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Abstract

Exciton-Phonon Interactions in Complex Materials

by

Jonah Haber

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Jeffrey B. Neaton, Chair

The interaction between excitons and phonons is fundamental to the nature and fate of
photoexcitatons in solids, with important implications for spectroscopy and transport mea-
surements, and for applications in optoelectronics and clean energy. In this dissertation,
we present recent advances in computing exciton-phonon interactions from first principles.
We implement a recently proposed linear-response reciprocal space-based framework which
involves contracting electron-phonon matrix elements computed from density functional per-
turbation theory (DFPT) with exciton expansion coefficients obtained after building and
diagonalizing the ab initio Bethe-Salpeter Hamiltonian, which is built on density functional
theory and the GW approximation. We apply this formalism in unique ways to study phe-
nomena related to exciton-phonon interactions, namely the nature of exciton diffusion in
acene crystals, the dynamical screening of excitons in halide perovskites due to lattice vibra-
tions, and the asymmetric lineshapes in MoS2 stemming from off-diagonal exciton-phonon
coupling.
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Chapter 1

Introduction

Condensed matter physics is the study of emergent properties and phases which arise in
systems of many interacting particles, e.g. solids, liquids, etc. For a large class of physical
systems it is possible to reduce the problem of many strongly interacting constituents to
a theory of weakly interacting quasiparticles and collective excitations [1]. Often these
quasiparticles behave much like their non-interacting (bare) counterparts but with altered
(renormalized) physical properties. In other instances the quasiparticle may have no bare
counterpart and their existence is intimately tied to the many-electron system in which it
lives.

This thesis is centered on the interaction between a specific quasiparticle and collective
excitation: the exciton and phonon. The former can be thought of as a bound electron-
hole pair, and often dominates the low energy optical response of semiconducting materials
manifesting physically as resonances in the absorption spectra [2]. The latter is a quantized
lattice vibration and in contrast to the exciton involves the collective motion of all ions in
the system [3].

The exciton concept was established nearly 100 years ago with models of Mott/Wannier [4,
5] and Frenkel [6], which describe excitons in the weakly- and strongly-bound limit, respec-
tively. Today these models serve as useful touchstones for understanding optical excitations
at lowest order. At the same time they are understood to be phenomenological descriptions
appropriate only in extreme limits and often fail to give quantitative results in real materi-
als. This failure is especially palpable in complex materials, e.g. low-dimensional transition
metal dichalcogenides [7], organic semiconductors [8], and lead-based halide perovskites [9],
all of which show great promise for next generation optoelectronic applications. As these
materials exhibit a large degree of structural and chemical heterogeneity, it is unsurprising
that they support a variety of excitons and the need for a predictive framework flexible
enough to describe excitons across a diverse set of materials is self-evident.

Over the last two decades, computational excited state methods have established them-
selves as robust tools for accurately describing excitonic properties across a wide range of
complex materials including the set given above [10]. The GW method, where G is the
Green’s function and W the screened Coulomb interaction, and Bethe-Salpeter equation
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approach [11, 12], grounded in many-body perturbation theory (MBPT), has proven to be
particularly successful in this regard. At the time of writing this dissertation, computational
capabilities have matured to the point where many static properties such as the exciton bind-
ing energy and optical absorption spectra are readily computed for systems with hundreds
of electrons using standard codes such as BerkeleyGW [13]. In this sense, the time is ripe
to move beyond calculations of static excitonic properties and turn towards dynamics. This
venture starts with a careful study of interactions between exciton and other fundamental
particles. While many such interactions exist, e.g. exciton-exciton, exciton-electron, exciton-
photon (polariton), etc. [14], perhaps the most relevant for understanding exciton dynamics
is the exciton-phonon interaction [15]. The interaction between excitons and phonons is fun-
damental to the nature and fate of photoexcitatons in solids, with important implications for
spectroscopy and transport measurements, and for applications in optoelectronics and clean
energy. While there exists a relatively mature framework for computing electron-phonon
interactions and derived properties including transport coefficients, spectral functions, and
superconducting critical temperatures [16], similar computational methodologies for com-
puting exciton-phonon interactions are only now just beginning to become available and the
consequence of such interactions have not yet been fully explored in a first principle context.

Further, from the early work of Toyozawa [15] at the model Hamiltonain level, we ex-
pect this coupling to be fundamentally different from either electron-phonon or hole-phonon
coupling due to the correlated nature of the exciton which in turn gives rise to non-trivial
correlation effects between the electron and hole channels. One of the most striking examples
of this is a phenomenon which we refer to as polaron interference [17, 18]. Here, the polaron
clouds associated with a bound electron-hole pair overlap and partially cancel with some-
times drastic consequences for the exciton binding energy even in “simple” semiconductors.
We will elaborate more on this in Chap. 5.

In this dissertation we detail our work to both (i) extend first principles methodology
to study exciton-phonon interactions in complex materials and (ii) apply our formalism in
novel ways to complex systems to both rationalize existing experimental findings and predict
new phenomena. This dissertation is organized as follows.

In Chap. 2, we review the relevant parts of electronic structure theory we require for the
rest of the dissertation devoting special attention to the Bethe-Salpeter equation approach
for computing exciton energies and coefficients and density functional perturbation theory
for computing electron-phonon matrix elements, two critical ingredients for constructing the
exciton-phonon matrix element [19].

Chapter 3 focuses on a novel scheme we developed for constructing a maximally-localized
Wannier function representation of the exciton. In essence, this work is a generalization of
the usual maximally localized Wannier scheme for single particle excitations [20]. While not
directly related to exciton-phonon coupling, this work sets the stage for Chap. 4 where we
require a localized basis for studying phonon based exciton hopping. Further, as discussed
in more detail at the end of this chapter, this formalism has direct consequences for the
efficient interpolation of the exciton-phonon matrix element throughout the Brillouin zone
in a manner analogous to what is done at the electron-phonon level [16].
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In Chap. 4, we put forward an ab initio framework for predictive calculations of exciton
diffusion coefficients in the weak and strong exciton-phonon coupling limits. In the latter
limit, we generalize the Lang-Firsov [21] transformation to the multi-band case, introducing
gauge freedom into the formalism. We fix this gauge freedom using the maximally localized
Wannier technology developed in the previous chapter. We use this framework to predict
exciton-polaron energies and exciton diffusion coefficients of low-lying spin triplets in the or-
ganic semiconductors naphthalene, anthracene, tetracene, and pentacene, elucidating trends
with increasing acene size. Our theory leads to phonon renormalized exciton energies and
diffusion coefficients in good agreement with experiment, and illustrate the general utility of
this framework.

In Chap. 5, we focus on how lattice vibrations couple to the internal structure of the
exciton, extending the standard ab initio BSE formalism to include phonon screening effects
at lowest order in the electron-phonon interaction. We introduce an additive, q- and ω-
dependent contribution to the screened Coulomb interaction, W , associated with phonons,
adopting a general form developed by Hedin and Lundquist [22] but neglected in contempo-
rary calculations. We apply this framework to a set of all-inorganic lead-halide perovskite
crystals in the low temperature, orthorhombic phase using the ab initio Fröhlich electron-
phonon vertex introduced in Ref. [23], and we show that phonon screening plays a major,
but not exclusive, role in the exciton binding energies of this emergent class of optoelectronic
materials. Finally, we develop a simple but general expression for the phonon-screened ex-
citon binding energy for arbitrary isotropic semiconductors in terms of µ, ε∞, ε0, and ωLO,
providing a means for identifying semiconductors for which phonon screening effects will be
significant.

In Chapter 6, we develop and apply a first-principles approach to study exciton-phonon
coupling in monolayer MoS2 and reveal the highly selective nature of exciton-phonon coupling
due to the internal spin structure of excitons, which leads to a surprisingly long lifetimes
of the lowest energy bright A exciton. Moreover, we show that optical absorption processes
rigorously require a second-order perturbation theory approach, with photon and phonon
treated on an equal footing, as proposed by Toyozawa [24]. Such a treatment, thus far
neglected in first-principles studies, gives rise to off-diagonal exciton-phonon coupling matrix
elements, which are critical for the description of dephasing mechanisms, and yields exciton
linewidths in excellent agreement with experiment.
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Chapter 2

Electronic Structure Methods

2.1 Introduction

The coupling between electronic and ionic degrees of freedom is central to many studies in this
dissertation. As is such, in this section we focus primarily on aspects of electronic structure
related to this interactions. After giving a high-level overview of ground and excited state
theories in Sec. 2.2 and a concise summary of Kohn-Sham density functional theory and its
reciprocal-space implementation in Sec. 2.3-2.4, we detail in some depth density-functional
perturbation theory and its application to studying lattice dynamics and electron-phonon
coupling in Sec. 2.5- 2.7. In Sec. 2.8-2.12 we turn our attention to many-body perturbation
theory and common approximations used to compute renormalized eigenenergies. In the
last two of these sections special attention is given to W ph, the phonon contribution to the
screened electron-electron interaction. This quantity will play an important role in Chap.
5. In Sec. 2.13, we discuss the Bethe-Salpeter equation formalism for computing excitonic
properties and finally in Sec. 2.14 we define the exciton-phonon matrix and related it the
contraction of the exciton expansion coefficients and electron-phonon matrix elements. This
quantity is central to the discussion in Chap. 4 and 6.

2.2 The Many-Body Hamiltonian and Ground vs.

Excited State Theories

The Hamiltonian, we concern ourselves with in condensed matter physics takes the form

Ĥ = −
∑
i

∇2
i

2
+

1

2

∑
i ̸=j

1

|ri − rj|
−
∑
I

∇2
I

2MI

+
1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
+
∑
i,I

ZI

|ri −RI |
, (2.1)

where ri and RI denote the positions of the i
th electron and Ith ion respectively while ZI and

MI denote the effective charge and mass associated with ion I. Unless stated otherwise, we
work in atomic units, h̄ = me = e = 1. As a first approximation, the nuclear coordinates are
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often taken to be clamped at their equilibrium positions so that the kinetic term associated
with these degrees of freedom can be neglected and the nuclear positions, RI , can be de-
moted from operator to classical variable [25]. Even after these simplifying approximations,
the many-body wavefunction Ψ(r1, r2 . . . rNe ;R1 . . .RNi

) is still prohibitively expensive to
compute and for systems with more than ∼ 10 electrons a direct solution is often infeasible.

In many, if not all practical cases, it turns out that experimentally measurable properties
do not depend on the detailed motion of all particles and the entire many-body wavefunction
is not required to make physical predictions. Instead it can be sufficient to focus on reduced
quantities – i.e. quantities with many degrees of freedom integrated out. An important
example is the ground state density, n(r), related to the many-body wavefunction through

n(r) = Ne

∫
d3r2 . . . drNeΨ

⋆(r, r2 . . . rNe)Ψ(r, r2 . . . rNe), (2.2)

where Ne denotes the number of electrons in the system. Physically, n(r), is the proba-
bility density to find an electron at position r. Importantly, it was proved by Hohenberg
and Kohn [26] that for a given ionic configuration, the ground state energy E is a unique
functional of n(r) – i.e. E = E[n(r)] – so that in principle knowledge of n(r) allows for the
prediction of all ground state properties. Notably, many properties of interest are related to
total energy differences, cohesive energies, lattice constants, adsorption energies, ionization
energies as well as the the preferred structural and magnetic ordering of materials are all
examples of properties which can be determined from differences in E. While a host of
other linear response functions are related to infinitesimal changes in E in response to per-
turbations. Examples include the elastic constants, dynamical matrix, polarizability, Born
effective charge, magnetic susceptibility and Raman tensor [27, 28].

Unsurprisingly, not all experimental observables can be easily related to total energy
differences. A classic example is the quasiparticle dispersion which is a measure of particle-
like excitation energies. Here one needs a different framework, one based on the single particle
many-body Green’s function, G(rt, r′t′). In Sec. 2.7, we will show how the poles of this object
are related to excitations of the many-body system. While G(rt, r′t′) is more complex than
n(r) it is still much simpler than the many-body wavefunction for large numbers of electrons.

In light of the above discussion, it is natural to ask: is it possible to determine reduced
quantities like n(r) or G(rt; r′t′) without recourse to first solving the many-body Hamilto-
nian? The answer turns out to be a resounding yes (at least in theory), and this framework
is used for much of the work in this thesis, and we review it in the subsequent sections.

2.3 Kohn-Sham Density Functional Theory

One year after Kohn and Hohenberg established that the ground state energy, E, of an
interacting system can be expressed as a unique functional of the single particle density n(r)
[26], Kohn and Sham put forward an scheme for practical calculations [29]. Their strategy,
which is still widely used today, is to map to a fictitious, non-interacting system which
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generates the same ground state density as the interacting system. Because the reference
system is non-interacting, the wavefunction for this system can be expressed as a Slater
determinant of single-particle orbitals. There are many excellent sources for deriving the
Kohn-Sham (KS) equations, here we state some results [30, 31].

The Kohn-Sham equation is usually cast as an eigenvalue equation of the form(
− ∇2

2
+ VKS(r)

)
ψi(r) = εiψ(r), (2.3)

where εi and ψi(r) are the Kohn-Sham eigenenergies and orbitals respectively and VKS[n](r)
is the Kohn-Sham potential. The Kohn-Sham potential is in turn composed of three terms

VKS[n](r) = Vion(r) + VH[n](r) + Vxc[n](r), (2.4)

where the notation [n] has been introduced to denote terms which depend functionally on the
ground state density. The ionic contribution is determined by the position of the underlying
atoms which compose the system. While the Hartree and exchange-correlation terms are
defined, respectively, as

VH[n](r) =

∫
d3r′

n(r′)

|r− r′|
(2.5)

Vxc[n](r) =
δExc[n(r)]

δn(r)
, (2.6)

where Exc is the universal exchange-correlation functional. The Hartree term is familiar from
electricity and magnetism and is the classical potential an electron in state i experiences due
to all other electrons (and itself). By contrast the exchange correlation energy is purely
quantum mechanical and is for general systems unknown. The first proposed and most
well know construction of Vxc[n](r) relies on the local density approximation (LDA). This
approximation begins with εHEG(n), the exchange-correlation energy per unit volume for
a homogeneous electron gas (HEG) with uniform density, n, which has been accurately
parameterized against Monte-Carlo simulations [32]. In the local density approximation n
is promoted from a scalar to a function, n(r), so that

ELDA
xc [n(r)] =

∫
d3rn(r)εHEG(n)

∣∣∣∣
n=n(r)

, (2.7)

from which it immediately follows

V LDA
xc [n(r)] =

(
εHEG(n) + n

dεHEG

dn

)
n=n(r)

. (2.8)

For some initial guess for the ground state density, n(r), VKS[n](r) can be constructed as
prescribed by Eqs. 2.4- 2.5 and 2.8. Equation 2.3 can then be solved to obtain KS eigenstates,
ψi(r). With these eigenstates, a new ground state density, n(r), can be calculated using

n(r) =
∑
i

fi|ψi(r)|2, (2.9)
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where fi denotes the occupation of the ith orbital. If n(r) differs from the previous density, the
entire procedure is repeated and a new density is computed. This cycle is repeated until the
density is unchanged between cycles. In this way the density is computed self-consistently.
At the end of the KS cycle, the ground state density is, in principle, guaranteed to be
equivalent to the ground state density of the many-body system. In practice the density will
differ as a result of the approximate exchange-correlation functional used, e.g. LDA.

Finally, with the ground state density, the total energy E[n(r)] is given by

E[n(r)] = 2

Ne/2∑
i

εi −
1

2

∫
n(r)n(r′)

|r− r′|
d3rd3r′ + Exc[n]−

∫
n(r)vxc(r)d

3r+ Eion-ion, (2.10)

where Eion-ion denotes the contribution to the total energy due to ion-ion interactions.

2.4 Plane-wave DFT and the Pseudopotential

Method

In this thesis, we work exclusively with extended solid-state systems, systems that possess
some discrete translational symmetry. From Bloch’s theorem, we know single-particle eigen-
states of these systems can be written as

ψnk(r) = eik·runk(r), (2.11)

where n is the band index, k, the wavevector, and unk(r) is a cell periodic function so that
unk(r) = unk(r +R) where R is a lattice vector. The periodicity of unk(r) ensures that it
can be expressed as a Fourier expansion, namely

unk(r) =
∑
G

cnk(G)eiG·r, (2.12)

where G are reciprocal lattice vectors, related to lattice vectors R through the relation
R ·G = 2πm, where m is an integer and cnk(G) = ⟨k+G|ψnk⟩. These relations motivate
the choice to expand the Kohn-Sham eigensystem in a basis of plane waves. In this basis,
the Kohn-Sham eigensystem takes the form [33]∑

G′

[
|k+G|2

2
δGG′ + ⟨k+G|VKS|k+G′⟩

]
cnk(G

′) = εnkcnk(G), (2.13)

where εnk are the eigenenergies which when plotted as a function of k give the Kohn-Sham
bandstructure. Generally, one solves Eq. 2.13 in a subset of G vectors setting an upper
cutoff — i.e. |k+G|2/2 < Ecut.

One challenge associated with the procedure is that ionic potential is long-range and falls
off very slowly in reciprocal space, i.e. ⟨k+G|Vion|k+G⟩ ∝ 4π/|k +G|2. A solution is to
use a shorter range potential which produces the essential feature of the true ionic potential
in the chemically relevant region. The idea dates back to the early work of Philips and
Kleinman [34]. In this thesis we work exclusively with norm-conserving pseudopotentials [35].
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2.5 Density Functional Perturbation Theory

Importantly DFT can formally be extended to compute first order changes in the ground
density energy due to static perturbations. This extension is called density functional per-
turbation theory (DFPT) [27]. Consider a perturbation, δVext(r), to the external potential.
This change will in turn induce a change in the wavefunction, δψ(r), and ground state den-
sity, δn(r). The change in the ground state density will induce a change in the Hartree,
δVH(r), and exchange-correlation, δVxc(r), potentials. Below, we collect a set of equations
which relates all these quantities

δVKS[δn](r) = δVext(r) + VH[δn](r) +
dVxc(n)

dn
δn(r) (2.14)

(HKS − εi) |δψi⟩ = −(δVKS − δεi) |ψi⟩ (2.15)

δn(r) = 2Re
∑
i

ψ⋆
i (r)δψi(r). (2.16)

Equation 2.15 is often refereed to as the Sternheimer equation [36] and is an intermediate
step in deriving the first order Rayleigh-Schrödinger correction to the wavefunction, |δψ⟩, in
the presence of a perturbation δVext. In the same equation, δεi is the first-order change in
the eigenenergy εi, and is given by δεi = ⟨ψi|δVext|ψi⟩. In practice Eqs. 2.14- 2.16 are solved
iteratively provided HKS for the unperturbed system has already been solved and |ψi⟩ are
known.

Two critical advantages of using the DFPT approach are: (i) it only requires occupied
states and (ii) for periodic systems, these equations can be solved in the unit cell regardless
of the wavevector associated with the perturbing potential. To see this last point, consider
a monochromatic perturbation with wavevector q – i.e. δVKS(r) = ∂qVKS(r)e

iq·r where
∂qVKS(r) is a lattice periodic function. When specialized to this case, Eqs. 2.14- 2.16 take
the form

∂qVKS(r) = ∂qVext(r) +

∫
d3r

∂qn(r
′)

|r− r′|
e−iq·(r−r′) +

dvxc(n)

dn

∣∣∣∣
n=n(r)

∂qn(r) (2.17)

(Hk+q
KS − εvk) |∆uvk⟩ = −∂qVKS |unk⟩ (2.18)

∂qn(r) = 2
∑
vk

u⋆vk(r)∆uvk+q(r), (2.19)

where Hk
KS = e−ik·rHKSe

ik·r. In this form, the DFPT equations have been reduced to a form
which involves only lattice periodic functions, namely, Hk+q

KS (r), ∂qVext(r), ∂qn(r), ∂qVKS(r).

2.6 The Dynamical Matrix from DFPT

The DFPT formalism can be used to study lattice dynamics. Let τkp denote the initial
positions of each atom in the solid, with k denoting the position of the kth atom in the unit
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cell and p labeling the cell relative to the origin. Consider now perturbing this these ions
with some monochromatic perturbation, with wavevector q, so that the new positions of
the atoms are given by τkp + uk(q)e

iq·Rp where uk(q) defines the distortion pattern. If the
distortion is small, it is meaningful to speak of the rate of change in the ionic potential that
it induces. The change takes the from

∂Vion(r)

∂ukα(q)
= eiq·r∂kα,qVion(r), (2.20)

where α labels the Cartesian direction of the displacement and ∂kα,qVion(r) is the planewave
periodic part of the change in the potential which can be explicitly expressed as

∂kα,qVion(r) =
∑
p

e−q·(r−Rp)
∂Vion
∂τkα

∣∣∣∣
r−Rp

. (2.21)

In this form, it is readily verified that ∂kα,qVion(r) is cell-periodic in r. The derivative on
Vion(r) can be performed analytically and, in Fourier space, the result reads

∂kα,qVion(G) = −i(q+G)αVk(q+G)e−i(q+G)·τk , (2.22)

where we have used the convention f(G) = V −1
uc

∫
dre−iG·rf(r) where Vuc is the unit cell

volume and Vk, the psuedopotential for ion k.
Taking ∂kα,qVion(r) as the perturbing external potential, the DFPT equations, 2.17- 2.19,

can now be solved to obtain the induced change in the density, ∂kα,qn(r) and change in the
Kohn-Sham potential ∂kα,qVKS(r). With these ingredients the change in the total electronic
energy is given by

∂2Eel

∂u⋆kα(q)∂uk′α′(q)
=

∫ (
∂n(r)

∂ukα(q)

)⋆
∂Vion(r)

∂uk′α′(q)
d3r+

∫
n(r)

∂2Vion(r)

∂u⋆kα(q)∂uk′α′(q)
d3r. (2.23)

That the second derivative of the total energy with respect to ionic displacements can be
determined as a function of the first derivative of the electronic density is a specific case
of the (2n + 1)−theorem. This theorem, is an extension of the Hellman-Feynman theorem
and states that the (2n + 1)th derivative of the total energy can be computed from the nth

derivative of the wavefunction [37].
The mass reduced dynamical matrix [3, 25] is defined as

Dαα′

kk′ (q) =
1√

MkMk′

[
∂2Eel

∂u⋆kα(q)∂uk′α′(q)
+

∂2Eion

∂u⋆kα(q)∂uk′α′(q)

]
, (2.24)

where the second term on the right-hand side is the second order change in the ionic con-
tribution to the total energy. Eigenvectors of the mass reduced dynamical matrix give the
eigenfrequencies, ωqν , and eigenmodes, ξνkα(q), of the system, specifically∑

k′α′

Dαα′

kk′ (q)ξ
ν
k′β(q) = ω2

qνξ
ν
kα(q), (2.25)
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where ν labels the branch index of the mode. The eigenvectors are a complete basis and we
can represent any displacement in this basis, explicitly

ukαp =
1√
Nq

∑
qν

√
1

2Mkωqν

ξνkα(q)e
iq·Rp [b†−qν + bqν ], (2.26)

where ukαp denote the change in the position of the kth ion in the α-direction located p unit
cells from the origin. Mk denotes the mass of the kth atom and in writing down Eq. 2.26
we have also quantized the theory introducing phonon creation b†−qν and annihilation bqν
operators.

2.7 The Electron Phonon Matrix Element from

DFPT

In addition to the change in the total energy with ionic displacement, to compute the electron-
phonon coupling matrix element, we also need to know how the DFT Hamiltonian itself
changes with respect to ionic displacement. Consider again the displacement ukαp. If the
displacement is small we can expand the Kohn-Sham Hamiltonian about equilibrium coor-
dinates as

HKS(r; τ0 + u) = −∇2

2
+ VKS(r, τ0) +

∑
kpα

∂VKS(r)

∂τkαp
ukαp + · · · , (2.27)

where the notation HKS(r; τ0 + u) symbolically denotes the KS Hamiltonian with ionic
coordinates displaced from their equilibrium position, τ0, by u. The final term in this
expansion ultimately gives rise to the electron-phonon interaction and can be treated as
a perturbation, presently we label it Helph(r). We can use the normal mode expansion in
Eq. 2.26 to rewrite this perturbation in normal mode coordinates, namely

Helph(r) =
1√
Nq

∑
qν

[
eiq·r

1√
2ωqν

∑
kα

ξνkα(q)√
2Mk

∂kα,qVKS(r)

]
(b†−qν + bqν) (2.28)

where ∂kα,qVKS(r) is cell-periodic and defined in a manner analogous to ∂kα,qVion(r) (see
Eq. 2.20). Notably, at the end of the DFPT cycle, we have access to ∂kα,qVKS(r) so that the
electron-phonon Hamiltonian can be parameterized.

To clean up the notation, it is common practice [38] to rewrite Eq. 2.28 in terms of the
electron-phonon matrix element which we define in real-space as

gqν(r) =
1√
2ωqν

∑
kα

ξνkα(q)√
2Mk

∂kα,qVKS(r). (2.29)
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Finally we can quantize the theory in the electronic coordinate, taking the unperturbed
Bloch states as our basis, so that Ĥelph reads

Ĥelph =
1√
Nq

∑
qν

gmnν(k,q)c
†
mk+qcnk(b

†
−qν + bqν), (2.30)

where we have introduced the notation

gmnν(k,q) = ⟨mk+ q|eiq·rgqν(r)|nk⟩
= ⟨umk+q|gqν(r)|unk⟩uc ,

(2.31)

where the subscript uc denotes that the integration should be performed over the unit cell.

2.8 The Single-Particle Many-Body Green’s Function

To this point, we have been primarily concerned with DFT, which as emphasized in the
introduction, is a formally exact theory for studying ground state properties. For studying
phenomena related to single-particle excitations, DFT within common approximations often
performs poorly. In fact, the DFT eigenvalues cannot formally be interpreted as quasiparticle
excitations and care should be used when trying to interpret them in this way [39]. To study
excitation energies, we need a more general object than the ground state density n(r). That
object is the single-particle many-body Green’s function (abbreviated here as just the Green’s
function [40–42]). Below, we define this object and give its microscopic interpretation and
connection to excitation energies.

In many-body theory, the Green’s function is defined as

G(rt; r′t′) = −i ⟨ΨN
0 |Tψ(rt)ψ†(r′t′)|ΨN

0 ⟩ , (2.32)

where ψ†(rt) and ψ(r′t′) are Fermoinic creation and annihilation operators, respectively,
T is the time-ordering operator, and ΨN

0 denotes the N -particle ground state. Physically,
G(rt; r′t) encodes the probability for a particle (or hole) injected into an N -particle system at
position r′ and time t′, to be found at position r at time t. Microscopically we can interpret
this as a propagator.

For systems in equilibrium, G(rt; r′t′) can be expressed as a function of the time difference
t− t′ and it will often be useful to work in the Fourier representation, defined as

G(r, r′, ω) =

∫
dteiω(t−t′)G(r, r′, t− t′). (2.33)

Working in the frequency domain and inserting a resolution of the identity, we arrive at the
Lehman representation [40, 41]

G(r, r′, ω) =
∑
s

⟨ΨN
0 |ψ(r)|ΨN+1

s ⟩ ⟨ΨN+1
s |ψ†(r)|Ψ0

N⟩
ω − (EN+1

s − EN
0 ) + iη

(2.34)
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where ΨN±1
s and EN±1

s denote the sth excited state Dyson-orbital and energy, respectively, of
N±1 many-body system. In this form, we see that poles of the Green’s function give electron
addition, (EN+1

s −EN
0 ), and removal, (EN

0 −EN−1
s ), excitation energies. The imaginary part

of G gives the spectral function, A(ω).

2.9 The Hedin Equations

To this point we have discussed the Kohn-Sham formalism for constructing an auxiliary
system whose solution, in principle, gives the exact ground state density, n(r). We would
like find a similar set of equations whose solution gives the single particle many-body Green’s
function. In condensed matter communities, these equations are referred to as the Hedin
equations [22, 43], we state them below

G(12) = G0(12) +

∫
d(34)G0(13)Σ(34)G(42) (2.35)

Σ(12) =

∫
d(34)G(13)Γ(324)W el(41+) (2.36)

W el(1, 2) = vc(1, 2) +

∫
d(34)vc(13)P

el(34)W el(42) (2.37)

P el(1, 2) =

∫
d(34)G(12)G(41+)Γ(342) (2.38)

Γ(123) = δ(12)δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(673), (2.39)

where Σ(12), W el(12), P el(12), Γ(123) are the electron self-energy, screened Coulomb inter-
action, electronic polarizability, and vertex correction, respectively. While vc and G0 are
the bare Coulomb and non-interacting Green’s function, respectively. In writing down Eqs.
2.35- 2.39 we have adopted the notation that numbers label space-time points so 1 = (r1, t1)
and Σ(12) = Σ(r1t1, r2t2). Finally the + symbol denotes that the time variable for that in-
dex should be taken infinitesimally later than the time index which proceeds it, for example
G(14+) should be read as G(rt, r′t+ η) where η is an infinitesimally positive quantity.

As presently written the equations may seem unfamiliar and unmotivated. The form
of these equations appears much more natural when viewed as deriving from the QED
Lagrangian instead of the non-relativistic many-body Hamiltonian [44, 45]. In this context,
G and W are interpreted as dressed propagators for the electron and photon respectively
while G0 and vc are their bare counterparts and Σ and P el are the electron and photon
self-energies. Finally Γ(123) is the dressed electron-photon vertex while δ(12)δ(13) the bare
counterpart. That the vertex is a 3-point interaction is not surprising given the electron-
photon interaction in the QED Lagrangian is also 3-point. Starting from the non-relativistic
Hamiltonian, it is possible to restore this 3-point coupling at the cost of introducing an
auxiliary Bosonic field by making a Hubbard-Stravonovich transformation on the 4-point
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Coulomb interaction [46]. The auxiliary field introduced in the process is precisely the
photon field. Finally we remark that the infinitesimal time orderings which appear in 2.36
and 2.38 are a consequence of integrating out the photon field and taking the non-relativistic
limit. When the full photon propagator is retained, this time ordering issue does not appear.

2.10 The GW Approximation

A direct solution of Eq. 2.35- 2.39 is generally not computationally feasible and as a result
a number of approximations are typically made [11, 47–49]. First, vertex corrections are
ignored so that Γ(123) = δ(12)δ(13). With this approximations the Hedin equations collapse
to

ΣGW(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω + ω′)W el(r, r′, ω′)eiηω

′
(2.40)

W el(r, r′, ω) =

∫
d3r′′ε−1(r, r′′, ω)vc(r

′′ − r′) (2.41)

ε(r, r′, ω) = δ(r, r′)−
∫
d3r′′P el(r, r′′, ω)vc(r

′′ − r′) (2.42)

P el(r, r′, ω) = i

∫
dω′G(r, r′, ω + ω′)G(r′, r, ω′), (2.43)

where we have expressed all quantities in the frequency domain. Next the full interacting
Green’s function is replaced with the non-interacting Green’s function, i.e. G(12) = G0(12).
Then, ΨN

0 takes the form of a single Slater determinant and G0 can be expressed as [40, 41]

G0(r, r
′, ω) =

∑
j

ψj(r)ψ
⋆
j (r

′)

ω − εj ± iη
, (2.44)

where ψj(r) and εj are single-particle orbitals and energies associated with state j while η is
an infinitesimal positive or negative quantity depending on whether εj lies above or below the
Fermi energy. With this approximation, the integral in Eq. 2.43 can be performed exactly
and polarizability is given by,

P el(r, r′, ω) =
∑
ij

(fi − fj)
ψ⋆
i (r)ψj(r)ψ

⋆
j (r

′)ψi(r
′)

εi − εj + ω + iη
(2.45)

where fi denotes the Fermi-Dirac occupation factor for state i [50, 51].
In general the frequency integral for the self-energy, appearing in Eq. 2.40, cannot be

evaluated analytically as we did for the polarizability. Short of computing the integral ex-
plicitly it is still possible to build some insight by noting that the integral can be analytically
continued in the complex plane so that it decouples to two terms, namely

ΣGW(r, r′, ω) ≡ ΣSX(r, r′, ω) + ΣCH(r, r′, ω), (2.46)
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where

ΣSX(r, r′, ω) =
i

2π

∫
C

dω′G(r, r′, ω + ω′)P [W el(r, r′, ω′)]eiηω
′

= −
occ∑
j

ψj(r)ψ
⋆
j (r

′)W el(r, r′, ω − εj),
(2.47)

where the P in the first line is the Cauchy principal value. We are able to perform this part of
the integral because the poles of G are explicitly known. Additional details on the evaluation
including the contour, C, used can be found in Ref. [52]. We label this contribution SX,
because it has the form of a dynamically screened exchange interaction. The second term
takes the form

ΣCH(r, r′, ω) =
i

2π

∫
C

dω′P [G(r, r′, ω + ω′)]W el(r, r′, ω′)eiηω
′
. (2.48)

Here we cannot proceed further without additional approximation because unlike G0, P
el,

and ε, the poles of ε−1 and in turn W are unknown. Short of performing the numerical
integration, one way to proceed is to fit ε−1 to a plasmon-pole model, e.g. the Hybertsen-
Louie [11] or Godby-Needs [52] plasmon-pole model. Then the pole structure would be
known and the integral could be performed. Here, because we are just interested in the
physical content of ΣCH we make an even more drastic approximation and take the static
limit. It can be shown that

ΣCH(r, r′, ω = 0) =
1

2
δ(r− r′)[W el(r, r′, ω)− vc(r− r′)]. (2.49)

This term can be interpreted as the electrostatic energy associated with the quasiparticle
and charge it displaces when it is created. It is know as the Coulomb hole term [43].

Having interpreted ΣGW, we now discuss how to use it. With the explicit form of G0

given in Eq. 2.44. Dyson’s equation, Eq. 2.35, can be cast as an eigenvalue equation with
the form[

− ∇2

2
+ Vion(r) + VH[n](r)

]
ψi(r) +

∫
d3r′ΣGW(r, r′, Ei)ψi(r

′) = Eiψi(r). (2.50)

Equation 2.50 has the same form as the Kohn-Sham equation but the with exchange cor-
relation potential replaced by the GW self-energy. In this light, we can view ΣGW(r, r′, ω)
as an effective, non-local, frequency-dependent potential which the electrons of the many-
body system move in. In theory Eq. 2.50 could be solved self-consistently for both the GW
eigenvalues, Ei, and wavefunctions, in practice, from many systems, the KS and GW wave-
functions are very nearly the same so that ΣGW(r, r′, ω) can be treated pertubatively. The
the equation we must solve is

Ei = εi + ⟨i|Σ(r, r′, Ei)|i⟩ , (2.51)
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where the distinction between the Kohn-Sham, εi, and GW , Ei, eigenvalues should be kept in
mind. Eq. 2.51, can be solved graphically but often it is sufficient to expand ⟨i|Σ(r, r′, Ei)|i⟩
to linear order and solve the resulting linear equation [11].

Finally, we note that up to this point we have given all expressions in real space but
for periodic systems calculations are typically performed in reciprocal space. We define the
two-point Fourier transform using the following convention

f(r, r′) =
1

Vxtal

∑
qGG′

ei(q+G)·rfGG′(q)e−i(q+G)·r′ , (2.52)

with this convention in reciprocal space, the polarizability reported in Eq. 2.43 reads [53]

P el
GG′(q, ω) =

1

Vxtal

∑
nn′k

⟨nk|e−i(q+G)·r|mk+ q⟩ ⟨mk+ q|ei(q+G)·r|nk⟩
εnk − εmk+q + ω + iη

. (2.53)

While the convolutions over response functions in real-space take the form of products in
reciprocal space. For instance Eq. 2.41 becomes

WGG′(q, ω) = ε−1
GG′(q, ω)vc(q+G′). (2.54)

2.11 The Hedin-Baym Equations

As presently written, the Hedin equations of the previous section assume ions are clamped
at their equilibrium locations. It is possible to extend these equations to include harmonic
fluctuations of ions about their equilibrium position. These auxiliary equations involve the
displacement-displacement correlation function defined as

Dkαp,k′α′p′(t− t′) = −i ⟨Tukαp(t)uk′α′p′(t
′)⟩ , (2.55)

which encodes how ionic motion is coupled in space and time. An extension of the Hedin
equations to include the motion of Dkαp,k′α′p′(t− t′) and its influence on the electronic struc-
ture is summarized in Ref. [38]. Here we state a subset of these additional equations relevant
to this thesis.

The motion of the Dkαp,k′α′p′(ω) is governed by the following Dyson-like equation∑
k′′α′′p′′

[Mkω
2δkαp,k′′α′′p′′ − Πkαp,k′′α′′p′′(ω)]Dk′′α′′p′′,k′α′p′(ω) = δkαp,k′α′p′ , (2.56)

where Mk is the mass of the kth ion and the phonon self-energy can be expressed as

Πkαp,k′α′p′(ω) =
∑
k′′p′′

ZkZk′
∂2

∂rα∂r′α′
[δk′p′,k′′p′′W

el(r, r′, ω)− δkp,k′p′W
el(r, r′, 0)]r=τ0

kp.r
′=τ0

k′p′
,

(2.57)
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with Zk denoting the charge on the kth ion. For a fixed We(r, r
′, ω), Eq. 2.56 and 2.57

are sufficient to determine the phonon frequencies and eigenmodes. We observe that the
influence of the electrons on ionic motion is entirely contained in W el(r, r′, ω).

There is some back action on the electrons due to the phonons. In much the same way
that the effect of electrons on the ionic motion can be packaged into W el, much, though not
all [38], of the effect of ionic motion on the electronic structure can be packaged into W ph,
defined through the following equations

W ph(r, r′;ω) =
1

Nq

∑
kα,k′α′q

g⋆kα,q(r, ω)Dkα,k′α′,q(ω)gkα,q(r
′, ω)e−iq·(r−r′), (2.58)

where

gkα,q(r, ω) =

∫
dr′ε−1(r, r′, ω)∂kα,qVion(r

′). (2.59)

Physically, we recognize gkα,q(r, ω) as the electron-ion coupling matrix element which, when
inverse Fourier transformed to t − t′ encodes how the displacement of ions along pattern
ukα(q) at time t′ couples to an electron at r at time t. With this in mind, we interpret
W ph(r, r′;ω) as a dynamically screened electron-electron interaction mediated by a lattice
distortion.

The phonon contribution to the screened interaction, W ph, contributes to the electron
self-energy in a manner exactly analogous to W el, namely [22],

Σph(12) =

∫
d(34)G(13)Γ(324)W ph(41+). (2.60)

We note that this is just part of the influence harmonic ionic fluctuations have on the
electronic structure. For this thesis, this amount of theory is sufficient. In the next section
we will see how the many-body formalism of Hedin and Baym reduce to quantities computed
from DFPT under the adiabatic approximation.

2.12 Connecting the Many-Body Formalism with

DFPT

The purpose of this section is two fold: (i) to summarize the applicability and limitation of
DFPT and (ii) to expand on the definitions introduced in the previous section, particularly
W ph which will play a central role in Chap. 5.

The connection between the many-body formalism and the expressions previously derived
in the context of DFPT lie in the adiabatic (Born-Oppenheimer) approximation. In the
many-body formalism this approximation reduce to taking the static limit (ω = 0) of the
phonon self-energy. To see this explicitly, we note the static limit of the phonon self-energy
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can be expressed as

Πkαp,k′α′p′(ω = 0) =

∫ (
∂n(r)

∂ukαp

)⋆
∂Vion(r)

∂uk′α′p′
d3r+

∫
n(r)

∂2Vion(r)

∂u⋆kαp∂uk′α′p′
d3r

+
∂2Eion-ion

∂ukαp∂uk′α′p′
,

(2.61)

which is entirely equivalent in form to the DFPT inter-atomic force constants (the inverse
Fourier transform of Eq. 2.24). Details on the derivation can be found in [38]. In a similar
manner, taking the static limit of gqν(r, ω = 0) gives a from for the electron-phonon vertex
analogous to the DFPT vertex. We expect both approximations to be legitimate in the limit
where ε−1(ω = 0) ∼ ε−1(ω = ωph) with ωph denoting a typical phonon frequency. Based
on Eq. 2.43, we expect this semi-equality to hold in the limit where electronic excitation
energies are much great than the ionic ones, i.e. Eg ≫ ωph. For all semiconductors studied
in this thesis, we expect this equality to hold.

Before closing this section we return to the electron-phonon self-energy Σph, defined in
Eq. 2.60. When the static electron-phonon vertex is used, this correction is equivalent to the
Fan-Migdal self-energy correction [38]. Explicitly

Σph
nn′(k, ω) =

i

2π

∫
G(r, r′;ω + ω′)W ph(r, r′;ω′)eiηω

′
dω

=
1

Nq

∑
mqν

⟨nk|g⋆νq(r)|mk+ q⟩ ⟨mk+ q|gνq(r′)|n′k⟩

×
[

fmk+q

ω − Emk+q + ωνq − iη
+

1− fmk+q

ω − Emk+q − ωνq + iη

]
,

(2.62)

where the off-diagonal electron-phonon self-energy is given by Σph
nn′;k(ω) = ⟨nk|Σph(r, r′;ω)|n′k⟩.

A similar expression can be derived from Rayleigh-Schrödinger perturbation theory [40].

2.13 Excitons and the Bethe-Salpeter Equation

Approach

Up to this point, we have concerned ourselves primarily with electrons, phonons and their
coupling. However the majority of the work in this thesis centers on excitons [2], correlated
electron-hole pairs, and their interaction with phonons. In this section, we introduce the
computational framework used to compute exciton eigenenergies and eigenstates. In the
next section we discuss the exciton-phonon matrix element.

In much the same way that we defined a Dyson equation for the single-particle Green’s
function, we can construct a Dyson-Like equation for the two-particle correlation function,
L(1, 2; 1′2′) [41, 54], explicitly

L(12; 1′2′) = L0(12; 1
′2′) +

∫
d(3456)L0(14; 1

′3)K(35; 46)L(62; 52′), (2.63)
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where L0(12; 1
′2′) = G(12′)G(21′) and K(35; 46) is the electron-hole kernel related to the

underlying electronic self-energy, Σ, through the following functional derivative

K(35; 46) = −iδ(3, 4)δ(5, 6)vc(3, 6) +
δΣ(3, 4)

δG(6, 5)

≡ KX(35; 46) +KD(35; 46).

(2.64)

The first term in Eq. 2.64, which we label KX(35; 46), has the form of a two particle exchange
interaction. Specializing to the case of Σ = ΣGW, the functional derivative appearing in
Eq. 2.64 takes the form

KD(35; 46) =
δΣGW(34)

δG(56)
= iδ(3, 6)δ(4, 5)W (3+, 4), (2.65)

the so-called screened direct interaction. It is possible to cast Eq. 2.64 as a eigenvalue equa-
tion in a basis of free electron-hole product states [10, 12], ⟨rerh|cvkQ⟩ = ψck+Q(re)ψ

⋆
vk(rh),

where ψnk(r) are defined in Eq. 2.11. Here c and v label conduction and valence bands,
respectively, while re and rh denote the electron and hole position, respectively. In this basis
the BSE takes the from

(Eck+Q − Evk)A
SQ
cvk +

∑
c′v′k

⟨cvk|Keh|c′v′k′Q⟩AS
c′v′k′Q = ΩS(Q)ASQ

cvk, (2.66)

where S and Q label the principle quantum number and center-of-mass momentum of the
exciton, respectively. The eigenenergy associated with state (SQ) is ΩS(Q) while the exciton
state projected onto the electron-hole basis is given by ⟨cvkQ|SQ⟩ = ASQ

cvk. Finally, Eck+Q

and Evk are the GW eigenenergies for states ψck+Q(re) and ψvk(rh), respectively. In writing
down 2.66, we have made the Tamm-Dancoff approximation which amounts only retaining
electron-hole coupling terms in expanding Keh.

A further approximation, which we will often make, is to replace the dynamically screened
Coulomb interaction, W el(ω), with its static counterpart. This approximation is justified in
the limit where the plasmon energy is much larger than the exciton binding energy [12].
With these approximations, the exchange and direct kernel can be written as

⟨cvkQ|KX|c′v′k′Q⟩ =
∑
G

Mcv(k,Q,G)vc(Q+G)M⋆
c′v′(k,Q,G) (2.67)

⟨cvkQ|KD|c′v′k′Q⟩ = −
∑
GG′

M⋆
cc′(k+Q,q,G)WGG′(q)Mvv′(k,q,G), (2.68)

where q = k− k′ and Mnn′(k,Q,G) = ⟨nk+Q|ei(Q+G)·r|n′k⟩ [55].
Finally, with the exciton expansion coefficients, ASQ

cvk, in hand, we can write a real-space
representation of the exciton state as

ΨSQ(re, rh) =
∑
cvk

ASQ
cvkψck+Q(re)ψ

⋆
vk(rh). (2.69)
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2.14 The Exciton-Phonon Matrix Element

We define the exciton-phonon matrix element as

GS′Sν(Q,q) =
1√
2ωqν

∑
kα

ξνkα(q)√
2Mk

⟨SQ+ q|eiq·(re+rh)∂kα,qH
BSE|SQ⟩ . (2.70)

The definition is analogous to Eq. 2.31, except here, the sandwiching states are excitonic
wavefunctions instead of single-particle Bloch eigenstates and the derivative is with respect to
the BSE Hamilton instead of the KS potential. Physically GS′Sν(Q,q) encodes the probability
amplitude for an exciton in state (SQ) to scatter off a phonon with crystal momentum q
and branch index ν and into state (SQ+ q). Eq. 2.70 can be rewritten in the quasiparticle
basis as

GS′Sν(Q,q) =
∑
c′cvk

AS′Q+q⋆
c′vk gc′cν(k+Q,q)ASQ

cvk −
∑
cvv′k

AS′Q+q⋆
cv′k gvv′ν(k,q)A

SQ
cvk+q. (2.71)

To build intuition for this matrix element and how it differs from the usual electron-phonon
matrix element, we specialize to the single-band limit with electron-phonon matrix element
given by a simple Fröhlich model, g

e/h
q = C

e/h
F /q, and take the exciton expansion coefficients

to be of the 1s hydrogen orbital form appropriate in the Mott-Wannier model of an exciton.
With these simplifications, we arrive at a form first introduced by Toyozawa [24]

G =
CF

e

q
· 1

[1 + (peaBq/2)2]
− CF

h

q
· 1

[1 + (phaBq/2)2]
, (2.72)

where pe/h = me/h/(me + mh) and aB denotes the exciton radius. From Eq. 2.72 we see
that the exciton-phonon vertex has an electron and hole channel, each screened by a form
factor 1/[1 + (pe/haBq/2)

2]. As a result of this form factor, the exciton-phonon vertex falls
off rapidly for aBq ≫ 1 or equivalently aB ≫ λ. Physically phonons with wavelengths much
shorter than the exciton radius, cannot efficiently couple to the exciton. In this way Eq. 2.72
highlights the close connection between the exciton radius and exciton-phonon coupling
strength. From this simple analysis, it might seem that the exction phonon vertex should
always couple less strongly than the underlying electron- or hole-phonon vertex. This is
in fact an artifact of only considering intraband transitions. In Chap. 4, we will see that
the exciton-phonon coupling can be quite large when interband transitions constructively
interfere. Finally we note that when the the coupling and effective masses for the electron
and hole channel are the same, i.e. pe = ph and CF

e = CF
h , G vanishes. This dramatic

example of polaron interference will be discussed in Chap. 5.
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Chapter 3

Maximally-Localized Wannier
Functions for
Excitons

3.1 Introduction

Since their introduction 25 years ago [56], maximally-localized Wannier functions (MLWFs)
have had a transformative impact on our ability to compute and understand one-electron
observables using density functional theory (DFT). Today MLWFs, serve as a compact basis
for linear scaling algorithms [57], allow for the computation of Berry phase (geometric)
quantities [58–60] (e.g. polarization in electronic structure theory [61]), and find application
in efficient and accurate interpolation of linear response quantities (e.g. electron-phonon
matrix element) [16, 62, 63], and more [20]

In the MLWF scheme, one-electron cell-periodic Bloch states are related to localized Wan-
nier functions through a unitary transformation which simultaneously preserves the canonical
commutation relations while also localizing the sum of the spreads of the electronic states
to the greatest extent possible [20, 56, 64]. Up to this point, the MLWF procedure has
exclusively been applied in the context of single-particle electronic excitations and their per-
turbations [65]. Yet, the framework is of quite general nature and in principle can be applied
to any lattice periodic function. One such excitation of broad theoretical and technological
interest is the exciton, a two particle bound electron-hole state, and the extension of the
MLWF scheme to excitons is the focus of this work.

Excitons are bound electron-hole pairs which often dominate the low-energy optical re-
sponse of semiconducting and insulating materials. Understanding these composite particles
plays an increasingly important role in the design and development of next-generation of
optoelectronic devices, especially those based on complex materials with strong light-matter
interactions (e.g. low-dimensional-, organic-, and perovskite- based materials). Over the
past two decades, ab initio many-body perturbation theory within the GW approximation
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and Bethe-Salpeter equation (BSE) approach [11, 12, 22, 43, 54], where G is the one-electron
Green’s Function andW the screened Coulomb interaction, has rapidly emerged as a powerful
and robust method for computing excitonic properties over a wide range of increasingly com-
plex materials including low-dimensional transition metal dichalcogenides [66], lead-halide
perovskites [67–69], and organic crystals [70–73], in all cases yielding results in excellent
agreement with experiment. Given the technological relevance and increasing maturity of
computational capabilities [13], revisiting the MLWF scheme in the context of excitons is
quite timely.

In solid-state systems with translational symmetry, the exciton wavefunction can be
written in Bloch periodic form with respect to the average electron-hole coordinate. A
canonical example is the phenomenological Mott-Wannier model [4, 5] of a weakly bound
exciton, described by a hydrogen-like wavefunction with the form

Ψnℓm,Q(R, r) = eiQ·RFnℓm(r), (3.1)

where R and r denote the average and relative coordinate of the electron-hole pair, respec-
tively, while Fnℓm(r) is a hydrogenic-like eigenfunction with quantum numbers nℓm. Notably,
while the wavefunction is localized in the relative coordinate, it is periodic in the average
coordinate R, a general feature true of all descriptions of an exciton in a perfect lattice, i.e.
the Frenkel [6] and charge-transfer excitons are also cell periodic in R.

In this work, we show how the MLWF scheme can be leveraged to construct a repre-
sentation of exciton states which is maximally localized in the average electron-hole coordi-
nate. These maximally-localized exciton Wannier functions (MLXWFs) will allow for post-
processing of exciton related properties in analogy to the electronic case, for instance, the
ab initio construction of exciton tight-binding models, the efficient interpolation of eigenen-
ergies [55, 74] and exciton-phonon matrix elements [19, 24, 75] throughout the Brillouin
zone, the computation of Berry-curvature related properties at the excitonic level [76–79],
and more. Our framework also helps to unify the phenomenological Mott-Wannier [4, 5] and
Frenkel [6] pictures of an exciton and expresses the splitting of the transverse and longitudinal
exciton branches of the exciton band structure [80, 81] in terms of long-range dipole-dipole
interactions between localized exciton Wannier orbitals.

The reminder of this chapter is organized as follows. In Sec. 3.2 we introduce exciton
Wannier functions. In Sec. 3.3 we review the MLWF framework and adapt this formalism
for handling the excitonic case. In Sec. 3.4, we summarize our GW -BSE approach and the
computational details of our calculation. In Sec. 3.5 we apply our framework to LiF, visual-
izing the exciton Wannier functions in real-space and detailing convergence of the Wannier
spreads. In Sec. 3.6, we discuss analytical properties of the exciton Wannier functions and
their matrix elements. In this section we also discuss the connection between long-range
dipole-dipole interactions in the Wannier basis and non-analyticity of the exciton eigenval-
ues near Q = 0. In Sec. 3.7 demonstrate how the Wannier-Fourier interpolation can be used
to interpolate exciton eigenvalues through the Brillouin zone. In Sec. 3.8, we discuss the
similarities between the exciton Wannier functions and Frenkel’s description of an exciton.
We close, in Sec. 3.9, with a summary of our work and potential future directions.
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3.2 Exciton Wannier Function

An exciton is a composite particle consisting of a bound electron-hole pair. The position
of the electron, re, and hole, rh, are correlated and encoded in the exciton wavefunction,
ΨSQ(re, rh), where S and Q denote the exciton’s principle quantum number and crystal mo-
mentum respectively. Physically, ΨSQ(re, rh) is the probability amplitude to simultaneously
find an electron and hole at re and rh, respectively.

An increasingly standard approach for computing exciton states and properties in solids
is the GW -BSE method. In this approach, ΨSQ(re, rh) is expressed as a coherent sum over
non-interacting electron-hole product states, namely,

ΨSQ(re, rh) =
∑
cvk

ASQ
cvkψck+Q/2(re)ψ

⋆
vk−Q/2(rh), (3.2)

where ψnk(r) = eik·reunk(re) denotes a single-particle Bloch state with band index n and
crystal momentum k (e.g. computed from Kohn-Sham DFT or another cell-periodic formal-
ism, like Hartree Fock or equation of motion coupled cluster [82]), while ASQ

cvk is the exciton
expansion coefficient with indices c (v) denoting conduction (valence) states, respectively.
The same exciton wavefunction can be written in Bloch periodic form when reexpressed in
the average R = (re + rh)/2, and relative, r = re − rh, coordinates

ΨSQ(R, r) = eiQ·RFSQ(R, r), (3.3)

where FSQ(R, r) is cell periodic in R but not in r (note Eq. 3.1 is a specialized case of this
general form). Importantly, the exciton is localized in the relative coordinate r but periodic
in the average coordinate R. An explicit expression for FSQ is given in Appendix A.1.

We can define the exciton Wannier function as

WSR̄(R, r) =
∑
Q

e−iQ·R̄ΨSQ(R, r), (3.4)

where R̄ is a lattice vector. As defined above, the exciton Wannier functions span the same
functional space as the original excitonic states and are orthonormal in indices (S, R̄) so that
⟨WSR̄|WS′R̄′⟩ = δSS′δR̄,R̄′ . Further, the exciton Wannier functions are localized in R about
R̄. This is readily seen in the limit where the cell periodic function is only weakly dependent
on Q so that FSQ(R, r) ≈ FS(R, r). Then, WSR̄(R, r) ≈ FS(R, r)

∑
Q e

iQ·(R−R̄). Since the
only length scales appearing in the sum are the lattice parameters, WR̄(R, r) should decay
rapidly in R− R̄ beyond a few unit cells. By contrast, the spread in the relative coordinate,
r, is related to the exciton radius, which, for weakly bound excitons, can be on the order
of many unit cells. Thus the spread in the average coordinate should be smaller than the
spread in the relative coordinate in many cases.
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3.3 Maximally Localized Wannier Functions

In the MLWF scheme, extended one-electron Bloch states, ψnk(re) = ⟨re|nk⟩, are related
to localized Wannier functions, with principle quantum number m, wmR̄(re) = ⟨re|mR̄⟩,
through a unitary transformation

wmR̄(re) =
J∑
nk

e−ik·R̄Unm(k)ψnk(re), (3.5)

where Unm(k) is a unitary matrix which mixes some subset of states, J , at a given k point.
The key idea of Marzari and Vanderbilt [56] is to take advantage of this extra gauge freedom
and choose Unm(k) to localize the sum of the spread of the Wannier functions to the greatest
possible extent. Here the sum of the spreads, labeled Ω, is defined as

Ω[U ] =
J∑
m

[⟨m0|r2e |m0⟩ − ⟨m0|re|m0⟩2], (3.6)

where re is understood as the position operator and the notation, Ω[U ], indicates that the
spread is a functional of the gauge, U .

Nowadays the minimization procedure is often performed using Wannier90, an open
source, post-processing software for constructing MLWFs, compatible with many DFT codes [83,
84]. Eq. 3.6 is minimized in reciprocal space and Wannier90 requires two key inputs – the
overlaps of Bloch periodic states at neighboring k-points, Mnm(k,b) = ⟨unk|umk+b⟩, and
a set of initial guesses for the localized Wannier orbitals, hj(re), projected onto the unper-
turbed Bloch states, Anj(k) = ⟨ψnk|hj⟩. As emphasized by the developers of Wannier90,
these inputs are entirely agnostic to the underlying electronic structure theory calculation [83,
84].

A more subtle point is that MLWF procedure itself is agnostic to the type of quasiparticle
excitation which one wishes to localize so long as the excitation can be written in Bloch
form. Said another way, the procedure can be used to find localized representations of any
lattice periodic excitation. Accordingly, in analogy with Eq. 3.4, exciton states ΨSQ(R, r) =
⟨Rr|SQ⟩ are also related to localized exciton Wannier functions, WMR̄(R, r) = ⟨Rr|MR̄⟩,
through a unitary transformation, namely

WMR̄(R, r) =
∑
SQ

e−iQ·R̄USM(Q)ΨSQ(R, r), (3.7)

whereM denotes the principle quantum number of the exciton Wannier function. In further
analogy with the one-electron case, we can leverage the gauge freedom to choose UMS(Q) to
minimize the sum of spread of the exciton Wannier functions defined as

Ω[U ] =
J∑
M

[⟨M0|R2|M0⟩ − ⟨M0|R|M0⟩2], (3.8)
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where

⟨M0|R2|M0⟩ =
∫
xtal

|WM0(R, r)|2R2d3rd3R, (3.9)

where the subscript “xtal” denotes that the integral is to be performed over all space. As
emphasized previously, the spread here is with respect to the average, not the relative coor-
dinate.

We use the Wannier90 package to minimize Eq. 3.8. In practice this is done by passing
overlap matrices, MSS′(Q,B) = ⟨FSQ|FS′Q+B⟩, and initial projection matrices, ASJ(Q) =
⟨ΨSQ|HJ⟩, to Wannier90. Explicit expressions for these overlaps are given in Appendix A.1.
In Tab. 3.1, we distinguish the notation used for, and draw an analogy between, electron
and exciton Wannier functions.

electron exciton
Bloch orbital ψnk(re) ΨSQ(R, r)

Wannier coordinate re R
Conjugate momentum k Q
Conjugate position R̄ R̄
Wannier orbital wmR̄(re) WMR̄(R, r)
Rotation matrix Unm(k) USM(Q)

Table 3.1: Notation for and analogy between electron and exciton Wannier functions and
related parameters.

3.4 Methods and Computational Details

As previously emphasized the Wannierization procedure is independent of computational
method used to compute excitonic properties. Popular methods include time-dependent
density functional theory [10], equation of motion coupled cluster [82], and the GW plus
Bethe-Salpeter equation (BSE) approach [12] to name a few. Here we adopt the latter
method and summarize the approach below.

The BSE is a Dyson-like equation for the two-particle electron-hole propagator [12, 54,
55]. For computational tractability, the BSE is cast as an eigenvalue equation in a basis of
electron-hole product states ⟨rerh|cvkQ⟩ ≡ ψck+Q/2(re)ψ

⋆
vk−Q/2(rh) and reads

(Eck+Q/2 − Evk−Q/2)A
SQ
cvk +

∑
c′v′k′

⟨cvkQ|K eh|c′v′k′Q⟩ASQ
c′v′k′ = ΩSQA

SQ
cvk, (3.10)

where Enk are GW quasiparticle energies and Keh is the electron-hole interaction kernel.
Upon solving the BSE, one obtains exciton eigenenergies, ΩSQ, and exciton wavefunctions

in terms of the expansion coefficients, ASQ
cvk, see Sec. 3.2.
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When built atop GW , the electron-hole kernel appearing in Eq. 3.10 is expressed as the
sum of two terms, Keh = KD + 2δSK

X, where KD and KX denote an attractive screened
direct term and a repulsive bare exchange term, respectively, and δS is 1 for spin-singlet and
0 for spin-triplet excitons. Explicit expressions for KD and KX in the electron-hole product
states basis are given in Ref. [55].

As a first application, we apply the above formalism to Wannierize the low-lying excitons
in LiF, a prototypical wide band-gap insulator with weak dielectric screening and corre-
spondingly strong electron-hole interactions. The lowest singlet exciton is strongly bound
with binding energies on the order of 1.5 eV and a Bohr radius on the order of ∼ 3.8 Å,
about twice the size of the nearest neighbor separation 2.01 Å [85]. We note that LiF was
one of the first systems studied within the ab initio GW plus BSE approach [12] while the
closely related compound, LiCl, appeared in the original work on MLWFs [56].

The starting point for all calculations is a ground state density functional theory (DFT)
calculation to obtain Kohn-Sham energies and eigenstates [26, 29]. In this work, we use
Quantum Espresso [86]. We use a planewave basis set, the generalized gradient approxi-
mation of Perdew, Becke, and Ernzerhof (PBE) [87], and norm-conserving pseudopotentials
taken from pseudo-dojo [88, 89]. To converge the ground state density we use an 80 Ry
planewave cutoff and 8×8×8 k-grid. We then use BerkeleyGW [13] to perform a single-shot
G0W0 calculation, computing the static dielectric function within the random phase approx-
imation using a sum-over-bands approach [50, 51] in conjunction with a Hybertsen-Louie
generalized plasmon-pole model to capture the frequency dependence [11]. In computing
the susceptibility, χ0, we include 90 unoccupied bands and use 10 Ry planewave cutoff. The
same number of unoccupied bands is used to converge the Coulomb-hole contribution to the
self-energy. The k-grid used for our GW -BSE calculation is inherently linked to the Q-grid
used for Wannierization as explained in the following paragraph and generally differs from
the 8× 8× 8 grid used at DFT level.

In our BSE calculations of LiF, the electron-hole kernel, Keh, is expanded in 1 conduction
band and 3 valence bands. Our workflow requires exciton eigenenergies, ΩSQ, and eigen-
states, ΨSQ, on a regular Q-grid. As presently implemented, our formalism requires that
the underlying k-grid on which the BSE is solved be commensurate and twice as dense as
the Q-grid, a point further explained in Appendix A.1. To give an explicit example Wan-
nierizing the exciton on a 5× 5× 5 Q-grid requires solving the BSE at 125 Q-pts with the
electron-hole kernel constructed on a 10 × 10 × 10 k-grid. In this work, no symmetry or
interpolation scheme is used when building the electron-hole kernel.

In Fig. 3.3, we show the BSE-computed exciton dispersion for the eight lowest energy
spin singlet (left panel) and triplet (right panel) bands. In the triplet case, we find that
the excitons at Q = 0 are three-fold degenerate. These three lowest exciton bands remain
entangled throughout the Brillouin zone and are well separated from higher lying bands.
By contrast, for spin-singlet excitons, the three-fold degeneracy at Q = 0 is lifted by the
exchange interaction, with the longitudinal branch higher in energy than the corresponding
transverse branches [90]. The three lowest singlet bands are not entirely isolated from higher
lying singlet states, however the disentanglement is fairly minimal occurring only near the
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L points at the BZ edge.
Based on the exciton dispersion, we restrict our analysis to the subspace which contains

the lowest three exciton bands. To initialize the Wannierization procedure, we use a product
of hydrogen, 1s-like orbitals – explicitly HJ(R, r) = ψ1s(R; a)ψ1s(r; 2a), where a denotes the
lattice constant and ψ1s(r; a) = e−r/a/

√
πa3. These trial orbitals are centered at the position

of the fluoride atom. In this separable form, the projection matrix, AQ
SJ = ⟨ΨSQ|HJ⟩, is

more easily computed. We provide a detailed expression for this overlap in Appendix A.1.

3.5 Results

Q-grid Ω ΩI ΩOD ΩD WF spread
Singlets

3× 3× 3 4.755 4.718 0.037 0.0 1.594∗

4× 4× 4 5.716 5.673 0.042 0.0 1.905
5× 5× 5 6.258 6.218 0.040 0.0 2.086

Triplets
3× 3× 3 3.882 3.866 0.017 0.0 1.294
4× 4× 4 4.332 4.320 0.012 0.0 1.444
5× 5× 5 4.591 4.581 0.011 0.0 1.531

Table 3.2: Minimized spread Ω for the triplet excitons in LiF and its decomposition into
invariant, ΩI , diagonal, ΩD, and off-diagonal ΩOD parts. The spread of the individual
Wannier functions are reported in the final column. All values are reported in Å2.

In Tab. 3.2 we report on the convergence of the Wannierization procedure with increasing
Q-grid, decomposing the total spread, Ω, into its invariant, ΩI , off-diagonal, ΩOD, and
diagonal, ΩD, contributions. As discussed previously, the underlying k-grid is chosen twice
as dense as the Q-grid. Despite this additional variability, we still observe clear convergence
trends. The convergence of the total spread, Ω, is relatively slow, stemming primarily from
the gauge invariant part of the spread, ΩI , which is fixed after the disentanglement procedure
is complete. By contrast the gauge dependent part of the spread, ΩD + ΩOD, the part
which is actually minimized during the Wannierization procedure, converges rapidly with
increasing Q-grid, changing by less than 0.002 Å2 between the final two steps. This behavior
is analogous, and the level of convergence in Ω similar, to what was reported at one-electron
level by Marzari and Vanderbilt [56] in simple semiconducting systems.

In Fig. 3.1, we visualize the exciton Wannier orbitals, plotting WM0(R, r = 0) vs. R.
Here, WM0 is the probability amplitude for finding the average electron-hole position at R
given the relative electron-hole coordinate is 0, that is for re = rh. We observe that the
exciton Wannier function is well localized in R about the origin as expected. In analogy to
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Figure 3.1: Triplet exciton Wannier function for LiF, plotted as a function of the average
coordinate R with the relative coordinate r = 0 – i.e. W10(R,0) vs. R. Green and
grey spheres denote Li and F atoms respectively. The Wannier function is entirely real so
that yellow and blue lobes denote regions of positive and negative probability amplitude
respectively.

the one-electron case, our numerical results indicate that the Wannierized excitons can be
made entirely real through multiplication by a complex phase. Here we find ImW/ReW =
0.001. Further, we see the Wannier function transforms as an odd function under inversion
symmetry and has a non zero dipole moment. This dipole moment gives rise to long-range
dipole-dipole interactions between Wannier excitons (see Eq. 3.13 below) and drives the
splitting of the longitudinal and transverse exciton branches to be discussed in Sec. 3.6.3.

3.6 Analytic Properties of the Exciton Wannier

Functions and their Matrix Elements

3.6.1 Exponential localization of the exciton Wannier functions

An important analytic property of one-electron Wannier functions is their exponential lo-
calization in re. In this section, we speculate on the existence of exponentially localized
MLXWFs. We begin by reviewing the conditions for localization in the one-electron case
and then comment on the possible extension to MLXWFs.
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Early work on the subject, at the one-electron level, connected the exponential localiza-
tion of one-electron Wannier functions to the analyticity of the Bloch periodic state, unk(r),
in k-space, throughout the Brillouin zone [91, 92]. Generally, for a composite set of entan-
gled bands, unk(r) will not be analytic. However, in many cases, it is possible to rotate into
a basis of quasi-Bloch states, defined as vnk =

∑
m Umn(k)unk, such that vnk is analytic in

k. From simple Fourier analysis it is guaranteed that the Fourier transform of an analytic
set of functions, in this case vnk(r), will be exponential localized in r [92]. Recently, Panati
et al. [93] proved that for one-electron Hamiltonians, H(k) = e−ik·rHeik·r, which are both
analytic in k and time-reversal symmetric, an analytic set of quasi-Bloch functions exist in
2 and 3 dimensions if, and only if, all Chern numbers of the system are zero. With these
ingredients Brouder et al. [94] demonstrated that for real, square-integrable, one-electron
potential, V (r), it is possible to construct exponentially localized Wannier functions. They
further demonstrated that the MLWFs procedure represents a unique path to the construc-
tion of these Wannier functions and when constructed in this way, the Wannier functions
are real up to a global phase.

To adapt the above arguments to the exciton Wannier function case, we consider the BSE
Hamiltonian, HBSE(Q) = e−iQ·RHBSEeiQ·R. For spin triplet excitons, we expect HBSE(Q)
to be analytic in Q, so that arguments above can be directly adapted to prove the exponen-
tial localization of triplet exciton Wannier functions, provided the system is time-reversal
symmetric. By contrast, the spin-singlet Hamiltonian, has a well known non-analyticity
stemming from the Q → 0 limit of the exchange term (see Sec. 3.6.3). This intrinsic non-
analyticity violates one of the original assumptions of Prinati’s work and the relation between
the Chern numbers and analyticity of the quasi-Bloch states should be carefully revisited
in this context before definitive statements about the analyticity of the Bloch states can be
made.

A generalization of Panati’s [93] work for spin-singlet exciton Wannier functions is beyond
the scope of this work. However, even if this intrinsic non-analyticity turns out to prevent the
exponential localization of the singlet MLXWF, it will not be detrimental to the approach
here. For one, a term which contains the non-analytic contribution to the Hamiltonian can,
in principle, always be isolated and subtracted to arrive at a sufficiently smooth HBSE(Q)
allowing for the exponential localization of MLXWFs. The non-analytic contribution can
then be added back in post-processing. Finally, we note that in some systems, these questions
are largely bypassed. For instance, in Sec. 3.6.3 we show that there is no non-analyticity
associated high symmetry cubic systems including LiF studied here.

3.6.2 Decay of Matrix Elements in the Wannier Basis

Rapid decay of matrix elements of a general operator, O, in theWannier basis, | ⟨M0|O|NR̄⟩ |,
with increasing separation between Wannier orbitals, R̄ = |R̄|, hinges both on the exponen-
tial localization of the MLXWFs, discussed in Sec. 3.6.1., and the locality of the operator
O. In this section, we analyze the decay properties of the the screened direct, KD, and
bare exchange, KX, operators in the MLXWF basis. The decay properties of these matrix
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elements have immediate consequences for the Wannier-Fourier interpolation of spin- singlet
and triplet exciton dispersions as discussed in the subsequent section.

In the Wannier basis, the direct term takes the following form

⟨M0|KD|NR̄⟩ = 4πe2

Vxtal

∫
xtal

W ⋆
M0(R, r)ε

−1(R, r)
1

r
WNR̄(R, r)d

3Rd3r, (3.11)

where ε−1(R, r) is the static inverse dielectric function, expressed in the average, R, and
relative, r, coordinates. Assuming WM0(R, r) and WNR̄(R, r) are exponentially localized in
R, about 0 and R̄ respectively, it follows that | ⟨M0|KD|NR̄⟩ | also decays exponentially
with increasing R̄. This is especially obvious when local field effects are negligible and ε−1

depends only on r. Then the the decay of the matrix element is proportional to the overlap
of the two MLXWFs centered at 0 and R̄. However, even when local field effects are strong,
the functional dependence of the integrand on R still implies exponential decay in R̄.

By contrast the exchange term takes the following form

⟨M0|KX|NR̄⟩ = 4πe2

Vxtal

∫
xtal

W ⋆
M0(R,0)

1

|R−R′|
WNR̄(R

′,0)d3Rd3R′. (3.12)

In this case, the Coulomb interaction acts to couple exciton Wannier orbitals at differ-
ent sites and | ⟨M0|KX|NR̄⟩ | decays slowly. We can extract the analytic dependence of
| ⟨M0|KX|NR̄⟩ | on R̄ in the large R̄ limit via a multipole expansion in the Coulomb in-
teraction. This expansion is justified in the limit where R̄ is much larger than the spatial
extent of the MLXWFs in the R coordinate. Retaining only the lowest order dipole-dipole
term, we arrive at

⟨M0|K DD|NR̄⟩ = 4πe2

Vxtal

(
p⋆
M · pN

d3
− 3

(d · p⋆
M)(d · pN)

d5

)
, (3.13)

where d denotes the distance between Wannier centers, d = R̄+ τM − τN and pM denotes
the dipole moment associated with the exciton Wannier function M , namely,

pM =

∫
xtal

RWM0(R,0)d
3R. (3.14)

From this analysis it is clear that when the exciton Wannier dipole moment is non-vanishing,
| ⟨M0|KX|NR̄⟩ | should decay as 1/|R̄|3. From Fig. 3.1, we clearly observe that the MLXWFs
dipole moment is non-zero for LiF.

In Fig. 3.2 we plot the magnitude of the BSE Hamiltonian in theWannier basis, | ⟨M0|HBSE|NR̄⟩ |,
as a function of R̄ in a manner similar to what is done in Ref. [62] for HDFT. As expected, we
observe that the triplet matrix elements decay exponentially in R̄ while the singlet matrix
elements appear to decay more slowly, though it is difficult to extract the exact functional
dependence without going to larger R̄. Unfortunately going to larger R̄ requires denser
Q-grids and is prohibitively expensive.
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Figure 3.2: Spatial decay of the singlet and triplet BSE Hamiltonian in the Wannier represen-
tation ⟨M0|HBSE|NR⟩ as a function of R for LiF. The data points correspond to the largest
value of the matrix element at a give R – i.e. ||H(R)|| = maxMN,|R|=R | ⟨M0|HBSE|NR⟩ |.

3.6.3 On the Relation Between the Dipole-Dipole Interactions
and Non-analyticity

It is well known that long range dipole-dipole interactions, discussed in the previous sub-
section, give rise to the non-analyticity and ultimately the splitting of the longitudinal and
transverse branches (LT-splitting) of the exciton bandstructure at Q = 0 [80, 81]. To see
how this comes about in our present formalism, we rotate Eq. 3.13 into the exciton basis to
obtain

⟨SQ|KDD|S ′Q⟩ = 4πe2

Vxtal

∑
MN

U †
SM(Q) UNS′(Q)

×
∑
G

[pM · (Q+G)][pN · (Q+G)]

|Q+G|2
ei(Q+G)·(τM−τN ),

(3.15)

where G denotes a reciprocal lattice vector. Taking the Q → 0 limit of the above expression
we arrive at

⟨SQ|KNA|S ′Q⟩ = 4πe2

V xtal

(Q · p⋆
S)(Q · pS′)

Q2
, (3.16)

where we have used pS =
∑

M UMS(0)pM . As a direct result of dipole-dipole interactions,
exciton eigenvalues can exhibit rapid angular variation about the origin Q = 0 and may
appear discontinuous when plotted along certain directions in reciprocal space. This non-
analyticity is known [2, 54, 80, 81] and was recently revisited in the context of first principles
BSE [55, 74] where the diagonal part of Eq. 3.16 was derived by directly taking the Q → 0
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limit of ⟨SQ|KX|SQ⟩. Our present derivation highlights that this non-analytic behavior can
be recast as stemming entirely from dipole-dipole interactions between MLXWFs, provid-
ing an alternative to associating it with dipole moments of product states of electron-hole
Wannier functions as demonstrated in Ref. [54] (and the discussion around Eq. 11.20).

In LiF, the non-analytic contribution is independent ofQ. To see this, denote the longitu-
dinal and transverse excitons by |SL⟩ and |ST ⟩ respectively. We then find ⟨SLQ|K NA|SLQ⟩ =
∆LT where ∆LT = 4πe2|pS|2/V xtal while ⟨SLQ|K NA|STQ⟩ = ⟨STQ|K NA|STQ⟩ = 0. The
analysis implies that the longitudinal exciton eigenergies should, be rigidly shifted relative
to the two transverse branches. Indeed this behavior is corroborated by our BSE calculation
(see Fig. 3.3). Importantly, our analysis and numerical results demonstrate that ΩSQ, and
more generally HBSE(Q), remain analytic as Q → 0, a feature not shared in lower symmetry
systems where the non-analyticity is expected and will manifest as kinks or discontinuities
in the exciton dispersion [74]. In LiF, this simple behavior stems from the underlying cubic
symmetry [90].

3.7 Wannier-Fourier Interpolation

At the one-electron level, a major benefit of working in the Wannier basis is that matrix
elements of the form | ⟨m0|O|nR̄⟩ | decay rapidly with increasing R̄. In turn, this allows
for efficient Wannier-Fourier interpolation [62]. For instance taking O to be the one-particle
DFT Hamiltonian, H DFT, an efficient scheme for interpolating DFT eigenvalues involves first
Fourier transforming ⟨m0|H DFT|nR̄⟩ to an arbitrary k-point to obtain HDFT

mn (k) and sub-
sequently diagonalizing this matrix to arrive at DFT eigenvalues, ϵnk, and Wannier rotation
matricies, Umn(k). The success of this method depends critically on the spatial localization
of | ⟨m0|HDFT|nR̄⟩ |.

To interpolate exciton eigenenergies, ΩSQ, in the same manner, | ⟨M0|HBSE|NR̄⟩ | must
decay rapidly with increasing R̄. In Sec. 3.6.2, we found that while | ⟨M0|KD|NR̄⟩ | decays
exponentially in R̄, ⟨M0|KX|NR̄⟩ decays slowly in the same variable, namely as 1/|R̄|3.
Further, in Sec. 3.6.3., we showed that the exchange term can give rise to non-analyticities in
the exciton dispersion. As a direct consequence, we expect the Wannier-Fourier interpolation
scheme to work well for spin-triplet excitons but to require further modifications for the spin-
singlet case.

If Fig. 3.3 we show the results of our Wannier-Fourier interpolated exciton dispersion for
LiF. In blue, we plot the singlet and triplet exciton dispersion obtained through explicitly
diagonalizing the BSE Hamiltonian at 72 Q-points along a high symmetry path. In red we
overlay our Wannier-Fourier interpolated exciton dispersion, starting from a 4× 4× 4 coarse
Q-grid. We find that applying the usual Wannier-Fourier interpolation scheme without
modification gives excellent agreement for the spin-triplet exciton dispersion.

By contrast, for the spin-singlet exciton we see a large discrepancy between the Wannier-
Fourier and BSE result at the origin. This discrepancy stems from the long-range dipole-
dipole contribution to the spin-singlet kernel, see 3.13. One strategy to correct for this is to
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first subtract the real space, dipole-dipole contribution (see Eq. 3.13) from ⟨M0|HBSE|NR̄⟩,
Wannier-Fourier interpolate the remaining short-range part of the BSE Hamiltonian, and
finally add the dipole-dipole contribution back on the interpolated grid in reciprocal space
(see Eq. 3.15). A similar strategy is used to interpolate phonon frequencies in polar mate-
rials [95]. Here however the procedure is complicated by the fact that the dipoles, pN , are
not known a proiri. Further the dipole-diople interaction ⟨M0|KDD|NR̄⟩ tends to couple
the lowest three exciton states with states outside the Wannierization window. This further
complicates the proceedure and suggests that a set of 3 effective pN should be used however
the procedure for calculating these dipole moments is far from clear. The implementation of
such a procedure will be left to future work.

Figure 3.3: Singlet (left panel) and triplet (right panel) exciton dispersion. The solid blue
curve is the result of our explicit BSE calculation while the dotted red curve is obtained
through Wannier-Fourier interpolation. We have indicated the splitting of the longitudinal
and transverse bands in the singlet dispersion.

3.8 On the Relation Between the Exciton Wannier

Function and the Frenkel Exciton

An attractive feature of one-electron Wannier functions is their relation to linear combina-
tions of atomic orbitals used in the construction of tight binding models. The relation often
allows the practitioner to build chemical intuition especially in the context of understanding
the role of chemical bonds in solid state systems.



CHAPTER 3. MAXIMALLY-LOCALIZED WANNIER FUNCTIONS FOR
EXCITONS 33

In this section we show there is an analogous relation between the exciton Wannier
functions and linear combinations of singly-excited molecular orbitals used as a basis in
Frenkel’s description [6] of the exciton. We begin by first reviewing the connection between
one-electron Wannier functions and linear combinations of atomic orbitals and subsequently
provide an analogous discussion for exciton Wanner functions.

Recall that in the tight-binding approximation, the one-electron Bloch state can be ex-
pressed as a sum over linear combinations of atomic-centered orbitals, namely

ψnk(r) =
∑
m̄R

eik·R̄cmnϕm(r− R̄), (3.17)

where ϕm(r− R̄) denotes an atomic-centered orbital with principle quantum number m and
the coefficients cmn are the expansion coefficients. (For simplicity we assume a Bravais lattice
with only one site per cell.)

Meanwhile, the one-electron Wannier functions, wnR̄(r), by definition, are related to
Bloch states through

ψnk(r) =
∑
R̄

eik·R̄wnR̄(r), (3.18)

where, for simplicity and to avoid proliferation of indices, we have omitted the Wannier
rotation matrices. It should be noted that by definition, wnR̄(r) are chosen so as to reproduce
the true Bloch state, that is they are rigorously Fourier expansion coefficients. This should be
distinguished from the Eq. 3.17, where cmn are determined through solving the Schrodinger
equation and generally give only an approximate representation of the Bloch state as a
result of the finite atomic-centered basis set. Nevertheless, the functional form of these two
representations suggests the Wannier orbitals can be interpreted as a minimal tight-binding
basis and in some cases may shed light on convalency, ionicity, and hybridization of chemical
bonds as discussed in Ref. [20].

Frenkel’s description of an exciton is analogous to the tight-binding representation at one-
electron level. When the exciton radius is small so that the electron and hole reside mostly
on a single molecule (or atom or site depending on the system) it is convenient to expand
the exciton wavefunction as a sum over singly-excited site-centered orbitals, explicitly

ΨSQ(re, rh) =
∑
R̄cv

eiQ·R̄CScvχc(re − R̄)χ⋆
v(rh − R̄) (3.19)

where χn(r) denotes a molecular orbital with principle quantum number n so that χc(re −
R̄)χ⋆

v(rh−R̄) denotes a singly-excited molecular orbital centered at R̄, where one electron has
been removed from orbital v and promoted to orbital c. Analogous to the tight-binding case,
Eq. 3.19, is only an approximate representation of the excitonic state, with the expansion
coefficient chosen to diagonalize the BSE in this restricted basis.

It is interesting to compare Eq. 3.19 to the exciton expanded in terms of the exciton
Wannier functions. Inverting Eq. 3.4 and reexpressing the wavefunction in electron and hole
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coordinates we find,

ΨSQ(re, rh) =
∑
R̄

eiQ·R̄WSR̄(re, rh). (3.20)

Comparing Eq. 3.20 with Eq. 3.19, we immediately see the relation between exciton Wannier
functions and Frenkel like excitons. Our analysis suggests that the exciton Wannier functions
can be used to build chemical intuition especially in the Frenkel limit.

3.9 Conclusion and Outlook

In this work we have outlined a procedure for constructing maximally localized exciton Wan-
nier functions. Our analysis helps to connect the classic Mott-Wannier and Frenkel pictures
of excitons in a first principle context further bridging the gap between condensed matter and
quantum chemistry methods for computing neutral excitations. We have benchechmarked
our work on LiF, demonstrating the exciton Wannier-orbitals converge smoothly with Q-
grid and can be used for post-processing applications, like Wannier-Fourier interpolation of
the exciton dispersion. We expect this work will serve as a staring point for many other
post-processing applications, for instance calculations related to the Berry curvature of the
exciton bands. Finally, we note that in this work, we have generalized the 1-particle Wan-
nierization procedure to handle a specific 2-particle excitation (the exciton). In theory this
procedure may readily be adapted to handle other 2-particle excitations, for example the
bipolaron, as well as excitations involving more than two particles, for instance, trions and
bi-excitons.
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Chapter 4

A Unified Ab-initio Framework for
Phonon-Based Exciton Transport in
Solids: The Case of Acene Crystals

4.1 Introduction

Exciton diffusion is of critical importance in next-generation organic photovoltaic and light-
emitting diode devices, where strongly bound photo-excited excitons must first migrate to an
interface before charge separation or recombination can occur [96]. Despite its importance,
there are few fully ab initio treatments of exciton transport and no framework capable of
handling different limits at the same level of theory e.g. diffusion vs. hopping. A major
challenge is that the two standard limits of exciton diffusion – wave or band-like propagation
vs. hopping [97, 98] – are not always tractable on the same footing or level of theory.

This challenge is particularly relevant to organic semiconductors, a promising class of
materials for optoelectronic applications with strong electron-hole and electron-phonon in-
teractions. In these systems, long-range van der Waals interactions promote crystallization
with intermolecular separations typically on the order of ∼5Å– a length scale which favors
relatively localized excitons. At the same time, because these organic materials are composed
of light elements, the excitons couple strongly to lattice vibrations. Both these features tend
to promote exciton self-trapping and exciton-polaron formation. Band-like exciton diffusion
may be inappropriate, with hopping theories emerging as a better description of exciton
migration. At the same time, the breakdown may not be so severe as to completely inval-
idate the band-like theories, and studying exciton transport from both perspectives would
be enlightening.

The interplay between band and hopping-like transport regimes has a long and established
history. It was originally investigated by Holstein [99] in the one-dimensional molecular
crystal limit with Lang and Firsov later reformulating the approach in terms of the modern
language of canonical transformations [21]. Around the same time, Toyozawa reexpressed
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Bardeen’s original Hamiltonian [100] – which described a single electron coupled linearly to a
bath of harmonic phonons – in the excitonic basis, demonstrating that the effective exciton-
phonon vertex can be expressed as a contraction of the electron (hole)-phonon vertices and
exciton expansion coefficients [24]. Working with the single-band Hamiltonian of Toyozawa
and leveraging the canonical transform of Lang and Firsov, Silbey and Munn later conducted
an extensive analysis of phonon-based exciton diffusion arguing that charge and exciton
transport always has some coherent band-like and incoherent hopping-like component [101].
Later, Silbey and Munn generalized their method to include nonlocal, also known as off
diagonal, or Peierls, coupling [102]. More recently it has been argued that dynamics disorder,
stemming from the aforementioned nonlocal coupling, may be particularly important in
molecular crystals and gives rise to a regime where charge transport is mediated through
transient localization [103]. A comprehensive discussion of the different regimes of charge
and exciton transport can be found in Ref. [104].

While extensive prior work at the model Hamiltonian level undoubtedly lays a strong
theoretical foundation for studying exciton transport, the problem of how best to construct
and parameterize non-empirical Hamiltonians which describe the coupled exciton-phonon
system remains an open question. This question is particularly pressing in organic crystals
where ab initio calculations have established that lattice vibrations are complex in nature
[105] coupling through different mechanisms to electronic degrees of freedom and for which
exciton properties can be tuned depending on monomer, packing, and functionalization [73].

The majority of first-principles studies of exciton transport in organic materials have
focused on a single aspect or regime of transport. For instance, in the strong lattice coupling
regime, Marcus theory [106–108] or small-polaron theory [109] is often used. To the best of
our knowledge, a thorough ab initio investigation of band-like exciton transport in organic
crystals has yet to be performed. However there exist studies of charge transport in organic
crystals using the Boltzmann equation, within the relaxation time approximation [110,
111] and in this work we will show how this approach can be trivially extended to neutral
excitations. These works, which rely on perturbation theory in one of two limits, provide
excellent insight into the microscopic nature of diffusion in their respective regimes but
alone tell only part of the story and are often hard to compare given the different underlying
computational frameworks.

To investigate the role of dynamic disorder, simplified Su-Schrieffer-Heeger-like Hamil-
tonians [112] have been parameterized from ab initio and real-time propagation performed
using Ehrenfest [113] and QM/MM [114] procedures. By mapping to simplified models,
these works broaden our understanding but at the expense of coarse graining many im-
portant microscopic details so that some predictive power is lost. At the other end of the
spectrum, multi-scale studies of exciton diffusion combining non-adiabatic molecular dy-
namics, time-dependent density functional theory, and Monte-Carlo simulation [115, 116]
provide an entirely non-empirical, although approximate, description of exciton diffusion;
however, the fundamental mechanisms at play may be obscured by the complexity of such
approaches.

The purpose of this work is to construct a unified starting point for studying exciton
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transport which both incorporates all microscopic parameters at the ab initio level while
simultaneously remaining flexible enough to study exciton transport in the various regimes
discussed above. Our reciprocal space-based, Green’s function approach marries state-of-
the-art density functional perturbation theory for describing phonon related quantities with
the ab-initio GW plus Bethe-Salpeter equation approach for capturing excitonic properties.
The consistent construction of such a starting point is complicated by the very different
nature of the neutral excitation in the extreme band-like and hopping limits. A central
feature of this work is the non-trivial extension of the Lang-Firsov polaron transformation
to the multi-band case allowing us to pass freely between the extended Bloch exciton and
localized exciton-polaron description of neutral excitations. Our generalized Lang-Firsov
transformation introduces some gauge freedom and in general there are an infinity of ways
to pass between the two descriptions. Here, we fix this gauge freedom using the recently
developed maximally localized exciton Wannier functions discussed in the previous chapter.
We use this framework to study the exciton diffusion of low-energy triplets in crystalline
acenes, focusing on extreme band-like and hopping limits for now, reserving the careful
study of nonlocal coupling for future works.

4.2 The Coupled Exciton-Phonon Hamiltonian

In this work, we consider a Hamiltonian which describes excitons coupled linearly to a bath
of harmonic phonons with the following Hamiltonian

H =
∑
SQ

ΩSQc
†
SQcSQ +

∑
qν

ωqνb
†
qνbqν +

∑
SS′Qqν

GS′Sν(Q,q)c
†
S′Q+qcSQ(b

†
−qν + bqν), (4.1)

where c†SQ (cSQ) and b
†
qν (bqν) are exciton creation (annihilation) and phonon creation (an-

nihilation) operators, respectively. The first term describes the free propagation of a Bloch-
type exciton with dispersion, ΩSQ, where S and Q denote the principle quantum number
and center-of-mass momentum of the exciton respectively while the second term describes
a bath of harmonic phonons with dispersion ωqν , where ν and q denote the phonon branch
index and crystal momentum respectively. Finally GS′Sν(Q,q) is the exciton-phonon vertex
which encodes the probability amplitude for a phonon in state qν to scatter an exciton from
state SQ to S ′Q+ q described in Chap. 2.

4.3 Exciton Diffusion in the Band-like Regime

If the third term appearing in Eq. 4.1 is small, it may be treated perturbatively. In this
limit, the exciton can be viewed as propagating freely and is only occasionally scattered by
a phonon. This is the so called band-like regime, and, after thermal equilibrium has been
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reached, the diffusion coefficient is given by

Dband
αβ =

1

NQ

∑
SQ

pSQ(vSQ)α(vSQ)βτSQ, (4.2)

where pSQ is the normalized probability to find an exciton in state (SQ) at thermal equi-
librium, (vSQ)α = ∇QαΩSQ is the exciton band velocity in the α-direction, and τSQ is the
state-dependent relaxation time, i.e., the average time between phonon scattering events.
From Fermi’s Golden rule

1

τSQ
=

2π

h̄

1

Nq

∑
S′νq,±

|GS′Sν(Q,q)|2 ×
(
nqν +

1

2
± 1

2

)
δ(ΩSQ − ΩS′Q+q ∓ ωqν), (4.3)

where nqν is the Bose-Einstein occupation factor for phonons and the sum over ± denotes
summing over both the phonon emission and absorption channels.

In the opposite limit, i.e. when the exciton-phonon coupling is large, it is no longer
appropriate to treat the third term in Eq. 4.1 as a small perturbation. In this limit, the
Hamiltonian in Eq. 4.1 may not be an ideal starting point for studying exciton diffusion; it
is more appropriate to transform to a localized description of the exciton as detailed in the
next section.

4.4 The Exciton-Phonon Hamiltonian in the

MLXWF Basis

In the limit where the coupling to the lattice is very large, it may be energetically more
favorable for the exciton to be localized and the lattice to deform about the excitation. As
presently written, the Hamiltonian in Eq. 4.1 is expressed in terms of creation and anni-
hilation operators for extended Bloch-type excitons. To facilitate the discussion of exciton
hopping, it is helpful to rotate to a localized basis. In the previous chapter, we outlined a
prescription for passing to a maximally localized representation of the exciton state. Here we
will use these MLXWFs as a basis for studying exciton transport from a localized perspective.

To construct MLXWFs for the acenes, we work in the subspace of the lowest two excitonic
states. This choice is guided by the fact that there are two nonequivalent molecules per unit
cell. In Fig. 4.1 we depict one MLXWF for anthracene. We find that the MLXWF is well
localized on a single molecule. There exists a second MLXWF (not shown here) which sits
on the second molecule in the unit cell. As discussed in Chap. 2, the exchange term in the
BSE Hamitlonain prevents the straightforward application of the MLXWF methodology to
spin-singlet excitons. For the moment we restrict our attention to spin-triplet excitons. In
Sec. 4.12 we outline the extension to the spin-singlet case.
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Figure 4.1: MLXWF for anthracene plotted as a function of the average coordinate R with
the relative coordinate r = 0 – i.e. W10(R,0) vs. R. The Wannier function is entirely real
so that yellow and blue lobes denote regions of positive and negative probability amplitude
respectively.

In the following discussion, we re-express Eq. 4.1 in a basis of MLXWFs. In operator
form, the transformation between exciton Bloch functions and MLXWFs reads

c†mR =
∑
SQ

e−iQ·RUSm(Q)c†SQ

c†SQ =
1

NR

∑
mR

eiQ·RU †
mS(Q)c†mR,

(4.4)

where c†mR is the operator associated with the creation of a localized excitonic state on the
mth molecular site, R unit cells away from some origin, and USm(Q) are the Wannier rotation
matrices discussed in Chap. 2.

With these transformations we rewrite Eq. 4.1 in the Wannier basis as

HW =
∑

mRnR′

Vmn(R−R′)c†mRcnR′ +
∑
qν

ωqνb
†
qνbqν

+
∑

mnRR′qν

e−iq·RG W
mnν(R−R′,q)c†mRcnR′(b†−qν + bqν),

(4.5)

where the couplings, Vmn(R) and GW
mnν(R,q) are related to the Wannier rotation matrices
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through

Vmn(R) =
∑
SQ

e−iQ·RU †
mS(Q)ΩSQUSn(Q) (4.6)

and
GW
mnν(R,q) =

∑
SS′Q

e−iQ·RU †
mS′(Q+ q)GS′Sν(Q,q)USn(Q). (4.7)

Physically, Vmn(R−R′) and GW
mnν(R−R′,q) are couplings associated with exciton hopping

from molecular site nR′ to mR. The former is a purely electronic coupling stemming from
exciton wavefunction overlap while the latter derives from coupling to the lattice and can
be thought of as the probability amplitude for an exciton to hop from site nR′ to mR
accompanied by the emission or absorption of a phonon labeled by qν. In this basis, it
is conventional to further decompose GW

mnν(Q,q) into a local (nR = mR) and nonlocal
(nR′ ̸= mR) contribution, a point we will take up in the next section.

4.5 Local vs. Nonlocal Exciton-Phonon Coupling

The relative proportions of local vs. nonlocal exciton-phonon coupling in organic materials
has been identified as a critical factor in further determining the diffusive mechanism for
both charge and exciton transport. Two theoretical pictures are commonly invoked. When
exciton-phonon coupling is predominantly local, it may be energetically more favorable for
the exciton to localize and the lattice to relax about the exciton. It is appropriate to think
of the exciton and deformed lattice as a single quantum mechanical state – an exciton-
polaron [101]. The motion of the exciton-polaron is still inherently diffusive however in this
case the exciton-polaron defaults to remaining localized about a lattice site, and hops to a
nearby site when there is sufficient thermal energy.

By contrast, when the nonlocal coupling dominates, we can think of exciton-phonon in-
teraction as modifying the hopping integrals, Vmn(R). This coupling is often referred to as
Peierl’s coupling. Molecular dynamics simulations [103] have revealed that in this regime
exciton diffusion decreases with increasing temperature, similar to the band-like mechanism.
This mechanism has been proposed as a possible explanation for the high mobilities of ob-
served in certain organic semiconductors, like rubrene, despite the fact that mean free paths
in these materials at room temperature are on the order of the intermolecular separation.

To determine which transport regime is most appropriate for studying triplet exciton
diffusion in acene crystals, we plot the relative contributions of the local and nonlocal exciton-
phonon coupling in Fig. 4.2. In each panel, we plot the local, g2Floc(ω), and nonlocal
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Figure 4.2: Local and nonlocal, exciton-phonon matrix element spectral decompositions
computed according to Eq. 4.8 for all acenes. The numbers in the legend give the relative
percentages of local and nonlocal coupling in these materials.

g2Fnonloc(ω), spectral decompositions of the coupling defined as

g2Floc(ω) =
1

Nq

∑
mqν

|Gmmν(0,q)|2

ωqν

δ(ω − ωqν)

g2Fnonloc(ω) =
1

Nq

∑
qν,(n0)̸=(mR)

|Gmnν(R,q)|2

ωqν

δ(ω − ωqν)

(4.8)

Our analysis not only shows which type of coupling is dominant across the acenes but also
clearly depticts which phonons contribute most to this type of coupling. Several global trends
appear. First, across all materials, we notice that the nonlocal coupling is mediated primarily
by low energy phonons with energies below 30 meV. This is to be expected, such modes in-
volve intermolecular sliding motions. It is easy to imagine how such motion could drastically
alter the hopping integrals and give rise to large Peierls (nonlocal coupling). By contrast the
local coupling stems mostly from higher energy (above 100 meV) localized optical modes.
This too agrees well with our physical intuition, we expect these intramolecular distortions
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to have the largest effects on the on-site energy term and give rise to large Holstein (local
couplings) as seen in Fig. 4.2.

Next, we note that as one moves from naphthalene to pentacene, the relative proportion
of local to nonlocal coupling steadily decreases. Integrating under the spectral functions, we
find that in naphthalene, roughly 75% of the total exciton-phonon coupling is local while in
pentacene only 20% is local. This trend can also be rationalized. As acene length increases
the size of the MLXWF is also expected to increase. With increasing size, we expect the
MLXWF to be less sensitive to intermolecular vibrations so that the local coupling strength
diminishes. By contrast larger MLXWF allow for more overlap with adjacent MLXWF as
molecules move relative to one another. The implication is then that nonlocal coupling
should increase with chain length. Taken together, both these observations will tend to
decrease the ratio of nonlocal to local coupling, consistent with what is shown in Fig. 4.2.

At face value, Fig. 4.2, suggests that for napthalene, anthracene, and possibly tetracene
it may be valid to think about transport within Holstein’s small polaron framework. By
contrast in pentacene, where Fig. 4.2 suggests that nonlocal coupling dominate, one would
expect small polaron theory to be inadequate. In fact, we speculate that the extent of
the nonlocal coupling is overestimated in this analysis due to anharmonic effects. When
anharmonic effects are included, we expect the low-lying acoustic phonon modes to stiffen
and the zero-point amplitude associated with these modes to decrease [117]. Both effects
should lower the nonlocal exciton-phonon contribution. By contrast, the local coupling
should remain the same after including anharmonicity as the high frequency optical modes
are insensitive to anharmonic effects. Going forward, we will focus only on the polaronic
picture in the harmonic limit.

4.6 Small Polaron Theory and the Lang-Firsov

Transformation

To pass to the exciton-polaron picture, we make a similarity transform of the form Hpol =
eSHW e−S where

S = −
∑
mRqν

c†mRcmR
e−iq·RGW

mmν(0,q)

ωqν

(bqν − b†−qν). (4.9)

In Appendix A.3, we detail the derivation of Hpol. Here we note that Hpol can be expressed
in terms of the exciton-polaron d†mR(djR) creation (annihilation) operators, the former is
defined as

d†mR ≡ eSc†mRe
−S = c†mR exp

[
−
∑
νq

e−iq·RGW
mmν(0,q)

ωqν

(bqν − b†−qν)

]
. (4.10)

Physically, c†mR acts to create a localized excitonic state on the mth molecular site in unit cell
R, while the exponential term has the form of a displacement operator acting on the ionic
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degrees of freedom. Taken together, when acting on the vacuum d†mR creates a localized
exciton at lattice site (mR) and deforms the ionic lattice about this excitation. This is our
physical picture of an exciton-polaron.

In terms of these operators, Hpol reads

Hpol = −
∑
mR

∆mRd
†
mRdmR +

∑
qν

ωνqb
†
qνbqν +

∑
nmRR′

Vmn(R−R′)d†mRdnR′ +Hnonlocal,

(4.11)

where ∆mR is the exciton-polaron self-energy and Hnonlocal denotes a residual term stem-
ming entirely from nonlocal exciton-phonon matrix elements. From here on we will neglect
Hnonlocal, based on results from the previous section, we expect this to be a better approxi-
mation from smaller acenes.

In zero temperature limit, the exciton-polaron energy Ωpol
mR can be read off from the

diagonal components of Hpol, explicitly

Ωpol
mR = −∆mR + VmRmR, (4.12)

where VmR,mR is

VmR,mR =
∑
SQ

|UmS(Q)|2ΩSQ, (4.13)

which follows directly from Eq. 4.6. Notably VmR,mR depends only on the exciton dispersion
and we refer to this term as the electronic contribution to the exciton-polaron state. By
contrast, the exciton-polaron self-energy ∆mR is given explicitly as

∆mR =
1

Nq

∑
qν

|GW
mmν(0,q)|2

ωqν

=
1

Nq

∑
qν

|
∑

SS′Q U
†
mS′(Q+ q)GS′Sν(Q,q)USm(Q)|2

ωqν

.

(4.14)

The exciton-polaron self-energy, ∆mR is independent of the unit cell, labeled by R, as must
be the case for a system with translational symmetry. A direct calculation shows that
−∆mR can also be interpreted as the energy release associated with the relaxation of the
lattice about about the localized excitation (mR). This term is often also referred to as the
reorganization energy [40].

4.7 Exciton Diffusion in the Hopping Regime

As already discussed, in the polaronic picture, the default is for the exciton-polaron to
remain localized about a lattice site, only when there is sufficient thermal energy can the
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exciton-polaron hop from one site to another. The motion is still diffusive and we expect
the diffusion constant to be given by

Dhopping
αβ =

1

NR

∑
mnR

pnR(xnR→mR′)α(xnR→mR′)βknR→mR′ , (4.15)

where pmR is the normalized probability to find an exciton-polaron in state in the (mR)
at thermal equilibrium, while xnR→mR′ and knR→mR′ , respectively denote the distance and
hopping rate between exciton-polaron states labeled by (nR) and (mR′) with α and β again
labeling Cartesian components. Finally, NR denotes the number of unit cell used in the
simulation.

We have written Eq. 4.15 is such a way that it is easily compared with Eq. 4.2 but have
yet to specify how xnR→mR′ , and knR→mR′ should be computed. We take xnR→mR′ to be the
distance between Wannier centers of our MLXWF. As already depicted in Sec. 4.4, these
centers coincide with the centroid of the molecules in our system so that we can think about
the exciton-polaron as hopping between molecules. To determine knR→mR′ , we treat the
hopping term in Eq. 4.11 perturbatively at the level of Fermi’s Golden Rule. The calculation
gives

kn0→mR =
V 2
mn(R)

h̄2
e−2Smn(R)

∫ ∞

−∞
dt

[
exp

(
− 1

Nq

∑
νq

M2
mnν(R,q)Φqν(t)

)
− 1

]
, (4.16)

where

M2
mnν(R,q) =

|Gmmν(0,q)e
iq·R − Gnnν(0,q)|2

ω2
qν

,

Smn(R) =
1

Nq

∑
νq

M2
mnν(R,q)[2nqν + 1],

Φqν(t) = nqνe
iωqνt + (nqν + 1)e−iωqνt.

(4.17)

The subtraction of unity at the end of Eq. 4.16 removes the coherent contribution. In
the limit where kBT ≫ ωqν , the integrand oscillates rapidly and it is possible to make a
saddle-point approximation to Eq. 4.16. The result is

kn0→mR =
|Vmn(R)|2

h̄2

√
π

λmn(R)kBT
exp

[
− λmn(R)

4kBT

]
, (4.18)

where

λmn(R) =
1

Nq

∑
qν

M2
mn(R,q)ωqν . (4.19)

Eq. 4.18, has an Arrhenius form with activation energy Ea = λmn(R)/4, to hop from (n0)
to (mR). In the limit of a single band with nearest neighbor hopping, Eq. 4.18 reduces to



CHAPTER 4. A UNIFIED AB-INITIO FRAMEWORK FOR PHONON-BASED
EXCITON TRANSPORT IN SOLIDS: THE CASE OF ACENE CRYSTALS 45

the textbook result [40]. A similar result can also be derived starting from Marcus theory
[118].

For the acene crystals we found that the phonons which couple locally to the excitons
are typically high energy (∼ 100meV) optical modes (see Fig. 4.2). Thus the replacement
of Eq 4.16 with Eq. 4.18 is not strictly valid and it would be better to explicitly perform
the time integral in Eq. 4.16. However in this work, as a first approximation, we will use
Eq. 4.18 which is ubiquitous in the quantum chemistry literature. In future work we will
compare the two expressions and quantify the error made in using the Marcus theory result.

4.8 Phonon-Induced Exciton Renormalization

Before computing hopping and scattering rates, as a first application of our exciton-phonon
formalism, we compute the exciton-polaron energy computed with the aid of Eq. 4.12.

ΩBSE (eV) Ωpol (eV) ∆Ω (meV) Ωexp (eV)
Np (N = 2) 2.97 2.69 -280 2.6
Ac (N = 3) 2.05 1.86 -190 1.9
Tc (N = 4) 1.43 1.31 -120 1.3
Pc (N = 5) 0.96 0.90 -60 0.9

Table 4.1: Bare, Ω, phonon dressed, Ωpol, and experimental, Ωexp, energies for the lowest
lying spin-triplet. Experimental values taken from [73] and references therein.

In Tab. 4.1, we report lowest spin-triplet exciton energies for napthalene (Np), anthracene
(Ac), tetracene (Tc), and pentacene (Pc) computed though solving the ab-initio BSE with
ions clamped at equilibrium positions, ΩBSE, and after coupling to phonons has been included
by evaluating Eq. 4.12. Including polaronic effects tends to decrease Ωpol relative to ΩBSE

and, over all compounds, brings theory into better agreement with experiment. In the
third column we report the exciton-polaron formation energy defined as ∆Ω = ΩBSE −Ωpol.
We observe that the formation energy steadily decreases as the number of acene rings, N ,
increases. The trend stems from two factors: as N increases, VmR,mR, the energy cost
associated with exciton localization increases, while ∆mR, the energy gain associated with
lattice relaxation decreases. Both trends tend to decrease ∆Ω with increasing N .

4.9 Relaxation Times and Hopping Rates

While Tab. 4.1 validates our approach, with this information alone, it is difficult to ascertain
whether the exciton or exciton-polaron quasiparticle basis is more appropriate for studying
transport in these systems. Notably a negative exciton-polaron formation energy does not
guarantee the formation of an exciton-polaron as coupling to phonons in any formalism will
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nearly always tend to decrease the excitation energy. To determine which basis is more
appropriate for studying dynamics, in Tab. 4.2, we report the phonon-limited exciton, τxct,
and exciton-polaron, τxct-pol, relaxation times. The former is defined the as the average time
an exciton remains in its lowest energy quantum state while the latter is the average time
an exciton-polaron remains in its lowest energy quantum state . By definition, the former is
equal to the relaxation time (see Eq. 4.3) while the latter is related to the exciton-polaron
hopping rate through

τxct-pol =
1∑

mR′ k10→mR′
, (4.20)

i.e. summing over all possible hopping events given the exciton polaron is initially at site
n = 1 in the home cell (R = 0). As expected, τxct-pol increases with increasing chain length,
N , a direct by-product of an increase in hopping, V , and decrease in activation energy, Ea,
with N . Somewhat surprisingly we find that τxct is roughly independent of acene chain
length. This constant exciton coherence time stems from an off-set of two effects – as N
increases the phase space for phonon scattering increases while the exciton-phonon coupling
strength simultaneously decreases. In the final column, we report the ratio of τxct/τxct-pol
finding this quantity is strictly less than unity across all acenes, physically indicating that
the exciton-polaron is a more stable (longer lived) triplet quasiparticle state.

τxct-pol τxct τ xct/τ xct-pol

Np (N = 2) 26.1 ps 30 fs 0.001
Ac (N = 3) 3.8 ps 30 fs 0.008
Tc (N = 4) 230 fs 20 fs 0.086
Pc (N = 5) 90 fs 30 fs 0.333

Table 4.2: Exciton, τxct and exciton-polaron, τxct-pol relaxation times.

Our analysis of the coherence times suggest that across all acenes, triplet diffusion is
better described with thermally activated hopping, instead of phonon-limited band-like dif-
fusion models. Nevertheless, for larger acenes like Tc and Pc, τxct and τxct-pol are similar
enough in magnitude that computing the diffusion coefficients in both limits is a worthwhile
endeavour. For this calculation, we require relaxation times throughout the BZ, τSQ, and
site resolved hopping rates, kn0→mR.

In the first row of Fig. 4.3, we plot the exciton dispersion for the two lowest triplet
excitons overlaying relaxation times computed via Eq. 4.3 at T = 300K. Relaxation times
are relatively uniform throughout the Brillouin zone (BZ) in Np and Ac ranging from 25-50
fs. By contrast in Tc and Pc, there is slightly greater anisotropy in relaxation times. We
further observe that in Tc relaxation times are largest at the X and Y BZ corners while in
Pc the longest relaxation time occurs at Γ. In Pc there are narrowly avoided crossings at X
and Y , too small to see in Fig. 4.3, while in Tc, the crossings at X and Y are real. Such
behavior suggests that the character of the Tc and Pc bands should be very different and
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it is likely that different trends in the relaxation times throughout the BZ stem from this
feature in the dispersion.
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Figure 4.3: In the first row we depict the triplet exciton dispersion, computed through solving
the BSE, for the lowest two states in naphthalene (Np), anthracene (Ac), tetracene (Tc), and
pentacene (Pc) with state-dependent relaxation times, τTQ computed via Eq. 4.3 and overlaid
in color. In the second row we depict the hopping rates kijR computed in the exciton-polaron
picture. The star at the center of each figure denotes the initial exciton-polaron state. Hash
marks denote nearby molecular sites which excitons can hop to. The colored dots which
overlay the hash marks correlate with the rate at which the exciton-polaron hops to nearby
states. For instance in the final plot, the red arrow depicts a nearest neighbor hopping
event while the bright yellow color dot signifies average rate for this hopping is 6 ps−1 – put
another way, the exciton, on average makes this type of hop 6 times every picosecond. The
gray dashed squares denote the unit cell and all calculations are performed at T = 300K

In the second row of Fig. 4.3, we provide a real-space depiction of the exciton hopping
rates. The star in the center of these plots indicates the center-of-mass of the initial exciton-
polaron state, while the surrounding hash marks denote nearby molecular sites the exciton-
polaron can hop to. The colored dots depict the rate at which hopping occurs to that
site computed with Eq. 4.16. In general, the hopping rates decrease as one considers sites
further from the initial exciton-polaron state, however the details vary across the acenes.
For instance in Np and Ac, the rate of hopping to the nearest four sites is identical due to a
nonsymmorphic symmetry these two acenes possess. This symmetry is also responsible for
the degeneracy seen in the exciton dispersion in row 1 for Np and Ac along the first and
final segments of the band plots. By contrast, Tc and Pc do not possess this symmetry, as
a result the four fold degeneracy in the hopping rate to nearest neighbor sites splits and we
find slight preference to hop along a specific direction.
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Figure 4.4: The ab-plane averaged exciton diffusion coefficient ⟨D⟩ab as a function of temper-
ature for Np, Ac, Tc, and Pc, with the red and blue curves denoting the diffusion coefficient
computed via Eqs. 4.2 and 4.15 respectively. The two curves give rough upper and lower the-
oretical bounds on exciton diffusion coefficients and we shade the intermediate region gray.
Purple stars denote experimentally reported diffusion coefficients compiled in Ref. [96].

4.10 Diffusion Coefficients From Band and Hopping

Theories

With these ingredients, we are in a position to compute the diffusion coefficients, Dαβ, in the
band and hopping limits via Eqs. 4.2 and 4.15 respectively. In Fig. 4.4, we show the results
of these calculations plotting the diffusion coefficient averaged over the ab plane, ⟨D⟩ab, over
a 100K temperature range, plotting the band-like and hopping limits in red in and blue
respectively. There are several universal, and expected, trends seen across all crystals. In all
cases, we find that ⟨D band⟩ab > ⟨D hopping⟩ab implying that in this temperature range, the
coherent band-like transport is more efficient than thermally activated hopping-like trans-
port. Further the two curves display opposite temperature dependences, as expected. With
increasing temperature the band-like diffusion coefficients decrease, reflecting the fact that
band-like diffusion is phonon-limited. By contrast the hopping diffusion coefficient increases
with temperature reflecting the fact that incoherent hopping-like diffusion is phonon medi-
ated.

In Np and Ac the diffusion coefficients in the band and hopping limits are separated by
roughly two orders of magnitude at T = 300K. By contrast in Tc and Pc the band and
hopping predictions are much closer in magnitude differing by only a factor of two or so
at T = 300K. That the band and hopping expressions give similar results for these larger
acenes, parallels nicely the coherence times reported in Tab. 4.2 where we found that exciton
and exciton-polaron coherence times were relatively close.

In Fig. 4.4, we have also plotted experimentally reported diffusion coefficients (purple



CHAPTER 4. A UNIFIED AB-INITIO FRAMEWORK FOR PHONON-BASED
EXCITON TRANSPORT IN SOLIDS: THE CASE OF ACENE CRYSTALS 49

stars) taken from the review article [96]. In Np and Ac, we find very good agreement
between experiment and the theoretically determined ⟨D hopping⟩ab computed at room tem-
perature while ⟨D band⟩ab significantly and systematically overestimates experiment. The
result is particularly satisfying given that prior analysis suggests that for these materials
the hopping regime is the more appropriate of the two limits to consider. In Tc and Pc, we
find that both our theoretical band-like and hopping predictions overestimate experimentally
reported values by a factor of roughly 2-10, with the hopping diffusion coefficients fairing
somewhat better. There are a plethora of possible explanations as to why this might be the
case. First, the larger acenes host a number of multi-exciton processes such as triplet-triplet
annihilation [119]. These processes provide other avenues for exciton decay and have not
been included in the present analysis. Their inclusion would undoubtedly act to decrease
the theoretically computed exciton diffusion coefficient and could partially explain discrep-
ancies with experiment and theory. Second, in this study we have neglected to include the
effects of thermal lattice expansion opting instead to use experimental lattice parameters
often taken from diffraction measurements below room temperature. Thermal expansion
will tend to increase the spacing between molecules in turn decreasing the exciton over-
lap integrals, band-velocities, and through these quantities both the hopping and band-like
diffusion coefficients. Finally we note that accurate experimental determination of triplet
diffusion coefficients is quite complicated, often involving deconvolution of the spin-triplet
and singlet excitations and subsequent fitting to intricate kinetic models. As a result a range
of experimental diffusion coefficients have been reported in the literature further hindering
comparison between experiment and theory.

This concludes our discussion of computational results. In the subsequent two sections,
we discuss extensions and future directions related to this work before giving our conclusion
in Sec. 4.13

4.11 Variational Determination of U

In this work, we choose to work in a basis of MLXWFs. By definition, this basis is an upper
bound on the extent to which the lattice can localize the exciton. For systems clearly in the
polaronic regime, we expect the use of this basis to be a decent approximation. However
for systems like pentacene, where exciton transport is intermediate between hopping and
band-like it may be possible to find a better basis for our calculation.

One option is to treat the Wannier rotation matrices, USj(Q) appearing in Eq. 4.4 as

variational parameters. In this approach we can view the polaronic operators, d†mR[U ] as a
functional of U . Explicitly

d†mR[U ] =

(∑
SQ

e−iQ·RUSm(Q)c†SQ

)

× exp

[
−
∑
νq

∑
SS′Q U

†
mS′(Q+ q)GS′Sν(Q,q)USm(Q)

ωqν

(bqν − b†−qν)

]
.

(4.21)
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To fix U , we minimize the polaron energy, at T = 0, we find

Ωpol
mR[U ] = ⟨0|dmR[U ]Hd†mR[U ]|0⟩

= VmR,mR[U ]−∆mR[U ]
(4.22)

where VmR,mR[U ] and ∆mR[U ] are defined explicitly in Eqs. 4.13 and 4.14 respectively. In
the dilute limit, where the probability of finding two exciton-polarons in the same unit-cell
is unlikely, the mth row of U may be determined by minimizing the mth exciton-polaron
excitation energy Ωpol

m0[U ] subject to the constraint U is unitary, ensuring orthogonality of
the exciton-polaron states.

This approach of determining U is similar in spirit to the seminal work of Lee, Low,
and Pines on polarons in the intermediate coupling regime [120] and later by Pollmann and
Büttner to describe an exciton interacting with a polar lattice [18]. In their approach they
embed the variational parameter in U in the generator of the canonical transform S ′[U ]
and then fix U by minimizing the expectation value, ⟨0|e−S′[U ]HeS′[U ]|0⟩ with respect to U .
While the framework is the same, we emphasize the in both the Lee, Low, and Pines and
Pollmann and Büttner framework the generator of the canonical transform they use, S ′[U ],
differs fundamentally from the one used in this work S[U ] which is why we have distingushed
them with a prime.

To the best of our knowledge, determining U though ab-initio minimization of Ωpol[U ]
has yet to be fully explored. Only very recently, has Sio et. al., carried out an analogous
minimization in the context of describing the lowest energy electron-polaron and hole-polaron
state in a few representative semiconducting materials [121, 122]. Indeed, minimizing the
lowest energy excitation Ω pol

1 [U ], with respect to the first row of U it is possible to recover
expressions originally derived by Sio et. al.

In future work, it will be very interesting to minimize Eq. 4.22 explicitly and compare
the ensuing results to those determined with the MLXWF ansatz.

4.12 Extension to Spin-singlet Excitons and the

Connection to Dexter and Förster Coupling

In this work we have restricted our analysis to spin-triplet excitons only. The extension to
the spin-singlet case is nontrivial but highlights the connection between Dexter and Förster
coupling in quantum chemistry and is interesting to discuss here.

As discussed in Chap. 2, for spin singlets, the exchange term of the BSE electron-hole
kernel gives rise to long range dipole-dipole interaction. With this interaction, in the Wannier



CHAPTER 4. A UNIFIED AB-INITIO FRAMEWORK FOR PHONON-BASED
EXCITON TRANSPORT IN SOLIDS: THE CASE OF ACENE CRYSTALS 51

basis, Eq. 4.5 reads

HW,singlet =
∑

mRnR′

[
Vmn(R−R′) +

pm · pn

d3
− 3

(pm · d)(pn · d)
d5

]
c†mRcnR′ +

∑
qλ

ωqνb
†
qνbqν

+
∑

mnRR′qν

e−iq·RG W
mnν(R−R′,q)c†mRcnR′(b†−qν + bqν)

(4.23)

where pm are the dipole moments associated with Wannier orbital Wm0 in the average
electron-hole coordinate as defined in Chap. 1, and d is the distance between Wannier
centers, explicitly d = R+ τm − (R′ + τn). Carrying through the same manipulations that
led to the Marcus theory-like expression for the hopping rate given in Eq. 4.18, we find

kn0→mR =
1

h̄2

∣∣∣∣Vmn(R) +
pm · pn

d3
− 3

(pm · d)(pn · d)
d5

∣∣∣∣2√ π

λmn(R)kBT
exp

[
− λmn(R)

4kBT

]
.

(4.24)
Eq. 4.24 is essentially equivalent to 4.18 except for the appearance of a dipole-dipole term in
the leading matrix element of the expression. When squared, this dipole-dipole interaction
falls off as 1/d6. By contrast, the Vmn(R) is a measure of the overlap between nearby
MLXWFs and falls off at exponentially in d. In quantum chemistry the dipole-dipole term
is often referred to as a Förester interaction [123] while the short range term proportional to
the overlap Vmn(R) is the Dexter interaction [124].

Presently the extension of this theory to the singlet case is hindered only by the accurate
determination of the Wannier exciton dipole moments as discussed in Chap 2 where we
found that the exchange kernel mixes many states and the determination effective low-lying
Wannier exciton dipole moments is a non-trivial task.

4.13 Conclusion

In this work, we have developed an ab-initio framework for studying exciton diffusion based
on linear exciton-phonon coupling that treats the band-like and hopping limits on equal foot-
ing for crystalline solids. In the hopping limit, we have generalized the original Lang-Firsov
polaron transformation to the multi-band case explicitly considering the gauge freedom this
introduces. Using a physically motivated choice of gauge in the hopping limit, we apply our
framework to the acene series. We find significant renormalization of triplet exciton ener-
gies due to the lattice. Analysis of the exciton and exciton-polaron coherence times suggest
that for shorter acenes (Np and Ac) the exciton-polaron basis is a better starting point for
studying triplet exciton transport while for longer acenes (Tc and Pc) it is somewhat am-
biguous. We compute the diffusion coefficient as a function of temperature for all materials
finding excellent agreement between theory and experiment for Np and Ac. In Tc and Pc
we find the agreement with theory and experiment is less good, possibly due to the neglect
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of multi-exciton processes which have not been considered in this work. We expect that the
formalism developed here can be used as a starting point for an even more general predictive
description of exciton transport going beyond these two limits without resorting to empirical
parameters.
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Chapter 5

Phonon Screening of Excitons in
Semiconductors: Halide Perovskites
and Beyond

This chapter is adapted from Ref. [125] and includes work in collaboration with Marina R.
Filip.

5.1 Introduction

Excitons are central to a wide range of optoelectronic applications, from photovoltaics and
photocatalysis, to light emission and lasing [98, 126–128]; they emerge from the many-body
interactions between charge carriers, photons, and phonons in optoelectronic materials [2].
In many bulk semiconductors, weakly bound Wannier-Mott excitons can be understood with
a hydrogenic model [5, 129], in which the attractive Coulomb interaction between a photoex-
cited electron-hole pair is screened by a dielectric constant ε. In this picture, the exciton
binding energy is µ/2ε2 in atomic units, where µ is the magnitude of the reduced effective
mass of the electron-hole pair [5]. Optical measurements under high magnetic fields use this
model to extract the exciton binding energy, EB and µ [130, 131]. In ionic or multicomponent
semiconductors, an “effective dielectric constant”, εeff =

√
2EB/µ, is frequently reported,

usually taking values between the optical, ε∞, and static, ε0, dielectric constants. The use
of εeff approximately accounts for the fact that the electron-hole interaction is screened by
both the electrons and phonons [17, 127, 132]. However, it also obscures the details of spe-
cific phonons contributing to εeff, and it does not explain whether or why electron or phonon
screening might be important in a given case. Rigorous ab initio calculations would therefore
be of great value in this context.

Ab initio many-body perturbation theory calculations within the GW approximation [11,
43] and the Bethe-Salpeter equation (BSE) [12, 133] approach have been successful in quan-
titatively understanding the quasiparticle band structure and optical excitations of materials
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ranging from the simplest III-V semiconductors [12] to materials with heavy elements [134]
or hybrid organic-inorganic components [135], low dimensionality [136], and intrinsic de-
fects [137]. First principles methods including the effects of lattice vibrations have led to new
understanding of the renormalization of the electronic band structure due to electron-phonon
interactions [38, 138, 139], as well as optical absorption [140, 141] and photoluminescence
lineshapes [19, 142].

Recently, several first principles studies of a broad range of materials predicted exciton
binding energies which are overestimated with respect to experiment [143–147]. In particular,
Ref. [146] recently reported calculated exciton binding energies of hybrid organic-inorganic
lead-halide perovskites which overestimate experimental measurements by up to a factor of 3.
Ref. [146] attributed this overestimation to the coupling of the constituent free electrons and
holes to phonons (hereafter referred to as “polaronic effects”). On the other hand, Ref. [147]
used an approximate model dielectric function to conclude that phonon screening due to
infrared active phonons renormalizes the exciton binding energy by up to 50%, bringing
calculated values in much closer agreement with experiment. Since both reports are based
on approximate hypotheses and implementations of phonon effects, it is not yet clear how
these conclusions may be reconciled, in the absence of a complete ab initio calculation.

The problem of electrons and holes interacting in a phonon field has been studied us-
ing phenomenological models, assuming parabolic electronic band structure and a phonon
spectrum consisting of a single dispersionless phonon [17, 132, 148–150]. Ref [132] showed
that calculation of the exciton binding energy within such models must account for pola-
ronic and phonon screening effects, with both contributions leading to a net decrease of the
calculated exciton binding energy, as compared with the standard hydrogenic model expres-
sion [132]. However, rigorous inclusion of polaronic and phonon screening effects within the
BSE formalism remains an open challenge. In this work, we focus on the latter.

The remainder of this chapter is organized as follows. In Sec. 5.2 we review the screened
phonon formalism and give a diagrammatic description of this screening. In Sec. 5.3 we
show the Bethe-Salpeter Equation approach can be rigorously generalized to include phonon
screening. In Sec. 5.4 we give results of CsPbX3 family of perovskites. In Sec. 5.5 we review
how Haken’s phenomenological potential can be recovered in the present approach and use
this result to give a simple expression for the renormalization of the exciton binding energies
in terms of physical macroscopic quantities. In Sec. 5.6 we discuss effects beyond the virtual
exchange of a phonon focusing especially on polaron interference effects. In Sec. 5.8 and 5.9
we discuss future directions focusing on the imaginary part of the phonon correction as well
as the screening of excitons due to other low energy bosonic excitations, using the carrier
plasmon is a specific example of recent work in this space.



CHAPTER 5. PHONON SCREENING OF EXCITONS IN SEMICONDUCTORS:
HALIDE PEROVSKITES AND BEYOND 55

5.2 Electronic and Ionic Contributions to the

Screened Electron-Electron Interaction

Central to the framework presented here is the equivalent treatment of electronic and
ionic contributions to the screened Coulomb interaction, W . As discussed by Hedin and
Lundquist [22], and reviewing in Chap. 2, W can rigorously be written as the sum of an
electronic, W el, and ionic (or phonon), W ph part, explicitly in the frequency domain,

W (r, r′;ω) = W el(r, r′;ω) +W ph(r, r′;ω). (5.1)

where the separation highlights the fact that both the electronic and ionic degrees of freedom
independently screen the bare electron-electron interaction.

The electronic contribution to the screened interaction is often expressed in frequency
space as

W el(r, r′, ω) = ε−1(r, r′, ω)vc(r− r′). (5.2)

where ε(r, r′, ω) and vc(r − r′) denote the frequency dependent (optical) dielectric func-
tion and bare Coulomb interaction, respectively. This form is particularly convenient for
numerical calculations where ε(r, r′, ω) is frequently computed within the random-phase ap-
proximation (RPA). By contrast the general form of W ph is less familiar. In Ref [22] it is
given as

W ph(r, r′;ω) =
1

Nq

∑
qν

gqν(r)Dqν(ω)g
⋆
qν(r

′), (5.3)

where the phonon propagator, Dqν(ω), and electron-phonon matrix elements, gqν(r), are
given by

Dqν(ω) =
1

ω − ωqν + iη
− 1

ω + ωqν + iη
, (5.4)

and

gqν(r) =

∫
d3r′ε−1(r, r′)gbqν(r

′), (5.5)

respectively. Here ωqν are the phonon frequencies associated with phonon with crystal mo-
mentum q in branch ν while η is an infinitesimal positive number which ensures correct
time-ordering. In Eq. 5.5, we have expressed the screened electron-phonon interaction in
terms of the bare electron-phonon interaction, gb(r) = ∂qνVion(r), with ∂qνVion(r) symboli-
cally denoting the change in the ionic part of the potential upon displacing ions along phonon
mode (qν).

To build intuition for these expressions it is helpful to write the W el and W ph as a series
in the electronic polarizability, Pe. Recall the relation between ε−1 and Pe, namely,

ε−1 =
1

1− vcPe

= 1 + vcPe + vcPevcPe + · · · ,
(5.6)
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where space and time indices have been suppressed and it is understood that the notation
vcPe implies

∫
d3r′vc(r, r

′)Pe(r
′, r′′, ω). Substituting this expansion in Eq. 5.2 for W el, we

find

W el = ε−1vc

= (vc + vcPevc + vcPevcPevc + · · · ).
(5.7)

At lowest order in perturbation theory Pe(rt, r
′t′) = iG(rt, rt′)G(r′t′, rt) where G(rt, rt′)

is the single particle Greens function. At this order, we physically associate Pe with the
creation of a virtual electron hole-pair. Eq. 5.7 can then be interpreted as screening of the
Coulomb interaction by virtual electron-hole pairs with each subsequent term accounting for
an additional screening event.

We can develop similar microscopic intuition for the W ph by expressing it directly as a
function of the irreducible polarizability, Pe. Plugging Eq. 5.6 into 5.5 we find

g = ε−1gb

= gb + vcχ0gb + vcχ0vcχ0gb + · · · .
(5.8)

Then, plugging Eq. 5.8 into the definition of W ph given in Eq. 5.3 and explicitly retaining
all terms up to 2nd order in vc, we arrive at the following expression

W ph = gDg⋆

= (gb + vcPegb + vcPevcPegb + · · · )D(g⋆b + vcPeg
⋆
b + vcPevcPeg

⋆
b + · · · )

= gbDgb+

vcPegbDg
⋆
b + gbDg

⋆
bPevc+

vcPevcPegbDg
⋆
b + gbDg

⋆
bPevcPevc+

· · · .

(5.9)

We find that W ph has nearly the same from as W el but with a phonon propagator gbDg
⋆
b

inserted at every possible position. It is worth pausing to note the obvious asymmetry.
We observe that for a general term in this expansion, the Coulomb interaction can “fire”
many times – i.e. a virtual photon can be exchanged many times – however a phonon is
never exchanged more than once per term. Physically we expect this to be a reasonable first
approximation since the Coulomb interaction is mediated on a much shorter time scale than
the those associated with ionic motion.

To build additional insight, and connect with familiar textbook expressions, we explicitly
derive an expression for W ph assuming the screening is mediated by a single dispersionless
longitudinal optical phonon mode with frequency ωLO which couples to electrons through a
Fröhlich vertex with the form

gq(r) =
i

|q|

[
4π

NV

ωLO

2

(
1

ε∞
− 1

ε0

)] 1
2

eiq·r. (5.10)



CHAPTER 5. PHONON SCREENING OF EXCITONS IN SEMICONDUCTORS:
HALIDE PEROVSKITES AND BEYOND 57

Plugging Eq. 5.10 and 5.4 into Eq. 5.3, we find

W ph(r, r′;ω) =

[(
1

ε∞
− 1

ε0

)
ω2
LO

ω2 − ω2
LO + iη

]
vc(r− r′). (5.11)

We immediately recognize the term in square brackets as the dynamical lattice contribution
to the dielectric function derived in elementary treatments of the subject from the motion
of a harmonic oscillator. For ω ≫ ωLO, W

ph → 0 reflecting the fact that at high frequencies
the ions can not adjust quickly enough to screen the excitation. While in the ω = 0 limit,
W ph(ω = 0) = (ε−1

0 − ε−1
∞ )vc. When this W ph(ω = 0) is added to W el(ω = 0), one finds

W (ω = 0) = ε−1
0 vc as expected.

In the following sections we detail how to rigorously include both W el and W ph in the
GW -BSE approach.

5.3 The GW ph correction

As discussed in Chap. 2, when Hedin’s equations are extended to include ionic motion, the
first order self-energy correction takes the from Σ = iGW where W is given by Eq. 5.1.
The electronic contribution to the screened interaction gives rise to the usual GW approxi-
mation (here GW el), while the phonon contribution gives rise to the Fan-Migdal self-energy
correction. Explicitly

Σph
nn′(k, ω) =

i

2π

∫
G(r, r′;ω + ω′)W ph(r, r′;ω′)eiηω

′
dω

=
∑
mqν

⟨nk|g⋆νq(r)|mk+ q⟩ ⟨mk+ q|gνq(r′)|n′k⟩

×
[

fmk+q

ω − Emk+q + ωνq − iη
+

1− fmk+q

ω − Emk+q − ωνq + iη

] (5.12)

where the electron-phonon self-energy Σph
nn′;k(ω) = ⟨nk|Σph(r, r′;ω)|n′k⟩ while Enk, |nk⟩,

and fnk, denote the eigenenergy, Bloch eigenstate, and Fermi-Dirac occupation factor (at
T = 0K) for an electron with band index n and crystal momentum k.

The diagonal component of the electron-phonon self-energy is routinely computed in
standard electronic software packages [151]. Physically, the real part of this self-energy gives
rise to the renormalization of the electronic eigenvalues due to electron-phonon interactions.
This self-energy correction reduces to the Fröhlich’s large polaron analysis in the limit where
(i) the general electron-phonon matrix element is replaced with the Fröhlich vertex (see
Eq. 5.10), (ii) the phonon frequency is replaced with a single dispersionless mode, ωLO, and
(iii) isotropic, parabolic bands with effective mass, m are assumed, explicitly Ek = k2/2m.
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With these approximations,

Re[Σph(k, Ek)] =
−αω3/2

LO√
Ek

sin−1

(
Ek

ωLO

)1/2

= −αωLO + Ek

(
1− α

6

)
+ · · · ,

(5.13)

where, atomic units continue to be used throughout and α =
√
m/(2ωLO)(ε

−1
∞ − ε−1

0 ). In

the second line we have expanded in arcsine to second order in
√
Ek/ωLO. We arrive at the

usual result; the interaction with the polar phonon lowers the electron energy by amount and
−αωLO and increase the effective mass to m⋆ = m/(1− α/6). The latter will be important
in Sec. 5.10 when we discuss polaronic effects on the renormalization of the exciton binding
energy.

The imaginary part of Σph also contains physical information, namely it is proportional to
the phonon-limited relaxation time, i.e. the time between electron-phonon scattering events.
Explicitly for the diagonal component we find

Im[Σph
nn(k, Enk)] = π

π

Nq

∑
mνq

|gnmν(k,q)|2

×
[
(1− fmk+q)δ(Enk − Emk+q − ωqν) + fmk+qδ(Enk − Emk+q + ωqν)

]
.

(5.14)

Making the same approximations as above it is possible to derive a model expression for this
quantity,

Im[Σph(k, Ek)] = α

√
ω3
LO

Ek

ln

[√
ωLO + Ek +

√
Ek√

ωLO + Ek −
√
Ek

]
. (5.15)

Many of the following sections will be devoted to deriving expressions similar to those pre-
sented here but at the exciton level.

5.4 The Bethe-Salpeter Equation Approach

As discussed in Chap. 2, in the standard ab initio reciprocal-space GW -BSE approach, the
BSE can be written, in the Tamm-Dancoff approximation [Rohlfing2000, 152], as

(Eck − Evk)A
S
cvk +

∑
c′v′k′

Kcvk,c′v′k′(ΩS)A
S
c′v′k′ = ΩSA

S
cvk, (5.16)

where Eck and Evk are the quasiparticle energies of the free electron and hole with band
indices and wavevectors ck and vk, respectively, usually calculated within the GW approx-
imation [43, 53]. Exciton energies and expansion coefficients, in the electron-hole basis, are
given by ΩS, and A

S
cvk = ⟨cvk|S⟩ respectively, with S the principal quantum number for the

exciton, and |cvk⟩ the product state of an electron-hole pair, where the components of the
products are typically Kohn-Sham wave functions computed with DFT [153].
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The electron-hole kernel, K, couples products of the single-particle states and is, at lowest
order, written as the sum of two terms, a repulsive exchange term, KX, which is negligible
for weakly bound excitons [54], and an attractive direct term, KD, given by, as in Ref. [54],

KD
cvk,c′v′k′(Ω) = −

〈
cvk

∣∣∣∣∣ i2π
∫
dω e−iωηW (r, r′;ω)×[

1

Ω− ω − (Ec′k′ − Evk) + iη
+

1

Ω + ω − (Eck − Ev′k′) + iη

]∣∣∣∣∣c′v′k′

〉
,

(5.17)

where η is again a positive infinitesimal quantity. In general, the BSE must be solved self-
consistently, as KD depends on ΩS and we use the convention

⟨cvk|f(r, r′)|c′v′k′⟩ ≡
∫
d3rd3r′ψ⋆

ck(r)ψc′k′(r)f(r, r′)ψvk(r
′)ψv′k′(r′).

Plugging Eq. 5.1 into Eq. 5.17, we see that there are two contributions to the direct kernel,
one due to electronic screening, W el, which we label Kel and one due to phonon screening,
W ph, which we label Kph. To date, the vast majority of contemporary BSE calculations only
use Kel when constructing the direct kernel. Further it is common practice to neglect the
frequency dependence in evaluating Kel so that

Kel
cvk;c′v′k′ = −⟨cvk|W el(r, r′, ω = 0)|c′v′k′⟩ , (5.18)

an approximation which is valid in the limit where the intrinsic carrier plasmon frequency is
much greater than the exciton binding energy. To the best of our knowledge an equivalent
expression for Kph, suitable for present day first principles BSE calculations, has yet to
appear in the literature. To derive this correction, we plug Eq. 5.3 into Eq. 5.17 and perform
the frequency integral, an easy task given the simple pole structure of the phonon propagator,
Dqν (see Eq. 5.4). The result is

Kph
cvk,c′v′k′(Ω) =− gcc′ν(k

′,q)g∗vv′ν(k
′,q)

×
[

1

Ω− (Ec′k′ − Evk)− ωqν + iη
+

1

Ω− (Eck − Ev′k′)− ωqν + iη

]
,

(5.19)

where gnmν(k
′,q) = ⟨mk′ + q|gqν |nk′⟩, with q = k− k′.

Eq. 5.19 represents a central result of work. In its present form, Kph can be added directly
to the electron-hole kernel and the BSE solved to include the effect of phonon screening. In
practice we find it simpler to work with the phonon kernel in the exciton basis, explicitly

Kph
SS′(Ω) =

∑
cvkc′v′k′

AS⋆
cvkK

ph
cvk,c′v′k′(Ω)A

S
c′v′k′ , (5.20)

In this basis, exciton eigenenergies including renormalization due to phonons, denoted by Ω,
are found through solving the characteristic equation

det[(ΩS − Ω)δSS′ +Kph
SS′(Ω)] = 0, (5.21)
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where ΩS denotes exciton eigenenergies before phonon effects are included. When the entire
matrix ⟨S|Kph|S ′⟩ is used and Eq. 5.21 solved, the solutions are guaranteed to give the same
result as solving the BSE directly with ⟨cvk|Kph|k′c′v′⟩ – i.e. we have just chosen to solve
the BSE in a different basis. An advantage to working in this basis is that diagonal elements
of Kph

SS′ are often small relative to the off diagonal elements. In the limit where off-diagonal
elements are entirely neglected the characteristic equation decouples to give

∆ΩS = Re[Kph
SS(ΩS +∆ΩS)], (5.22)

where ∆ΩS = Ω − ΩS, is the change in the exciton eigenenergy due to phonon screening.
As written, Eq. 5.22 must be solved self-consistently as is typical in Brillouin-Wigner per-
turbation theory. Taking ∆ΩS = 0 on the right-hand side of this equation we arrive at the
Rayleigh-Schrödinger result, namely

∆ΩS = Re[Kph
SS(ΩS)]

= −
∑

cvk,c′v′k′

AS⋆
cvkgcc′ν(k

′,q)g∗vv′ν(k
′,q)AS

c′v′k′

×
[

1

ΩS − (Ec′k′ − Evk)− ωqν

+
1

ΩS − (Eck − Ev′k′)− ωqν

]
.

(5.23)

It is possible to also derive this final expression directly from second order Rayleigh-Schrödinger
perturbation theory. In the next section we compute ∆ΩS after making several justified ap-
proximations.

5.5 Results for the CsPbX3 Family

We now use the above formalism to study CsPbX3 lead halide perovskites, with X = Cl,
Br, I. For all calculations on lead-halide perovskites, we use experimental lattice parameters
reported in Refs. [154, 155], and relax the atomic positions. We study the low temperature
orthorhombic phase, with lattice parameters summarized in Table 5.1. All DFT calcula-
tions are performed using the generalized gradient approximation within the Perdew Burke
Erzerhof parametrization (PBE) [156], including spin orbit coupling as implemented in the
Quantum Espresso package [157]. For all calculations we use the norm conserving fully
relativistic pseudopotentials from the PseudoDojo database [88, 158], with the following va-
lence electrons configuration: Pb (5d10 6s2 6p4), I (5s2 5p5), Br (4s2 4p5), Cl (3s23p5) and Cs
(5s2 5p6 6s1). We use a plane wave cutoff of 50 Ry and discretize the Brillouin zone using a
half shifted Monkhorst-Pack grid of 6× 4× 6, following the aspect ratio of the unit cell.

We calculate the quasiparticle eigenvalues of the lead-halide perovskites with a one-shot
G0W0 approximation as implemented in the BerkeleyGW code [13]. We calculate the static
screened Coulomb interaction within the random-phase approximation (RPA) [50, 51], and
extend this dielectric function to finite frequencies using the Godby-Needs plasmon pole
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a (Å) b (Å) c (Å) Space Group Ref.
CsPbCl3 7.902 11.248 7.899 Pnma [154]
CsPbBr3 8.250 11.753 8.204 Pnma [154]
CsPbI3 8.856 8.576 12.472 Pbnm [155]

Table 5.1: Experimental lattice parameters and space groups of the orthorhombic phases of the
three halide perovskites studied in this work. Complete structural information can be found in the
references cited in the table.

model [52]. We use a half-shifted 4 × 4 × 4 k-point mesh, a 14 Ry plane wave cutoff and
1000 bands to calculate the dielectric screening. In addition, we sum over 1000 bands in
order to calculate the electronic self-energy on a Γ-centered 4×4×4 k-point mesh, following
convergence studies reported in Ref. [159], and used the static remainder approximation to
optimize convergence with respect to the number of empty states [160]. These computational
parameters are similar to previous GW calculations on the quasiparticle band gap in halide
perovskites, and are expected to yield band gaps converged within 0.1 eV [155, 159, 161,
162].

In Table 5.2 we compare calculated G0W0 band gaps and reduced effective masses to
experiment. The computed gaps consistently underestimate experiment by up to 0.5 eV, a
shortcoming of one-shot G0W0 approximation previously identified in a number of compu-
tational studies [135, 163–165]. The reduced effective masses of CsPbI3 and CsPbBr3 agree
well with recent magneto-optical measurements at high magnetic fields, while for CsPbCl3
the reduced mass is slightly underestimated with respect to experiment [9, 130].

EPBE
g (eV) EG0W0

g (eV) Eexp
g (eV) µ(me) µexp(me)

CsPbI3 0.85 1.46 1.7 [166] 0.142 0.202 ± 0.01
CsPbBr3 0.95 1.85 2.4 [166] 0.102 0.126 ± 0.02
CsPbCl3 1.35 2.74 3.0 [167] 0.93 0.114 ± 0.01

Table 5.2: Summary of band gaps calculated within DFT+SOC and G0W0@PBE + SOC in this
work, and compared with experimental band gaps reported in Refs. [166, 167].

In Tab. 5.4 we report exciton binding energies calculated within the standard BSE ap-
proach, i.e. including only electronic screening when constructing the electron-hole kernel.
We calculate the exciton binding energy by solving the Bethe-Salpeter equation within the
Tamm-Dancoff approximation, as implemented in the BerkeleyGW code [13]. We construct
the electron-hole kernel on a 4×4×4 k-point grid, using 20 valence and 20 conduction bands,
which is then interpolated to a fine mesh with 4 valence and 2 conduction bands (spin de-
generate). It was previously shown in the case of MAPbI3 that the exciton binding energy
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is sensitive to the density of the k-point mesh used to diagonalize the BSE Hamiltonian,
which constitutes the principal bottleneck for the calculation of exciton binding energies in
halide perovskites [146]. In order to reach very dense k-point meshes, we employ the patched
sampling scheme, originally introduced in Ref. [152], whereby for the diagonalization of the
BSE Hamiltonian we take into account only k-points in a small patch around the Γ-point.
The electron-hole interaction kernel and quasiparticle eigenvalues are interpolated on the
fine grid using the method described in Ref. [12, 13].

In agreement with previous calculations [146, 147], we find that exciton binding ener-
gies neglecting phonon screening overestimate experiment by up to a factor of 3. Despite
these discrepancies, after blue-shifting the calculated optical absorption spectrum to align
with experiment, we find the lineshape to be in good agreement with measurements at low
temperature as seen in Fig. 5.1. We further observe that low-lying optical excitations are
well described using a Mott-Wannier hydrogen model. In Figure 5.2 we compare the BSE
solutions for the 1s and 2s excitonic states with those predicted by the hydrogen model with
µ calculated from G0W0 band structure, and with ε∞ calculated within the RPA [50, 51]. We
find a maximum difference between the hydrogenic model and the standard BSE calculations
of 6 meV for both 1s and 2s excitonic energies across all three halide perovskites. Finally,
in Figure 5.3, we plot the exciton expansion coefficients obtained from our BSE against the
analytic expressions for hyrodgenic 1s and 2s states. We take a = ε∞/µ and find excellent
agreement between the BSE excitonic wave functions and the analytic forms.

Figure 5.1: Optical absorption spectrum calculated within GW/BSE (continuous line), RPA
(dotted line), and from experiment (grey dots) [167] for CsPbCl3. Calculated spectra are
blue-shifted by 0.3 eV to match the experimental onset from Ref. [167].
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Figure 5.2: Exciton binding energies predicted from GW/BSE (filled circles) and the hydro-
gen model (lines).

ωLO (meV) ω exp
LO (meV) ε∞ εexp∞ ε0

CsPbI3 14 14.2 5.5 N/A 22.5
CsPbBr3 18 17.9/20.4 4.5 N/A 18.6
CsPbCl3 26 25.3/28.0 3.7 3.7 17.5

Table 5.3: Summary of the computed and experimental LO phonon frequencies, ωLO, optical,
ε∞, and static, ε0, dielectric constants.

To reduce the computational cost associated with a direct evaluation of Eq. 5.23, we
make two additional approximations. First we use the analytic hydrogenic expressions for
the 1s exciton coefficients, namely

AS
cvk → Ak =

(2a)3/2

π

1

[1 + a2k2]2
(5.24)

where a = ε∞/µ, denotes the exciton radius, an approximation which has already been
justified in Fig. 5.3. And second, we approximate the electron-phonon matrix elements
using a multi-mode, ab initio Fröhlich vertex, introduced in Ref. [23]:

gmnν(k,q) → gqν = i
4π

Vuc

∑
κ

(
1

2NMκωqν

)1/2
q · Zκ · eκν(q)

q · ε∞ · q
, (5.25)
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Figure 5.3: Exciton radial probability density (main) and probability of localization (inset)
in reciprocal space, calculated from GW/BSE and the hydrogen model for 1s (dark red) and
2s (dark blue) states.

where Vuc is the unit cell volume, Mκ are the atomic masses, Zκ Born effective charge tensor
and eκν(q) are the eigenvectors corresponding to the phonon modes, ωqν , for each atom
indexed by κ. Here the justification is again given through comparison of the multimode-
Fröhlich model with the electron-phonon vertex computed from density functional pertur-
bation theory. In Fig. 5.4, we show that for small q, the two vertices agree very well.

With these simplifications, Eq. 5.23 reduces to

∆ΩS = −
∑
kqν

Ak+q

[
|gqν |2

ΩS − (Eck − Evk+q)− ωqν

+
|gqν |2

ΩS − (Eck+q − Evk)− ωqν

]
Ak

≡ −
∑
kq

Ak+qK
ph(k,q)Ak,

(5.26)

where we have dropped the primes on the band indicies since we are now working in a two
band model. To recover the Brillouin-Wigner result we could replace ΩS appearing in the
energy denominator with ΩS+∆ΩS and then solve the equation self consistently. In practice
we find the Brillouin-Wigner result and Rayleigh-Schrödinger result differ by less than 1 meV
so we will stick with Eq. 5.26 going forward. Finally, by definition, the change in the exciton
binding energy is ∆EB = −∆ΩS.

The standard BSE exciton binding energies and phonon screening corrections are sum-
marized in Table 5.4 for all three CsPbX3 perovskites. We find that phonon screening
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Figure 5.4: In panel (a) the DFPT phonon dispersion is shown. The overlayed red and yellow
circles are the magnitude of the phonon vertex |q|gq for the CBM and VBM respectively. In
panel (b) the ratio of the DFPT to Fröhlich vertex is plotted as a function of q.

contributes to the reduction of the exciton binding energy between 12% and 17% for the
CsPbX3 series, improving the agreement with measurements reported in Refs. [166, 168,
169]. However, for CsPbI3, our calculated relative phonon screening correction of 17% is
less than half of the 50% correction predicted in Ref. [147]; as we show in the following,
this discrepancy can be attributed to electronic band dispersion contributions, accounted for
here but neglected in prior work.

EB (meV) ∆EB (meV) Eexp
B (meV)

CsPbI3 47 -8 15± 1
CsPbBr3 70 -12 33± 1; 38± 3
CsPbCl3 146 -17 72± 3; 64± 1.5

Table 5.4: Exciton binding energy computed from BSE, EB with only the electronic contri-
bution, the correction due to phonon screening ∆EB, and experimentally measured values.

To further investigate the contribution of phonon screening to the exciton binding energy,
we perform a spectral decomposition on the phonon kernel in Fig. 5.5. For all three halide
perovskites, we find that the contribution of the highest lying IR active phonons accounts for
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more than 90% of the expectation value of Kph, with the remaining contribution due to the
lower energy LO modes. Furthermore, as shown in Fig. 5.5, the phonon kernel drops sharply
outside of the q → 0 range, a trend attributed to the strong localization of the exciton
wavefunction around the center of the Brillouin zone, and the fast decay of the long-range
electron-phonon vertex in reciprocal space.

Figure 5.5: Exciton wave functions plotted along the high symmetry path for CsPbCl3
(a), CsPbBr3 (b) and CsPbI3 (c). Phonon decomposition of the phonon screening correction
computed using the ab initio Fröhlich vertex (dark blue circles) overlayed over the phonon
dispersion spectrum CsPbCl3 (d), CsPbBr3 (e) and CsPbI3 (f) from DFPT. The size of the
points is proportional the phonon screening correction, in logarithmic scale.

5.6 Relation to the Haken Potential and Derivation

of Model Expressions

As pointed out by Strinati [54], the phonon kernel is closely related to Haken’s potential.
We briefly outline the connection here and use these results to derive a simple correction
to the exciton binding energy in terms the ratios ωLO/EB and ε∞/ε0. We take Eq. 5.23 as
our starting point and insert Fourier transforms to express the first order correction as an
integral in real space. We find

∆ΩS =

∫
d3rd3r′F ⋆(r)veff(r, r

′)F (r′) (5.27)
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where

F (r) =
∑
k

eik·rAk =
1√
πa3

e−r/a, (5.28)

and
veff(r, r

′) =
∑
kq

ei(k+q)·rKph(k,q)e−i(k+q)·r′ , (5.29)

with Kph(k,q) is defined in Eq. 5.23. For general Kph(k,q), veff(r, r
′) is nonlocal. However

in the limit where Kph(k,q) depends only on q, veff becomes entirely local in r and takes the
form of an effective central potential – ie, veff(r, r

′) = veff(r)δ(r−r′). To derive a specific from
forKph starting from Eq. 5.23, we now make several approximations. We (i) restrict ourselves
to a single dispersionless longitudinal-optical mode with energy ωLO which couples to both
the electron and hole through a traditional Fröhlich vertex (see Eq. 5.10), (ii) assume the
conduction and valence energies appearing in Eq. 5.23 are described near the band edge by
parabolic bands with effective masses me and mh respectively. Under these approximations,

veff(r, r
′) =

ωLO

2

(
1

ε∞
− 1

ε0

)∑
kq

ei(k+q)·r4π

q2

[
1

EB + k2/2me + (k+ q)2/2mh + ωLO

+
1

EB + (k+ q)2/2me + k2/2mh + ωLO

]
eik·r

′
,

(5.30)

where EB is the exciton binding energy. For excitons which are very localized in k-space,
such as hydrogenic excitons, it may be appropriate to neglect their k dependence, then the
Fourier transform is readily performed to arrive at the following effective potential

veff(r, r
′) =

1

2

ωLO

ωLO + EB

(
1

ε∞
− 1

ε0

)
1

r
(e−r/re + e−r/rh)δ(r− r′), (5.31)

where, re,h take the form

re,h =

√
1

2me,h(EB + ωLO)
. (5.32)

In the limit EB → 0, re,h coincides with the conventional definition of the polaron radius.
Further, in this limit, veff(r) reduces to the effective potential derived by Haken, for an
exciton coupled to a polar phonon. Going forward, we retain the EB dependence as in many
systems of interest the exciton binding energy is similar or even larger in magnitude than
the energy of the screening phonon. To compute the change in energy associated with this
effective potential, we plug Eq. 5.31 into Eq. 5.27 to find

∆EB = −2ωLO

(
1− ε∞

ε0

)
1

(1 + ωLO/EB)(1 +
√

1/2 + ωLO/(2EB))2
(k = 0 approx.),

(5.33)
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In Ref. [125], instead of neglecting the k dependence in Kph(k,q), we neglect the q depen-
dence of the interacting phonon. With this approximation, a similar, though not entirely
equivalent, expression for the change in exciton binding energy can be derived. We find

∆EB = −2ωLO

(
1− ϵ∞

ε0

) √
1 + ωLO/EB + 3(

1 +
√

1 + ωLO/EB

)3 (q = 0 approx.). (5.34)

Since the exciton wave function is highly localized at the center of the Brillouin zone (see
Fig. 5.5), it is tempting to assume that the dispersion of the electronic band structure may
also be neglected. This approximation leads to an even simpler expression for the change in
the exciton binding energy, namely

∆EB = −2ωLO

(
1− ε∞

ε0

)
1

1 + ωLO/EB

(k = q = 0 approx.). (5.35)

We note that in the ωLO/EB ≫ 1 limit Eqs. 5.33, 5.34, and 5.35 approach ∼ 1/3, 1 and 2
times the quantity −ωLO(1− ε∞/ε0) respectively. The discrepancy highlights the care with
which one must use when working with these model expressions. In Tab. 5.5, we compare
the results of these simple analytic models to the numerical results computed with Eq. 5.23.
For the lead-halide perovskites, we find that Eq. 5.34 performs best. We emphasize that
this may not always be the case and the performance of a given model maybe be material
specific. Nevertheless, in the following paragraphs we will work with this particular model
to build a qualitative understanding for how the exciton binding energy is renormalized of
over a wide range of material parameters.

Numeric (meV) Eq. 5.33 (meV) Eq. 5.34 (meV) Eq. 5.35 (meV)
CsPbI3 -8 -5 -9 -15
CsPbBr3 -12 -6 -12 -18
CsPbCl3 -17 -9 -19 -30

Table 5.5: Summary of how model corrections in Eqs. 5.33- 5.35 compare with the numeric results
computed according to Eq. 5.23 .

To examine phonon screening trends across a wide range of semiconductors and insulators,
we plot the phonon kernel relative to the bare exciton binding energy EB, |∆EB|/EB, as a
function of EB/ωLO, and ε0/ε∞, in Figure 5.6, following Eq. 5.34. We overlay our calculations
for the CsPbX3 series, as well as some other isotropic semiconductors and insulators such
as CdS, GaN, AlN and MgO. In all cases considered, the inclusion of phonon screening
effects reduces the exciton binding energy significantly, bringing calculated values in closer
agreement with experiment.

Particularly for halide perovskites, our calculations reconcile prior reports, and clearly
establish the importance of phonon screening effects for excitons in halide perovskites, in
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Figure 5.6: Color map of ∆EB/EB, calculated using Eq. 5.34, as a function of ε0/ε∞ and
EB/ωLO. The isoline values are marked at the upper and rightmost edge of the plot. The
color of each circle corresponds to the ratio (EB − Eexp

B )/EB, as read on the color map.

agreement with Ref. [147]. However, corrections due to phonon screening do not fully account
for the discrepancy between calculated and measured exciton binding energies. Consider-
ing the systematic overestimation of exciton binding energies for all systems beyond halide
perovskites, we expect that the net contribution of polaronic mass enhancement [170] and
interference effects [132] will further reduce the exciton binding energies and improve the
agreement with experiment, as proposed by Ref. [17, 132] for MgO and several other semi-
conductors. However, G0W0-BSE calculations of halide perovskites are known to exhibit a
strong dependence to the mean-field starting point [164], and the electron-phonon matrix
elements, computed starting from the standard Kohn-Sham eigensystem may underestimate
couplings obtained from higher level theory [171, 172]. Therefore, a detailed benchmarking
of these effects is required, in addition to simply including polaronic effects. While we reserve
this detailed analysis to future studies, we emphasize that the relative phonon screening cor-
rection derived in this study is robust, and the formalism introduced here is independent of
the choice of computational setup.

As a general trend, Figure 5.6 highlights that the magnitude of the phonon screening cor-
rection increases as the ratio EB/ωLO decreases, and in systems with a large static dielectric
constant. Further, all parameters appearing in Eq. 5.34 and depicted in Figure 5.6 can be
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readily computed or measured experimentally so that this simplified picture can be used in
both theoretical and experimental contexts to directly assess the expected phonon screen-
ing correction to the bare exciton binding energy, and identify systems for which phonon
screening is expected to be significant.

5.7 Polaronic Effects

Up to this point we have neglected the renormalization of the underlying electronic states
which compose the exciton. However, the analysis of Sec. 5.3 suggests that, from a theoretical
standpoint, this renormalization should be included. To qualitatively appreciate the effect
of naively including polaronic effects, we assume both the electron and hole couple with
the same strength, α, to an LO phonon. In the weak coupling limit, the exciton binding
energy is enhanced to EB → EB/(1 − α/6) which follows immediately from the Eq. 5.13
and the linear dependence of EB on the reduced effective mass. In all model expressions
for renormalization of the binding energy due to phonon effects, we find that the correction,
∆EB, decreases (becomes less negative) with increasing EB. Both these results will tend
to increase the exciton binding energy, undoing the effect of Kph and worsening agreement
with experiment.

That naive renormalization of the underlying electron and hole bands leads to worse
agreement with experiment has been pointed out before [132] and is linked to so-called
polaron interference effects. To illustrate the concept of polaron interference, in Fig. 5.7 we
give a high level illustration of separating an exciton-polaron. When the electron and hole
polaron are far apart, the lattice can relax about the carriers without issue. We refer to the
ionic distortion which follows the electron (hole) as a polaron cloud. Now when the electron
and hole are nearby, their polaron clouds overlap and the ionic relaxation is reduced. We refer
to this overlap as polaron interference. Clearly the magnitude of the reorganization energy
associated with the exciton, λxct, is smaller than the sum of the reorganization energies of
an electron and hole which are well separated, λe + λh.

To see the effect polaron interference has on the exciton binding energy, consider a system
with fundamental gap, Eg, and exciton energy ΩS. Before phonon screening is taken into
account, the binding energy is given by EB = Eg − ΩS (with this convention the binding
energy is positive). When the polaronic interference is taken into account both the energy
gap and exciton energy are reduced by λe + λh and λxct respectively. So that the binding
energy is now EB = (Eg − (λe + λh))− (ΩS − λxct). The change in the binding energy after
including polaronic interference is ∆EB = λxct − (λe + λh) < 0, where the last inequality
follows from the fact that (λe + λh) > λxct – i.e. the energy associated with the sum of
individual electron and hole relaxation exceeds the energy associated with relaxation about
entire exciton due to interference effects as discussed above.

The effect is difficult to capture with our formalism since ionic relaxation is typically
poorly described with perturbative methods. In our present formulation it is especially
difficult given we have only included the lowest order term in W ph. In Sec. 5.2 we saw that
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Figure 5.7: Depiction of the polaron cloud interference for nearby electron-, hole-polarons
(left most panel) and distant electron-, hole-polarons, (rightmost panel). Grey dots are the
pristine lattice while teal dots show how the lattice distorts in the presence of the electon
and hole.

this included the exchange of only a single phonon. By contrast, we expect that the polaron
interference effect we have just described would require multiple phonon propagators. It is
possible that higher order perturbation theory may be able to capture this effect and it will
be interesting to investigate this in the future.

5.8 Phonon Assisted Exciton Dissociation

In this work, we focused exclusively on the real part of the phonon kernel, Re[Kph], however
the imaginary component, Im[Kph], also contains valuable information. Specifically, the
imaginary part is related to rate of phonon assisted exciton dissociation into free electron-
hole pairs, namely

Im[Kph
SS(ΩS)] = π

∑
cc′vv′kq

AS⋆
cvk+qgcc′ν(k,q)gvv′ν(k,q)A

S
c′v′k

×
[
δ(ΩS − (Ec′k − Evk+q)− ωqν) + δ(ΩS − (Eck+q − Ev′k)− ωqν)

] (5.36)

To understand Eq. 5.36, we start with the delta functions. The delta functions enforce the
energy/momentum conservation laws

ΩS − ωqν = (Ec′k+q − Evk)

ΩS − ωqν = (Eck − Ev′k+q).
(5.37)

The energy conservation here is for a process where an initial exciton with energy ΩS emits
a phonon with energy with energy ωqν and scatters a free electron hole pair with energy
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(Eck+q −Evk) or (Eck −Evk+q). That there are two energy conditions reflects the fact that
the phonon momentum can be imparted either to the electron or hole and we must weigh
both processes equally when computing the dissociation rate.

For direct gap materials we expect the energy condition given in Eq. 5.37 is never met
for bound excitons because ΩS < Eg where Eg is the fundamental gap. By contrast for the
indirect gap materials, for instance silicon, where the band gap is 3eV and the indirect gap 1.1
eV, we expect there should be some phase space for this scattering event to occur. If Eq. 5.36
is generalized to include finite temperatures, we expect additional delta functions which allow
for processes where a bound exciton absorbs a phonon and scatters to a free electron-hole
state. The result can also be derived directly from Rayleigh-Schrödinger perturbation theory.

It would be of significant interest to derive an analytic approximation to Eq. 5.36 in the
spirit of those derived at the single electron and hole level in Sec. 5.3.

5.9 Screening of Excitons Due to Carrier Plasmon

The framework outlined here for including dynamical sources of screening beyond the usual
electronic contribution is of general nature and can be easily adapted to include other sources
of dynamical screening. An important example is screening due to carrier plasmons in doped
semiconductors. Briefly, in much the same way that polar phonons contribute to the total
screened Coulomb interaction, we expect carrier plasmons will also provide a contribution
to the dielectric function, namely

W plasmon(q, ω) =

[(
1

ε∞
− 1

ε0

)
ω2
p(q)

ω2 − ω2
p(q) + iη

]
vc(q). (5.38)

where ω2
p(q) is the carrier plasmon frequency, proportional to the doping density, n. Indeed

such a framework was previously explored in [173]. In work to be published we consider
the effect doping has on exciton properties in monolayer TMDs specifically MoTe2 explicitly
adapting Eq. 5.38 to include local field effects.

5.10 Conclusion

In summary, we generalized the ab initio Bethe-Salpeter equation approach to include both
electronic and phonon contributions to the screened Coulomb interaction, W , and studied
phonon screening effects on the electron-hole interactions in halide perovskites and other
important semiconductors. We showed that ab initio BSE calculations including phonon
screening can reduce the exciton binding energy of lead-halide perovskites significantly as
compared to electronic screening alone, reconciling two previous contradictory hypotheses on
the importance of phonon screening in metal-halide perovskites. We rationalized our results
by generalizing the Wannier-Mott model for excitons in a phonon-screened environment.
Within this model, we showed that phonon screening is important for other semiconductors,
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and can be traced back to four material specific parameters, µ, ωLO, ε∞ and ε0. We derived
a simple expression providing intuition for the importance of lattice vibrations on the exci-
tonic properties of materials and outlined a general, simple, and quantitative approach to
estimate the exciton binding energy correction using physical quantities that can be readily
calculated theoretically or measured experimentally. By introducing a general framework to
quantitatively account for phonon screening in ab initio BSE calculations, our study clarifies
the importance of phonon screening corrections, and provides a necessary foundation for
future treatment of polarons and higher order processes beyond two particle excitations for
these and other complex materials.
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Chapter 6

Exciton-Phonon Dephasing and
Linewidth From First-Principles in
Monolayer MoS2

This chapter is adapted from work done in collaboration with lead author Yang-Hao Chan,
as well as Mit Naik, Diana Qiu, and Felipe da Jornada. At the time of writing this work is
not yet in print.

6.1 Introduction

In low-dimensional or nanostructured semiconductors, the low-energy excitations are dom-
inated by strongly bound correlated electron-hole pairs known as excitons. Understanding
exciton energetics and dynamics is essential for diverse applications across optoelectronics,
quantum information and sensing, as well as energy harvesting and conversion. By now, it
is well-established that these large excitonic effects are a combined consequence of quantum
confinement and reduced screening in low dimensions [136, 174–176]. However, many chal-
lenges remain in understanding the dynamics of these excitons, especially when it comes to
correlating complex experimental signatures with underlying dynamical processes through
the use of quantitatively predictive ab initio theories.

Exciton-phonon interactions play a key role in determining exciton nonradiative dy-
namics, decoherence times, temperature-dependent behavior, linewidths, and diffusion. Ex-
perimentally, exciton-phonon interaction can be probed by various spectroscopic methods
including absorption, photoluminescence, and four-wave mixing measurements. For exam-
ple, the exciton-phonon coupling strength has been inferred for various transition metal
dichalogenides (TMDs), such as WSe2 and MoS2, based on the spectroscopic linewidth or
the evolution of exciton spectral intensity in pump-probe setups. However, the reported
lifetimes vary by an order of magnitude [177–179] as a consequence of variations in substrate
and sample preparations, highlighting the need for accurate first principles theories.
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On the theoretical side, ab initio methods for determining electron-phonon interactions
using density-functional perturbation theory (DFPT) are by now well-established [27, 180].
In the limit where the exciton binding energy is small, one can approximate the exciton-
phonon renormalization of the exciton energy and linewidth in terms of the electron-phonon
renormalization for the constituent electrons and holes of each exciton state [181], and it has
been demonstrated that such a simplified approach is nonetheless essential for reproducing
the experimental line-shape in optical spectra of monolayer MoS2 [136, 182]. At a higher
level of theory, one can also derive the exciton-phonon coupling matrix elements and the
self-energy within many-body perturbation theory [19, 24, 75, 183–187], and the diagonal
part of the exciton-phonon self-energy has been recently applied to study exciton-phonon
interactions in bulk hexagonal boron nitride [75, 188]. However, model calculations based on
the semiconductor Bloch equations suggest that off-diagonal contributions to the electron-
phonon self-energy, which have thus far been overlooked in ab initio calculations, may play
an important role in the exciton linewidth [189–192]. The full phase space of ab initio cal-
culations of exciton-phonon interactions in low-dimensional materials, where exciton effects
are strongest, has also not yet been explored, with extant studies limited to either frozen
phonons [193] or Γ-point only [194].

6.2 Exciton Dispersion and Relaxation in MoS2

Motivated by the great interest in exciton dynamics and the lack of a predictive ab initio
theory, we develop an ab initio theory to study exciton-phonon coupling and apply it to
compute both exciton relaxation and the lineshape of the absorption spectrum in monolayer
MoS2, a prototypical quasi two-dimensional (quasi-2D) material. Using a fully relativistic
formalism, we reveal that the relaxation time of the lowest-energy bright A exciton due to
exciton-phonon interactions is longer than that of the lower-energy spin forbidden states.
This counterintuitive result arises as a consequence of the selection rules of the exciton-
phonon coupling, which do not allow for direct intervalley scattering from the A state. We
show that phonon-mediated intervalley exciton scattering must be facilitated through other
valleys in the conduction band [195, 196]. Additionally, we find that the absorption spectrum
of the A exciton features an asymmetric lineshape due to interference effects from transitions
between distinct exciton bands, which cannot be understood in the context of previous ab
initio theories. The computed linewidth and energy shift in the absorption spectrum with
interference effects are in excellent agreement with experimental results.

Computational details for our calculation are given below. DFT calculations are per-
formed with the Quantum Espresso [86] package. We use PBE pseudopotentials [87] from
the SG15 ONCV potentials database [88, 197]. For the ground state calculation, we use a
k-mesh of 12×12× 1 and a plane wave energy cutoff of 80 Ry. A vacuum of 15 Å is chosen
to prevent spurious interactions between periodic images. The GW-BSE calculation is done
in the BerkeleyGW package [11–13]. A k-point grid of 24× 24× 1 with a subsampling of 10
points in the mini-Brillouin zone [198] and dielectric energy cutoff 10 Ry and 5000 bands are
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Figure 6.1: (a) Exciton dispersion of monolayer MoS2 including both spin-allowed and spin-
forbidden states. Color indicates the relaxation time due to exciton-phonon coupling at
300K. Dots with arrows indicate the internal spin structure of excitons at valleys. (b)
Electron band dispersion with a color map of spin expectation values. Energy transition
corresponding to excitons with center of mass momentum Q = Γ, Q = K, and Q = M
are shown with the labeled arrows. The other Q =M excitons with the transition from K ′

valley valence electron to Λmin conduction electron is not shown.

used in GW calculation. The frequency-dependence of the dielectric screening is computed
using the Hybertsen-Louie generalized plasmon pole model [11]. The direct band gap in our
DFT calculation is 1.77 eV and the GW corrected direct band gap is 2.27 eV. BSE with
finite exciton COM Q are solved on a uniform 48 × 48 grid including 4 conduction and 4
valence bands.

Phonon calculations are performed with the density functional perturbation theory method
(DFPT) implemented in the Quantum Espresso package. We solve phonon and perturbed
self-consistent potential on a uniform 48× 48 q-grid. Electron-phonon coupling matrix ele-
ments are then computed with EPW package [16, 62]
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We first analyze the exciton dispersion of MoS2 by solving the Bethe-Salpeter equation for
excitons with finite center-of-mass (COM) momentum Q. Fig. 6.1 (a) shows the dispersion
along a high symmetry path. The lowest energy exciton states at Γ are doubly degenerate
spin-forbidden (Stot = 1) dark excitons. We use the total spin Stot to label exciton states,
which is approximately a good quantum number in the K valleys even in the presence of
SOC. Two bright exciton states, corresponding to the ‘A’ peak, are about 20 meV higher in
energy. These bright exciton bands are doubly degenerate at Γ, with one band dispersing
linearly and one band dispersing parabolically, consistent with previous calculations [55,
74]. The lowest-energy exciton with Q = K consists of electrons and holes from the K
and K ′ valleys, respectively, (Fig. 6.1 (b)) and is a spin-forbidden state. In contrast, the
second-lowest Q = K exciton is a spin-allowed (Stot = 0) state. The lowest energy Q = M
exciton also consists of a spin-forbidden state – composed of a hole in the K ′ valley and an
electron in the conduction band valley along the Λ high-symmetry line (i.e., the Λmin valley)
–, while the second lowest-energy exciton is a spin-allowed state. This well-defined internal
spin-texture of the excitons, leads to strict selection rules for exciton-phonon coupling that
significantly extend the lifetime of the spin-allowed states, as we discuss later.

Exciton-phonon coupling matrix elements can be written as a superposition of electron-
phonon coupling matrix elements weighted by the exciton envelope function as derived in
previous works [19, 24, 75]. The lowest-order exciton-phonon self-energy expression derived
from many-body perturbation theory is similar to the Fan-Migdal term in the electron-
phonon self-energy and reads

ΣSQ(ω) =
1

Nq

∑
S′,q,ν,±

|GS′Sν(Q,q)|2(Nνq +
1
2
± 1

2
)

ω − ES′Q+q ∓ ωνq + iη
, (6.1)

where ES′Q+q is the exciton energy of a state with principle quantum number S ′ and a COM
momentum Q + q; ωνq and Nνq are the phonon frequency and Bose-Einstein occupation
factor with ν labeling the branch index and q the crystal momentum; Nq is the number of
the wavevectors sampled in the Brillouin zone; and finally, GS′Sν(Q,q) is the exciton-phonon
coupling matrix element encoding the probability amplitude for an exciton initially in state
(S,Q) to scatter to state (S ′,Q+q) through the emission or absorption of a phonon (ν,±q).
The real part of Eq. 6.1 determines exciton energy renormalization while the imaginary part
is proportional to the phonon-limited relaxation time of excitons.

We show in Fig. 1 (a) the calculated exciton dispersion and a color map of the exciton-
phonon relaxation times in monolayer MoS2 at 300K. In our calculation and consistent with
previous results [55], the lowest-energy exciton has a COM momentum Q = K while the
lowest exciton with momentum Q = Γ is 1.7 meV higher in energy. Consequently, the lowest
energy Q = K exciton has a longer lifetime of about 100 fs, since the available phase space
for exciton-phonon scattering is limited at the band edge. However, to our surprise, the first
bright exciton, the zero-momentum A exciton, also has a long lifetime comparable with the
lowest Q = K exciton, while the lowest energy dark exciton at Γ has a much shorter lifetime.
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Figure 6.2: Exciton-phonon coupling strength and phonon momentum q-resolved contribu-
tion to the total scattering rate for the lowest spin-forbidden (blue star and panel (a),(c),(e))
and spin-allowed exciton (red star and panel (b),(d),(f)) state with a center of mass momen-
tum Q = Γ. The color map and symbol sizes in (a) and (b) indicate the coupling strength
from the starred state to other states summed over phonon modes. (c) and (d) are color
maps of coupling strength from the starred state to the lowest four states in the full BZ
summed over exciton states and phonon modes. (e) and (f) show the normalized contribu-
tion to the scattering rate of the starred state from different phonon momentum q. Arrows
in (a), (b), (c), and (d) highlight the region of large contribution to the scattering rate as
shown in (e) and (f). (a) and (b) show strong state-selective couplings due to spin structure
of the excitons.

This is counterintuitive as one would expect the available scattering phase space for the A
exciton to be larger than the lowest energy dark exciton with the same COM momentum.

To understand this result, we analyze momentum and state-resolved exciton-phonon
coupling in Fig. 6.2. In Fig. 6.2 (a) and (b) we show color maps of the absolute value of
exciton-phonon coupling strength from the lowest-energy Q = Γ exciton (blue-starred) and
the A exciton (red-starred) to other states summed over all phonon modes. We observe that
both excitons are strongly coupled to Q =M excitons in the same bands while the coupling
strength is zero to excitons in other bands with a different internal spin structure, which is
well-defined for electronic states around M and K. For example, the A exciton does not
couple to the lowest two Q =M excitons and the lowest-energy Q = K exciton. This highly
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selective exciton-phonon coupling plays a crucial role in determining the relaxation time
of the A exciton. In Fig. 6.2 (c) and (d) we show color maps of exciton-phonon coupling
from the starred states in Fig. 6.2 (a) and (b) summed over phonon modes and the four
lowest final exciton states. These maps together with Fig. 2 (a) and (b) further demonstrate
that the strongest coupling is the intra-exciton band coupling between Q = Γ to Q = M .
However, since excitons of the same spin states around Q = M as the A exciton lay about
70 meV higher in energy, which is larger than the highest phonon energy (60 meV) in MoS2,
they are not able to contribute to the scattering rate. Furthermore, we find that the major
contributions come from low-energy LA and TA modes at 300 K. In contrast, the excitons
near the band edge with Q = M are energetically close to the lowest exciton state with
Q = Γ so the coupling between these two states dominate the contribution to the large
scattering rate seen in Fig. 6.1. In Fig. 6.2 (e) and (f) we show the phonon momentum q-
resolved contribution Γq to the total scattering rates of the starred states in Fig. 6.2 (a) and
(b), respectively. We find that indeed for the blue-starred state phonon with momentum
close to M contribute most to the scattering rate while phonon with momentum near K
and Γ both have smaller contribution. On the other hand the A exciton mostly scatters via
phonons with q ∼ K while q ∼ 0 and q ∼ Λmin also contribute. We note that the ring shape
seen in Fig. 6.2 (e) and (f) is due to the mismatch in the velocity of exciton and phonon
bands near the band edge, which limits the scattering density of states.

6.3 Exciton Lineshapes Including Off-Diagonal

Exciton-Phonon Interactions

Experimentally, exciton-phonon interactions can be accessed by measuring the absorption
linewidth and its temperature dependence. The absorption spectrum including exciton-
phonon scatterings can be studied within the semiconductor Bloch equation [189, 190, 199,
200] or from the second order perturbation theory [183–185, 201]. A derivation connecting
the two approaches is given in Appendix A.3. We summarize the equation of motion of the
exciton polarization,

dP S
0 (t)

dt
=

1

ih̄

∑
λ

(ES0δSλ − ΣSλ0(ω = Eλ0))P
λ
0

− 1

ih̄
eE(t) ·ΩS, (6.2)

where P S
0 ≡ P S

Q=0 =
∑

cvk ψ
S∗
ckvk⟨c

†
vkcck⟩ is the exciton polarization with zero COM mo-

mentum, ψS
ckvk is the exciton envelope function of a state S, and c†vk (cck) is the creation

(annihilation) operator for an valence electron v (a conduction electron c) with crystal mo-
mentum k. The second term in Eq. 6.2 describes the coupling to an external field E(t)
within the dipole approximation where ΩS is the exciton dipole operator. Finally for the
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self-energy operator, we employ a matrix generalization of Eq. 6.1,

ΣSλ,0(ω) =
1

Nq

∑
nνq

G∗
nSν(0,q)Gnλν(0,q)

×
Nνq +

1
2
± 1

2

ω − Enq ∓ ωνq + iγ
. (6.3)

When the off-diagonal elements of Eq. 6.3 are ignored, the computed spectrum is a super-
position of Lorentzian functions centered at exciton energies with linewidth equivalent to
the relaxation time computed by taking the imaginary part of Eq. 6.1. This approximation
(diagonal approximation) is widely used in the literature [19, 75, 188, 194]. The slope of the
temperature dependence of the linewidth is often taken as a measure of the exciton-phonon
coupling strength. In Fig. 6.5 (a) we plot the temperature dependence of the calculated
linewidth using a diagonal approximation as the dashed orange line. Within the diagonal
approximation, the linewidth is severely underestimated when compared with the experi-
ment from Ref. [178]. The computed linewidth at 300 K is less than 2 meV which is about
3 times smaller than the experimental value. On the other hand, when the linewidth is
evaluated at ω = Eλ, the full self-energy expression Eq. 6.3 the results agree very well with
the experiment. Not only is the magnitude closer to experiment but the overall temperature
dependence also agrees. We emphasize that the same exciton-phonon matrix elements are
used in both calculations and only when using the full self-energy matrix are we able to
obtain good agreement with the experiment.

The importance of including these off-diagonal terms and their effects on the exciton
lineshape has been discussed at length by Toyozawa [184], Hopfield [183], and others over
50 years ago; however, with rare exceptions [202], such terms have not been included in
contemporary calculations and never before from first principles. To map to Toyozawa’s
formalism, we take the external filed to be monochromatic, E(t) = E0e

iωt, and Fourier
transform Eq. 6.2, solve for ϵ2(ω) = P tot(ω)/ϵ0E and explicitly rewrite the off-diagonal self-
energy in terms of the exciton-phonon coupling matrix elements with the aid of Eq. 6.3 to
find

ε2(ω) ∼
1

Nq

∑
Sqν

∣∣∣∣ê ·∑
S′

GSS′ν(0,q)ΩS′

ω − ẼS′

∣∣∣∣2δ(ω − ESq ∓ ωνq), (6.4)

where ê = E0/|E0| is the polarization unit vector and ẼS = ES + ReΣS + iΓS with ReΣS

and ΓS = ImΣS denoting the real and imaginary part of the diagonal exciton self-energy
defined in Eq. 6.1 respectively. More explicit details connecting Eqs. 6.2 and 6.4 are given
in the Appendix for this chapter. An advantage of this expression over the semiconductor
Bloch expression is that it is readily interpreted as describing a two step process at second
order perturbation theory where a photon is absorbed and a phonon subsequently scatters
off the excitation. We depict this process in Fig. 6.3. Expanding the innermost sum on S ′ in
Eq. 6.4 and taking the square modulus, we can regroup the resulting terms based on whether
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Figure 6.3: Computing ε2(ω) with the off-diagonal exciton self-energy, ΣSS′(ω) captures
the all the physics contained in a second order phonon-assisted absorption process, where
a photon is first absorbed creating a virtual exciton, S’ (red dots), which subsequently
scatters off a phonon to some final state SQ (blue dot), Expanding the innermost sum
and subsequently taking the square modulus, two types of terms arise, those diagonal in
S ′ and those not cross-terms. The former gives rise to a symmetric Lorentzian line shape
and physically stems from photo-exciting to a finite lifetime quasiparticle band with finite
broadening. Cross-terms are frequently not included in ab initio calculations but can be
important and give rise to all the asymmetry seen in the total line shape.

they are diagonal or off-diagonal in the S ′ index. Retaining only terms diagonal in S ′ we
arrive at the so-called diagonal approximation for ε2(ω),

εdiag2 (ω) ∼ 1

Nq

∑
SS′qν

∣∣∣∣ê · GSS′ν(0,q)ΩS′

ω − ẼS′

∣∣∣∣2δ(ω − ESq ∓ ωνq),

≈
∑
S′

|ê ·ΩS′ |2 ΓS′

(ω − ES′ − ReΣS′)2 + Γ2
S′
, (6.5)

where we identify ΓS = ImΣSS0 with the diagonal part of the self-energy defined in Eq. 6.1.
We see in this diagonal limit we recover the familiar Lorentzian lineshape with a full width
at half maximum given by the imaginary part of the diagonal exciton self-energy. This
symmetric lineshape is a familiar spectroscopic signature stemming from the process of photo-
exciting to a transient excitonic state with some finite lifetime. Cross-terms neglected in
passing from Eq. 6.4 to Eq. 6.5 are in some cases very important and give rise to asymmetric
contributions to the exciton lineshape as we show below. To summarize the above discussion,
in Fig. 6.3 we give a pictorial representation of the relation between the full and diagonal
approximations for ε2(ω).

In Fig. 6.4 (a) we show the absorption spectrum computed from Eq. 6.2 at different
temperature. At 10 K the A exciton absorption line shows a sharp peak while the B exciton
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Figure 6.4: (a) Absorption spectrum of in-plane polarized light at various temperature show
the asymmetric lineshape. (b) Asymmetry in the A exciton peak in (a) is quantified by
subtracting a Lorentzian fit with the computed broadening. The inset in (b) shows the full
calculation (blue line), the Lorentzian fit (green dashed line), and the difference (red dashed
line).

peak has a larger linewidth, which is similar to the relaxation time comparison shown in
Fig. 1. As temperature increases, all peak shift to the low energy side and the spectrum
is considerably broadened. We discover that the off-diagonal formula further modify the
lineshape considerably. As can be seen in Fig. 6.4 (a) the absorption lines are asymmetric,
which is different from a symmetric Lorentzian function usually adopted to describe the
experiment data. Hence, the asymmetry in Fig. 6.4 (a) is due to the off-diagonal formula we
used. To further quantify the asymmetry we plot in Fig. 6.4 (b) the change in the absorption
by subtracting the Lorentzian function computed in the diagonal formula. The asymmetry
in lineshape is most pronounced at low temperature and features a larger intensity at higher
energy side. It is suppressed at higher temperature but the deviation from a symmetric
Lorentizian function remains visible. However, the excited exciton lines are also broadened
at higher temperature, which makes it difficult to isolate the asymmetry due to exciton-
phonon couplings. It would be interesting to carefully analyze the experiment lineshape for
different materials as a further check for the off-diagonal formula.

In Fig. 6.5 (b) we further show the temperature dependence of the shift of the A ex-
citon peak, which represents the renormalization of exciton energy due to exciton-phonon
couplings. Again we find surprisingly good agreement between the calculation and the ex-
tracted experimental values. The computed energy shift is around 60 meV at 300 K, which
is comparable to the band gap renormalization due to electron-phonon couplings [182]. How-
ever, when the effects from lattice expansion [203] are included the results deviate from the
experiments as shown by the blue line. We expect that the Debye-Waller term which is not
considered in this work could partially compensate the lattice thermal expansion [204] effect.
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Figure 6.5: ((a) Temperature dependence of the linewidth computed with off-diagonal (blue
line) and diagonal only (red dashed line) formula together with the experiment results from
Ref. [178]. The computed results are shifted by the experiment low temperature value. (b)
Shift of the absorption peak as a function of temperature (blue line) compared with the
same experiment results in (a). Energy shift due to lattice thermal expansion (TE) effects
are included and shown in the orange line.

6.4 Conclusion

In conclusion, our first-principle calculation of the exciton-phonon coupling strength in a
monolayer MoS2 shows highly selective nature of exciton-phonon couplings due to the internal
spin structure of excitons. In particular, we have shown the A exciton has surprisingly long
life time about 100 fs at 300 K, which is longer than the first Q = 0 dark exciton state at the
band edge. Although it has strong couplings with excitons around M in the same band the
large difference in energy limits the available scattering phase space. Hence the dominant
contribution comes from the relatively weak couplings from K excitons. Moreover, we show
that absorption linewidth and peak energy shift computed with the full exciton self-energy
matrix agrees much better with the experimental data, which emphasize the importance of
the interference effects between inter-exciton band transitions. The theory also leads to an
asymmetric lineshape when inter-exciton couplings are strong, an interesting feature worth
of further investigation in experiment.



84

Bibliography

[1] R. D. Mattuck. A Guide to Feynman Diagrams in the Many-body Problem. en. Courier
Corporation, (1992).

[2] R. S. Knox. Theory of excitons. New York: Academic Press, (1963).

[3] M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Am. J. Phys. 23, 474
(1955).

[4] N. F. Mott and M. J. Littleton. Conduction in polar crystals. I. Electrolytic conduc-
tion in solid salts. en. Trans. Faraday Soc. 34, 485 (1938).

[5] G. H. Wannier. The Structure of Electronic Excitation Levels in Insulating Crystals.
Phys. Rev. 52, 191 (1937).

[6] J. Frenkel. On the Transformation of light into Heat in Solids. I. Phys. Rev. 37, 17
(1931).

[7] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis. 2D transition
metal dichalcogenides. en. Nature Reviews Materials 2, 1 (2017).

[8] C. J. Bardeen. The Structure and Dynamics of Molecular Excitons. Annu. Rev. Phys.
Chem. 65, 127 (2014).

[9] M. Baranowski and P. Plochocka. Excitons in Metal-Halide Perovskites. Adv. Energ.
Mater. 10, 1903659 (2020).

[10] G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus
many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002).

[11] M. S. Hybertsen and S. G. Louie. Electron correlation in semiconductors and insu-
lators: Band gaps and quasiparticle energies. en. Phys. Rev. B Condens. Matter 34,
5390 (1986).

[12] M. Rohlfing and S. G. Louie. Electron-hole excitations and optical spectra from first
principles. Phys. Rev. B Condens. Matter 62, 4927 (2000).

[13] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie.
BerkeleyGW: A massively parallel computer package for the calculation of the quasi-
particle and optical properties of materials and nanostructures. Comput. Phys. Com-
mun. 183, 1269 (2012).



BIBLIOGRAPHY 85

[14] M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, and E. Hanamura. Excitonic Pro-
cesses in Solids. en. Springer Science & Business Media, (2012).

[15] Y. Toyozawa. Optical Processes in Solids. Cambridge University Press, (2003).
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[148] J. Pollmann and H. Büttner. Effective Hamiltonians and Binding Energies of Wannier
Excitons in Polar Semiconductors. 16, 4480 (1977).
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Appendix A

Definitions and Deviations

A.1 Wannier Exciton Overlaps and Projection

Matrices

In the electron, re, and hole, rh coordinates, the exciton wavefunction, ΨSQ(R, r) is expressed
as

ΨSQ(re, rh) =
∑
cvk

ASQ
cvk ψck+Q/2(re) ψ

⋆
vk−Q/2(rh).

Introducing average and relative coordinates,

re = R+ r/2

rh = R− r/2

wehave

ΨSQ(R, r) = eiQ·R
∑
cvk

ASQ
cvk+Q/2e

ik·ruck+Q/2(R+ r/2)u⋆vk−Q/2(R− r/2).

The cell-periodic part of the exciton wavefunction, FSQ(R, r) is readily read off as

FSQ(R, r) =
∑
cvk

ASQ
cvke

ik·ruck+Q/2(R+ r/2)u⋆vk−Q/2(R− r/2). (A.1)

To run Wannier90, we must provide the code with overlaps between cell-periodic parts
of the exciton wavefunction at neighboring Q-pts which we denote

MSS′(Q,B) = ⟨FSQ|FS′Q+B⟩

MSS′(Q,B) =
∑
cvk

c′v′k′

[AS′Q
c′v′k′ ]

⋆ASQ+B
cvk ×

[ ∫
xtal

dree
−i(k′−k)·reu⋆c′k′+Q/2(re)uck+Q/2+B/2(re)

][ ∫
xtal

drhe
i(k′−k)·rhuv′k′−Q/2(rh)u

⋆
vk−Q/2−B/2(rh)

]
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The integral over re and rh give delta functions in k and k′ so that

MSS′(Q,B) =
∑

cc′vv′k

[AS′Q
c′v′k]

⋆ASQ+B
cvk ⟨uc′k+Q/2|uck+Q/2+B/2⟩ ⟨uvk−Q/2−B/2|uv′k−Q/2⟩

To run Wannier90 we also need to make some initial guess for the localized Wannier
orbitals, which we denote HJ(R, r), and project this guess onto unperturbed Bloch exciton
orbital ΨSQ(R, r), we denote this projection

ASJ(Q) = ⟨ΨSQ|HJ⟩ .

Our initial guess, HJ(R, r), is related to its Fourier transform, HJQ
k , through

HJ(R, r) =
∑
kQ

HJQ
k eik·reiQ·R.

The same function can be re-expressed in the electron and hole coordinate HJ(rr, rh) takes
the form

HJ(re, rh) =
∑
kQ

HJQ
k ei(k+Q/2)·ree−i(k−Q/2)·rh .

Using these definitions

ASJ(Q) =
∑

cvkk′Q′

[ASQ
cvk]

⋆HJQ′

k′ ⟨ψck+Q/2|k′ +Q′/2⟩ ⟨k′ −Q′/2|ψvk+Q/2⟩

=
∑

cvkk′Q′

[ASQ
cvk]

⋆HJQ′

k′

∑
GeGh

c⋆ck+Q/2(Ge)cvk−Q/2(Gh) δk+Q/2+Ge,k′+Q′/2 δk−Q/2+Gh,k′−Q′/2,

where ψnk(r) =
∑

G cnk(G)ei(k+G)·r with G denoting a reciprocal lattice vector. The delta
functions enforce the condition

k′ = k+Gave

Q′ = Q+Grel

where Gave = (Ge +Gh)/2 and Grel = Ge −Gh. Our final expression is then

⟨ΨSQ|HJ⟩ =
∑
cvk

[ASQ
cvk]

⋆
∑

GaveGrel

HJQ+Grel

k+Gave
c⋆ck+Q/2(Gave +Grel/2)cvk−Q/2(Gave −Grel/2).

(A.2)
Up to this point, everything have been general, now we assume that HJ(R, r) is separable
in average and relative coordinates so that HJ(R, r) can be written in the form

HJ(R, r) = f j1(R)gj2(r),
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where J is understood to be a composite index which uniquely identifies each j1, j2 pair,
symbolically J = (j1, j2). It follows immediately

HJQ+Grel

k+Gave
= f j1

Q+Grel
gj2k+Gave

,

where

f j
k =

∫
f j(r)e−ik·rd3r.

In this work we take f j(r) to be hydrogenic in form

f j(r) =
1√
πa3

e−r/a,

as discussed in the main text.

A.2 Multiband Lang-Firsov Polaron Transformation

To derive the explicit form of Hpol, it is sufficient to consider how each operator in HW

transforms under the similarity transform introduced in Eq. 4.9. We find

eSc†mRe
−S = c†mRθ

†
mR

eSb†qνe
−S = b†qν −

∑
mR

c†mRcmR
eiq·RGW

mmν(0,q)

ωqν

,
(A.3)

where

θ†mR = exp

[
− 1

Nq

∑
νq

e−iq·RGW
mmν(0,q)

ωqν

]
. (A.4)

After these transformations the polaron Hamiltonian reads

Hpol =
∑

nmRR′

Vmn(R−R′)c†mRcnR′θ†mRθnR′

+
∑
qν

ωqν

(
b†qν −

∑
mR

c†mRcmR
eiq·RGW

mmν(0,q)

ωqν

)(
bqν −

∑
mR

c†mRcmR
e−iq·RGW

mmν(0,q)

ωqν

)
+

∑
mnRR′qν

e−iq·RG W
mnν(R−R′,q)c†mRcnR′θ†mRθnR′

×
(
b†−qν + bqν − 2

∑
mR

c†mRcmR
e−iq·RGW

mmν(0,q)

ωqν

)
,

(A.5)

where

θ†mRθnR′ = exp

[
1

Nq

∑
qν

e−iq·R′ Gnnν(0,q)− Gmmν(0,q)e
−iq·(R−R′)

ωqν

(bqν − b†−qν)

]
. (A.6)
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When only local exciton-phonon coupling terms are retained, a cancellation occurs and Hpol

reduces to

Hpol =
∑

nmRR′

Vmn(R−R′)d†mRdnR′ +
∑
qν

ωνqb
†
qνbqν −

∑
mR

∆mRd
†
mRdmR, (A.7)

where d†mR = θmR = θ†mRc
†
mR.

A.3 Connection Between the Semiconductor Bloch

Equations and Analytic Expressions for the

Exciton Lineshape

The absorption spectrum can be calculated from the time-propagation results of the Q = 0
exciton polarizaiton under a delta function pulse. We introduce the light-exciton coupling
term in the exciton basis,

HL(t) = −eE(t) ·
∑
S

(
ΩSP S†

0 +ΩS∗P S
0

)
, (A.8)

where ΩS ≡
∑

cvk dcvkψ
S∗
cvk is the optical transition operator in the exciton basis with the

optical transition matrix element dcvk in the Kohn-Sham basis. The full equation of motion
with the off-diagonal self-energy is written as

∂P S
0

∂t
=

1

ih̄
(ES0 − iγ + ΣSλ0)P

λ
0 +

1

ih̄
eE(t) ·ΩS. (A.9)

where summation over the λ index is understood. Diagonalizing the following Hamiltonian:

HSS′ = ES0δSS′ + ΣSS′ (A.10)

we obtain renormalized eigenvectors and rotation matrices T , we can use the later to rotate
the semiconductor Bloch equations into the exciton-phonon basis to find:

∂P̃ S
0

∂t
=

1

ih̄

(
ẼS0 + iΓ̃S0

)
P̃ S
0 +

1

ih̄
eE(t) · Ω̃S.

Fourier transforming and solving for P̃ S
0 (ω):

P̃ S
0 (ω) =

eΩ̃SE(
h̄ω − ẼS0 − iΓ̃S0

) . (A.11)
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The total polarization is computed by

Ptot(ω) = e
∑
S

(
ΩS∗P S(ω) + ΩSP S∗(ω)

)
= e

∑
S

(
Ω̃S∗P̃ S(ω) + Ω̃SP̃ S∗(ω)

)
Plugging in, we find:

ϵ2(ω) = Im
Ptot(ω)

ϵ0E
=
πe2

h̄ϵ0
Im

[∑
S

(Ω∗T )S(T
−1Ω)S

h̄ω − ẼS − iΓ̃S

]
(A.12)

=
πe2

h̄ϵ0

∑
S

Re[(Ω∗T )S(T
−1Ω)S]

Γ̃S

(ω − ẼS)2 + Γ̃2
S

+ Im[(Ω∗T )S(T
−1Ω)S]

ω − ẼS

(ω − ẼS)2 + Γ̃2
S

(A.13)

A result previously derived by Toyozawa, which clearly shows the symmetric and asymmetric
contributions to the exciton absorption. We have numerically verified that ϵ2(ω) computed
with this expression and via propagation of the semiconductor Bloch equations, gives the
same result. Finally to connect with Eqn. 4 of the main text we note that the rotation
matrices T can be used to rotate the energy denominator appearing above back to the
exciton basis, explicitly:∑

S

(Ω∗T )S
1

h̄ω − ẼS − iΓ̃S

(T−1Ω)S =
∑
λλ′

Ω∗
λ

1

ω − Eλδλλ′ − ReΣλλ′ + iΓλλ′
Ωλ′

Taking this as our staring point we find:

ϵ2(ω) =
πe2

h̄ϵ0
Im

[∑
λλ′

Ω∗
λ

1

ω − Eλδλλ′ − ReΣλλ′ + iΓλλ′
Ωλ′

]

≈ πe2

h̄ϵ0

∑
λλ′

Ω∗
λ

1

ω − Eλ − ReΣλ − iΓλ

Γλλ′
1

ω − Eλ′ − ReΣλ′ + iΓλ′
Ωλ′

=
πe2

h̄ϵ0Nq

∑
Sνq

∣∣∣∣∑
λ

GSλν(0,q)Ωλ

ω − Eλ − ReΣλ − iΓλ

∣∣∣∣2δ(ω − ESq ∓ ωνq)

where in going from line 1 to 2, we have dropped off-diagonal terms in the denominator
(while retaining them in the numerator). In the last step we used the definition of Γλλ′ :

Γλλ′ =
1

Nq

∑
nν,q

G∗
nλν(0,q)Gnλ′ν(0,q)

(
1

2
± 1

2
+Nνq

)
δ(ω − Enq ∓ h̄ωνq)
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no approximation is made in this step. As emphasized above, this term can be conveniently
interpreted with second order perturbation theory. In the diagonal approximation we con-
sider terms with λ = λ′ and obtain,

ϵdiag2 (ω) ≈ πe2

h̄ϵ0

∑
λ

Ω∗
λ

1

ω − Eλ − ReΣλ − iΓλ

Γλλ
1

ω − Eλ − ReΣλ + iΓλ

Ωλ

=
πe2

h̄ϵ0Nq

∑
Sνq

∑
λ

∣∣∣∣ GSλν(0,q)Ωλ

ω − Eλ − ReΣλ − iΓλ

∣∣∣∣2δ(ω − ESq ∓ ωνq).

Equivalently, we can plug T = I, ẼS = ES, Γ̃S = ΓS into the Eq. A.13 and get the usual
Lorentzian spectrum

ϵdiag2 (ω) ≈ πe2

h̄ϵ0

∑
S

|ΩS|2
ΓS

(ω − ES)2 + Γ2
S

.

Comparing the diagonal approximation with the full expression, we can see the difference
from the interference effects due to the cross terms discussed above text.
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