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Abstract. For p prime, let Hn be the linear span of indicator functions of hyperplanes
in (Z/pkZ)n. We establish new upper bounds on the dimension of Hn over Z/pZ, or equiv-
alently, on the rank of point-hyperplane incidence matrices in (Z/pkZ)n over Z/pZ. Our
proof is based on a variant of the polynomial method using binomial coefficients in Z/pkZ
as generalized polynomials. We also establish additional necessary conditions for a function
on (Z/pkZ)n to be an element of Hn.
Keywords. Hyperplanes, generalized polynomials, binomial coefficients
Mathematics Subject Classifications. 05B20, 05B25, 05A10

1. Introduction

Let p be a prime number, and let k ∈ N. We defineR := Z/pkZ, the ring of integers modulo pk,
and use R× to denote the multiplicative group of invertible elements of R. For x ∈ Rn, we
write x = (x1, . . . , xn) in terms of coordinates. We also define the inner product on Rn as the
R-valued function ⟨x, y⟩ = x1y1 + · · ·+ xnyn.

Recall that the projective space P(Z/pZ)n−1 is the quotient space ((Z/pZ)n \ {0})/ ∼,
where ∼ is the equivalence relation

b ∼ b′ ⇔ b = λb′ for some λ ∈ (Z/pZ) \ {0}.
∗Supported by NSERC Discovery Grant 22R80520.
†Supported by NSERC Discovery Grants 22R80520 and GR010263.
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When k > 1, the projective space over Rn must be defined a little bit more carefully. Let Rn,×

be the set of all elements of Rn that have at least one invertible component. We then define

PRn−1 = Rn,×/R×.

We will refer to the elements of PRn−1 as nondegenerate directions in Rn. Thus, two ele-
ments b, b′ of Rn,× define the same direction if and only if

b = λb′ for some λ ∈ R×. (1.1)

This is how directions in Rn are often defined in the literature, see e.g. [HW18]. All directions
will be assumed to be nondegenerate unless explicitly stated otherwise.

A (nondegenerate) hyperplane is a set of the form

Hb(a) = {x ∈ Rn : ⟨x− a, b⟩ = 0},

for some a ∈ Rn and a nondegenerate direction b ∈ PRn−1. (Note that the equality ⟨x−a, b⟩ = 0
should hold inR and not just modulo p.) When a = 0, we writeHb = Hb(0). We will sometimes
refer to Hb as homogeneous hyperplanes, and to Hb(a) as affine hyperplanes.

By convention, we will refer to nondegenerate hyperplanes as simply hyperplanes; whenever
we work with degenerate hyperplanes (as in Definition 1.1 (i) below), we will say so explicitly.
We also define

Hn = spanZ/pZ{1Hb(a) : a ∈ Rn, b ∈ PRn−1},

considered as a linear space of functions from Rn to Z/pZ. We will refer to the elements of Hn

as hyperplane functions.

Definition 1.1. Let R = Z/pkZ, where p is a prime and k ∈ N.

(i) The point-hyperplane incidence matrix of Rn is the matrix Wpk,n, with rows indexed
by b ∈ Rn and columns indexed by x ∈ Rn, such that

(Wpk,n)b,x =

{
1 if ⟨b, x⟩ = 0,
0 otherwise.

(ii) The reduced point-affine hyperplane incidence matrix ofRn is the matrixA∗
pk,n

, with rows
indexed by (a, b) ∈ Rn × PRn−1 and columns indexed by x ∈ Rn, such that

(A∗
pk,n)(a,b),x =

{
1 if x ∈ Hb(a),
0 otherwise.

(iii) The reduced point-hyperplane incidence matrix of Rn is the matrix W ∗
pk,n

with rows in-
dexed by b ∈ PRn−1 and columns indexed by x ∈ Rn, such that

(W ∗
pk,n)b,x =

{
1 if x ∈ Hb,
0 otherwise.
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Note that the equation ⟨b, x⟩ = 0 in (i) does not define a hyperplane in our sense if b is
not a nondegenerate direction; however, we use the terminology above for consistency with the
existing literature such as [DD21].

We are interested in upper and lower bounds on the rank of these matrices over Z/pZ. This
also provides bounds on the dimension of Hn, since we have directly from the definition

dimZ/pZ(Hn) = rankZ/pZ(A∗
pk,n).

For k = 1, the rank of Wp,n is known as a special case of the results in [GD68, MM68,
Smi69].

Theorem 1.2 ([GD68, MM68, Smi69]). For p prime and n ∈ N,

rankZ/pZ(Wp,n) =

(
p+ n− 2

n− 1

)
+ 1.

Theorem 1.2 can be deduced from a characterization of hyperplane functions in Fn
p in terms

of polynomials. Specifically, when k = 1,Hn is identical to the space of all polynomial functions
on Fn

p of total degree at most p − 1. Moreover, the subspace Hn
0 spanned by homogeneous

hyperplanes is identical to the linear span of all homogeneous polynomial functions of degree
exactly p − 1, together with the constant function. Counting such polynomials produces the
bound in Theorem 1.2. We provide the full argument in Section 5.2.

Our interest in hyperplane functions for k ⩾ 2 is motivated in part by the work of Dhar and
Dvir [DD21], where a connection was established between point-hyperplane incidence matrices
and the Kakeya problem. For k = 1, Dhar and Dvir used Theorem 1.2 to give a new proof
of Dvir’s lower bound [Dvi09] on the size of Kakeya sets in (Z/pZ)n, and then extended their
argument to prove the Kakeya conjecture in (Z/NZ)n for squarefree N .

For k ⩾ 2, Dhar and Dvir were still able to bound1 the size of Kakeya sets in Rn from below
by the Fp-rank of W ∗

pk,n
. Unfortunately, hyperplane functions in Rn with k ⩾ 2 are less well

understood. Dhar and Dvir [DD21, Lemma 5.3] observed that the rank ofWpk.n is bounded from
below by the size of a maximal matching vector family in Rn. Combining this with the results
of [DGY11, YGK12] yields a lower bound on the rank of Wpk,n of the order pkn/2, which is not
sufficient for good lower bounds on Kakeya sets.

On the other hand, the rank ofW ∗
pk,n

is trivially bounded from above by the number of direc-
tions in PRn−1, therefore by the number of vectors in Rn with at least one coordinate equal to 1,
which we may bound from above by npk(n−1). Together with the easy estimate in Proposition 2.2
below, this yields the bound

rankZ/pZ(Wpk,n) ⩽ 1 + knpk(n−1). (1.2)

The Kakeya conjecture in Rn was eventually resolved by Arsovski [Ars24], based on a com-
parison of the size of Kakeya sets to the rank of a related but different matrixMpk,n (we define it
in (2.14)). Subsequently, Dhar [Dha24] proved the Kakeya conjecture in Z/NZ for general N ,

1In [DD21, Theorem 1.6], the authors refer to the rank of Wpk,n, but their proof uses the matrix W ∗
pk,n instead.

The two ranks are not equal, but they are comparable; see Lemma 2.1 and Proposition 2.2.
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with further progress in [Dha22, Dha23b]. In [Dha23a, Lemma 2.2.14], Dhar used a modifica-
tion of Arsovski’s method to prove that

rankZ/pZ(Wpk,n) ⩾

(
⌈pk/k⌉+ n− 1

n− 1

)
. (1.3)

Dhar also noted an upper bound on rankZ/pZ(Wpk,n) that can be obtained by similar methods;
however, that bound has the order of magnitude pkn, which is weaker than (1.2). We provide the
details in Section 2.2.

We are interested in obtaining upper bounds on rankZ/pZ(Wpk,n) that come closer to (1.3).
For k ⩾ 2, the conventional polynomial method is less feasible than for k = 1, basically because
there are not sufficiently many polynomial functions to span all hyperplane functions. When
working modulo p as we do here, any polynomial function from R to Z/pZ can be represented
by a polynomial of degree at most p− 1 in each variable by Fermat’s Little Theorem. Working
modulo pk instead would not fix the problem: since the polynomial (xp − x)k is null mod pk,
any polynomial function R → R can be represented by a polynomial of degree O(kp) in each
variable (see also [Kem21, Li05, Wil06] for a more detailed analysis). We remedy this by using
binomial coefficients as generalized polynomial functions from R to Z/pZ. This allows us to
define generalized polynomials of degree up to pk − 1, which is sufficient to span Hn.

It is well known (going back at least to the work of Fréchet [Fré09]) that polynomial functions
admit a characterization based on the calculus of finite differences. This gave rise to broad
generalizations of the concept of polynomial functions to settings where polynomials in the
classic sense might not be well defined. General frameworks for polynomial functions on groups
were developed and used by various authors, including Leibman [Lei02], Laczkovich [Lac04],
Aichinger and Moosbauer [AM21], Clark and Schauz [CS22, CS23].

Binomial coefficients are a natural choice of generalized polynomials, thanks to Pascal’s
identity which regulates their behaviour under discrete derivatives. A systematic treatment of
binomial coefficients from this point of view was given by Schauz [Sch14] (who referred to
linear combinations of binomial coefficients as “polyfracts”) and continued by Clark and Schauz
in [CS23]. Binomial coefficients were also used in lieu of polynomials in [BCC+17] for the
purpose of extending the Ellenberg–Gijswijt bound on cap sets [EG17] to Rn; see also [Pet16]
for an argument based on a more abstract concept of generalized polynomials, and [Spe16] for a
third approach to cap sets inRn and a discussion of the relationship between these methods. We
are not aware, however, of any previous applications of similar methods to studying hyperplane
functions.

In Proposition 5.7, we prove that hyperplane functions in Rn are, in this sense, generalized
n-variate polynomial functions of degree up to pk − 1. This implies our first theorem.

Theorem 1.3. For p prime and k, n ∈ N, we have

rankZ/pZ(A∗
pk,n) ⩽

(
pk − 1 + n

n

)
. (1.4)

However, unlike for k = 1, hyperplane functions in Rn with k ⩾ 2 need not span all such
generalized polynomials. In fact, we have the following bound, which is strictly lower than that
in Theorem 1.3 when k ⩾ 2 and n is small relative to pk.
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Theorem 1.4. Let p be prime, and let k, n ∈ N. Then

rankZ/pZ(A∗
pk,n) ⩽ (2n)

(
⌊pk/2⌋+ (n− 1)(p− 1) + n

n

)
, (1.5)

Theorems 1.3 and 1.4 imply upper bounds on the ranks of W ∗
pk,n

and Wpk,n, via the next
proposition.

Proposition 1.5. Let n ∈ N, n ⩾ 2. Then

rankZ/pZ(Wpk,n) ⩽ 1 + k · rankZ/pZ(W
∗
pk,n),

rankZ/pZ(W
∗
pk,n+1) ⩽ 2(k + 1) · rankZ/pZ(A∗

pk,n).

Theorem 1.4 raises the question of how we can tell whether a given generalized polynomial
of degree at most pk − 1 is a hyperplane function. Our generalized polynomials share many
geometric properties of hyperplane functions. For example, if L,L′ are two parallel lines in Rn,
then |L∩H| ≡ |L′∩H| mod p for any hyperplaneH; we prove in Proposition 9.3 that an appro-
priate analogue of this holds for generalized polynomials of degree up to pk − 1. Nonetheless,
we are able to find a class of functions on Rn we call fans that are orthogonal over Z/pZ to all
hyperplane functions, but not to some of our generalized polynomials of degree up to pk − 1.
Essentially, this test identifies generalized polynomials that behave like hyperplane functions on
each scale separately, but the directions are not consistent between the scales. Since the state-
ment of the result requires some notation, we postpone it to Section 9. While a generalized
polynomial must satisfy our orthogonality condition in order to be a hyperplane function, we do
not know whether this condition is also sufficient.

This paper is organized as follows. We study the relationships between the ranks of the
different incidence matrices in Section 2. Proposition 1.5 follows from Propositions 2.2 and 2.3.
In Sections 3, 4, and 5.1, we define our generalized polynomials based on binomial coefficients
and study their basic properties. (Many of them are special cases of the results in [AM21, CS22,
CS23].) In Section 5.2, we prove that hyperplane functions in Rn have degree at most pk − 1.
In particular, Theorem 1.3 follows from Proposition 5.7.

A major difficulty in working with binomial coefficients is that they do not have good multi-
plicative properties. This is one reason why there is no straightforward way to adapt the methods
from the k = 1 case to our setting (and why, for the time being, we are only able to prove partial
results). This turns out to be more than just a technical issue. Our results in Section 6 show
that the behaviour of our generalized polynomials is genuinely different than that of classical
polynomials. For example, (xy)m = xmym is a bivariate polynomial of degree 2m; on the other
hand, if f is a generalized polynomial of degree m on R, then the degree of f(xy) can never be
greater than m+ 2(p− 1) (Proposition 6.2). This degree reduction is the main idea behind the
proof of Theorem 1.4 in Section 7.

Finally, in Sections 8 and 9 we study the geometric properties of lines and hyperplanes inRn,
and develop the geometric test mentioned above.

Throughout this article, we will observe the following conventions. Arithmetic operations
and equalities for elements ofRwill be defined inR, that is, modulo pk. For example, if a, b ∈ R,
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the equality a = b will mean that a ≡ b mod pk. When we work with functions with values
in Z/pZ (such as the ϕm functions defined in (3.1)), all arithmetic operations and equalities
involving such functions will be understood to hold in Z/pZ. In expressions such as af(x),
where a, x ∈ R and f is a function R → Z/pZ, we will interpret a as the function a → (a
mod p), so that af(x) refers to the function (a mod p)f(x) with values in Z/pZ. The inner
product inR is anR-valued function, so that ⟨x, y⟩ = cmeans that x1y1+· · ·+xnyn ≡ cmod pk
and not just mod p. On the other hand, if f, g are two functions from Rn to Z/pZ, their inner
product

⟨f, g⟩ =
∑
x∈Rn

f(x)g(x)

takes values in Z/pZ. (We refer to ⟨f, g⟩ as the inner product, but this is a slight abuse of
terminology, since for k ⩾ 2 it is not true that ⟨f, f⟩ = 0 if and only if f = 0. )

In line with our use of functions with range in Z/pZ, whenever we refer to the rank of a
matrix, the span of a set of vectors, or the dimension of a linear space of functions, this rank,
span, or dimension is taken over Z/pZ unless explicitly stated otherwise.

For m ∈ N, we write [m] = {0, 1, . . . ,m − 1} ⊂ Z. We will distinguish between R,
a ring with addition and multiplication mod pk, and [pk], a set of integers where addition and
multiplication are inherited fromZ (so that [pk] is not closed under these operations). Exponents,
indices, etc. will always be integers unless stated explicitly otherwise. For example, if ℓ is the
degree of a polynomial or a generalized polynomial, we will write ℓ ∈ [pk] and not ℓ ∈ R.

We use the notation |S| to denote the cardinality of a set S. Whenever we mention the p-
adic expansion or p-adic digits of a number x, we refer to the unique expansion x =

∑k−1
j=0 xjp

j

with xj ∈ {0, 1, . . . , p − 1} for all j. We use subscripts 1, . . . , n to denote both the coordi-
nates x = (x1, . . . , xn) of a point x ∈ Rn and the p-adic digits in the expansion x =

∑k−1
j=0 xjp

j

of an element x ∈ R. This should not cause confusion, since we will only use one of the above
at a time and the meaning will be clear from context. If a is either an integer or an element ofR,
we write pj ∥ a to mean pj | a but pj+1 ∤ a. Similarly, for x = (x1, . . . , xn) ∈ Rn or Zn, we
write pj ∥ x if pj | xi for all i ∈ {1, . . . , n} and pj+1 ∤ xi for at least one i.

2. Preliminary results

2.1. Relationships between incidence matrices

We first observe that
rank(W ∗

pk,n) ⩽ rank(Wpk,n), (2.1)

since the rows ofW ∗
pk,n

form a subset of the rows ofWpk,n. Lemma 2.1 shows that the inequality
can be strict for k ⩾ 2.

Lemma 2.1. If k ∈ N and k ⩾ 2, then rank(Wpk,2) > rank(W ∗
pk,2

).

Proof. All directions in R2 can be represented by one of the elements of the set

D = {(1, i) : i ∈ R} ∪ {(jp, 1) : j ∈ {0, 1, . . . , pk−1 − 1}}.



combinatorial theory 5 (1) (2025), #17 7

Let y = (0, pk−1), then the indicator function ofHy := {x ∈ Rn : ⟨x, y⟩ = 0} is a row ofWpk,2.
We claim that

1Hy ̸∈ span(H).

Assume towards contradiction that there are scalars αi, βj such that

1Hy(x) =

pk−1∑
i=0

αi1H(1,i)
(x) +

pk−1−1∑
j=0

βj1H(pj,1)
(x). (2.2)

We first evaluate (2.2) at x = (1,−pj) for j ∈ {0, . . . , pk−1 − 1}. Since (1,−pj) ∈ Hy but

(1,−pj) ̸∈ H(1,i), (1,−pj) ̸∈ H(pℓ,1) if j ̸= ℓ,

it follows that βj = 1 for all j. Now evaluate (2.2) at x = (pk−1, 0). Since

(pk−1, 0) ̸∈ H(1,i) for all i, but (pk−1, 0) ∈ H(pj,1) for all j,

we have

pk−1∑
i=0

αi1H(1,i)
(0, pk−1) +

pk−1−1∑
j=0

βj1H(pj,1)
(0, pk−1) = pk−1 = 0 mod p.

This is a contradiction, as (pk−1, 0) ∈ Hy.

In the next proposition, we provide a partial converse to the inequality in (2.1).

Proposition 2.2. Let n ⩾ 2 and k ⩾ 1. Then

rank(Wpk,n) ⩽ 1 +
k∑

j=1

rank(W ∗
pj ,n), (2.3)

and consequently,
rank(Wpk,n) ⩽ 1 + k · rank(W ∗

pk,n). (2.4)

Proof. Recall that the columns of Wpk,n are indexed by b ∈ Rn. Partition these columns by the
sets

Bj = {b′ ∈ Rn : b′ = pjb, b ̸= 0 mod p},

and let W (j) be the submatrix of Wpk,n consisting of columns indexed by b′ ∈ Bj . Then

rank(Wpk,n) ⩽
k∑

j=0

rank(W (j)).

Note that the only vector in Bk is the zero vector, and so W (k) is a just a column of
all 1s, which has rank 1. Thus to prove the proposition, it suffices to show that for j ∈ [k],
we have rank(W (j)) ⩽ rank(W ∗

pk−j ,n
). We show that this actually holds with equality.
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Let j ∈ [k]. The column of W (j) corresponding to b′ ∈ Bj is the indicator vector
of {x ∈ Rn : ⟨x, b′⟩ = 0 mod pk}. Recalling that b′ = pjb for a direction b, we have

⟨x, b′⟩ = 0 mod pk if and only if ⟨x, b⟩ = 0 mod pk−j. (2.5)

Notice that the latter equation only depends on x mod pk−j; we will use this observation to
partition the rows of W (j).

For ℓ ∈ [k], let Rn

ℓ be the set of x ∈ Rn so that for each i ⩾ ℓ, the i-th p-adic digit of each
component of x is zero. Consider the sets

Xu := upk−j +R
n

k−j, u ∈ R
n

j .

Let W (j)
u be the submatrix of W (j) consisting of rows indexed by x ∈ Xu. By definition,

for each u, the set {x mod pk−j : x ∈ Xu} can be identified with Rn
k−j . Similarly, the

set {b : pjb ∈ Bj} can be identified with the set of directions of Rn
k−j . Combining these ob-

servations with the equivalence in (2.5), we see that W (j)
u is the same matrix as W ∗

pk−j ,n
. As this

is true for each u, the matrixW (j) is formed by vertically concatenating copies ofW ∗
pk−j ,n

. Thus
it has the same rank as W ∗

pk−j ,n
, as claimed.

Now inequality (2.4) follows from the bound rank(W ∗
pj ,n) ⩽ rank(W ∗

pk,n
) for j < k, which

can be established by considering the submatrix of W ∗
pk,n

consisting of rows indexed by x ∈ Rn

that are zero mod pk−j .

Proposition 2.3. Let n ∈ N, n ⩾ 2. Then

rank(A∗
pk,n) ⩽ rank(W ∗

pk,n+1) ⩽ 2(k + 1) · rank(A∗
pk,n). (2.6)

Proof. We write directions b ∈ Rn+1 as b = (̃b, bn+1), with b̃ ∈ Rn. By a mild abuse of notation,
we identify b with an element of PRn. We use a similar convention for points x ∈ Rn+1.

We first prove that rank(A∗
pk,n

) ⩽ rank(W ∗
pk,n+1

). Any affine hyperplane in Rn can be
written as

H̃b =
{
x̃ ∈ Rn : ⟨x̃, b̃⟩ = −bn+1

}
, (2.7)

where b̃ ∈ PRn−1 is a direction, and bn+1 ∈ R. For any such (̃b, bn+1), let

Hb =
{
x = (x̃, xn+1) ∈ Rn+1 : ⟨x̃, b̃⟩+ bn+1xn+1 = 0

}
, (2.8)

so that H̃b × {1} = Hb ∩ {x ∈ Rn+1 : xn+1 = 1}. Consider the submatrix of W ∗
pk,n+1

obtained by restricting to rows indexed by (̃b, bn+1) ∈ B := PRn−1 × R and columns indexed
by x ∈ Rn × {1}. By the above correspondence, this submatrix is a copy of A∗

pk,n
, giving the

desired bound.
When considering the converse of this argument, it might be possible for a set of columns

of the submatrix defined above to be linearly dependent even if the corresponding columns of
the larger matrixW ∗

pk,n
are linearly independent. We remedy this by considering linear indepen-

dence on each scale separately.
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For j ∈ {0, 1, . . . , k}, let Xj = {x ∈ Rn+1 : xn+1 = pjy, y ̸= 0 mod p}. Let W (j) be the
submatrix of W ∗

pk,n+1
formed by restricting to the columns with x ∈ Xj . Then

rank(W ∗
pk,n+1) ⩽

k∑
j=0

rank(W (j)).

We will show that rank(W (j)) ⩽ 2 ·rank(A∗
pk,n

) for each j ∈ {0, 1, . . . , k}, implying the second
bound in (2.6).

Let W (j)
1 be the submatrix formed by restricting to the rows indexed by b ∈ B, and let W (j)

2

be the submatrix consisting of the remaining rows. Clearly,

rank(W (j)) ⩽ rank(W
(j)
1 ) + rank(W

(j)
2 ).

It therefore suffices to prove that

rank(W
(j)
i ) ⩽ rank(A∗

pk,n) for i = 1, 2. (2.9)

We first prove (2.9) for i = 1. For each b = (̃b, bn+1) ∈ B, let Hb = {x ∈ Rn+1 : ⟨x, b⟩ = 0},
and let

H̃b,j = {x̃ ∈ Rn : ⟨x̃, b̃⟩ = −pjbn+1},

so that H̃b,j × {pj} = Hb ∩ {x ∈ Rn+1 : xn+1 = pj}. We first note that

rank(W
(j)
1 ) ⩽ dim

(
span{1Hb∩Xj

: b ∈ Bj}
)
, (2.10)

where Bj = {b ∈ B : bn+1 ∈ [pk−j]}. This is because, for x ∈ Xj , the value of 1Hb
(x) is

determined uniquely by b̃ and the first k − j digits in the p-adic expansion of bn+1. Next, we
prove that

dim
(
span{1Hb∩Xj

: b ∈ Bj}
)
⩽ dim

(
span{1H̃b,j

: b ∈ Bj}
)
. (2.11)

For j = k, we have Xk = {(x̃, 0) : x̃ ∈ Rn} and Bk = {(b̃, 0) : b̃ ∈ Rn}, so that for b ∈ Bk

we have Hb ∩Xk = H̃b,k × {0} and the claim is clear.
We now assume that j ⩽ k − 1. Suppose that there are scalars cb so that∑

b∈Bj

cb1H̃b,j
= 0. (2.12)

We will show that
∑

b∈Bj
cb1Hb∩Xj

= 0 as well. For s ∈ [pk−j], s ̸= 0 mod p, define

Xj,s = {x ∈ Xj : xn+1 = spj}.

First, we note that as s is invertible,

Hb ∩Xj,s = {(sx̃, spj) : x̃ ∈ H̃b,j} (2.13)
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and as the Xj,s form a partition for Xj ,

1Hb∩Xj
=
∑
s

1Hb∩Xj,s
.

Then

∑
b∈Bj

cb1Hb∩Xj
=
∑
b∈Bj

cb
∑
s

1Hb∩Xj,s
=
∑
s

∑
b∈Bj

cb1Hb∩Xj,s


But each term in the outermost sum of the right-hand side of this equation is equal to zero,
by (2.13) and (2.12). Thus

∑
b∈Bj

cb1Hb∩Xj
= 0, proving (2.11).

Combining (2.10) and (2.11), we get

rank(W
(j)
1 ) ⩽ dim

(
span{1H̃b,j

: b ∈ Bj}
)
⩽ rank(A∗

pk,n).

as claimed.
To prove (2.9) for i = 2, we observe that if b = (̃b, bn+1) ̸∈ B, then b̃ is not a direction in Rn,

hence none of b1, . . . , bn are invertible. Since b is a direction in Rn+1, we have bn+1 ∈ R×, so
that b = (b1, b̃) for a direction b̃ ∈ Rn. The desired bound follows by the same argument as
above with the first and last coordinates interchanged.

2.2. Hyperplane matrices and Arsovski’s matrix

Following [Ars24, Ars21], we define the matrix Mpk,n, with both rows and columns indexed by
elements of Rn, and with entries in Fp[z]/⟨zp

k − 1⟩ given by

Mpk,n(u, v) = z⟨u,v⟩ mod zp
k − 1 (2.14)

for (u, v) ∈ Rn × Rn. Arsovski [Ars21] proved that the rank of Mpk,n over Z/pZ is at
least pkn(kn)−n. Dhar [Dha24] improved this to

rank(Mpk,n) ⩾

(
⌈pk/k⌉+ n

n

)
. (2.15)

Furthermore, in [Dha23a, Lemma 2.2.14, Observation 2.4.11] Dhar proved that

rank(Mpk,n−1) ⩽ rank(Wpk,n) ⩽ rank(Mpk,n). (2.16)

The purpose of this section is to compare (2.16) to our upper bounds in Theorems 1.3 and 1.4.
We will focus on Wpk,n since this is the matrix appearing in (2.16), but the bounds on the rank
of W ∗

pk,n
and A∗

pk,n
are comparable, via (2.1), Proposition 2.2, and Proposition 2.3.

We start with upper bounds. By (2.15), any upper bound from (2.16) must be at least

U1(k, n) :=

(
⌈pk/k⌉+ n

n

)
.
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Meanwhile, from (2.4), (2.6), and (1.4) we get

rank(Wpk,n) ⩽ 1 + 2k(k + 1)rank(Apk,n−1) ⩽ 2k(k + 2)

(
pk + n− 2

n− 1

)
=: U2(k, n).

We have

U2(k, n)

U1(k, n)
⩽ 2k(k + 2)n

(pk + n− 2)(pk + n− 3) . . . pk

(pkk−1 + n)(pkk−1 + n− 1) . . . (pkk−1 + 1)

⩽ 2k(k + 2)
(pk + n)n−1

pknk−n

⩽ 2kn+1(k + 2)
(
1 + np−k

)n−1
p−k.

With n fixed, the bound U2(k, n) is better than U1(k, n) by a factor of the order kn+2p−k for
large p and k. Even if we used the easy bound (1.2) instead of U2(k, n), the outcome would be
similar.

On the other hand, Theorem 1.3 shows that the lower bound in (2.16) provides the correct
order of magnitude in pk, up to constants depending on k and n. We have from (2.16) and (2.15)

rank(Wpk,n) ⩾

(
⌈pk/k⌉+ n− 1

n− 1

)
=: L(k, n),

and

U2(k, n)

L(k, n)
⩽ 2k(k + 2)

(pk + n− 2)(pk + n− 3) . . . pk

(pkk−1 + n− 1)(pkk−1 + n− 2) . . . (pkk−1 + 1)

⩽ 2kn(k + 2).

When pk is large relative to n, the bound in Theorem 1.4 improves this by an additional factor
of up to 2n−1. We provide the detailed calculation at the beginning of Section 7.

3. The binomial phi functions

In this section, we work in R = Z/pkZ. Our starting point is Lucas’s Theorem, which allows us
to define binomial coefficients mod p as functions on R with values in Z/pZ.

Theorem 3.1 (Lucas’s Theorem). [Luc78] Let p be prime. Let m,n be nonnegative integers
with p-adic expansions m =

∑ℓ
j=0mj and n =

∑ℓ
j=0 njp

j , where mj, nj ∈ [p]. Then(
m

n

)
≡

ℓ∏
j=0

(
mj

nj

)
mod p,

with the convention that
(
0
0

)
= 1 and

(
a
b

)
= 0 whenever a, b ∈ [p] satisfy a < b.
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Definition 3.2. For m ∈ [pk], we define the functions ϕm : R → Z/pZ by

ϕm(x) =

(
x

m

)
mod p, (3.1)

with the same convention as in Theorem 3.1. We also define for all x ∈ R,

ϕm(x) = 0 if m < 0 or m ⩾ pk. (3.2)

Proposition 3.3. If x, y ∈ Z⩾0 satisfy x ≡ y mod pk, then
(
x
m

)
≡
(
y
m

)
mod p. Consequently,

ϕm are well-defined as functions on R. They satisfy the recurrence relations

ϕ0(x) = 1 for all x ∈ R, ϕm(0) = 0 for all m ̸= 0,

ϕm(x+ 1)− ϕm(x) = ϕm−1(x) for m ∈ [pk].
(3.3)

Furthermore, if m ∈ [pk] and x ∈ R have the p-adic expansions m =
∑
mip

i and x =
∑
xip

i,
then

ϕm(x) =
k−1∏
i=0

ϕmi
(xi). (3.4)

Proof. The first conclusion is trivial when m < 0 or m ⩾ pk, since then ϕm(x) = 0 for all x.
Assume now that m ∈ [pk] and that x ≡ y mod pk for some x, y ∈ Z⩾0. Then the p-adic
expansions x =

∑
xjp

j and y =
∑
yjp

j satisfy xj = yj for 0 ⩽ j ⩽ k − 1, and the conclusion
follows from Lucas’s Theorem.

Part (3.3) follows directly from (3.1), (3.2), and Pascal’s identity for binomial coefficients.
Finally, (3.4) is Lucas’s Theorem again.

Form = 0, 1, . . . , p−1, each ϕm coincides with the evaluation mod p of a polynomial inR[z]
of degreem. Form ⩾ p, (3.1) defines additional functions that can be thought of as “generalized
polynomials” of degree m thanks to (3.3). An abstract framework for generalized polynomial
functions on groups, defined as functions whose appropriate discrete derivatives are null, was
developed by various authors, notably including [Lei02, Lac04, AM21, CS22]. A systematic
study of binomial coefficients from this point of view was undertaken in [Sch14, CS23]. A large
part of our analysis will follow theirs. However, for our purposes it will be important to consider
multiplicative properties of binomial coefficients, which are significantly more complicated and
were less studied in the literature (see the comments after equation (17) in [Sch14]).

We note that ϕ0(x) = 1 and ϕ1(x) = x for all x, but ϕm with 2 ⩽ m < p are neither
homogeneous nor monic. Unlike for actual polynomials, there is no canonical choice of homo-
geneous generalized polynomials on Rn. For example, we could have defined ϕm(x) :=

(
x+m
m

)
instead of (3.1), and all our proofs would have been essentially the same with only slightly more
complicated calculations.

For k = 1, the polynomials 1, x, x2, . . . , xp−1 are linearly independent functions on Z/pZ,
therefore form a linear basis for the space of all functions on Z/pZ. We now prove that the same
is true for the functions ϕm for general k. This can be proved using the framework of discrete
derivatives outlined in Section 4, but here we present a short and direct proof based on Lucas’s
Theorem.
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Lemma 3.4. (Linear independence of ϕm) We order the elements of R
as R = {0, 1, 2, . . . , pk − 1}. Let Φ be the pk × pk matrix with columns indexed by x ∈ R and
rows by m ∈ [pk], and with entries

Φm,x = ϕm(x).

Then Φ is a nonsingular upper triangular matrix, with Φm,m=
(
m
m

)
=1 and Φm,x=0 for x<m.

Consequently, the functions {ϕm}m∈[pk] are linearly independent over Z/pZ, and form a basis
for the space of all functions from R to Z/pZ.

Proof. We clearly have Φm,m =
(
m
m

)
= 1 for all m ∈ [pk]. If x,m ∈ [pk] with x < m,

then at least one p-adic digit of x must be smaller than the corresponding p-adic digit of m, so
that

(
x
m

)
= 0 by Lucas’s Theorem. It follows that Φ is an upper triangular matrix, nonsingular

since all its diagonal entries are equal to 1. Since them-th row of Φ is the list of values of ϕm(x)
as x ∈ R, the linear independence of the rows of Φ implies the linear independence of ϕm

with m ∈ [pk]. In particular, the linear span of {ϕm}m∈[pk] over Z/pZ has dimension pk. Since
this is also the dimension of the the space of all functions from R to Z/pZ, the last statement
follows.

Vandermonde’s identity (3.5) is the phi-function analogue of the binomial expansion
of (x+ y)m.

Lemma 3.5. (Vandermonde’s Identity) For m ∈ [pk] and x, y, b ∈ R, we have

ϕm(x+ y) =
m∑
i=0

ϕi(x)ϕm−i(y). (3.5)

Proof. Equation (3.5) is known in the literature. A short proof is as follows: the left side of (3.5)
can be interpreted as the number of ways we can choose m balls from a basket of x white and y
black balls, and the right side breaks this down into the numbers of ways we can choose i white
balls and m− i black balls for each i.

Lemma 3.6. For m ∈ [pk−j] and j ∈ {1, . . . , k − 1}, we have

ϕpjm(p
jx) = ϕm(x). (3.6)

Additionally, ϕm(p
jx) = 0 if pj does not divide m.

Proof. This is an immediate consequence of (3.4).

4. Discrete derivatives

In this section we study the properties of the phi functions with respect to discrete derivatives.
Many of the properties we need may be found in [AM21] in a more general setting, and in [CS23,
Sch14] specifically for binomial coefficients. Since the proofs are short, we include them for the
reader’s convenience.
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Definition 4.1. For m ∈ [pk], define Ωm := span{ϕℓ : 0 ⩽ ℓ ⩽ m}. We say that

• f has degree at most m if f ∈ Ωm,

• f has degree equal to m if f ∈ Ωm \ Ωm−1,

• two functions f, g are equal up to degree ℓ if f − g ∈ Ωℓ; we write this as f =ℓ g.

For convenience, we set Ωm := {0} for m < 0.

We define discrete derivatives as follows. For a function f : R → Z/pZ, let

∆cf(x) := f(x+ c)− f(x) for c ∈ R. (4.1)

For short, we will also write ∆f = ∆1f . It follows from (3.3) that

∀m ∈ [pk], ∆ϕm = ϕm−1. (4.2)

By Lemma 3.4, any function f : R → Z/pZ has an expansion f =
∑
cjϕj . It follows

from (4.2) that
∀m ∈ [pk], f ∈ Ωm ⇔ ∆f ∈ Ωm−1.

Lemma 4.2. Let m ∈ [pk] and c ∈ R. Then ∆cϕm − cϕm−1 ∈ Ωm−2. Consequently, if f ∈ Ωm,
then ∆cf ∈ Ωm−1 for all c ∈ R.

Proof. If m = 0, then ∆cϕm = 0 for all c ∈ R and the lemma is satisfied trivially. Assume now
that m > 0. By (3.5), we have

ϕm(x+ c)− ϕm(x) =
m∑
ℓ=0

ϕm−ℓ(c)ϕℓ(x)− ϕm(x)

= cϕm−1(x) +
m−2∑
ℓ=0

ϕm−ℓ(c)ϕℓ(x),

where we used that ϕ0(c) = 1 and ϕ1(c) = c. This implies the lemma.

A function f : R → Z/pZ has “functional degree” m ⩾ 0 in the sense of [AM21] if m
is the smallest number such that ∆m+1f is the zero function. Lemma 4.3 below states that this
coincides2 with the notion of the degree of f in Definition 4.1. The equivalence between (ii)
and (iii) is a special case of [AM21, Lemma 2.2], and the equivalence between (i) and (ii) is
contained in [Sch14, Theorem 3.1].

2Except for the zero function: in [AM21] it has degree zero, while we find it more convenient to assign it a
negative degree.
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Lemma 4.3. For m ∈ [pk] and f : R → Z/pZ, the following are equivalent:

(i) f ∈ Ωm−1,

(ii) ∆mf = 0,

(iii) For any choice of c1, . . . , cm ∈ R we have ∆cm . . .∆c1f = 0.

Proof. The implication (i) ⇒ (iii) follows by iterating Lemma 4.2 m times and using
that Ω−1 = {0}. Clearly (iii) implies (ii), by letting c1 = · · · = cm = 1.

To prove that (ii) implies (i), we argue by contrapositive. Assume that f : R → Z/pZ has
degree exceedingm− 1. Then there is some ℓ ⩾ m, a non-zero constant c, and some function g
of degree at most ℓ− 1 so that f = cϕℓ + g. By (4.2), we have

∆mf = cϕℓ−m +∆mg.

Since ∆mg ∈ Ωℓ−1−m and c ̸= 0, it follows from linear independence of the phi functions
that ∆mf is not the zero function.

The remaining results in this section will be useful in studying the multiplicative properties
of phi functions later on. Lemma 4.4 (i) is a special case of the periodicity results in [CS23,
Section 2], [Sch14, Section 3]. Parts (ii) and (iii) are similar, but apply to functions that depend
only on higher-order digits in the p-adic expansion of their variable.

Lemma 4.4. Let f : R → Z/pZ be a function, and let x =
∑k−1

j=0 xjp
j be the p-adic expansion

of the variable x ∈ R. Let ℓ ∈ {0, 1, . . . , k − 1} Then:
(i) f ∈ Ωpℓ−1 if and only if f(x) can be written as a function of the first ℓ digits of x, so

that f(x) = g(x0, x1, . . . , xℓ−1) for some g : (Z/pZ)ℓ → Z/pZ;
(ii) if f(x)=g(xℓ) for a function g of degreem ∈ [p], then f ∈ span{ϕ0, ϕpℓ , ϕ2pℓ , . . . , ϕmpℓ};
(iii) f(x) depends only on xℓ (that is, f(x) = g(xℓ) for some function g : Z/pZ → Z/pZ) if

and only if f ∈ span{ϕ0, ϕpℓ , ϕ2pℓ , . . . , ϕ(p−1)pℓ}.

Proof. We start with (i). Suppose that f has degree at most pℓ−1. Then f is a linear combination
of functionsϕm(x)withm ⩽ pℓ−1, so thatmi = 0 for all i ⩾ ℓ. By Lucas’s Theorem, f depends
only on x0, x1, . . . , xℓ−1.

To prove the converse implication, we use dimension counting. There are pℓ functions ϕm

with m ⩽ pℓ − 1, all linearly independent, so that Ωpℓ−1 has dimension pℓ. On the other hand,
the space of all functions of (x0, x1, . . . , xℓ−1) ∈ (Z/pZ)ℓ also has dimension |(Z/pZ)ℓ| = pℓ.
This proves (i).

For (ii), assume that g = ϕj for some j ⩽ m ⩽ p− 1. Then

f(x) = g(xℓ) =

(
xℓ
j

)
=

(
x

jpℓ

)
= ϕjpℓ(x)

by Lucas’s Theorem, implying (ii). Part (iii) follows by observing that any function
g : Z/pZ → Z/pZ has degree at most p − 1 (Lemma 4.3 with k = 1) and then applying
(ii) with m = p− 1.
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Lemma 4.5. Let ℓ,m ∈ Z⩾0. Then ϕℓ · ϕm ∈ Ωℓ+m, with

ϕℓ · ϕm =ℓ+m−1

(
ℓ+m

ℓ

)
ϕℓ+m. (4.3)

We emphasize that ϕℓ · ϕm has degree at most ℓ + m but not necessarily equal to it, since
the coefficient of ϕℓ+m in (4.3) could be zero. For example, if ℓ,m ⩽ pj − 1 for some j < k,
then, by Lemma 4.4 (i), both ϕℓ(x) and ϕm(x) depend only on the first j p-adic digits of x.
Therefore so does ϕℓ(x)ϕm(x). By Lemma 4.4 (i) again, ϕℓϕm also has degree at most pj − 1,
even if ℓ+m ⩾ pj .

Proof of Lemma 4.5. The function ϕm : R → Z/pZ is the reduction mod p of the polyno-
mial

(
X
m

)
∈ Q[X] with leading coefficient (m!)−1. The polynomials(

X

m

)(
X

ℓ

)
and

(
ℓ+m

ℓ

)(
X

ℓ+m

)
in Q[X] both have degree ℓ + m and both have the same leading coefficient (m! ℓ!)−1, so that
their difference has degree at most ℓ+m− 1. The function ϕℓϕm −

(
ℓ+m
ℓ

)
ϕℓ+m is the reduction

mod p of that difference, therefore also has degree at most ℓ+m− 1 as claimed.

Lemma 4.6. Let ϕm : R → Z/pZ and b ∈ R×. Then

ϕm(bx) =m−1 b
mϕm(x)

Proof. The argument is similar to that in the proof of Lemma 4.5. The func-
tion ϕm(bx)− bmϕm(x) is the reduction mod p of

(
bx
m

)
− bm

(
x
m

)
, which is an integer-valued

polynomial (with rational coefficients) of degree at most m − 1 in x. Therefore its reduction
mod p also has degree at most m− 1.

The next lemma is a phi-function analogue of the fact that the coefficients of a polynomial
can be computed by evaluating its derivatives at 0. It has appeared in [Sch14, Theorem 2.6] (see
also [Sch14, Theorem 2.7] and [CS23, Theorem 2.8 (b)] for a multivariate version).

Lemma 4.7. Suppose that f : R → Z/pZ has the representation f =
∑pk−1

j=0 cjϕj . Then

cℓ = ∆ℓf(0) for all ℓ ∈ [pk]. (4.4)

Proof. By (4.2), we have

∆ℓf =

pk−1∑
j=ℓ

cjϕj−ℓ.

We now evaluate this at x = 0. Since ϕ0(0) = 1 and ϕj(0) = 0 for all j > 0, we get (4.4).

Corollary 4.8. Let a ∈ R and m ∈ [pk]. Then

ϕm(ax) =
m∑
ℓ=0

Am,ℓ(a)ϕℓ(x),

where Am,ℓ(a) = ∆ℓ
aϕm(0).
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Proof. For f : R → Z/pZ and a ∈ R, define fa(x) = f(ax). Then

(∆fa)(x) = f(ax+ a)− f(ax) = (∆af)(ax),

and, by iteration,
(∆ℓfa)(x) = (∆ℓ

af)(ax) for all ℓ ∈ [pk]. (4.5)

The corollary follows by applying Lemma 4.7 to f = ϕa
m and then using (4.5).

5. Phi functions on Rn

5.1. Phi functions as generalized polynomials

For α = (α1, . . . , αn) ∈ [pk]n, we define ϕα : Rn → Z/pZ by

ϕα(x) = ϕα1(x1) · · ·ϕαn(xn).

Let also
Ωn

m := span{ϕα : |α| ⩽ m},

where |α| =
∑

i αi. We say that a function f : Rn → Z/pZ has degree at most m if f ∈ Ωn
m.

By convention, we set Ωn
m := {0} for m < 0.

Lemma 5.1. The functions {ϕα : α ∈ [pk]n} are linearly independent over Z/pZ.

Proof. We induct on n. The case n = 1 is given by Lemma 3.4. Assume now that n > 1 and
that the lemma holds in dimensions less than n. Suppose that there exist cα ∈ Z/pZ such that∑

α∈[pk]n
cαϕα(x1, . . . , xn) = 0.

Write α = (α̃, αn), where α̃ = (α1, . . . , αn−1). For fixed x1, . . . , xn−1 ∈ R, we have

0 =

pk−1∑
αn=0

 ∑
α̃∈[pk]n−1

c(α̃,αn)ϕα̃(x1, . . . , xn−1)

ϕαn(xn).

This is true for all xn ∈ R, so by the linear independence of the functions ϕαn , we have∑
α̃∈[pk]n−1

c(α̃,αn)ϕα̃(x1, . . . , xn−1) = 0

for all αn. Since this holds for all x1, . . . , xn−1 ∈ R, it follows by the inductive hypothesis
that c(α̃,αn) = 0 for all α̃, αn. That is, cα = 0 for all α.

Corollary 5.2. For m ⩽ pk − 1, the dimension of Ωn
m over Z/pZ is

(
m+n
n

)
.
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Proof. By Lemma 5.1, the functions ϕα with |α| ⩽ m are linearly independent. Therefore
the dimension of Ωn

m over Z/pZ is equal to the number of α ∈ [pk]n such that |α| ⩽ m. By
Lemma 5.3 below, this number is equal to

(
m+n
n

)
.

Lemma 5.3. Let M,L ∈ N and suppose that L < M . Then

#{(ℓ1, . . . , ℓn) ∈ [M ]n : ℓ1 + · · ·+ ℓn ⩽ L} =

(
L+ n

n

)
.

Proof. What we seek is equivalent to the number of (n + 1)-tuples (ℓ1, . . . , ℓn+1) ∈ [M ]n+1

such that ℓ1 + · · · + ℓn+1 = L. This in turn is equivalent to the following counting problem:
given L+ n balls arranged in a row, colour L of them black and the remaining n white, so that
the black balls divide the n white balls into L + 1 subsets, with empty subsets permitted. The
number of ways to do that is

(
L+n
n

)
.

Proposition 5.4. Let g : Rn → Z/pZ and m ∈ {0, 1, . . . , n(pk − 1)}. Then the following are
equivalent:

(i) g ∈ Ωm
d ,

(ii) g has functional degree at most m, in the sense that for all x ∈ R and for
all r(1), . . . , r(m+1) ∈ Rn we have

∆r(1) . . .∆r(m+1)f(x) = 0,

where ∆rf(x) := f(x+ r)− f(x) for x, r ∈ Rn.

We note here that, by [AM21, Lemma 8.1], the largest possible functional degree of a func-
tion g : Rn → Z/pZ is n(pk − 1); hence the upper bound on m in the proposition.

Proof of Proposition 5.4. It follows from [AM21, Lemma 6.2] that ϕα has functional degree at
most |α|. This proves that (i) implies (ii). For the converse, it suffices to prove that any function g
of functional degree at most m may be represented as a linear combination of ϕα with |α| ⩽ m.
Such representation is provided by [CS23, Theorem 2.8 (b)] and [Sch14, Theorem 2.7].

Alternatively, one can also give a self-contained proof by induction in n, starting with
Lemma 4.3 for n = 1 as the base case and then following essentially the same argument as
in Lemmas 4.2 and 4.3 for the inductive step. The details are left to the reader.

Corollary 5.5. Let g : Rn → Z/pZ and d ∈ {0, 1, . . . , p− 1}. Then g ∈ Ωn
d if and only if g is

a polynomial in R[x1, . . . , xn] of degree at most d.

In particular, since {ϕα : |α| ⩽ d} is a basis for Ωn
d , it follows that each ϕα with |α| ⩽ p− 1

is a polynomial of degree |α|.

Proof. It is well known, and easy to check directly, that if f is a polynomial of degree d then∆cf
is a polynomial of degree at most d − 1 for any c ∈ R. By iteration, it follows that every
polynomial g of degree d ⩽ p − 1 has functional degree at most d. By Proposition 5.4, we
have g ∈ Ωn

d . Moreover, Ωn
d and the space of all polynomials in R[x1, . . . , xn] of degree at

most d have the same dimension
(
d+n
n

)
(the number of distinct multiindices α = (α1, . . . , αn)

with |α| ⩽ d; see Lemma 5.3 above). Therefore the two spaces are equal.
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5.2. Phi functions and hyperplanes

Recall that
Hn := span{1Hb(a) : a ∈ Rn, b ∈ PRn−1} (5.1)

is the linear span of indicator functions of affine hyperplanes. We will refer to functions in Hn

as hyperplane functions in Rn.
We are interested in characterizing hyperplane functions and, in particular, determining the

dimension of Hn. To this end, we first find a spanning set in terms of the phi functions.
Lemma 5.6. We have

Hn = span{ϕℓ(⟨x, b⟩) : ℓ ∈ [pk], b ∈ PRn−1}.

Proof. It suffices to prove that for each b ∈ PRn−1,

span{1Hb(a) : a ∈ R} = span{f(⟨x, b⟩) : f ∈ (Z/pZ)R}
= span{ϕℓ(⟨x, b⟩) : ℓ ∈ [pk]}.

(5.2)

The second equality in (5.2) follows from Lemma 3.4. We now prove the first one. For
any b ∈ PRn−1 and a ∈ R, we may write

1Hb(a)(x) = 1{0}(⟨x− a, b⟩) = 1{⟨a,b⟩}(⟨x, b⟩)

which shows that 1Hb(a) can be written as a single-variable function of ⟨x, b⟩ as claimed. Con-
versely, let f : R → Z/pZ be a function. Then

f(x) =
∑
c∈R

f(c)1{c}, hence f(⟨x, b⟩) =
∑
c∈R

f(c)1{c}(⟨x, b⟩)

Since b ∈ PRn−1, there exists i ∈ {1, 2, . . . , n} such that bi is invertible. For each c ∈ R,
let c ∈ Rn be the vector whose i-th coordinate is cb−1

i and all other coordinates are 0.
Then ⟨c, b⟩ = c, so that

1{c}(⟨x, b⟩) = 1Hb(c)(x).

Hence every function f(⟨x, b⟩) can be written as a linear combination of hyperplane functions
with the normal vector b. This ends the proof of (5.2), and of the lemma.
Proposition 5.7. We have Hn ⊂ Ωn

pk−1
for all k ⩾ 1. In particular,

rank(A∗
pk,n) = dim(Hn) ⩽

(
pk − 1 + n

n

)
. (5.3)

Proof. We prove that H ⊂ Ωn
pk−1

for all k ⩾ 1. By Lemma 5.6, it suffices to prove
that ϕℓ(⟨b, x⟩) ∈ Ωn

ℓ for all ℓ ∈ [pk] and b ∈ PRn−1. This follows from [AM21, Theorem 4.3].
An alternative self-contained proof is as follows: we use (3.5) to write

ϕℓ(⟨b, x⟩) =
∑
|α|⩽ℓ

ϕα1(b1x1) · · ·ϕαn(bnxn). (5.4)

Lemma 4.6 implies that ϕαi
(bi · ) ∈ Ωαi

for each i. Hence each term on the right side of (5.4)
has degree at most |α|, which in turn implies that ϕℓ(⟨b, x⟩) ∈ Ωn

ℓ as claimed. The bound (5.3)
follows from Corollary 5.2 with m = pk − 1.
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For k = 1, we have the following stronger statement.

Proposition 5.8. Let k = 1. Then Hn = Ωn
p−1, and (5.3) holds with equality.

The relation between polynomials and hyperplane indicator functions for k = 1 is well under-
stood in the literature, see [GD68, MM68, Smi69]. The proof below is provided for completeness
and for comparison with the case k ⩾ 2. We start with two preparatory lemmas. For d ∈ [p],
let Pn

⩽d := (Z/pZ)[x1, . . . , xn]⩽d be the space of polynomials in n variables of degree at most d
over Z/pZ, and let Pn

=d be the subspace of homogeneous, degree d polynomials in Pn
⩽d.

Lemma 5.9. Let k = 1. For any n ∈ N and any d ∈ {0, 1, . . . , p− 1},

span
{
⟨x, b⟩d : b ∈ P(Z/pZ)n−1

}
= Pn

=d.

Proof. We proceed with induction on n. The case n = 1 is immediate. Suppose that the state-
ment holds in all dimensions lower than n. We show that

xα ∈ span
{
⟨x, b⟩d : b ∈ P(Z/pZ)n−1

}
for all α ∈ [p]n with |α| = d.

For x ∈ (Z/pZ)n, we write x = (x̃, xn), where x̃ = (x1, . . . , xn−1). Write also α = (β, αn),
where β = (α1, . . . , αn−1), so that xα = xα1

1 · · ·xαn
n = x̃βx

αk+1

k+1 . Let ℓ = |β|. By the inductive
hypothesis, we may write

x̃βxαn
n =

∑
c∈P(Z/pZ)n−2

ac⟨x̃, c⟩ℓxαn
n .

Therefore it suffices to show that

⟨x̃, c⟩ℓxαn
n ∈ span

{
⟨x, b⟩d : b ∈ P(Z/pZ)n−1

}
for all c ∈ P(Z/pZ)n−2. To this end, it is enough to prove that{

⟨x̃, c⟩jxd−j
n : j = 0, 1, . . . , d− 1

}
⊂ span

{
⟨x, (c, i)⟩d − (ixn)

d : i = 1, . . . , d
}
, (5.5)

where (c, i) = (c1, . . . , cn−1, i) ∈ P(Z/pZ)n−1. Note that

⟨x, (c, i)⟩d − (ixn)
d =

d−1∑
j=0

(
d

j

)
ij⟨x̃, c⟩d−jxjn.

We consider this as a system of d linear equations with ⟨x̃, c⟩d−jxjn. The coefficient matrix of
this system has the determinant

(
d−1∏
j=0

(
d

j

))
det


1 1 1 · · · 1
1 2 22 · · · 2d−1

...
1 d d2 · · · dd−1

 =
d−1∏
j=0

(
d

j

) ∏
1⩽i<j⩽d

(i− j),

where we evaluated the determinant of the Vandermonde matrix. Since
(
d
j

)
̸= 0 for d ⩽ p− 1,

our coefficient matrix is nonsingular, so that we can solve for ⟨x̃, c⟩d−jxjn as claimed in (5.5).
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Lemma 5.10. Let k = 1. For any d ∈ {0, 1, . . . , p− 1}, we have

span{⟨x− a, b⟩d : b ∈ P(Z/pZ)n−1, a ∈ (Z/pZ)n} = Pn
⩽d.

Proof. By Lemma 5.9, it suffices to show that

span{⟨x− a, b⟩d : a ∈ (Z/pZ)n} = span{⟨x, b⟩ℓ : ℓ ∈ N, ℓ ⩽ d}.

For any a ̸∈ Hb, we know that ⟨a, b⟩ is non-zero, and so a unit. Then ⟨ca, b⟩ will range over all
values in Z/pZ as c ranges over all values in Z/pZ. Consequently,

{⟨x− a, b⟩d : a ∈ (Z/pZ)n} = {(⟨x, b⟩ − c)d : c = 0, . . . , p− 1}.

Consider the system of equations

(⟨x, b⟩ − c)d =
d∑

j=0

(
d

j

)
cj⟨x, b⟩d−j, c = 0, . . . , d,

with ⟨x, b⟩d−j as the unknowns. The coefficient matrix of this system has the determinant

(
d∏

j=0

(
d

j

))
det


1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2d

...
1 d d2 · · · dd

 =
d∏

j=0

(
d

j

) d∏
c=2

c
∏

1⩽u<v⩽d

(u− v).

This is non-zero as in the proof of Lemma 5.9, hence we can solve for ⟨x, b⟩d−j .

Proof of Proposition 5.8. Let k = 1. Observe that the indicator function of a hyperplane Hb(a)
may be written as 1Hb(a)(x) = 1 − ⟨x − a, b⟩p−1 mod p. By Lemma 5.10 with d = p − 1, we
have Hn = Pn

⩽p−1. It follows by Corollary 5.5 that Hn = Ωn
p−1, as claimed.

Proof of Theorem 1.2. Let Hn
0 = span{1Hb

: b ∈ P(Z/pZ)n−1} be the span of homogeneous
hyperplane functions. The same argument as above, but using Lemma 5.9 instead of 5.10, shows
that Hn

0 is spanned by homogeneous polynomials of degree p − 1 together with 1(Z/pZ)n , the
function identically equal to 1. To prove the converse, it suffices to verify that 1(Z/pZ)n can be
represented as a linear combination of homogeneous hyperplane functions. Such representation
is provided by

1(Z/pZ)n = 1x1=0 +

p−1∑
c=0

1x2=cx1 .

Note that this equality needs only to hold modulo p: the subspace x1 = x2 = 0 appears in
all p+ 1 hyperplanes above, for a contribution 1 mod p.
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6. Degree lowering for products

Lemma 6.1. Let f(x, y) = ϕm(xiyj) for some m ∈ [pk] and i, j ⩾ 1, where x =
∑
xℓp

ℓ

and y =
∑
yℓp

ℓ are the p-adic expansions of x, y ∈ R. Then f has degree at most mpi+j , with
equality attained only when p = 2 and i = j = m = 1.

Proof. By Lemma 4.4 (ii), we have

f(x, y) =
∑
α

cαϕα1(x)ϕα2(y),

where the summation is over α = (α1, α2) with

α1 ∈ {0, pi, 2pi, . . . , (p− 1)pi}, α2 ∈ {0, pj, 2pj, . . . , (p− 1)pj}.

Thus the combined degree of each ϕα1(x)ϕα2(y) is at most

(p− 1)pi + (p− 1)pj = pi+1 + pj+1 − pi − pj.

We may assume that i ⩽ j.

• If i < j, then pi+1 ⩽ pj , so that pi+1 + pj+1 − pi − pj ⩽ pj+1 − pi < pi+j .

• If i = j ⩾ 2, then 2pi+1 − 2pi < 2pi+1 ⩽ pi+2 ⩽ pi+j .

• If i = j = 1, then 2p2−2p < 2p2 = 2pi+j . This is at mostmpi+j unlessm = 1. However,
if m = 1, then

ϕ1(x1y1) = x1y1 = ϕp(x)ϕp(y)

has degree 2p ⩽ p2, with equality only when p = 2.

Our next goal is to determine the degree of f(x, y) = ϕm(xy) as a function of 2 variables
for m ∈ [pk]. Recall from Corollary 4.8 that

ϕm(xy) =
m∑
ℓ=0

Am,ℓ(y)ϕℓ(x), (6.1)

where Am,ℓ(y) = ∆ℓ
yϕm(0) =

∑ℓ
i=0(−1)i+ℓ

(
ℓ
i

)
ϕm(iy). By Lemma 4.6, ϕm(iy) is a function of

degree at mostm in y for each i. Hence ϕm(xy) has degree at mostm in each variable separately.
We will see below that the combined degree of ϕm(xy), considered as a function of two

variables, cannot be much larger than m. This is in sharp contrast to polynomials over Z, where
the combined degree of (xy)m = xmym is always 2m.

Proposition 6.2. Let f(x, y) = ϕm(xy) for some m ∈ [pk] and x, y ∈ R. Then f has degree at
most m+ 2(p− 1). Specifically, we have

ϕm(xy) =
∑
α

cm,α ϕα1(x)ϕα2(y), (6.2)

where the coefficients cm,α satisfy cm,α = 0 if |α| > m+ 2(p− 1).
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Proof. Let m ∈ [pk], and let x =
∑
xip

i and y =
∑
yip

i be the p-adic expansions of x, y ∈ R.
By (3.5) and Lemma 3.6, we have

ϕm(xy) = ϕm

( ∑
i+j⩽k−1

pi+jxiyj

)
=
∑
m⃗

∏
i,j

ϕmij
(xiyj),

where the summation is over all m⃗ = (mij)i+j⩽k−1 such that
∑

i,j mijp
i+j = m. Fix m⃗, and

consider the corresponding term in the sum above:

∏
i,j

ϕmij
(xiyj) =

(
k−1∏
j=0

ϕm0j
(x0yj)

)(
k−1∏
i=0

ϕmi0
(xiy0)

)(∏
i,j⩾1

ϕmij
(xiyj)

)

=: P1P2P3,

By Lemma 6.1, P3 has degree at most ∑
i,j⩾1

mijp
i+j. (6.3)

Next, we consider P1. By (6.1) and Lemma 4.4, each factor ϕm0j
(x0yj) has degree at most p−1

in x and at mostm0j in yj , therefore at mostm0jp
j in y. In other words, we can write ϕm0j

(x0yj)
as a linear combination of terms of the form ϕβ1(x0)ϕβ2(y), where β2 ⩽ m0jp

j . Taking the
product, and applying Lemma 4.4 to the factors involving x0 and Lemma 4.5 to the factors
involving y, we see that P1 has degree at most

(p− 1) +
∑
j

m0jp
j. (6.4)

Similarly, P2 has degree at most (p − 1) +
∑

imi0p
i. Combining this with (6.3) and (6.4), we

get the desired bound.

7. An upper bound on the rank of hyperplane functions

In this section we prove our upper bound on the rank of the reduced point-affine hyperplane
incidence matrix, which we state again for the reader’s convenience.

Theorem 7.1. Let p be prime, and let k, n ∈ N. Then

rank(A∗
pk,n) ⩽ (2n)

(
⌊pk/2⌋+ (n− 1)(p− 1) + n

n

)
. (7.1)
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Before starting the proof of the theorem, we compare (7.1) to the upper bound
(
pk−1+n

n

)
given

by (5.3). Suppose that n is small relative to pk−1, with n < ϵpk−1 for some ϵ > 0. Then

(2n)

(
⌊pk/2⌋+ (n− 1)(p− 1) + n

n

)
⩽

(pk + 2(n− 1)(p− 1) + 2n)n

2n−1(n− 1)!
<
pkn(1 + 4ϵ)n

2n−1(n− 1)!
.

Meanwhile, we have (
pk − 1 + n

n

)
⩾
pkn

n!
.

Hence, for n < ϵpk−1, the estimate in (7.1) improves on that in Proposition 5.3 by a factor of at
least n2−(n−1)(1 + 4ϵ)n.

Proof of Theorem 7.1. Recall that the rows of A∗
pk,n

are given by indicator functions of hyper-
planes Hb(a) with a ∈ Rn and b ∈ PRn−1. Hence its rank is equal to the dimension of Hn

over Z/pZ, where Hn was defined in (5.1). By Lemma 5.6, we further have

Hn = span{ϕℓ(⟨x, b⟩) : ℓ ∈ [pk], b ∈ PRn−1}. (7.2)

Any b ∈ PRn−1 has a representative in Rn with at least one component equal to 1. Hence

rank(A∗
pk,n) ⩽ n · rank(H(n)), (7.3)

where H(n) is the matrix with rows indexed by (m, ã) ∈ [pk] × Rn−1, columns indexed
by x = (x̃, xn) ∈ Rn, and entries

H(n)
(m,ã),x = ϕm(⟨ã, x̃⟩+ xn).

Let ã = (a1, . . . , an−1) ∈ Rn−1 and m ∈ [pk]. By (3.5) and then Proposition 6.2, we have

ϕm(⟨ã, x̃⟩+ xn) =
∑

ℓ1+···+ℓn−1+βn=m

ϕℓ1(a1x1) · · ·ϕℓn−1(an−1xn−1)ϕβn(xn)

=
∑

ℓ1+···+ℓn−1+βn=m

∑
α̃,β̃

γ(ℓ̃, α̃, β̃)ϕα̃(ã)ϕβ(x),
(7.4)

where we write

α̃ = (α1, . . . , αn−1) ∈ [pk]n−1,

β = (β̃, βn) = (β1, . . . , βn) ∈ [pk]n,

ℓ̃ = (ℓ1, . . . , ℓn−1) ∈ [pk]n−1,

and

γ(ℓ̃, α̃, β̃) =
n−1∏
j=1

cℓj ,(αj ,βj), (7.5)

where cℓj ,(αj ,βj) are the coefficients in the expansion (6.2).
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Let Φ be the matrix with rows indexed by β ∈ [pk]n, columns indexed by x ∈ Rn,
and entries Φβ,x = ϕβ(x). Let also Ψ be the block-diagonal matrix with rows indexed
by (m, ã) ∈ [pk]n, columns indexed by (µ, α̃) ∈ Rn, and entries

Ψ(m,ã),(µ,α̃) = 1m=µϕα̃(ã).

Then (7.4) can be written in matrix form as

H(n) = ΨB(n)Φ,

where B(n) is the matrix with rows indexed by (m, α̃) ∈ Rn, columns indexed by β ∈ [pk]n, and
entries

B(n)
(m,α̃),β =

∑
ℓ1+···+ℓn−1+βn=m

γ(ℓ̃, α̃, β̃).

Since both Φ and Ψ are nonsingular by Lemma 5.1, it follows that H(n) and B have the same
rank. The next proposition completes the proof of Theorem 7.1.

Proposition 7.2. We have

rank
(
B(n)

)
⩽ 2

(
⌊pk/2⌋+ (n− 1)(p− 1) + n

n

)
.

Proof. We claim that B(n)
(m,α̃),β = 0 for all m, α̃, β such that

n−1∑
j=1

αj +
n∑

j=1

βj > m+ 2(n− 1)(p− 1). (7.6)

Indeed, assume that m, α̃, β satisfy (7.6), and consider a contributing term

γ(ℓ̃, α̃, β̃) =
n−1∏
j=1

cℓj ,(αj ,βj) with ℓ1 + · · ·+ ℓn−1 + βn = m.

By (7.6), we have

n−1∑
j=1

(αj + βj) + βn >
n−1∑
j=1

ℓj + βn + 2(n− 1)(p− 1).

Hence there is at least one j such that αj + βj > ℓj + 2(p − 1). By Proposition 6.2, we
have cℓj ,(αj ,βj) = 0 for that j, so that γ(ℓ̃, α̃, β̃) = 0. Since this is true for all contributing terms,
the claim follows.

Write |α̃| =
∑n−1

j=1 αj and |β| =
∑n

j=1 βj for short. We choose λ ∈ [pk], to be determined,
and decomposeB(n) into two matrices, B(n)

⩽λ andB(n)
>λ, with rows and columns indexed as forB(n).
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Let B(n)
⩽λ be defined so that for any row indexed by (m, α̃) with m − |α̃| ⩽ λ, the (m, α̃)-row

of B(n)
⩽λ matches the (m, α̃)-row of B(n). All other rows are zero. Then define B(n)

>λ so that

B(n) = B(n)
⩽λ + B(n)

>λ. (7.7)

First consider B(n)
⩽λ . All its non-zero entries lie in rows indexed by (m, α̃) with m− |α̃| ⩽ λ.

By (7.6), any column indexed by β satisfying |β| > λ+2(n− 1)(p− 1) is the zero vector. Thus
bounding the rank of the matrix by its number of non-zero columns, we obtain

rank(B(n)
⩽λ) ⩽ #{β ∈ [pk]n : |β| ⩽ λ+ 2(n− 1)(p− 1)}

=

(
λ+ 2(n− 1)(p− 1) + n

n

)
by Lemma 5.3.

Now we consider B(n)
>λ; for this, we bound the rank of the matrix by its number of non-zero

rows:

rank(B(n)
>λ) ⩽ #{(m, α̃) ∈ [pk]× [pk]n−1 : m− |α̃| > λ}

= #{(m, α̃) ∈ [pk]× [pk]n−1 : (pk − 1−m) + |α̃| < pk − 1− λ}

=

(
pk − λ− 2 + n

n

)
by Lemma 5.3 applied with ℓ1 = pk − 1−m and ℓi = αi for i > 1.

Taking λ = ⌊pk/2⌋− (n− 1)(p− 1), and applying the subadditivity of rank to (7.7), we see
that

rank(B(n)) ⩽

(
⌊pk/2⌋+ (n− 1)(p− 1) + n

n

)
+

(
pk − ⌊pk/2⌋+ (n− 1)(p− 1)− 2 + n

n

)
⩽ 2 ·

(
⌊pk/2⌋+ (n− 1)(p− 1) + n

n

)
.

8. The basics of finite p-adic geometry

We saw in Theorem 7.1 that functional degree provides only a partial characterization of hyper-
plane functions. In order to develop additional geometric conditions, we need some basic facts
about lines, planes, and their intersections in finite p-adic geometry. The material here is likely
familiar to experts (p-adic scales are used in a similar way in the literature on variants of the
Kakeya problem, see e.g. [HW18, Section 4.3]), but we did not find a self-contained exposition
of all the facts we need, so we provide them with proofs in this section. The language of angles
and distances, defined below, provides the geometric intuition for setting up and understanding
the constructions in Section 9.
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8.1. Lines, planes, distances, angles

Recall that R = Z/pkZ. To simplify the multiscale notation below, we will also
write Rℓ = Z/pℓZ for 1 ⩽ ℓ ⩽ k, so that Rk = R and R1 = Z/pZ.

We define distances and angles in R as follows. For x = (x1, . . . , xn) ∈ Rn, we recall
that pj ∥ x means that pj | xi for all i ∈ {1, . . . , n} and pj+1 ∤ xi for at least one i. We will say
that the p-adic distance between two distinct points x, y ∈ Rn is p−j if pj ∥ x− y, and write it
as ∥x− y∥ = p−j .

The angle between two directions b, b′ is the p-adic distance between b and b′ in PRn−1.
Equivalently: given two distinct directions b, b′ ∈ PRn−1, we say that the p-adic angle be-
tween b and b′ is at most p−j , and write ∠(b, b′) ⩽ p−j , if there exist representatives rb and r′b′
with r, r′ ∈ R× such that pj | (rb − r′b′). We say that ∠(b, b′) = p−j if ∠(b, b′) ⩽ p−j

but ∠(b, b′) ̸⩽ p−j−1. The following simple observation will be used in the sequel.

Lemma 8.1. (cf. [Car18, Corollary 1.11]) Let b, b′ ∈ PRn−1. Then ∠(b, b′) = 1 if and only if

rankZ/pZ

(
b1 b2 . . . bn
b′1 b′2 . . . b′n

)
= 2.

Proof. The equation above is equivalent to the statement that no linear combination cb + c′b′

with c, c′ ∈ R× is congruent to the zero vector mod p, which is a restatement of the definition
of angle 1.

It will be convenient to say that ∥x − x∥ = p−k and ∠(b, b) = p−k; with that convention,
results such as Lemma 8.2 below continue to hold when j = k. In the sequel, we will usually
say “angle” and “distance” for short instead of “p-adic angle” and “p-adic distance”.

For 0 ⩽ ℓ ⩽ k, define a p−ℓ-cube to be a set of the form

Q = Qℓ(x) = {y ∈ Rn : pℓ | (y − x)},

for a fixed x ∈ Rn. This is the set of those elements ofRn whose distance from x is at most p−ℓ.
In dimension n = 2, we refer to Q as a square. Note that a 1-cube Q0(x) is the entire Rn, and
a p−k-cube Qk(x) is the singleton {x}.

We can visualize (Z/pkZ)2 as a p-adic grid; in the table below, we give an example
with p = 2, k = 2, where points can be organized according to four p−1-squares, Q1(0, 0),
Q1(1, 0), Q1(0, 1), and Q1(1, 1):

0 2 1 3
0
2
1
3

A line in a nondegenerate direction b ∈ PRn−1 is a set of the form

Lb(a) = {a+ tb : t ∈ R} for some a ∈ Rn.
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0 3 6 1 4 7 2 5 8
0 • • • • • • • • •
3 •
6 •
1 •
4 •
7 •
2 •
5 •
8 •

0 3 6 1 4 7 2 5 8
0 • • • • • • • • •
3 • • •
6 • • •
1
4
7
2
5
8

Figure 8.1: Examples with (a) two lines with p-adic angle equal to 1, and (b) two lines with
p-adic angle equal to p−1. In (a), the two lines share the point (0, 0). In (b), the lines share the
three points (0, 0), (3, 0), (6, 0).

In this article, we only consider lines as defined above, with b ∈ PRn−1. Thus a line Lb(a) is
always assumed to be nondegenerate and always has |R| = pk distinct elements; furthermore,
if x = a+ tb, then pℓ|(x− a) = tb if and only if pℓ|t, so that

Lb(a) ∩Qℓ(a) = {a+ tb : pℓ|t}, (8.1)

and in particular
|Lb(a) ∩Qℓ(a)| = pk−ℓ for 0 ⩽ ℓ ⩽ k.

If L and L′ are lines with directions b and b′ respectively, we define the angle between them to
be ∠(L,L′) = ∠(b, b′).

In Figure 8.1, we give an examples of pairs of lines in Z/32Z with p-adic angles equal to 1,
and then angle equal to 3−1. The lines in the first example have directions (1, 0) and (4, 1), while
in the second, the lines have direction (1, 0) and (1, 6).

A 2-plane in Rn is a set of the form

Πv,v′(a) = {a+ tv + t′v′ : t, t′ ∈ R}

for some a ∈ Rn and v, v′ ∈ PRn−1 such that ∠(v, v′) = 1. In other words, it is a coset of a
subgroup of Rn with two generators and maximal size |R|2 = p2k.

The next two lemmas justify our geometric terms for angles and distances. Analogous results
hold in Rn if one replaces lines by tubes3 of small but positive radius. For example, if the central
axes of two such tubes intersect at an angle θ, then the intersection of the tubes has volume
inversely proportional to θ and is contained in aO(θ−1)-neighbourhood of the intersection point
of the axes; Lemma 8.2 is the analogous result in our setting. Lemma 8.3 is a similar statement
about lines intersecting hyperplanes at an angle.

3This is often done in projection theory and Kakeya-type problems.
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Lemma 8.2. (cf. [HW18, Lemma 4.5]) Let L,L′ ⊂ Rn be lines. Assume that L and L′ have
a point in common, so that L = Lb(a) and L′ = Lb′(a) for some a ∈ Rk and some choice of
directions b, b′. If ∠(L,L′) = p−j for some 0 ⩽ j ⩽ k, then

L ∩ L′ = L ∩Qk−j(a) = L′ ∩Qk−j(a).

In particular, |L ∩ L′| = pj .
Proof. Let L = Lb(a) and L′ = Lb′(a), with b, b′ chosen so that p−j ∥ (b − b′). We first prove
that

L ∩ L′ ⊂ Qk−j(a). (8.2)
Suppose that x ∈ L ∩ L′ satisfies x ̸= a and pℓ ∥ (x − a) for some 0 ⩽ ℓ < k. We
have x = a + tb = a + sb′ for some s, t ∈ R. Since x − a = tb = sb′ and b, b′ are both
nondegenerate, we must have pℓ ∥ t and pℓ ∥ s. Therefore there exists c ∈ R× such that t = cs.

Let b′′ = c−1b′, then b′′ represents the same direction as b′ and
x = a+ tb = a+ sb′ = a+ s(cb′′) = a+ tb′′.

Hence tb = tb′′, and by the definition of angle, pj is the highest power of p that may divide b−b′′.
It follows that pk−j|t, so that pk−j | tb = x− a, as claimed.

It is left to prove thatL∩Qk−j(a) ⊂ L∩L′, and similarly forL′. Let x = a+tb ∈ L∩Qk−j(a).
By (8.1), we have pk−j|t. Then (a + tb) − (a + tb′) = t(b − b′) is divisible by pk−jpj = pk,
hence is the zero element in Rn. It follows that x = a + tb′ ∈ L′. The same argument applies
with L and L′ interchanged.
Lemma 8.3. Let L ⊂ Rn be a line in direction b, and let H ⊂ Rn be a hyperplane with
normal direction v. Assume that a ∈ L ∩H , and that ⟨b, v⟩ = cpj for some invertible c ∈ R×

and 0 ⩽ j ⩽ k. Then L ∩H = L ∩Qk−j(a), and in particular |L ∩H| = pj .
Proof. Let a ∈ L ∩ H , so that L = {a + tb : t ∈ Rn} and H = {x : ⟨x − a, v⟩ = 0}.
Then L ∩H consists of points x = a+ tb with t ∈ R such that

0 = ⟨x− a, v⟩ = t⟨b, v⟩ = tcpj mod pk.

This holds if and only if pk−j | t, and the conclusion follows from (8.1).
Lemma 8.4. The following are true:

(i) Let L,L′ be lines in R2. If ∠(L,L′) = 1, then |L ∩ L′| = 1.

(ii) Let Π be a 2-plane and H a hyperplane in Rn
1 . Assume that Π ∩ H ̸= ∅. Then either

Π ⊂ H , or else Π ∩H is a line.

Proof. For (i), letL=Lb(a) andL′=Lb′(a
′). We need to verify that the equation a+tb=a′+sb′,

or equivalently (
b1 −b′1
b2 −b′2

)(
t
s

)
=

(
a′1 − a1
a′2 − a2

)
has a unique solution (t, s) ∈ R2. This follows from Lemma 8.1.

For (ii), let H = Ha(b) and Π = Πv,v′(a) for some a ∈ Rn
1 . If ⟨v, b⟩ = ⟨v′, b⟩ = 0,

then Π ⊂ H . Otherwise, it is easy to check that Π ∩H = Lu(a), where
u = ⟨v, b⟩v′ − ⟨v′, b⟩v.
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8.2. Projections and scaling

For 0 ⩽ ℓ ⩽ k, define the projection map πℓ : Rn → Rn
ℓ by

πℓ(x) = x mod pℓ.

Clearly, the mappings πℓ are linear, and πℓ(x) = πℓ(y) if and only if ∥x−y∥ ⩽ p−ℓ. The projec-
tion πℓ induces a mapping PRn−1 → PRn−1

ℓ that we will also denote by πℓ, with πℓ(b) = πℓ(b
′)

if and only if ∠(b, b′) ⩽ p−ℓ. In terms of p-adic digit expansions: given ℓ as above, any ele-
ment x ∈ Rn may be represented uniquely as

x = x∗ + pℓx∗ mod pk, where x∗ ∈ [pℓ]n, x∗ ∈ [pk−ℓ]n. (8.3)

With this notation, we have πℓ(x) = (x∗ mod pℓ) ∈ Rn
ℓ .

We will continue to use our notation for lines, 2-planes, and hyperplanes on lower scales:
for example, if ã ∈ Rn

ℓ and b̃ ∈ PRn−1
ℓ , we will write Lb̃(ã) to denote the line {ã+ tb̃ : t ∈ Rℓ}

in Rn
ℓ .

Lemma 8.5 (Properties of πℓ). Let 0 ⩽ ℓ ⩽ k−1, a ∈ Rn, and b, b′ ∈ PRn−1 with ∠(b, b′) = 1.
Then:

(i) πℓ(Lb(a)) = Lπℓ(b)(πℓ(a)),

(ii) πℓ(Hb(a)) = Hπℓ(b)(πℓ(a)),

(iii) πℓ(Πb,b′(a)) = Ππℓ(b),πℓ(b′)(πℓ(a)).

Proof. By linearity, if L = {a+ tb : t ∈ R} is a line, then

πℓ(L) = {πℓ(a) + tπℓ(b) : t ∈ Rℓ}.

This proves (i). For (ii), we use the representation (8.3) for x, a, b. Then

⟨x− a, b⟩ = ⟨x∗ − a∗, b∗⟩+ pℓ(⟨x∗ − a∗, b
∗⟩⟩+ ⟨x∗ − a∗, b⟩).

If x ∈ Hb(a), it follows that ⟨x∗−a∗, b∗⟩ ≡ 0 mod pℓ, so that πℓ(x) ∈ Hπℓ(b)(πℓ(a)). Conversely,
suppose that x∗ ∈ [pℓ] satisfies ⟨x∗ − a∗, b∗⟩ = 0 mod pℓ. Then for any x∗ satisfying

⟨x∗ − a∗, b
∗⟩+ ⟨x∗ − a∗, b⟩ = 0 mod pk−ℓ,

we have x := x∗ + x∗pℓ ∈ H (notice that such an x∗ must exist as b is non-zero mod p). This
completes the proof of (ii). The proof of (iii) is similar.

Lemma 8.6. Let L,L′ ⊂ Rn be lines. Assume that ∠(L,L′) = 1, and that L and L′ both
intersect a p−1-cube Q. Then L ∩ L′ ⊂ Q.

Proof. Suppose L and L′ intersect at a point in some p−1-cube Q′. Then the lines π1(L)
and π1(L′) in Rn

1 pass through both of the points q′ = π1(Q
′) and q = π1(Q). But Lemma 8.5

implies that π1(L) and π1(L′) make angle 1, hence intersect uniquely. Therefore q = q′, which
means that Q = Q′.
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Next, we establish a canonical identification of a p−ℓ-cube in Rn with Rn
k−ℓ. Let Q be a p−ℓ-

cube. We recall the representation (8.3) of elements of Rn. Note that if x, y ∈ Q, then (with the
obvious notation) we have y∗ = x∗. This allows us to define the map ιQ : Q→ Rn

k−ℓ via

ιQ(x) = (x∗ mod pk−ℓ).

Clearly, ιQ is not a linear mapping, since Q is not closed under addition or scalar multiplication
to begin with. However, it is a rescaling, and it maps intersections of affine subspaces with Q to
affine subspaces in Rn

k−ℓ. The precise statement is given in Lemma 8.7 below.

Lemma 8.7. (Properties of ιQ) Let Q be a p−ℓ-cube in Rn for some 0 ⩽ ℓ ⩽ k − 1. Let a ∈ Q
and b, b′ ∈ PRn−1 satisfy ∠(b, b′) = 1. Then:

(i) If L = Lb(a) ⊂ Rn, then ιQ(Q ∩ L) = Lπk−ℓ(b)(ιQ(a)) is a line in Rn
k−ℓ.

(ii) If H = Hb(a) ⊂ Rn, then ιQ(Q ∩H) = Hπk−ℓ(b)(ιQ(a)) is a hyperplane in Rn
k−ℓ.

(iii) If Π = Πb,b′(a) ⊂ Rn, then ιQ(Q ∩ Π) = Ππk−ℓ(b),πk−ℓ(b′)(a) is a 2-plane in Rn
k−ℓ.

Proof. We recall the representation (8.3) of elements of Rn. For (i), we have by (8.1)

Q ∩ L = {a+ (λpℓ)b : λ ∈ Rk−ℓ},

so that
ιQ(Q ∩ L) = {a∗ + λπk−ℓ(b) : λ ∈ Rk−ℓ} = Lπk−ℓ(b)(ιQ(a)) ⊂ Rn

k−ℓ

as claimed. Next, similar to (8.1) we have

Q ∩H = {a+ y : y = pℓy∗, ⟨y, b⟩ = 0 mod pk} = {a+ pℓy∗ : ⟨y∗, b⟩ = 0 mod pk−ℓ}

and so
ιQ(Q ∩H) = {a∗ + y∗ : ⟨y∗, πk−ℓ(b)⟩ = 0} ⊂ Rn

k−ℓ.

The proof of (iii) is similar.

9. Geometric test for hyperplane functions

9.1. Fans

We saw in Proposition 5.7 that hyperplane functions have degree at most pk−1. In other words,
if f ∈ Hn, then for any choice of a, r1, . . . , rpk ∈ Rd we have〈

f,
∑
ϵ⃗

(−1)|⃗ϵ |1xϵ⃗

〉
= 0, (9.1)

where the summation is over all ϵ⃗ = (ϵ1, . . . , ϵpk) ∈ {0, 1}pk , and

|⃗ϵ | =
pk∑
j=1

ϵj, xϵ⃗ = a+

pk∑
j=1

ϵjrj. (9.2)
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However, Theorem 7.1 tells us that Hn is in general significantly smaller than the linear space of
functions of degree less than pk. This raises the question of what other functionsψ : Rn → Z/pZ
might be orthogonal to Hn, in the sense that ⟨f, ψ⟩ = 0 for all f ∈ Hn. We now define one class
of such functions. We continue to use the notation from Section 8.

Definition 9.1 (Fans). Let 0 ⩽ ℓ ⩽ k− 2. For a ∈ Rn, let Q = Qℓ+1(a), Q′ = Qℓ(a), and let Π
be a 2-plane passing through a. Let L0, . . . , Lp be lines passing through a, contained in Π, and
satisfying ∠(Li, Lj) = 1 for each i ̸= j. Then the set

X =

p⋃
i=0

(Li ∩Q′) \Q

is a fan on scale ℓ.

By Lemma 8.4, for all i ̸= j we have Li ∩ Lj = {a} ⊂ Q, so that

(Li ∩X) ∩ (Lj ∩X) = ∅ for i ̸= j. (9.3)

We also note that, by (8.1),

|X| =
p∑

j=0

|(Lj ∩Q′) \Q| = (p+ 1)(pk−ℓ − pk−ℓ−1) (9.4)

Theorem 9.2. Assume that k ⩾ 2. Let f ∈ Hn be a hyperplane function, and let X ⊂ Rn be a
fan. Then ∑

x∈Rn

f(x)1X(x) = 0 mod p.

To prove the theorem, it suffices to prove that |H ∩X| = 0 mod p for any hyperplaneH and
any fan X . We prove this in Section 9.2 for n = 2 and ℓ = 0, and in Section 9.3 in the general
case.

We prove in Section 9.4 that there are functions ϕα with |α| ⩽ pk−1 that are not orthogonal
to appropriately selected fans. Thus, fans can (at least sometimes) distinguish between genuine
hyperplane functions and functions that have degree bounded by pk − 1 but are not in Hn. This
also proves that fans do not belong to the linear span of the test functions in (9.1)–(9.2).

It is an interesting question to determine whether there are any functions, other than linear
combinations of fans and test functions from (9.1)–(9.2), that are orthogonal to all hyperplane
functions. It could also be interesting to determine the dimension of the linear span of fans.
However, this would not be likely to lead to an improved upper bound on the dimension of Hn.
First, the dimension of the linear span of fans appears at least as difficult to determine as that
of Hn. Second, even if we could determine the former, the inner product in Rn does not have
the property that ⟨f, f⟩ = 0 if and only if f = 0. (For example, we have ⟨f, f⟩ = 0 if f is the
indicator function of any set of cardinality divisible by p.) Hence the dimension of a space of
functions from Rn to Z/pZ is not determined by the dimension of its orthogonal complement.

We note that functions of degree at most pk−1 share some of the geometric properties of hy-
perplane functions. For example, if L,L′ are two lines in Rn with ∠(L,L′) < 1,
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then |L ∩ H| ≡ |L′ ∩ H| mod p for any hyperplane H . In Section 9.5, we prove a similar
statement for functions of degree up to pk−1. This also implies that Theorem 9.2 would remain
true if we allowed a more general definition of fans where, instead of all lines passing through
the same point a and lying in a fixed 2-plane Π, we only required all Li to pass through Q and
lie in the p−ℓ−1-neighbourhood of Π.

We are not aware of any instance of fans defined or used previously in the literature in any
similar context. We do not know whether they have a functorial interpretation, similar to the
association of the test functions in (9.1)–(9.2) with discrete derivatives. That could be another
interesting question to consider.

9.2. Proof for n = 2 and ℓ = 0

Let a ∈ R2. Let L = {L0, L1, . . . , Lp} be a collection of p+ 1 lines in R2 such that a ∈ Lj for
all j ∈ {0, 1, . . . , p}, and that ∠(Li, Lj) = 1 for any i ̸= j. Note that if B is the set of directions
of the lines in L, then

{b mod p : b ∈ B} = {(0, 1), (1, 0), (1, 1), . . . , (1, p− 1)},

so that B is a maximal 1-separated set of directions in PR.
Let Q = Q1(a), and X =

⋃p
i=0 Li \ Q. Since hyperplanes in R2 are lines (recall our

convention that both hyperplanes and lines are nondegenerate unless specified otherwise), we
need to prove that for any line L in R2 we have

|L ∩X| = 0 mod p.

Let L be a line in R2. By (9.3), we have

|L ∩X| =
p∑

i=0

|L ∩ Li ∩X|. (9.5)

Note also that there is a unique line Li in L such that ∠(L,Li) < 1; without loss of generality,
assume i = 0.

First suppose that L ∩ Q = ∅. By Lemma 8.4, for each i ∈ {1, . . . , p}, L inter-
sects Li at a unique point pi ̸∈ Q, so that |L ∩ Li ∩ X| = 1 for i = 1, . . . , p. Next, we
have |L∩L0 ∩X| =

∑
|L∩L0 ∩ Q̃|, where the summation is over all p−1-squares Q̃ ̸= Q. By

Lemma 8.2, each term |L ∩ L0 ∩ Q̃| is 0 mod p, hence |L ∩ L0 ∩ X| = 0 mod p. Combining
this all with (9.5), we obtain |L ∩X| = 0 mod p, as desired.

Now suppose L ∩Q ̸= ∅. Then by Lemma 8.6, for i = 1, . . . , p, we have that L ∩ Li ⊂ Q,
and so L ∩ Li ∩X = ∅. Therefore X ∩ L = X ∩ L ∩ L0, and by the same argument as in the
previous case, the cardinality of this set is 0 modulo p.

9.3. Proof in the general case

Define X and all its associated objects as in Definition 9.1, and let H be a hyperplane. We need
to prove that

|H ∩X| ≡ 0 mod p. (9.6)
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We first consider the case when ℓ = 0, so that Q′ = Rn. If H ∩X = ∅, there is nothing to
prove. Otherwise, we have H ∩Π ̸= ∅. By Lemma 8.4, either Π ⊂ H , or else Π ∩H is a line.
In the first case, we have H ∩X = X , and

|H ∩X| = |X| = (p+ 1)(pk − pk−1),

which is divisible by p since k ⩾ 2.
Assume now that Π ∩ H is a line. Suppose that Π = Πv,v′(a) for some v, v′ ∈ PRn−1

with ∠(v, v′) = 1. By Lemma 8.1, there is a nonsingular linear transformation F : Rn → Rn

such that F (v) = e1 := (1, 0, . . . , 0) and F (v′) = e2 := (0, 1, 0, . . . , 0). Then F (X) is a fan
in F (Π), and F (Π ∩ H) is a line in F (Π). Identifying F (Π) with R2 in the obvious way, and
applying the result for n = 2, we get that (9.6) holds in this case.

Finally, if ℓ > 0, let ιQ′ : Q′ → Rk−ℓ be the identification mapping defined in Section 8.2.
By Lemma 8.7, ιQ′(X) is a fan on scale 0 in Rk−ℓ, and ιQ′(H) is a hyperplane in Rk−ℓ. By
the ℓ = 0 case of the theorem, we have |ιQ′(H) ∩ ιQ′(X)| = 0 mod p. Since ιQ′ is a bijection,
(9.6) follows.

9.4. An example

We let n = 2, k ⩾ 2, and use (x, y) to denote elements of R2 so that x, y ∈ R. Let

f(x, y) = ϕpk−pk−1(x)ϕpk−1−pk−2(y) = ϕp−1(xk−1)ϕp−1(yk−2), (9.7)

where x =
∑

i xip
i and y =

∑
i yip

i are the usual p-adic expansions of x and y. Thus f is the
indicator function of the set

Y = {(x, y) ∈ R2 : xk−1 = p− 1, yk−2 = p− 1}.

As a specific example, let p = k = 2. We list the values of ϕ21(x, y) in the following table, with
rows indexed by y ∈ Z/4Z and columns by x ∈ Z/4Z:

0 2 1 3
0 0 0 0 0
2 0 0 0 0
1 0 1 0 1
3 0 1 0 1

We used dashed lines in the table to partition (Z/4Z)2 according to its four squares on scale 1.
Observe that π1(Y ) = {(0, 1), (1, 1)} ⊂ (Z/2Z)2 is a line in the direction (1, 0), whereas for

each square Q on scale 1, the set ιQ(Y ∩Q) is either empty or else a line in the direction (0, 1).
In this sense, Y is a line both globally on the rough scale and locally on each square on scale 1,
but the directions on the two scales are inconsistent with each other.

One could ask if there might be a way to represent ϕ21 as a linear combination of
several hyperplane functions. Theorem 9.2 shows that this is in fact impossible. Take Q to be
the square containing the point (0, 1). Let L0, L1, L2 be lines in directions (1, 0), (1, 1),
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and (0, 1), respectively, all passing through the point (0, 1). Let X = (L0 ∪ L1 ∪ L2) \ Q.
Then X ∩ Y = {(3, 1)}, and so ∑

(x,y)∈X

ϕ21(x, y) = 1 ̸= 0 mod 2.

More generally, the function f defined in (9.7) has degree pk − 1. However, Theorem 9.2
shows that is not a hyperplane function. Let ℓ = k − 2 and a = (pk − pk−1, pk−1 − pk−2).
Let L0, L1, . . . , Lp−1, Lp be the lines through a in the direction of (1, 0), (1, 1), . . . , (1, p − 1),
and (0, 1), respectively. Let X be the fan

X =

p⋃
i=0

(
Li ∩Qk−2(a)

)
\Qk−1(a).

Then Li ∩X ∩ Y = ∅ for i = 1, . . . , p, and L0 ∩X ∩ Y = p− 1. Hence

⟨f,1X⟩ = |X ∩ Y | = p− 1 ̸= 0 mod p.

One can use (9.7) to construct similar examples in higher dimensions. For instance,
the same argument would apply to a function F (x1, . . . , xn) = f(x1, x2) on Rn, where f
is as in (9.7). Further examples could be constructed by changing variables via nonsingu-
lar (mod p) linear mappings. However, we should point out that a function in Hn could have
a phi function expansion where some of the phi functions appearing with nonzero coefficients
are not, by themselves, in Hn. As an example, we invite the reader to verify that the func-
tion ϕ12 + ϕ21 : (Z/4Z)2 → Z/2Z is in fact a hyperplane function.

9.5. Nearly-parallel lines

Any hyperplane H in Rn has the following property. Let Q be a cube on some scale ℓ, and
letL,L′ be two parallel lines inRn, both passing throughQ and making an angle∠(L,L′)⩽p−1.
Then

|L ∩Q ∩H| ≡ |L′ ∩Q ∩H| mod p.

We prove in Proposition 9.3 that a similar property holds for phi functions of degree at
most pk − 1.

Proposition 9.3. Let Q be a cube on scale ℓ for some 0 ⩽ ℓ ⩽ k − 1. Let L,L′ be two lines
in Rn. Assume that both L and L′ pass through Q, and that ∠(L,L′) ⩽ p−1. Then for any
function f ∈ Ωn

pk−1
we have

⟨1L∩Q, f⟩ ≡ ⟨1L′∩Q, f⟩ mod p.

Proof. We prove the proposition under the assumption that Q = Rn. The general case can be
deduced from this by rescaling as in Section 9.3. The details are left to the interested reader.

We first claim that it suffices to consider the case when L is a line in the direction
of e1 = (1, 0, . . . , 0). Indeed, let b ∈ PRn−1 be the direction vector for L. Without loss of
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generality, we may assume that b1 ∈ R×. Define a linear mapping U : Rn → Rn by say-
ing that U(e1) = b and (with the obvious notation) U(ej) = ej for 2 ⩽ j ⩽ n. In the ba-
sis e1, . . . , en, U is represented by the matrix

b1 0 0 · · · 0
b2 1 0 · · · 0
b3 0 1 · · · 0
...
bn 0 0 · · · 1


Since the determinant of this matrix is b1 ∈ R×, U is invertible. Moreover, U−1 maps lines in
the direction of b to lines in the direction of e1. By iterated applications of (3.5) and Lemma 4.6,
f(x) and f(Ux) have the same degree. This proves the claim.

It therefore suffices to prove the following. Let L be a line in the direction of e1, and let L′

be a line making an angle at most p−1 with L. Then for any α with |α| ⩽ pk − 1 we have

⟨1L, ϕα⟩ ≡ ⟨1L′ , ϕα⟩ mod p. (9.8)

Let L be the line {(y, z) : y ∈ R} for some z ∈ Rn−1. Let also α = (β, γ) with β ∈ [pk]
and γ ∈ [pk]n−1. Then

⟨1L, ϕα⟩ =

(∑
y∈R

ϕβ(y)

)
ϕγ(z).

If 0 ⩽ β < pk − 1, then by (3.3),∑
y∈R

ϕβ(y) =
∑
y∈R

(ϕβ+1(y + 1)− ϕβ+1(y)) = 0. (9.9)

Suppose now that β = pk − 1. Since β + |γ| = |α| ⩽ pk − 1, it follows that |γ| = 0, so
that ϕγ(z) = 1. But then ϕα is the indicator function of the hyperplane x1 = pk − 1.

Similarly, we may write L′ as {(y, z + pvy) : y ∈ R} for some z, v ∈ Rn−1. Then

⟨1L, ϕα⟩ =
∑
y∈R

ϕβ(y)ϕγ(z + pvy)

=
∑
y∈R

∑
γ′+γ′′=γ

ϕβ(y)ϕγ′(z)ϕγ′′(pvy)

=
∑
y∈R

∑
γ′+pν=γ

ϕβ(y)ϕγ′(z)ϕν(vy),

by the obvious extensions of (3.5) and (3.6) to multiindices. We expand each func-
tion ϕβ(y)ϕν(vy) in terms of ϕj(y) with j ⩽ β + |ν|. By (9.9), each such term will sum to 0
in y unless j = pk − 1. Since β + p|ν| ⩽ |α| ⩽ pk − 1, the only way we can get a contributing
term with j = pk − 1 is when ν = 0 = γ and β = pk − 1. As above, this implies that ϕα is the
indicator function of the hyperplane x1 = pk − 1.
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We now conclude the proof as follows. If both of the expressions ⟨1L, ϕα⟩ and ⟨1L′ , ϕα⟩ are
zero mod p, then (9.8) is clearly true. On the other hand, if at least one of the above is nonzero
mod p, then ϕα is the indicator function of the hyperplane x1 = pk − 1. But in that case, (9.8)
is again true with both sides equal to 1. This proves the proposition.
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