger-Keldysh collapse rules (note that β = 4π
dr+

for the

Schwarzschild-AdSd+1 black hole).

This construction readily generalizes to the computation of the replica geometries

Mn which compute spectral moments of the thermal density matrix for the entire CFT

in real-time. We simply lay out n-copies of the bra and ket geometries described above

4This cancellation would be obstructed if we turn on sources in the Lorentzian evolution as can be
seen from the correlation function calculations in [143].
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(with r+ arbitrary) and glue them in a replica symmetric manner as shown at right in

fig. C.3. This describes the kinematics of the construction as in the main text – the

explicit geometry will be determined by the imposing the Einstein-Hilbert dynamics.

In particular, the parameter r+ should chosen to make the resulting complex geometry

smooth.

Heuristically, the replica spacetime including the Lorentzian sections should resemble

the following. The ket and bra segments of the geometry are confined to t ≥ 0 and

r ≥ r+, respectively and the homology surface is the t = 0 (ingoing slice) with the

homology wedge being the future half of domain of outer communication. The cyclic

gluing of the replica copies should be accompanied by suitable smoothing out of the

seams along the future horizons by excursions into the complex domain. The non-trivial

part is again localized on the splitting surface, which here is the bifurcation surface

r = r+. While the full solution is not yet available in closed form, one can argue how the

computation of the on-shell action works.

In the current example, the variational problem is completely specified by (4.4). The

only boundary terms are those that are needed for the usual AdS asymptotics which we

included in (C.6). Now we simply upgrade the contour integral prescription to cover the

n-fold replica geometry. The crucial point is once again the observation that the on-shell

action receives no contribution from the Lorentzian sections and collapses completely onto

the initial state. For the Rényi entropies one will find pairwise cancellations between bra

and ket pieces leaving behind n-copies of the thermal boundary conditions, making it

clear that r+ should take the value appropriate to a black hole of inverse temperature

nβ. This then results correctly in the nth moment of the thermal density matrix giving

e−In = log Tr(ρ(t)n) = log Tr(ρn0 ) = log Tr(e−nβH) = 4π ceff Vd−1

(
4π

nβ d

)d
. (C.8)
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Appendix to Chapter 5

D.1 A Rindler regulator for on-shell action of the

semi-infinite interval

In this appendix we provide an alternate calculation to that given in section 5.3.3

for the Rényi entropy of a semi-infinite interval from the Lorentzian on-shell action in

a single fundamental domain. The calculation in the main text used a small polygonal

cut-off around the branch point with an iε prescription. The imaginary part of the

action then came from the principal value prescription. Here we will instead evaluate the

Lorentzian action in Rindler coordinates with cut-off surfaces of constant Rindler radius.

The imaginary part of the action now comes from the excursion into the Euclidean time

direction as we pass between the different wedges.

We start with the Lorentzian action after integration over the bulk coordinates which

is given by (5.60) and (5.61). In particular, we want to evaluate I
half-line

which we rewrite
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t
L

−T T

π
2
i

πi

δ

A
t = 0

Figure D.1: Left: integration contour in the complex tL-plane. Right: boundary
spacetime R1,1 for t < 0 with cut-offs (blue) at Rindler radius r = δ. The tL con-
tour (orange) has an excursion into the Euclidean time domain (dashed) as it passes
between wedges.

here for the reader’s convenience:

I
half-line

=

∫

t<0

dx̃+ dx̃−

x̃+ x̃−
. (D.1)

We transform to Rindler coordinates (t, ρ) and impose cut-offs at some very small Rindler

radius ρ = δ. Recall that to pass between wedges we shift t in the imaginary direction by

iπ
2
. We require that the time contour be continuous so we must include the integration

along this imaginary direction from 0 to iπ
2
. Therefore, the time contour for t

L
is given

by

CT = [0,−T ] ∪
[
−T,−T + i

π

2

]
∪
[
−T + i

π

2
, T + i

π

2

]
∪
[
T + i

π

2
, T + iπ

]
∪ [T + iπ, iπ] ,

(D.2)

where we have put in some large time cut-off T . The contour is depicted in fig. D.1.
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x

t
x̃+

x̃−

a1 a2 a3 a4

Figure D.2: The domain of integration R for (5.95) is the lower half space t < 0 with
triangular regions Uεi around each ai removed. This choice is particularly convenient
for the light-cone like coordinates x̃± that we work with, since the boundaries of the
region R lie at constant x̃± = ai ∓ δ.

The integral giving I
half-line

is now trivial:

I
half-line

= 2 lim
T→∞

∫

CT

dt
L

∫ L

δ

dr

r
= 2πi log

(
L

δ

)
. (D.3)

This agrees with the result from section 5.3.3. In particular, it verifies that there is a

missing factor of 2 if one only considers the branch point at the origin. This way of doing

the calculation makes it manifest how the imaginary part of the Lorentzian action gives

the Euclidean action because the imaginary part comes from an explicit integration over

Euclidean time.

D.2 Lorentzian action for disjoint interval Rényi en-

tropies

To evaluate the integral in (5.95) directly we consider the lower half of the (x, t) plane

(t < 0) and use the past directed light-rays from x = ai ± δ to carve out little triangular
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regions which we excise, see fig. D.2. Thus,

R =

(
R1,1 ∩ {(x, t)|t < 0}

)
\

2N⋃

i=1

Uδ
i

Uδ
i =

{
(x̃+, x̃−)

∣∣ x̃+ ∈ (ai − δ, ai + δ) & x̃− < ai + δ & x̃+ − x̃− < 0

}
.

(D.4)

For future use let us also define the boundaries of Uδ
i as

∂U+
i = {x̃+ = ai − δ , x̃− ∈ [ai − δ, ai + δ]}

∂U−i = {x̃− = ai + δ , x̃+ ∈ [ai + δ, ai − δ]}
(D.5)

where we have specified the ranges consistent with the orientation of the boundaries.

To compute the integral we will introduce a function T(x̃+, x̃−) whose light-cone

derivatives give the two terms in the integrand

∂−T(x̃+, x̃−) =
√
T−− , ∂+T(x̃+, x̃−) =

√
T++ . (D.6)

We will content ourselves with local behaviour near the sources ai which are given by the

Lorentzian analog of (5.82)

T(x̃+, x̃−) = si

[√
∆n log

[
(x̃− − ai)(x̃+ − ai)

]
− Ci +

pi

2
√

∆n

(x̃− + x̃+ − 2 ai) + · · ·
]

∂±T(x̃+, x̃−) = si

[ √
∆n

x̃± − ai
+

pi

2
√

∆n

+ · · ·
]

∂

∂aj
T(x̃+, x̃−) = −si

[√
∆n

(
1

x̃− − ai
+

1

x̃+ − ai

)
+

pi√
∆n

]
δij − si

∂Ci
∂aj

+ · · · ,

(D.7)

where the ellipses denote higher order terms in the local expansion about x̃+ = x̃− = ai.

420



Appendix to Chapter 5 Chapter D

We therefore have to evaluate

∂

∂ai
Skgr,fund =

c

24π
[Ibulk + Ibdy]

Ibulk =

∫

R

dx̃− dx̃+ ∂

∂ai
(∂−T ∂+T)

Ibdy =

∫

∂U+
i

dx̃−∂−T ∂+T

∣∣∣∣
x̃+=ai−δ

+

∫

∂U−i

dx̃+∂−T ∂+T

∣∣∣∣
x̃−=ai+δ

(D.8)

Let us first evaluate the boundary integral which is straightforward as we have to

compute contributions of the form

Ibdy =

∫ a+δ

ai−δ
dx̃−

[ √
∆n

x̃− − aj
+

pj

2
√

∆n

+ · · ·
] [√

∆n

−δ +
pi

2
√

∆n

+ · · ·
]

+

∫ ai−δ

ai+δ

dx̃+

[√
∆n

δ
+

pi

2
√

∆n

+ · · ·
] [ √

∆n

x̃+ − aj
+

pj

2
√

∆n

+ · · ·
]
.

(D.9)

We see that the only part that contributes is the one where the terms align, i.e., only from

i = j, since this is the only situation when the integral has a non-vanishing imaginary

part from the principal value prescription. Therefore, keeping track of the orientation of

the boundary we find the two terms add to give

Im(Ibdy) = −π
[

∆n

−δ +
pi
2

]
− π

[
∆n

δ
+
pi
2

]
= −π pi . (D.10)

The bulk terms can be evaluated along similar lines. We first exchange the order of

integration and use the fact that ∂+∂−T has no support in the region of integration: it is

localized at the branch points following the same chain of logic that led to the first line
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of (5.44). Hence,

Ibulk =

∫

R

dx̃− dx̃+∂− (∂aiT ∂+T) + ∂+ (∂aiT ∂−T)

=
2N∑

j=1

[∫

∂U−j

dx̃+ ∂aiT ∂+T +

∫

∂U+
j

dx̃− ∂aiT ∂−T

] (D.11)

It is now straightforward to use (D.7) and compute each of the terms in the above. For

instance we have to compute integrals of the form:

−
∫ aj−δ

aj+δ

dx̃+

[(√
∆n

δ
+

√
∆n

x̃+ − aj
+ pj

)
δij +

∂Cj
∂ai

+ · · ·
] [ √

∆n

x̃+ − aj
+

pj

2
√

∆n

+ · · ·
]

= iπ

[
3pi
2
δij +

∂Cj
∂ai

+
∆n

δ
δij

]
+ · · ·

−
∫ aj+δ

aj−δ
dx̃−

[(
−
√

∆n

δ
+

√
∆n

x̃− − aj
+ pj

)
δij +

∂Cj
∂ai

+ · · ·
] [ √

∆n

x̃− − aj
+

pj

2
√

∆n

+ · · ·
]

= iπ

[
3pi
2
δij +

∂Cj
∂ai
− ∆n

δ
δij

]
+ · · ·

(D.12)

where we have only indicated explicitly the imaginary parts that arise from the principal

value prescription. The terms combine nicely together to give

Im(Ibulk) = 2π

(
3pi
2

+
√

∆n

2N∑

j=1

∂Cj
∂ai

)
= −π pi (D.13)

where we finally used (5.90).

Putting it all together we have the expected result from the Lorentzian replica com-

putation, viz., (5.97). As noted earlier this was to be expected owing to the contributions

arising from the regions where the metric becomes complex.
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D.3 The second Rényi entropy for two intervals: Ge-

ometry

In this appendix we give explicit details for the 2-interval second Rényi entopy. We

focus on the Schottky construction on the boundary and the determination of the bulk

handlebody geometries. We will use these results in appendix D.4 to compute the on-shell

action of the gravitational dual.

D.3.1 The boundary geometry

The boundary manifold has a complex structure

z2 =
(v − a1)(v − a3)

(v − a2)(v − a4)
=⇒ z2 =

v(v − 1)

(v − χ)
, (D.14)

where we have used a Möbius transformation to set a1 = 0, a2 = χ, a3 = 1, and a4 →∞,

respectively. In particular, we have

χ =
(a1 − a2)(a3 − a4)

(a1 − a3)(a2 − a4)
. (D.15)

The modulus of the torus is given in terms of the elliptic integral, cf., (D.28),

τ(χ) = i
K(1− χ)

K(χ)
, (D.16)

which implies that a modular transform τ ↔ − 1
τ

corresponds to the exchange χ↔ 1−χ.

Note however, that the Rényi entropy is not invariant under SL(2,C) transformations

which we used to gauge fix ai. On the contrary the mutual Rényi information defined by

I
(2)
A1∪A2

= S
(2)
A1

+ S
(2)
A2
− S(2)

A1∪A2
, (D.17)
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is invariant under SL(2,C). Using the purity of the vacuum state one can relate I(n)(1−χ)

to I(n)(χ). The swap χ↔ 1− χ which is achieved by a2 ↔ a4 exchanges the two choices

of cycles, Cd ↔ Cc. One can use Schottky uniformization1 to directly determine [126]

I(2)(χ) = max
{
I

(2)
Cd

(χ), I
(2)
Cc

(χ)
}

= max

{
− c

12
log

(
28 1− χ

χ2

)
− i π

6
c τ(χ),− c

12
log

(
28 1− χ

χ2

)
+ i

π

6
c

1

τ(χ)

}
.

(D.18)

This result was first derived in [123] and leads to the aforesaid phase transition since

I
(2)
Cd

(χ) dominates for χ < 1
2
.

As explained above, one could construct directly the covering space handlebody, and

recover from it the on-shell action for the geometry. A direct evaluation of on-shell action

turns out to be formidable even for the case of the 2nd Rényi entropy for two-intervals.

We were however able to derive (D.18) directly by computing the gravitational action

in Euclidean signature. As this computation has not been reported in the literature we

present it in appendix D.4. However, we found it somewhat cumbersome to manipulate

for the real-time analysis, so we resorted to a different approach in the main text.

D.3.2 The Euclidean handlebodies

For N = 2 and n = 2 the monodromy problem relies on the following differential

equation

ψ′′(v) +
1

2

[
∆2

(
1

v2
+

1

(v − 1)2
+

1

(v − χ)2
− 2

v(v − χ)

)
− pχ χ (χ− 1)

v(v − 1)(v − χ)

]
ψ(v) = 0 .

(D.19)

1We explain the elements underlying the Schottky uniformization calculation in section 5.4.1 and
derive the result by explicitly evaluating the on-shell gravitational action in Euclidean signature in
appendix D.4.
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In writing this expression we have gauge fixed the branch points using (D.15) and set

pχ = −p2 and set n = 2 after using the relations in (5.75). While the natural map on the

cover is (D.14), for solving (D.19) it will be useful to introduce a new elliptic coordinate

η(v); see (D.26) and rewrite (D.19) using the conformal transformation properties of ψ(v)

and T (v). Under v → f(v) one has

ψ(v) =

(
∂f

∂v

)− 1
2

ψ(f(v)) , Tvv =

(
∂f

∂v

)2

Tff + {f, v} . (D.20)

This implies that the monodromy equation can be brought to the form of a standard

differential equation

d2ψ(η)

dη2
− 2K(χ)2

π2

(
χ− 2

4
+ pχ χ(χ− 1)

)
ψ(η) = 0 . (D.21)

This has solutions in terms of simple exponentials if we also reparameterize the accessory

parameter as

pχ =
1

χ(χ− 1)

[
2− χ

4
+

π2

2K(χ)2
p2

]
. (D.22)

Altogether we find that the desired solution to the inverse map ỹ(v) is given by

ỹ(v) = e2 p η(v) . (D.23)

To complete the solution we need to fix pχ by computing the monodromies around the

two possible choices of cycles: the disconnected one Cd and the connected one Cc in

fig. 5.6.

For two intervals the second Rényi entropy computation leads to the following stress
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energy on a single sheet (using ∆2 = 3
8
):

Tvv(v) =
3

8

(
1

v2
+

1

(v − 1)2
+

1

(v − χ)2
− 2

v(v − χ)

)
− pχ χ (χ− 1)

v(v − 1)(v − χ)
. (D.24)

To complete its specification we fix pχ by computing the monodromies around the two

possible choices of cycles Cd and Cc in fig. 5.6. One finds:

pd = − i
2

=⇒ pχ
∣∣
Cd

=
1

4χ(χ− 1)

[
2− χ− π2

2K(χ)2

]
,

pc =
i

2 τ(χ)
=⇒ pχ

∣∣
Cc

=
1

4χ(χ− 1)

[
2− χ+

π2

2K(1− χ)2

]
,

(D.25)

where τ(χ) is the modulus of the torus and is defined in (D.16).

These are given in (D.25) as a function of the cross-ratio χ.

The torus elliptic map: The elliptic map from the complex v plane to the torus is

η(v) =
π

2K(χ)

∫ v

0

dζ√
ζ(χ− ζ)(1− ζ)

. (D.26)

We can either invoke Legendre integral definition of the incomplete elliptic function2 or

the inverse Jacobi elliptic sine (denoted sn(z,m)) amplitude, and write

η(v) =
π

K(χ)
F

(
arcsin

(√
v

χ

)
, χ

)
=

π

K(χ)
sn−1

(
arcsin

(√
v

χ

)
, χ

)
(D.27)

which fixes the function in the principal domain v ∈ [0, χ]. For the other domains we

analytically continue past the cuts which are at (0, χ) and (1,∞). The normalization

2We define K(x) to be the incomplete elliptic integral of the first kind as in (D.28). The definition
differs from some traditional forms, which define the integral in (D.28) as F (π2 ,

√
x); see for example

[264, Eq. 19.2.4].
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factor is the complete elliptic integral of the first kind

K(x) =

∫ π
2

0

dθ√
1− x sin2 θ

≡ F
(π

2
, x
)
. (D.28)

D.4 The second Rényi entropy for two intervals: Eu-

clidean on-shell action

In this appendix we evaluate the on-shell gravitational action in Euclidean signature

for the second Rényi entropy for two intervals. We will compute the action of the covering

space M2 using the Schottky construction outlined in section 5.4.1. The action was

evaluated numerically for higher Rényi entropies (n > 2) in [126] and here we will evaluate

it analytically for n = 2. From this we can extract the second mutual Rényi information

and thus derive (D.18).

For definiteness we will focus on the choice of cycles Cc, but the other choice of cycles

follows similarly. We previously obtained the coordinate ỹ(v) for the Schottky domain

of the boundary torus (D.23). For the purposes of evaluating the action, it is nicer to

use a different coordinate for the Schottky domain which is related to ỹ(v) in (D.23)

by a PSL(2,C) transformation.3 We choose our new coordinate y(v) to diagonalize the

monodromy around a1 which gives

y(v) = tanh(πpc) tanh (pcη(v)) . (D.29)

To keep future expressions legible we also introduce a parameter χ
S

encoding the complex

3This is not strictly a PSL(2,C) transformation because the determinant is not equal to 1, but the
Schottky construction is only defined up to an overall scaling, which we have chosen such that y(1) = 1.
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structure via

χ
S
≡ y(χ) = tanh2(πpc), (D.30)

where we have used η(χ) = π. The fundamental domain Dbdy of the Schottky quotient

is the exterior of the two discs bounded by the circles C1, C̃1 which we have illustrated

in fig. D.3. The generator of the Schottky group identifies these two circles as discussed

previously. The replica symmetry acts simply on the fundamental domain described by

the y(v) coordinate: y(v)→ −y(v).

We construct the bulk geometry by filling in the cycles Cc. The bulk geometry has

the standard Poincaré metric

ds2 =
dξ2 + dy dȳ

ξ2
(D.31)

with the fundamental domain in the bulk obtained by extending the boundary circles,

whose radius is ` =
1−χ

S

2
, into hemispheres and identifying these hemispheres by the

action of the Schottky group, as illustrated in fig. D.4.

0 χ 1 ∞

v

L1

y

C1C̃1

χ
S 1−χ

S−1

L1
Z2 replica sym.

Figure D.3: Left: one sheet of the boundary geometry B2,2 with the generator L1 of the
Schottky group corresponding to non-trivial monodromy around the cycle containing
one of the branch cuts. Right: the image of B2,2 in the y-plane with the two circles
C1, C̃1 identified by the action of the Schottky group and their interiors removed to
give the fundamental domain. The upper and lower y-plane are related by the Z2

replica symmetry with each corresponding to a sheet of B2,2.
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D.4.1 On-shell gravitational action

We now proceed to evaluate the Euclidean gravitational action for the metric (D.31)

on the bulk fundamental domain Dbulk. We need to evaluate the action

SEgr[M2] = − 1

16πGN

[∫

M2

d3x
√
g (R + 2) + 2

∫

Bc

√
γ K − 2

∫

Bc

√
γ

]
. (D.32)

The boundary curvature counterterm in (5.49) is absent here since the torus is flat.

We will use Fefferman-Graham coordinates (ρ, v, v̄) to define the cut-off surface be-

cause these give a simple way to extract the contribution from the branch points. The

contribution comes from the conformal factor between the (ξ, y, ȳ) coordinates and the

Fefferman-Graham coordinates, cf., (5.36). The transformation between the coordinates

is given by

ξ =

√
ρ e−ϕ

1 + ρ e−2ϕ |∂zϕ|2
, y = w +

ρ e−2ϕ ∂z̄ϕ

1 + ρ e−2ϕ |∂zϕ|2
, (D.33)

where we set Ω ≡ e−ϕ in (5.42) and have

ϕ = − log

[
π
√
χ
S
pc

2K(χ)

1√
|v(v − 1)(v − χ)|

sech(pcη(v)) sech(pcη̄(v̄))

]
. (D.34)

We define the cut-off surface by ρ = ρc which describes a non-trivial cut-off surface

Bc in Poincaré coordinates described by ξ = ξc(y, ȳ) restricted to Dbulk.

The three contributions to the action can be evaluated directly. We find

SEH[M2] =

∫

M2

d3x
√
g (R + 2) = −2

∫

M2

dy dȳ
dξ

ξ3
,

SGH[M2] = 2

∫

Bc

√
γ K = 2

∫

Bc
dy dȳ

(
e2ϕ

ρc
+ 2|∂yϕ|2 − 2∂y∂ȳϕ

)
,

Sct[M2] = 2

∫

Bc

√
γ =

∫

Bc
dy dȳ

(
e2ϕ

ρc
+ 4|∂yϕ|2

)
.

(D.35)
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ξ = ξc(y, ȳ)

C1C̃1

L1

ξ

y

Figure D.4: The bulk fundamental domain of the Schottky construction consisting
of two hemispheres excised from AdS3 with their boundaries identified by the action
of the Schottky group. The bulk coordinate ξ is cut off by the surface ξ = ξc(y, ȳ)
(green).

In deriving the boundary quantities we used

γyy =
1

ξ2
c

(∂yξc)
2 , γȳȳ =

1

ξ2
c

(∂ȳξc)
2 , γyȳ =

1

ξ2
c

(∣∣∂yξ2
c

∣∣+
1

2

)
,

K = 2
(
2ξc∂y∂ȳξc − 4|∂yξc|2 + 1

) (D.36)

The boundary integrals above are straightforward, but the bulk integral in SEH has

two distinct contributions: one contribution comes from the region of the bulk below the

cut-off surface and the other comes from the region below the hemispheres. Picking θ to

be the azimuthal coordinate around the hemisphere (whose radius we recall is
1−χ

S

2
) we

can evaluate the two contributions and obtain

SEH[M2] = −2

∫

M2

dy dȳ
dξ

ξ3
= −

[∫

Bc
dy dȳ

1

ξc(y, ȳ)2
+ 2

∫

hemi

dy dȳ
1

ξhemi(y, ȳ)2

]

= −
[∫

Bc
dy dȳ

(
e2ϕ

ρc
+ 2|∂yϕ|2

)
+ 2

∫ 2π

0

dθ

∫ rcut−off(θ)

0

dr
r

`2 − r2

]

= −
[∫

Bc
dy dȳ

(
e2ϕ

ρc
+ 2|∂yϕ|2

)
+ 2

∫ 2π

0

dθ
(

2ϕ− log
(ρc
`2

))]
,

(D.37)

Putting all of the pieces in (D.35) together we see that the leading divergences cancel
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as they must and the Euclidean action (D.32) becomes

SEgr[M2] =
1

8πGN

[∫

Bc
dy dȳ

(
|∂yϕ|2 + 2∂y∂ȳϕ

)
+ 2

∫ 2π

0

dθ ϕ+ 4π log(`)− 2π log(ρc)

]
.

(D.38)

We will evaluate each of these terms in turn.

The first term in (D.38) can be computed very similarly to the one interval case

(5.56) where we integrate by parts to reduce the integral to the contributions from the

boundaries of the domain. There are boundary terms from the circles {C1, C̃1} in the

y-plane and boundary terms from the discs Dδ
i of radius δ that we cut out around each

branch point ai in the v-plane. Finally, there are boundary terms from the IR cut-offs in

the y- and v-planes. We thus find:

∫

Bc
dy dȳ |∂yϕ|2 = δ

3∑

i=1

∮

ai

ϕ∂|v|ϕ+

∫ 2π

0

dθ `ϕ∂rϕ|r=` + SIR

= −π log

[(
π pc
√
χ
S

2K(χ)
√
δ

)3
sech2(π pc) csch2(π pc)

χ(1− χ)

]
−
∫ 2π

0

dθ ϕ+ SIR ,

(D.39)

where the contribution from the boundaries in the v-plane has a factor of 2 owing to

the two sheets of B2,2 and in the last line we have used the fact that ∂rϕ|r=` = −1/`.

The term labeled SIR is the contribution from large radius region in the y or v-planes,

and in particular includes the contribution from the branch point a4. We evaluate these

separately in appendix D.4.3 as they are involved, but quote here the final result:

SIR = π

[
log

(
K(χ)

√
δ χ

S

25π pc

)
+ 2 log(ρc) + 3 log(a4)− 8 log(Rv)

]
, (D.40)

where we are meant to take the limit Rv, a4 →∞.

The second term in (D.38) reduces to a sum of localized delta functions as in the
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one-interval case and thus vanishes,

∫

Bc
dȳ dy ∂y∂ȳϕ

= 2

∫

Ĉ\∪iDδi
dv̄ dv ∂v∂v̄ϕ =

π

4

∫

Ĉ\∪iDδi
dv̄ dv δ (|v|) + δ (|v − 1|) + δ (|v − χ|)

= 0.

(D.41)

The third term in (D.38) turns out to be formidable. We use various elliptic function

identities to evaluate it in appendix D.4.2 and find when all the dust settles the result

∫ 2π

0

dθ ϕ = 4π log

(
2

3
2 π pc
K(χ)

cosh(π pc)

)
− 4π2pc. (D.42)

Plugging all of these pieces into (D.38), we arrive at our final answer for the Euclidean

action:

SEgr[M2] = −π c
3
pc +

c

12
log
(
δ2χ(1− χ)

)
+
c

4
log(a4)− 2c

3
log(Rv). (D.43)

To obtain the Rényi entropy, we need to normalize by the gravitational action of the

sphere SEgr[M1]. However, one needs to be careful because we have chosen a particular

IR regularization scheme to deal with the fact that we placed one of the branch points

at infinity (this is the same as the regularization scheme used in [265]). As a result, the

action on the sphere is no longer unity like in the single interval case, instead one finds

SEgr[M1] =
c

6
log

(
ρc
R2
v

)
− c

3
. (D.44)
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The second Rényi entropy for two intervals is thus (using pc from (D.25))

S
(2)
A1∪A2

= SEgr[M2]− 2SEgr[M1]

= −i πc

6τ(χ)
+

c

12
log
(
δ2χ(1− χ)

)
+

2c

3
+
c

4
log(a4)− c

3
log(ρc).

(D.45)

We emphasize that this only gives the second Rényi entropy for the connected phase

1/2 ≤ χ < 1. For the second mutual Rényi information I(2) we need the second Rényi

entropy for the single interval using our choice of regularization and thus it will differ

from (5.57). It is given by

S
(2)
Ai =

c

4
log
(
δ

1
3 |a2i − a2i−1|

)
− c

3
log(2)− c

6
log(ρc) +

c

3
. (D.46)

We thus arrive at the second mutual Rényi information (with the regulators δ, a4, ρc

canceling)

I(2)(χ) = − c

12
log

(
28 1− χ

χ2

)
+ i

π

6
c

1

τ(χ)
. (D.47)

This is in complete agreement with the result (D.18) obtained from the accessory param-

eter (in the connected phase). The disconnected case proceeds along similar lines with

pc → pd.

D.4.2 Hemisphere integral

We now turn to the calculation of the integral of ϕ = − log Ω along the azimuthal

angle of the hemisphere appearing in (D.38). To do this, we first need to rewrite the

coordinate y along the semi-circles given by the intersection of the circles C1, C̃1 with the

upper-half y-plane. These semi-circles are the images of the intervals [χ+ iε, 1 + iε] and

[χ− iε, 1− ε] in the v-plane, respectively; see fig. D.3. In the interval v ∈ [χ, 1], the torus
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elliptic map4 is given by continuing (D.27) outside the principal domain,

η(v ± iε) = ±π + i
π

K(χ)
sn−1 (Θ(v), 1− χ) , (D.48)

with

sin Θ =

√
(v − χ)

(1− χ)v
, v =

χ

1− (1− χ) sin2 Θ
. (D.49)

Using this the map y(v) in the interval v ∈ [χ, 1] then takes the form

y(v ± iε) = tanh(π pc) tanh (pcη(v)) =
±χ

S
+ iζ(v)

1± iζ(v)
, (D.50)

where we have defined a new map ζ(v) using the addition formula, viz.,

ζ(v) = tanh(π pc) tan (ipc(π − η(v))) = tanh(π pc) tan

(
π pc
K(χ)

sn−1 (Θ(v), 1− χ)

)
.

(D.51)

This gives the desired description of the semi-circle. Note that we can invert Θ(ζ) and

write

sin Θ = sn(w, 1− χ) , w =
2K(1− χ)

π
coth(π pc) ζ(v) . (D.52)

Armed with these definitions we can evaluate ϕ(v) in the interval v ∈ [χ, 1] to be

ϕ(v) = −1

2
log

(
dy

dv

dȳ

dv̄

∣∣∣∣
v=v̄

)
= − log

(
(1− χ

S
)ζ ′(v)

ζ(v)2 + 1

)
. (D.53)

Likewise, the azimuthal angle as a function of v is

θ(v) = tan−1

(
2ζ(v)

ζ(v)2 − 1

)
. (D.54)

4We find it useful to employ Jacobian notation cf., [264, Sec. 22.1], to avail of various identities. A
useful reference for elliptic function properties is [266].
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The desired integral thus becomes

∫ 2π

0

dθ ϕ = 2

∫ π

0

dθ ϕ = −4

∫ 1

χ

dv

(
ζ ′(v)

ζ(v)2 + 1

)
log

(
(1− χ

S
) ζ ′(v)

ζ(v)2 + 1

)
. (D.55)

Evaluating the argument of the logarithm we find it convenient to split integral into two

pieces, one of which can be integrated directly, leading to

∫ 2π

0

dθ ϕ = 2π log

(
8K(χ) cosh3 (π pc) sinh (π pc)

π pc

)
− 4π2 pc + I(χ), (D.56)

with

I(χ) = 4

∫ 1

χ

dv
ζ ′

1 + ζ2
log
(√

v(1− v)(v − χ)
)
. (D.57)

To evaluate I(χ) we evaluate the integrand in terms of Jacobi elliptic functions:

√
v(1− v)(v − χ) =

χ(1− χ) cos Θ sin Θ
(
1− (1− χ) sin2 Θ

) 3
2

=
χ(1− χ) sn(w, 1− χ) cn(w, 1− χ)

dn3(w, 1− χ)
,

(D.58)

where we have used the relations sn2(z,m)+cn2(z,m) = 1 and m sn2(z,m)+dn2(z,m) =

1, and w is defined above in (D.52). The integral changing variables to w, with w̃ = πw
2K(x)

,

is

I(χ) = 2π log (χ(1− χ)) + J (1− χ)

J (x) =
2π coth(π pc)

K(x)

∫ K(x)

0

dw
sec2 w̃

coth2(π pc) + tan2 w̃
log

(
sn(w, x) cn(w, x)

dn3(w, x)

)
.

(D.59)

We can now exploit the fact that Jacobian elliptic functions have an infinite product
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representation:

sn(w, x) = 2

(
qx
x

) 1
4

sin w̃
∞∏

n=1

1− 2 q2n
x cos(2w̃) + q4n

x

1− 2 q2n−1
x cos(2w̃) + q4n−2

x

cn(w, x) = 2

(
(1− x) qx

x

) 1
4

cos w̃
∞∏

n=1

1 + 2 q2n
x cos(2w̃) + q4n

x

1− 2 q2n−1
x cos(2w̃) + q4n−2

x

dn(w, x) = (1− x)
1
4

∞∏

n=1

1 + 2 q2n−1
x cos(2w̃) + q4n−2

x

1− 2 q2n−1
x cos(2w̃) + q4n−2

x

.

(D.60)

where qx = eπiτ(x) is the elliptic nome. These products inside the logarithm become an

infinite sum of logarithms and a change of variables to tan(w̃) allows for a straightforward

evaluation of the resulting integrals. Once the dust settles, we arrive at

I(χ) = π log

(
16 q1−χ χ(1− χ) coth2(π pc)

(coth(π pc) + 1)4

)
+ 4π

∞∑

n=1

log

(
1 + q2n+1

1−χ
1− q2n

1−χ

1− q2n+1
1−χ

1− q2n
1−χ

1 + q2n
1−χ

1− q2n
1−χ

)

(D.61)

which can be simplified using (D.60) evaluated at special values of w to give

I(χ) = 2π log

(
π3 p3

c sech(π pc) csch(π pc)

K(χ)3

)
. (D.62)

Inserting this result into (D.56) gives the result (D.42) quoted earlier.

D.4.3 IR divergences

The final ingredient in our computation is the evaluation of the long-distance contri-

butions encoded in SIR, which originate from several different places and we will discuss

each of them in turn.

• Firstly, the integration by parts of the ‘kinetic term’ for ϕ in (D.39) contributes.

Imposing large radius cut-offs Ry and Rv in the y- and v-planes, respectively, we
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obtain the following boundary contributions to (D.39)

lim
Rv ,Ry→∞

∫ 2π

0

dθ Rvϕ∂rϕ|r=Rv +
1

2

∫ 2π

0

dθ Ryϕ∂rϕ|r=Ry

= lim
Rv ,Ry→∞

2

∫ 2π

0

dθ ϕ(Rv, θ)−
∫ 2π

0

dθ ϕ(Ry, θ) = lim
Rv ,Ry→∞

4πϕ(Rv)− 2πϕ(Ry) ,

(D.63)

using the fact that ∂rϕ|r=Rv = 2/Rv and ∂rϕ|r=Ry = −2/Ry. Furthermore, ϕ becomes

angle independent in the infinite radius limit (as we shall see later).

• The second contribution comes from working in Poincaré coordinates which misses an

extra term coming from the curvature of the y sphere (which is pushed off to infinity in

these coordinates). To find this extra term, we pass to global coordinates with metric

ds2 =
dξ2

ξ2
+R2

y

(
Ry

ξ
− ξ

Ry

)2
dy dȳ

(R2
y + |y|2)2

, (D.64)

which recovers the Poincaré metric for Ry → ∞. One finds the extra contribution

by computing the Einstein-Hilbert action with this metric in global coordinates and

comparing to Einstein-Hilbert action in Poincaré coordinates (D.35). One thus finds

the missing term to be

lim
Ry→∞

1

8πGN

∫
dy dȳ

R2
y

(R2
y + |y|2)2

(
log

(
ρc
R2
y

)
− 2ϕ

)

= lim
Ry→∞

1

4GN

log

(
ρc
R2
y

)
− 1

2GN

ϕ(Ry)

(D.65)

• The third and final contribution, requires careful analysis of the contribution to the

action from the branch point a4 which we have sent to infinity. This was discussed

in Appendix D of [126] for the case n > 2. The main challenge with obtaining this

contribution is that when we set a4 = ∞, we have y(a4 = ∞) = ∞ so we cannot
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distinguish the contribution of the branch point from the contribution of the sphere

curvature at y =∞ discussed above. We give an analytic estimate for n = 2 below.

To understand the a4 contribution, we deform the map y slightly so that a4 does not

map to infinity, instead y(a4) = y4 � 1 with some point v∞ ≈ a4 on one sheet such that

y(v∞) =∞. This will allow us to separately find the contribution from a4 and from the

sphere curvature (D.65). We will then take the limits y4 →∞ followed by a4 →∞.

Now that a4 is finite, we can use that y(v) is a power series in (v − a4)
1
2 near a4 by

the Schottky construction to write

y(v) = y4 + µ4 (v − a4)
1
2 +O(v − a4) . (D.66)

Therefore, the contribution of a4 to the integral of the ‘kinetic term’ for ϕ evaluated in

(D.39) is given by

−
∮

a4

ϕ∂|v|ϕ = π log

( |µ4|
2ε

1
2

)
. (D.67)

We next find the behavior of y and ϕ at Ry and Rv. Since we only put v∞ on one sheet,

y(v) must have an order one pole at this point so near v∞ (with residue ν∞), we have

y(v) ≈ ν∞
v − v∞

=⇒ lim
Ry→∞

ϕ(Ry) = lim
Ry→∞

log

( |ν∞|
R2
y

)
. (D.68)

Recall that the accessory parameters are chosen such that y is regular at v = ∞. It is

not branched at this point since a4 is finite, thus near v =∞

y(v) = y∞ +
µ∞
v

=⇒ lim
Rv→∞

ϕ(Rv) = lim
Rv→∞

log

(
R2
v

|µ∞|

)
. (D.69)

Having extracted all the necessary contributions from a4, Rv, and Ry, we can now take

the desired limits y4 → ∞ and then a4 → ∞. From (D.67) and plugging (D.68) and
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(D.69) into (D.63) and (D.65), one finds that the contribution to the action from the

newly defined parameters is

S = − 1

4GN

log

(
|ν∞| |µ4|

1
2

|µ∞|2

)
. (D.70)

We need to understand the behavior of these three parameters when we take the desired

limits. To take the limit y4 →∞ (or equivalently a4 → v∞), we use that y is 2-branched

at a4 to write the inverse function v(y) near y4 as

v(y) ≈ a4 +
y4

4

µ2
4

(
1

y
− 1

y4

)2

, (D.71)

where we fixed the coefficient of the quadratic term by comparison with (D.66). One can

then extract from (D.71) the relation between ν∞ and y4, µ4 by taking y large and then

y4 →∞ with the result

v − v∞ = lim
y4→∞

(v − a4) =⇒ ν∞ = −2
y3

4

µ2
4

. (D.72)

Furthermore, observe that in the limit y4 →∞ the behavior of y near a4 is given by

lim
y4→∞

y(v) ≈ − |y4|2

|µ4| (v − a4)
1
2

. (D.73)

Taking the limit a4 →∞ we can find the relationship between
y2
4

µ4
and µ∞ as follows.

We compute the residue at v =∞ of y(v)2 using (D.69) and equate it to the limit a4 →∞

of the residue at v = a4 of y(v)2 using (D.73). We repeat the same procedure for the

function y(v)2/v and then plug the latter equation into the former. The final result is

lim
a4→∞

|µ∞| = lim
a4→∞

√
a4 |y4|2
2 |µ4|

. (D.74)
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This completes the analysis of the parameters in S in the desired sequence of limits, in

particular we can write the argument of the logarithm in terms of a4, y4, and µ4. We

want to compute the latter two parameters from the analytic solution for y(v) (D.29).

However, this was obtained by solving the monodromy problem which assumed that

a4 = ∞. The function y(v) is regular at v = ∞ for finite a4, but this is no longer the

case when a4 =∞ so that the map is 2-branched at v =∞ with the following behavior

y(v) ≈ µ̂4 v
1
2 . (D.75)

Taking the limit a4 →∞ and then v →∞ in (D.73) and comparing to (D.75) gives

µ̂4 = lim
a4→∞

|y4|2
a4 |µ4|

. (D.76)

Finally, it remains to find an explicit expression for µ̂4 from (D.29). Using (D.26),

one finds for small δ

η

(
1

δ

)
= π τ− π

K(χ)

√
δ+O

(
δ

3
2

)
=⇒ lim

δ→0
y

(
1

δ

)
= −K(χ)

√
χ
S

π pc
√
δ

=⇒ µ̂4 = −K(χ)
√
χ
S

π pc
.

(D.77)

Therefore,

S = − 1

4GN

log

(
8

a
3
2
4 |µ̂4|

1
2

)
=

1

8GN

log

(
a3

4K(χ)
√
χ
S

26 π pc

)
. (D.78)

Putting all of this together, we find the total contribution from the long-distance pieces:

SIR = π

[
log

(
K(χ)

√
δ χ

S

25π pc

)
+ 2 log(ρc) + 3 log(a4)− 8 log(Rv)

]
. (D.79)
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D.5 Actions, signs, and all that

We collect here some useful facts about actions and signs that the reader might find

helpful in checking various details of the paper.

D.5.1 Signs of gravitational action

The Lorentzian gravitational action S which enters in the path integral measures as

eiSgr for standard time-ordered scattering computations, or as ei(S
k
gr−Sbgr) is given by

Sgr ≡ Skgr =
1

16πGN

[∫
dd+1x

√−g (R + d(d− 1)) + 2

∫
ddx
√−γ K + Sct

]
(D.80)

The Euclidean path integral on the other hand is defined to be one with a real measure

e−S
E
gr which in turn can be obtained by analytic continuation. When we Wick rotate t→

−i t
E

we pick end up picking a factor of −i from the integration measure, which combined

with the i in the quantum weighting, gives +1. A more straightforward statement is that

the Euclidean action should correspond to the Euclidean Hamiltonian and generically be

positive definite. This is why one defines:

SEgr = − 1

16πGN

[∫
dd+1x

√
g (R + d(d− 1)) + 2

∫
ddx
√
γ K + Sct

]
(D.81)

The evaluation of the functional integral is supposed to give a generating function

(or a partition function), Z which in turn is expressed as a free energy (to pick up the

connected components). We usually define therefore

Z = e−I =

∫

L

[Dg] eiSgr , Z = e−I =

∫

E

[Dg] e−S
E
gr (D.82)

In thermodynamic systems I = βF where F is the free energy, which for sensible
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thermal systems is negative F = E − TS. This is necessary for positivity of entropy

and for the usual intuition that systems with lower free energy dominate the canonical

ensemble (since S = −∂F
∂T

using dF = −S dT ). This implies I < 0 (it is negative of the

pressure). A saddle point or stationary phase evaluation of the above path integrals then

gives:

I = SEgr

∣∣
on-shell

, I = −i Sgr = −i(Skgr − Sbgr) = 2 Im(Skgr) (D.83)

These statements can be checked for the planar-Schwarzschild-AdS5 black hole which

does define a sensible thermodynamic system for the dual CFT plasma. With a UV

cut-off at r = rc in Schwarzschild coordinates one finds:

∫
d5x
√
g (R + 12) = −2(r4

c − r4
+)

2

∫
d4x
√
γ K = 8 r4

c − 4r4
+

Sct = −6r4
c + 3 r4

+

(D.84)

giving SEgr

∣∣
on-shell

= I = −r4
+ which is the expression that correctly reproduces the pressure

of the dual plasma.

D.5.2 Complex integral identities

In our evaluation of the În in Euclidean signature for N -intervals we made use of two

identities which we quote here in generality. First, consider an integral I

I =

∫

Rε

dvdv̄ F(v, v̄) = i

∫

Rε

F(v, v̄) dv ∧ dv̄ (D.85)

over a domain Rε of the complex plane defined by excising discs Dε
i centered at ai

Rε = C\
(
∪jDε

j

)
(D.86)
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If one wishes to consider the variations of the integral with respect to the locations ai

then not only should one consider the explicit variation of the integrand but also account

for the variation of the domain Rε. The latter is a boundary integral and the general

result we need is

∂

∂ai
I = i

∫

Rε

∂

∂ai
F(v, v̄) dv ∧ dv̄ + i

∮

∂Dεi

F(v, v̄) dv̄ − i
∮

∂Dεi

F(v, v̄) dv (D.87)

Another relation we have employed is the Stokes’ theorem on the Dolbeault complex

(d = ∂ + ∂̄). For a holomorphic f(v) we have

i

∫

R

(
∂vf(v) + ∂v̄ f̄(v̄)

)
dv ∧ dv̄ = i

∫

R

d
(
f dv̄ − f̄ dv

)
= i

∫

∂R

(
f dv̄ − f̄ dv

)
(D.88)
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Appendix to Chapter 6

E.1 Calculation of the Corner Terms

In this appendix, we calculate the contribution to the action from the corners using

the expression in [183].

Without loss of generality, let us assume t̃ < δ, where t̃ is the new time coordinate

corresponding to the Cauchy slice with constant global time T . The corners where this

Cauchy slice meets the asymptotic cutoff surface r = rc = 1
ε

contribute corner terms to

our gravitational action. First we compute the normal vectors for the surfaces. For the

spacelike Cauchy slice, its normal vector is

na =
√

1 +X2dTa (E.1)

In global coordinates, the cutoff surface r = rc is

X2 − r2
c

r2
s cos2 T

+ 1 = 0, (E.2)
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with the normal vector

ma =
1√
N

(
−2r2

c tanT

r2
s cos2 T

dTa + 2XdXa

)
, (E.3)

where N is the normalization factor.

Finally, the corner term is given by

Sc = 2× 2

∫

corner

ΦKdx = 4φbrc sinh−1(n ·m) = 4φbrs sinT +O(r−2
c ) (E.4)

where we have included an extra factor of 2 to account for two corners.
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Appendix to Chapter 7

F.1 Replica symmetry and the entropy of a holo-

graphic theory on Mn: an example

This appendix provides a simple example illustrating the discussion in section 7.3.2 of

SQFT for holographic field theories onMn. For simplicity, we consider Jackiw-Teitelboim

gravity with two boundaries, and we focus on the Renyi problem associated with the en-

tropy of a single boundary in the vacuum state. The classical real-time replica wormholes

Mn for this problem were constructed in [4], which found that they may be built from

2n manifolds M i
−, M̃

j
− each with the identical metric

ds2 =
4(x̃+x̃−)

1
n
−1dx̃+dx̃−

n2(1− (x̃+x̃−)
1
n )2

. (F.1)

The AdS boundaries are located at x̃+x̃− = 1. We take the splitting surface γ to lie at

x̃+ = x̃− = 0 and we sew the replicas together in the usual way along arbitrary spacelike

surfaces connecting γ to the right AdS boundary (where x̃± > 0).

We now couple our JT-gravity system to a holographic quantum field. To make the

446



Appendix to Chapter 7 Chapter F

example non-trivial, we will allow the quantum field to be in any member of a one-

parameter family of states labelled by an amplitude A, with A = 0 being the vacuum

state. In general, we would expect there to be some back-reaction on the metric (F.1) for

A 6= 0. But for simplicity we will choose a model for which this back-reaction vanishes

at the order where SQFT is given by the classical HRT entropy.

In particular, we take our holographic QFT to be dual to gravity on an AdS3 spacetime

with boundary metric given by (F.1). Since the boundary metric itself has a boundary,

we also take the bulk to be truncated by a dynamical EOW brane anchored to the AdS

boundaries of (F.1).

As described in section 7.3.2, the relevant HRT surfaces γN will stretch from some

point γ in the 2-d JT-gravity spacetime (F.1) to this end-of-the world brane.

It will be convenient to define our model so that the bulk spacetime N is always

described by the same bulk metric and such that it always has vanishing boundary stress

tensor. We can do so while still allowing non-trivial fluctuations in the bulk HRT entropy

by including a dynamical field φ that lives on the EOW brane. We take this φ to be a

massless scalar on the brane so that the bulk action takes the form

I = − 1

16πG

∫

Nn
d3x(R− 2Λ)− 1

8πG

∫

EOW

d2x
√
hK −

∫

EOW

d2x
√
hhij∂iφ∂jφ (F.2)

with appropriate counterterms. Here hij is the induced metric on the EOW brane.

Our one-parameter family of states will then be defined by imposing the boundary

condition

φb = A
(
x̃+ + x̃−

)
(F.3)

on every M i
−, M̃ i

−. As we can see, this boundary condition has the Zn replica symmetry.

We now solve for the backreaction caused by the EOW-brane scalar field. The equation
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of motion for hij gives

Kij − hijK = 8πGTij (F.4)

where

Tij =
2√
h

δIφ
δhij

= ∂iφ∂jφ−
1

2
hijh

kl∂kφ∂lφ. (F.5)

The equation of motion for the scalar field gives

∂i(
√
hhij∂jφ) = 0 (F.6)

The boundary metric (F.1) suggests that we describe the bulk using the hyperbolic

slicing of AdS3 and replace each hyperbolic slice with the R = −2 metric (F.1) so that

the bulk metric takes the form

ds2 = dρ2 + cosh2 ρ

(
4(x̃+x̃−)

1
n
−1dx̃+dx̃−

n2(1− (x̃+x̃−)
1
n )2

)
. (F.7)

Without an EOW brane the coordinate ρ would range over the entire real line: −∞ <

ρ < ∞. However, we take the boundary metric (F.1) to live at ρ = −∞, and the EOW

brane will cut off the bulk at some ρ = ρEOW (x̃+, x̃−). When no matter field is present,

the brane lies at ρEOW = 0, where the extrinsic curvature vanishes.

We wish to solve the equations of motion to find ρEOW perturbatively in A. At zeroth

order we have ρ = 0 on the brane. We may thus choose boundary conditions in the far

past (or on a Euclidean piece of an appropriate Schwinger-Keldysh contour) so that at

this order we have

φ = φ0 := A
(
x̃+ + x̃−

)
, (F.8)

Its stress tensor on the brane is T++ = T−− = A2, and the trace vanishes, T+− = 0.

To compute backreaction, we take the brane to be located at ρ = ρ1(x̃+, x̃−), whose
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normal is

nµdx
µ =

1

N

(
dρ+ ∂+ρ1dx̃

+ + ∂−ρ1dx̃
−) . (F.9)

To leading order in ρ1, the EOW brane extrinsic curvature Kµν = ∇µnν has components

K++ =
1

nx̃+

(
2

1− (x̃+x̃−)
1
n

− n− 1

)
∂+ρ1 − ∂2

+ρ1 (F.10)

K−− =
1

nx̃−

(
2

1− (x̃+x̃−)
1
n

− n− 1

)
∂−ρ1 − ∂2

−ρ1 (F.11)

K+− = − 2(x̃+x̃−)
1
n
−1

n2
(

1− (x̃+x̃−)
1
n

)2ρ1 − ∂+∂−ρ1 (F.12)

Solving the equations of motion

Kij = 8πGTij, (F.13)

one finds that the position of the EOW brane is

ρ1(x̃+, x̃−) = −8πGA2n

4n2 − 1

(1 + 2n− (2n− 1)(x̃+x̃−)
1
n )

2(1− (x̃+x̃−)
1
n )

(
(x̃+)2 + (x̃−)2

)
. (F.14)

The entanglement entropy of Σγ is given by the length of the HRT surface (geodesic)

that goes from γ to the EOW brane. For our choice of coordinates, the geodesics of

interest are given by (x̃+, x̃−) = const, −∞ < ρ < ρ1. Thus the entanglement entropy of

Σγ is given by

SQFT [γ] =
1

4GN

∫ ρ1(x̃+,x̃−)

−1/ε

dρ =
ρ1(x̃+, x̃−) + 1/ε

4GN

. (F.15)

where we have introduced a cutoff at ρ = −1/ε. Rewriting the above formulae in terms

of the coordinates X̃± ≡ (x̃±)
1
n , it is then easy to see that first derivatives of SQFT with
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respect to X̃± vanish at the splitting surface γ (x̃+ = x̃− = 0):

dSQFT [γ]

dX̃±
= 0. (F.16)

F.2 The shadow as a Wick rotation

This appendix illustrates how, when the real-time saddle Mn is a Wick rotation

of some ME
n , the extended shadow ŜR can be taken to be defined by a different (and

smoother!) Wick rotation of ME
n .

As mentioned in footnote 15, any such ME
n must have a Z2 symmetry that acts

simultaneously by a reflection across a fixed-point set F and by complex-conjugating all

sources. This symmetry is a consequence of hermiticity for each copy of the density matrix

employed in the replica trick. The set F thus partitionsME
n pieces, each containing n/2

replicas (whether n is odd or even). The extended shadow ŜR can then be defined by

introducing a Euclidean time τ for which F is τ = 0 and then performing the standard

Wick rotation in terms of τ . For even n, both the of F to the left and right of γ coincide

with surfaces ΣM i
−,R

,ΣMj
−,R

so that ŜR has a Z2 reflection symmetry, while for odd n the

left part of F instead coincides with some ΣMj
−,L

(which by replica symmetry has the

same geometry as ΣM i
−,L

). See figure F.1.
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• • •

ME
n ME

4F = ΣM1
−,R ∪ ΣM3

−,R

ΣM1
−,RΣM3

−,R

ME
3F = ΣM1

−,R ∪ ΣM3
−,R

= ΣM1
−,R ∪ ΣM1

−,L

ΣM1
−,RΣM3

−,L

ΣM1
−,L

Figure F.1: All panels: Examples for various n of the Euclidean manifolds ME
n

that can be Wick rotated to obtain the real-time saddle Mn. We take these to have
replica and conjugation symmetries. Each conjugation symmetry leaves invariant
some combination of dashed and solid black surfaces. As a result, the induced metric
is real on these surfaces and the Euclidean-signature extrinsic curvature is imaginary.
Thus Wick rotation to Lorentz signature gives real Cauchy data on these surfaces.
Center and Right: For the cases n = 4 and n = 3, we may consider symmetries that
act simultaneously by complex conjugation and by reflection across the red surfaces
F shown. In each case, we may take F to be the surface τ = 0 and then Wick rotate
τ to define a Lorentz signature spacetime. The result is not Mn (which is given by
a different Wick rotation). Instead, it gives a valid extended right shadow ŜR. In
the even case (center), this shadow ŜR has a right/left Z2 reflection symmetry that
for swaps the isometric surfaces Σ

M
n/2+1
− ,R

and ΣM1
−,R

. But in the odd case the fact

that all dashed surfaces are related by replica symmetry means that ŜR is a smooth
manifold whose initial data on F matches that of any M i

− on ΣM i
−

.
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Appendix to Chapter 8

G.1 Properties of the JT action

This appendix discusses a number of details regarding asymptotically AdS2 Jackiw-

Teitelboim gravity. After defining the theory by stating the action and boundary con-

ditions in section G.1.1, additivity of the JT action in the sense of (8.36) is shown in

section G.1.2. The relation to the Schwarzian action is then reviewed in section G.1.3,

and the Schwarzian form is then shown to be bounded below in section G.1.4.

G.1.1 Action and Boundary conditions for JT gravity

Much of the later analysis in this appendix will involve study of the boundary condi-

tions for asymptotically AdS2 JT gravity. The purpose of this section is to describe such

boundary conditions in detail. We consider here the pure JT gravity theory consisting of

only a dilaton φ and a metric g on a 2d spacetime M, without additional matter fields.

While our boundary conditions are just those of e.g. [51] (which are the Euclidean ver-

sions of those of [213]), we take this opportunity to rewrite them in a form more similar

to that commonly used to describe asymptotically locally Anti-de Sitter spacetimes in
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higher dimensional theories of gravity. For use with our cut-and-paste constructions, we

also allow a slight extension of the usual boundary conditions to in which certain fields

can be non-smooth on a codimension-1 surface. Below, we set the AdS2 scale ` to 1.

The first step in defining configurations of our theory is to consider 2-dimensional

compact manifolds M̂ with boundaries. These are perhaps most simply defined as the

spaces obtained from S2 by i) removing n open disks, which creates n circular boundaries

that we label i = 1, . . . , n, ii) choosing g < n/2 and then for i ≤ g identifying the ith

circular boundary with the (i + g)th circular boundary, iii) perhaps filling in one of the

remaining circular boundaries with a cross-cap in order to obtain the non-orientable

cases. Examples are shown in the left panel of figure G.1.

However, in order to accommodate the cut-and-paste constructions described in the

main text, we also consider certain 2d manifolds with corners at their boundaries. In

practice, it will be sufficient to define these by starting with one of the above 2d manifolds

M̂ with boundary (and without corners), choosing any smooth 1d surface Σ in that

manifold that divides M̂ into two parts, and removing one of the parts. We call what is

left a manifold M with boundaries and corners; see the right panel of figure G.1.

The boundary of the final M now consists of two types of segments. The first type,

whose union we we call the asymptotic boundary ∂asM, consists of those segments in

∂M which also lie on the boundary of the parent space M̂ from which M was cut:

∂asM = ∂M∩ ∂M̂. The second type, whose union we call the finite boundary ∂fM,

consists of the remainder which we see must in fact form the slicing surface Σ (so that

∂fM = Σ). In general, ∂asM and ∂fM will intersect at a finite number of points.

We wish to consider metrics g on M which are the restriction of metrics ĝ on the

parent space M̂ and which in some region near ∂asM̂ can be written in the form

ds2 =
dz2 + h(θ, z)dθ2

z2
, (G.1)
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Figure G.1: Two examples of parent spaces M̂ are shown at left. These M̂ have
only asymptotic boundaries (yellow). Cutting away the part beyond a surface Σ
gives a manifold with boundaries and corners that we call M. Such M generally
still have asymptotic boundaries ∂asM (yellow) inherited from M̂, but also have
finite boundaries ∂fM (green) created by the cut. The two types of boundaries will
generally meet at corners (red).

where both the function h and the coordinates z, θ are smooth on M̂, where z has a

first-order zero at ∂asM̂, and where both ∂zh and ∂2
zh vanish at z = 0. Similarly, we

consider dilaton fields of the form

φ =
f(θ, z)

z
, (G.2)

with f smooth on M̂. Note that, for a given metric and dilaton, the form of (G.1) and

(G.2) are preserved by appropriate smooth coordinate transformations which satisfy

z → a(θ)z +O(z3), (G.3)

θ → b(θ) +O(z2), (G.4)
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and under which we find that the associated h on the boundary transforms as h|z=0 →

(h[ 1
a
db
dθ

]2)|z=0. As a result, the coordinates (z, θ) that give the form (G.1) and (G.2) are

far from unique.

We also wish to impose further boundary conditions. To do so, we endow each of

our manifolds with a special preferred scalar function Ω which will be used to translate

between the physical metric and dilaton (which diverge at ∂asM) and an unphysical

rescaled metric and dilaton that will be used to specify the additional boundary condi-

tions. It is convenient to define Ω to be a function on the parent space M̂ such that

Ω vanishes on ∂M̂ = ∂asM̂ but has dΩ nowhere vanishing on ∂M̂ = ∂asM̂. We re-

quire Ω to be smooth on most of the spacetime, though – for use with our cut-and-paste

constructions – we also allow the existence of a finite number of smooth codimension-1

surfaces Σ on which Ω is continuous and limits of first derivatives from either side are

well-defined, but where dΩ can have discontinuities across the surface. The various such

surfaces Σ are allowed to intersect at a finite number of points. We will refer to Ω as the

defining function of the conformal frame, or simply as the conformal factor. In terms of

any given set of coordinates (z, θ) satisfying the conditions above, we may write

Ω = zω(z, θ) (G.5)

for some smooth positive function ω that does not vanish anywhere on ∂M̂ = ∂asM̂. We

then use Ω to define rescaled (unphysical) fields

ds̃2 := Ω2ds2, and φ̃ := Ωφ. (G.6)

We may thus introduce a coordinate u on each connected component of ∂asM such that

u measures the unphysical proper distance defined by ds̃2, and we may then require φ̃ on
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∂asM to be some fixed function φb(u); i.e., we impose

d̃s2
∣∣
∂asM = du2, φ̃|∂asM = φb(u). (G.7)

We note for future reference that (G.7) implies

ω−1|z=0 =
√
h|z=0

dθ

du
. (G.8)

Since (G.7) are coordinate invariant, they are in particular preserved by coordinate trans-

formations of the form (G.3).

Finally, as a further boundary condition, on every piece of ∂fM we require θ(z) to

have an expansion of the form

θ = θ0 + θ2z
2 + ... (G.9)

near ∂asM in terms of coordinates in which the metric takes the form (G.1). Since the

O(z) term in (G.9) vanishes, this in particular requires all intersections between the finite

and asymptotic boundaries to be orthogonal as defined by the unphysical metric g̃. Note

that this condition is again preserved by coordinate transformations of the form (G.3).

In the above we take each point on ∂asM̂ to be assigned a value of u as a boundary

condition, so that we in particular fix the range of u, and thus the unphysical proper

length of each segment of the asymptotic boundary. This completes our discussion of

(asymptotic) boundary conditions for JT gravity. Note that, since we allowed disconti-

nuities in dΩ, these boundary conditions are manifestly invariant under the cut-and-paste

construction associated with Assumption 2 of section 8.3.2.
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G.1.2 Additivity and the JT action

Having stated the dilaton and metric boundary conditions above, we can now proceed

to discuss the JT action. Here we focus on the additivity property (8.36). We now include

possible (dilaton-free) couplings to matter, meaning that the dilaton should not appear

in the matter action. However, we will not spell out the details of the matter action

or boundary conditions. We will simply (and implicitly) assume that the matter action

for a given metric is of the form described in section 8.3.1 (so that the matter action

is separately additive), and that the matter fields fall-off sufficiently quickly at infinity

that they do not affect the leading behavior of the dilaton given in (G.7) even when the

equations of motion are satisfied.

Since the metric and dilaton diverge at the asymptotic boundaries z = 0, the JT

action will be defined as the ε → 0 limit of actions for regulated manifolds Mε, each

given by the region of M with Ω ≥ ε for some ε > 0. The boundary ∂Mε of the

regulated spacetime can again be decomposed into two parts, ∂fMε and ∂asMε, the first

of which is just the part of ∂fM that remains in Mε, and the second is the closure of

the remainder:

∂fMε :=Mε ∩ ∂fM, and ∂asMε := ∂Mε \ ∂fMε. (G.10)

Again, the two parts generally intersect in a finite number of points, though the inter-

sections are no longer strictly orthogonal at finite ε. For a given intersection point i,

we thus let π/2 + αi > 0 denote the (interior) angle at which the finite and asymptotic

boundaries meet; see figure G.2.
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Figure G.2: A regulated manifold Mε is shown with its finite boundary ∂fMε and
asymptotic boundary ∂asMε intersecting at angles π/2 + α1 and π/2 + α2.

We now take the action to be I := limε→0 Iε with

Iε = −φ0

[∫

Mε

√
gR + 2

∫

∂asMε

√
hK + 2

∫

∂fMε

√
hK − 2

∑

i

αi

]

−
[∫

Mε

√
gφ(R + 2) + 2

∫

∂asMε

√
hφ(K − 1) + 2

∫

∂fMε

√
hφK − 2

∑

i

αiφi

]

+ Imatter. (G.11)

Here φ0 is a constant, h is the induced metric on a boundary, K is the extrinsic curvature

(a scalar, since the boundary is one-dimensional) defined by the outward-pointing normal,

i ranges over all points where ∂fMε meets ∂asMε, and φi are the values of φ at such

meeting points. Note that in the first line we have included separate terms at ∂asMε and

∂fMε, neither of which will include effects from corners where they intersect. The natural

delta-function contributions from K at corners have instead been written explicitly in

terms of the αi (up a π/2 offset for each corner that we now discuss).

The usual calculation then shows (G.11) to be a good variational principle when the

induced metric and dilaton are fixed on the finite boundaries ∂fM and the boundary con-

ditions of (G.1.1) are imposed at the asymptotic boundary, and of course when boundary
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conditions appropriate to Imatter are imposed on matter fields. In particular, while the

fact that we allowed dΩ to be discontinuous across a surface introduces delta-functions in

the extrinsic curvature ofMε at some values of θ, these delta-functions give finite results

when integrated over θ. The discontinuities in dΩ then have no further impact on the

computation. In particular, they do not change any powers of ε.

Note that, since we require the matter action to be dilaton-free, the equation of

motion obtained by varying φ in (G.11) is just R + 2 = 0 for any allowed matter. In

particular, the matter field can have no effect on the asymptotics of the metric. This also

means that the only positivity property of the matter that we will need is that Imatter be

bounded below (say, by zero) for any asymptotically AdS2 constant curvature R = −2

Euclidean metric g.

We now make a number of comments about the action (G.11), in particular regarding

its additivity properties. It is convenient to begin by discussing the first line in (G.11),

which turns out to purely topological. Let us denote these terms by Itop. Since the interior

angles at each intersection point i are π/2 + αi, the Gauss-Bonnet theorem requires

Itop = −4πφ0χ+ πφ0

∑

i

(1) = −πφ0(4χ− nint), (G.12)

where χ is the Euler character of Mε and nint is the number of points where ∂fMε and

∂asMε intersect. The ε-dependence of Itop is manifestly trivial, so we will drop ε labels

when discussing it below.

Furthermore, given disjoint configurations M1 and M2, we see that Itop satisfies

Itop(M1 tM2) = Itop(M1) + Itop(M2). (G.13)

Here we useM to denote both the underlying manifold with boundaries and corners and
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the fields carried by that manifold. We will continue this abuse of notation below. The

symbol t denotes disjoint union.

The term Itop also satisfies a second more interesting identity. To describe this identity,

consider a configuration M for which ∂fM has nf connected components ∂f,jM for

j = 1, . . . nf . We wish to form a new configurationM by identifying pairs of components

∂f,jM. In particular, for some mf < nf/2, suppose we have (surjective) diffeomorphisms

ηj : ∂f,jM→ ∂f,j+mfM for j = 1, . . .mf that preserve both the induced metric1 and the

conformal factor Ω. We defineM by using each ηj to identify its domain with its range,

so that

nf (M) = nf (M)− 2mf . (G.14)

The configurationM is not generally smooth, but we can nevertheless evaluate Itop(M)

as in (G.12) to find

Itop(M) = −πφ0(4χ̄− n̄int), (G.15)

where χ̄ and n̄int are respectively the Euler character of M and the number of intersec-

tions of ∂asM with ∂fM. Now, since the components ∂f,jM of ∂fM are one-dimensional,

each component is either a line segment or a circle. We may thus divide the mf identi-

fications into ms that identify pairs of line segments and mc that identify circles (with

mf = mc + ms). Identifying circles does not change the number of points where ∂fMε

and ∂asMε intersect, but identifying two line segments removes 4 intersections (two on

each segment); see figure G.3. Thus

n̄int = nint − 4ms. (G.16)

1Since the conformal factor is also preserved, it does not matter whether we state this definition in
terms of g or g̃. We also note that we have excluded the possibility of identifying some component of
∂f,jM with itself. When the component is an S1, nontrivial such identifications do exist that yield
smooth results, and our analysis below could be generalized to include them, but we will have no need
of them.
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Figure G.3: Examples of the gluing operation that constructs M from M. While
the gluing changes both χ and nint, it does not change 4χ̄ − n̄int. Indeed, we find
4χ̄ − n̄int = 4χ − nint = 4 on the top line and 4χ̄ − n̄int = 4χ − nint = −4 on the
bottom.

Similarly, identifying pairs of circles is well-known to leave the Euler character unchanged.

However, identifying a pair of line segments lowers χ by 1; see again figure G.3. Thus we

have

χ̄ = χ−ms, (G.17)

and

4χ̄− n̄int = 4χ− nint, (G.18)

we thus find

Itop(M) = Itop(M). (G.19)

Because it satisfies (G.13) and (G.19), we say that Itop is sewing-additive. This in par-

ticular means that it satisfies (8.36). We will use the same term below for any other
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functional satisfying analogous identities. (Note that this as yet says nothing about

the operations associated with the yet-to-be-discussed monotonicity relations (8.38) and

(8.39).)

In fact, the entire regulated Euclidean action Iε defined by (G.11) is sewing-additive.

It is already manifest that Iε satisfies

Iε(M1 tM2) = Iε(M1) + Iε(M2), (G.20)

so we may focus on the analog of (G.19) for the new manifold M formed from any M.

Below, we also focus on the remaining terms I − Itop, since we have already established

(G.19) for Itop.

There are now two effects to consider in order to show Iε(M) = Iε(M). The first is

that, as in the discussion of Itop above, intersections between the finite and asymptotic

boundaries can disappear in pairs, so that there are contributions αiφi to Iε(M) that do

not appear in Iε(M). However, such a disappearance is associated with the joining of two

asymptotic boundary segments as shown in figure 8.10 from section 8.3.3. The result is

generally not smooth, so that the extrinsic curvature density
√
hK of ∂asM contains a

new delta-function of a strength defined by the angles αi associated with the disappearing

pair of intersections. In fact, for disappearing interior intersection angles α1, α2, the

delta-function is of strength α1 +α2. This relation can be derived from the Gauss-Bonnet

theorem. In particular,
√
hK remains smooth when both of the disappearing intersections

are orthogonal (α1 = α2 = 0). See again figure 8.10 in section 8.3.3.

The second effect is that, when two boundaries are sewn together, the seam is smooth

only when the extrinsic curvatures K match appropriately on the two surfaces. More

generally, the sewing leads to a singularity on the seam which gives a delta-function in

√
gR related to the discontinuity in extrinsic curvatures. This phenomenon is well-known
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from the Israel junction conditions; see e.g. [267]. The particular relation again follows

by applying the Gauss-Bonnet theorem to a disk of infinitesimal size (and perhaps strong

curvature) bounded by the two surfaces to be sewn together and then taking the limit

where the surfaces coincide. In this way one sees that the contribution to Iε(M) from

the delta-function in R on M precisely compensates for the fact that Iε(M) no longer

includes explicit contributions from the boundaries of M that have been sewn together.

Since the remaining contributions to (G.11) take identical forms in M and M, this

establishes the desired relation

Iε(M) = Iε(M). (G.21)

In particular, we see that the regulated action Iε is already sewing-additive at finite

ε. Taking the limit ε → 0 then shows that corresponding property again holds for the

unregulated action I.

G.1.3 Relation to the Schwarzian Action

As shown in [213] (see [51] for a Euclidean-signature treatment), the on-shell action

for pure JT gravity takes a so-called Schwarzian form, which has proved to be extremely

useful. We very briefly review this below, though most of the present section is a slight

aside that generalizes the above result to our class of manifolds-with-boundaries-and-

cornersM. The extension is not of critical use in the main text, but may be enlightening

to some readers.

We also comment briefly on the off-shell extension of this result. The only equation

of motion used to derive the Schwarzian action below is R + 2 = 0. Since the first line

of (G.11) is topological, deviations from the on-shell result are controlled by the term

involving
√
gφ(R + 2). In the usual way (see e.g. [268] for a review) since we took the

asymptotically locally AdS2 boundary conditions to require both ∂zh and ∂2
zh vanish at
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z = 0, we find R + 2 = O(z3). Thus
√
gφ(R + 2) = O(1) and the discrepancy from the

on-shell result is finite.

This discussion is often phrased in terms of a coordinate system in which the function

h (defined by (G.1)) satisfies h|z=0 = 1, with θ taking values in [0, 2π]. As noted above,

this can always be achieved via coordinate transformations of the form (G.3), which are

indeed gauge redundancies of our system. The essential point is then that the extrinsic

curvature scalar K of the family of surfaces Ω = ε satisfies the asymptotic expansion

K = 1 + ε2 Sch(tan
θ(u)

2
, u), (G.22)

where

Sch(f(u), u) =
d

du

(
f ′′(u)

f ′(u)

)
− 1

2

(
f ′′(u)

f ′(u)

)2

, (G.23)

and prime ′ denotes d
du

so that

Sch(tan
θ(u)

2
, u) =

1

2
(θ′)2 − 1

2

(
θ′′

θ′

)2

+
d

du

(
θ′′

θ′

)
. (G.24)

As a result, when M has only asymptotic boundaries (G.11) yields

I = Itop − 2

∫
φb(u)

(
1

2
(θ′)2 − 1

2

(
θ′′

θ′

)2

+
d

du

(
θ′′

θ′

))
du. (G.25)

We now wish to obtain analogous results for our manifolds M with general finite

boundaries and corners where the finite and asymptotic boundaries intersect. This in

particular means that we will need to take due care to include all of the terms in (G.11)

that did not appear in [51]. These are the terms that involve ∂fM, including the αi terms

associated with the intersection ∂fM∩ ∂asM. Importantly, we will again take M to be

on-shell, which in particular means that it was cut from an on-shell parent configuration
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M̂.

The above-mentioned terms at first appear to depend strongly on the choice of ∂fM,

or equivalently on the choice of the surface Σ used to cut the parent space M̂ to form

M. However, as usual for gravitational systems, this is not in fact the case. This is most

easily seen by writing the action in the standard Hamiltonian form (see e.g. [269] and

references therein)

I =

∫

M
(piq̇

i −N⊥H̃⊥ −N ||H̃||))−
∫

∂asM
N⊥H∂ + Idegen, (G.26)

where, pi, q
i are an appropriate set of coordinates and momenta, N⊥, N || are the usual

lapse and shift, and Idegen denotes additional potential contributions from any locus where

the foliation used to define the Hamiltonian formalism degenerates.

In (G.26), we choose the coordinates qi to be whatever quantities are to be held fixed

on ∂fM for (G.11) to define a good variational principle. Indeed, it is perhaps useful to

recall that the form (G.26) must hold for any action, and in particular that the above

condition on qi requires any additional boundary term on ∂fM to be independent of the

momenta pi. Furthermore, any such boundary terms can then be absorbed into the bulk

by an appropriate redefinition of the momenta pi, leaving us with an action of the form

(G.26) as claimed.

The usual Hamilton-Jacobi argument then shows that variations of I with respect to

infinitesimal changes in the location of the surface Σ used to cutM from M̂ must involve

two contributions. Here we restrict attention to variations that preserve the boundary

conditions stated above for I, and which also preserve the points where Σ intersects ∂asM.

The first contribution is given by varying the location of Σ while holding each qi fixed on

Σ, and the second is given by leaving Σ fixed within the manifold by varying that values

of qi on Σ as dictated by the appropriate evolution under the equations of motion (in
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accord with the would-be motion of Σ through M̂). So long as the intersection of Σ with

∂asM does not change, combining the two terms gives a result in which contributions of

the piq̇
i term cancel completely. The remainder is simply linear in the constraints H⊥

and H||. But the constraints vanish since M is on-shell, and we see that the desired

variation vanishes as well.

In other words, the action of M is in fact invariant under smooth deformations of

the surface Σ used to slice it from an on-shell M̂, so long as the deformations both

leave fixed the intersections of Σ with the asymptotic boundary ∂asM̂ and respect the

boundary conditions associated with the action I. In particular, this requires that the

αi remain of whatever order in ε is specified by the boundary conditions.

This result then allows us to evaluate the action I(M) by choosing any convenient

surface Σ related to ∂fM via smooth boundary-condition preserving deformations within

M. One choice we can always make is to minimize the physical length of Σ (after

subtracting the appropriate universal divergence from the region near the boundary). In

two Euclidean dimensions, doing so necessarily results in a smooth surface with vanishing

extrinsic curvature [240]; i.e., in a geodesic.

Having thus set K = 0 on Σ, inspection of (G.11) shows that all boundary terms

on the interior of ∂fM now vanish. The only remaining contributions to I from Σ

are then those associated with the angles αi. These are straightforward to compute

using the well-known fact that geodesics in spacetimes of the form given by (G.1) are

asymptotically of the form θ = θ0 + θ2z
2 + . . . , while the proper distance s along the

geodesic is s = ln z + O(z2). This fact follows from using (G.1) and expanding the

geodesic equation in powers of z (say, by taking z as a non-affine parameter along the

geodesic). Note that the above expansion shows that taking K = 0 on ∂fM is consistent

with (G.9).
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At Ω = ε the unit-normalized tangent to the inward-directed geodesic is of the form

(
dθ

ds
,
dz

ds
) = (

dθ

dz
, 1)

dz

ds
= (2θ2ε/ω, 1)

ε

ω
(1 +O(ε)). (G.27)

On the other hand, defining ω0(θ) = ω|z=0 and noting that Ω = zω0 +O(z2), we see that

at Ω = ε the regulated version of the asymptotic boundary ∂asM has (in the direction

of increasing θ) the unit-normalized tangent

(1,
dz

dθ
)
dθ

ds
= (1,−ε d

dθ
ω−1)

ε

ω
. (G.28)

Since we chose the tangent along the asymptotic boundary to be in the direction of

increasing θ, combining these with (G.1) yields

cos (α + π/2) = ± ε
ω

(
2θ2 +

d

dθ
lnω−1

)
+O(ε2)

= ±2πε

β

(
2θ2 +

θ′′

(θ′)2

)
+O(ε2), (G.29)

where the + (−) sign corresponds to an intersection point at the large-θ (small-θ) end of

an asymptotic boundary segment; see figure G.4. Applying (G.8) with h = 1 then yields

α = ∓ε
(

2θ2θ
′ +

θ′′

θ′

)
+O(ε2), (G.30)

and

φ α = ∓φb(u)

(
2θ2θ

′ +
θ′′

(θ′)

)
+O(ε), (G.31)

where now the (−) sign is correct for an intersection point at the large-θ end of an

asymptotic boundary segment and the (+) sign holds at the small-θ end.

As a result, we find
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Figure G.4: The figures shows tangent vectors to ∂asM in the direction of increasing
θ and inward-directed tangents to ∂fM. When the finite boundaries are geodesics,
the indicated angles αi satisfy (G.29) and (G.31) with the signs stated in the text.

I = Itop − 2

∫
φb(u)

(
1

2
(θ′)2 − 1

2

(
θ′′

θ′

)2
)
du+ 4

∑

i

φb(ui)θ2,iθ
′(ui), (G.32)

where ui, θ2,i are the u-value and θ2-value of the ith intersection point between the finite

and asymptotic boundaries. The natural boundary term in (G.25) has been cancelled by

the φiαi contributions, but a new boundary term involving θ2 remains. This is related

to the fact that, as discussed in the main text, sewing together two boundaries may

not result in an asymptotic boundary that is smooth at finite ε. In other words, the

sewn-together manifold may not be associated with a smooth conformal factor Ω. We

have seen, however, that the extension to conformal factors that allow
√
hK to contain

delta-functions causes no significant issues.
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G.1.4 Positivity of the Schwarzian action

We now establish the positivity result needed in the main text. In particular, we

consider manifolds M satisfying the above boundary conditions and which have only

asymptotic boundaries (i.e., ∂fM = ∅.). Positivity of α, φ and the above-noted fact that

we can freely choose any finite boundaries to be geodesics then immediately also imply

a similar lower bound for the case of non-empty ∂fM.

As noted previously, we require Imatter to be minimally-coupled to the metric g. In

particular, the dilaton φ should not appear in Imatter. We also require that Imatter be

bounded below by zero when the metric g satisfies R + 2 = 0 and is locally asymptot-

ically AdS2. Since the topological term is minimized by taking the spacetime to be a

disconnected union of disks, for fixed boundary conditions the full action will be bounded

below if we can derive a lower bound for the Schwarzian action (G.25) for each disk; i.e.,

on each circular boundary. This is certainly to be expected since the Schwarzian action

arises [270] (see also [167]) as an effective description of the low energy limit of (a limit

of) the Sachdev-Ye-Kitaev model (first introduced in [271]), which is a standard quantum

mechanical system. However, it is reassuring to see a direct argument2.

For general φb(u), we would like to simplify (G.25) by defining a new coordinate ũ

such that

dû =
φ̂b
φb
du. (G.33)

We can think of this û as being associated with a different choice of conformal frame

defined by Ω̂ := φ̂b
φb

Ω, in which we see that the new boundary dilaton profile would be

given by φ̂b. Since we have required that Ω be specified as part of the definition of the

system, it would not be correct to say that the coordinate transformation (G.33) actually

2It seems likely that this result is already somewhere in the vast literature concerning the Schwarzian
action. The authors would be happy to receive references to earlier published versions of this result.
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changes the boundary values of φ, but it nevertheless allows us to rewrite any function

of the original φb boundary conditions in terms of another JT system with boundary

conditions specified by φ̂b. The Schwarzian action correspondingly becomes

ISchwarz := −2

∫
du φb(u) Sch(tan(θ/2), u)

= −2

∫
dû φ̂b(û) Sch(tan(θ/2), û)−

∫
du



(
∂û
φ̂b
φb

)2

+ 2
φ̂b
φb
∂2
û

φ̂b
φb


 .

(G.34)

The last term becomes manifestly non-negative after integrating by parts. Thus we only

need to show that the first term is bounded below for any convenient φ̂b(u) (and with

the period of û dictated by this choice via (G.33) andwith any convenient the period of

û). For simplicity, we choose φ̂b(u) to be a constant (which we again call φ̄b). We also

choose the period of û to be 2π, which then sets the value of φ̄b for a given φb(u).

To clean up the notation, we will henceforth write û as simply u so that the simplified

action (dropping the final term in (G.34)) becomes

ĪSchwarz = −2

∫
du φ̄b(û) Sch(tan(θ/2), u)

= −
∫
du φ̄b(û)

[
(θ′)2 −

(
θ′′

θ′

)2

+ 2
d

du

(
θ′′

θ′

)]
. (G.35)

Since we consider only circular boundaries, we can ignore the total derivative that gives

the final term of (G.35). It is also convenient to write η(u) = θ′(u), so that ĪSchwarz

becomes

ĪSchwarz = −φ̄b
∫
du

(
η2 −

(
η′

η

)2
)
. (G.36)

The expression (G.36) is to be evaluated on functions η that satisfy an important con-
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straint, since θ must increase by 2π when u increases by 2π. In other words, we require

∫ 2π

0

du η = 2π. (G.37)

We can take this constraint into account by adding a Lagrange multiplier to the action:

ĪSchwarz = −φ̄b
[∫

du

(
η2 −

(
η′

η

)2
)
− λ

(∫
du η − 2π

)]
. (G.38)

There is an obvious saddle of this action at η = 1, λ = 2. Perturbations around this

saddle point may be studied by writing η = 1 + Υ. Expanding (G.38) to quadratic order

yields

∆ĪSchwarz = −
∫
du φ̄b

(
Υ2 − (Υ′)2

)
= −

∫
du φ̄b

(
Υ2 + ΥΥ′′

)
+ bdy terms. (G.39)

The eigenfunctions of the operator ∂2
u + 1 are

Υ = eiku, k ∈ Z, (G.40)

with eigenvalues −k2 + 1. The k = 0 mode thus has negative action, but it is forbidden

the constraint ∫ 2π

0

duΥ = 0. (G.41)

The modes k = ±1 have vanishing action, and they turn out to correspond to the SL(2,R)

symmetries of the Schwarzian action. These are in fact gauge symmetries of JT gravity,

though they appear as global symmetries of ĪSchwarz due to the partial gauge-fixing used

in deriving ĪSchwarz [213]. Other modes all have positive quadratic action ∆ĪShcw.

The above analysis shows η = 1 to be a local minimum of the action over the space

of allowed configurations. Importantly (and as we will see explicitly below), the same
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must be true for all of the saddles that can be reached by following the flat directions

associated with the SL(2,R) symmetries. These of course share the same minimum value

of ĪSchwarz.

However, we wish to show that this value is in fact a global minimum. One way to

proceed is to note that (since we have fixed the winding number) the space of configura-

tions is connected. As a result, if any configuration has lower action than η = 1, there is

a path through configuration space that connects it to η = 1. Furthermore, starting at

the η = 1 end of the path, the analysis above shows that the action must first increase

before it can decrease. This is the case even if the path starts by following some path in

the space Z of saddles related to η = 1 by SL(2,R) zero modes, as it must clearly leave

the space Z at some point and since we have shown that all paths leaving Z must first

increase the action before the action can decrease.

As a result, along any given such path p there must be a point P0 at which the action

reaches a local maximum µ(p). Let us now attempt to minimize µ(p) over all paths p. So

long there are no directions in which µ(p) remains finite at the edge of space of allowed

configurations (i.e., when η diverges at some u), then the minimal µ(p) must in fact be a

saddle s for the action ĪSchwarz which satisfies ĪSchwarz(s) > ĪSchwarz(η = 1); i.e., it must

be a new saddle for the Schwarzian action.

While we will not exclude the runaway possibility with complete rigor, if the diver-

gence in η admits any kind of asymptotic expansion at large λ it would certainly require

the first two terms to cancel against each other at leading order. But such cancelation

requires

η = ±η′/η + . . . , (G.42)

where . . . represents lower order terms. Solving (G.42) yields ±η = 1
u+∆

where ∆ is a

function whose derivative ∆′ vanishes vanishes as η →∞. Without loss of generality we
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can take the point at which η diverges to be u = 0, in which case ∆ is approximately

constant near u = 0. As a result, the integral
∫
η must diverge and the constraint (G.37)

cannot be satisfied.

Thus, if the action were to be unbounded below, there must be a new saddle point.

However, we will now seek such new saddles directly and show that they do not exist.

To do so, note that the action can be equivalently written as the action of a particle in

a potential by defining χ = ln η to write

ĪSchwarz = φ̄b

∫
du
(
(χ′)2 − (e2χ − λeχ + λ)

)
. (G.43)

The solutions to saddle-point equations of motion can of course be labelled by the total

energy E which we normalize as

(χ′)2 + e2χ − λeχ + λ = E. (G.44)

Note further that the potential V (χ) = e2χ − λeχ + λ always approaches λ as u→ −∞,

but that it does so in different ways depending on the value of λ. For λ ≤ 0 the potential

increases monotonically and all orbits are unbound. Here we use the term ‘orbit’ to refer

to some χ(u) that solves the equation of motion obtained from (G.43) by varying χ, but

which does not necessarily satisfy either the periodicity condition χ(u) = χ(u + 2π) or

the constraint (G.37). In contrast, for λ > 0 the potential has a single critical point at

χ = lnλ/2 and at which V = λ − λ2/4. This critical point is in fact a global minimum

of the potential. Thus the case λ > 0 admits both unbound orbits (with E ≥ λ) and

bound orbits (with E < λ).

The potential remains finite in the asymptotic region of large negative χ, so the

velocity in this region is finite. Since the unbound orbits all run to large negative χ, they
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must thus take infinite time to reach χ = −∞. This means that there is no sense in

which they can be periodic, and such orbits are not allowed.

We can therefore focus on the bound orbits. Let us first consider the special cases

that sit at the global minimum for all time. Such solutions are clearly periodic with any

period. However, they satisfy the constraint (G.37) only for χ = 0, which then requires

λ = 2, E = 1. For future reference we note that E − λ = −1.

Finally, we can investigate the constraints for the other bound states. The first

constraint is that χ is periodic with period 2π,

2π =

∫ 2π

0

duχ′ = 2

∫ χ+

χ−

dχ√
E − λ− e2χ + λeχ

= 2

∫ η+

η−

dη

η
√
−(η − η+)(η − η−)

= 2πi
1√
E − λ

, (G.45)

which again requires E−λ = −1. Here the second step in (G.45) used equation (G.44) and

the quantities η± are defined by first defining χ± to be the two roots of the denominator

of the integrand and then setting η± = eχ± = λ±
√
λ2+4E−4λ

2
. The final answer on the

right-hand-side was obtained by noting that the integral over η can be expressed as a

contour integral around a branch cut from η− to η+. Since the contour integral for large

η vanishes, the final answer is given by the residue of the pole at η = 0.

The second constraint turns out to be trivially satisfied for any E and λ since we find

∫
du η = 2

∫ η+

η−

η

η′
= 2

∫ η+

η−

1√
−(η − η+)(η − η−)

= 2π. (G.46)

Again, in the final step the integration is performed using complex contour integration

techniques. Thus we see that all saddles have E − λ = −1, but that there is a saddle

for each λ ∈ R (or, equivalently, for each real E). The original η = 1 saddle lies in this

family with λ = 2, which corresponds to the case where η+ = η−.
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All of these solutions turn out to have the same action, consistent with the earlier

statement that there is a family of solutions related by an SL(2,R) symmetry. To see

this, note that the Schwarzian action is given by

ĪSchwarz = φ̄b

∫ 2π

0

du
(
(χ′)2 − (e2χ − λeχ + λ)

)

= φ̄b

∫ 2π

0

du
(
E − 2(e2χ − λeχ + λ)

)

= 2φ̄b

∫ η+

η−

dη
E − 2η2 + 2λη − 2λ

η′

= 2φ̄b

∫ η+

η−

dη
E − 2η2 + 2λη − 2λ

η
√
E − η2 + λη − λ

,

(G.47)

where still need to set E − λ = −1. This integral can once again be tackled by the

methods of complex methods. The integrand has poles at η = 0,∞, so this integral can

be evaluated using their residues to find

ĪSchwarz = φ̄b2πi
√
E − λ = −2πφ̄b, (G.48)

which is a constant independent of λ. Note that this corresponds to the action in section

8.2 with β = 2π.

As also expected from the SL(2,R) symmetry, linearizing about any such saddle gives

identical results to linearizing about η = 1. This observation completes the argument

that (G.48) is in fact the minimum value of ĪSchwarz, and thus that the Schwarzian action

is bounded below.

Allowing a general β, multiple S1 boundaries labelled by j, and restoring the topo-

logical term would yield the general bound

I = Itop + ISchwarz ≥ −
∑

j

(
4πφ0 + 4π2φ̄b/βj

)
. (G.49)

475



Appendix to Chapter 8 Chapter G

G.2 Cut-and-paste Asymptotically locally AdS bound-

ary conditions for the Einstein-Hilbert action

with boundary counterterms

The standard treatments of Asymptotically locally AdS (AlAdS) boundary condi-

tions, and in particular standard discussions of boundary counterterms, typically assume

that all structures should be smooth (see e.g. [196] for a review and references). However,

as described in detail for JT gravity in appendix G.1, our cut-and-paste constructions

generally lead to some lack of differentiability. The purpose of this section is thus to

extend such boundary conditions and to establish the various properties of the action

needed for section 8.3.3.

The form of our cut-and-paste construction will make this straightforward. The

conical singularities required were already addressed thoroughly in [73] (and in any case

do not affect the asymptotic boundary conditions). In addition, as argued in section

8.3.3, the bulk terms in the action remain finite and well-defined under our operations.

We thus need only consider the effects of these operations on the asymptotic region of

the spacetime.

Since section 8.3.3 chooses to slice the smooth spacetimes along minimal surfaces,

our study of the asymptotics will be facilitated by understanding the asymptotics of

codimension-1 minimal surfaces Σ in smooth AlAdS spacetimes. We are interested in

surfaces that are anchored on the asymptotic boundary, in the sense that ∂Σ is a smooth

codimension-1 submanifold of ∂M. These anchor sets are always boundaries of the form

∂Ma = ∂Mb at which two source manifolds-with-boundaries Ma,Mb are sewn together
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to form some closed manifold M̃ab. Furthermore, by the rim requirement of section 8.3.2,

such boundaries always lie in cylinders Cε of the form discussed in section 8.3.1.

It is thus convenient to define a Euclidean “time” coordinate tE on the AlAdS bound-

ary M̃ such that tE is constant on each cut on which our extremal surface is to be an-

chored, and for which the (unphysical) AlAdS boundary metric has g
(0)
tEtE

= 1. We make

take any connected component of the anchor set to be of the form tE = t0.

Consider in particular the part of the extremal surface near this anchor set. When

the bulk AlAdS spacetime has dimension d + 1, we may introduce d − 1 coordinates

dxi on the t = t0 slice and use these (along with t) to construct a Fefferman-Graham

coordinate system near M̃ . The codimension-1 minimal surface can of course be found

by minimizing the volume functional

V [Σ] =

∫

Σ

√
gΣ =

∫

Σ

dzdxd−1z−d
√
g

(0)
∂Σ

√
1 + (∂ztE)2(1 + . . . ), (G.50)

where gΣ is the determinant of the induced metric on Σ, g
(0)
Σ is the determinant of the

metric induced on ∂Σ by the (unphysical) AlAdS boundary metric g(0), and . . . denotes

terms that are subleading as z → 0.

The Euler-Lagrange equation associated with extremizing (G.50) is then proportional

to

0 = ∂z
1

zd
√

1 + (∂ztE)2
∂ztE(1 + . . . ), (G.51)

which for some constant C yields

Czd
√

1 + (∂ztE)2 = ∂ztE(1 + . . . ), (G.52)

whence we find

∂ztE = O(zd), and thus tE = t0 +O(zd+1). (G.53)
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As a result, our cut-and-paste construction using minimal surfaces clearly defines

spacetimes in which the usual Fefferman-Graham expansion holds up to possible correc-

tions at order zd+1 relative to the leading terms. Since all divergences in the gravitational

action are associated with terms that are at most of order zd−1, an action defined using

the standard boundary counter-terms will remain finite on such spacetimes. In particular,

the traced extrinsic curvature K of a z = constant surface will contain a delta-function

δ(t−t0), but with a coefficient of order zd+1. Since the volume element on the asymptotic

boundary is only O(z−d), this means that such a delta-function makes no contribution

to the Gibbons-Hawking term at z = 0.

Furthermore, since the boundary stress tensor T IJbndy is associated with the term of

order zd in the Fefferman-Graham expansion of the bulk metric, it remains well-defined

as well. Here we use I, J to denote {tE, xi}. Thus by the usual computation we may

write the variation of the action as

δI =

∫

∂M
T ijbndyδg

(0)
ij + EOM terms, (G.54)

where EOM terms denotes terms proportional to the usual bulk equations of motion.

In particular, from this we see that the standard action continues to give a good varia-

tional principle for our cut-and-paste spacetimes. As a result, we are free to extend the

domain of the usual action to include the above non-smooth spacetimes without further

modifications.
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Appendix to Chapter 9

H.1 The operator norm of the unnormalized cylin-

der operator Cβ approaches 1 at small β.

We now provide the proof of the following lemma:

Lemma 3 The operator norm ||Cβ|| of the (unnormalized) cylinder operator satisfies

||Cβ|| → 1 as β → 0.

To show that this is the case, recall that since Cβ ∈ Y d
BtB it defines a bounded operator.

Furthermore, since Cβ = C∗β and Ct
β = Cβ, we have C†β = C?

β = Cβ, so that Cβ is self-

adjoint and can be diagonalized. Furthermore, since Cβ = C†β/2Cβ/2, the eigenvalues of

Cβ are non-negative.

Now consider the family of operators Cβ/n for n ∈ Z+ and some fixed value of β.

The norm ||Cβ/n|| is the supremum of the set of eigenvalues of Cβ/n. But the operators

Cβ/n have a common set of eigenstates |λ〉 with eigenvalues λ1/n for some bounded set of
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positive real numbers λ. In particular, we have

||Cβ/n|| = sup
λ

λ1/n = (sup
λ

λ)1/n = ||Cβ||1/n. (H.1)

Thus

lim
n→∞

||Cβ/n|| = 1. (H.2)

This establishes that we can find sequences of Cβ with β → 0 for which ||Cβ|| → 1.

However, it remains to show that this convergence is sufficiently uniform that ||Cβ||

converges for an arbitrary sequence of Cβ with β → 0.

Suppose first that ||Cβ|| ≤ 1 for all β. Then since Cβ1+β2 = Cβ1Cβ2 for β1, β2 > 0, we

have

||Cβ1+β2|| ≤ ||Cβ1||||Cβ1|| ≤ ||Cβ1||. (H.3)

In particular, in this case for all β we find that ||Cβ|| is monotonically increasing as β

decreases. Thus (H.2) for any fixed β implies limβ→0 ||Cβ|| = 1.

The remaining case occurs when ||Cβ0|| ≥ 1 for some β0. We will now show both that

this requires ||Cβ|| > 1 for all small enough β, and that small enough ||Cβ|| are bounded

above by a quantity that tends to 1. This will then establish limβ→0 ||Cβ|| = 1 for this

final case.

The condition ||Cβ0 || ≥ 1 means that there is some state |ψ〉 for which 〈ψ|C2β0|ψ〉 ≥

〈ψ|ψ〉. Now, recall that states of the form |a〉 for a ∈ Y d
BtB are dense in HLR, so that

any state |ψ〉 can be approximated by such |a〉. Since C2β0 is bounded, the expectation

value of C2β0 is a continuous function of |ψ〉. Thus there must also be some |a〉 for which

〈a|C2β0|a〉 = λ〈a|a〉 with λ > 1.

Let us now consider some small β and write β0 = bβ0

β
cβ+∆. Here we use the notation

bβ0/βc to denote the greatest integer less than β0/β. Thus 0 ≤ ∆ ≤ β. As a result, the
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continuity axiom (Axiom 4) requires

〈a|C2∆|a〉 → 〈a|a〉 (H.4)

as β → 0. Since we have

λ〈a|a〉 = 〈a|C2β|a〉 = 〈a|C∆C2nβ′C∆|a〉 ≤ ||Cβ||2n〈a|C2∆|a〉, (H.5)

equation (H.4) tells us that for any ε > 0 we can find a β1 such that for β < β1 we have

〈a|C2∆|a〉 ≤ (1 + ε)〈a|a〉, and thus

〈a|a〉 ≤ ||Cβ′ ||2n(1 + ε). (H.6)

Let us now choose 1 + ε < λ. Then from (H.6) we see that there must be a β1 such

that ||Cβ|| ≥
(

λ
1+ε

)1/2n ≥ 1 for all β < β1.

On the other hand, we can also show that ||Cβ|| is bounded above by a quantity that

tends to 1 as β → 0. To do so recall that

||Cβ|| ≤ tr Cβ, (H.7)

and that tr Cβ is a continuous function of β for β > 0. As a result, on any fixed interval

[β2, 2β2] we find tr Cβ ≤ C for some constant C > 0. Thus (H.7) requires ||Cβ|| ≤ C on

this interval as well.

Furthermore, as discussed above, for any β we have ||Cβ/n|| = ||Cβ||1/n. Since any

β > 0 with β < β2 can be written as β′/n for some β′ ∈ [β2, 2β2], this gives us an

upper bound C1/n on such ||Cβ||, where n = b2β2/βc. Combining this with the above
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observation yields

1 ≤ ||Cβ|| ≤ C1/n. (H.8)

And since C1/n → 1 as β → 0, we must have ||Cβ|| → 1 as claimed.

H.2 The trace is normal and semifinite

This appendix establishes that the traces (9.38) on the von Neumann algebras ABL ,

ABR are both normal and semifinite. We call these properties Lemmas 1 and 2 below.

Recall that normality and semifiniteness were defined in properties 5 and 6 of section

9.4.1.

Lemma 4 The trace tr defined by (9.38) is normal on both ABL and ABR.

We will give the proof for ABL . The argument for ABR is directly analogous.

Proof: Consider an increasing sequence of positive operators an ∈ ABL . For each an

we have

tr an := sup
β>0
〈C̃β|an|C̃β〉. (H.9)

Furthermore, for an increasing sequence of positive operators, the expectation value

in any state |ψ〉 is also an increasing sequence; i.e., an + 1 ≥ an+1 implies 〈ψ|an+1|ψ〉 ≥

〈ψ|an|ψ〉 (where it is possible that both sides diverge). Thus

〈ψ|
(

sup
n
an

)
|ψ〉 ≥ sup

n
〈ψ|an|ψ〉 = lim

n→∞
〈ψ|an|ψ〉. (H.10)

In fact, proposition 4.64 of shows that the above is actually an equality:

〈ψ|
(

sup
n
an

)
|ψ〉 = sup

n
〈ψ|an|ψ〉 = lim

n→∞
〈ψ|an|ψ〉. (H.11)
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Combining these results gives

tr

(
sup
n
an

)
= sup

β

(
〈C̃β|(sup

n
an)|C̃β〉

)
= sup

β
sup
n
〈C̃β|an|C̃β〉

= sup
n,β
〈C̃β|an|C̃β〉 = sup

n
sup
β
〈C̃β|an|C̃β〉 = sup

n
(tr an) . (H.12)

The key point in (H.12) is that taking the supremum over n always commutes with

taking the supremum over β since taking both supremums (in either order) is equivalent

to taking the supremum over all pairs (n, β). This result is the desired normality property.

Lemma 5 The trace tr defined by (9.38) is semifinite on both ABL and ABR.

We will give the proof for ABL . The argument for ABR is directly analogous.

Proof: We need only show that every positive a ∈ ABL satisfies a > b for some

positive b ∈ ABL with finite trace, where the notation a > b means that a− b is positive.

Let us begin by recalling that the normalized cylinder operator C̃2β has operator norm

1 but is not the identity. Thus 1− C̃2β is positive. It then follows that γ†(1− C̃2β)γ is

also positive for any γ, since the expectation value in any state |ψ〉 will satisfy

〈ψ|γ†(1− C̃2β)γ|ψ〉 = 〈γψ|(1− C̃2β)|γψ〉 ≥ 0, (H.13)

where we have momentarily defined |γψ〉 := γ|ψ〉 even for γ not in ÂBL . The positivity

of γ†(1− C̃2β)γ is then equivalent to the statement

γ†γ > γ†C̃2βγ. (H.14)

Next recall that since a is positive it is in fact of the form γ†γ for γ ∈ ABL . The above

result then implies that our trace is semifinite if we can show that b = γ†C̃2βγ has finite
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trace. We have

tr(γ†C̃2βγ) = sup
β′
〈C̃β′|γ†C̃2βγ|C̃β′〉

= sup
β′
〈C̃β|γC̃2β′γ

†|C̃β〉 < 〈C̃β|γγ†|C̃β〉. (H.15)

Here we have used (9.48) to pass from the first line to the second, and the final step

follows from the fact that 〈C̃β|γC̃2β′γ
†|C̃β〉 is the expectation value of C̃2β′ in the state

γ†|C̃β〉 together with the above observation that ||C2β′ || ≤ 1. The right-hand side is

clearly finite, so this establishes that our b < a has finite trace, so that tr is semifinite as

claimed.
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