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ABSTRACT

Objective: To determine whether statin exposure is associated with decreased 

cancer and mortality risk among persons with HIV (PWH) and uninfected persons. 

Statins appear to have immunomodulatory and anti-inflammatory effects and may 

reduce cancer risk, particularly among PWH as they experience chronic 

inflammation and immune activation. 

Design: Propensity score matched cohort of statin-exposed and unexposed patients

from 2002-2017 in the Veterans Aging Cohort Study (VACS), a large cohort with 

cancer registry linkage and detailed pharmacy data.

Methods: We calculated Cox regression hazard ratios (HRs) and 95% confidence 

intervals (CI) associated with statin use for all cancers, microbial cancers 

(associated with bacterial or oncovirus coinfection), non-microbial cancers, and 

mortality.

Results: The propensity score-matched sample (N=47,940) included 23,970 statin 

initiators (31% PWH). Incident cancers were diagnosed in 1,160 PWH and 2,116 

uninfected patients. Death was reported in 1,667 (7.0%) statin-exposed, and 2,215 

(9.2%) unexposed patients. Statin use was associated with 24% decreased risk of 

microbial associated cancers (HR 0.76; 95% CI 0.69–0.85), but was not associated 

with non-microbial cancer risk (HR 1.00; 95% CI 0.92-1.09). Statin use was 

associated with 33% lower risk of death overall (HR 0.67; 95% CI 0.63–0.72). 

Results were similar in analyses stratified by HIV status, except for non-Hodgkin 

lymphoma where statin use was associated with reduced risk (HR 0.56; 95% CI 

0.38-0.83) for PWH, but not for uninfected (p-interaction = 0.012).
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Conclusions: In both PWH and uninfected, statin exposure was associated with 

lower risk of microbial, but not non-microbial cancer incidence, and with decreased 

mortality.

Key words: neoplasms; cancer; hypolipidemic agents; HIV
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INTRODUCTION

Beyond their lipid-lowering properties, 3-hydroxy-3-methylglutaryl coenzyme 

(HMG-CoA) reductase inhibitors, commonly known as statins, have multiple 

benefits. Statins inhibit conversion of HMG-CoA to mevalonic acid, an early and 

major rate-limiting step of cholesterol biosynthesis. In addition to cholesterol 

biosynthesis, this pathway also mediates protein prenylation and regulates T cell 

cycle progression and function including migration, proliferation and cytotoxic 

effector responses [1, 2]. Further, statins might interfere with leukocyte trafficking 

and T cell activation through inhibition of the beta2 integrin leukocyte function 

antigen-1 (LFA-1)/intercellular adhesion molecule (ICAM)-1 interaction [3]. Statins 

therefore have a variety of anti-inflammatory [4] and immune-modulatory [5] 

effects and could potentially enhance immune response against invading pathogens

and tumor cells [6]. 

In the general population, the potential association of statin use with cancer 

risk and mortality has been inconsistent. A Dutch analysis of over 3,000 statin-

exposed and 17,000 matched unexposed persons reported statin use was 

associated with 20% reduction in cancer risk [7]. A Canadian analysis of over 

50,000 patients with acute myocardial infarction found that compared to non-statin 

users, those with a high-dose statin prescription at hospital discharge had 25% 

lower risk of cancer over the following 7 years [8]. Similarly, U.S. Veterans using 

statins had 25% lower risk of cancer compared to those using anti-hypertensives in 

the absence of statins [9]. However, a meta-analysis of 27 studies evaluating the 

efficacy of statins in reducing cardiovascular disease showed no association with 

incidence of, or mortality from, cancer [10, 11]. The association of statin exposure 

with decreased site-specific cancer risk has been observed in some studies [12-16], 
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but not in others [17-20]. A Danish population study showed an association between

statin use at the time of cancer diagnosis and reduced risk of both cancer-related 

and all-cause mortality [21]. Reduced cancer-related mortality was observed for all 

13 included cancer types. Inconsistent findings in the general population could be 

related to differences in those studied including age [14], statin type, dose and 

duration [7, 8], and methodologies. Finally, lack of accounting for “confounding by 

indication” is a major concern in most observational studies [22, 23]. We are 

unaware of any published randomized controlled trials (RCT) specifically designed 

for statin exposure with cancer endpoints. Meta-analyses of trials designed for other

endpoints generally considered all cancers together and found no significant 

associations between statins and cancer [10, 24]. 

While associations between statins and cancer risk have been inconsistent in 

the general population, statin effects may be particularly pronounced among 

persons with HIV (PWH), due to long-term effects of HIV viral replication and the 

prevalence of viral and bacterial coinfections known to increase cancer risk. Three 

small studies of PWH found statin use associated with decreased incidence of AIDS- 

and non-AIDS-defining cancers [25-27]. Also, statin use has been associated with 

significantly lower risk of death in a single center US HIV cohort [28], but non-

significantly associated with lower mortality in the Danish HIV cohort [29]. 

The effect of statins on cancer incidence has not been compared among PWH

and demographically similar uninfected individuals. Further, analysis of the 

association of statins with specific cancer types and mortality in PWH has been 

limited by small sample size and short follow-up time. We used the Veterans Aging 

Cohort Study (VACS), a large cohort of PWH and demographically-matched 

uninfected individuals receiving care in the Veterans Health Administration (VA), to 
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examine the effect of statin exposure on the incidence of any cancer, microbial 

cancers (cancers associated with bacterial or oncovirus infection), non-microbial 

cancers, specific cancer types, and with all-cause mortality. We used a propensity 

score matched cohort design to reduce the impact of confounding by indication

[30]. We hypothesized that the association of statins with cancer would be 

strongest among PWH and for microbial cancers.

METHODS

Data source

The VACS is a prospective cohort of all PWH in the VA, the largest integrated 

healthcare system in the US. Each newly identified PWH is matched to two 

uninfected Veterans under VA care at that time by age, sex, race/ethnicity, year, 

and the clinical site where they receive care, as described previously [31]. The full 

cohort is predominantly male (97%) and about half non-Hispanic black.

Patients have been continuously enrolled each year since 1998 using a 

validated existing algorithm from the VA national electronic health record system

[32]. The VACS database consists of detailed demographics, hospital and outpatient

diagnoses (recorded using International Classification of Diseases, Ninth Revision 

[ICD-9] codes), procedures, laboratory results, and dispensed medications data. 

Death date was determined from the VA vital status file, and cancer diagnosis 

information was linked from the VA national cancer registry. The VA Connecticut 

Healthcare System and Yale University Institutional Review Boards have approved 

the VACS.

Study population

We identified statin users from October 1, 1998 to September 30, 2015. 

Statin-exposed persons were defined as newly-initiating statin use (atorvastatin, 
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fluvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin) between fiscal 

year 2002-2015 and having at least two prescription fills within 180 days and clinic 

visits at the following VA clinics: general internal medicine, cardiology, 

endocrinology, diabetes, gastroenterology, hypertension, infectious disease, 

pulmonary, renal/nephrology, geriatrics, women’s clinic, primary care, and 

hepatology. These clinics were chosen because nearly all statin-exposed patients 

(97.6%) had a visit to one of these clinics in the year prior to first statin prescription 

in the VA. Statin regimens used by fewer than 100 patients (pitavastatin, 

cerivastatin, and nicostatin) were considered rare. Rare statin regimens and 

patients with statin exposure before 2002 were excluded. We randomly selected 

one outpatient visit date per calendar year to identify patients who attended one of 

the listed clinics but did not receive a statin to ensure that unexposed patients 

came from the same source population and had an equal opportunity to receive a 

statin prescription.

We defined an index date as date of first statin fill or as a randomly chosen 

clinic date during the same fiscal year for statin-unexposed persons. Follow-up 

started 180 days following the index date, for both exposed and unexposed 

persons, to prevent immortal time bias (due to the requirement of two statin fills in 

180 days) [33, 34] and ended at the event of interest (cancer diagnosis, death) or 

the last follow-up date (last patient interaction in the VA) prior to September 30, 

2017. 

Study outcomes

Study outcomes included incident cancer diagnosis and all-cause mortality. 

We linked VACS with the VA national cancer registry, a database of cancer cases 

diagnosed and/or treated at the VA. We mapped International Classification of 
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Diseases for Oncology, third edition (ICD-O-3) [35] topography and morphology 

codes from these databases to specific cancer types, consistent with Surveillance, 

Epidemiology, and End Results (SEER) algorithms [36]. We classified cancer types 

into the following groupings: all cancers, microbial cancers, and non-microbial 

cancers. Microbial cancers were defined as cancers associated with either known 

oncoviruses (cancers of the oral cavity and pharynx, stomach, anus, liver, cervix, 

vagina, vulva, penis, Hodgkin lymphoma, non-Hodgkin lymphoma, and Kaposi 

sarcoma) or chronic bacterial infection (lung and bronchus), using morphology and 

detailed topography (Appendix Table 1). For example, squamous cell carcinoma of 

the anus is a microbial cancer, whereas other morphological types of anal cancer 

are non-microbial. We also examined risk of specific cancers of interest, with 

sufficient numbers. 

Propensity score model

We used propensity score matching to account for potential confounding by 

indication. We created separate propensity score models by HIV status, that 

included known and potential confounders of the association between statin use 

and cancer. We explored a wide range of variables related to patient demographics,

clinical data, laboratory results, hospitalizations, and comorbidities. The final model 

included calendar year, demographic variables:  age, gender, race/ethnicity; clinical

variables: comorbid conditions (diabetes, hepatitis C virus [HCV], hepatitis B virus 

[HBV]), body mass index (BMI), smoking status, anti-hypertensive medication 

exposure history; laboratory variables: glucose, FIB-4 (calculated from age, 

aspartate aminotransferase, platelet count, and alanine aminotransferase), 

hemoglobin, cholesterol (LDL, HDL, and total), triglycerides, blood pressure; facility 

level prescription patterns, numbers of unique clinic visits in the prior year, and 
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hospitalizations (Appendix Table 2). We used the measurement prior and closest to 

the index date for all variables. In the PWH propensity score model (c-

statistic=0.893), we included laboratory values for HIV viral load and CD4 cell count

as well as interactions for LDL cholesterol with HIV viral load and LDL cholesterol 

with HCV. In the uninfected model (c-statistic=0.901), we included diabetes 

medication history and an interaction for diabetes diagnosis status with LDL 

cholesterol.

Matching

We matched statin-exposed to unexposed persons using greedy matching 

algorithm without replacement [37]. We matched each statin-exposed to one 

unexposed person within a caliper of 0.20 SD of the logit of propensity score [37]. 

The final dataset included only matched statin-exposed and unexposed persons. We

assessed covariate balance before and after matching. Covariates were considered 

imbalanced if the standardized difference between statin-exposed and unexposed 

was >0.1 [38]. 

Outcome analysis

We used Cox proportional hazards regression models to estimate hazard 

ratios (HRs) and 95% confidence intervals (CI) associated with statin use for all 

cancers, cancer groups, individual cancer types, and mortality. We ran three sets of 

models, first including all patients and then stratified by HIV status. We examined 

whether the association between statins and cancer varied by HIV status in a model

with all patients, adjusting for HIV, and noted if there was a significant HIV and 

statin interaction. 
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We calculated standardized differences with Stata version 14.2 (StataCorp 

LLC, College Station, Texas). All other analyses were conducted using SAS version 

9.4 (SAS Institute, Inc. Cary, North Carolina).

We conducted sensitivity analyses examining the microbial cancer group 

definition by calculating the HR estimates for the microbial and non-microbial 

cancers with and without lung cancer. We also calculated HR estimates by statin 

type at initiation (Simvastatin versus all others). We used the Benjamini-Hochberg 

method for multiple-comparison corrections [39].

RESULTS

Among VACS participants, there were 12,153 PWH and 34,561 uninfected 

statin initiators during the study period (Table 1, Appendix Figure 1). There were 

27,876 PWH and 46,642 uninfected patients without a statin prescription fill in the 

VA health system among patients alive in the cohort during the study follow-up 

period. Statin-exposed patients were older (mean age 54.0 years for PWH, 53.1 

years for uninfected) than patients without a statin prescription (mean age 49.0 

years for PWH, 48.4 years for uninfected). 

In the unmatched sample, the median propensity score among statin-

exposed patients was 0.24 for PWH and 0.38 for uninfected patients, and among 

patients not exposed to statins was 0.015 for PWH and 0.021 for uninfected patients

(Appendix Figure 2). After matching, the median propensity score was 0.13 for PWH 

and 0.06 for uninfected for both statin-exposed and unexposed patients. All 

covariate standardized differences were less than 0.1 indicating no imbalance 

between exposed and unexposed  (Table 1). Statin exposed patients who did not 

have a propensity score match were excluded from the analysis. Most baseline 
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characteristics were similar between the propensity score matched and unmatched 

statin exposed patients (Appendix Table 3). Both PWH and uninfected unmatched 

patients were less likely to have hepatitis C, diabetes, and index visit during later 

years compared to propensity score matched patients. 

The propensity score-matched sample (N=47,940) included 23,970 statin 

initiators (7,335 PWH and 16,635 uninfected) and 23,970 statin-unexposed patients 

(Table 1). Median follow-up time was 5.7 (IQR: 3.0-9.0) years for PWH and 7.1 (IQR: 

3.8-10.4) years for uninfected patients. Mean age was 52-53 years old for the 

propensity score matched patients. Simvastatin was the most commonly prescribed

statin, representing 63.5% of all first statin prescriptions. 70.8% of statin-exposed 

patients took simvastatin, followed by atorvastatin (54.3%), pravastatin (33.5%), 

rosuvastatin (13.7%), lovastatin (6.7%), and fluvastatin (5.5%) during the entire 

follow-up period, including regimen changes. Median duration of statin use was 3.0 

years (interquartile range [IQR]: 1.2-5.8 years) overall. Incident cancers were 

diagnosed in 1,160 PWH (22.8 cancers/1,000 person-years) and 2,116 uninfected 

patients (17.4 cancers/1,000 person-years). The most common cancer types were 

lung and prostate cancer. Death was reported in 1,667 (7.0%) statin-exposed and 

2,215 (9.2%) unexposed persons. 

Overall, statin use was associated with 11% reduced risk of any cancer (HR 

0.89; 95% CI 0.83–0.95) and 24% decreased risk of microbial cancers (HR 0.76; 95%

CI 0.59–0.85) (Figure 1). Statin use was not associated with non-microbial cancers 

(HR 1.00; 95% CI 0.92–1.09). Statin use was also associated with lower risk of death

(HR 0.67; 95% CI 0.63–0.72). The association between statin use and reduced 

cancer risk for both PWH and uninfected patients was strongest for hepatocellular 

carcinoma (HR 0.54; 95% CI 0.42-0.69) and HPV-associated squamous cell 
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carcinomas of the oral cavity and pharynx (HR 0.60; 95% CI 0.40-0.90). Results 

were similar in analyses stratified by HIV, with a few exceptions. For PWH, statin use

was associated with reduced non-Hodgkin lymphoma risk (HR 0.56; 95% CI 0.38-

0.83); but not for uninfected patients (p for interaction = 0.012). Also, there was 

reduced risk of lung and bronchus cancers associated with statin use in the 

uninfected group (HR 0.82; 95% CI 0.67–0.99) and PWH group (HR 0.93; 95% CI 

0.73–1.20); however, the confidence interval was wider for PWH and the finding was

not significant. Among PWH, statin use was associated with 51% reduced Kaposi 

sarcoma risk (HR 0.49; 95% CI 0.26-0.92). There were no Kaposi sarcoma cases 

among uninfected patients.

In a sensitivity analysis removing lung cancer from the microbial cancer 

category (Appendix Table 4). This led to minimally stronger association with statin 

exposure (0.76 vs 0.74). For non-microbial cancers the association with statin 

exposure remained close to 1. Simvastatin was the dominant initial statin type 

prescribed through 2012 (Appendix Figure 3). We therefore compared results for 

patients who initiated Simvastatin versus the other statin types. The hazard ratio 

patterns were similar with the original analysis except where there were few events,

resulting in wide confidence intervals (oral cavity/pharynx and anal cancers, 

Appendix Figure 4).

DISCUSSION

In this large cohort of PWH and demographically similar uninfected patients, 

statin exposure was associated with 11% lower risk of any cancer compared to 

propensity score matched unexposed patients. The strongest associations were for 

microbial cancers: liver and oral/pharyngeal cancers for both PWH and uninfected, 

non-Hodgkin lymphoma and Kaposi sarcoma among PWH, and lung cancer among 
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uninfected patients. The decreased risk was generally similar among PWH and 

uninfected patients. When cancers were grouped, statin exposure was associated 

with decreased cancer risk among microbial (24% reduced risk) but not among non-

microbial cancers. This finding suggests that statins may specifically interfere with 

the pathogenesis of microbial cancers which are more common among PWH.  

Microbial co-infection, chronic inflammation, and immune dysfunction are 

potent environmental stimuli for oncogenesis. The prevalence of co-infection with 

HCV, HBV, Epstein Barr virus, cytomegalovirus, etc., is higher among PWH [40-42]. 

The incidence of AIDS-defining [43-47] and non-AIDS-defining malignancies [43-45, 

47-53] is higher among PWH than in the general population, accounting for 

behavioral risk factors and excess cancer risk remaining after long-term viral 

suppression [54]. Persistent inflammation and immune dysfunction in HIV patients –

even in the context of long-term suppressive antiretroviral therapy (ART) [55, 56] – 

has been associated with increased risk of non-AIDS complications including cancer

[57-59].  

Intriguingly, statins have both antimicrobial and anti-inflammatory effects. 

Statins have in vitro antiviral activity against human cytomegalovirus [60], dengue 

virus [61, 62], and HIV-1 [63], and statin use was associated with reduced risk of 

virologic rebound in PWH on suppressive ART [64]. Also, statins may differ in their 

effect(s) on inflammation and immune activation [65], and as a result, have 

different effects on cancer risk. Thus, our finding that statin exposure is associated 

with decreased risk of microbial cancers has biologic plausbility. 

Previous studies have suggested a possible dose-response relationship, with 

longer duration and higher doses of statin use being associated with lower risk of 

cancer. In the Dutch study, the effect of statin was observed only with longer 
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duration of statin use (more than 4 years) [7], while in the Canadian study, 

compared to statin-unexposed persons, risk of cancer was lower among high-dose 

statin-exposed persons (HR: 0.75; 95% CI: 0.60 – 0.95) and marginally lower among 

low-dose statin-exposed persons (HR: 0.89; 95% CI: 0.75 – 1.07). This could explain,

in part, the inconsistent findings of published studies, as most did not account for 

duration of statin exposure or adherence. 

We found that statin exposure was associated with 33% lower risk of all-

cause mortality. Although we did not examine cause of death, it is possible that 

some of the mortality reduction was cancer-related mortality. However, the 

magnitude of mortality benefit suggests that it might not be entirely mediated 

through reduced cancer risk or cancer-related mortality. Beyond risk of cancer 

incidence, statins have been shown to be associated with decreased cancer 

mortality. In the Danish analysis, statin use was associated with reduced cancer 

mortality among those with cancer diagnoses, despite lack of association with 

cancer incidence [29]. Also, results from a small HIV cohort that showed statin 

exposure associated with lower risk of death, the majority of deaths were cancer-

related [28]. 

Our findings have important clinical implications as microbial malignancies 

are a leading cause of mortality in the aging population, and cancer-related deaths 

are increasing in proportion in many HIV cohorts [66, 67]. Rates of malignancies 

continue to be significantly higher among PWH [54], thus further improvement in 

HIV survival will likely require biomedical interventions such as statins, in addition 

to cancer prevention and screening strategies.

Strengths of our study include use of a large national cohort of PWH in the 

modern ART era and demographically similar uninfected persons followed over a 
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16-year period, with linked cancer registry data with low rates of misclassification 

and longitudinal pharmacy dispensing records. This allowed for sufficient cancer 

and death events to accrue to examine the relationship between statin exposure 

and both cancer risk and mortality. Further, we used propensity score matching 

which allowed us to control for confounding by indication, which is a significant 

hurdle in pharmacoepidemiological studies using real-world data [22, 30]; however, 

there is always potential for residual and unmeasured confounding. Propensity 

score matching allows the use of an observational cohort to emulate a randomized 

controlled trial (RCT) by 1) calculating the propensity score to establish the strength

of the indication (criteria that would have been used for inclusion in an RCT) and 2) 

matching on the propensity score to balance treatment arms by potential 

confounders, both known and unknown. RCTs often exclude older and sicker 

patients; however, our study population and results are more generalizable due to a

wider array of patients than typically recruited in an RCT.

Limitations of our study include a predominantly male (97%) population, so it 

is unclear if our findings are generalizable to women. Cancers have long latency 

periods therefore, longer follow-up may be needed to see the full effects of statins 

in cancer prevention. Nonetheless, we did see signal in this study spanning 16 

years. We also did not examine cumulative exposure to statins. We had a large 

number of statistical tests; however, the 13 cancer types and groups were selected 

from a priori hypotheses. Using the Benjamini-Hochberg method with a false 

discovery rate threshold of 25%, our findings remain significant (for any cancer, 

microbial cancers, oral cavity and pharynx cancer, hepatocellular carcinoma, lung 

cancer, Kaposi sarcoma). Non-Hodgkin lymphoma would also meet the threshold for

significance. Finally, we did not determine specific causes of mortality and therefore
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cannot determine whether the associations of statins with decreased cancer risk 

and decreased mortality are related. Cancer incidence data was obtained from the 

VA national registry, therefore cancers diagnosed and treated outside the VA 

system are unlikely to have been ascertained. However, as patients treated with 

statins in VA care are more likely to have been engaged in primary care within the 

VA (and thereby diagnosed with cancer within the VA), this would bias the statin 

arm towards more cancer diagnoses, thereby strengthening the associations noted 

in our findings. We were only able to propensity score match 60% of PWH and 48% 

of uninfected statin users, thus our findings may not apply to all statin users. 

However, this is similar to what happens in randomized trials that apply inclusion 

and exclusion criteria. 

In conclusion, we observed that statin use was associated with at least 10% 

lower risk of cancer in PWH and uninfected patients, and an even greater (>30%) 

decreased risk of all-cause mortality. Statin exposure was associated with lower risk

of microbial, but not non-microbial, cancer. These findings were largely consistent 

between PWH and uninfected patients. Prospective, randomized studies, like the 

REPRIEVE trial, which is examining the efficacy of statins for the primary prevention 

of major adverse cardiovascular events in PWH with low to moderate traditional risk

[68] may be able to assess the effect of specific statins on chronic 

inflammation/immune activation and HIV persistence. However, REPRIEVE’s main 

study endpoint is not cancer, therefore, we encourage future research to examine 

the reproducibility of our findings in both clinical trials and observational cohorts.
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Table 1. Baseline characteristics among statin-exposed and unexposed persons in the pre-matched and

propensity score-matched patients and standardized differences in the propensity-score-matched 

patients

All patients (pre-matched) Propensity score matched
PWH Uninfected PWH Uninfected

Statin-

exposed

Unexpos

ed

Statin-

exposed

Unexpose

d

Statin-

exposed

Unexpo

sed

Statin-

exposed

Unexpos

ed
N=12,153 N=27,87

6

N=34,561 N=46,642 N=7,335 N=7,335 Std N=16,635 N=16,63

5

Std

    N % N % N % N % N % N % diff N % N % diff
Age Mean +/-st dev 

(years)
54.0 9.4 49.0

11.

3
53.1 9.2 48.4 12.3

53.8 9.5 53.1 9.4 -0.08 53.2 9.8 52.2 9.9 -0.10

Race/

ethnicity

Non-Hispanic white 5,46

7

45.

0

10,3

19

37.

0

13,9

67

40.

4

18,1

64
38.9

3,11

4

42.

5

3,08

0

42.

0

0.02 6,70

5

40.

3

6,62

5

39.

8

0.02

  Non-Hispanic black 5,36

9

44.

2

14,0

17

50.

3

16,3

43

47.

3

22,3

53
47.9

3,41

9

46.

6

3,46

0

47.

2

7,93

2

47.

7

7,97

9

48.

0
  Hispanic

949 7.8
2,26

0
8.1

3,08

6
8.9

3,80

6
8.2

580 7.9 562 7.7 1,45

9

8.8 1,44

6

8.7

  Other/unknown
368 3.0

1,27

9
4.6

1,16

5
3.4

2,31

9
5.0

222 3.0 233 3.2 539 3.2 585 3.5

Sex Female
327 2.7 855 3.1 876 2.5

1,73

8
3.7

216 2.9 234 3.2 0.01 478 2.9 484 2.9 <0.0

1
  Male 11,8

26

97.

3

27,0

20

96.

9

33,6

85

97.

5

44,9

04
96.3

7,11

9

97.

1

7,10

1

96.

8

16,1

57

97.

1

16,1

51

97.

1

612

613

614



25

Hepatitis 

C*

HCV negative 8,99

1

74.

0

16,8

15

60.

3

25,9

48

75.

1

29,0

99
62.4

5,15

8

70.

3

5,13

3

70.

0

0.03 11,9

97

72.

1

11,7

65

70.

7

0.04

  Chronic HCV 2,12

2

17.

5

7,66

5

27.

5

3,28

1
9.5

6,98

1
15.0

1,54

7

21.

1

1,57

6

21.

5

2,01

9

12.

1

2,05

9

12.

4
  HCV exposure

735 6.0
2,00

0
7.2

1,16

0
3.4

1,66

0
3.6

464 6.3 434 5.9 591 3.6 606 3.6

  Never tested in the 

VA
305 2.5

1,39

5
5.0

4,17

2

12.

1

8,90

2
19.1

166 2.3 192 2.6 2,02

8

12.

2

2,20

5

13.

3
Hepatitis 

B*

HBV negative 10,2

80

84.

6

22,1

62

79.

5

18,7

37

54.

2

23,8

76
51.2

6,17

7

84.

2

6,14

3

83.

7

0.03 9,14

6

55.

0

8,97

8

54.

0

0.02

  HBV positive
424 3.5

1,03

1
3.7 134 0.4 209 0.4

284 3.9 292 4.0 72 0.4 81 0.5

  HBV acute resolved 140 1.2 349 1.3 78 0.2 116 0.2 94 1.3 83 1.1 43 0.3 43 0.3
  Unconfirmed HBV 81 0.7 324 1.2 53 0.2 91 0.2 49 0.7 60 0.8 20 0.1 24 0.1
  Never tested in the 

VA

1,22

8

10.

1

4,00

9

14.

4

15,5

59

45.

0

22,3

50
47.9

731 10.

0

757 10.

3

7,35

4

44.

2

7,50

9

45.

1
BMI Under/normal weight 

(<30)

8,66

8

71.

3

21,1

22

75.

8

16,5

96

48.

0

26,7

83
57.4

5,34

8

72.

9

5,41

9

73.

9

0.03 8,84

8

53.

2

9,19

8

55.

3

0.05

  Overweight (30-34.9) 2,15

2

17.

7

2,91

4

10.

5

9,96

4

28.

8

8,94

8
19.2

1,28

3

17.

5

1,26

4

17.

2

4,44

9

26.

7

4,37

2

26.

3
  Obese (≥ 35) 1,02

7
8.5

1,12

2
4.0

7,00

3

20.

3

4,90

1
10.5

562 7.7 513 7.0 2,89

2

17.

4

2,62

3

15.

8
  Unknown

306 2.5
2,71

7
9.7 998 2.9

6,01

0
12.9

142 1.9 139 1.9 446 2.7 442 2.7
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Smoking Non-smoker 3,58

3

29.

5

7,26

1

26.

0

10,1

94

29.

5

13,7

51
29.5

2,06

8

28.

2

2,04

5

27.

9

0.05 4,90

5

29.

5

4,83

1

29.

0

0.06

  Current 6,03

1

49.

6

15,7

24

56.

4

16,7

46

48.

5

24,2

07
51.9

3,82

6

52.

2

3,94

5

53.

8

8,31

2

50.

0

8,52

4

51.

2
  Former 2,38

5

19.

6

3,65

4

13.

1

7,26

7

21.

0

6,70

0
14.4

1,35

2

18.

4

1,23

6

16.

9

3,24

5

19.

5

3,01

7

18.

1
  Unknown

154 1.3
1,23

6
4.4 354 1.0

1,98

4
4.3

89 1.2 109 1.5 173 1.0 263 1.6

Diabetes No 9,50

9

78.

2

25,8

04

92.

6

24,2

81

70.

3

42,8

79
91.9

5,92

0

80.

7

6,08

5

83.

0

0.06 13,2

83

79.

8

13,8

46

83.

2

0.09

  Yes 2,64

4

21.

8

2,07

1
7.4

10,2

80

29.

7

3,76

3
8.1

1,41

5

19.

3

1,25

0

17.

0

3,35

2

20.

2

2,78

9

16.

8
Year of 2002-2003 1,85

2

15.

2

5,17

2

18.

6

6,33

9

18.

3

7,23

0
15.5

818 11.

2

818 11.

2

<0.0

1

2,09

4

12.

6

2,09

4

12.

6

<0.0

1
Index visit  2004-2006 2,90

5

23.

9

5,20

3

18.

7

10,4

82

30.

3

9,22

8
19.8

1,50

6

20.

5

1,50

6

20.

5

4,06

8

24.

5

4,06

8

24.

5
  2007-2009 2,86

1

23.

5

4,55

6

16.

3

8,49

5

24.

6

9,09

3
19.5

1,64

1

22.

4

1,64

1

22.

4

4,11

9

24.

8

4,11

9

24.

8
  2010-2012 2,55

4

21.

0

5,26

8

18.

9

5,65

8

16.

4

11,1

08
23.8

1,71

3

23.

4

1,71

3

23.

4

3,49

2

21.

0

3,49

2

21.

0
  2013-2015 1,98

1

16.

3

7,67

6

27.

5

3,58

7

10.

4

46,6

42

100.

0

1,65

7

22.

6

1,65

7

22.

6

2,86

2

17.

2

2,86

2

17.

2
HIV-RNA ≤ 400 7,34

3

60.

4

11,7

64

42.

2  
 

 
 

4,57

7

62.

4

4,43

2

60.

4

0.05        
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  >400 1,53

6

12.

6

6,92

6

24.

8  
 

 
 

1,05

4

14.

4

1,05

7

14.

4

       

  Unknown 3,27

4

26.

9

9,18

5

33.

0  
 

 
 

1,70

4

23.

2

1,84

6

25.

2

       

CD4 ≥500 4,31

7

35.

5

7,18

2

25.

8  
 

 
 

2,75

4

37.

5

2,56

4

35.

0

0.06        

  350-499 2,00

6

16.

5

3,81

1

13.

7  
 

 
 

1,26

3

17.

2

1,24

3

16.

9

       

  200-349 1,65

8

13.

6

3,72

6

13.

4  
 

 
 

1,02

5

14.

0

1,05

1

14.

3

       

  0-199

851
7.0

3,86

2

13.

9  
 

 
 

557 7.6 605 8.2        

  Unknown 3,32

1

27.

3

9,29

4

33.

3  
 

 
 

1,73

6

23.

7

1,87

2

25.

5

       

Abbreviations: Std diff = standardized difference, HCV = hepatitis C virus, HBV = hepatitis B virus, BMI = body mass 

index

*Definitions: HCV negative, negative HCV antibody test result(s) only; Chronic HCV, positive HCV RNA test; HCV 

exposure, positive HCV antibody test, but negative or unknown HCV RNA test; Never tested in the VA, no HCV 

laboratory test results available from the VA (it is possible that some of these patients were tested for HCV outside 

the VA)

HBV negative, negative HBV surface antigen test result(s) only; HBV positive, at least two positive HBV surface 

antigen tests over 6 months apart; HBV acute resolved, positive HBV surface antigen test followed by only negative 
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test results; Unconfirmed HBV, one positive HBV surface antigen test not confirmed with additional testing; Never 

tested/unknown, no HBV laboratory test results available.
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