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Optimal Measurement Strategies for Effective Suppression of

Drift Errors

Valeriy V. Yashchuk

Lawrence Berkeley National Laboratory, Berkeley, CA 94720∗

(Dated: April 16, 2009)

Abstract

Drifting of experimental set-ups with change of temperature or other environmental conditions

is the limiting factor of many, if not all, precision measurements. The measurement error due to

a drift is, in some sense, in-between random noise and systematic error. In the general case, the

error contribution of a drift cannot be averaged out using a number of measurements identically

carried out over a reasonable time. In contrast to systematic errors, drifts are usually not stable

enough for a precise calibration. Here a rather general method for effective suppression of the

spurious effects caused by slow drifts in a large variety of instruments and experimental set-ups is

described. An analytical derivation of an identity, describing the optimal measurement strategies

suitable for suppressing the contribution of a slow drift described with a certain order polynomial

function, is presented. A recursion rule as well as a general mathematical proof of the identity is

given. The effectiveness of the discussed method is illustrated with an application of the derived

optimal scanning strategies to precise surface slope measurements with a surface profiler.

PACS numbers: 06.30-k, 42.72.-g, 42.87.-d
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I. INTRODUCTION

Consider a measurement of the functional dependence Q(v) of a physical quantity Q on a

variable v that is performed by scanning the variable over discrete points vi, i = 0, 1, ..., (I−
1), uniformly distributed over the range of interest (ROI) of the function. Generally, the

measured quantities QM (vi) are affected by random errors, R(vi), systematic error, S(vi),

and drift, D(vi), of the measurement instrument and experimental set-up:

QM (vi) = Q(vi) + R(vi) + S(Q(vi), vvi) + D(vi(t)). (1)

Random errors are caused by unpredictable fluctuations in the readings of the measure-

ment instrument due to a limited precision of the instrument and/or due to the random

character of the measurement quantity.1,2 If the random fluctuations are fast compared to

the time available for the measurement, the contribution of random errors can, in principle,

be made as small as required simply by averaging multiple sequential scans QM,s(vi) carried

out at the same experimental conditions:

Q̂M(vi) =
1

S

S∑
s=1

QM,s(vi), (2)

where symbol s denotes the number of the scan, s = 1, 2, ..., S, and S is the total number of

scans of the measurement run.

The systematic error in Eq. (1) is a part of the measurement error that is systematically

reproduced in the sequential scans and, therefore, cannot be suppressed by averaging over

repeatable measurements given by Eq. (2). Systematic errors are usually associated with in-

sufficient calibration of the instrument for a specific experimental arrangement. Sometimes,

reliable calibration of the instrument is rather sophisticated, for example, calibration of sur-

face slope measuring profilers discussed in Ref.3 In any case, precision testing and calibration

of the experimental set-up is, practically, the only reliable way to illuminate (account for)

the systematic errors.

Instrumental and set-up drifts are the limiting factors of many, if not all, precise measure-

ments requiring collection of data for extended period of time. The drift errors are caused

by a relatively slow variation of the experimental conditions such as temperature, humidity,

etc. The error due to a drift is, in some sense, in-between the random noise and systematic

error. Unlike a random noise, the error contribution of a drift cannot be averaged out using
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multiple scans identically carried out over a reasonable time. In contrast with systematic

errors, drifts are usually not stable enough for accounting via a precise calibration.

In the present article, we describe an experimental method for effective suppression of

the spurious effects caused by slow drifts. One of the realizations of the method, consid-

ered in detail in Sec. II, utilizes an idea to perform repeatable measurements at a certain

point vi at a sequence of time moments ti(s), specially arranged to anti-correlate with the

temporal dependence of the drift. The required sequence of the time intervals over which

measurements are performed is arranged with sequential reversals of the direction of scan-

ning towards increase or decrease of vi. An identity that describes a sequence of reversed

scans, suitable for suppressing a contribution of a slow drift described with a polynomial

function of a certain order, is analytically derived in Sec. II. In Sec. III, a recursion rule,

as well as a general mathematical solution (see also Appendix) of the identity are given.

The effectiveness of the discussed method is illustrated in Sec. IV by the application of the

derived optimal scanning strategies to precise surface slope measurements affected by a slow

exponential drift. In Sec. V, we discuss suppression of the drift error in an experiment, where

the measured physical quantity itself can be reversed. That means reversing the sign of the

recorded quantity without changing the sign of the drift error. We show that the optimal

sequences of the sign reversals also obey the same identity as the one derived in Sec. II for

reversing the direction of scanning. Note that the derived optimal sequences of the reversals

also describe the optimal square waveforms for drift-free multichannel phase-sensitive detec-

tion discussed in Ref.4 and first used in Refs.5,6 in an experiment searching for parity (P)

and time reversal invariance (T) violating electric dipole moment of xenon. Since then, this

technique has been widely used in experiments searching for P and T violating electric dipole

moments in neutrons,7,8 atoms,9–11, molecules,12,13 and solids.14 In Sec.V, we show that si-

multaneous optimal reversal of the direction of scanning and orientation of a surface under

test (SUT) provides drift-free surface metrology with slope-measuring profilers. A profiler

that would allow such reversals is under construction at the Advanced Light Source (ALS)

Optical Metrology Laboratory (OML). In Sec. VI, the effectiveness of the derived optimal

scanning strategies for a real experimental arrangement is illustrated with the ALS DLTP

(Developmental Long Trace Profiler15) using measurements with a high quality reference

mirror. A comparison with the corresponding results obtained with the world’s best slope

measuring instrument, the BESSY NOM,16 proves the accuracy of the DLTP measurements
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to be about 0.1 μrad (peak-to-valley) in spite of the presence of 25-μrad set-up drifts during

a measurement.

II. DRIFT ERROR SUPPRESSION BY REVERSING SCANNING DIRECTION

A. Slow drifts

We assume that a slow drift is described with a function D(t) that can be presented as

a MacLaurin polynomial series:

D(t) =
∑
n=0

D(n)(0)

n!
tn =

∑
n=0

dnt
n. (3)

The possibility for a drift to be represented as a MacLaurin series (existence of derivatives

up to rather high orders) seems to be very natural. Moreover, a large class of drifts can be

described with an exponential function that has derivatives which exist for any order:

D(t) = D0 exp(−t/τ) = D0

∑
n=0

(−1)n tn

τnn!
=
∑
n=0

dntn, (4)

where τ is a time constant. Throughout the present work, an exponential drift is slow, if a

duration of a scan, ΔT , is smaller than τ :

ΔT = I δt < τ, (5)

where δt is an incremental time between the sequential measurements and I is the total

number of measurements per scan.

If a drift is fast, i.e. I δt ≥ τ , the best strategy is to wait for a few periods of τ , when the

experimental conditions become stable enough for the required accuracy of measurements.

Practically, such a strategy has been realized in the DLTP data acquisition system by

introducing a delay time before starting a run.15 Suppression of a slow exponential drift

is analyzed in Sec. IV in more detail.

For a general case of a slow drift described with a MacLaurin series (3), a condition

analogous to (5) can be written as a limit of the derivatives:

D(n)(0)(ΔT )n < 1. (6)

Below, we describe an experimental method for minimizing a certain order of polynomial

drift. The idea of the method is to average repeatable measurements of a physical quantity
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at a certain point vi performed at a sequence of time moments ti(s), specially arranged to

anti-correlate with the temporal dependence of the drift. The results of this section are

applicable in a broad class of measurements, including (but not limited to), for example,

mapping electric-potential distributions with a Laplace’s bath,17,18 high-precision metrology

of x-ray optics with long trace profilers,19,20 etc.

As a concrete example, we consider a measurement of surface topography with a slope-

measuring profiler. Figure 1 shows a simplified schematic of the experimental set-up. The

optical slope sensor of the profiler is a high precision autocollimator, which is stationary on

an optical table. Scanning along a surface under test (SUT) is performed by translating a

pentaprism mounted on a translation stage. The translation stage and the motion-control

system of the profiler allow for scanning in the forward and in the backward directions.

The schematic in Fig. 1 corresponds to, for example, to the NOM (Nanometer Optical

Component Measuring machine) slope profiler at BESSY (Germany),16 the ESAD (Extended

Shear Angle Difference) profiler at the PTB (Germany),21 and the DLTP recently developed

at the ALS OML.15

B. Optimal scanning sequences

Consider a slope profile measured in a single s-th scan of the profiler (Fig. 1), αs(xi)

with a total number of measured points of I, and i = {0, .., I − 1}. The resulting trace is

obtained by averaging over S scans, s = {1, .., S}, of the run:

α̂i =
1

S

S∑
s=1

αs(xi), (7)

Analogously to Eqs.(1) and (2), the resulting slope trace α̂i can be thought of as a sum of

a trace of the SUT surface slopes, α0
i , and contributions of random noise, αR

i , systematic

errors, αS
i , of the measurement, and drifts, αD

i , of the set-up:

α̂i = α0
i + αR

i + αS
i + αD

i . (8)

Precise measurement of α0
i assumes insignificant contributions of the random noise and

systematic errors, and we don’t consider them, concentrating on minimization of the error

related to drifts.
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Assuming that the measured points are uniformly distributed along the SUT, the set

of time moments, when the i -th point is measured during the s-th scan performed in the

forward direction, can be described as

tFi (s) = δt [(s − 1) · I + i]. (9)

If the s-th scan is performed in the backward direction, equation (8) transforms to

tBi (s) = δt [s · I − i]. (10)

We describe a sequence of directions of scans in a measurement run with a binary sequence

{rs} with the elements:

rs =

⎧⎨⎩ +1 if the s−th scan is performed in the forward direction;

−1 if the s−th scan is performed in the backward direction.
(11)

We will say that the binary sequence {rs} describes a scanning strategy for the corre-

sponding run.

Using the notation (11), the equations (9) and (10) can be rewritten in more generalized

form:

ti(s) = δt [(s − 1 + rs

2
) · I + rs i] = δt [(s − 0.5) · I + rs (i − 0.5 I)]. (12)

The factor δt in (12) is a time scale factor that we assume to be δt = 1; and, therefore, it

can be omitted in (12) without loss of generality:

ti(s) = (s − 0.5) · I + rs( i − 0.5 I). (13)

Consider a general case of the n-th order drift described with (3). After averaging over

all S scans of the run, a contribution of the drift to a slope value measured in the position

point xi is

Dn(xi) =
dn

S

S∑
s=1

tns (s) =
dn

S

S∑
s=1

[(s − 0.5) · I + rs(i − 0.5 I)]n . (14)

After simple algebraic transformations, (14) can be rewritten as

Dn(xi) = dn

S

∑n
k=0,even In−kCk

n(i − 0.5 I)k
∑S

s=1(s − 0.5)n−k

+dn

S

∑n
k=1,odd In−kCk

n(i − 0.5 I)k
∑S

s=1 rs(s − 0.5)n−k,
(15)
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where Ck
n ≡ (n

k) ≡ n!
(n−k)!k!

, 0 ≤ k ≤ n, are the binomial coefficients. In order to zero out

the second term in (15), the scanning sequence {rs} should obey the identity below with a

certain value of total number of scans, S,

S∑
s=1

rs(s − 0.5)n−k ≡ 0 for 1 ≤ k ≤ n. (16)

In the next section a recursion rule for finding the optimal scanning sequences is presented.

A stronger proof for the existence of the two solutions {r+
s } and {r−s }, {r+

s } = −{r−s }, for

the identity (16) and analytical forms of the solutions are derived in the Appendix. It is

shown that if {rs} is a solution of the identity

S∑
s=1

rss
n−1 ≡ 0, for any natural n, (17)

it is also a solution of the identity

S∑
s=1

rs(s + p)n−k ≡ 0, (18)

with S = 2n, for natural k ≤ n and any real p.

Therefore, from (18) at p = 0.5 and S = 2n, the second term of (15) can always be zeroed

out with an appropriate choice of scanning strategy {rs}.
The first term of (15) is not affected by the scanning procedure and should be analyzed

as a residual error due to the drift. This term can be presented as a sum of an offset term

with k = 0, independent of position on the mirror surface, and the rest of the sum that

describes the residual drift error, varying from point to point:

Dn(xi) =
dn

S
In

S∑
s=1

(s − 0.5)n +
dn

S

n∑
k=2,even

In−kCk
n(i − 0.5 I)k

S∑
s=1

(s − 0.5)n−k. (19)

The offset term only gives an overall offset of the measured slope trace. The offset does not

perturb the surface slope metrology and can be thought of as an overall tilt of the SUT.

The highest order (on S) of the drift error (19) is (n − 2). This can be compared with

the systematic error for the worst case of a totally non-optimized run of the same number

of scans but performed without reversing the scan direction that that has order of (n − 1)

on S. This is obtained from (15) by using rs ≡ 1 for all s. The corresponding suppression

factor can be expressed as a ratio of peak-to-valley variations (PV V ) of the major terms of
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the drift error of the optimized and non-optimized runs of the same total number of scans:

ξ ≈
PV V

[
In−1C1

n(i − 0.5 I)
∑S

s=1 rs(s − 0.5)n−1
]

PV V
[
In−2C2

n(i − 0.5 I)2
∑S

s=1(s − 0.5)n−2
] ∝ 8

2n

n
. (20)

The estimation (20) shows that suppression factor, ξ, rapidly increases with increase of n

for n ≥ 2. Below, we apply the result of the general consideration above to the particular

cases of polynomial drifts of the first few orders.

C. Delay time between sequential scans

So far we have assumed that the delay time between sequential scans due to reversing is

negligible compared to all other time scales in the problem. In this section, the case of

non-zero delay time between the scans is analyzed.

An arbitrary pattern of delay time between scans can be analyzed with an additional

term in expression (13) for the set of time moments of measurements in the i-th spatial

point:

ti(s) = (s − 0.5) · I + rs(i − 0.5 I) + asε I, (21)

where {as} is a sequence of real numbers describing a total delay for the s-th scan, and the

delays are expressed as a fraction ε of the duration time ΔT of a single scan:

ε Iδt =
ΔI

I
Iδt. (22)

First, consider a constant delay before each scan (a delay before the first scan does

not change anything and we apply it to simplify the following expressions). This can be

accounted in (21) with a delay sequence:

{as} = {s}. (23)

Then, relation (21) can be presented as

ti(s) = (s − 0.5

1 + ε
) · I(1 + ε) + rs( i − 0.5 I), (24)

which is basically identical to (13). Therefore, the conditions for optimal scanning strategy

are still given by (18) with p = − 0.5
1+ε

and the optimization identities and their solutions {rs}
are the same as discussed in Sec. II.
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If the delay time between sequential scans is significantly smaller than the duration of

a single scan (ε << 1), one can neglect ε in (24) and use the results of Secs. II- IV for

estimation of the suppression efficiency.

For completeness, consider a case of measurements when a significant delay (ε ≈ 1)

appears only between two sequential scans in the same direction. This situation corresponds

to surface profiling with a significant time delay for returning the carriage to the previous

start position. Then, the delay sequence can be expressed as:

as =
s∑

j=1

(
r+
j−1 + r+

j

2

)2

=
s∑

j=1

(
1 + r+

j−1 · r+
j

)
, (25)

assuming rj=0 = −1. The first few elements of the sequence {as} are

{as} = {0, 0, 2, 2, 2, 2, 4, 4, 6, 6, 8, 8, 8, 8, 10, 10, ...}. (26)

In this case, in the expression, analogous to (15), there would be additional terms that are

zeroed with the found optimal scanning patterns due to the identity:

2n∑
s=1

rs(as)
n−1 ≡ 0. (27)

However, there would also be more additional terms that contribute to the residual drift

error. Analysis of the contributions is rather cumbersome and we omit it here.

III. RECURSION RULE FOR FINDING OPTIMAL SCANNING STRATEGIES

A. Suppression of a linear drift

Let us first consider a linear drift described in (3) with d1t. After averaging over all S

scans of the run, the contribution of linear drift to a slope value measured for a position

point xi is

D1(xi) = d1

S

∑S
s=1 ti(s) = d1

S

[
I
∑S

s=1(s − 0.5) + (i − 0.5 I)
∑S

s=1 rs

]
. (28)

The first term in (28) does not depend on the point index i; and, therefore, it does not

perturb the surface slope metrology of the SUT.

The second term in (28) can be easily zeroed if

S∑
s=1

rs ≡ 0. (29)
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This is a trivial result that in order to suppress a linear drift, a scanning strategy {ri}
should include the same number of scans in the forward and in the backward directions;

the succession of the scans is not important. The simplest realizations of the strategy are

two-scan runs:

{r+
s } = {+1,−1} ≡ {F, B} and {r−s } = {−1, +1} ≡ {B, F}. (30)

B. Suppression of a quadratic drift

Second, consider a quadratic drift described in (3) with d2t
2:

D2(xi) = d2

S

∑S
s=1 t2i (s) = d2

S
I2
∑S

s=1(s − 0.5)2 − d2

S
I(i − 0.5 I)

∑S
s=1 rs

+d2

S
2I(i − 0.5 I)

∑S
s=1 rss + d2(i − 0.5 I)2.

(31)

The first term in (31) does not depend on the point index and, therefore, gives an overall

offset of the measured slope trace.

The second term in (31) is zeroed, if the scanning strategy {ri} includes the same number

of scans in the forward and in the backward directions. This requirement is the same as

condition (30) for an optimal strategy suppressing a linear drift.

The third term in (31) can also be zeroed, if the scanning strategy {ri} obeys the addi-

tional condition
S∑

s=1

rss ≡ 0. (32)

It is easy to directly check that the simplest solutions of Eq. (32) that also obey (29) are

the strategies of four-scan runs:

{r+
s } = {+1,−1,−1, +1} ≡ {F, B, B, F} and

{r−s } = {−1, +1, +1,−1} ≡ {B, F, F, B}.
(33)

The fourth term in (31) is a residual drift error due to the quadratic drift. The error does

not depend on the total number of scans. It should be compared with the result obtained

by averaging over 4 scans of a non-optimized run, {ri} ≡ 1, carried out without reversing

the scanning direction:

D×
2 (xi) = d2(i − 0.5 I)2 + d2S I(i − 0.5 I), (34)

that has an additional term linearly increasing with the increase of the total number of scans

in the run. The cross index in (34) denotes that the error was estimated for a non-optimized
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run. Numerical comparison of the last term in (31) with the drift error (34) suggests that a

minimal optimum run of four scans (33) allows suppression of the peak-to-valley variation

due to the quadratic drift by a factor of about 18.

C. Suppression of a third-order drift

In the same straightforward way that was used for the first- and the second-order drifts, we

can consider a third-order drift described in (3) with term d3t
3. After averaging over all S

scans of the run, the contribution of the third-order drift to a slope value measured for the

position point xi is

D3(xi) = d3

S

∑S
s=1 t3i (s)

= d3

S
I3
∑S

s=1(s − 0.5)3 + d3

S
(i − 0.5 I) [i2 − i I + I2]

∑S
s=1 rs

−d3

S
3I2(i − 0.5 I)

∑S
s=1 rs s + d3

S
3I2(i − 0.5 I)

∑S
s=1 rss

2

+d3
3
2
I(i − 0.5 I)2S

(35)

The first three terms in (35) are similar to that have obtained in (31) for a quadratic

drift. These terms does not perturb slope measurements if the conditions (29) and (32) are

fulfilled for the used scanning strategy.

The fourth term in (35) is zeroed, if the scanning strategy {ri} additionally obeys a new

condition
S∑

s=1

rss
2 ≡ 0. (36)

One can directly check that the simplest solutions of Eq. (36) that also obey (29) and (32)

are the strategies of eight-scan runs:

{r+
s } = {+1,−1,−1, +1,−1, +1, +1,−1} ≡ {F, B, B, F, B, F, F, B} and

{rs} = {−1, +1, +1,−1, +1,−1,−1, +1} ≡ {B, F, F, B, F, B, B, F}.
(37)

The fifth term in (35) is a residual drift error due to the quadratic drift. The error does

depend on the total number of scans. However, the magnitude of the error is significantly,

by factor of about 21 [see also Eq. (20)], suppressed compared with the drift error that would

be obtained by averaging over the same number of scans of a non-optimized run, carried out

without reversing the scanning direction:

D×
2 (xi) = d3(i − 0.5 I)i(i − I) − 3

2
d3I(i − 0.5 I)(2I − i)S + d3(i − 0.5 I)I2S2. (38)
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The non-optimized error (38) has an additional term quadratically increasing with the in-

crease of the total number of scans in the run. This term would give a major spurious

contribution from the third order drift to the slope measurement. This contribution is

effectively eliminated with the scanning strategies depicted with the binary sequences (37).

D. Recursion Rule

Note first that the optimal strategies {r+
s } and {r−s } given with (30), (33), and (37) obey

the identity

{r−s } = (−1){r+
s }. (39)

There is a simple recursion rule for the found optimal strategies that was directly verified

from the above consideration for the first three orders. An optimal strategy {r+
s (n + 1)} for

suppression of a polynomial drift of (n + 1)-th order is obtained by stitching together the

solutions {r+
s (n)} and {r−s (n)} found for the previous order:

{r+
s (n + 1)} = {r+

s (n), r−s (n)}. (40)

Together with (39), the recursion rule (40) allows construction of the optimal scanning

strategies to suppress a slow drift up to any desired order of the MacLaurin series of the

temporal dependence of the drift.

IV. SUPPRESSION OF SLOW EXPONENTIAL DRIFT

The efficiency of the found optimal strategies can be numerically demonstrated assuming

a slow exponential drift described with

D(t) = D0 exp(−t/τ), (41)

avoiding any limitation related to an approximation with a limited MacLaurin series.

Figure 2 illustrates the exponential drift suppression when a measurement run con-

sists of only four sequential scans depicted with the strategy {r+
s } = {+1,−1,−1, +1} ≡

{F, B, B, F} given by (33) and optimal for suppression of the second order polynomial drift.

In Fig. 2a, exponential drift described by Eq. (41) with the parameters D0 = 0.5 μrad

and τ = 60 min is shown. The simulation assumes that during two hours, four sequential
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measurements are performed according to the scanning strategy {r+
s } = {F, B, B, F} to

measure a slope distribution along a SUT with the length of 300 mm. Therefore, duration

of a scan of 30 min fulfills the condition (5) for a slow exponential drift.

Because the directions of the second and the third scans are reversed, the corresponding

contributions of the drift to the resulting slope trace are also reserved. That is depicted in

Fig. 2b. The resulting trace of the drift slope error due to the exponential drift measured in

the optimized four-scan run is shown with the red line and points in Fig. 2c. For comparison,

the blue line and points in Fig. 1c present the drift slope trace that would be measured in

a non-optimized run of four repeatable scans performed in the same direction.

The efficiency of drift suppression in the considered example is ξ ≈ 7.5. Averaging with an

additional run performed with the scanning strategy {r−s } = {B, F, F, B} would correspond

to a run with the strategy {r+
s } = {F, B, B, F, B, F, F, B}, optimized for suppression of

polynomial drifts up to third order [compare with expression (37)]. In the case of the

exponential drift, simulated here, the overall suppression factor after 8 optimal scans would

be ξ ≈ 8.7. The improvement is not so dramatic because of the small amplitude of the third

order polynomial in the MacLaurin series of a slow exponential drift.

V. DRIFT ERROR SUPPRESSION BY REVERSING MEASURING QUANTITY

In the experiment shown in Fig. 1, the direction of a scan can be changed by reversing the

scanning direction of the profiler or by changing the orientation of the SUT. From the point

of view of optimization of the scanning strategy of the slope measurement in Fig. 1, these

two options are not absolutely identical. If the scanning direction of a profiler is reversed, the

contribution to the measured slope value due to the inherent mirror surface profile, α0
i in (8),

remains unchanged. This is in contrast to the change of the SUT orientation, when the slope

contribution due to the SUT changes in its sign. Optimal scanning strategies for the case

of reversing the scanning direction of a profiler were analyzed in Sec. II. The advantages,

possible with the additional reversal of changing the SUT orientation, are discussed below.

First, let us consider reversing the scanning direction performed by only changing orien-

tation of the SUT. In this case, the contribution of the n-th order polynomial drift to the
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slope value measured in the position point xi is [compare with Eq. (14)]

Dn(xi) =
dn

S

S∑
s=1

rs [(s − 0.5) · I + rs(i − 0.5 I)]n , (42)

where the additional term rs accounts for the sign change in the course of averaging over the

scans of the run. It is straightforward to show with a consideration, similar to one presented

in Sec. II that the orientation reversal leads to suppression of the first term in (15) rather

than the second term of larger order on S. Therefore, the overall suppression would be

smaller than one obtained by reversing the scanning direction of the profiler.

However, a strategy that includes both reversals can allow absolute zeroing of the drift-

related errors.

For example, if in the course of a slope measurement the scanning direction and the ori-

entation of the SUT are reversed with the same strategy {rs(n)}, the drift error contribution

is

Dn(xi) =
dn

S

S∑
s=1

rs [(s − 1) · I + i]n . (43)

Similar to Eq. (42), the term rs in Eq. (43) accounts for the change of the SUT slope sign

when the orientation of the SUT is reversed. Because the scanning direction of the profiler

is simultaneously changed with the same strategy, the scanning direction with respect to the

SUT surface is not changed; and the time sequence of the run should correspond to scanning

in the same direction. In Eq. (43), this is the forward direction scanning described with (9).

The equation (43) is equivalent to

Dn(xi) =
dn

S

n∑
k=0

In−kCk
nik

S∑
s=1

rs(s − 1)n−k, (44)

that, as it was shown in Sec. II and more strongly proven in the Appendix, can be identically

zeroed using the optimal scanning strategies {rs(n)} derived and discussed throughout the

present article [compare with Eq. (18)].

In order to realize such a scanning strategy with the LTP or DLTP slope measuring

instruments, a corresponding upgrade should be made to allow automatic and simultaneous

change of the orientation of a surface under test and the scanning direction of the profiler.

A profiler that would allow such reversals is under construction at the ALS OML. Note that

reversing the SUT orientation can provided a suppression of the systematic error.22
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We can now formulate that the most efficient suppression of drift error (in fact, identical

zeroing of polynomial drifts up to a desired order) is obtained with sequential scans with

optimal reversing of the sign of the measuring quantity without changing the sign of the

drift error contribution. The optimal sequences of the sign reversals also obey the same

identity as the one derived in Sec. II for reversing the direction of scanning.

VI. DLTP MEASUREMENTS WITH REVERSING SCANNING DIRECTION

In order to illustrate the effectiveness of the above optimal scanning strategies for a

real experimental arrangement, we describe below DLTP measurements (Fig. 1) with the

S3 reference mirror,23–25 and provide a comparison with the corresponding results obtained

with the world’s best slope measuring instrument, the BESSY NOM.16

The DLTP experiment with the S3 reference mirror consisted of a total of six overnight

measurement series, each composed of multiple scans. A few precautions were used in order

to decrease the possible systematic errors.15 First, three measurement series were carried out

with the direct orientation of the mirror, and three measurement series with the reversed

mirror orientation. Second, for each measurement series of the total six, the S3 mirror was

re-aligned to have a different tangential tilt that appears in a corresponding slope trace

as an offset. It should be mentioned that because of the drift of the profiler set-up, the

tilt offset is changing from scan to scan composing a measurement. Ironically, we believe

this circumstance to be helpful for better averaging of the DLTP systematic errors. Each

measurement series consists of 16 scans total, including four consequent series of F-B-B-

F runs. The measurements were usually started at 6 PM and finished by approximately

10 AM of the next day in order to carry out an overnight measurement at significantly

quieter industrial noise. (There is constraction of a new building next door.)

The preliminary tests of the DLTP15 have shown a significant dependence of the perfor-

mance of the instrument on the laboratory environmental conditions, that is mainly a slow

drift of the room temperature with a diurnal peak-to-value variation up to a few degrees

Centigrade. Figure 3 illustrates the repeatability of measurements inside a measurement

series via a difference of the slope traces for the first (1st) and the last (16th) scans of the

same measurement series. There is a significant change of offset that is about 25 μrad for

the tangential slope traces measured with an interval of approximately 15 hours. This big
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change is caused by a temperature drift of the mutual alignment of the mirror and the

autocollimator due to temperature instability of the DLTP optical table upon the diurnal

temperature drift in the lab.

At first glance, keeping in mind the requirement for sub-microradian accuracy of DLTP

slope measurements, we have a deadlocked situation. Nevertheless, an excellent match of the

averaged measurements performed with the ALS DLTP and BESSY NOM26 is clearly seen

in Fig. 4, which is the result of the drift suppression by the optimal measurement strategy.

Moreover some deviations of the measurements can be attributed to the difference in the

increment of the slope profiles. BESSY data are shown with an increment of 1 mm, while

the ALS data are plotted with increment of 0.2 mm. By and large, the difference of the

measurements does not exceed 0.1 μrad (peak-to-valley).

We specially compare the ALS DLTP measurements with BESSY NOM results because

the known high performance of the NOM is guaranteed by the extremely sophisticated

design of the profiler and extremely quiet environmental conditions inside the BESSY optical

metrology laboratory, and specially around the instrument.16 These became possible due to

the massive investment in development of the NOM, unprecedented careful design of every

single part of the NOM set-up, as well as due to the profiler calibration additional to the

calibration of the NOM autocollimator. In the measurement with the ALS DLTP (that

is of significantly less cost), a comparable accuracy became possible by implementing a

sophisticated measurement strategy, discussed throughout the present work.

VII. DISCUSSION AND CONCLUSIONS

We have considered a rather general method for effective suppression of the spurious effects

caused by slow drifts in a large variety of experiments. The method is based on the ap-

plication of scanning strategies capable of suppression of polynomial drifts up to a certain

desired order. A general form of identities describing a set of optimal scanning strategies has

been derived. A simple recursion rule for finding the solutions of the identities has been also

suggested. It has been also shown that the same optimal scanning strategies allow identical

zeroing of polynomial drifts up to the desired order if reversing the sign of the measuring

quantity without changing the sign of the drift error contribution is used.

The high effectiveness of the found optimal scanning strategies has been numerically
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verified for the case of low order polynomial drifts, as well as for the case of a slow exponential

drift. The performed consideration is limited with a case of slow drifts. That guarantees that

the contribution of a certain order polynomial to the drift error relatively decreases with

increase of the order. Basically, this allows application of the described approach to any

slow drift with a temporal dependence that can be approximated with a limited MacLaurin

series of polynomials.

The advantages of use of the discussed optimal scanning strategies in a real experiment

was illustrated with the DLTP surface slope metrology of a super high quality reference

mirror. A comparison with the corresponding results obtained with the world’s best slope

measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements

to be about 0.1 μrad (peak-to-valley) in spite of the presence of 25 μrad set-up drifts during

a measurement. The demonstrated performance of the DLTP is mostly due to the original

measurement strategy, as it has been discussed throughout the present work, that is capable

for effective suppression of the set-up drifts and systematic errors. However, it does not

follow from our results that the DLTP is a similar quality instrument to NOM, at least,

not for entire angular range. The rather large radius of curvature (about 1280 m) of the S3

reference mirror does not allow testing the total slope range of the DLTP (about ±5 mrad)

where one should expect the systematic errors to be significantly larger. Moreover, if the

same strategy and finesses are applied while measuring with the NOM, the result is expected

to be also significantly improved.

In conclusion, we have discussed an experimental method for suppressing drift-related

errors. We believe that a similar suppression of the drift errors can be also obtained via

a sophisticated numerical treatment of a set of the sequential scans. In this case, one

could use, for example, the method of maximum likelihood to find a best fitted polynomial

approximation of the error contribution. A discussion of this approach is, however, beyond

the scope of the present work.

APPENDIX A: GENERAL PROOF FOR THE CORRELATION IDENTITY27

The correlation identity to be proven can be written in a simple from:

2n+1∑
s=1

rss
n ≡ 0, (A1)

17



where s and n are natural numbers, {rs} is a binary sequence of +1s and -1s of the total

length of 2n+1. The physical meaning of the parameters in (A1) is following. Index s is the

index number for the s-th scan. The binary array {rs} describes a sequence of directions of

scanning (reversals) - Eq.(11). Index n is the order of a polynomial term of the MacLaurin

series of the drift function to be suppressed with the scanning pattern given with {rs}. A

measurement run consists of the total number of scans of S = 2n+1 that have to be averaged

to get the resulting measurements, maximally free of an error due to the drift.

The solution presented below is based on the well known property of finite difference

derivatives of a polynomial that the finite-difference partial derivative of a polynomial of

degree k is a polynomial of degree (k − 1). In short, the identity (A1) is true because the

sum has the meaning of the (n + 1)-st finite-difference derivative of an n-order polynomial.

For a more explicit solution, consider a polynomial

f(x0, x1, ..., xn) (A2)

with n + 1 variables. Suppose that the polynomial degree does not exceed n. Take the

(n+1)-st finite difference derivative of the polynomial in the directions of x0, x1, ..., and xn

that is a finite difference analogue of an ordinary derivative ∂n+1f(x0,...xn)
∂x0∂x1...∂xn

. The derivative has

the form of the sum, over 2n+1 sequences {a0, a1, ..., an} of zeroes and ones, of the values

f(x0 + a0, x1 + a1, ..., xn + an) (A3)

taken with certain signs, +/−. The exact rule of signs is (−1)a0+a1+...+an that is the sign

is + if an odd number of the ai are ones, and - if even. In (A2), we assume that the finite

difference h is the same for any direction and h = 1.

Thus we have: ∑
{a0,a1,...,an=0,1}

(−1)a0+a1+...+anf(x0 + a0, x1 + a1, ..., xn + an) ≡ 0 (A4)

The statement is that if f(x0, x1, ..., xn) is a polynomial with a degree, not exceeding n, then

the sum (A4) is equal to zero identically (i.e., for all values of x0, x1, ..., xn). The proof

is straightforward since a finite-difference partial derivative of a polynomial of degree k

is a polynomial of degree (k − 1) (just as it is for ordinary derivatives). Checking this for

monomials essentially reduces to the one-variable fact that (x+1)k−xk has degree of (k−1).
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The identity (A1) is obtained by applying this formula to the polynomial

f(x0, x1, ..., xn) = (x0 + 2x1 + 22x2 + ... + 2nxn)n (A5)

whose (n + 1)-st finite difference partial derivative is computed at the point

(x0, x1, ..., xn) = (1, 0, ..., 0). (A6)

To clarify the last statement note first that when {a0, a1, ..., an} runs over all binary

sequences, the number

s = 1 + a0 + 2a1 + ... + 2nan (A7)

runs over all integers from 1 to 2(n+1). Second, note that for the function (A5) at a certain

s, the expression f(x0 + a0, x1 + a1, ..., xn + an) in (A4), taken at the point (A6), reduces

to the sn polynomial term. The elements of the sequence {rs} in (A1) can be obtained as

factors (−1)a0+a1+...+an in (A5). Then the rule of signs for rs is rs = +1, when the binary

code for s has an even number of ones, and rs = −1, when the number of ones in the binary

code of s is odd.

Note also that if in the sum (A1) sn is replaced with (x + s)n, the sum still will be equal

to 0, and this is true for any value of x, and not necessarily for an integer; that is, x could

be any real number. This proves the statement made in the introduction that the scanning

pattern, optimal for the suppression of the n-th order polynomial term of a drift [obeying

identity (A1)], is also optimal for all polynomial terms of the order of less than n.
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FIGURES

FIG. 1: Simplified schematic of slope measurements with the ALS DLTP instrument. The optical

slope sensor of the DLTP is a high-precision autocollimator. In the course of a measurement,

scanning along a SUT is performed by translating a pentaprism in the forward (increase of the

x-coordinate) or backward direction.
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FIG. 2: Suppression of the exponential drift described by Eq. (41) with the parameters D0 = 0.5

μrad and τ = 60 min. (a) Time dependence of the exponential drift. (b) The same drift is presented

as a dependence on the spatial position along a SUT when four scans are performed according to

the scan strategy {r+
s } = {+1,−1,−1,+1} ≡ {F,B,B,F}. (c) The resulting traces of the slope

error due to the exponential drift measured in four succesive scans performed in one direction (blue

line and points) and in four scans performed according to the optimal scanning strategy (red line

and points).
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FIG. 3: DLTP set-up drift as a difference of the slope traces measured in the first (1st) and the

last (16th) scans of the measured series #199 (see text). The number of the series, #199, relates

to a current number of the measurement series when it was performed with the DLTP.

FIG. 4: The red points and line are DLTP measurement with the S3 reference mirror. The blue

points and line presents the residual slope trace obtained with BESSY NOM (courtesy of Frank

Siewert).
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