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Abstract: We examine the A, D, E and G-efficiencies of using the optimal design for the 
polynomial regression model of degree k when the hypothesized model is of degree j and 
1 Q j < k Q 8. The robustness properties of each of these optimal designs with respect to the other 
optimal&y criteria are also investigated. Relationships among these efficiencies are noted and 
practical implications of the results are discussed. In particular, our numerical results show 
E-optimal designs possess several properties not shared by the A, D and G-optimal designs. 

Keywords: Continuous designs; A, D, E and G-efficiencies; Homoscedasticity. 

1. Introduction 

The purpose of this paper is to make a numerical comparison of the 
efficiencies of different types of optimal designs under various model assump- 
tions. This is an important consideration because most optimal designs are very 
model dependent and the true model is usually unknown in practice. In 
addition, we also evaluate the robustness properties of the optimal designs 
under different optimality criteria. The importance of using a design that is 
deemed adequate for several optimality criteria cannot be overemphasized since 
optimality with respect to any one criterion usually but represents an approxi- 
mation to some vague notion of “goodness”, see Williams (1958) and especially 
Kiefer (1975) for a more thorough discussion on this subject. Many experimental 
designs and the subsequent analyses do depend on the model assumptions (Box 
and Hay, 1953) and it is therefore important to assess the adequacy of a design 
under different model assumptions and different optimality criteria. 

All our comparisons are made under the assumption that the true model 
fJx) is a polynomial of degree j, 1 &j G 8, the response variable is univariate 
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and the errors in the observations are uncorrelated with zero mean and constant 
variance. Without loss of generality, the design space R is taken to be [ - 1, 11. 
The choice of this setting is the same as in Kussmaul(19691, Kendall and Stuart 
(1968), among others, who suggested that using the optimal design for fk(x) may 
be a good idea for the assumed model f,(x), k > j. Doing so will at least enable 
the experimenter to perform a lack of fit test. 

Only continuous designs are considered here, i.e., we treat designs as proba- 
bility measures on 0. If 5 is a design with mass m, at xi E 0, i = 1, 2,. . . , k, 
<Z~~Im, = 1) and II observations are planned, then approximately nmi observa- 
tions will be taken at xi, i = 1, 2, . . . , k. In what follows, we shall assume that it 
is large. 

Following standard optimal design theory (Fedorov, 19721, the amount of 
information contained in a continuous design 5 is measured by its information 
matrix: 

Many practical objectives in an experiment can be expressed in terms of the 
information matrix. For example, if the true underlying model is fj(x> and the 
goal of the experiment is to estimate the parameters as accurately as possible, 
then the optimal continuous design is the D-optimal design tj defined by 

lMj([j>l =maxt,g I Mj([) 1, where I A I is the determinant of the matrix A 
and B is the set of all continuous designs on R. Another is the G-optimality 
criterion, which minimizes the maximum variance of the estimated response 
surface across ,R, i.e., a G-optimal design minimizes the quantity max,, o 
dj(x, 5) over E, where dj(x, .$> =fjT<x)M,:‘([)fj(x). This design is particularly 
useful when there is interest in estimating the entire response surface. Under 
the assumption of homoscedasticity, it is known that tj is also G-optimal 
(Kiefer-Wolfowitz Theorem, 1960). 

Two other optimality criteria are included in our study: the A and E-optimal- 
ity criteria; for the model fj(x), the A-optimal design is denoted by [A,j and the 
E-optimal design is denoted by [n j. Together, these four comprise perhaps the 
most interpretable alphabetical optimality criteria (Kiefer, 1975). Further details 
on the motivation and uses of these criteria can be found in Kiefer (1985). 

Virtually, all designs are ranked on the basis of their efficiencies. When a 
design 5 has a nonsingular information matrix, its G, D, A and E-efficiencies 
are respectively given by 

G,(S) = (j + I)/meTdj(x, 0, 

Oj(() = I M,-'(5i)M,(5)11'(j+l), 

Aj(t)=tr M,I'(S*,j)/tr M,:'(t) 

and 
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Here tr M and A,,(M) denote the trace and maximum eigenvalue of the 
square matrix M respectively. The interpretation of these efficiencies is they 
measure the number of times the experiment needs to be replicated in order to 
have the same criterion value as the optimal design. Clearly, the efficiency of 
each of the optimal designs relative to its own optimal&y criterion is equal to 
one. 

G and E-optimality are special cases of mini-max type of criterion and both 
reduce to the problem of finding a design that minimizes max,,rt*M,:r(t)t for 
some set T. It is easy to show that if T = {t I t =fj(x>, x E O}, we have G-opti- 
mal&y, and if T = {t E R j+’ I tTt = l}, E-optimality obtains. For a general ap- 
proach of constructing such type of designs, see Wong (1992). It should also be 
noted that unlike D or G-optimal designs, both A and E-optimal designs are not 
invariant under nonsingular linear transformation. 

The optimality of the designs tj, [A,j and tn,j can be verified using the 
checking conditions described in Kiefer (1975) and Kiefer (1985, p. 319). 
Computation of the D and G-efficiencies are straightforward since formulae for 
sj are well known (see Fedorov, 1972, p. 89). However, the calculation of the A 
and E-efficiencies are made possible only from recently established results 
concerning the theoretical A and E-optimal design for fj(x) for j > 3. A-optimal 
designs were found by Pukelsheism and Torsney (1991) while analytic formulae 
for E-optimal designs were given in Pukelsheim and Studden (1991). The 
A-efficiencies in Table 2.2 are calculated with the help of Table 3 in Pukelsheim 
and Torsney (1991), and the E-efficiencies are found by first enumerating the 

Table 2.1 
E-optimal designs on [ - 1, 11 

Degree E-optimal support points (upper row) and Optimal 
of their E-optimal weights (lower row) value 

PolY- E-criterion 
nomial 

1 -1 1 1 
0.500 0.500 

2 -1 0 1 5 
0.200 0.600 0.200 

3 -1 - 0.5 0.5 1 25 
0.127 0.373 0.373 0.127 

4 -1 - 0.707 0.000 0.707 1 129 
0.093 0.248 0.318 0.248 0.093 

5 -1 - 0.809 0.309 0.309 0.809 1 681 
0.074 0.180 0.246 0.246 0.180 0.074 

6 -1 - 0.866 - 0.500 0.000 0.500 0.866 1 3653 
0.061 0.141 0.189 0.218 0.189 0.141 0.061 

7 -1 - 0.901 -0.624 -0.223 0.223 0.624 0.901 1 19825 
0.052 0.116 0.149 0.183 0.183 0.149 0.116 0.052 

8 -1 - 0.924 - 0.707 0.383 0.000 0.383 0.707 0.924 1 108545 
0.045 0.098 0.122 0.152 0.167 0.152 0.122 0.098 0.045 
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Table 2.2 
A, D, E and G-efficiencies 1~ j Q k < 8 

Degree of Type of k(lgj<k<8) 
polynomial efficiency 

1 2 3 4 5 6 7 8 

j=l E 1.000 0.400 0.440 0.434 0.430 0.428 0.426 0.424 

A 1.000 0.667 0.621 0.610 0.604 0.601 0.598 0.597 

G 1.000 0.800 0.750 0.727 0.714 0.706 0.700 0.696 
D 1.000 0.817 0.775 0.756 0.745 0.739 0.734 0.730 

j=2 E 1.000 0.439 0.503 0.502 0.503 0.504 0.504 

A 1.000 0.640 0.612 0.611 0.611 0.610 0.610 

G 1.000 0.818 0.750 0.714 0.692 0.677 0.667 

D 1.000 0.865 0.828 0.809 0.798 0.790 0.784 

j=3 E 1.000 0.434 0.504 0.500 0.500 0.500 
A 1.000 0.623 0.603 0.602 0.602 0.602 

G 1.000 0.842 0.769 0.727 0.700 0.681 

D 1.000 0.895 0.863 0.847 0.836 0.829 

j=4 E 1.000 0.430 0.505 0.500 0.500 

A 1.000 0.614 0.597 0.597 0.597 

G 1.000 0.862 0.790 0.745 0.714 

D 1.000 0.915 0.888 0.873 0.863 

j=5 E 1.000 0.428 0.506 0.500 

A 1.000 0.609 0.594 0.594 

G 1.000 0.878 0.808 0.762 

D 1.000 0.928 0.904 0.891 

j=6 E 1.000 0.426 0.507 

A 1.000 0.608 0.593 

G 1.000 0.891 0.824 

D 1.000 0.945 0.917 

j=7 E 1.000 0.424 

A 1.000 0.601 

G 1.000 0.901 

D 1.000 0.945 

optimal designs and then evaluating (1.1). Since E-optimal designs for polyno- 
mial regression of degrees higher than 2 appears to be generally unknown, they 
are tabulated in Table 2.1. They are derived as follows: Let cT = (co, cr, . . . , cj) 
be the coefficient vector of the Chebyshev polynomial of degree j, si = cos{(j - 
&r/j}, i = 0, 1, 2,. . . , j and u,,, ul,. . . , uj be the solution of the system of linear 
equations C!=oUifj(Si) = c. Then, the E-optimal design [E,j for f&x) is sup- 
ported at s, with mass w, given by (- l)i-fu,/C{_Oc~, t = 0, 1, 2,. . . , j, see 
Pukelsheim and Studden (1991). 

In the next section, we demonstrate that a design that is deemed adequate 
under one criterion can do poorly in terms of another. While this message is not 
new at all, it appears there is no work in the literature addressing this issue in 
terms of these commonly used criteria and in the setting considered here. 
Section 3 concludes with general guidelines on the choice of these optimal 
designs among competing designs. 
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2. Results 

Table 2.2 lists the A, D, E and G-efficiencies for 1 <j < k < 8. Notice that, as 
expected, for fixed j, Dj(tk), Gj(tk) and Aj([A,k) are all non-increasing func- 
tions of k. Surprisingly, Ej(tE,k) does not have this monotonic property and in 
fact, for 1 <j < k G 8, it remains remarkably stable, averaging an value of only 
0.47. It follows that if the true model is fj(x>, the E-efficiency of tk is always 
unacceptably low and insensitive to the value of k, so long as k > j. Conse- 
quently, if the experimenter is unsure of the underlying model, he should be 
very cautious about using E-optimal&y since a slightly misspecified model can 
result in severe loss in efficiency of the design. On the other hand, the G and 
D-optimal designs seem to offer fairly good protection against small departures 
from the true model, averaging a G or D-efficiency of 0.8 or more, but this is not 
true for A-optimal designs. For instance using ,$A,j+I when the true model is 
fj( X) results in an A-efficiency of about 0.615 for 1 <j < 8. (Here small depar- 
ture is taken to mean k -j is less than 2.) 

Another property of E-optimal designs not shared by the A, D and G-optimal 
designs is seen from Table 2.2. It shows a rather counter-intuitive relationship, 

Ej(~,,,) > Ej(SE,j+l) for 8 >S > j + 1 > 2. 

The implication of this seems to be that is one assumes fj(x> is the true 
model, then using 5 n k, k > j + 1 would provide a higher E-efficiency than using 
5E,j+l. For example, ‘if the assumed model is f,(x) then using the design lE,k 
(k > 2) will result in higher E-efficiency than ,$E,2 which is “closer” than tn,r. 
There is however, a consistent pattern from the table, namely for 1 <j < k < 8, 

Dj(S!f> a Gj(Sk> aAj(t*,k> aEj(tE,k)* 

The ordering in this string of inequalities is quite pleasing for at least two 
reasons: (1) the D, A and E-optimality criteria all belong to Kiefer’s QP-optimal- 
ity criterion (1975) and they correspond to p = 0, - 1 and -to respectively in 
that order, and (2) it is in accordance with the mathematical difficulty involved 
in studying these designs. The G-optimality does not belong to the class of the 
a,-optimality criterion but the above relationship suggests it may correspond to 
some p between 0 and - 1. Note that the above relationship between the D and 
G-efficiencies is a special case of Atwood’s inequality (1969). 

Kiefer (1975) advocated that any recommended designs should be compared 
on the basis of several criteria of goodness. Table 2.3 reports the changes in 
efficiencies of the optimal designs when the optimality criterion is varied. Again, 
all the models are polynomial regression models of degrees ranging from 1 to 8. 

3. Discussion 

The D-optimal designs are perhaps the most frequently used designs but our 
computation shows they do not fair well in terms of E-efficiencies; they average 
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Efficiencies of optimal designs under change of optimality criteria 

j A-eff. 

2 1 

bi 

2 0.889 
3 0.853 
4 0.839 
5 0.831 
6 0.829 
7 0.824 
8 0.817 

2 0.960 
3 0.969 
4 0.972 
5 0.970 
6 0.970 
7 0.975 
8 0.971 

D-eff. E-eff. G-eff. 

0.946 0.955 0.750 
0.916 0.968 0.600 
0.907 0.968 0.520 
0.906 0.970 0.480 
0.905 0.970 0.455 
0.911 0.968 0.440 
0.912 0.971 0.423 

1 0.731 1 
1 0.745 1 
1 0.739 1 
1 0.735 1 
1 0.733 1 
1 0.729 1 
1 0.708 1 

0.864 1 0.600 
0.863 1 0.508 
0.868 1 0.465 
0.876 1 0.442 
0.880 1 0.427 
0.890 1 0.416 
0.897 1 0.405 

about 0.73. However, they have moderately high A-efficiencies (about 0.831, 
which decrease as the degree of the polynomial regression increases. The 
G-efficiencies of D-optimal designs are all equal to one by the Kiefer-Wolfo- 
witz Theorem (1960). In contrast, the A and D-efficiencies of E-optimal designs 
seem quite insensitive to changes in the model specification. They perform 
exceptionally well, averaging about 0.97 for A-efficiencies and 0.87 for D-ef- 
ficiencies. The G-efficiencies of E-optimal designs tend to be low averaging less 
than 0.5 and this is true for A-optimal designs too. The highest efficiency is only 
0.75 when the A-optimal design is used for the G-optimality criterion in the 
quadratic model. Thus, G-optimality should be used sparingly since most of the 
other optimal designs do not fair well in terms of G-efficiencies at all. A-optimal 
designs have uniformly high E-efficiencies and they outperform the E-optimal 
designs in terms of D-efficiencies. 

A formal mathematical justification of the findings here appears difficult, 
partly because A and E-optimal designs cannot be described in a nice closed 
form like those of D and G-optimal designs. However, a general result relating 
the D, A and E-efficiencies can be derived from the arithmetic-geometric- 
harmonic mean inequality: if the regression function has p components, it is 
straightforward to show that if 
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i.e., if the average of the eigenvalues of an A-optimal design is not too extreme, 
then 

P-1) 
for any linear models and any design 5 whose information matrix is nonsingular. 
For simple linear regression model with j = 1, (3.0) is trivially true and thus (3.1) 
holds. More generally, one can show if any part of (3.0) is satisfied, then the 
corresponding part of (3.1) is true. Unfortunately, condition (3.0) appears to be 
too stringent for most applications; for j = 2, the numbers in (3.0) are 0.657671, 
2.6667 and 5 from left to right so that the direction of the inequality in (3.0) is 
completely reversed. On the other hand, this is perhaps not unexpected since 
validity of (3.1) would imply that a D-optimal design is also A and E-optimal as 
well. Likewise, an A-optimal design must also be E-optimal. 

If one considers a design as (very) efficient if it has an efficiency of (0.9) 0.8 or 
higher, we may conclude from this study that (i) D-optimal designs are efficient 
in terms of A-efficiencies, very efficient in terms of G-efficiencies but they are 
not efficient in terms of E-efficiencies, (ii) E-optimal designs are very efficient in 
terms of A-efficiencies, efficient in terms of D-efficiencies but they are not 
efficient in terms of G-efficiencies and, (iii) A-optimal designs are very efficient 
in terms of both D and E-efficiencies but they are not efficient in terms of 
G-efficiencies. The G-optimality criterion seems to be compatible with D-opti- 
mality only. 
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