
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Fluctuations in Supercooled Fluids and Ionic Solutions

Permalink
https://escholarship.org/uc/item/2c4058s1

Author
Thorpe, Dayton Gray

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2c4058s1
https://escholarship.org
http://www.cdlib.org/


Fluctuations in Supercooled Fluids and Ionic Solutions

by

Dayton Gray Thorpe

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Phillip Geissler, Co-chair
Professor Ashvin Vishwanath, Co-chair

Professor Michael DeWeese
Professor Ronald Cohen

Spring 2017



Fluctuations in Supercooled Fluids and Ionic Solutions

Copyright 2017
by

Dayton Gray Thorpe



1

Abstract

Fluctuations in Supercooled Fluids and Ionic Solutions

by

Dayton Gray Thorpe

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Phillip Geissler, Co-chair

Professor Ashvin Vishwanath, Co-chair

An overview of five studies is presented in two parts. The first part presents two studies
of supercooled fluids. The second part presents three studies of water and aqueous solu-
tions. Each study seeks a minimal model of a condensed matter system. In the first study,
kinetically constrained models (KCM’s) are compared to alternative theories of the glass
transition in high dimensions. Dimensionality is used as a parameter to tune the connectiv-
ity of a lattice, where a higher dimensional model has more interactions between neighboring
sites. This study finds that KCM’s outperform alternative theories in high dimensions. The
second study explores the possibility that bacteria have evolved to exploit the glass transi-
tion to enter a dormant state when environmental conditions are unfavorable. Although the
available evidence shows that the bacterial cytoplasm does not meet the strict definition of a
fragile glass former, much of its behavior is similar to and can be described using close analo-
gies with the glass transition. In the second part, the third study describes the molecular
mechanisms that gives rise to large electric field fluctuations, which in turn cause autoion-
ization and ion dissociation. The fourth study analyzes several candidate order parameters
as the basis for a Gaussian field theory of ion solvation. Finally, the fifth study discusses the
most popular current explanation for observed charge asymmetry at liquid-vapor interfaces.
This explanation, based on linear response of the surface polarization to the presence of an
ion, is incorrect. Instead, the surface polarization responds non-linearly to the presence of an
ion. Incorporating these non-linear fluctuations is essential to predict solvation free energies.
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constant chosen to force the free energy of that bin to 0. . . . . . . . . . . . . . 40

4.8 Representative configurations taken from trajectories biased towards large nega-
tive (left) and positive (right) values of the electric field experienced by a tagged
proton in water, projected along the OH-bond axis. . . . . . . . . . . . . . . . . 41

4.9 Radial distribution function (RDF) of hydrogen atoms around tagged hydrogen
atom in trajectories with a harmonic bias around electric fields of -18 V/Å. This
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Chapter 1

Introduction

Thank you for asking. -Marshawn Lynch

In science, we seek the simplest possible models that can describe wide variations in
behavior by a given system. Reducing complex behaviors to the simplest set of rules possible
satisfies several goals. First, those rules are often able to reduce confounding, complex
phenomena to more intuitive models. Some systems can be described by mean field theory,
in which a single constituent of the system is said to interact only with the average of the
rest of the system. Second, after all irrelevant details are stripped away, problems that
once looked very different from each other may start to look very similar. At its most
profound, statistical mechanics unveils universalities, relationships which are independent
of the details of the material or system under investigation. The prototypical example is
the renormalization group (RG) theory, developed by Nobel Laureate Kenneth Wilson in
1971 [1] [2] building on work by Leo Kadanoff [3]. From this abstract perspective, a phase
transition between water and steam looks just like a magnet changing its poles.

I will discuss two classes of systems in this dissertation: supercooled liquids and ions
in water. Supercooled liquids are those liquids which are below their freezing temperature
but have not formed a crystalline solid. As their temperature is lowered, they turn into
an amorphous solid, known commonly as glass. Glass is a very unusual state of matter.
Microscopically, it is disordered just like a liquid. Macroscopically, it can be extremely strong.
Its viscosity grows so large that it can be even more rigid than a crystalline solid. In a regular
liquid, the viscosity grows exponentially in 1

T
, but fragile glass formers are defined by the fact

that their viscosity grows even faster than exponentially in 1
T

. Explaining why they behave
this way is one of the great remaining challenges in statistical mechanics. Two competing
hypotheses are random first order transition (RFOT) theory and kinetically constrained
models (KCM’s). These two theories differ significantly in their underlying assumptions
about the behavior of individual atoms in a glass. Unfortunately, it is very difficult to probe
glasses experimentally at the resolution that would be required to refute one or both of these
theories. One alternative route is to compare the theory to very detailed atomistic models
simulated on a computer. In chapter 2, I will argue that recent computational experiments
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are well explained by KCM’s.
In chapter 3, I will discuss a recent, surprising application of the theory of glassy dynam-

ics. In response to environmental changes, bacteria can switch between active and dormant
phases. The physical processes underlying this change are not yet understood. One possi-
bility suggested by recent experiments is that bacteria actually exploit the glass transition.
Switching between glassy and liquid phases may allow bacteria to preserve their inner struc-
ture for long periods of time without metabolizing. The structural similarity of supercooled
fluids and equilibrium fluids allows the bacteria to return to the active, metabolizing phase
quickly when environmental conditions improve. Using simulations of simple models of a
bacterial cell, I will demonstrate that this hypothesis is physically plausible.

In part II, I change to the topic of ions and electric fields in water. An ion is approximately
a hydrophobic cavity with a charge or dipole at its center. The solvation energy of an ion,
therefore, depends on the spontaneous fluctuations of the electric field at the center of a
cavity. In chapter 4, I will study the electric field fluctuations not on a foreign cavity
inserted into water, but on the hydrogen atoms that are already a part of the water. These
fluctuations lead to autoionization - the spontaneous breaking apart of two neutral water
molecules into hydroxide and hydronium ions. Although a macroscopic volume of water
has a large number of such ions in it, a given water molecule can go many hours without
breaking apart. Such long timescales are completely intractable in a computer simulation.
I will describe enhanced sampling techniques I have employed to collect many samples of
this rare event in a computer simulation. I will then use those samples to describe the
configurations of water molecules that conspire to cleave a hydrogen atom from its oxygen
atom.

In chapter 5, I will move on to the problem of developing a Gaussian field theory of ion
solvation. This challenge is another of the great open questions in statistical mechanics and it
has been of particular interest at UC Berkeley for some years. Lum-Chandler-Weeks theory,
developed at UC Berkeley in the 1990’s, successfully described the solvation of hydrophobic
cavities. Now, we seek to develop a similar theory for the more complicated solvation of ions.
This project began before my dissertation - in particular, see the work of Patrick Shaffer
- and will continue after mine. The first barrier to developing an effective field theory is
choosing the right order parameter. Chapter 5 explores possible choices of order parameter.
I find that the density field of hydrogen bonds is a promising option. It is highly Gaussian
and sensitive to the presence of an ion.

Finally, in chapter 6, I will discuss the behavior of ions near interfaces. The simplest
possible models of ions near interfaces predict that they will repel each other. In fact, the
exact opposite happens: ions are strongly attracted to interfaces. Besides that attraction,
there is significant charge asymmetry. Anions are much more strongly attracted to liquid-
vapor interfaces than cations with identical radius and charge magnitude. The most popular
theory for this interfacial attraction and charge asymmetry assumes that the polarization at
the interface changes linearly in the presence of an ion and calculates the response of the
ion to that polarization. I show, however, that the surface polarization changes non-linearly
in the presence of an ion. The linearly responding surface potential hypothesis ultimately
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makes predictions that are quantitatively and qualitatively incorrect. In pursuit of a simple
theory, the surface potential hypothesis goes one step too far. Its predictions are based only
on the mean and variance of the electric potential at the center of a cavity. Following closely
on the heels of work by Patrick Shaffer, I demonstrate that the higher moments of that
distribution are required to calculate an ion’s solvation free energy.

These five projects span a diverse set of systems in physical chemistry and biophysics.
The primary unifying theme is the importance of fluctuations, or, alternatively stated, het-
erogeneity. In glassy systems, the dynamics are extremely heterogeneous. At any given time
a small fraction of the system is free to move, but most is jammed. In bacterial cells, a
small force injected into the system by metabolism is able to switch this jamming on and
off, allowing the cell to go about the business of life or to wait for better days. In water,
very rare fluctuations in the configuration of molecules result in one unlucky victim being
torn apart. Although rare, the fraction of water molecules autoionized determines the pH of
water, of central importance to biology. Developing a Gaussian field theory of ion solvation
depends on finding an order parameter that captures the important details, and nothing
more, of how water rearranges in the presence of an ion. Finally, correctly predicting charge
asymmetry at liquid-vapor interfaces relies on understanding the non-linear fluctuations of
the surface polarization when an ion draws near. These fluctuations are not merely higher
order corrections that improve the quantitative accuracy of theories that are already approx-
imately correct. Rather, theories that ignore these fluctuations completely miss qualitative
features of the systems they seek to describe.
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Part I

Supercooled Liquids
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Chapter 2

The East Model Correctly Predicts
the Behavior of Simulated Glassy
Systems in High Dimensions

Supercooled or slowly compressed liquids maintain liquid-like structure but exhibit slug-
gish dynamics that, at low temperature, become slower than those of crystalline solids.
The relaxation times of fragile glass-formers exhibit super-Arrhenius growth below an onset
temperature, To, and above another crossover temperature, Tx. Below Tx the dynamic con-
straints of glassiness can be avoided at a constant energy cost Ex, giving a relaxation time
τx exp(Ex/T ) [4]. Wolynes and other theorists explain the behavior of fragile glass-formers
using mean-field theory for their random first-order transition theory (RFOT) [5]. Recent
analytical work has demonstrated that RFOT has an upper critical dimension of 8 [6], fol-
lowed by possible numerical verification in simulations of hard spheres [7]. We and other
theorists, however, explain the behavior of fragile glass-formers using dynamical facilitation,
a fundamentally non-mean-field concept [8, 9, 10]. Here, we use the East model [11] and
comparisons to experimental data to argue that glassy dynamics are fluctuation dominated
in all finite dimensions. We numerically observe that up to 13 dimensions the dynamics are
fluctuation dominated and argue that this result should hold for any finite dimensionality.
From there, we argue that relaxation of the East model in high dimensions qualitatively
matches the behavior of glassy hard sphere simulations in high dimensions.

The East model is a d -dimensional lattice with the simple Hamiltonian

H =
N∑
i=1

ni, (2.1)

for a system with N spins, where we call ni = 0 a jammed spin and ni = 1 an excited spin or
an excitation. The kinetics are constrained such that a spin at ~xi can only change state if at
least one of its nearest neighbor spins at ~xi − ûl is excited, where ûl is a unit vector in any
dimension l ≤ d. We call a spin that can change state facilitated, indicated by the function
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fi({n~xi}) = 1−
∏d

l=1(1− n~xi−ûl),

where fi is 1 if spin i is facilitated and 0 if not.

Below an onset temperature, To, the relaxation time grows as

log

(
τ

τo

)
=
E

T
+ J2

(
1

T
− 1

To

)2

, (2.2)

where log with no subscript is taken to be the natural logarithm, τo is an elementary time
for molecular relaxation, E is the energy barrier to relaxation in the simple liquid, and J
is the energy scale for hierarchical dynamics. First, we generalize an asymptotic argument
due to Sollich and Evans [12] to predict the curvature of the relaxation time in decreasing
temperature in any number of dimensions and verify it numerically. This argument leads
us to expect that the East model’s upper critical dimension is ∞. Second, we measure the
onset temperature of hierarchical dynamics in the East model in dimensions one through
13 and find that it decreases non-linearly in increasing dimensionality. We use this fact to
interpret prior results from high dimensional hard sphere simulations. Third, we measure
the diffusion of probe particles in the East model and find that their diffusion violates the
Stokes-Einstein relation, even above RFOT’s upper critical dimension of eight. Furthermore,
our error analysis leads us to doubt claims that hard spheres have an upper critical dimension
of eight.

2.1 Asymptotic Result for High Dimensional

Curvature

The presence of hierarchical dynamics is indicated quantitatively by a non-zero value of
the curvature, J. Before checking numerically if the curvature goes to zero in any dimension,
we would like at least an asymptotic prediction. Sollich and Evans [12] made a heuristic
argument for the curvature of the East model relaxation time in one dimension that can
easily be generalized to any dimension. Following their reasoning, we consider the system’s
relaxation after a quench from high temperature, such that there is an excess of excited spins
and flipping a spin down is approximately irreversible. Consider a d -dimensional domain
spanning the cuboid from the origin to (L−1, L−1, ..., L−1), consisting of an excited spin at
the origin and no other excitations within the domain, but adjacent to another excitation at
(L,L, ..., L). Many trajectories exist to relax the spin just outside the domain. The energy
barrier to a particular trajectory is the maximum number of spins that are simultaneously
excited at any point along the trajectory. We will call the lowest such energy barrier the
height, h(Ld), where we consider only domains with all side lengths equal. Suppose L = 2n

for some integer n. One possible path passes through a configuration with the spin at site
(2n−1, 2n−1, ..., 2n−1) excited, and all sites with any coordinate greater than 2n−1 remaining
jammed. This configuration requires at least one more excitation than the original case, but
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Figure 2.1: The height function, h, measured numerically for the East model in dimensions
1, 2, and 3 and plotted against the asymptotic result from equation 5.

leaves a domain with half the side length. This path, therefore, gives us the recursive relation
h(2dn) = h(2d(n−1)) + 1. Sollich and Evans generalize this argument, in one dimension, to
domains of lengths, M, that are not necessarily powers of two, giving, in any dimension,

h(M) = n+ 1 for 2d(n−1) ≤M < 2dn

h(M) = 1 + blog2d(M)c

In turn, this implies log(τM) = 1+blog2d(M)cβ, where τM is the relaxation time for a domain
of size M, in the regime where M is much smaller than the equilibrium domain size. In our
simulations, we measure the relaxation time, τ , as the 1/e decay time of the persistence

function 〈P (t)〉 =
〈

1
N

∑N
i=1 pi(t)

〉
, where pi(t) is 1 if site i has never flipped up to time t and

0 otherwise and the angled brackets indicate an average over independent trajectories. The
relaxation barrier, which we call the height, of a domain is then the slope of log(τ) versus β
for that domain. See the resulting heights in Figure 2.1. Our simulations demonstrate this
asymptotic argument holds in dimensions 1 through 3.
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Figure 2.2: The curvature, J2 in equation 3, observed in equilibrium simulations has an
approximately constant offset from the asymptotic result J2 = 1/2d log(2).

Given τM , we can substitute the equilibrium domain size, Meq, and calculate the equi-
librium relaxation time, keeping in mind that the equilibrium domain size is outside the
rigorous result’s range of applicability. A recent and more detailed calculation by Martinelli
and coworkers [13] that accounts for the entropy of all possible relaxation pathways, though
still in one dimension, reduces log(τ) by a factor of 2. Assuming this extends to higher
dimensions, we get

log(τ) =
log(Meq)

2T log(2d)

=
1

2T 2d log(2)
,

implying J2 = 1/2d log(2).
To test this prediction in simulations, we chose our system sizes to have at least 100

excitations at the lowest temperature simulated in a given dimension. In one dimension, our
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lattice has 5,041 sites. In 13 dimensions, each side of our lattice has only three spins, for a
total of 313 spins. In larger dimensions, it becomes intractable to simulate enough spins to
have 100 excitations. For experimental systems and atomistic simulations, accurately fitting
the relaxation time of hierarchical dynamics requires first measuring the contribution from
simple liquid dynamics by fitting a line to the data above the onset temperature. However,
the dynamics of the East model lack any simple liquid regime and are entirely determined by
dynamical facilitation, so we measure J by setting the parameter E in equation (2.2) to 0 and
fitting the remaining parameters simultaneously over the data available at all temperatures.
See the resulting curvatures in Figure 2.2. The analytical result qualitatively matches the
trend seen in the curvature across dimensionality calculated from simulations, but with
a roughly constant offset. Extrapolating the observed linear trend to infinite dimensions
implies that even in that limit the system still has positive curvature. In infinite dimensions
every lattice site is connected to every other lattice site, so if even one lattice site has its
spin up, every lattice site in the system is facilitated. If every lattice site is facilitated,
the curvature of the log relaxation time is zero. This apparent contradiction requires further
investigation, but simulating an East model above 13 dimensions becomes extremely difficult.

2.2 Hierarchical Dynamics Appears at Lower

Temperatures in Higher Dimensions

Reorganizations in a glass forming liquid are rare events we can treat approximately
using transition state theory with a single, temperature dependent barrier to relaxation:
log τ ∝ βE(β). From above we know that after a temperature quench the energy barrier is
E(Meq) = 1

2
[1 + log2d(M)] where Meq(β) = c−1(β) = 1 + exp(β) is the equilibrium domain

size. Then

∂β log τ =E(β) + β∂βE(β)

=
log(1 + exp(β))

2d log 2
+

β

2d log 2

1

1 + exp(β)
exp(β)

→ 2E(β)

Let T* be the temperature at which the slope of the relaxation time versus beta crosses 2:

d log τ

dβ

∣∣∣∣
T ∗

= 2. (2.3)

See the values of T ∗ we measured in our simulations of the East model in Figure 2.3. In
an experimental system or atomistic simulation, the onset temperature is the temperature
where dynamical facilitation becomes significant. The East model’s dynamics, however, are
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Figure 2.3: The onset temperature as defined in equation 12.

controlled by facilitation at all temperatures. Hierarchical dynamics with an infinitesimal
energy scale would be physically irrelevant, so measuring the temperature at which the energy
scale for hierarchical dynamics crosses some finite threshold is a preferable way of comparing
the East model to real glasses. Although the choice of threshold is arbitrary, different
choices for which T ∗ is still well defined have the same qualitative result that T ∗ decreases
monotonically as d increases. In higher dimensions there are more pathways for one spin
to relax another, so a given relaxation time is reached at a lower temperature. Simulations
of hard spheres or other atomistic systems across dimensions cannot be compared at fixed
packing fraction or temperature. Doing so results in comparing systems with different energy
scales and dimensions, confounding any changes due only to the differing dimensionality. It
would even be possible to compare a high dimensional system above its onset temperature
to a low dimensional system below the onset, giving the appearance of a fragile-to-strong
crossover in dimensionality where none exists. If T ∗ for the East model or To for experimental
systems is nonzero for all finite dimensions, these systems are fundamentally non-mean field.
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2.3 Diffusion Decoupled from Stokes-Einstein In Any
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Figure 2.4: We show diffusion constants for the East model across eight decades in relaxation
time. Dashed lines show linear best fits calculated over log10(τ) ∈ (2, 8).

Another test of mean-field theory in the East model is the diffusion of probe particles
coupled to the lattice spins. After each Monte Carlo sweep over the spins, the probe particle
attempts a move. If a particle is located at a site with a jammed spin, it does not move. If
it is located at a site with an excited spin, it randomly chooses a nearest neighbor site. If
that site also holds an excitation, the particle moves to that site. If that site holds a jammed
spin, the particle does not move. If mean-field theory correctly described the diffusion of
these particles, they would obey the Stokes-Einstein relation, D ∝ τ−1. Instead, we observe
that diffusion of the probe particles fails to obey the Stokes-Einstein relation; see Figure
2.4. To test that we have run our simulations at sufficiently low temperatures to capture
the asymptotic behavior, we vary the minimum temperature we use for fitting the slope of
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logD versus log τ and obtain qualitatively similar results (not shown) to those in Figure 2.4.
The diffusion constant instead goes as D ∼ τ−ξ = τ−1+ω where ξ < 1. This was previously
observed in one dimension across 12 decades of relaxation times [14, 15] and is seen here
up through 13 dimensions over 8 decades of relaxation times. Figure 2.5 shows our fits to
ω. The slope of the diffusion data violates the Stokes-Einstein relation in dimensions one
through ten. In dimension 13, ω is still positive but the error bar includes ω=0, which
prevents a strong conclusion but is consistent with the possibility of an infinite upper critical
dimension.
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Figure 2.5: The deviation of the slope of log10(D) versus log10(τ) from that predicted by the
Stokes-Einstein relation in dimensions one through 10 and 13.

We calculated the error bars for ω with the following procedure. First, we fit to the
three log10(D) versus log10(τ) points with the lowest value of τ and calculated the mean
square error between the fit and those three points. Second, we sequentially added points
at lower values of τ until the mean square error rose above 0.01. Finally, we recorded ω for
each fit and reported the error as half the difference between the maximum and minimum
values. The middle of the reported range is the value obtained from the widest range in
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τ . Charbonneau et al. [7] use ξ as the key test of a hard sphere system’s upper critical di-
mension, observing that ξ rises approximately to one in eight dimensions and remains there
in nine and 10 dimensions. However, their fits are over a much narrower range of data in
the relaxation time, covering as few as two decades with only seven individual points. We
find that propagating error from the diffusion constant data into ω using the Central Limit
Theorem yields significantly smaller error bars than does comparing fits to different subsets
of our data. Similar analysis may also yield much larger error bars for the slope of D versus
τ in hard sphere systems, casting doubt on the calculation of their upper critical dimension.

2.4 Conclusion

The fundamental question in the theory of glassy dynamics is whether the behavior of
a glass results from a mean field, which ultimately implies that there will be a first-order
phase transition at finite temperature, or that behavior results from kinetic constraints,
which then implies that there is no first-order phase transition and that the relaxation time
diverges only at zero temperature. One way to test the mean field approximation is to find
its upper critical dimension, where the approximation becomes exact. Simulations of an
atomistic model of glass above that dimension should then reveal whether the mean field-
based theory is correct. Zamponi and co-workers found that the upper critical dimension of
RFOT is eight [6]. They then went on to measure the behavior of a glassy hard sphere system
up through 10 dimensions [7]. When measuring the degree of violation of Stokes-Einstein
diffusion, ω, they find that it decreases quickly with dimension. They go on to claim that the
decrease is linear in dimension until reaching 8 dimensions, when the violation goes away.

We agree that ω decreases quickly with dimension, but the difficulty of the simulations
in high dimensions and the wide error bars resist a final conclusion that ω decreases linearly
until hitting zero in eight dimensions. Here, we show that ω also decreases quickly, though
not linearly, in the multidimensional East model. We highlight sources of error that grow
with dimension and affect simulations of lattice models such as the East model as well as
atomistic models such as those simulated by Zamponi and co-workers. In work with Soree
Kim, Juan Garrahan, David Chandler, and YounJoon Jung, we have demonstrated that finite
size effects become severe for the very small systems that are tractable in high dimensions
but that the system sizes used here are sufficiently large to have reached a plateau in τ
and D versus system size [16]. Additionally, the onset temperature decreases with growing
dimension; equivalently for hard sphere systems, the onset packing fraction increases with
growing dimension. This drift in the onset could result in a glassy system looking liquid
simply because the onset temperature has dropped below the lowest temperature for which
the simulation is tractable.

We argue that even in the face of the high-dimensional hard sphere data and the upper
critical dimension of RFOT, kinetically constrained models remain well suited to explain
glassy dynamics. In the East model ω drops very quickly with dimension, a result quali-
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tatively consistent with that for hard spheres. However, ω remains above zero at least up
through 13 dimensions and likely up through any finite dimension of the East model, which
remains consistent with our claim that real glasses will not show a first-order phase transition
at any finite temperature.
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Chapter 3

Glass-like Bacterial Cytoplasm Is
Fluidized by Driving in Simulations

The possibility that living organisms have learned to exploit thermodynamic phase tran-
sitions in the course of evolution is an exciting line of interdisciplinary research in physics
and biology [17]. Near a phase transition, correlation lengths diverge, which might help a
living organism or group of organisms coordinate a very rapid response to a small change
in the environment. On a macroscopic scale, flocks of birds and swarms of insects show
behavior that resembles a system near a critical point. Individuals who are too far apart
to interact directly still move in a correlated direction. As an example of biological phase
transitions gone awry, neurons can transition into a hyperactive state and cause a seizure.

One widespread biological phenomenon that remains poorly understood is bacteria’s
ability to alternate between active and dormant states [18]. Somehow, when environmental
conditions are unfavorable, bacterial cells are able to stop metabolizing and enter a dormant
state. Later, the bacteria are able to reverse this transition and resume metabolism [19].
Somehow, the bacteria are able to preserve the proteins and ribosomes that are essential
to their survival, even in inhospitable conditions. It is difficult to understand how bacteria
can survive in a dormant state given their lack of internal cytoskeleton. They do not, for
example, enter a crystalline solid phase.

A possible explanation for the mechanism of this behavior comes from experiments that
found the bacterial cytoplasm - everything in bacterial cells except for the nucleus - turns
glassy when the cell’s metabolism stops [19]; that is, without becoming substantially colder
or crystallizing, diffusion of particles inside the cell drops precipitously. In this chapter, I will
consider ways in which that bacterial dormancy could be enabled by the onset of glass-like
dynamics. This hypothesis is a slight variation on the theme of biological phase transitions
described above because the onset of glassy dynamics is not actually a phase transition, but
a super-exponential slowing down of the dynamics. It would also make for an unusual result
in the study of glassy dynamics because the early results suggest that the largest particles
turn glassy while smaller particles continue to behave like a normal liquid.

The central result from the experiments is that the diffusion of large particles slows down
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much more than that of small particles when the cell stops metabolizing. After reviewing the
experimental results, I will describe a minimal model of a cell that includes glassy dynamics.
I build the model on the assumption the cell is near the onset of glassy dynamics. By
construction, as I lower the temperature, T, in my simulations the inverse of the diffusion
constant, 1

D
, will grow super-exponentially in 1

T
. My first hypothesis is that particles of

different sizes will either crossover for simple liquid behavior to glassy behavior at different
temperatures or that once they crossover, their super-exponential slowing down will happen
at different rates. Either result would be surprising and new.

This hypothesis is not borne out by the simulation results, but fortunately they do
ultimately suggest a path towards a better model. The behavior seen in experiments on the
diffusion of particles in the bacterial cytoplasm is not quite true glassiness. The experiments
find a material in which particles diffuse much more slowly than a reference state but have
not crystallized. This behavior does match the properties of a glass that make glass unusual
and useful. However, the experiments have not shown that the bacterial cytoplasm is a
liquid that slows down super-exponentially in 1

T
, a necessary condition for a material to

be deemed a glass. To be clear, I am not claiming that the experimental results are wrong.
Rather, my original hypothesis over-interpreted the statement that, “the bacterial cytoplasm
exhibits physical properties typically associated with glass-forming liquids approaching the
glass transition” [19]. The experimental results are better interpreted as suggesting a useful
analogy between glasses and the bacterial cytoplasm, not a direct application of the theory
of glasses to the bacterial cytoplasm.

Following these results, I will change my minimal model of bacterial cytoplasm to include
non-equilibrium driving forces. My second hypothesis is that the bacterial cytoplasm of a
non-metabolizing cell exhibits physical properties of glass-forming liquids that disappear
when metabolism begins. As I will soon show, modeling a cell as a densely packed collection
of many sizes of spherical particles far away from the glassy regimes of temperature or density
gives an improved reproduction of an actual cell compared to my previous, glassy model.
When I add an external force to the smallest particles in the system, which are roughly
proportional to the size of motor proteins found in actual bacterial cells, the larger particles
around them speed up as well. Even better, the speed-up of the non-driven particles is
roughly proportional to their size. The largest particles are the ones most strongly affected
by the presence or absence of a driving force on the smallest particles. This qualitatively
captures the central experimental result: the largest particles tracked in the experiments
had the largest speed up when the cells started metabolizing.

3.1 Bacterial Cytoplasm: Experiments

Although other labs have worked on related experiments before and since, the impetus
for this project came from the groups of Corey O’Hern, Eric Dufresne, and Christine Jacobs-
Wagner at Yale, and in particular their 2014 Cell paper, “The Bacterial Cytoplasm Has
Glass-like Properties and Is Fluidized by Metabolic Activity” [19]. Diffusion in simple liquids



CHAPTER 3. GLASS-LIKE BACTERIAL CYTOPLASM IS FLUIDIZED BY DRIVING
IN SIMULATIONS 17

is a thoroughly studied and well understood problem [20]. At least two properties of the
bacterial cytoplasm make it a little less simple, though. First, it is composed of particles
that vary by orders of magnitude in size. At one extreme, a water molecule is approximately
3 Å across. At the other extreme, the ribosome is about 200 Å in diameter [21]. Second,
as the cell metabolizes it pumps energy into the cytoplasm, driving the system far from
equilibrium.

While studying the dynamics of a protein that had been made non-functional by the
attachment of a bulky GFP tag, Jacobs-Wagner and associates found that in metabolizing
bacterial cells the large probe diffused through the entire cell in minutes via a random
walk, but that in a starved, non-metabolizing cell the probe rarely made movements of any
measurable size over a period of nine hours. They obtained qualitatively similar results
with multiple probe particles in Caulobacter crescentus and Escherichia coli, so the behavior
is not unique to a specific bacterium or probe particle. As a further robustness check,
they forced the cells into a non-metabolizing state three different ways. First, they starved
the cells until they stopped metabolizing. Second, they selected late-stationary-phase cells
that had stopped metabolizing of their own accord. Third, they treated the cells with
2,4-dinitrophenol (DNP), which depletes the cells of ATP and GTP, again arresting their
metabolism.

To quantify these differences, Jacobs-Wagner and associates measure the probe parti-
cles’ mean square displacement (MSD), where MSD(t) = 〈(~xt − ~x0)2〉. In an infinite or

periodically replicated system, the diffusion constant is D = limt−>∞
MSD(t)

2dt
. However, in a

finite, bounded system MSD(t) will reach an asymptote, so at long times the MSD will grow
sub-linearly. At very short times, the particles move ballistically - without collisions - and
their MSD grows quadratically in time. That is, for a particle moving at constant velocity,
〈(~x(t)−~x(0))2〉 = (vt)2, where v is the particle’s velocity. So, to measure diffusion constants
in the finite environment of a cell, we will look for some intermediate time regime where
the MSD is growing approximately linearly. Experimentally, at these intermediate times the
MSD’s of probe particles in the metabolizing cells grows at rates that are orders-of-magnitude
faster than in the non-metabolizing cells.

If this were the entire result, the experiment would provide little new information. The
metabolizing cell is a highly driven environment, so it comes as no surprise that particles
diffuse more quickly inside metabolizing cells than in non-metabolizing cells. The surprise
is that the magnitude of the speed-up in diffusion between the two kinds of cells depends on
the size of the probe particle. Jacobs-Wagner and co-workers are able to tune the number
of GFP particles that stick to the central molecule of their probe, letting them construct
probes of different sizes. Then, they measure the diffusion of the various probe particles in
both metabolizing and non-metabolizing cells. As usual for diffusion, larger particles diffuse
more slowly than smaller ones in the same conditions. However, unusually the ratio between
the diffusion constants in the metabolizing and non-metabolizing cells also depends on the
probe particle size, with larger particles experiencing a greater increase in diffusion when
metabolism restarts.
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Initially, some might argue that these results are a trivial consequence of motor proteins
essentially turning off when metabolism stops. However, the probe particles are inert objects
that diffuse passively through the cell even when it metabolizes. They are not actively driven
by any of the molecular motors inside the cell. Alternatively, the differences in diffusion may
be attributed to a rise in temperature during metabolism. First, even if the temperature
of the cell drops slightly when it stops metabolizing, that does not explain the orders-of-
magnitude reduction in diffusion. Second, even if metabolism effectively raised the cell’s
temperature a great deal, that would increase the diffusion of all particles proportionally,
contrary to the size dependent effect that is actually observed. Finally, Jacobs-Wagner and
co-workers report control experiments where they chemically inactivated molecular processes
that might somehow specifically drive the probe particles. In their words: “Through drug
inactivation of transcription, translation, or peptidoglycan wall synthesis, we also showed
that metabolism-dependent motion does not originate from the sole (motor-like) action of
RNA polymerases, ribosomes, or penicillin-binding proteins on their DNA, mRNA, or pep-
tidoglycan substrates” [19].

More to the point, the experiments also show certain properties that might be interpreted
as dynamical heterogeneity, a hallmark of glassy physics. Rather than measuring MSD’s,
Jacobs-Wagner and associates computed a related quantity, the radiation of gyration, Rg,
the root-mean-square distance from the center of a given particle’s trajectory. It is, in effect,
the MSD averaged over the time of observation. They report that the distribution of Rg’s
for the probe particles is bimodal. The MSD’s of the particles with Rg < 0.3 µm plateau to
a low, constant value, indicating they are caged. The MSD’s of the particles with Rg > 0.3
µm grow linearly for 10 minutes and grow to values commensurate with the size of the cell,
indicating free diffusion.

Although these measurements do prove the existence of two populations of probe particles
with very different dynamics, they are very different from the “heterogeneous dynamics”
discussed in the previous chapter. The meaning of glassy dynamics is explained thoroughly
by Aaron Keys, Lester Hedges, and their advisors in their 2011 paper “Excitations are
Localized and Relaxation is Hierarchical in Glass-Forming Liquids” [22]. In brief, at any
given time in a glassy system, most particles are vibrating over a distance that is much
smaller than their own diameter. Excitations, localized in time and space, are groups of
atoms that are able to make persistent displacements in their positions, on the order of
their own diameter. When particles in one location rearrange, they make room for adjacent
particles to rearrange as well. This process allows the excitation to move slowly through
the entire system. Whether or not the excitations themselves can diffuse freely through the
whole system, individual atoms do not. As the excitation moves through the system, the
identity of the atoms composing the excitation changes. If any single atom could move freely
through the whole system, the system would be a liquid and not a supercooled fluid. Also, a
histogram of Rg for each atom in the system over a long trajectory in an atomistic simulation
of a glass would not be bimodal. As the excitations move through the system they do not
favor or disfavor the inclusion of certain atoms. The results in non-metabolizing bacterial
cells are not the same as glassy dynamics. Taking this analogy literally is the mistake of
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my first hypothesis. My second hypothesis changes from a precise consideration of glassy
dynamics to a focus on how driving preferentially speeds up larger particles.

3.2 Bacterial Cytoplasm: Glassy Simulations

How, exactly, could the characteristics of glassy dynamics explain the observed phe-
nomena? Recall that the salient feature of glassy dynamics is super-Arrhenius growth of
relaxation times. That is,

log

(
1

D

)
=
E

T
+ J2

(
1

T
− 1

To

)2

, (3.1)

where D is the diffusion constant, E is the energy scale of relaxation in the simple liquid,
J is the energy scale of hierarchical dynamics, T is the temperature, and To is the onset
temperature for hierarchical dynamics. The consequence is that small changes in temperature
lead to abnormally large changes in the diffusion constant compared to the response of a
typical liquid. However, size dependent effects are not a component of the onset of glassy
dynamics in systems studied to date.

There are two possibilities for how glassy dynamics could relate to the extreme and size
dependent changes in the diffusion of probe particles in bacterial cells. First, the energy
scale of glassy dynamics could itself scale with particle size. If J is larger for larger particles
and if bacterial cells live in a glassy regime, then small changes in the temperature could
cause a large, size dependent slow down. Second, the onset temperature, To, could be higher
for larger particles. If a cell that stops metabolizing drops below the onset temperature for
a large particle but is still above the onset temperature for a small particle, that could also
cause a large, size dependent slow down.

Either one of these results would suggest that bacteria utilize the physics of glassy systems
in order to preserve themselves during unfavorable environmental conditions. Jacobs-Wagner
and co-workers highlight that the bacterial cell is polydisperse, crowded, and driven. Poly-
dispersity is a necessary component of molecular simulations of glassy dynamics without
size dependent effects. The standard molecular model of a three dimensional glass is the
Kob-Andersen mixture of 80% particles with diameter σ and 20% particles with a radius
0.88σ [23]. Two dimensional glass models also require polydispersity [22]. At high packing
fraction or low temperature, a monodisperse system will just crystallize. As for the cell’s
crowdedness, that is another necessary ingredient of a typical glass. Below some critical
packing fraction, which will vary based on the details of the intermolecular interactions, the
system will fluidize [24]. On the other hand, the metabolism that drives the cells far from
equilibrium should keep the cell fluidized. Supercooled fluids are in a metastable equilibrium
[23], very different from a far-from-equilibrium system. Perhaps the combination of these
two ingredients of a typical glass and one ingredient preventing the formation of a glass will
give rise to the peculiar, size dependent arrested dynamics seen in experiment.
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Particle No. Mass (kDa) σ (Å) N2D N3D

1 11.4 15.15 107 480
2 29.1 20.70 210 940
3 46.0 24.12 148 662
4 67.2 27.37 106 476
5 91.4 30.32 91 410
6 107.1 31.97 31 138
7 132.8 34.35 33 147
8 156.1 36.26 39 175
9 161.7 36.69 6 29
10 186.5 38.47 12 54
11 346.0 47.26 165 738
12 2700.0 93.74 22 102

Table 3.1: Particle masses and counts for 2D and 3D in the more detailed cytoplasm simu-
lations.

To start checking this hypothesis, I need to build a minimal model of a bacterial cell with
glassy dynamics. I will start with a model of a fluid, then add in the ingredients of glassy
dynamics, and finally modify the system to resemble a cell. The standard model of a fluid
used in Monte Carlo or Molecular Dynamics simulations is the Lennard-Jones potential [25]:

VLJ(r) = 4ε
[(

σ
r

)12 −
(
σ
r

)6
]
,

where ε is an energy scale and σ is a length scale. The r6 attraction term comes from
Van der Waals attraction [26]. Consider two neutral atoms with some separation, R. If the
relative separation of their nuclei and electrons were fixed, the center of their electron clouds
would coincide with their nuclei, and there would be no reason to expect them to feel each
other’s presence. However, two adjacent neutral atoms induce (oscillating) dipole moments
in each other because each atom’s nucleus is attracted to the electrons in the other atom.
The induced dipole magnitude scales as R−3 and the potential between two dipoles scales
again as R−3, so the total attraction scales as R−6 [26]. As the atoms closely approach
each other, their electron clouds overlap. The Pauli exclusion principle then forces some
of the electrons to jump to a higher energy level. Rather than deriving the exact scaling
from first principles, experimental fits show the repulsion scales approximately as R−12 [26].
Combining Van der Waals attraction with the Pauli exclusion principle gives the Lennard-
Jones potential. The Lennard-Jones potential has liquid, vapor, and crystal phases and lets
us study first-order phase transitions and phase coexistence. All these properties make it a
staple of statistical mechanics. However, it is difficult to form an amorphous solid with a
Lennard-Jones potential.
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Figure 3.1: The three interaction potentials between the two particle types I simulated.

With a good model of a fluid, some small modifications give a glass. I will start with a
two dimensional model, approximating the view experimentalists get when looking through a
bacterium, and work up to a three dimensional model if necessary. Instead of a single particle
type, I will have two, with the following parameters: εAA = εBB = εAB = σAA = 1.0, σAB =
1.1, σAB = 1.4. Finally, the interaction potentials are truncated at their minimum, 21/6σ, and
shifted so they go smoothly to 0 where they are truncated. See Figure 3.1. This truncation
removes the attractive portion of the Lennard-Jones potential and turns the particles into
purely repulsive Weeks-Chandler-Anderson (WCA) particles [27]. WCA particles have the
same phases as Lennard-Jones particles, but because we can truncate their interactions at
21/6σ instead of the standard Lennard-Jones truncation of 2.5σ they are faster to simulate.
Previous simulations at Berkeley showed these parameter choices give rise to heterogeneous
dynamics and super-Arrhenius relaxation times [22].

The final step is to take this model of glassy physics and modify it to resemble a bacte-
rial cell. A physicist’s approximation of a cell as an environment for a diffusing particle is a
bounded, roughly rectangular space. A two-dimensional simulation is a reasonable approx-
imation to the view experimentalists have. To start, I take a box with shape 15σ by 100σ.
(Simulation cells with shapes 30σ x 100σ or 100σ x 100σ give qualitatively similar results,
which I will not show.) Then I randomly place my mixture of A and B particles as well as
a single particle of a third type with σ = 10.0. (Simulations where the large particle has
σ = 2.0, 4.0, 5.0, or 7.5 also give qualitatively similar results, which I also will not show.)
I make sure to place the large particle, which will stand in for the experimental probe, at
least 2σ from any edge of the simulation. After energy minimization and 1,000 steps of
equilibration, I freeze the particles within 2σ of the edge in order to confine the probe and
to mimic the bumpy cell wall the probe particle experiences in the experiments. Then I run
the system for 106 time steps of ∆t = 0.005τ each, where τ = σ

√
m
ε

, and measure the MSD
of the non-frozen small particles of type A and B and the single large particle. As I repeat
this procedure at lower and lower temperature, the diffusion constants for the three particle
types all drop proportionally, contrary to what would be expected if my first hypothesis were
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Figure 3.2: Inverse diffusion constants for the three particle sizes in a confined cell with total
dimension 15σ x 100σ. There may be a slightly larger slow down for the large probe particle,
but the difference between the small and large particles is nowhere near the factor of five
seen in experiments.

correct. See Figure 3.2. The various particle sizes all have approximately the same onset
temperature and the same curvature, J. The onset of glassy dynamics does not differentially
affect particles of different sizes.

3.3 Bacterial Cytoplasm: Driven Simulations

My original model may have failed to give the desired results simply because it was too
simplified. I will (partially) follow the example of Fabio Trovato and Valentina Tozzini in
their simulations of the bacterial cytoplasm [28]. They define 12 particle types with the
concentration and size of each particle type corresponding to experimentally determined
protein abundances. Although their simulations are all in 3D, I want to run in 2D as well
as 3D. In Table 3.1 I show particle types with masses and counts in 3D pulled from [28] as
well as the particle counts I used in my 2D simulations. In 2D, I use a simulation cell size

of 1152.5 Å x 2305 Å, for a total area of 2.656 ∗ 106 Å
2
. In 3D, I use a simulation cell size of

1152.5 Å x 1152.5 Å x 2305 Å, for a total volume of 3.061 ∗ 109 Å
3
. For the Lennard-Jones
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Figure 3.3: Snapshot of a 2D simulation of a bacterial cell. The smallest particles around
the corners of the simulation never move; their purpose is to provide an approximately
cell-shaped, bumpy confining boundary.

potentials between two particles of the same type, I set εi = 0.146(σ − 3) + 0.25. Between
different kinds of particles I use the mixing rules εij =

√
εiεj and σij =

σi+σj
2

. See Figure 3.3
for a snapshot from one of the two dimensional trajectories. Next, see Figure 3.4 for several
views of a snapshot from one of the three dimensional trajectories.

I truncate and shift the interaction potentials at
√

2σ to make them purely repulsive. I
use 1 kcal/mol as my unit of energy, 1 kDa as my unit of mass, and 1 Å as my unit of length,

so τ =
√

mσ2

ε
= 4.889 ∗ 10−14s. I run my simulations for 12.5 ∗ 106 time steps of 0.02τ each,

for a total simulation time of approximately one minute.
In addition to adding more structural detail into my model, I need to add a key component

of the dynamics that was lacking in the previous model: driving. Instead of turning the
temperature up and down, turning an external force on and off is likely a better model
of metabolism. A driven system is far from equilibrium, completely unlike the metastable
equilibrium a glassy system is in. A very crude model of metabolism is that a small fraction
of particles, representing motor proteins, is driven. I have mimicked such a system in my
simulations with 15 lanes running parallel to the long axis of the cell, which I will call the
x-axis. Each lane has a width of 76.8 Å, roughly as wide as five of the smallest particles.
Across the 15 lanes, I have a pattern of an external force that acts to the right or to the
left, or no force at all. The external force acts only on the smallest particles, parallel to the
x-axis. Measuring each particle’s area as πσ2, the smallest particles occupy only 2.3% of the
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area of all the particles in the system.
In the two-dimensional simulations, the results begin to capture the qualitative features

of the experiments. See Figure 3.5. A driving force that only acts directly on the smallest
particles in the system causes all other particles in the system to speed up. In simulations
it is simple to control for the effect of temperature. With a thermostat we hold tempera-
ture constant, so we can attribute all the increase in diffusion to the driven motion of the
small particles and not just an increase in temperature. Furthermore, the ratio between the
diffusion constants in the simulations with and without driving depends on the size of the
particles. See Figure 3.6. Larger particles experience a greater increase in diffusion than
smaller particles. The strength of the dependence on particle size is sensitive to the system’s
density. Making a direct comparison to a real bacterial system requires a three dimensional
model with a well calibrated density.

The three-dimensional simulations, which take much longer to run, are in progress. Early
results are quite promising. See Figure 3.7. After some delay, larger particles that are not
directly acted upon by the driving force diffuse much more quickly along the forced direction
than the other directions. The time of the delay and the magnitude of the speed up for
different particle sizes and system densities will be presented in forthcoming work with Milo
Lin. It is already possible to conclude that in an appropriately chosen range of driving forces
and densities, an external driving force on the smallest particles in the system substantially
increases the diffusion of larger particles in the system in a size-dependent manner.
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Figure 3.4: Three views of a snapshot of a 3D simulation of a bacterial cell: side view of the
entire system (top); the bumpy, rounded cap made of small unmoving particles (bottom-left);
a cross-section down the long axis of the cell (bottom-right).
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Figure 3.5: Mean square deviation of three particle sizes in the two-dimensional simulations.
Adding an external force just to the smallest particles in the system speeds up the diffusion
of other particles.

Figure 3.6: Ratio of diffusion constants in the presence or absence of an external force on
the smallest particles for all other particles in the system.
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Figure 3.7: Mean square deviation of two particle sizes in a three-dimensional simulation.
The MSD is measured separately along each axis. The driving is along the x-axis, which is
also the long axis. Diffusion along the other axes closely resembles that in a simulation with
no driving.
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3.4 Conclusion

The mechanism for bacterial dormancy is not yet understood. Experiments on non-
metabolizing cells show that diffusion of probe particles in these cells drops dramatically
and in a size-dependent manner. Those experiments suggest that bacterial cells may exploit
properties of glassy physics to preserve themselves in unfavorable environments. By selec-
tively slowing down the motion of ribosomes and large proteins, bacterial cells may preserve
their structure, which is necessary for their function in the cell when metabolism resumes.

I tested two hypotheses for how bacterial cells could utilize glassy physics. First, I
tested the hypothesis that particles of different sizes in bacterial cells have different onset
temperatures for glassy dynamics or different energy scales for hierarchical dynamics. If that
were the case, a small decrease in temperature when metabolism stops could cause large,
size dependent decreases in diffusion. However, neither of these scenarios appeared in the
simulations.

Second, I tested the hypothesis that the bacterial cytoplasm without driving is jammed on
the time scales over which the experimental measurements are taken, but that the addition
of a small driving force on a small fraction of the particles in the system causes a large,
size dependent increase in diffusion. In two-dimensional simulations, this hypothesis was
correct. For better comparison to experiment, I am reproducing these simulations in three
dimensions. Early results confirm the hypothesis. Although these simulations cannot prove
that bacterial cells exploit properties of glassy physics in order to enter a reversible dormant
state, they successfully demonstrate that such an explanation is plausible. Forthcoming work
with Milo Lin and in collaboration with experimentalists should lend further credence to this
result.



29

Part II

Water
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Chapter 4

Electric Field Fluctuations in Water

In this chapter, I will use enhanced sampling techniques to study how fluctuations in
the arrangement of solvent molecules can exert large enough forces on a molecule to break
it apart. The central molecule can be an ion like NaCl, in which case we call this ion
dissociation, or another water molecule, in which case we call this autoionization. Studying
these fluctuations is a challenge because they happen very rarely - requiring a very long
simulation - and may involve many water molecules - requiring a large system size.

4.1 Autoionization

Autoionization in water - the spontaneous breaking apart of a charge neutral water
molecule into positively and negatively charged components - has both fundamental and
practical importance in physical chemistry. Fundamentally, charge transfer is one of the
main topics of study in physical chemistry and autoionization of water is one of its most
prevalent examples. Practically speaking, autoionization determines the pH of pure liquid
water. No matter how good a job you do of distilling your water, you will always find it to be
full of ions because water molecules are constantly splitting apart and recombining. Through
extensive effort and the development of entirely new tool sets at UC Berkeley and elsewhere
- namely transition path sampling (TPS) - research culminating with that of Phillip Geissler
finally revealed the molecular mechanism for autoionization in liquid water [29].

Somehow, a collection of water molecules must fluctuate into a configuration that makes
it energetically favorable for a water molecule to split into a positively charged hydronium
and a negatively charged hydroxide. Geissler and co-workers found that the appropriate
reaction coordinate was the electric field experienced by the hydrogen atom on the verge of
changing its bond from one oxygen atom to another. There are many, fleeting autoionization
events in which the disloyal proton is quickly pushed back to its parent water molecule. The
rare event is not the bond breaking, but the large electric field that quickly drives the excess
proton away and breaks the chain of hydrogen bonds connecting the ions. If the hydrogen
bond chain does not break, rapid recombination follows. To be clear, the proton we label
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“excess” at the end of this process is not the same proton that originally broke its chemical
bond. Rather, when an excess proton attaches itself to a water molecule, another proton on
the same molecule breaks off and starts the process again. Instead of hopping one molecule
at a time, the excess charge can move across an H5O

+
2 cluster (called a Zundel cation) or

an H9O
+
4 cluster (an Eigen cation). This process, known as the Grotthus mechanism, allows

for faster diffusion of the excess charge than if a single excess proton had to diffuse through
the system [30].

Directly observing autoionization in a simulation was a great challenge overcome by
Geissler and co-workers. Chemical bond breaking is a quantum mechanical process. Sim-
ulating that with density functional theory may have given them the correct behavior - as
long as they were lucky enough to choose correctly from a zoo of possible functionals - but
scales so poorly with system size that they would have been unable to see an excess proton
get even a few molecular lengths away from the hydroxide it abandoned. Instead, they used
Car-Parinello Molecular Dynamics (CPMD), simulating nuclear coordinates in a classical
potential. CPMD allowed them to obtain trajectories of 32 water molecules on the order
of 1 ps long. Though modest, this system size is large enough to see stably separated ions.
However, a given water molecule only ionizes roughly once in 10 hours. Even supposing all
32 water molecules fluctuate independently - which they do not - a single 1-ps simulation
would have roughly a one in 1012 chance of seeing an autoionization event. They overcome
this problem by developing TPS. Starting with a single trajectory that goes from a neutral
state to an ionized state, they then make small perturbations to the trajectory. This serves
as a form of importance sampling in trajectory space rather than configuration space.

Careful analysis of the resulting trajectories shows that the separation between the ions
does not accurately describe whether they will progress to the stable, charge separated state.
First, to test whether a configuration is in a transition state, Geissler and co-workers run
many trajectories from the same configuration but with velocities chosen at random from
a Boltzmann distribution. Call the number of bonds in the shortest hydrogen bond path
between the ions l. If roughly half the trajectories end with l ≥ 3 and the other half end
in configurations with no ions, then the initial configuration is said to be a transition state.
With a set of transition state configurations identified, the second task is to identify which
features of a given configuration cause it to be a transition state. With an appropriate
reaction coordinate, a configuration from the transition state can be allowed to fluctuate
and as long as the reaction coordinate is held constant the system will remain in a transition
state. If the fixed order parameter is not actually the reaction coordinate, configurations that
were originally in the transition state will migrate to the initial or final state. For an example
of how the probabilities change when the system is allowed to fluctuate without the reaction
coordinate held constant, see Figure 4.1. For autoionization, because l is used to define the
final state reached by the trajectory, it is also a natural candidate for reaction coordinate.
However, for intermediate values of l some configurations have a very high probability of
going to the charge separated state while others have a very high probability of going to the
charge neutral state.

Instead, the proper reaction coordinate is the potential energy difference between the
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Figure 4.1: The distribution of commitor values for configurations that are equilibrated from
a transition state with all atoms through the first (a), second (b), and third (c) solvation
shells frozen, reproduced from [31]. Configurations that are still in a transition state would
have a commitor distribution sharply peaked around 0.5. Panel (c) suggests that freezing
three solvation shells may hold the configuration in a transition state, but when the process
is repeated with a larger simulation cell the distribution widens substantially (inset).

two charge states when only protons along the hydrogen bond wire connecting the ions are
allowed to move. To calculate this difference, Geissler and co-workers linearly interpolate
the coordinates of those protons between the charge-separated configuration and a charge-
neutral configuration. They hold all other coordinates fixed. As expected, a stable, neutral
configuration strongly disfavors separation of the charges and a stable, charge-separated
configuration strongly disfavors restoring the ions to charge neutrality. However, a neutral
configuration in a transition state shows metastability of the charge-separated state. See
their results in Figure 4.2.

With this reaction coordinate in hand, they would like to know which solvent fluctuations
determine its value. As an initial check, to test whether the contributions to this potential
energy are primarily short- or long-ranged, Geissler and co-workers remove the outer sol-
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Figure 4.2: Reproduction of Figure 2 from [29]. The horizontal axis shows progression along
the linear interpolation of protons between the charge-separated and neutral states. The
vertical axis shows the potential energy difference from the neutral state. The top panel
is calculated from a neutral configuration, the middle panel is a transition state, and the
bottom panel is from a charge-separated configuration.

vation shells and recalculate the same reaction coordinate. With the outer shells removed,
the stability or metastability of the charge-separated state is substantially reduced. This
experiment tells us that there is some important long-ranged contribution to the electric
field, but it does not tell us what that contribution is.

4.2 Ion Dissociation

Another simple case of ionization, with just a couple more ingredients than autoioniza-
tion, is the dissociation of sodium chloride in water. Simulations done by Andrew Ballard
and Christoph Dellago [31] show that, as in autoionization of water, solvent fluctuations are
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crucial to the ionization process. Similar to Geissler and co-workers, Ballard and Dellago
identify transition states between the associated and dissociated states. Then, to test which
coordinates are essential elements of the transition state, they take a transition state, freeze
all molecules out to the first, second, or third solvation shell, and let the other molecules
evolve at equilibrium. They then check whether the newly obtained configurations are still
transition states. Even when they freeze three solvation shells they find that a significant
fraction of the equilibrated configurations are no longer in or near the transition state (see
Figure 4.1), indicating that information from the fourth solvation shell and farther con-
tributes meaningfully to the transition state for dissociation of sodium chloride. As in the
case of autoionization, we still don’t know what these long-range contributions are, just that
they are important to the transition state.

4.3 Long-Range Contributions to Electric Field

Fluctuations

To understand how long-range solvent fluctuations contribute to the rare, large electric
field that break chemical bonds, we need a method that lets us run a simulation with more
than 32 water molecules for longer than a few picoseconds. I turn now to work by Bernhard
Reischl, Jurgen Kofinger and Christoph Dellago [32]. Instead of using CPMD to propagate
the nuclear dynamics, as Geissler and co-workers did, Dellago and co-workers used a rigid
water model, TIP4P. Although this prevents them from actually observing bond breaking, it
lets them run a much larger and longer calculation so they can find what solvent configuration
gives rise to a large electric field.

These rigid water simulations reveal several properties of the electric field distribution on
a water molecule. First, the distribution is Gaussian over the measured range. See Figure
4.3. Second, they decompose the electric field at a given location into sources as a function
of distance from the point of measurement. This decomposition reveals that even for the
largest fields observed, the contributions come completely from atoms within 7 Å and mostly
from atoms within approximately 4 Å. See Figure 4.4.

Brute force simulations are able to tell us quite a bit about the solvent contributions
to electric fields of above average magnitude. However, a given water molecule will only
autoionize approximately once every 10 hours [29]. Dellago and co-workers’ data come from
5 ns of simulation of 1000 water molecules. Even if every molecule were independent, this
would give us only 5 ms of electric field time series, giving us roughly a 1 in 1010 chance of
observing the conditions for autoionization emerging spontaneously. To probe this regime, we
must use some sort of importance sampling to drive our simulation towards autoionization.
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Figure 4.3: The distribution of electric fields experienced by the hydrogen atom of a water
molecule reproduced from [32]. The x direction is parallel to the OH bond. The y direction
is perpendicular to the OH bond and in the HOH plane. The z direction is perpendicular to
the HOH plane.

Figure 4.4: Contributions to the electric field on a central atom as a function of distance
reproduced from [32]. Different colored lines are for different sizes of electric fields on the
central atom.

4.4 Umbrella Sampling

The importance sampling technique I will use is umbrella sampling, which I will briefly
review now. My review will closely resemble that of Patrick Varilly [33]. An unbiased
equilibrium simulation will generate samples proportional to a Boltzmann weight, that is,
e−βU({~r}), where β = 1

kBT
, kB is Boltzmann’s constant, T is the temperature, and U({~r}) is

the energy of a configuration defined by the set of coordinates ~r. Since the number of samples
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decreases exponentially in the energy, sampling high energy configurations is extraordinarily
difficult. However, we can run a simulation with some energy penalty, ∆U({~r}), that is
chosen carefully to enhance the frequency of whichever set of configurations we are interested
in. In particular, suppose we want to know the mean of some variable, x, at equilibrium,
〈x〉0, where the subscript 0 indicates an unbiased simulation. We can calculate this expected
value as follows:

〈x〉0 =

∫
d{~r}e−βU({~r})x({~r})∫

d{~r}e−βU({~r}) (4.1)

=

∫
d{~r}e−βU({~r})−β∆U({~r})eβ∆U({~r})x({~r})∫

d{~r}e−βU({~r})−β∆U({~r})eβ∆U({~r}) (4.2)

=

∫
d{~r}e−βU({~r})−β∆U({~r})eβ∆U({~r})x({~r})/

∫
d{~r}e−βU({~r})−β∆U({~r})∫

d{~r}e−βU({~r})−β∆U({~r})eβ∆U({~r})/
∫
d{~r}e−βU({~r})−β∆U({~r}) (4.3)

=
〈xeβ∆U({~r})〉U+∆U

〈eβ∆U({~r})〉U+∆U

(4.4)

In some cases, the choice of ∆U is simple and obvious. If you want to bias a local
order parameter, x, say the distance between two atoms, towards a value, x′, you can add a
harmonic energy penalty for deviating from that value: ∆U = k

2
(x−x′)2. In other cases, the

choice is more difficult. In particular, if the parameter of interest is a global order parameter,
the path from equilibrium to the desired value may pass through kinetic traps or states that
aren’t accessed by that simple biasing force. Additionally, to apply the bias in a molecular
dynamics trajectory you need to differentiate the biasing energy with respect to every atom’s
position at every time step. If that is a long calculation it will substantially slow down your
simulation.

4.5 Umbrella Sampling of the Electric Field on a

Proton

Using umbrella sampling on the total electric field on an atom in a simulation with peri-
odic boundary conditions is computationally intractable because it has a contribution from
an Ewald sum, the derivative of which is difficult to calculate at every time step. How-
ever, the biasing energy ∆U does not actually need to be a function of the order parameter
of interest, even though it often is in practice. Once you calculate the equilibrium weight
of a configuration generated under any (validly defined) biasing energy, you can calculate
whatever order parameter you like. As long as the biased trajectory sufficiently samples
the distribution of the order parameter you are interested in, your sampling is done. In
an MD simulation, the electric field is calculated as the sum of a short-ranged contribution
from Coulomb’s law and a long-ranged Ewald sum [25] [34]. The short-ranged contribution
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Figure 4.5: The very tight correlation between the total electric field on an atom and the
electric field from nearby atoms only, excluding the long-ranged contribution from an Ewald
sum, allows for importance sampling indirectly on the former by explicitly biasing the latter.

is highly correlated with the total electric field, so by adding a much simpler bias on the
short-ranged electric field only, I am able to sample the distribution of the total electric field.
See Figure 4.5. The electric field in a molecular dynamics simulation is calculated as

Ucoul =
1

2V

∑
~k 6=0

4π

k2
|ρ(~k)|2 exp(−k2/4α)− (α/π)1/2

N∑
i=1

q2
i +

1

2

N∑
i 6=j

qiqjerfc(
√
αrij)

rij
(4.5)

where V is the volume of the simulation cell, ρ(~k) is the Fourier transform of the charge
density, and α is a parameter that can be tuned to ensure quick convergence of the reciprocal
space sum and acceptable error. The third term is the short-ranged contribution in real space.

Adding a biasing force in LAMMPS happens through a “fix” command. LAMMPS has
no fix implemented to bias the electric field experienced by an atom. I introduced a fix that
adds the following bias to the potential energy of the system:

∆H = κ
2
(~vOH · EH − E0)2

where ~vOH is the vector pointing from the oxygen atom to the tagged, covalently bonded
hydrogen atom and EH is the short range electric field experienced by a tagged proton.
κ and E0 are parameters I can choose in each simulation. To propagate dynamics under
this additional energy term, I have to differentiate the third term in Equation 4.5 above.
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Although I am only directly biasing the short range contribution to the electric field and not
the total, the tight correlation between the two means I successfully, if indirectly, bias the
total electric field. Now that I have the ability to bias my simulations along the reaction
coordinate for autoionization discovered by Geissler and co-workers, I can get exponentially
better sampling of the solvent configurations that naturally give rise to a large electric field.

Each simulation was in a cubic box with sidelength 21.73 Å with periodic boundary
conditions. Each box contained 343 SPC/E water molecules. The initial configuration of
the water molecules came from the last step of an equilibration run without any umbrella
bias that had, in turn, started from the water molecules occupying a cubic lattice. I ran each
simulation for 107 timesteps of 1.0 fs each, for a total of 10 ns in each window and 110 ns
total, with the velocity Verlet integrator. I recorded the electric field along the OH bond on
the atom subject to the umbrella bias every 1000 time steps. I held temperature at 298 K
with a Langevin thermostat. For the one dimensional potential of mean force of the electric
field along an OH bond, I used 11 umbrella windows with the electric field bias centered
at 0, ±1, ±4, ±9, ±16 and ±25 V/Å. As a check that I had a properly equilibrated and
stationary system, I redid all the simulations with the initial conditions chosen from the last
timestep of the umbrella window biased to −25V/Å. For the two dimensional potentials of
mean force of the electric fields along two OH bonds of different pairs of molecules, I used 121
umbrella windows with every combination of the 11 biases referenced above on the tagged
pair of molecules.

4.6 Results

The energy displayed in Figure 4.6 is the same calculation as in Figure 4.3, where the
previous figure shows the probability of a given electric field instead of the energy. We
can now evaluate fluctuations below a probability of e−100. This lets us see which solvent
configurations account for these extreme electric field fluctuations. Note that, as defined here,
a positive electric field would pull the tagged proton away from its parent water molecule,
making that the relevant direction for autoionization. We see that those fluctuations are
highly Gaussian, confirming the result of Dellago and co-workers [32], but much further into
the tails of the distribution.

In the other direction, towards negative electric fields that squeeze the OH bond, what
we see is a little more surprising. Above roughly 20 kBT the energy grows sub-quadratically.
Although there is no metastable state, the sub-quadratic growth of the free energy means
that a sufficiently large external electric field, which creates a harmonic bias, can create a
second metastable state; see Figure 4.7. 20 kBT is a large energy for a single molecule,
though, so this effect may be an artifact of pushing the SPC/E water model too far outside
the conditions it was parameterized for.

What we want to know is what solvent configurations give rise to these large electric field
fluctuations. In Figure 4.8 I have chosen typical configurations from the simulations run
under biases towards large negative or positive values of the electric field. I only show the
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Figure 4.6: The free energy of the electric field experienced by a proton on a water molecule,
projected along the OH bond axis. The black line is calculated from umbrella sampling
windows that start at equilibrium and are then equilibrated to different biases. The red line
is calculated from umbrella sampling windows that start from the last configuration in the
trajectory with the largest, negative bias.

tagged molecule and its nearest neighbor because, in both cases, that one neighbor accounts
for nearly the entire electric field on the tagged hydrogen atom. For the large, negative field,
two water molecules form a dimer analagous to a Bjerrum defect in ice. A Bjerrum defect
is a pair of water molecules with both donating and accepting a hydrogen bond to and from
the other [35]. To my knowledge, such a defect has never been reported in liquid water and
could very well be an artifact of the SPC/E model under a large external force. I will give
more details of these configurations below. The configurations giving rise to a large, positive
electric field seem more sensible. With a larger and larger bias, the neighboring oxygen atom
pulls closer and closer to the tagged hydrogen atom.

To quantify the distribution of solvent configurations under these extreme conditions, I
will calculate the radial distribution functions (RDF’s) of hydrogen atoms around the tagged
hydrogen and oxygen atoms around the oxygen atom bonded to the tagged hydrogen. The
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Figure 4.7: The free energy of the electric field experienced by a proton on a water molecule,
projected along the OH bond axis, under a bias. The bias is a harmonic penalty centered at
the most negative bin observed, approximately -15 V/Å, with a spring constant chosen to
force the free energy of that bin to 0.

radial distribution function, gAB(r), is proportional to the probability of finding a particle

of type B at a distance r from a particle of type A. We can write this as gAB(r) = 〈ρB(r)〉
ρB

,

where 〈ρB(r)〉 is the density of particles of type B at a distance r from a particle of type A
and ρB is the average density of particle type B over the whole system. For the density of
hydrogen atoms around the tagged hydrogen, see Figure 4.9 and for the density of oxygen
atoms around the oxygen covalently bonded to the tagged hydrogen, see Figure 4.10. Taken
together, these RDF’s tell us that, compared to equilibrium, in configurations with a large
negative electric field the tagged hydrogen comes more than an Angstrom closer to the
nearest adjacent hydrogen atom, while the nearest oxygen atom is pulled roughly a quarter
of an Angstrom closer. The second shell - that is, water molecules farther away than roughly
3.5 Å- is largely unaffected. These facts suggest that the large electric field results primarily
from nearby fluctuations in the solvent.

The oxygen-oxygen RDF for trajectories where the tagged hydrogen is biased towards
very large and positive electric fields shows both a splitting of the first peak into two peaks
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Figure 4.8: Representative configurations taken from trajectories biased towards large neg-
ative (left) and positive (right) values of the electric field experienced by a tagged proton in
water, projected along the OH-bond axis.

and an enhancement of order farther out from the first shell. See Figure 4.11. The heights of
the two peaks in the first shell are both higher than the single peak in the equilibrium RDF
and have a similar width at their base. This new RDF suggests that the configurations with
large electric fields are more ordered than the typical liquid. The molecules experiencing
the large electric field have a larger coordination number and accept more hydrogen bonds
than at equilibrium. See Figure 4.12. The region around the boundary between the first and
second shells is significantly depleted as those molecules are pulled in towards the central
atom and the first shell is pulled roughly 0.5 Å closer. The second shell peak, around
4.5 Å, and the second minimum, around 5.5 Å, are also noticeably enhanced compared to
equilibrium. Farther out, the available statistics don’t allow us to see any change in the
liquid structure. If there is a change, it is quite small. These results suggest that the large
electric field at the center results primarily from fluctuations of molecules within 4 Å, with
some influence of molecules out to around 6 Å.

As a further test of whether the large electric fields on a hydrogen are due primarily
to the single nearest neighbor, I bias the electric field on pairs of hydrogen atoms. In one
test, I pick a hydrogen atom to bias, then find a molecule in the first solvation shell of the
first molecule and bias one of its hydrogen atoms as well. In another test, I repeat the
procedure for a molecule in the second solvation shell of the first molecule. In both cases, I
bias the distance between the chosen water molecules to keep them in each other’s first or
second solvation shell. For the first solvation shell, the bias is a harmonic potential centered



CHAPTER 4. ELECTRIC FIELD FLUCTUATIONS IN WATER 42

Figure 4.9: Radial distribution function (RDF) of hydrogen atoms around tagged hydrogen
atom in trajectories with a harmonic bias around electric fields of -18 V/Å. This RDF
quantitatively describes the configuration seen in the left panel of Figure 4.8.

on a distance 2.75 Å between the molecules. For the second solvation shell, the harmonic
potential is centered at a distance of 4.5 Å. See the resulting potentials of mean force in
Figure 4.13 and Figure 4.14. Representative configurations from different regions of the
first shell PMF are in Figure 4.15.

To see how the biases on the two molecules interact with each other, compare to the case
of what the two-dimensional PMF would look like if the two electric fields were uncorrelated;
see Figure 4.16. To help make sense of these results, I also compute the difference between
the uncorrelated PMF and the first shell PMF in Figure 4.17 and the difference between
the uncorrelated PMF and the second shell PMF in Figure 4.18. If long range fluctuations
are required to induce a large electric field at a point, then the differences between the PMF
for two uncorrelated electric fields and the actual PMF’s will be quite large. In fact, the
differences are not very large. In the first shell, the free energy difference ranges from -27
kBT to 36 kBT . Compared to the uncorrelated case, the first shell pair more easily develops
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Figure 4.10: Radial distribution function (RDF) of oxygen atoms around the oxgen atom
covalently bonded to the tagged hydrogen atom in trajectories with a harmonic bias around
electric fields of -18 V/Å. This RDF quantitatively describes the configuration seen in the
left panel of Figure 4.8.

large negative electric fields on both molecules. In the case of the second solvation shell
pair, this enhancement goes away. There is no fluctuation that is more likely for the second
shell pair than for the uncorrelated case. The two molecules slightly inhibit each other
from experiencing large fields. Although the maximum free energy in the second shell PMF
is lower than in the first shell PMF, on average it is closer to the uncorrelated PMF, as
expected. These two-dimensional PMF’s further support the hypothesis that no significant
long range cooperation is required to create a large electric field on a given hydrogen atom.
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Figure 4.11: Radial distribution function (RDF) of oxygen atoms around the oxgen atom
covalently bonded to the tagged hydrogen atom in trajectories with a harmonic bias around
electric fields of 25 V/Å. This RDF quantitatively describes the configuration seen in the
right panel of Figure 4.8.
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Figure 4.12: Representative configuration from a trajectory with a bias on the electric field
on the blue hydrogen atom towards 25 V/Å. In this configuration, the water molecule with
the hydrogen atom being pulled away strongly is accepting four hydrogen bonds, a large
fluctuation from the equilibrium average of 1.8.

Figure 4.13: The potential of mean force for electric field fluctuations on two hydrogen atoms
whose water molecules are within each other’s first solvation shell.
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Figure 4.14: The potential of mean force for electric field fluctuations on two hydrogen atoms
whose water molecules are within each other’s second solvation shell. When a central atom
and an atom in the second solvation shell are biased towards large positive fields, a third
atom forms a bridge between the two tagged atoms and remains there on the order of 1 ns,
giving a path for a proton to diffuse 3 hydrogen bonds away from its initial position by the
Grotthuss mechanism.

Figure 4.15: Representative configurations from trajectories with two molecules in each
other’s first shell biased to have large electric fields on one of their hydrogen atoms. Hydrogen
atoms in blue are having their covalent OH bond stretched. Hydrogen atoms in orange are
having their covalent OH bond compressed.
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Figure 4.16: This plot shows what the 2D PMF of the electric field of two tagged hydrogen
atoms in each other’s first solvation shell would look like if their fluctuations were uncorre-
lated.

Figure 4.17: The difference between the actual 2D PMF of the electric field of two tagged
hydrogens in each other’s first solvation shell and the result that would have appeared for
uncorrelated two hydrogen atoms individually following the 1D distribution.
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Figure 4.18: The difference between the actual 2D PMF of the electric field of two tagged
hydrogens in each other’s second solvation shell and the result that would have appeared for
uncorrelated two hydrogen atoms individually following the 1D distribution.
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4.7 Conclusion

Autoionization is an essential property of water. Understanding how it happens is im-
portant both for its direct relevance to water’s interaction with materials and biological
molecules and because it can serve as an example for any other type of ion dissociation. On
a macroscopic scale, autoionization is very common. A glass of distilled water will contain a
very large number of hydroxide and hydronium molecules. On a microscopic scale, though,
autoionization is very uncommon. In a computationally tractable brute force simulation, it
would be impossible to observe many autoionization events. From previous work by Geissler
and co-workers [29], we know that autoionization is caused by the fleeting appearance of a
very large electric field. In this chapter, I have studied how those large electric fields come
about using purely classical simulations. Although such simulations cannot show the actual
process of bond breaking, they can show the origin of those large electric fields. Even with
a purely classical force field, collecting many samples of the field large enough to induce au-
toionization in a brute force simulation is intractable. By developing a new fix in LAMMPS,
I have used umbrella sampling to collect much better statistics for large fluctuations of the
electric field. Applying a bias directly on the electric field allows the system to find the
lowest energy configurations which lead to a given electric field. This setup does not build in
any information about the hypothesis that the electric field comes primarily for short-ranged
interactions. From the resulting trajectories, I have calculated radial distribution functions
for configurations conditioned on them having certain values of the electric field.

These calculations confirm the finding from Dellago and co-workers [32] that the contri-
butions to large electric fields are overwhelmingly from short-ranged interactions and add
structural detail. The configurations with large electric fields stretching a tagged covalent
OH bond have ice-like order with an unusually high number of hydrogen bonds donated to
the tagged molecule. As the electric field is pushed to grow larger and larger, the nearest
neighbor molecules pull closer and the average number of hydrogen bonds donated to the
tagged molecule grows.
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Chapter 5

Hydrogen Bonds and Ions

The solvation of ions in water underpins two incompletely explained phenomena of great
practical and scientific interest: the Hofmeister series and the attraction of ions to inter-
faces. I will briefly describe these in turn. The Hofmeister series, first discovered by Franz
Hofmeister in 1888, is an ordering of ions based on their propensity to cause proteins to
denature - meaning their native structure falls apart, inhibiting their biological function -
or remain stable. Protein surfaces are covered in many charged or polar amino acids. The
exact interaction between a specific ion and a specific protein depends on the sequence of
amino acids in the protein and the structure of the folded protein. Reasonable intuition,
then, would suggest that how much more likely a protein is to denature in the presence of a
given ion would depend substantially on which protein was being denatured. This intuition
is partially correct - the exact value of a protein’s solubility in the presence of a given ion
does vary by protein - but misses a significant trend: lists of ions ordered by their effect on
the solubility of different proteins almost all match. That is, for nearly all proteins the ion
CO2−

3 significantly enhances stability whereas I− promotes protein denaturation. Scientists
are often engaged in the game of trying to find and explain universal phenomena, those that
depend on only a few basic features of an experiment and not the details. In this case, we
infer that the molecular mechanism by which specific ions stabilize or denature any protein
is independent of the details of the protein. The Hofmeister series has been thoroughly doc-
umented experimentally and the same ordering has been found in experiments on enzyme
activity, protein crystallization, and bacterial growth [36].

An explanation of the molecular mechanism behind the Hofmeister series independent of
the exact details of any given protein has yet to be found. One crucial ingredient must be
that ions are strongly attracted to the surface of the proteins. Without a strong interaction,
the ions would have little effect on the proteins. Significant progress has been made by
others using Poisson-Boltzmann theory, in particular Nadine Schwierz, Dominik Horinek,
and Roland Netz. Their approach involves treating a protein as a surface composed of
fractions of hydrophobic, positively charged, and negatively charged patches and calculating
the approximate interaction of each protein with these idealized surfaces [37] [38]. In this
chapter I will take a different approach, namely searching for an order parameter that we



CHAPTER 5. HYDROGEN BONDS AND IONS 51

can use to develop a Gaussian field theory of ion solvation. I will explain this approach more
below.

Another phenomenon closely related to the Hofmeister series is the attraction of ions to
liquid-vapor interfaces. Ions of either positive or negative charge are attracted to liquid-
vapor interfaces, although the effect is highly asymmetrical. In simulations, an anion can
have 1,000 times the surface affinity of a cation [39]. This result originally came as a surprise.
If you approximate an ion in water as a point charge in a semi-infinite continuous dielectric
medium, you find that its potential goes to infinity at the interface, meaning that the surface
charge density would be zero. Experimental results that showed ions are attracted to the
interface contradicted somewhat more detailed models that predicted ions would be present
at the surface but at lower concentration than in the bulk [40]. This result is likely intimately
related to the Hofmeister series: ions are unexpectedly attracted to interfaces between water
and anything that isn’t water. The presence of ions at the interface lowers the surface
tension, which, in the case of proteins, leads them to unfold. In the search for a general
mechanism and explanation, we are free to do our experiments and simulations on liquid-
vapor interfaces and we can simply check later that the same general mechanism applies to
proteins, regardless of their exact structure.

Ultimately, we expect that a successful theory of ion solvation may resemble Lum-
Chandler-Weeks (LCW) theory for hydrophobic solvation [41] because an ion is approxi-
mately a hydrophobe with the addition of a charge. An excellent introduction to LCW
theory is given in David Chandler’s review in Nature [42]. Hydrophobes show two qualita-
tively different sets of behavior in water depending on their size. An aqueous mixture of
many small hydrophobes will stay well mixed. The presence of a small hydrophobe imposes
an entropic cost as the surrounding water molecules are constrained in which directions
they can point to form hydrogen bonds. This entropic cost grows with the volume of the
hydrophobic cavity. Alternatively, a collection individual hydrophobes has the option of
aggregating to form one large cavity. When the cavity is roughly 1 nm in diameter or larger
it begins preventing some water molecules from forming any hydrogen bond at all, imposing
an enthalpic cost but freeing them from the entropic cost of being forced to point in a par-
ticular direction. This enthalpic cost grows with the surface area of the hydrophobic cavity.
A collection of large hydrophobes with fixed total volume can lower the surface area of their
interfaces with the solvent by aggregating and forming one larger cavity. LCW theory pre-
dicts the crossover between these regimes with quantitative accuracy, bringing together two
limits that were previously only understood separately and qualitatively [42].

LCW theory is based on the Gaussian statistics of fluctuations in the density of water over
short length scales [41]. Consider the molecular density field ρ(~r) with average 〈ρ(~r)〉 ≡ n(~r)
where the origin can be taken as the center of a tagged water molecule. We can write the
free energy of a given configuration of the density field as

F0[ρ(~r)] =
∫
d~r
[
w(ρ(~r)) + 1

2
m|∇ρ(~r)|2

]
,

where w(ρ(~r)) is a local free energy density and m gives an energy scale to fluctuations in
the density. The local free energy is given by
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w′(ns(~r)) = m∇2ns(~r) + 2a[n̄(~r)− ns(~r)].

The quantity ns(~r) is the slowly varying component of the density field, so the difference
in the second term accounts for the rapid fluctuations in density around an interface. The
success of LCW relies crucially on the fact that the quantity δρ(~r) = ρ(~r) − ns(~r) is a
Gaussian random field. The covariance matrix of the multivariate Gaussian describing the
fluctuations in the density is defined by χ(~r, ~r′) = 〈δρ(~r)δρ(~r′)〉.

LCW falls short of explaining interactions between ions and water or between proteins
and water because it includes no information about charge or polarity. An ion excludes
volume, just like a hydrophobe, but its effects are not captured by the density field. An ion
or a dipole also affects the orientation of water molecules around it, disturbing the hydrogen
bonding network separately from the density. We would like to build on LCW by adding a
second order parameter that accounts for these other effects of ions that go beyond density.
To maintain the analytical tractability of LCW theory, the new order parameter should be
Gaussian. Capturing the salient features of ion solvation with a Gaussian order parameter
is a tall order. As an illustration, I’ll show one relevant order parameter that fails before
moving on to more promising candidates.

5.1 Tetrahedral Order Parameter

Figure 5.1: The tetrahedral order parameter does not fit a Gaussian. Although it looks
bimodal, it also does not fit the sum of two Gaussians. These data come from a simulation
of bulk SPC/E water at 298 K.



CHAPTER 5. HYDROGEN BONDS AND IONS 53

One order parameter that reveals information about the presence of an ion is the tetra-
hedral order parameter, qtet, plotted in Figure 5.1. In perfectly ordered ice, the four nearest
neighbors of each molecule form a tetrahedron. In liquid water, such configurations will
emerge frequently but fleetingly. The distribution of the tetrahedral order parameter allows
us to measure to what extent a system follows tetrahedral ordering. It is defined as

qtet = 1− 3
8

4∑
i

4∑
j=i+1

(
cos θij + 1

3

)2
,

where θij is the angle between the vectors pointing from the central molecule to the ith and
the jth nearest neighbors. The average value for an ideal gas is 0. The average value for a
perfectly tetrahedral system is 1 [43] [44]. A reasonable guess for the distribution of qtet in
liquid water would be that it is a Gaussian centered around some value significantly below 1.
Alternatively, there could be two basic states of water, one with tetrahedral order and one
without tetrahedral order. In that case, the distribution might be the sum of two Gaussians,
one with low and one with high values of qtet. Both guesses, though, are wrong. Bounded
between -1/3 and 1 but with a wide variance, the data do not remotely fit either a single
Gaussian or the sum of two Gaussians. Although the tetrahedral order parameter is very
useful for measuring the amount of order in a system, its poor fit to a Gaussian suggests
that even a locally defined variant will not be useful for building a Guassian field theory of
ion solvation.

Our intuition is that the presence of an ion or dipole distorts the hydrogen bonding net-
work largely by causing rotations, not necessarily by forcing translation of water molecules.
The tetrahedral order parameter will miss that information because it is based entirely on
the locations of water molecules - typically defined as their oxygen centers - and not their
orientations. The angle θij in the tetrahedral order parameter does not describe the orien-
tation of individual water molecules - the positions of the hydrogen bonds do not appear in
the calculation of qtet - but instead the angle between sets of three water molecules. A more
promising route may be the density field of hydrogen bonds.

5.2 Fluctuations of the Hydrogen Bond Density Field

To begin, we need a precise definition of a hydrogen bond. I will follow the example of
Alenka Luzar and David Chandler and define two water molecules as hydrogen bonded if
and only if the distance between their oxygen centers is less than 3.5 Å and the O-H...O
angle is less than 30◦ [45]. The precise definition of a hydrogen bond used is not important;
small changes in either the angle or distance cutoff will not make a qualitative difference.
Although some people have speculated that hydrogen bonds may have two states, that
speculation has been demonstrated to be false. If there were two states of hydrogen bonds,
we would have to worry that a small change in our bond definition may exclude one of the
states and qualitatively change our results. Fortunately, the statistics of hydrogen bonds are
well explained by fluctuations around a single state [46].
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Figure 5.2: The distribution of the number of hydrogen bonds to a single water molecule.
This distribution is found in a simulation of SPC/E water where a hydrogen bond is defined
as in the main text. The average number of water molecules per molecule is 3.60 with a
non-Gaussian distribution.

With hydrogen bonds precisely defined, the simplest measurement is the distribution of
the number of hydrogen bonds on a single water molecule. See Figure 5.2. The distribution
is, again, non-Gaussian with an average of 3.6 bonds per molecule. Rather than building
a theory around the number of water molecules on a given molecule, though, we would
like to use the density field of hydrogen bonds in space. Instead of tracking individual
water molecules, I will track cubic probe volumes with a volume chosen to give an average
occupation of one molecule per cell. To attribute a hydrogen bond to a particular probe
volume, I define its position as the midpoint between the oxygen atoms of the water molecules
donating and receiving the hydrogen bond. See Figure 5.3. By construction, the average of
this distribution is the same as the average of the distribution for single water molecules.
However, the distribution is now Gaussian.

The nearest neighbors of a tagged molecule are not independent of each other, so the
number of hydrogen bonds on a single molecule is not the sum of independent random
variables, giving us no reason to expect it to be Gaussian. It may be surprising that the
hydrogen bond density fluctuations in a cell with only one molecule could be Gaussian if the
distribution for a fixed molecule is highly non-Gaussian. This result is consistent with the
density fluctuations of water molecules themselves, which are Gaussian down to surprisingly
small probe volumes - even probe volumes that hold less than one molecule on average [47].
I demonstrate this effect in both spherical and cubic probe volumes in Figure 5.4.

A key feature of ion solvation is the asymmetry between anions and cations. Flipping the
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Figure 5.3: The distribution of the number of hydrogen bonds in a cell with sidelength
L = 3.104 Å, which on average holds 1 water molecule.

sign of the charge on an ion in a simulation may have a very subtle effect on the density field
of hydrogen bonds. Separately tracking the density field of donated and accepted hydrogen
bonds would show a very dramatic change induced by swapping the test charge. A cation
will act as a source of hydrogen bonds and an anion will act as a net sink of hydrogen bonds.
If I define the position of a donated hydrogen bond as the oxygen center of the donating
molecule and the position of an accepted hydrogen bond as the oxygen center of the accepting
molecule, I can track density fluctuations in probe volumes as before. See Figure 5.5. Across
several probe volumes, the distributions for donated and accepted hydrogen bonds are highly
Gaussian.

To confirm that the density field of hydrogen bonds has Gaussian spatial correlations -
just like the water molecules themselves - I can check that the Fourier modes are Gaussian.
Given a vector of hydrogen bond positions, ~X = {~x1, ..., ~xN}, the Fourier transform is given

by ρ̂HB(kn) =
N∑
j=1

Re [exp[iknx̂ · ~xj]], where kn = 2πn
L

. I can get a total of six samples from

a single configuration by taking the imaginary component, ρ̂HB(kn) =
N∑
j=1

Im [exp[iknx̂ · ~xj]]

and by replacing x̂ with ŷ and ẑ. For each wavevector, kn, I collect many samples of ρ̂(kn)
over a trajectory. If density fluctuations at different points in space follow a multivariate
Gaussian distribution, then the distribution of ρ̂(kn) should also be Gaussian. As you can see
in Figure 5.6, they are, in fact, highly Gaussian. The density field of hydrogen bonds should
therefore be an acceptable order parameter for a Gaussian field theory of ion solvation.

Now that we’re sure the fluctuations of the hydrogen bond density are Gaussian, it would
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Figure 5.4: Fluctuations in the number of water molecules in a spherical probe volume (top)
or a cubic probe volume (bottom). Lines are Gaussians with the same mean and variance
as the data. Both cubic and spherical probe volume distributions are Gaussian to a high
degree even in small volumes that hold an average of less than one molecule.

be helpful to know what the mean of that Gaussian is. Those mean fluctuations are given
by the radial distribution function, seen in Figure 5.7. Hydrogen bonds effectively have an
excluded volume a little over 1 Å and show a separation between a first and second solvation
shell around 3 Å.

For a Gaussian field theory based on hydrogen bonds to predict charge asymmetry, the
radial distribution function of hydrogen bonds around cations and anions should be mean-
ingfully different. In fact, they are; see Figure 5.8. The density of hydrogen bonds shows a
narrower, taller peak around anions than around cations. Hydrogen atoms are apparently
more tightly constrained around an anion than around a cation. This basic physics will reap-
pear below when I show the behavior of hydrogen bond orientations around an ion instead
of hydrogen bond positions.
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Figure 5.5: Donated and accepted hydrogen bond density fluctuations in three sizes of cubic
probe volumes. Lines are Gaussians with the same mean and variance as the data.

Figure 5.6: Distribution of the normalized Fourier modes of the hydrogen bond density field.
Each individual sample of ρ̂HB(kn) has been divided by

√
Var(ρ̂HB(kn)). The solid line is a

Gaussian of mean 0 and variance 1.



CHAPTER 5. HYDROGEN BONDS AND IONS 58

Figure 5.7: Radial distribution functions of hydrogen bonds located at the midpoint between
the Oxygen centers of the donating and accepting molecule..

Figure 5.8: Radial distribution functions of hydrogen bonds located at the midpoint between
the Oxygen centers of the donating and accepting molecule around a central ion.
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5.3 Structure of Hydrogen Bond Network Around an

Ion

Besides studying the positions of hydrogen bonds, we can also investigate the orientations
of hydrogen bonds around a central molecule, either a water molecule or an ion. A charged
molecule will have many more hydrogen bonds in its first solvation shell than a hydrophobic
molecule, but looking only at the locations of hydrogen bonds will not show a stark difference
between cations and anions. Studying how hydrogen bond orientations change in response
to a cation or anion should give us greater physical insight into the molecular underpinnings
of charge solvation asymmetry.

Figure 5.9: Statistics of hydrogen bonds between water molecules. Each bond is tagged with
a unit vector located at the O-O midpoint pointing from the donating hydrogen atom to the
accepting oxygen atom.

For reference, let’s look at the orientations of hydrogen bonds around a water molecule.
See Figure 5.9. I measure the angle, θ, between the radial vector pointing away from the
central molecule and the vector connecting the hydrogen atom donating a bond to the oxygen
atom accepting a bond. If there were no correlations between these vectors, the probability
distribution plotted versus cos(θ) would be flat. When we restrict ourselves to looking at
hydrogen bonds located in the third solvation shell, a flat distribution is what we see. That
tells us that hydrogen bonds in a water molecule’s third solvation shell are nearly unaffected
by its presence. Hydrogen bonds in the second solvation shell show only a slight preference
for pointing towards or away from the central molecule.

In the first solvation shell, we see large peaks at -1 and 1, corresponding to bonds directly
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to or from the tagged molecule. The peak at -1 is a delta function with an integral of roughly
1.8, corresponding to accepting 1.8 water molecules. The integral of the peak on the right
must then also be 1.8 since I am averaging over a box of water molecules and each accepted
water molecule corresponds to one donated water molecule. The peak on the right is not
a delta function because I am defining the direction of the hydrogen bond based on the
donating hydrogen atom’s position and not the position of the donating molecule’s oxygen.

We see a wider peak around cos(θ) ≈ −0.35 with a distinct shoulder around cos(θ) ≈
+0.35. These middle peaks correspond to bonds between molecules in or near the first
solvation shell. Their bonds are mostly perpendicular to the radial vector with a bias to
pointing more in towards the central molecule.

In comparison, let’s look at the orientations of hydrogen bonds around a cation or an
anion in Figure 5.10. In the third solvation shell, the almost perfectly horizontal distribution
is replaced with a roughly linear distribution sloping slightly down for an anion and up for
a cation. This matches the biasing that would be expected for hydrogen atoms in the
presence of an ion, but even a mere 5.68 Å separation between the ion and the hydrogen
bond already screens most of the influence of the ion. In the second solvation shell we see
a subtle suppression of hydrogen bonds pointing towards a cation, but around an anion we
see little suppression of hydrogen bonds pointing away, towards the outer solvation shells.

In the first solvation shell, a cation would show a large peak at +1 and an anion would
show a large peak at -1 due to bonds directly to or from the ion. I will exclude those delta
function peaks and instead look only at hydrogen bonds between water molecules. The anion
shows almost complete suppression of nearby hydrogen bonds pointing away from the center.
Nearly all of the water molecules in the first solvation shell are forced to point towards the
anion. In contrast, the cation still allows for quite a few hydrogen bonds pointing not directly
towards it but at least more towards it than away from it. The much greater similarity of
the hydrogen bonding network in pure water to the cationic case than the anionic case gives
us some insight into charge solvation asymmetry. Anions disturb the hydrogen bonding
network substantially more than cations, imposing a much larger entropic cost, suggesting
an explanation for their stronger surface affinity.
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Figure 5.10: Statistics of hydrogen bonds tagged with unit vectors. The vector is located at
the ion-O midpoint. For water molecules, the vector is located at the O-O midpoint. The
vector points from the donating molecule to the accepting molecule.

5.4 Conclusion

A Gaussian field theory of ion solvation requires, by definition, a Gaussian order param-
eter that captures the effect of an ion on the surrounding solvent. A promising candidate
is the density field of hydrogen bonds. The Fourier modes of the hydrogen bond density
fit very well to a Gaussian, proving that the fluctuations at different points in space will
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fall on a multivariate Gaussian. One shortcoming of the density field of hydrogen bonds is
that the response to an anion or cation is very similar. As an alternative, using two fields
to track the positions of hydrogen bond donors and hydrogen bond acceptors could more
clearly differentiate between the presence of an anion or cation at the cost of an additional
parameter. The work in this chapter does not provide the necessary field theory but provides
order parameters that could be used to develop a Gaussian field theory following the path
outlined in David Chandler’s 1993 Physical Review E paper [48].
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Chapter 6

The Surface Potential of Water Varies
with the Presence of an Ion

An ion can be approximated as a volume excluding cavity with a charge. Its solvation
free energy is the free energy required to make room for the cavity and the free energy to add
a charge to that cavity. Since the solvation energy of hydrophobes is already well understood
thanks to Lum-Chandler-Weeks (LCW) theory [41], we draw on it for significant inspiration.
After the first-order effect on dipoles in the surrounding solvent, the most important second-
order feature of ion solvation is its asymmetry. Anions are attracted far more strongly to
the air-water interface than cations of identical size are, an effect not captured by dielectric
continuum theories (DCT) that depend solely on solvent polarization. Such a DCT assumes
that the electric potential at the center of a cavity is Gaussian and that the free energy to
solvate an ion is linear in the magnitude of the charge, which in part necessitates that the
free energy of solvation is independent of the sign of the charge.

The most popular extension of DCT that attempts to account for charge asymmetry adds
in a linear response to polarization at the air-water interface [49] [50] [51] [52]. This version
of DCT, which I will refer to as DCT with an interface, calculates the cost of solvating a
point charge in a dielectric medium near a polarized interface that is assumed to respond
linearly to the presence of an anion or cation. Although it is a very clean hypothesis, it is,
unfortunately, empirically wrong. Instead, the polarization at the interface responds non-
linearly to the presence of an ion and its response varies with the diameter of the ion, an
effect outside the scope of a model based on point charges.

6.1 Predictions of Dielectric Continuum Theory with

an Interface

A solution with an excess charge on its surface would, of course, have an electrostatic
interaction with any ions brought from the vapor phase into the liquid phase. Although a
solution of pure water has no net charge, orientational bias near the interface results in an
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excess of hydrogen atoms pointing towards the vapor phase. A thin slice of roughly 2 Å at
the interface thus shows an excess of positive charge, offset by an excess of negative charge
slightly farther into the liquid phase [39]. This layer of positive charge could reasonably
be expected to attract anions and repel cations. If the solvation energy of an ion could be
decomposed as the sum of its cavitation energy and an electrochemical interaction with the
polarization at the liquid-vapor interface, the surface interaction could account for charge
asymmetry at the interface.

However, something must be amiss with this explanation. Orientational bias is not nec-
essary to create a layer of excess charge at the interface. Consider a spherically symmetrical
molecule with point charge -q at its center and charge +q spread uniformly over a sphere of
radius r. Such a molecule, being spherically symmetrical, cannot have orientational bias and,
being electrically neutral, cannot have electrostatic interactions with finite ions that do not
penetrate its outer shell. And yet, such a molecule arranged on a cubic lattice would have an
excess of charge over a layer with thickness less than r at an interface with vapor. The ar-
gument in the previous paragraph suggests that finite ions would have charge-asymmetrical
surface adsorption in a solvent of this molecule, even though the ions have no electrostatic
interaction with the solvent at all.

To get to the root of this contradiction, we need to make this explanation more precise.
Define the surface potential as the difference between the average electrostatic potentials in
liquid and vapor [39]:

φsp = 4π
∫ zl
zv
zρ(z)dz,

where z is the axis perpendicular to the interface, ρ(z) is the average charge density at
height z, and zv and zl are heights in the vapor and liquid phases. In simulation, the surface
potential gives rise to an energy penalty of 50 kJ/mol to bring a point charge of -1 from
the vapor into the liquid, and the opposite benefit for a charge of +1 [39]. As a naive
approximation to the solvation free energy at the interface, one could add this energy to the
free energy of creating a cavity, giving rise to a substantial asymmetry favoring anions at
the interface more strongly than cations.

I will test this hypothesis by measuring the electric potential inside cavities with varying
charges and at varying distances from an air-water interface. The charging free energy can
be calculated from the full electric potential distribution as

F (q; z) = −kBT ln

∫
dφP0(φ;σ, z) exp[−βqφ],

where P0(φ;σ, z) denotes the probability distribution of φ in a cavity with diameter σ, 0
charge, and a distance z from the interface.

DCT with an interface makes several predictions about solvation energies besides that
there is charge asymmetry. First, because it is based on the interaction between a point
charge and the surface, it predicts that the charging free energy is independent of the diame-
ter of the ion. As seen in Figure 6.1, the distribution of φ varies considerably as a function of
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Figure 6.1: Comparison of the electric potential distributions measured at an air-water
interface, where z=13.4 Å is the Gibbs Dividing Surface.

Figure 6.2: Average values of the electric potential, φ, for different cavity sizes and heights.
The Gibbs Dividing Surface is at z = 13.4 Å, with bulk water above and vapor below.
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cavity size. Second, the fundamental assumption of linear response theory is that P0(φ;σ, z)
can be approximated as a Gaussian, which gives

F (q;σ, z) ≈ q〈φ(σ, z)〉 − 1

2
q2〈(δφ(σ, z))2〉.

Asymmetry in the charging free energy is then

F (q;σ, z)− F (−q;σ, z) ≈ 2q〈φ(σ, z)〉.

To check whether this approximation holds, I will calculate

ψ(q;σ, z) =
F (q;σ, z)− F (−q;σ, z)

2q
.

The fact that ion solvation is charge asymmetrical requires that ψ(q;σ, z) is non-zero, but
nothing more. DCT with an interface is essentially a minimal model built on this require-
ment, predicting that ψ(q;σ, z) is non-zero but constant at 〈φ(σ, z)〉. However, if φ were
perfectly Gaussian, 〈φ(σ, z)〉q, where the subscript denotes the presence of a charge q at the
center of the cavity, would be perfectly linear. As seen in Figure 6.2, that is not the case.
Below, I will explore how meaningful that non-linearity is.

Finally, I will compare the asymmetry at the interface to the asymmetry in bulk via the
quantity

∆ψ(q) = ψ(q, zi)− ψ(q, zb),

where zi is the height of the Gibbs dividing surface and zb is a point inside the bulk. The
third prediction of DCT with an interface is that ∆ψ(q) is constant for a given cavity size.
All three of these predictions are wrong.

6.2 How to Measure Surface Interactions

The surface potential is the dipole moment of the charge density in between zb and zl, so
an intuitive explanation of the source of the surface potential is that it is the sum of the dipole
moments of the molecules in the same region. However, a solvent composed of molecules
with a spherically symmetrical charge distribution (and therefore no dipole moment) can
give rise to a non-zero surface potential as well [39] [53]. This result even holds for solvent
molecules that are both spherically symmetrical and net neutral and would therefore have
no charge interaction with ions that can’t penetrate into the solvent molecules. The surface
potential explanation then makes the nonsensical prediction that there is charge solvation
asymmetry in solvents that have no charge interactions.

These problems only prove that the surface potential is sensitive to model details that
leave charging free energies unaffected, not that the surface potential is sensitive to the
presence of an ion. We can put DCT with an interface on a more physically sound basis by
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Figure 6.3: Counts of oxygen atoms as a function of height over the entire course of a simu-
lation. The vertical line denotes the Gibbs dividing surface, which is used as the interfacial
height, zi.

testing ψ and ∆ψ as defined above. By taking the difference in charging free energies at the
interface and in the bulk, we can calculate the cost of bringing a charge into the bulk. If
that cost is different for cations and anions of equal charge magnitude, we have recovered
charge asymmetry.

To measure the potential in a cavity at the interface, I need to define exactly where the
interface is. First, I measure the density profile of water molecules in a simulation with a
cavity very far from the interface. Using that density profile, I calculate the Gibbs dividing
surface, zGDS: ∫ zGDS

0

ρ(z)dz =

∫ zbulk

zGDS

(ρ(z)− ρbulk)dz,

where ρbulk is the average density in the bulk. You can see a demonstration of this calculation
for one simulation cell in Figure 6.3.

Even measuring the electrostatic potential correctly in a periodic simulation has pitfalls,
in particular a subtle dependence on the size and shape of the simulation cell. In a periodic
bulk simulation without the presence of vapor, the potential at the center of a cavity with
a test charge will have a non-physical contribution from periodic images of the charge and
from the neutralizing background charge. In the thermodynamic limit, there would be no
periodic images or neutralizing background charge. To correct for these simulation artifacts,
I calculate the potential on a test charge in an empty box with identical dimensions and
subtract that value from potentials calculated in a simulation with the same test charge.
With these corrections, the electric potentials at the center of cavities in any size or shape
of periodically replicated cell collapse onto each other; see figure 6.4.
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Figure 6.4: Electric potential distributions in the center of a cavity from simulations of bulk
water with three sizes of cuboid simulation cells and one cubic cell all collapse onto each
other with the corrections discussed in the text.

In a periodic simulation with an air-water interface, the finite size corrections are more
complicated. Now, not only will the test charge have non-physical interactions with its
periodic images and neutralizing background charge, the polarized surface will also interact
with periodic images of itself. In the thermodynamic limit, there is only one interface.
Fortunately, the interactions between the periodically replicated interfaces are independent
of the sign of the charge and therefore cancel in ψ. I am unable to make rigorous statements
about absolute values of 〈φ〉 without a rigorous finite size correction (approximate expressions
for such a correction is an active area of research in the group). Nevertheless, I am able to
make rigorously correct statements about ψ, which is sufficient to prove that the surface
potential depends on the presence of an ion. By defining Fliq-vap(q;σ, z) as the charging free
energy defined previously adjusted by a finite size correction, I end up with exactly the same
ψ(q;σ, z) as in the bulk case:

Fliq-vap(q;σ, z) = F (q;σ, z)− FFS(q;σ, z)

ψ(q, z) =
F (q;σ, z)− FFS(|q|;σ, z)− (F (q;σ, z)− FFS(|q|;σ, z))

2q

=
F (q;σ, z)− F (q;σ, z)

2q

As explained above, DCT with an interface predicts that for a given cavity size and
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Figure 6.5: ψ(q;σ, z) = F (q;σ,z)−F (−q;σ,z)
2q

calculated for four sizes of cavities either at the
interface - defined as the Gibbs dividing surface - or in the bulk. DCT with an interface
predicts that each of these functions should be a constant.

distance into the bulk, this difference should be constant in the charge at the center of
the cavity. If the polarization at the surface changes in response to the charge on the
ion, ψ will not be constant. Figure 6.5 shows that ψ is not only not constant, but not
even monotonic. DCT with an interface gives predictions that are both quantitatively and
qualitatively incorrect.

Finally, I come to the quantity we care about most, ∆ψ(q;σ). This quantity is the im-
portant one because it determines the relative density of cations and anions at the interface.
If each charge of ion has the same density in the bulk, then the ratio of their densities at the
interface is

ρ(q; zi)

ρ(−q; zi)
= exp[−2q∆ψ(q)].

So the relative densities of cations and anions at the interface depends exponentially on ∆ψ.
Just like it does for ψ, DCT with an interface predicts that ∆ψ is constant in q. Again, as
seen in Figure 6.6, not only is ∆ψ not constant, it is non-monotonic and changes sign.
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Figure 6.6: ∆ψ(q;σ) = ψ(q;σ, zi)− ψ(q;σ, zb) for four cavity sizes.

6.3 Conclusion

DCT with an interface, though reasonable, makes a number of incorrect predictions about
ion solvation. First, it predicts that ion solvation asymmetry is independent of cavity size,
which it is not. Second, it predicts that the difference in charging free energy between a
cation and anion of identical charge magnitude grows linearly in that magnitude, which it
does not. Third, it predicts that the difference of differences between the cation and anion
in bulk and at the interface grows linearly in q, which it does not. These contradictions tell
us that knowing 〈φ〉 and 〈(δφ(σ, z))2〉 is insufficient to predict the solvation energy of an ion
and that the surface potential responds non-linearly to the presence of that ion.
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