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Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in
Polarized Proton-Proton Collisions at RHIC
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We report measurements of single- and double-spin asymmetries for W± and Z/γ∗ boson produc-
tion in longitudinally polarized p+p collisions at

√
s = 510 GeV by the STAR experiment at RHIC.

The asymmetries for W± were measured as a function of the decay lepton pseudorapidity, which
provides a theoretically clean probe of the proton’s polarized quark distributions at the scale of the
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W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic
scattering measurements, and show a preference for a sizable, positive up antiquark polarization in
the range 0.05 < x < 0.2.

PACS numbers: 24.85.+p, 13.38.Be, 13.38.Dg, 14.20.Dh

In high-energy proton-proton collisions, weak boson
and Drell-Yan production are dominated by quark-
antiquark annihilations. Because of the valence quark
structure of the proton, these interactions primarily in-
volve the lightest two quark flavors, up (u) and down
(d). In unpolarized collisions, measurements of these
processes are used to constrain the helicity-independent
parton distribution functions (PDFs) of the quarks (e.g.
Refs. [1, 2]). In particular, Drell-Yan measurements [3, 4]
and earlier deep inelastic scattering (DIS) results [5, 6]
have reported a large enhancement in d̄ over ū quarks
for a wide range of partonic momentum fractions x. Cal-
culations have shown that perturbative QCD does not
produce such a flavor asymmetry in the proton’s light
antiquark distributions, indicating another, likely non-
perturbative, mechanism is needed [7, 8]. This gen-
erated significant theoretical interest, with many non-
perturbative models able to qualitatively describe the
data [9–12]. nonperturbative In the case of longitudi-
nally polarized proton collisions at RHIC, the coupling of
W± bosons to left-handed quarks and right-handed an-
tiquarks (uLd̄R→W+ and dLūR→W−) determines the
helicity of the incident quarks. This provides a direct
probe of the helicity-dependent PDFs through a parity-
violating longitudinal single-spin asymmetry which is de-
fined as AL = (σ+−σ−)/(σ++σ−), where σ+(−) is
the cross section when the polarized proton beam has
positive (negative) helicity. Analogous to the unpo-
larized case, measurements of this asymmetry can be
used to constrain the helicity-dependent quark PDFs
∆q = q+−q−, where q+(q−) is the distribution of quarks
with spin parallel (antiparallel) to the proton spin. Of
particular interest is a possible flavor asymmetry in the
polarized case, given by ∆ū−∆d̄, which some nonper-
turbative models predict to be similar to, or even larger
than, the unpolarized flavor asymmetry [11, 12].

Semi-inclusive DIS measurements with polarized
beams and targets also constrain the helicity-dependent
PDFs, although they require the use of fragmentation
functions to relate the measured final-state hadrons
to the flavor-separated quark and antiquark distribu-
tions [13–15]. Both inclusive and semi-inclusive DIS
measurements have been included in global QCD anal-
yses to determine the helicity-dependent PDFs of the
proton [16, 17]. The extracted polarized flavor asym-
metry ∆ū−∆d̄ is positive within the sizable uncertainty
afforded by the current measurements.

In this Letter, we report measurements of single- and
double-spin asymmetries for weak boson production in
longitudinally polarized p+p collisions from 2011 and

2012 by the STAR collaboration at RHIC for
√
s =

500 and 510 GeV, respectively. The beam polarization
and luminosity of this data set correspond to an or-
der of magnitude reduction in the statistical variance
for single-spin asymmetry measurements, in compari-
son to results reported previously by STAR [18] and
PHENIX [19]. These measurements place new con-
straints on the helicity-dependent antiquark PDFs, and
prefer a larger value for the up antiquark polarization
∆ū than previously expected by global QCD analy-
ses [16, 17].

The polarizations of the two beams were each mea-
sured using Coulomb-nuclear interference proton-carbon
polarimeters, which were calibrated with a polarized
hydrogen gas-jet target [20]. The average luminosity-
weighted beam polarization during 2011 (2012) was
0.49 (0.56), with a relative scale uncertainty of 3.4% for
the single beam polarization and 6.5% for the product of
the polarizations from two beams. The integrated lumi-
nosities of the data sets from 2011 and 2012 are 9 and
77 pb−1, respectively.

The subsystems of the STAR detector [21] used in
this measurement are the Time Projection Chamber [22]
(TPC), providing charged particle tracking for pseudo-
rapidity |η| . 1.3, and the Barrel [23] and Endcap [24]
Electromagnetic Calorimeters (BEMC, EEMC). These
lead-sampling calorimeters cover the full azimuthal angle
φ for |η| < 1 and 1.1 < η < 2, respectively.

In this analysis, W± bosons were detected via their
W± → e±νe decay channels, and were recorded using a
calorimeter trigger requirement of 12 (10) GeV of trans-
verse energy ET in a ∆η×∆φ region of ∼0.1×0.1 of the
BEMC (EEMC). Primary vertices were reconstructed
along the beam axis of the TPC within ±100 cm of the
center of the STAR interaction region. The vertex dis-
tribution was approximately Gaussian with an rms of
49 cm. The spread of the vertex distribution allows the
detector η coverage to be extended by ∼0.1.

The selection criteria for electrons and positrons de-
tected in the BEMC, with e± pseudorapidity |ηe| < 1.1,
are described in previously reported measurements of the
W± and Z/γ∗ cross sections [25], and will only be sum-
marized here. At midrapidity, W± → e±νe events are
characterized by an isolated e± with a transverse energy
EeT measured in the BEMC that peaks near half the W
boson mass. Leptonic W± decays also produce a neu-
trino, close to opposite in azimuth of the decay e±. The
neutrino is undetected and leads to a large missing trans-
verse energy. As a result, there is a large imbalance in
the vector transverse momentum (pT ) sum of all recon-



4

10 20 30 40 50 60

 E
v
e
n

ts
 /
 2

 G
e
V

50

100

150

|<0.5
e

ηElectron |

 STAR Data

 MCν e → W 

 Datadriven QCD

10 20 30 40 50 60

50

100

150

|<1.1
e

ηElectron 0.5<|

 Second EEMC

 MCν τ → W 

 ee MC→ Z 

 (GeV)
e

T E

10 20 30 40 50 60

 E
v

e
n

ts
 /

 2
 G

e
V

100

200

300
|<0.5

e
ηPositron |

 (GeV)
e

T E

10 20 30 40 50 60

100

200

300
|<1.1

e
ηPositron 0.5<|

FIG. 1. (color online) Ee
T distribution of W− (top) and W+

(bottom) candidate events (black), background contributions,
and sum of backgrounds and W± → e±νe MC signal (red
dashed).

structed final-state objects for W± events, in contrast
to Z/γ∗ → e+e− and QCD dijet events. We define a
pT -balance variable ~p bal

T which is the vector sum of the
e± candidate ~p e

T and the pT vectors of all reconstructed
jets outside an isolation cone around the e± candidate
track with a radius of ∆R =

√
∆η2 + ∆φ2 = 0.7. Jets

were reconstructed from charged tracks in the TPC and
energy deposits in the BEMC and EEMC using an anti-
kT algorithm [26]. The scalar variable signed pT -balance
= (~p bal

T ·~p e
T )/|~p e

T | is required to be larger than 14 GeV/c.

W± candidates were charge separated based on
e± track curvature measured in the TPC. The charge
separated yields are shown in Fig. 1, along with the
estimated contributions from electroweak processes and
QCD backgrounds, as a function of EeT . The W± →
τ±ντ and Z/γ∗ → e+e− electroweak contributions were
determined from Monte Carlo (MC) samples simulated
using pythia 6.422 [27] with the Perugia 0 tune [28].
The generated events were passed through a geant [29]
model of the STAR detector response, embedded in real
STAR zero-bias triggered events [25], and reconstructed
using the same selection criteria as the data. In the
W± → τ±ντ sample the tauola package was used for
the polarized τ± decay [30]. Background yields from
QCD processes were estimated independently for each
ηe bin through two contributions described in Ref. [25],
referred to as the second EEMC and data-driven QCD.
These background contributions originate primarily from
events thatmidrapidity satisfy the W± selection criteria
but contain jets escaping detection due to the missing
calorimeter coverage for η < −1 and η > 2.

The EEMC was used to reconstruct the energy of the
decay e± candidates at forward rapidity (ηe > 1).
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FIG. 2. (color online) (a) Signed pT -balance distribution for
e± candidates reconstructed in the EEMC and (b) distribu-
tion of the product of the TPC reconstructed charge sign and
ET /pT .

Charged track reconstruction was provided by the TPC,
limiting the pseudorapidity acceptance to ηe . 1.3.
Similar to the midrapidity event selection, isolation
and signed pT -balance requirements were used to se-
lect W± → e±νe candidates. Additionally, the
EEMC Shower Maximum Detector (ESMD) [24], con-
sisting of two orthogonal planes of scintillating strips at
a depth of ∼5 radiation lengths, provided a measure-
ment of the electromagnetic shower’s profile transverse
to its propagation direction. A single electromagnetic
shower from a W± → e±νe decay should be isolated with
a narrow transverse profile (Molière radius of ∼1.5 cm in
lead [31]), while QCD background candidates typically
contain a π0 or other additional energy deposits in prox-
imity to the candidate track leading to a wider recon-
structed shower. In addition, the location of the extrap-
olated TPC track and the shower reconstructed in the
ESMD should be well correlated for W± → e±νe events.
To further suppress QCD background events, a ratio of
the energy deposited in the ESMD strips within ±1.5 cm
of the candidate TPC track to the energy deposited in
the strips within ±10 cm was computed. This ratio, de-
noted RESMD, was required to be greater than 0.6 to
select isolated, narrow e± showers.

The charge-summed candidate yield as a function of
signed pT -balance for forward rapidity e± is shown in
Fig. 2(a), where the electroweak contributions were es-
timated using the same MC samples described for the
midrapidity case. The QCD background was estimated
from the shape of the signed pT -balance distribution for
e± candidates with RESMD < 0.5. This shape was de-
termined for each charge sign independently and was nor-
malized to the measured yield in the QCD background
dominated region, −8 < signed pT -balance < 8 GeV/c.
Forward rapidity W± candidates were selected by re-
quiring signed pT -balance > 20 GeV/c. The difference
between the data and W± → e±νe MC distributions for
signed pT -balance > 20 GeV/c is within the MC normal-
ization uncertainty, and this uncertainty provides a neg-
ligible contribution to the measured spin asymmetries.
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Figure 2(b) shows the reconstructed charge sign multi-
plied by the ratio of EeT (measured by the EEMC) to peT
(measured by the TPC) for forward rapidity candidates.
Because of their forward angle, these tracks have a re-
duced number of points along their trajectory measured
by the TPC compared to the midrapidity case, which
leads to a degraded pT resolution. Despite that, a clear
charge sign separation is observed. The data were fit
to two double-Gaussian template shapes generated from
W± MC samples to estimate the reconstructed charge
sign purity. The shaded regions were excluded from the
analysis to remove tracks with poorly reconstructed pT
and reduce the opposite charge sign contamination. The
residual charge sign contamination is estimated to be
6.5%, which is small relative to the statistical uncertain-
ties of the measured spin asymmetries.

Measurements of Z/γ∗ production at RHIC energies
are limited by a small production cross section. How-
ever, one unique advantage of this channel is the fully
reconstructed e+e− final state, allowing the initial state
kinematics to be determined event by event at leading
order. A sample of 88 Z/γ∗ → e+e− events was identi-
fied by selecting a pair of isolated, oppositely charged e±

candidates, as described in Ref. [25]. The resulting in-
variant mass distribution of e+e− pairs is shown in Fig. 3,
superimposed with the MC expectation.

The measured spin asymmetries were obtained from
the 2011 and 2012 data samples using a likelihood
method to treat the low statistics of the 2011 sample.
For a given data sample, a model for the expected, spin-
dependent W± event yield µ in a given positive pseudo-
rapidity range, labeled a, of the STAR detector can be
defined for each of the four RHIC helicity states of the
two polarized proton beams

µa++ = l++N
a(1 + P1βA

+ηe
L + P2βA

−ηe
L + P1P2βALL)

µa+− = l+−N
a(1 + P1βA

+ηe
L − P2βA

−ηe
L − P1P2βALL)

µa−+ = l−+N
a(1− P1βA

+ηe
L + P2βA

−ηe
L − P1P2βALL)

µa−− = l−−N
a(1− P1βA

+ηe
L − P2βA

−ηe
L + P1P2βALL)

(1)
where

• P1(P2) is the absolute value of the polarization of
beam 1(2),

• A+ηe
L (A−ηe

L ) is the single-spin asymmetry mea-
sured at positive(negative) ηe with respect to beam
1,

• ALL is the parity-conserving double-spin asymme-
try [32] which is symmetric with respect to ηe,

• Na is the spin averaged yield, and

• l±± are the respective relative luminosities deter-
mined from an independent sample of QCD events,
which required a nonisolated lepton candidate with
EeT < 20 GeV as described in Ref. [18].

A similar set of four equations can be written for
the symmetric negative pseudorapidity range of the
STAR detector, labeled b, by interchanging A+ηe

L with

A−ηe
L . The dilution of the asymmetries due to unpolar-

ized background contributions to the W± candidate yield
are represented by β = S/(S + B), where S and B are
the number of signal and background events as shown
in Figs. 1 and 2, and were measured separately for re-
gions a and b. The estimated W± → τ±ντ yield is not
a background for the asymmetry measurement as it is
produced in the same partonic processes as the primary
signal, W± → e±νe.

The eight spin-dependent yields for the pair of sym-
metric pseudorapidity regions in the STAR detector (a
and b) are used to define a likelihood function

L =

4∏
i

P(Ma
i |µai )P(M b

i |µbi )g(βa)g(βb) (2)

consisting of a product of Poisson probabilities P(Mi|µi)
for measuring Mi events in a helicity configuration, i,
given the expected value µi from Eqn. (1) and a Gaus-
sian probability g(β) for the estimated background di-
lution. The spin asymmetry parameters (A+ηe

L , A−ηe
L

and ALL) of this likelihood function were bounded to
be within their physically allowed range of [-1,1], Na,b

and βa,b were treated as nuisance parameters, and the
remaining parameters (P and l±±) are known constants.

Separate likelihood functions were computed for the
2011 and 2012 data sets, consisting of 2759 W+ and 837
W− candidates in total. The product of these two like-
lihood functions was used in a profile likelihood analy-
sis [31] to obtain the central values and confidence in-
tervals for the asymmetries. The W± asymmetries were
measured for e± with 25 < EeT < 50 GeV and are shown
in Figs. 4 and 5 as a function of e± pseudorapidity for the
single- and double-spin asymmetries, respectively. These
results are consistent with our previous measurements of
AL [18]. The data points are located at the average ηe
within each bin, and the horizontal error bars represent
the rms of the ηe distribution within that bin. The ver-
tical error bars show the 68% confidence intervals, which
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3.4% beam pol scale uncertainty not shown

+
W


W

STAR Data CL=68%

DSSV08  RHICBOS

DSSV08  CHE NLO

LSS10 CHE NLO

FIG. 4. (color online) Longitudinal single-spin asymmetry AL

for W± production as a function of lepton pseudorapidity ηe
in comparison to theory predictions (see text for details).

include the statistical uncertainty, as well as systematic
uncertainties due to the unpolarized background dilu-
tions. The magnitude of the confidence intervals is domi-
nated by the statistical precision of the data. The relative
luminosity systematic uncertainty is ±0.007 as indicated
by the gray band in Fig. 4. The single- (double-) spin
asymmetries have a common 3.4% (6.5%) normalization
uncertainty due to the uncertainty in the measured beam
polarization.

The measured single-spin asymmetries are compared
to theoretical predictions using both next-to-leading or-
der (che) [33] and fully resummed (rhicbos) [34] calcu-
lations in Fig. 4. The rhicbos calculations are shown
for the DSSV08 [16] helicity-dependent PDF set, and
the che calculations are shown for DSSV08 [16] and
LSS10 [17]. The DSSV08 uncertainties were determined
using a Lagrange multiplier method to map out the χ2

profile of the global fit [16], and the ∆χ2/χ2 = 2% error
band in Fig. 4 represents the estimated PDF uncertainty
for AWL [35].

The measured AW
+

L is negative, consistent with the

theoretical predictions. For AW
−

L , however, the mea-
sured asymmetry is larger than the central value of the
theoretical predictions for ηe− < 0. This region is most
sensitive to the up antiquark polarization, ∆ū, which is
not currently well constrained [16, 17] as can be seen by

| η lepton |
0 0.5 1

0.5

0

0.5

+
W


W

ν + ± e→ ± W→ p+p
=510 GeVs  < 50 GeV

e

T
25 < E

LLA

DSSV08 CHE NLO

STAR Data CL=68%

6.5% beam pol scale uncertainty not shown

FIG. 5. (color online) Longitudinal double-spin asymmetry
ALL forW± production as a function of lepton pseudorapidity
|ηe| in comparison to theory predictions (see text for details).

the large uncertainty in the theoretical prediction there.
While consistent within the theoretical uncertainty, the
large positive values for AW

−

L indicate a preference for
a sizable, positive ∆ū in the range 0.05 < x < 0.2
relative to the central values of the DSSV08 and LSS10
fits. Global analyses from both DSSV++ [36] and neu-
ral network PDF [37] have extracted the antiquark po-
larizations, using our preliminary measurement from the
2012 data set. These analyses quantitatively confirm the
enhancement of ∆ū and the expected reduction in the
uncertainties of the helicity-dependent PDFs compared
to previous fits without our data.

The W± double-spin asymmetry, shown in Fig. 5, is
sensitive to the product of quark and antiquark polariza-
tions, and has also been proposed to test positivity con-
straints using a combination of AL and ALL [38]. The
measured double-spin asymmetries are consistent with
the theoretical predictions and in conjunction with AW

±

L

satisfy the positivity bounds within the current uncer-
tainties.

A similar profile likelihood procedure is used to deter-

mine the single-spin asymmetry A
Z/γ∗

L for Z/γ∗ produc-
tion with |ηe| < 1.1, EeT > 14 GeV, and 70 < me+e− <

110 GeV/c2. A
Z/γ∗

L is sensitive to the combination of
u, ū, d, and d̄ polarizations. The measured asymmetry

A
Z/γ∗

L = −0.07+0.14
−0.14 is consistent, within the large un-

certainty, with theoretical predictions using the different

helicity-dependent PDFs A
Z/γ∗

L (DSSV08) = −0.07 and

A
Z/γ∗

L (LSS10) = −0.02.

In summary, we report new measurements of the
parity-violating single-spin asymmetry AL and parity-
conserving double-spin asymmetry ALL for W± produc-
tion as well as a first measurement ofAL for Z/γ∗ produc-
tion in longitudinally polarized proton collisions by the
STAR experiment at RHIC. The dependence of AW

±

L

on the decay lepton pseudorapidity probes the flavor-
separated quark and antiquark helicity-dependent PDFs
at the W mass scale. A comparison to theoretical pre-
dictions based on different helicity-dependent PDFs sug-
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gests a positive up antiquark polarization in the range
0.05 < x < 0.2. The inclusion of this measurement
in global analyses of RHIC and DIS data should signif-
icantly improve the determination of the polarization of
up and down antiquarks in the proton and provide new
input on the flavor symmetry of the proton’s antiquark
distributions.
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