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Abstract
Background: Phylogenies of rapidly evolving pathogens can be difficult to resolve because of the
small number of substitutions that accumulate in the short times since divergence. To improve
resolution of such phylogenies we propose using insertion and deletion (indel) information in
addition to substitution information. We accomplish this through joint estimation of alignment and
phylogeny in a Bayesian framework, drawing inference using Markov chain Monte Carlo. Joint
estimation of alignment and phylogeny sidesteps biases that stem from conditioning on a single
alignment by taking into account the ensemble of near-optimal alignments.

Results: We introduce a novel Markov chain transition kernel that improves computational
efficiency by proposing non-local topology rearrangements and by block sampling alignment and
topology parameters. In addition, we extend our previous indel model to increase biological realism
by placing indels preferentially on longer branches. We demonstrate the ability of indel information
to increase phylogenetic resolution in examples drawn from within-host viral sequence samples.
We also demonstrate the importance of taking alignment uncertainty into account when using such
information. Finally, we show that codon-based substitution models can significantly affect
alignment quality and phylogenetic inference by unrealistically forcing indels to begin and end
between codons.

Conclusion: These results indicate that indel information can improve phylogenetic resolution of
recently diverged pathogens and that alignment uncertainty should be considered in such analyses.

Background
Reconstructing viral phylogenies is important for deter-
mining the parent stock of newly emerging strains [1], as
well as for understanding how viruses evolve over time,
both within a single host and at the population level [2].
Viral phylogenies are commonly inferred from aligned
molecular sequence data, using the information available

in substitutions shared by descent [3-6]. Short time-scales
dominate in the development of rapidly emerging disease
strains, such that the number of observed substitutions
between sequences can be too low to yield well-resolved
phylogenies. Thus, to increase phylogenetic resolution for
such disease strains we seek to make use of a wider class
of phylogenetic information.
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Insertions and deletions (indels) are a promising category
of molecular sequence information that is largely ignored
in phylogenetic reconstruction. Researchers commonly
remove gaps from molecular sequences alignments by
coding them as missing data or by throwing out columns
that contain gaps [3-6]. Indels may be useful to resolve
deep branches in the Tree of Life that are difficult to
resolve using information in shared substitutions [7,8]. At
the other extreme, on which we focus here, indels can help
to resolve phylogenies in situations where the number of
nucleotide substitutions is inadequate. For example,
indels in non-coding chloroplast DNA have been helpful
in resolving the branching order of recent plant radiations
[9,10]. The rate of indel events in these regions
approaches or surpasses the rate of substitution, making
indels too important to ignore [10]. Several species of
viruses are also known to accumulate indels, sometimes at
a high rate. Cheyner et al. [11] note that indel rates are
higher than substitution rates in hyper-variable regions of
Simian Immunodeficiency Virus (SIV) and Human
Immunodeficiency Virus (HIV). Other viruses also experi-
ence indels on short time-scales. Hepatitis B virus (HBV)
accumulates deletions in the core/pre-core region during
the course of infection [12], while Equine Infectious Ane-
mia Virus accumulates insertions [13]. Three deletion var-
iants of Severe Acute Respiratory Syndrome (SARS)
appeared during the beginning of the SARS outbreak in
China [14]. Influenza B viruses accumulate indels over
several decades [15]. We note that these viruses are all
RNA viruses, with the exception of HBV. Although HBV is
a DNA virus, it reverse transcribes its DNA genome from
an RNA intermediate.

Redelings and Suchard (2005) describe a statistical
method of incorporating indel information into phylog-
eny estimation. This method uses a joint reconstruction
framework that simultaneously infers the alignment, tree,
and insertion/deletion rates. Estimation proceeds through
Markov chain Monte Carlo (MCMC) within a Bayesian
framework and naturally accounts for uncertainty in
alignments, phylogenies, and other parameters through
posterior probabilities. Unlike sensitivity analysis [16,17],
this approach takes into account uncertainty resulting
from the myriad of near-optimal alignments. This
approach involves averaging over unobserved quantities
such as the alignment and interal node states, which can
lead to improved estimates [18]. This is different from
other approaches which iteratively optimize a heuris-
tically chosen cost function until no improvement is seen
[19,20]. Joint estimation of alignment and phylogeny
sidesteps bias that results from conditioning on a single
alignment estimate [21,18], bias which may be exagger-
ated when indel information is inappropriately used.

This method is based on a probabilistic model of
sequence evolution that contains insertion and deletion
events as well as substitution events. Heuristic "costs" for
opening and extending gaps are replaced by the insertion/
deletion rate and the mean indel length respectively,
which are biologically interpretable parameters and can
be estimated from the data without circularity [22,23].
Gaps are not treated as a fifth character state, since this
overweights the evidence of shared indels by treating an
indel of multiple residues as multiple shared indels [3].
Instead, the indel process is separate and independent of
the substitution process, and allows indels of several resi-
dues simultaneously. In addition, because alignments
represent positional homology, the indel process does not
allow a newly inserted character to be aligned to a previ-
ously deleted character.

We introduce a new indel model to remedy a shortcoming
of the Redelings and Suchard (RS05) model. Unlike the
TKF1 [22] and TKF2 [23] indel models that are not revers-
ible on pairwise alignments, the reversible RS05 model
does not make use of branch length information in the
indel process and therefore does not place indels preferen-
tially on longer branches. In order to increase biological
realism, we describe an extended indel model that is able
to incorporate branch length information. In doing so we
overcome a substantial theoretical difficulty in using
reversible indel models during phylogenetic reconstruc-
tion.

We further enhance the estimation method of Redelings
and Suchard [24] by introducing a novel MCMC transi-
tion kernel to improve mixing among topologies. This
transition kernel is based on the subtree-prune-and-
regraft (SPR) operator but is modified to partially sample
the alignment along with the tree. Block sampling
improves mixing efficiency because topologies and align-
ments are highly inter-correlated.

We introduce codon models [25] into joint estimation.
Codon models are often used in both Bayesian and likeli-
hood-based phylogeny estimation because they naturally
allow different rates at the third codon position, but we
are not aware of any work using codon models in joint
estimation. We note that codon models implicitly alter
the indel process as well as the substitution process by
forcing indels to begin and end between codons. This con-
straint may not be biologically realistic and would result
in misaligned nucleotides when indels are not in phase
with the reading frame. Such misalignment can artificially
inflate the number of inferred substitutions. When the
total number of substitutions is small, this may signifi-
cantly alter the model fit or introduce bias. We compare
nucleotide and codon indel models to see if these effects
are significant.
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We analyze data sets from SIV and HIV. The SIV data set
consists of a short section of the envelope (env) gene from
9 within-host strains. To see if indel information
improves phylogenetic resolution we compare the
number of bi-partitions that are supported under the joint
model and the traditional sequential approach, in which
topology reconstruction assumes a previously determined
alignment. We also assess the importance of alignment
ambiguity by assessing the sensitivity of phylogeny esti-
mation to fixed alignments under both the traditional and
joint models. The HIV data set consists of about 600
nucleotides from the env gene from 27 within-host strains.
We compare the number of bi-partitions supported under
the sequential and joint models to assess the importance
of indel information. We also compare nucleotide and
codon models to see if the assumption of unbreakable
codons significantly decreases model fit or influences
phylogeny estimates.

In summary, we seek to improve the power to infer clades
in rapidly emerging taxa by making use of indel informa-
tion in a statistically rigorous manner. We also seek to
determine whether indels can actually resolve extremely
short branches with few substitutions. To accomplish
these goals, we introduce an improved statistical model of
the insertion-deletion process to improve the accuracy of
the inference, and describe a novel MCMC transition ker-
nel to improve the speed of the inference. Once our statis-
tical framework is in place, we then demonstrate that
indel information can help to detect previously undetec-
ted bi-partitions in two real data examples from RNA
viruses. While analyzing these data, we note that align-
ment ambiguity may significantly affect phylogeny infer-
ence. We note that codon-based alignments can
unrealistically shift indels to avoid breaking codons, and
we develop the necessary statistical machinery to demon-
strate that this can substantially affect phylogeny esti-
mates.

Results
Models and Algorithms
We introduce a time-dependent reversible indel process to
the probabilistic framework for joint estimation of align-
ment and phylogeny of Redelings and Suchard [24].
Time-dependence enables us to place indels preferentially
on longer branches of the tree, producing a more realistic
description of the evolutionary process. Further, we also
introduce a novel MCMC transition kernel to increase
topology mixing so that we can estimate phylogenies and
alignments containing increasingly more taxa.

Stochastic Model
We review the salient features of the RS05 model here and
propose the necessary extensions for a time-dependant
indel process. Our model starts with data Y, where Y is a

collection of unaligned molecular sequences Yi for i = 1,
..., n taxa. Each molecular sequence Yi is a collection of let-
ters of length |Yi|. We characterize the stochastic model
that describes how the sequences in Y diverged from a
common ancestor in terms of a number of unknown but
estimable parameters. These parameters include a multi-
ple alignment A that specifies the positional homology
between the sequences Y, an evolutionary tree (τ, T) where
τ is an unrooted bifurcating tree topology and T = (t1, ...,
t2N -3) is a vector of branch lengths along the edges in τ,
and vectors Θ and Λ are parameters that characterize the
letter substitution and indel processes respectively. Align-
ment A includes Felsenstein wildcard sequences of ran-
dom lengths at the internal nodes of τ. Thus, A also
depicts the complete indel history among the sequences
in Y. We scale branch lengths in terms of expected number
of substitutions per site.

In contrast to traditional methods of phylogeny estima-
tion that arbitrarily fix the alignment, we treat the align-
ment A as a random variable, leading to the probability
expression

P(Y, A, τ, T, Θ, Λ) = P(Y|A, τ, T, Θ) × P(A|τ, T, Λ)
× P(τ, T) × P(Θ) × P(Λ).  (1)

The substitution likelihood P(Y|A, τ, T, Θ) and the priors
P(τ, T) and P(Θ) occur in traditional Bayesian models that
fix the alignment. However, the alignment prior P(A|τ, T,
Λ) and the prior on indel process parameters P(Λ) are
novel in the joint model, allowing for estimation and a
natural way to handle uncertainty in A.

Substitution Model
To model the substitution process that specifies P(Y|A, τ,
T, Θ), we assume that substitutions in each column of A
occur independently and follow a continuous-time
Markov chain (CTMC) process [26]. Under this process,
letters at the root of the tree arise according to some distri-
bution π. Evolution then occurs independently along each
branch of τ with rate matrix Q. We restrict ourselves to
reversible Markov chains and use π as the equilibrium dis-
tribution of Q. This makes the position of the root uni-
dentifiable and so we use unrooted trees throughout this
paper.

CTMC models are in common usage for letters from
nucleotide-, codon-, and amino acid-based alphabets. In
contrast to nucleotide-based CTMC models, codon-based
models group the three nucleotides in a codon into a sin-
gle letter. Given the small number of substitutions that
occur during the emergence of rapidly evolving patho-
gens, codon-based models are preferred over amino-acid
based models because they do not discard synonymous
substitutions. Codon-based models can also improve
Page 3 of 19
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model efficiency over nucleotide-based models because
the codon-based models can include non-independent
nucleotide frequencies and rule out missense mutations
[25]. Codon-based models may also improve the accuracy
of estimation by allowing the third-codon position to
evolve at a higher rate. However, when the number of
observed substitutions is low it may not be possible to
estimate the non-synonymous to synonymous rate ratio
ω, requiring researchers to fix ω to a previously estimated
value.

Importantly, we note that codon-based models also affect
the indel process by forbidding frameshift mutations and
also indels that begin or end within a codon. While the
former constraint is realistic for biologically active viruses,
the latter constraint may force incorrect alignments at the
nucleotide level, causing up to two misaligned residues
per indel. This may result in a significant bias when the
total number of substitutions is small.

Indel Models
Redelings and Suchard [24] make the simplifying assump-
tion that the alignment prior

P(A|τ,T,L) = P(A|τ, L)  (2)

is independent of branch lengths. While this assumption
implies that indels are equally likely to occur on each
branch regardless of length, it trivially enforces that
sequence length distributions φ on all nodes in τ remain
the same. This is a necessary condition for constructing a
reversible evolutionary Hidden Markov model (HMM)
from pair-HMMs along the branches of τ. Reversibility
substantially decreases implementation complexity. The
assumption further allows us to avoid fragment based
pair-HMMs that tend to separate indels by the average
indel length, which is not necessarily biologically realistic.

Here we develop an alignment prior P(A|τ, T, Λ) that
explicitly depends on branch lengths but retains equiva-
lent sequence length distributions on all nodes of the tree.
We begin construction of the extended model by briefly
summarizing how the original indel model is constructed
from a pairwise alignment distribution ν. We modify this
construction to build the new indel model from a param-
eterized distribution νt on pairwise alignments that corre-
sponds to a divergence time t. We then describe a new
pair-HMM which serves to generate νt. Finally we describe
how to calculate posterior probabilities under this model.

To describe our original multiple alignment model, we

begin by noting that, given a topology τ, the multiple
alignment A can be decomposed into a set of pairwise
alignments A(b) along each branch b of the topology. This
decomposition is possible because of the inclusion of

Felsenstein wildcard sequences at the internal nodes of τ.
Imposing an arbitrary distribution ν on each pairwise
alignment A(b) independently yields a joint distribution
over A. However, pairwise alignments on neighboring
branches are not strictly independent because they both
specify the length of the random sequence at the node
they share. To handle this dependence, we first choose an

arbitrary internal node in τ as the root; this imposes an
orientation on each branch. We then label the sequence in
each branch alignment A(b) that is closest to the root as the
ancestral sequence and the other sequence as the descend-
ant sequence. We sample the sequence length at the root

from a distribution  and draw the pairwise alignment

A(b) for each branch b from ν conditional on the length of
the ancestral sequence, proceeding down the tree from the
root to the leaves.

We note that the pairwise alignment distribution ν
induces a sequence length distribution on each sequence
in the pair it emits. To proceed, we require that the pair-

wise alignment distribution ν be symmetric under inter-
change of the two sequences in the pair. This implies that
there is no preferred direction of evolution between the
two sequences. It also implies that the sequence length
distribution for the ancestral and descendant sequences

are equal; we call this common distribution φ. If we set the

root length distribution  = φ, then we can write the mul-

tiple alignment prior as

where I represents the set of internal nodes in τ [24]. Note
that in this expression the arbitrary root is not identifiable.

Unfortunately the parameters that characterize our origi-
nal pairwise alignment distribution ν can not vary from
branch to branch without inducing unequal length distri-
butions. We therefore propose a new pairwise alignment
prior that maintains a fixed sequence length distribution
φ even when the indel probability varies from branch to
branch. To accomplish this aim, we assume that each
sequence consists of a series of unbreakable fragments, as
in the TKF2 model. The fragment lengths are geometri-
cally distributed with continuation probability ε and min-
imum length 1. The number of fragments is uniformly
distributed over the non-negative integers. Following an
ancestral fragment at one end of a branch, a geometric
number of new fragments are inserted in the descendent
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with continuation probability δ(t). Each ancestral frag-
ment survives in the descendent with probability δ'(t) =
δ(t)/(1 - δ(t)). Following our previous model and the TKF
models, insertions and deletions are equally likely.

This model can be expressed as a symmetrical pair-HMM
(Figure 1), implying that alignments can be considered
non-directed, since the probability does not change when
ancestor and descendant sequences are interchanged. This
contrasts with the TKF models that induce irreversible dis-
tributions on pairwise alignments. A major advantage of
this symmetry is that it is clear how to construct alignment
models on an unrooted tree and leads to greater simplicity

in model implementation and, arguably, decreased com-
putation time. The model described here diverges from
our previous model in that match fragments no longer
contain only a single letter, but instead follow the same
length distribution as gap fragments. This is represented
graphically in the pair-HMM by the addition of a loop
with non-zero weight ε from the match state (+/+) to
itself.

To facilitate dependence of pairwise alignment distribu-

tion νt on t, we seek a natural relationship between δ(t)

and t. We define λ as the indel rate per residue scaled in

Pair-HMM representation of the fragment-based indel modelFigure 1
Pair-HMM representation of the fragment-based indel model. After the start state (S), the Markov chain transitions to 
the central silent state. From here it may terminate by transitioning to the end state (E), or it may enter a match (+/+), insert (-
/+) or delete (+/-) fragment. Each fragment has probability δ(t) of being an insert or delete fragment. Fragment lengths are geo-
metric with continuation probability ε. After the end of a fragment, the Markov chain returns to the central silent state where 
it may begin a new fragment. The silent state that indicates fragment boundaries can be removed, resulting in transitions only 
between non-silent states. The model is a fragment based model because the direct transition probability from (+/+) to (+/+) 
without going through the silent state is ε and not 0. The pair-HMM represents an improper distribution because the probabil-
ities of outgoing edges of the central silent state do not sum to 1.
Page 5 of 19
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terms of substitution time and refer to the pairwise align-

ment distribution on branch b as . The param-

eter ε remains independent of time. In our previous
model, we measure the occurrence probability of indels

on a per-residue basis. In the fragment-based model, δ'(t)
becomes the probability of a fragment being inserted or
deleted. We wish to re-parameterize the fragment model
in terms of a per-residue indel rate; the probability of an

indel occurring between two residues is (1 - ε)δ'(t). How-
ever, if we attempt to set

then the probability δ'(t) can become greater than 1. We
therefore move the factor of (1 - ε) into the time scale,
such that

We note that Equation (4) agrees with Equation (5) to
first order in λtb and serves to connect fragment indel rates
to per-residue indel rates. The product λtb is in general <<
1, so matching on higher order terms is unnecessary.

The distribution νt naturally gives rise to two models. In

the first model, denoted "fragments", we set ν(b) = νλ for all

b, making the probability f an indel independent of
branch length again. In the second model, denoted as

"fragments+T", we set  making the probability

of an indel roughly proportional to branch length tb.

We now show that the sequence length distribution
induced by νt is independent of t. The pairwise alignment
distribution is a uniform distribution on the number of
fragments, with each fragment being a match (+/+), inser-
tion (-/+) or deletion (+/-) with probabilities 1 - 2δ(t), δ(t)
and δ(t), respectively, and with exit measure (1 - δ(t)).
This results in the following probability generating func-
tion for the length of either sequence in the pair-HMM:

Therefore, the length distribution is independent of δ(t),
and is uniform except for an anomaly at length 0. This
allows us to specify a different value of δ(t) in the pair-
HMM on each branch of the tree without affecting φ.
Defining L1 and L2 as the emitted sequence lengths from

the pair-HMM, we note that P(L1 = l1) has finite measure
and that the distribution P(L2 = l2|L1 = l1) on L2 is therefore
proper. This implies that the posterior distribution of the
joint model is proper because the distribution conditions
on the observed leaf sequence lengths.

Sampling
We introduce a novel MCMC transition kernel that
improves mixing between topologies and alignments. The
new transition kernel uses the SPR operator (Figure 2) to
propose new trees, but is extended to be alignment-aware.
Our previous approach used only nearest-neighbor-inter-
change (NNI) operators to propose new trees [24]. This
resulted in long convergence times and inefficient mixing
when there were many taxa. The SPR operator improves
on this situation by proposing non-local topology rear-
rangements that would require several NNI moves, and
thus avoids several intermediates [27].

The extended SPR transition kernel updates the alignment
A along with the topology τ. In our framework, it is neces-
sary to alter A when τ is altered because A specifies the
homology of internal sequences and this homology may
be inconsistent with the proposed topology. This happens
when some column of A contains a letter that would be
deleted and reinserted given the new topology. After an
SPR tree proposal, we note that the alignment of the sub-
set of sequences corresponding to taxa in the pruned sub-
tree (Figure 2, blue) must remain consistent because their
phylogeny remains unchanged. Likewise, the alignment
of the other sequences (Figure 2, green) must remain con-
sistent because the phylogeny of that subset remains
unchanged. However the alignment of the complete set of
sequences may not be consistent.

Our solution to this problem involves collapsed Gibbs
sampling [28] of A as follows. We define the collapsed
point (*, τ, T, Θ, Λ)C as the set of points {(A, τ, T, Θ, Λ) :
A ∈ C} for some set C. The posterior probability of a col-
lapsed point is then naturally defined as the posterior
probability of the set. When proposing a new tree (τ', T')
via SPR from the current point (A, τ, T, Θ, Λ), we first use
a Metropolis-Hasting (MH) transition kernel to choose
between the collapsed points (*, τ, T, Θ, Λ)C and (*, τ', T',
Θ, Λ)C. This avoids the problem of A being inconsistent
with τ' as long as C is large enough to contain alignments
consistent with both τ and τ'. Then we sample a single
point from the chosen collapsed point in proportion to its
posterior probability. To satisfy detailed balance, the set C
must be constructed so that it contains at least the current
alignment A; full conditions under which this procedure
satisfies detailed balance are described in the Appendix.

We now seek a set C that is large enough to contain align-
ments consistent with τ' and yet small enough for integra-
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tion and sampling to be computationally feasible.
Unfortunately, integration over the set of all alignments is
not practical, even if we constrain the alignment of leaf
sequences to be constant. Therefore, we fix parts of the
alignment and collapse only the remaining portions.
Allowing only the three branch alignments adjacent to
node O (Figure 2) to vary will certainly allow an align-

ment consistent with τ'. This is therefore a loose con-
straint, which we call C3(A, τ, O). It requires an O(L3)
dynamic programming algorithm for integration and
resampling. To decrease the order of the dynamic pro-
gramming algorithm to O(L1), we consider imposing the
additional constraint, which we call C1(A, τ, O), that the
alignments between the three nodes connected to O

The subtree-prune-and-regraft operatorFigure 2
The subtree-prune-and-regraft operator. (a) First a subtree (blue) and its associated node O are detached from the rest 
of the tree (green). (b) The subtree is then regrafted along into a different branch through its node O. In both (a) and (b), three 
branches connect to node O. The phylogeny relating sequences at the pruned nodes (blue) and the phylogeny relating 
sequences at the remaining nodes (green) do not change. Therefore alignments within each of these sequence subsets can 
remain unchanged from (a) to (b).
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P
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remain fixed. However, this constraint is too tight because
it forces all sequences in the subtree (Figure 2, hatched) to
keep the same alignment with the remaining sequences,
and may not include any alignments consistent with τ'. As
an alternative, we propose to fix the alignment between
sequences in the pruned subtree and the alignment
between sequences in the remainder, but allow the align-
ment between the two groups of sequences to vary. This
constraint, which we call C2(A, τ, OP) results in an O(L2)
algorithm that is significantly more computationally effi-
cient than an O(L3) algorithm. Note that we have demon-
strated above that the alignment within the two
subgroups of sequences remains consistent under an SPR
proposal. Thus, the constraint set C2(A, τ, OP) contains an
alignment that is consistent with τ' as well as τ, making
C2(A, τ, OP) a useful constraint set for collapsed sam-
pling.

Triplet Models
Triplet models coalesce three adjacent nucleotide letters
into a single triplet letter. The size of the triplet alphabet
is therefore approximately the cube of the size of the sin-
glet alphabet. The larger alphabet size allows a more com-
plex substitution model such as the codon model of
Goldman and Yang [[25], M0]. Triplet substitution mod-
els can prohibit stop codons, can make use of codon fre-
quencies instead of nucleotide frequencies and can
differentiate between synonymous and non-synonymous
substitutions. Triplet alphabets affect the alignment
model as well as the substitution model by forcing indels
lengths to be multiples of 3 singlet letters and by forcing
indels to start and end between triplets. While the former
is biologically realistic, the latter may not be.

We describe a method of comparing triplet with singlet
models to assess how forcing indels to begin and end
between codons affects model fit. To accomplish this, we
first remove the substitution benefits of the M0 model
listed above to focus solely on the effects of the triplet
alignment process. We construct a triplet substitution
model that generates the same likelihood as a singlet sub-
stitution model given the same alignment. Traditionally,
both models are reversible and have a rate matrix Q =
{Qxy} that is constructed from the equilibrium letter fre-
quencies π and a symmetric exchangeability matrix S =
{Sxy} in the following way:

Fraction f can vary from 0 to 1 but traditionally f is fixed
to 1. The fraction specifies the relative importance of une-
qual conservation (f = 0) and unequal replacement (f = 1)
in creating the equilibrium frequency distribution [29].

Given a singlet nucleotide model with exchangeability
matrix S(s), we build a triplet model with exchangeability
matrix S(t) in the following fashion. Each allowable substi-

tution from triplet α to triplet β involves only one nucleo-
tide substitution from nucleotide i to nucleotide j.

Therefore, we set  in this case, and  = 0 for

all other entries. If the singlet model is, for example, the
model of Hasegawa et al. [[30], HKY], we term the result-
ing triplet model as HKY × 3. We also set the triplet fre-

quencies  for each triplet α composed of nucleotides

i, j and k to the product  of the individual

nucleotide frequencies.

Although this construction might be expected to yield a
triplet substitution model that is identical to the singlet
substitution model, this is not the case if f = 1. For an

allowable substitution ijk → ijl, we note that the rate

 according to the triplet model does not match the

rate  according to the singlet model. Specif-

ically,

The rates do not match because the rate of change from k
→ l in the triplet model depends on the frequencies of the
other nucleotides in the triplet. Since this is not true in the
singlet model, the likelihoods under each model cannot
match unless all the nucleotide frequencies are equal.

However, removing the constraint that f = 1, it becomes
possible for the two models to coalesce because the rate of

change  can be independent of the frequencies of i

and j. Setting f = , the frequencies of neighboring

nucleotides no longer affect the rate of change from k → l,
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We note that for branch lengths to agree between the sin-
glet and triplet models, Q(t) must be scaled so that

 instead of the usual 1, because Q(t) meas-

ures changes of each of the three sites in the triplet. We use
HKY as the singlet model in our comparison because the
HKY × 3 model is identical to the M0 codon model with

ω = 1, stop codons included, and independent nucleotide
frequencies.

Examples
We analyze two data examples to demonstrate the advan-
tages of joint Bayesian estimation. While both data sets
come from related genes, they differ in their sequence
lengths, number of taxa, and sequence characteristics. We
select these datasets for their relative sparseness of phylo-
genetic information, typical of rapidly evolving patho-
gens. Thus, although the joint model makes full use of
both indels and substitutions shared by descent, we do
not expect to recover fully resolved trees. Rather, we note
substantial improvement over traditional, sequential
methods.

Example 1: SIV
We first examine a data set drawn from SIV, a non-human
primate lentivirus. Lentiviruses contain a single-stranded
RNA genome that reverse transcribes into DNA by upon
infection. The DNA then inserts into the host genome
before expression. Reverse transcriptase is extremely error-
prone, giving lentiviruses high mutation rates. The data
set consists of 9 partial env sequences sampled from
within a single macaque initially infected by injection
with strain SIVmac251 [31]. Cheynier et al (2001) have
previously presented an alignment of these sequences as a
typical example of phylogenetically informative indels in
SIV [11].

The env gene encodes glycoprotein gp160, which is split
after translation to form the smaller glycoproteins gp120
and gp41. Because gp120 and gp41 are displayed on the
surface of mature virions, exposed to the host immune
system, env tends to mutate more quickly than other SIV
genes through positive selection. From the data set, we
remove a phylogenetically uninformative duplication in a
single sequence because our model assumes insertions of

random sequence but not duplications. All sequences
then range in length from 57 to 69 nucleotides with an
alignment length of 69 nucleotides independent of the
method used to compute the fixed alignment. The data set
contains 10 variable sites and 6 informative sites under
the Clustal W alignment, 12 variable and 7 informative
sites under the Muscle alignment, and 11 variable and 6
informative sites under the MAP estimate from the joint
model (Table 1, – Indel contribution).

For a prior on ln κ, we assume a Double-Exponential dis-

tribution with median ln 2 and standard deviation . On

ln λ, we assume a Double-Exponential distribution with

median -5 and standard deviation . For ε we assume an

Exponential distribution with mean 5 on the expected
indel length. We assume a Uniform distribution over the

topology τ. On the branch lengths we assume an Expo-

nential distribution with mean μ, and on μ we assume an
Exponential distribution with mean 0.04. Continuous
parameter estimates under the joint model are as follows:

κ has median 2.4 with a 95% Bayesian credible interval of

(1.64,5.32). The median of ln λ is -3.4 and its 95% BCI is

(-4.99, -1.85). The median of ln ε is -0.71 with a 95% BCI

of (-1.12, -0.428). The mean branch length μ, has poste-
rior median 0.0178 with a 95% BCI of (0.00854,0.0368).

To assess the usefulness of indel information and the
importance of alignment ambiguity in phylogenetic infer-
ence, we compare the posterior topology distributions for
the traditional sequential model, the joint model
restricted to a fixed alignment, and the full joint model.
We note that the joint model increases the number of
resolved internal branches by 3, 2, and 2 at posterior
probability (PP) > 0.9, > 0.95, and > 0.99, respectively,
over the traditional model using the Clustal W alignment.
The joint model supports 4, 3, and 3 branches at these lev-
els of posterior probability and we depict the tree with
branches supported at PP > 0.99 in Figure 3. This increase
in resolution is sensitive to the alignment estimation
method. For example, the resolution increase changes to
0, 0, and 2 under the Muscle alignment, and 1, 2, 2 under
the joint MAP alignment. Thus, even accounting for align-
ment uncertainty, we achieve an increase in the phyloge-
netic resolution. At high posterior probabilities indels
become relatively more important because they are rarer
than substitutions.

We note that alignment ambiguity is significant in this
data set. First, estimates under the traditional or restricted
models are sensitive to the alignment method used (Table
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1). Second, fixing the alignment under the joint model
yields an increase in the number of supported branches if
the alignment is fixed to the Clustal W estimate or the
joint MAP estimate, but a decrease if the Muscle estimate
is used. Furthermore, the increased support when the
Clustal W alignment is used includes a branch that con-
flicts with the joint MAP model, and the conflicting
branch is present in the guide tree. Thus ignoring align-
ment ambiguity can lead to exaggerated support for
branches and bias towards the guide tree, especially when

indel information is used. Figure 4 displays a "gold" plot
[24] to summarize the posterior alignment distribution of
A under the full joint model. We observe a high level of
alignment uncertainty. This is borne out by the observa-
tion of only 4 unique indels under the full joint model,
while the Clustal W alignment contains 5 indels. This dif-
ference is reflected in the lower estimate of λ under the full
joint model and in the restricted models not using the
Clustal W alignment (Table 1).

Indel information improves resolution of the SIV phylogenyFigure 3
Indel information improves resolution of the SIV phylogeny. (a) At posterior probability > 0.99 the traditional sequen-
tial model supports only one branch, (b) When indel information is included, the number of supported branches rises to 3. The 
two green branches are supported only when indel information is used.

S1

S10

S11
S15

S5

S9

ref

S16
S20

0.02

(a) - indels

S1

S10

S11 ref

S16

S20

S15

S5
S9

0.02

(b) + indels

Table 1: Phylogenetic resolution of various models in SIV.

Model Â # sites #/6 with PP Estimates
var. inf. > 0.90 > 0.95 > 0.99 κ ln λ ln ε

- Indel Clustal W 10 6 1 1 1 2.3(1.6,4.9) - -
Muscle 12 7 4 3 0 2.2(1.5,4.3) - -
MAP 11 6 3 1 1 2.4(1.6,5.2) - -

+ Indel Clustal W 10 6 3+1 3+1 2+1 2.3(1.6,4.7) -2.7(-4.5,-1.4) -0.61(-0.93,-0.37)
Muscle 12 7 3 3 2 2.3(1.6,4.4) -3.5(-5.0,-2.1) -0.92(-1.5,-0.55)
MAP 11 6 5 4 3 2.4(1.6,5.1) -3.4(-5.0,-1.9) -0.71(-1.1,-0.43)

Joint - - - 4 3 3 2.4(1.6,5.3) -3.4(-5.0,-1.9) -0.71(-1.1,-0.43)

Results are presented for the traditional sequential model (- Indel), the joint model with a fixed alignment (+ Indel), and the full joint model. The 
choice of a fixed alignment estimate is indicated in column Â if applicable. The number of variable and informative sites is indicated under "#sites" 
and varies depending on the choice of alignment. The number of supported internal branches out of a possible 6 is reported at three levels of 
posterior probability (PP). The designation "+1" indicates that 1 of the supported branches conflicts with a branch supported under the joint model. 
Estimates of continuous parameters κ, ln λ, and ln ε are presented as a posterior median followed by a 95% Bayesian credible interval.
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Example 2: HIV-1
Our second data set consists of comparatively longer
sequences from HIV-1, a lentivirus closely related to SIV.
We consider a collection of 27 partial env gene sequences
sampled serially at three time points from patient 1
reported by Shankarappa et al [4]. Each sequence name
consists of a unique identifying number prefixed by the
number of weeks after infection that the sequence was
sampled. For the sake of brevity we drop the prefix and use
only the unique identifier, except where explicity noted.
The sequences span HIV genome reference sites 7023–
7637 and include about 280 nucleotides of gp120, cover-
ing the V3 loop, followed by 330 nucleotides of gp41.
Sequence lengths vary from 603 to 612 nucleotides. The
number of homologous sites depends on the method
used to compute the fixed alignment. Using the alignment
from the MAP point or the Muscle alignment, this data set
contains 621 columns, of which 76 are variable and 25 are
informative. The Clustal W estimate generates an align-
ment of 618 columns, of which 77 are variable and 25 are
informative.

Sequence Characteristics
We first analyze these data using the M0 codon model
[25] to assess the importance of selection in this region
(Table 2). We use the same prior distributions on λ, ε, κ,
τ, and T as in Example 1. We additionally place a Double-
Exponential distribution on ln ω with median 0 and
standard deviation 0.1. In addition to the standard M0
model in which f is fixed to 1, we consider the case in
which f is a random variable with a Uniform prior distri-
bution. The posterior distribution of ω has median 0.996
and a 95% BCI of (0.834,1.20). This changes little when f
is free. The estimated interval is quite close to the prior
95% BCI of (0.84,1.16) so we conclude that these data
possess little information about ω. Allowing ω to vary
does not yield much benefit, and we henceforth consider
only ω = 1.

We also note that fixing f =  instead of the traditional

value of 1 produces a decrease in marginal likelihood of 2
log units for the HKY model and a substantial increase of

1
2

SIV Alignment uncertainty plotFigure 4
SIV Alignment uncertainty plot. We annotate the joint maximum a posteriori alignment estimate to indicate the approxi-
mate probability that each letter aligns to the root taxon in its column [24]. The 8 gaps in the alignment are a result of only 4 
indel events under the joint model, whereas the Clustal W alignment requires at least 5 indel events. Colors other than red 
indicates that letters or gaps may shift to adjacent positions. The high frequency of the CAA triplet is partially responsible for 
the level of alignment uncertainty.

uncertain                                          certain
ref AAATCATCAACAATAACAACAACAGCACCAACAACACCAAATACAACATCAACAAAGTCAATAGACATG
S1 AAATCATCAACAACAACAACAACAGCATCAACAACACC------AACATCAACAAAGTCAATAAACATG
S10 AAACCATCAACAACAACAACAACAGCATCAACAACACC------AACATCAACAAAGTCAATAAACATG
S11 AAATCATCAACAATAACAACAACAGCACCAACAACACCAAATACAACATCAACAAAGTCAATAAACATG
S15 AAATCATCAACAACAACAACAACAG---------CACCAAATACAACATCAACAGAGTCAATAAACATG
S16 AAATCATCAACAACAAC---AACAGCACCAACACCAACAAACACAACATCAACAAAGTCAATAAACATG
S20 AAATCATCAACAACAAC---AACAGCACCAACACCAACAAACACAACATCAACAAAGACAATAAACATG
S5 AAATCATCAACAACAACAACAACAA---------CACCAAGTACAACATCAACAAAGTCAATAAACATG
S9 AAATCATCAACAACAACAA---CAC---------CACCAAGTACAACATCAACAAAGTCAATAAACATG

 

Table 2: Comparison of alignment and substitution models.

Model ln P(Y) κ ln λ ln ε ω f (10,12,18)

HKY -1555.7 7.2(4.6,11.7) -3.3(-4.1,-2.7) -1.0(-1.3,-0.78) - 0.5 0.96(25)
HKY × 3 -1579.8 7.5(4.8,12.2) -2.3(-3.1,-1.6) -2.7(-3.7,-1.9) - 0.5 0.75(3.1)

M0 -1542.7 7.2(4.6,11.8) -2.2(-3.0,-1.6) -2.7(-3.7,-1.9) 1.0(0.86,1.2) 0.46(0.26,0.65) 0.92(12)

We compare the HKY singlet model, the HKY × 3 triplet model, and the M0 codon model, that forbids stop codons. For the first two models we 
fix independent nucleotide frequencies but for the M0 model we allow codon frequencies to vary. Continuous parameter estimates are presented 
as a posterior median followed by a 95% Bayesian credible interval if free, and a single value if fixed. The HKY model has a higher marginal 
probability than the HKY × 3 triplet model, indicating that not all indels start and end between codons. Removing stop codons and allowing codon 
frequencies to vary freely increases the marginal likelihood of the M0 model substantially. Despite these increases in marginal likelihood, the M0 
model does not support the clade (10,12,18) as well as the singlet model.
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5 log units for the HKY × 3 model (Table 2). When f varies
under the M0 model, the resulting model is supported
over the f = 1 model by 7 log units of marginal likelihood.
In addition, the posterior median of f is 0.43, close to the

value of  that is used to compare the HKY and HKY × 3

models. We therefore assume f = 0.5 for the remainder of
our analyses.

Under the HKY model we find that κ has a posterior
median of 7.2 with a 95% BCI of (4.6,11.7). The posterior
median of ln λ is -3.3 with a 95% BCI of (-4.1, -2.7) and
ln ε has a median of -1.0 and a 95% BCI of (-1.3, -0.78).
This estimate of ε corresponds to a mean indel length of
1.58 nucleotides. The posterior median of μ, is 0.0036
with a 95% BCI of (0.00257,0.00508).

Singlet versus Triplet models

To examine the model appropriateness of forcing indels
to begin and end between codons, we compared the mar-
ginal likelihoods and posterior tree lengths for the HKY
singlet and HKY × 3 triplet models. Under both models,

we fixed f =  for equivalence and set independent

nucleotide frequencies to their empirical estimates. The
log marginal likelihood is -1555.7 ± 0.3 for the singlet
model and -1579.8 ± 0.3 for the triplet model (Table 2).
To examine the substantial decrease of 24.1 log units
between models, we calculate the posterior distribution of
parsimony tree lengths under both models. The posterior
median tree length is 104 substitutions with a 95% BCI of
(103,106) for the singlet model and increases to 109 sub-
stitutions with a 95% BCI of (108,110) for the triplet
model. To verify that this increase results from forcing
indels out of phase, we first calculate the posterior distri-
bution of the number of indels under the singlet model.
The posterior mean number of indels is 11.0 and the BCI
is (11,11). The posterior mean number of indels begin-
ning 0, 1, or 2 nucleotides from the beginning of a codon
is 2.6, 5.8, and 2.6 respectively. The 95% BCI for the
number of indels beginning inside a codon is (6,10).
Inspecting the alignment estimate from the MAP point
using a "gold" plot demonstrates alignment uncertainty
(data not shown). In the MAP alignment we observe 11
indel events. Only 5 of the indels are consistently present
with unambiguous phase, and none of these indels can be
placed between codons. Interestingly, one indel of 3
nucleotides occurs independently in clades (16,17), 19,
and 22 according to the MAP estimate (Figure 5). We note
that augmented alignments such as those used in our

model distinguish between indels shared by state and
indel shared by descent through the inclusion of Felsen-

stein wildcard sequences at internal nodes of τ.

Use of the triplet model instead of the singlet model has a
discernible effect on phylogeny estimation. The posterior
odds in favor of the clade (10,12,18) decrease by a factor
of 8.0 from 24.6 to 3.1 (Table 2). We note that in one col-
umn of the singlet MAP alignment estimate, only variants
10, 12 and 18 have an A residue, while other taxa have
either a G residue or a gap (Figure 5a). However, the tri-
plet model shifts these gaps out of the column to avoid
breaking a codon. Taxa that contain a gap in this column
under the singlet alignment contain A residues according
to the triplet MAP alignment, decreasing the support for
(10,12,18) clade (Figure 5b). Thus, comparing marginal
likelihoods for model selection between the singlet and
triplet models may not provide the whole picture.

Triplet models have discernible effects on estimates of the
indel parameters λ and ε, but little effect on the substitu-
tion parameters μ and κ. For example, under the HKY × 3
model the posterior median of λ is e-2.3, about 3 times
higher than the posterior median of e-3.3 under the HKY
model. We note that under the HKY × 3 model λ is the
indel rate per triplet, whereas under the singlet model λ is
the indel rate per nucleotide. This factor of 3 difference is
to be expected since the number of indels does not change
between the two models, but the number of triplets is 3
times smaller than the number of nucleotides. The HKY ×
3 model also results in a posterior median estimate of -2.6
for ln ε that is significantly smaller than the HKY estimate
of -1.0. However, accounting for the fact that one triplet
contains three nucleotides, the HKY × 3 model predicts a
mean indel length of 1.1 triplets and 3.2 nucleotides, but
the HKY model predicts a mean indel length of 1.6
nucleotides. This may be because a geometric distribution
on the number of nucleotides in a gap does not fit the data
as well as a geometric distribution on the number of tri-
plets in a gap. This is especially true in data sets such as the
present one in which the number of triplets tends to be
small. It may also be because the indel model used is frag-
ment-based. Finally, we note that estimates of 7.5 for κ in
the HKY × 3 model are quite similar to estimates of about
7.2 under the HKY model.

Increased support due to indel information
To assess how much indel information improves the res-
olution of the HIV phylogeny, we generate posterior sam-
ples under both the traditional, sequential model and
under the full joint model. The traditional model sup-
ports 8, 7 and 4 internal branches at PP levels > 0.90, >
0.95, and > 0.99, respectively regardless of the chosen
fixed alignment. The MAP topology is also insensitive to
the chosen alignment. Under the full joint model the

1
2

1
2
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number of supported internal branches increases to 8, 8,
and 6 branches at the same levels of PP, producing an
increase of 0, 1, and 2 branches.

While the number of branches supported at PP > 0.9 is
equal, not all supported branches are the same. The
number of branches supported only under the joint
model is 2, 2, and 2. The joint model supports the clades
(16,17) and (21,24) over the traditional model at all three
levels of PP. The traditional model supports the clade
(19,21,24,25) at a PP of 0.980 compared to 0.887 with
indel information. The traditional model also supports
the clade (10,12,15,16,18,19,21,24,25) at PP > 0.9 that
has support < 0.5 when indel information is included.
This results because the large clade conflicts with the clade
(16,17) that is supported by two shared indels. Thus, the
number of branches supported in only one of the two
models at each level of PP is 4, 3, and 2. Since the joint

model balances substitution and indel information as
well as taking alignment ambiguity into account we
assume that these differences represent an improvement
in the accuracy of estimation. However, because the true
tree is not observed, we cannot be certain which, if any, of
the predictions is correct. The partitions supported under
the two models at PP > 0.99 are depicted in Figure 6. In
summary, indel information conflicts with one branch in
the substitution-only tree and down-weights the evidence
for another branch. The conflicting branch is ruled out by
the support of 2 shared indels for the clade (16,17),
although one of these is homoplastic.

MCMC Improvements
We demonstrate that the novel MCMC transition kernel
introduced in the sub-section Sampling improves the com-
putational efficiency of topology estimation when using
indel information. The transition kernel improves the

Triplet alignments may shift indels and cause misaligned residuesFigure 5
Triplet alignments may shift indels and cause misaligned residues. Triplet alignments may shift indels and cause mis-
aligned residues. (a) Maximum a posteriori (MAP) alignment estimate under the singlet HKY model. (b) MAP alignment esti-
mate under the triplet HKY × 3 model. In the triplet alignment, two G residues (blue) and four A residues (red) are forced into 
a different column to avoid breaking the alignment-wide reading frame. The displaced A residues join A residues from strains 
10, 12, and 18 (green) which were previously the only A residues in that column. Under both models, the MAP alignment esti-
mates display 8 gaps. The alignment of internal sequences (not shown) indicates that these gaps arose from 5 indel events on 
branches partitioning clades (20,23), (21,24), (16,17), (19), and (22). Thus, the gaps in sequences 19 and 22 arose independently 
of the gap in (16,17) even though they have the same length and position. Prefixes on sequence names indicate elapsed time in 
weeks between the initial infection and when the sequences were obtained.

14-00 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-02 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-03 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-04 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-07 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
24-13 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
34-22 ATAGTACTTGGGATAATAGTACTTTGAATA---TTACTGAAGGGT
34-26 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-01 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-09 ATAGTACTTGGGATAATAGTACTATGAATAATGTTACTGAAGGGT
34-20 ATAGTACTTGGG---------CTTTGAATAATGTTACTGAAGGGT
34-23 ATAGTACTTGGG---------CTTTGAATAATGTTACTGAAGGGT
24-11 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-05 ATAGTACTTGGGATAATAGTACTCTGAATAATGTTACTGAAGGGT
14-08 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-06 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
24-14 ATAGTACTTGGGATAATAGTACTTTAAATAATGTTACTGAAGGGT
24-16 ATAGTACTTGGGATAATAGTACTTTGAATA---TTACTGAAGGGT
24-17 ATAGTACTTGGGATAATAGTACTTTGAATA---TTACTGAAGGGT
24-15 ATAGTATTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
24-10 ATAGTACTTGGGATAATAGTACTTTGAATAATATTACTGAAGGGT
24-12 ATAGTACTTGGGATAATAGTACTTTGAATAATATTACTGAAGGGT
24-18 ATAGTACTTGGGATAATAGTACTTTGAATAATATTACTGAAGGGT
34-19 ATAGTACTTGGGATAATAGTACTTTGAATA---TTACTGAAGGGT
34-25 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
34-21 ATAGTACTTGGGATA------CTTTGAATAATGTTACTGAAGGGT
34-24 ATGGTACTTGGGATA------CTTTGAATAATGTTACTGAAGGGT

 
(a) Singlet alignment

14-00 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-02 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-03 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-04 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-07 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
24-13 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
34-22 ATAGTACTTGGGATAATAGTACTTTGAAT---ATTACTGAAGGGT
34-26 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-01 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-09 ATAGTACTTGGGATAATAGTACTATGAATAATGTTACTGAAGGGT
34-20 ATAGTACTTGG---------GCTTTGAATAATGTTACTGAAGGGT
34-23 ATAGTACTTGG---------GCTTTGAATAATGTTACTGAAGGGT
24-11 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-05 ATAGTACTTGGGATAATAGTACTCTGAATAATGTTACTGAAGGGT
14-08 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
14-06 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
24-14 ATAGTACTTGGGATAATAGTACTTTAAATAATGTTACTGAAGGGT
24-16 ATAGTACTTGGGATAATAGTACTTTGAAT---ATTACTGAAGGGT
24-17 ATAGTACTTGGGATAATAGTACTTTGAAT---ATTACTGAAGGGT
24-15 ATAGTATTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
24-10 ATAGTACTTGGGATAATAGTACTTTGAATAATATTACTGAAGGGT
24-12 ATAGTACTTGGGATAATAGTACTTTGAATAATATTACTGAAGGGT
24-18 ATAGTACTTGGGATAATAGTACTTTGAATAATATTACTGAAGGGT
34-19 ATAGTACTTGGGATAATAGTACTTTGAAT---ATTACTGAAGGGT
34-25 ATAGTACTTGGGATAATAGTACTTTGAATAATGTTACTGAAGGGT
34-21 ATAGTACTTGGGAT------ACTTTGAATAATGTTACTGAAGGGT
34-24 ATGGTACTTGGGAT------ACTTTGAATAATGTTACTGAAGGGT

 
(b) Triplet alignment
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convergence properties of the Markov chain substantially,
so that fewer initial samples must be discarded as "burn-
in". We compare the behavior of the estimation procedure
when the new transition kernel is disabled (NNI-only) or
enabled (NNI+SPR) by running 15 instances of each
chain starting from a randomly chosen tree and align-
ment. We use the data-set from Example 2 that consists of
27 HIV sequences, with a maximum length 612 nucleo-
tides.

To assess convergence for each Markov chain, we count
the number of iterations required for the sampled tree
topology to approach its equilibrium distribution of tree
topologies. To accomplish this task, we need to define a
distance from a single tree topology to a distibution of tree
topologies. We start with the Robinson-Foulds distance
(RF) between two tree topologies that we denote as dRF(τ1,
τ2). This distance does not depend on branch lengths. We
then define the distance d(τ1, ξ) from a topology τ1 to a
distribution of topologies ξ as the average RF distance
between τ1 and a tree τ2 ~ ξ:

d(τ1, ξ) = E{dRF(τ1, τ2)}.  (10)

The expectation of d(τ1, ξ) does not converge to 0 as the
Markov chain approaches stationarity; rather the expecta-
tion approaches the average distance between two trees
sampled from the equilibrium topology distribution.
With this in mind, we consider a chain to have converged
when the distance from the chain's current topology to
the equilibrium distribution reaches the lower 25th per-
centile of distances from trees at stationarity to the equi-
librium distribution. We approximate the equilibrium
topology distribution with 200 topologies sampled at
widely spaced intervals from a long-running MCMC anal-
ysis. We find that this distribution is not sensitive to the
starting point of the Markov chain, and does not change
when the new transition kernel is enabled.

Without the new transition kernel based on SPR, the
median time to convergence is 2112 iterations with an
average of 1976.9. However, when the new transition ker-
nel is enabled, the median time decreases to 66 iterations,

Triplet alignments may shift indels and cause misaligned residuesFigure 6
Triplet alignments may shift indels and cause misaligned residues. (a) At posterior probability > 0.99 the traditional 
sequential model supports 4 internal branches. (b) When indel information is included, the number of supported branches 
increases to 6. Branches colored green are supported only when indel information is incorporated. Each blue cross denotes an 
indel event occurring on a particular branch. Prefixes on sequence names indicate elapsed time in weeks between the initial 
infection and when the sequences were obtained.
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and the average shrinks to 108.8 iterations. In addition,
without the SPR transition kernel, the two slowest con-
verging chains take 3887 and 6782 iterations to converge,
whereas with the SPR transition kernel the two slowest
converging chains require only 248 and 422 iterations to
converge. Based on the average time until convergence, we
calculate that the SPR transition kernel results in a roughly
18.1-fold increase in convergence speed, although we
emphasize that the convergence times vary substantially
around their average. The faster-converging chains spend
about 2 × as much CPU time per iteration, leading to an
effective speed-up of about 9-fold. To visualize the conver-
gence properties of the two approaches, we project the tree
samples from two typical chains into the plane using met-
ric multidimensional scaling based on their RF distances
(Figure 7).

Discussion
Some researchers question the ability of indel informa-
tion to improve phylogenetic resolution of recently
diverged taxa. Golenberg et al. analyze non-coding spacer
regions between chloroplast genes in a parsimony frame-
work and claim that indels shared by state recur more
often than substitutions shared by state [32], leading to a
concern that indels are not reliable characters for phyloge-
netic analysis. However, Simmons and Ochoterana find
indels to be reliable markers with low levels of homoplasy
[33]. This contrast is partially explained by noting that the
original Golenberg study incorrectly codes overlapping
gaps of different lengths as homologous, leading to false
homoplasy. Improved methods of coding indels when
gaps overlap can lead to more accurate and more inform-
ative indel characters [33,34]. In addition, researchers
note that chloroplast intergenic spacers contain indel
"hotspots" and that sequence duplications or changes in
the number of tandem repeats occur at a significantly
higher rate than non-repeat indels [32,10]. This high rate
can lead to identical but non-homologous insertions in
different taxa, and so repeat indels experience higher
homoplasy than non-repeat indels [9]. Repeat indels
should therefore be down-weighted, but unfortunately an
appropriate weighting scheme has not yet been developed
[35]. We also note that current alignment algorithms do
not recognize duplications or indel hotspots, so that auto-
matic alignments must be adjusted manually. Despite
these difficulties with repeat indels, researchers have
examined intergenic spacers in various plant species using
improved indel coding and find that indel information is
consistent with substitution information and largely rein-
forces it, improving phylogenetic resolution and support
[9,10]. In some analyses, indels are useful only in distin-
guishing larger groups [36]. Despite the utility of indels in
phylogeny estimation, most researchers note difficulties
in indel coding that result from alignment ambiguity [35].
This can be true even when the number of substitutions is

too small to yield well-resolved phylogenies. While align-
ment ambiguity causes general problems with gap place-
ment, some specific problems are worthy of mention. For
example, aligning insertions of questionable homology
may create spurious evidence for common ancestry [35].
Also, when the number of tandem sequence repeats
decreases, it is unclear which repeat has been deleted.
Resolving these ambiguities to yield a single alignment
can increase the support for some trees while decreasing
the support for others, leading to bias, and so regions
whose homology is uncertain should be thrown out [35].
The joint estimation approach we advocate sidesteps
many of the issues through the assignment of uncertainty
on alignments, indel existence and placement.

Although the indel model described here improves on
common multiple alignment algorithms by allowing
indels to be shared by descent, it has some limitations.
First, the model assumes that the indel rate is spatially
homogeneous. However, biological sequences contain
indel "hotspots" where indels are more likely to occur as
well as invariant regions where indels are prohibited.
Incorrectly accounting for rates at which indels occur in
different regions can lead to over-weighting of the indel
evidence. Clustal W attempts to place indels in
hydrophilic regions of amino acid sequences, but does
not have a mechanism for locating hotspots in non-cod-
ing sequences or hotspots resulting from weak selection or
positive selection. Second, the indel model makes the
common assumption that residues in a single sequence
are never homologous. Duplications violate this assump-
tion and are treated as insertions of random sequence by
the indel process. Third, changes in the number of tandem
repeats of a short sequence often occur at a higher rate
than other indels via slipped-strand mispairing (SSM).
However, no commonly used alignment program
accounts for within-sequence homology or SSM. An
improved stochastic process model that accounts for these
properties of biological sequences is highly desirable in
order to accurately weight shared indel evidence and to
produce both more accurate alignments and phylogenies.

Conclusion
We extend the joint Bayesian estimation framework of
Redelings and Suchard [24] for recently diverged SIV and
HIV sequences to incorporate indel information into phy-
logeny estimates. In both examples, the use of indel infor-
mation increases the number of supported bi-partitions
even though the branch lengths are small, especially at
high posterior probabilities. While many indels in these
data sets occur in a single taxon or on a branch supported
by many substitutions, some indels occur on branches
with few or no substitutions. The relative weight of indels
and substitutions shared by descent is specified by the rel-
ative rate λ estimated from the data. This offers an
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improvement over existing methods that force the relative
weight to be set a priori.

Alignment uncertainty is significant in the SIV data set.
This uncertainty is illustrated by the fact that the topology

distribution under the traditional model varies signifi-
cantly depending on the choice of alignment (Table 1).
The joint estimation framework does not suffer from this
sensitivity to alignment choice and allows alignment
uncertainty to be estimated (Figure 4). We note that

Alignment-aware SPR transition kernel decreases burn-in timeFigure 7
Alignment-aware SPR transition kernel decreases burn-in time. We consider the 27-sequence data set of HIV 
sequences described in the Results section as Example 2. Points represent 200 topologies sampled from a Markov chains with 
the alignment-aware SPR transition kernel disabled (red; NNI-only) or enabled (blue; NNI+SPR) or from the equilibrium distri-
bution (green). While the convergence time for Markov chains varies widely, this example illustrates the median convergence 
time. The NNI-only chain takes 2112 iterations to converge versus only 66 iterations for the NNI+SPR chain. Because the con-
vergence times are so different, the figure depicts every 10th tree for the first 2000 iterations, whereas for the NNI+SPR chain 
the figure depicts every 2nd tree for the first 400 iterations. Points represent trees projected onto the plane using multidimen-
sional scaling based on the Robinson-Foulds distance. This distance depends only on the topology, not the branch lengths.

NNI only (2000pts)
NNI+SPR (400pts)
equilibrium

Start
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including indel information in analyses exaggerates the
bias that results from fixing a single alignment choice. The
high level of alignment uncertainty in the SIV data set is
partially explained by a large number of occurrences of
the triplet CAA. We note that in the HIV data set align-
ment uncertainty does not significantly effect the topol-
ogy posterior.

Models such as M0 assume that codons are unbreakable,
but the HIV data set shows that this can be unrealistic.
Forcing indels to codon boundaries results in a decrease in
model fit of 24.1 log units because of an increase in the
number of inferred substitutions. Thus choosing a codon
model over a singlet model involves a tradeoff between a
substantially improved substitution model and a possibil-
ity of incorrect homology in the alignment. Because the
effects of the latter can be significant when the total
number of substitutions is small, we welcome the devel-
opment of an improved substitution model that does not
force this tradeoff. Such a substitution model would be
able to calculate the likelihood of a singlet alignment
while making use of codon frequencies and differentiat-
ing between synonymous and non-synonymous changes.

Methods
Detailed Balance for Collapsed-Point Transition Kernels
We begin by considering a probability distribution π(x)
on points x ∈ Ω and a function f(x) that associates a subset
of Ω to each point x ∈ Ω. We call f(x) a collapsing function
if for any x and y in Ω we have x ∈ f(x) and f(x) and f(y)
are either identical or disjoint. If f is a collapsing function,
then it partitions Ω into a set of non-overlapping subsets,
which we refer to as collapsed points. We denote the set of
collapsed points as f(Ω), and note that the probability
π*(f(x)) of each collapsed point f(x) can be naturally
defined as the integral of the probabilities π(y) of points y
∈ f(x). Because the collapsed points are disjoint sets, these
probabilities sum to 1 and yield a probability distribution
on collapsed points.

We then consider a transition kernel P on Ω that is defined
in terms of a transition kernel P* on f(Ω). Starting from
the current point x, this transition kernel consists of col-
lapsing x to f(x), moving to some other collapsed point a,
and then selecting a point y from a in proportion to its
probability π(y). We note that y ∈ a implies a = f(y) and
write the probability expression for this transition kernel
as

The condition for P to satisfy detailed balance is

By cancelling common terms.

π* (f(x)) × P*(f(x), f(y)) = π* (f(y)) × P*(f(y), f(x)).  (13)

Thus, the requirement for P to satisfy detailed balance on
Ω is simply that P* satisfies detailed balance on f(Ω).

We now demonstrate that the function f that maps (A, τ,
T, Θ, Λ) to  is a collapsing function.

The directed branch PO partitions the nodes of τ into two
subsets excluding node O (Figure 2). Set C2 contains all

alignments that are consistent with A on each of the two
subsets. Alignment A certainly fulfills this criterion, and

therefore A ∈ C2(A, τ, PO), implying that x ∈ f(x) for any

x. In addition, C2(A', τ, PO) = C2(A, τ, PO) for any A' in

C2(A, τ, PO) and so f(y) = f(x) for any y ∈ f(x), implying

that f(x) and f(y) are either identical or non-overlapping.
Therefore f(x) is a collapsing function. The transition ker-
nel consisting of SPR proposals for points collapsed using

C2(A, τ, PO) therefore satisfies detailed balance when we

use the MH rule for acceptance or rejection and MH satis-
fies detailed balance on the collapsed points.

Collapsed Sampling as an MH Proposal Distribution
Our method for sampling alignments samples from a dis-
tribution η that approximates the correct distribution π
but does not match exactly [24]. We therefore define an
MH transition kernel that uses collapsed sampling of
alignments as a proposal distribution ρ. After selecting a
new topology and alignment that goes along with it, we
reject this new point j and move back to the original align-
ment and topology i with a small probability 1 - αij. The
MH acceptance ratio can be calculated as follows:

The ρij satisfy detailed balance with respect to another
probability ηi = πifi. Thus,
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Therefore the acceptance ratio is:

Distribution fi is proportional to the product of the length

distributions on the internal nodes and changes very

slowly in i. Therefore  is usually quite close to one and

there are few rejections.

Assessing Alignment Ambiguity
To assess alignment ambiguity we compare the posterior
topology distribution for the full joint model to the distri-
bution generated under models restricted to a fixed align-
ment. As these distributions may be sensitive to the
specific alignment chosen, we use three different choices.
These alignments are the estimates obtained from Clustal
W [37], Muscle [38], and BAli-Phy [24]. In the latter case,
we fix the alignment to its Maximum A Posteriori (MAP)
point determined jointly. We use the default parameters
for Clustal W and Muscle. Parameters and models used by
BAli-Phy are described in the Results section.

Computation Time and Problem Size
The inference method described in this paper and imple-
mented in the BAli-Phy software [24] requires significant
computation time in order to handle alignment uncer-
tainty and incorporate indel information. This means that
it is often impractical to analyze data sets with greater than
12 taxa or sequence lengths longer than about 750 letters
(nucleotide, amino acid, or codon). Analyzing data sets of
this size often takes about a week on current hardware.
However, we wish to emphasize two points. First, the long
computation time is not required to make a simple esti-
mate, but to obtain measures of confidence that are accu-
rate enough to publish. For simple estimates or
unpublished results, significantly larger data sets can be
analyzed. Second, the amount of time required to analyze
a data set depends not just on the size of the data set, but
on various characteristics such as the level of uncertainty.
For example, the second example in this paper contains
27 taxa of maximum length 612 and took about 3 weeks
to analyze.
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