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ABSTRACT OF THE DISSERTATION 
 

Dissecting the Regulatory Strategies of NFkappaB RelA Target Genes  

in the Inflammatory Response  

 

by 

 

Kim Anh Ngo 

Doctor of Philosophy in Microbiology, Immunology, and Molecular Genetics 

University of California, Los Angeles, 2019 

Professor Alexander Hoffmann, Chair 

 

The NFkB family member RelA is a ubiquitously expressed potent transcriptional 

activator that is induced by exposure to pathogens and inflammatory cytokines to activate the 

expression of a large number of inflammatory and immune-response genes. Its nuclear activity is 

induced from a latent cytoplasmic pool by stimulus-responsive degradation of IkB proteins, and 

the complex signaling mechanisms that regulate its activity are well understood. Less well 

characterized are the mechanisms that allow nuclear NFkB RelA activity to select its target 

genes and produce gene-specific expression. While many genes have been identified to be 

potentially NFkB regulated, there is no database that lists the NFkB target genes in a particular 

physiological condition, defined cell types and stimulus. 
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Chapter 1 presents a general overview of IKK-IkB-NFkB signaling system. Chapter 2 

reports the primary study in this dissertation in which includes approaches such as biochemistry, 

molecular biology, mouse genetics, Next-Generation Sequencing, and mathematical modeling to 

dissect the regulatory strategies of NFkB RelA endogenous target genes in the inflammatory 

response. Chapter 3 summarizes our findings and provide a future direction to this study. 

In Chapter 2, to dissect gene-specific regulatory strategies resulting from NFkB 

activation in response to inflammation, we stringently defined a list of direct RelA target genes 

by integrating physical/DNA binding (ChIP-seq) and functional/transcriptional data (RNA-seq) 

datasets. We then dissected each gene’s regulatory strategy by testing RelA variants in a novel 

primary-cell genetic complementation assay.  All endogenous target genes required that RelA 

makes DNA-base-specific contacts, and none could be activated by the DNA binding domain 

alone. However, endogenous target genes differed widely in how they employ the two 

transactivation domains (TAD). Through model-aided analysis of the dynamic timecourse data 

we reveal gene-specific synergy and redundancy of TA1 and TA2. Given that post-translational 

modifications control TA1 activity and affinity for coactivators determines TA2 activity, the 

differential TA logics suggests context-dependent vs. context-independent control of endogenous 

RelA-target genes. While some inflammatory initiators appear to require co-stimulatory TA1 

activation, inflammatory resolvers are a part of the NFkB RelA core response where TA2 

activity mediates activation even when TA1 is inactive. 
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General Introduction 
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NFkB, IkB, and IKK PROTEIN FAMILIES 

Nuclear Factor kappaB (NFkB) was first discovered as a DNA-binding complex in 

activated B-cells (Sen and Baltimore, 1986). It was then characterized as a ubiquitously 

expressed potent transcriptional activator that is activated by a wide range of intracellular and 

extracellular signals, such as inflammatory cytokines, bacterial pathogens, viruses, 

environmental stress, genotoxic stress, and developmental inter-cellular signals,  to induce the 

expression of many genes (Baeuerle and Henkel, 1994; Hoffmann et al., 2006; Liu et al., 2017; 

Stanic et al., 2004; Zhang et al., 2017). NFkB is widely recognized as a master regulator of 

inflammatory response, but at the same time it is a major transcription factor for both innate and 

adaptive immune system that controls the transcription of genes involved in many cellular 

processes such as inflammation, cell survival, cell proliferation, cell differentiation, viral 

response, and apoptosis. In addition, NFkB signaling is activated by two distinct pathways 

known as canonical (“classical”) and non-canonical (“alternative”) pathways, which are 

important for inflammatory gene expression and genes involved in developmental processes, 

respectively.  Improper regulation of  NFkB activity has been linked to inflammatory and 

autoimmune diseases, such as rheumatoid arthritis and Crohn’s disease, septic shock, non-

Hodgkin B cell lymphoma, viral infection, and cancer (Hoesel and Schmid, 2013; Liu and Malik, 

2006; Monaco and Paleolog, 2004; Nakshatri et al., 1997; Tak and Firestein, 2001; Xia et al., 

2014). NFkB transcriptional activity can have important physiological functions and however, 

pathophysiological functions if not appropriately controlled. Because of its important role in 

health and disease, NFkB signaling has been a potential therapeutic target in the prevention and 



 

3 

treatment of cancer and human diseases (Greten and Karin, 2004; Gupta et al., 2010; Luo et al., 

2005; Monaco and Paleolog, 2004; Roman-Blas and Jimenez, 2006; Sarkar and Li, 2008). 

 The NFkB family of transcription factors consists of 5 proteins: RelA (also called p65), 

RelB, cRel, p50, and p52 encoded by RELA, RELB, REL, NFKB1, and NFKB2 genes, 

respectively. These proteins all share an N-terminal Rel homology region (RHR) that is 300 

amino acids long and has three functions: sequence-specific DNA binding, dimerization and 

inhibitory protein binding (Figure 1.1) (Ghosh et al., 2012, 1998; Siebenlist et al., 1994). These 

five NFkB subunits can form 15 possible combinations of NFkB dimers through homo- and 

hetero-dimerization. Following the RHR is a nuclear localization sequence (NLS), and a C-

terminal transcription activation domain (TAD) that is unique to RelA, RelB, and cRel proteins. 

p50 and p52 result from precursor proteins: p105 (NFKB1) and p100 (NFKB2), respectively, 

through post-translational cleavage of a C-terminal region containing ankyrin repeat domains 

(ARDs) (Baeuerle and Henkel, 1994; Fan and Maniatis, 1991). Hence, p50 and p52 can act as 

transcriptional activators when forming heterodimers with Rel-containing members with a C-

terminal TAD.  On the other hand, p50 and p52 homodimers function as transcriptional 

repressors due to the lack of TAD (Cramer et al., 1997; Ghosh et al., 1995; Müller et al., 1995). 

Of all the NFkB dimers, RelA:p50 heterodimer is predominant, and was the first NFkB dimer to 

be described (Kopp and Ghosh, 1995; Verma et al., 1995). Further, RelA/p65 is ubiquitously 

expressed and was characterized to contain two transactivation sub-domains that are within its C-

terminal TAD; however, cRel-containing dimers are found to be more highly expressed in 

mature lymphoid cells (Boffa et al., 2003; Köntgen et al., 1995; Tumang et al., 1998).  
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Figure 1.1 NFkB protein family. (A) Members of NFkB family. Left column: gene symbol, 
middle column: protein name, right column: the number of amino acids in the human protein. 
RHR, Rel homology region; TAD, transactivation domain. (B) Five NFkB subunits can form 15 
possible different combinations of NFkB dimers through homo- and hetero-dimerization. 
Adapted from Hoffmann and Baltimore, 2006; O’Dea and Hoffmann, 2009. 
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Inhibitors of kB (IkB) are a family of inhibitory proteins that regulate NFkB activity by 

sequestering NFkB dimers in the cytoplasm of resting cells and releasing them upon signaling 

input. IkB blocks the nuclear localization of NFkB dimers by blocking their nuclear localization 

signal (NLS),  and regulates DNA-binding of NFkB dimers through the formation of stable  

IkB:NFkB complexes that inhibit NFkB binding to NFkB-binding sites, called  kB DNA 

(Baeuerle and Baltimore, 1988; Huxford et al., 1998; Jacobs and Harrison, 1998; Kearns et al., 

2006; Nolan et al., 1991; Thanos and Maniatis, 1995; Truhlar et al., 2006; Zabel and Baeuerle, 

1990). The IkB family consists of IkBa, IkBb, IkBe, IkBd, IkBg, IkBx, and Bcl3 that are 

encoded by NFKBIA, NFKBIB, NFKBIE, NFKB2, NFKB1, NFKBIZ, and BCL3, respectively 

(Figure 1.2A). Of note, NFKB2 and NFKB1 also encode for NFkB proteins, p52 and p50, 

respectively. However, the C-terminal containing ARDs in their precursor proteins, p100 and 

p105, respectively, make them as IkB-like proteins. Hence, p100 and p105 homodimers, IkBd 

and IkBg, respectively,  can bind to NFkB dimers and inhibit their translocation into the nucleus.  

The C-terminal region of IkB proteins contain ARDs, which is the hallmark of the IkB proteins. 

The ARDs of IkBs associate with the RHR of NFkB dimers to form the IkB:NFkB complex 

(Huxford et al., 1998; Jacobs and Harrison, 1998; Malek et al., 2003).  IkB proteins also have 

other functional domains, such as the signal response domain (SRD) in the N-terminus or C-

terminus. IkBa and IkBb additionally contain an acidic carboxy-terminal region that is rich in 

the amino acids proline (P), glutamic acid (E), serine (S), and threonine (T), known as the PEST-

like region, in which is required for inhibiting NFkB binding to DNA (Ernst et al., 1995). 

However, IkBb has an additional essential and positive function, which is to stabilize the low 



 

6 

affinity RelA:RelA homodimer. Also, it may be considered a bona fide chaperone for the 

RelA:RelA homodimer formation (Tsui et al., 2015). Furthermore, classical IkBs (IkBa, IkBb, 

IkBe) and IkBd, and IkBg are primarily found in the cytoplasm, which inhibit nuclear NFkB 

activity by masking their nuclear localization signals (NLS) and by interfering with the capacity 

of NFkB to bind to DNA (Baeuerle and Baltimore, 1988; Huxford et al., 1998; Jacobs and 

Harrison, 1998; Nolan et al., 1991; Zabel and Baeuerle, 1990). Importantly, these IkB promoter 

regions contain NFkB binding sites that positively regulate the expression of the IkBs; hence, 

IkBs are target genes of NFkB and their expression is important for the negative feedback 

control of NFkB activity (Hoffmann et al., 2002, 2006). The atypical IkB-like proteins (Bcl3, 

and IkBx) are found primarily in the nucleus where they are strongly induced after NFkB 

activation and modulate NFkB activity both positively and negatively depending on the target 

genes (Muta, 2006; Muta et al., 2003; Trinh et al., 2008; Zhang et al., 1994). 

 An essential component in the activation of NFkB signaling pathway is the IkB kinase 

(IKK) complex that is the gatekeeper for NFkB activation because IKK protein complex 

mediates the signaling-dependent degradation of IkB proteins in which frees NFkB to translocate 

into the nucleus and activate gene transcription  (Israël, 2010; Rushe et al., 2008; Yamaoka et al., 

1998; DiDonato et al., 1997; Mercurio et al., 1997; Zandi et al., 1997; Malinin et al., 1997). 

Structural studies have provided protein structural information on the IKK complexes which 

were shown to form a multimeric complex with NFkB and IkB. In the canonical or “classical” 

NFkB pathway,  IKK complex contains two kinase subunits, IKKa (or IKK1) and IKKb (or 

IKK2), and a non-catalytic subunit, NFkB essential modulator (NEMO or IKKg). IKKa and 
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IKKb are structurally similar in that both proteins contain an amino-terminal kinase domain and 

two protein-protein interaction motifs in their carboxyl terminus, called the leucine zipper (LZ) 

and helix-loop-helix domain (HLH) (Figure 1.2B). Another important domain within C-terminal 

portion of IKKa and IKKb proteins is a NEMO binding domain (NBD) that allows the IKK 

complex formation.  NEMO protein does not harbor any kinase domain or enzymatic activity, 

but instead it acts as an adapter protein. NEMO contains two coiled-coil domains (CC1/2), a 

leucine zipper domain, and a zinc finger domain. The N-terminal CC1 region of NEMO interacts 

with the IKK C-terminal kinase tails and the CC2-LZ domains mediate oligomerization and 

polyubiquitin binding, key features that govern NEMO function (Grubisha et al., 2010). NEMO 

is essential for the activation of the IKK complex in the canonical NFkB signaling pathway. 

Deficiency in these IKK proteins have been shown to cause developmental defects in neurulation 

and liver degeneration in mice (Li et al., 2000; Rudolph et al., 2000). When activated, IKKa and 

IKKb directly phosphorylate IkBs at their signal response domain (SRD), triggering 

ubiquitination and rapid degradation of the inhibitors by the 26S proteasome. This process 

releases the NFkB dimer, which then stably translocates to the nucleus and activates expression 

of many genes. On the other hand, NFkB-inducing kinase (NIK) is required for the activation of 

the “alternative” or non-canonical NFkB pathway where NIK has been shown to only 

phosphorylate IKKa, and not IKKb in vitro (Ling et al., 1998; Malinin et al., 1997; Régnier et 

al., 1997; Xiao et al., 2001). Of note, MAP3K14 is the gene encoding NIK because it was first 

identified as a mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) related kinase 

due to its homology with other MAP3Ks in its enzymatic domain (Malinin et al., 1997). In 

response to a developmental stimulus, activated NIK phosphorylates and activates IKKa through 
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its C-terminal kinase domain. Also, a unique molecular component of NIK is in its carboxyl 

region called the TRAF2-binding domain (TBD), in which it allows its association to the TRAF2 

adaptor protein for its stabilization in NFkB activation (Song et al., 1997).   

 

Figure 1.2 IkB and IKK protein families. Members of the (A) IkB and (B) IKK families. Left 
column: gene symbol, middle column: protein name, right column: number of amino acids in 
each human protein. RHR, Rel homology region; SRD, signal response domain; ARDs, ankyrin 
repeat domains; DD, death domain; PEST, proline, glutamic acid, serine, and threonine rich-like 
region; KD, kinase domain; LZ, leucine zipper domain; HLH, helix-loop-helix domain; CC1/2, 
coiled-coil domains; Z; zinc finger domain; NBD, NEMO-binding domain; BR, basic region; 
PRR, proline rich region; TBD: TRAF binding domain. These schematics are adapted from 
Hayden and Ghosh, 2008; Malinin et al., 1997; O’Dea and Hoffmann, 2009; Régnier et al., 1997; 
Thu and Richmond, 2010. 
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NFkB SIGNALING SYSTEM 

NFkB dimers can be activated through two different pathways referred to as the 

canonical and non-canonical NFkB signaling pathways (Hayden and Ghosh, 2008; O’Dea and 

Hoffmann, 2009; Pomerantz and Baltimore, 2002). These pathways differ in respect of inducers, 

activating kinases, and specific IkB and NFkB molecules involved (Figure 1.3). Genes activated 

by the canonical pathway are activated rapidly and are generally involved in inflammation, 

whereas the genes induced by the non-canonical pathway are generally important for 

developmental programs (Pomerantz and Baltimore, 2002; Sun, 2011). 

 

The canonical NFkB pathway 

Activation of the canonical or “classical” NFkB signaling pathway is triggered by a 

variety of inflammatory and pathogen-derived signals, and through receptors like members of the 

TNF receptor (TNFR) super-family, Toll-like receptors (TLRs), Interleukin receptors, antigen of 

B and T cells. Signaling through these results in the innate immune and inflammatory response 

(Figure 1.3A). The downstream signaling complex that is activated is a trimeric IKK complex of 

the catalytic subunits IKKa, IKKb, and the regulatory subunit NEMO. Although NFkB 

activation is regulated/prevented by the three prototypical inhibitors, IkBa, IkBb, and IkBe 

(Baeuerle, 1998; Huxford et al., 1998; Jacobs and Harrison, 1998; Kearns et al., 2006; Malek et 

al., 2003); IkBa is the key regulator of the dynamics of NFkB activity in the canonical pathway 

because deficiency in IkBa in mice was shown to exhibit neonatal lethality due to elevated 

NFkB activity (Beg et al., 1995). The primary NFkB dimers that are activated are RelA and 

cRel-containing homo- and hetero-dimers. In response to a stimulus, IkBs are phosphorylated by 
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the NEMO/IKK complex, particularly by IKKa and IKKb,  leading to subsequent ubiquitination 

and proteasomal degradation (Ghosh et al., 1998). IkB degradation frees NFkB to translocate to 

the nucleus and bind DNA which then activates transcription of numerous of target genes. While 

the activation of the canonical NFkB pathway is essential for eliciting the inflammatory 

response, prolonged NFkB activity is detrimental, for example, causing chronic inflammation 

(Tak and Firestein, 2001). Hence, a second important molecular event in the canonical NFkB 

signaling is the inducible synthesis and activation of the IkBs which results in a post-induction 

repression of the NFkB response, referred to as the negative feedback control of NFkB activity 

(Hoffmann et al., 2002).  

 

The non-canonical NFkB pathway 

In contrast to the canonical NFkB signaling pathway, activation of the non-canonical or 

“alternative” NFkB signaling pathway occurs in response to developmental processes that are 

induced through Lymphotoxin b receptor (LTbR), RANK, BAFFR, CD40, and CD27 signaling 

(Sun, 2011); (Figure 1.3B). Mice deficient in molecular components of the non-canonical NFkB 

signaling pathway - RELB-/-, NFKB2-/-, NIK-/- - showed defective LTbR-induced NFkB 

transcriptional activity, abnormalities in lymphoid tissue development and antibody responses, 

and defective Peyer’s Patch tissue development (Weih and Caamaño, 2003; Yilmaz, 2003; Yin et 

al., 2001). The activation mechanism does not occur through NEMO activity but requires the 

activity of NFkB-inducing kinase (NIK). Activation of NFkB via the non-canonical pathway 

involves NIK- and IKKa-dependent phosphorylation of p100 associated with RelB. This induces 
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the proteolytic processing of p100 to generate the NFkB family member p52 (Coope et al., 2002; 

Senftleben et al., 2001; Xiao et al., 2001). This then allows the formation of the p52: RelB 

heterodimer (Sun, 2011), which activates gene expression. Activated non-canonical NFkB 

signaling results in more sustained signaling where the kinetics involve a slow build-up and 

long-lasting activity, as opposed to the more transient canonical NFkB signaling pathway.   

 

Crosstalk between canonical and non-canonical pathways 

Because activation of the canonical pathway is generally associated with inflammation 

while activation of non-canonical pathway is mostly associated with developmental signals, 

these pathways are presumed to transduce signals independently and elicit distinct physiological 

functions. However, NFkB RelA:p50 dimers can be activated in response to both inflammatory 

and developmental stimuli via crosstalk signaling between NFkB signaling pathways (Basak and 

Hoffmann, 2008; Basak et al., 2007; Shih et al., 2011, 2012). This allows the diverse biological 

functions of NFkB to be adapted to the cell type and context (Figure 1.4). An example of the 

cross-talk signaling between canonical and non-canonical NFkB signaling pathways is LTbR 

signaling, in which it is critical for lymphoid organogenesis. LTbR signaling was shown to 

regulate primary lymphoid development and maturation (B and T lymphocytes), secondary 

lymphoid development (spleen, lymph nodes, and Peyer’s patch), and their microenvironment 

for antigen recognition (Fütterer et al., 1998; Rennert et al., 1998; Weih and Caamaño, 2003). 

However, LTbR signaling is not sufficient for lymphoid architecture, but TNFR signaling is also 

required as inhibition of TNFR signaling during LTbR signaling resulted in a lack of lymph node 

formation (Rennert et al., 1998). 
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Figure 1.3 Two NFkB signaling pathways. (A) Canonical or “classical” NFkB signaling 
pathway. Canonical NFkB signaling involves NEMO-dependent IKK complex, prototypical 
IkBs (IkBa, IkBb, and IkBe), and NFkB RelA and cRel-containing homo- and heterodimers that 
are activated in response to inflammatory cytokines and pathogens. (B) Non-canonical or 
“alternative” NFkB signaling pathway. Non-canonical NFkB signaling is induced in response to 
developmental stimuli and involves the activation of NIK/IKKa complex and p100 proteasomal 
processing to p52, resulting in NFkB p52:RelB dimers.  
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Furthermore, Basak et al. reported that activation of LTbR signaling in murine embryonic 

fibroblast (MEF) cells resulted in NFkB DNA binding activity by both pre-existing RelA:p50 

and RelB:p50 dimers and a late-induced RelB:p52 dimer. Surprisingly, RelA:p50 was not 

associated with classical NFkB-IkB complex, but bound to the p100 homodimer/IkBd. LTbR 

signaling induces IkBd degradation through the non-canonical signaling via NIK and IKKa 

(Basak et al., 2007). In TNF-primed MEF cells, Basak et al. found elevated IkBd-NFkB 

complexes, suggesting a cross-talk mechanism that controls canonical and non-canonical IkB 

proteins and NFkB signaling. 

 

 
 
 
Figure 1.4 Cross-talk in NFkB pathways. Cross-talk mechanism between canonical and non-
canonical NFkB signaling pathways for NFkB activation. Adapted from Basak and Hoffmann, 
2008; Basak et al., 2007; Shih et al., 2011.  
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Regulation of NFkB activity for immune homeostasis 

 Tight regulation of NFkB activity is important for immune homeostasis due to the broad 

range of genes that NFkB can activate. Dysregulation or misregulation of NFkB transcriptional 

activity has been implicated in many human malignancies and cancers (Baldwin, 2001). Use of 

genetic knockouts in NFkB:IkB:IKK signaling components have shown the importance of the 

NFkB signaling pathways in regulating many biological functions, such as inflammatory 

responses, lymphoid organogenesis, B-cell survival and maturation, dendritic cell activation, and 

bone metabolism  (Baeuerle, 1998; Xiao et al., 2001). However, aberrant NFkB activity is a 

hallmark feature of several inflammatory diseases, such as arthritis, Crohn’s disease, and 

atherosclerosis (Bourcier et al., 1997; Brand et al., 1997; Tak and Firestein, 2001) which makes 

it a therapeutic target for treatments of inflammation. Hence, in healthy condition, NFkB activity 

is usually transient to mediate a cellular response and is then inactivated by newly synthesized 

IkB proteins that bind to NFkB dimers and export them back out to the cytoplasm. This negative 

feedback control of NFkB is important to ensure that NFkB signaling is turned on only when 

necessary for biological functions and is then properly regulated for immune homeostasis.  

 
 

DNA RECOGNITION BY NFkB DIMERS 

Upon translocation into the nucleus, the NFkB complex binds to sequence-specific DNA 

known as the “kB sites” on target genes. The contact of both NFkB subunits with the DNA is 

required for DNA binding and transcriptional activation (Chen et al., 1998b; Kunsch et al., 

1992).  Structural and functional studies of NFkB-DNA complexes have demonstrated that 
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NFkB dimers bind to a variety of kB sites where NFkB recognizes 9 to 11 base pairs kB DNA 

elements of the sequence: 5’-GGGRNNNNYCC-3’, where R = A or G; N = any nucleotide (A, 

C, G, or T); Y = C or T (Chen and Ghosh, 1999; Chen et al., 1998b, 2000; Fujita et al., 1992; 

Ghosh et al., 1995; Kunsch et al., 1992; Müller et al., 1995; Udalova et al., 2000; Zabel et al., 

1991). Additionally, crystal structures of NFkB dimers in active DNA-bound state have revealed 

how each subunit of NFkB contacts each half-site of the full kB DNA sequence (Chen et al., 

1998a, 2000; Huxford et al., 1998; Jacobs and Harrison, 1998). These studies highlight the 

plasticity of NFkB dimers in recognizing kB site sequences with a single half-site in kB DNA 

sequences. Each NFkB dimer has distinct binding specificities to kB site sequences that 

influence the selective regulation of NFkB target genes (Siggers et al., 2012). Siggers et al. have 

performed a comprehensive unbiased characterization of DNA binding by eight different NFkB 

dimers using protein-binding microarrays (PBMs)-determined z scores. Their work further 

separates NFkB dimers into three distinct DNA-binding classes: p50 and p52 homodimer 

preferentially bind to 11 or 12 bp sites; NFkB heterodimers preferentially bind to 10 bp sites; and 

cRel or RelA homodimers preferentially bind to 9 bp sites.  

Structural studies of NFkB have shown that native NFkB from nuclear extracts occurs in 

a protein complex of more than 200 kDa, significantly higher than the total combined mass of 

the reconstituted purified p50 and RelA proteins (115 kDa) (Urban et al., 1991). This suggests 

that gene regulation by NFkB is more complex as it may act together with a variety of other 

chromatin-associated factors (Kim et al., 2012; Mukherjee et al., 2013; Ohmori and Hamilton, 

1993; Wan and Lenardo, 2009; Zhong et al., 1998). A prominent study indicated the potential for 
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the DNA-binding domain (DBD) within the N-terminal RHR of NFkB RelA to recruit either 

histone deacetylase 1 (HDAC1) or histone acetyl transferase CBP/p300 co-activator depending 

on the phosphorylation status of S276 in RelA (Zhong et al., 2002). Further, recent studies 

indicated that recruitment to endogenous NFkB targets may be mediated by CBP interacting 

with the NFkB RelA C-terminal TAD (Lecoq et al., 2017; Mukherjee et al., 2013), suggesting 

the involvement of cofactors in NFkB-dependent transcription of target genes. Other NFkB 

cofactors that have been reported to interact with NFkB dimers at gene regulatory regions to 

mediate gene expression are E2F1 (Lim et al., 2007), FOXM1 (Zhao et al., 2014), and RPS3 

(Mulero et al., 2018; Wan et al., 2007).  

 

NFkB TRANSACTIVATION 

 
 Transcriptional activation by NFkB occurs in the C-terminal TAD found in NFkB Rel-

containing subunits: RelA, RelB, and cRel (Figure 1.1A). As mentioned above, NFkB p50 and 

p52 members can only act as transcriptional activators when forming heterodimers with Rel-

containing members due to their lack in C-terminal TAD. NFkB transactivation can influence the 

chromatin state through recruitment of chromatin modifying co-activators and repressors (i.e 

CBP/p300 and HDAC1, respectively). One of the mechanisms that could regulate this selective 

interaction with NFkB co-factors is the specific post-translational modification (PTM), such as 

phosphorylation, of NFkB proteins (Zhong et al., 2002).  A substantial literature has addressed 

the identification and potential role of post-translational modifications of NFkB subunits, 

reviewed in Huang et al., 2010; Perkins, 2006. A prominent study demonstrated the importance 
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of RelA S276 phosphorylation in mediating CBP/p300 co-activator for NFkB-dependent 

transcriptional activity as introduction of S276A or S276E mutations showed complex mouse 

phenotypes and transcriptional defects (Dong et al., 2008). Further, S276 phosphorylation of 

RelA can regulate RelA acetylation that involves CBP/p300. Phosphorylation of RelA at S276 

was shown to promote its acetylation at K310 which enhances transcriptional activity (Chen et 

al., 2005). Further, acetylation of RelA at K314 was reported to be important for late NFkB-

dependent gene expression (Rothgiesser et al., 2010). Such post-translational modifications of 

NFkB RelA were reported to alter interactions with transcriptional cofactors and regulate NFkB 

transcriptional activity either by enhancing or repressing NFkB activity, some examples in the 

regulation of NFkB activity.   

 
 

FOCUS OF STUDY 

Whereas many studies of inflammatory signaling have led to a good understanding of 

how nuclear NFkB activity is regulated, many questions about how nuclear NFkB selects its 

target genes and produces gene-specific expression remain to be investigated.  Prior structure-

function studies of the NFkB RelA subunit identified the domain structure and key amino acid 

residues in biochemical and transient transfection assays (Figure 1.5). However, numerous 

reports show that in the native chromatin context gene regulation by NFkB is more complex, as 

it may collaborate with a variety of other chromatin-associated factors.   

The NFkB RelA (or p65) subunit has been extensively studied because it is known for 

the strong transcription activating potential of NFkB (Schmitz and Baeuerle, 1991). Indeed, 
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NFkB RelA is considered the central regulator of inflammation, capable of fast, protein-

synthesis-independent activation of gene expression within minutes (Hayden and Ghosh, 2008). 

The signaling mechanisms involved in regulation of NFkB RelA activity have been elucidated in 

detail, allowing for the remarkably precise recapitulation of experimental data with mathematical 

models of the network (Mitchell et al., 2016; Basak et al., 2012). As such, we have focused on 

RelA to dissect the regulatory strategies of inflammatory response genes that are targets of NFkB 

RelA. 

Aside from containing a conserved amino-terminal RHR, previous reports have identified 

RelA to have at least two TADs (Moore et al., 1993; Schmitz and Baeuerle, 1991). 

Transactivation sub-domain 1 (TA1) consist of the most C-terminal 30 amino acids, while 

Transactivation  sub-domain 2 (TA2) is directly adjacent to TA1. It was initially thought that 

TA1 is the principal transactivation domain for RelA transcriptional activity because structural 

features of the TA1 domain are highly conserved across species, and because TA1 was shown to  

be sufficient for inducing transcriptional activity (Schmitz and Baeuerle, 1991). However, when 

deleting TA1, Schmitz and Baeuerle showed that the unique C-terminal third of RelA contained 

at least one other distinct activation domain that is directly adjacent to TA1 (Schmitz and 

Baeuerle, 1991).  

In Chapter 2 of this dissertation, I addressed the questions of how NFkB selects target 

gene binding and by which mechanisms it activates transcription of endogenous target genes. I 

have established a genetic complementation system for RelA variants to probe their regulatory 

strategies in the inflammatory response. In this model system, I examined the NFkB 

transcriptional response to an inflammatory stimulus called tumor necrosis factor (TNF). 
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Figure 1.5 RelA modular domain structures. NFkB RelA functional domain structures were 
identified from biochemical and exogenous reporter gene assays. RelA N-terminus was 
identified to contain a DNA-binding domain that binds directly to target gene DNA at kB sites. 
RelA C-terminal region was identified to possess transactivation function from its two 
transactivation sub-domains, TA2 and TA1. The structural domain features were identified 
through in vitro and transient gene reporter studies (Chen et al., 1998; Mukherjee et al., 2013; 
Schmitz and Baeuerle, 1991) that led to the identification of RelA protein functional domains 
shown in the schematics for human (hRelA) and mouse (mRelA) RelA protein in amino acid 
sequences.  
 
 
 
 
 
 
 
 
  



 

20 

REFERENCES 

Baeuerle, P.A. (1998). IκB–NF-κB Structures: At the Interface of Inflammation Control. Cell 95, 
729–731. 

Baeuerle, P.A., and Baltimore, D. (1988). I kappa B: a specific inhibitor of the NF-kappa B 
transcription factor. Science 242, 540–546. 

Baeuerle, P.A., and Henkel, T. (1994). Function and Activation of NF-kappaB in the Immune 
System. Annu. Rev. Immunol. 12, 141–179. 

Baldwin, A.S. (2001). Series Introduction: The transcription factor NF-κB and human disease. J. 
Clin. Invest. 107, 3–6. 

Basak, S., and Hoffmann, A. (2008). Crosstalk via the NF-kappaB signaling system. Cytokine 
Growth Factor Rev. 19, 187–197. 

Basak, S., Kim, H., Kearns, J.D., Tergaonkar, V., O’Dea, E., Werner, S.L., Benedict, C.A., 
Ware, C.F., Ghosh, G., Verma, I.M., et al. (2007). A Fourth IκB Protein within the NF-κB 
Signaling Module. Cell 128, 369–381. 

Basak, S., Behar, M., and Hoffmann, A. (2012). Lessons from mathematically modeling the NF-
κB pathway: Mathematical modeling the NF-κB pathway. Immunol. Rev. 246, 221–238. 

Beg, A.A., Sha, W.C., Bronson, R.T., and Baltimore, D. (1995). Constitutive NF-kappa B 
activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. 
Genes Dev. 9, 2736–2746. 

Boffa, D.J., Feng, B., Sharma, V., Dematteo, R., Miller, G., Suthanthiran, M., Nunez, R., and 
Liou, H.-C. (2003). Selective loss of c-Rel compromises dendritic cell activation of T 
lymphocytes. Cell. Immunol. 222, 105–115. 

Bourcier, T., Sukhova, G., and Libby, P. (1997). The nuclear factor kappa-B signaling pathway 
participates in dysregulation of vascular smooth muscle cells in vitro and in human 
atherosclerosis. J. Biol. Chem. 272, 15817–15824. 

Brand, K., Page, S., Walli, A.K., Neumeier, D., and Baeuerle, P.A. (1997). Role of nuclear 
factor-kappa B in atherogenesis. Exp. Physiol. 82, 297–304. 

Chen, F.E., and Ghosh, G. (1999). Regulation of DNA binding by Rel/NF-kappaB transcription 
factors: structural views. Oncogene 18, 6845–6852. 

Chen, F.E., Huang, D.-B., Chen, Y.-Q., and Ghosh, G. (1998a). Crystal structure of p50/p65 
heterodimer of transcription factor NF-κB bound to DNA. Nature 391, 410–413. 



 

21 

Chen, L.-F., Williams, S.A., Mu, Y., Nakano, H., Duerr, J.M., Buckbinder, L., and Greene, W.C. 
(2005). NF-κB RelA Phosphorylation Regulates RelA Acetylation. Mol. Cell. Biol. 25, 7966–
7975. 

Chen, Y.-Q., Ghosh, S., and Ghosh, G. (1998b). A novel DNA recognition mode by the NF-κB 
p65 homodimer. Nat. Struct. Mol. Biol. 5, 67–73. 

Chen, Y.-Q., Sengchanthalangsy, L.L., Hackett, A., and Ghosh, G. (2000). NF-κB p65 (RelA) 
homodimer uses distinct mechanisms to recognize DNA targets. Structure 8, 419–428. 

Coope, H. j., Atkinson, P. g. p., Huhse, B., Belich, M., Janzen, J., Holman, M. j., Klaus, G. g. b., 
Johnston, L. h., and Ley, S. c. (2002). CD40 regulates the processing of NF-κB2 p100 to p52. 
EMBO J. 21, 5375–5385. 

Cramer, P., Larson, C.J., Verdine, G.L., and Müller, C.W. (1997). Structure of the human NF-
kappaB p52 homodimer-DNA complex at 2.1 A resolution. EMBO J. 16, 7078–7090. 

DiDonato, J.A., Hayakawa, M., Rothwarf, D.M., Zandi, E., and Karin, M. (1997). A cytokine-
responsive IκB kinase that activates the transcription factor NF-kB. 388, 7. 

Dong, J., Jimi, E., Zhong, H., Hayden, M.S., and Ghosh, S. (2008). Repression of gene 
expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes Dev. 22, 
1159–1173. 

Ernst, M.K., Dunn, L.L., and Rice, N.R. (1995). The PEST-like sequence of I kappa B alpha is 
responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA 
homodimers. Mol. Cell. Biol. 15, 872–882. 

Fan, C.-M., and Maniatis, T. (1991). Generation of p50 subunit of NF- k B by processing of 
p105 through an ATP-dependent pathway. Nature 354, 395. 

Fujita, T., Nolan, G.P., Ghosh, S., and Baltimore, D. (1992). Independent modes of 
transcriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev. 6, 775–787. 

Fütterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H., and Pfeffer, K. (1998). The lymphotoxin 
beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. 
Immunity 9, 59–70. 

Ghosh, G., Duyne, G.V., Ghosh, S., and Sigler, P.B. (1995). Structure of NF-κB p50 homodimer 
bound to a κB site. Nature 373, 303–310. 

Ghosh, G., Ya-Fan Wang, V., Huang, D.-B., and Fusco, A. (2012). NF-κB Regulation: Lessons 
from Structures. Immunol. Rev. 246, 36–58. 

Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-κB AND REL PROTEINS: Evolutionarily 
Conserved Mediators of Immune Responses. Annu. Rev. Immunol. 16, 225–260. 



 

22 

Greten, F.R., and Karin, M. (2004). The IKK/NF-κB activation pathway—a target for prevention 
and treatment of cancer. Cancer Lett. 206, 193–199. 

Grubisha, O., Kaminska, M., Duquerroy, S., Fontan, E., Cordier, F., Haouz, A., Raynal, B., 
Chiaravalli, J., Delepierre, M., Israël, A., et al. (2010). DARPin-assisted crystallography of the 
CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. J. 
Mol. Biol. 395, 89–104. 

Gupta, S.C., Sundaram, C., Reuter, S., and Aggarwal, B.B. (2010). Inhibiting NF-κB Activation 
by Small Molecules As a Therapeutic Strategy. Biochim. Biophys. Acta 1799, 775–787. 

Hayden, M.S., and Ghosh, S. (2008). Shared Principles in NF-κB Signaling. Cell 132, 344–362. 

Hoesel, B., and Schmid, J.A. (2013). The complexity of NF-κB signaling in inflammation and 
cancer. Mol. Cancer 12, 86. 

Hoffmann, A., and Baltimore, D. (2006). Circuitry of nuclear factor κB signaling. Immunol. 
Rev. 210, 171–186. 

Hoffmann, A., Levchenko, A., Scott, M.L., and Baltimore, D. (2002). The IκB-NF-κB Signaling 
Module: Temporal Control and Selective Gene Activation. Science 298, 1241–1245. 

Hoffmann, A., Natoli, G., and Ghosh, G. (2006). Transcriptional regulation via the NF-kappaB 
signaling module. Oncogene 25, 6706–6716. 

Huang, B., Yang, X.-D., Lamb, A., and Chen, L.-F. (2010). Posttranslational modifications of 
NF-κB: Another layer of regulation for NF-κB signaling pathway. Cell. Signal. 22, 1282–1290. 

Huxford, T., Huang, D.-B., Malek, S., and Ghosh, G. (1998). The Crystal Structure of the 
IκBα/NF-κB Complex Reveals Mechanisms of NF-κB Inactivation. Cell 95, 759–770. 

Israël, A. (2010). The IKK Complex, a Central Regulator of NF-κB Activation. Cold Spring 
Harb. Perspect. Biol. 2. 

Jacobs, M.D., and Harrison, S.C. (1998). Structure of an IκBα/NF-κB Complex. Cell 95, 749–
758. 

Kearns, J.D., Basak, S., Werner, S.L., Huang, C.S., and Hoffmann, A. (2006). IκBε provides 
negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene 
expression. J. Cell Biol. 173, 659–664. 

Kim, J.-W., Jang, S.-M., Kim, C.-H., An, J.-H., Kang, E.-J., and Choi, K.-H. (2012). New 
Molecular Bridge between RelA/p65 and NF-κB Target Genes via Histone Acetyltransferase 
TIP60 Cofactor. J. Biol. Chem. 287, 7780–7791. 



 

23 

Köntgen, F., Grumont, R.J., Strasser, A., Metcalf, D., Li, R., Tarlinton, D., and Gerondakis, S. 
(1995). Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, 
humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977. 

Kopp, E.B., and Ghosh, S. (1995). NF-kappa B and rel proteins in innate immunity. Adv. 
Immunol. 58, 1–27. 

Kunsch, C., Ruben, S., and Rosen, C. (1992). Selection of optimal kappa B/Rel DNA-binding 
motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional 
activation. Mol Cell Bio 12, 4412–4421. 

Lecoq, L., Raiola, L., Chabot, P.R., Cyr, N., Arseneault, G., Legault, P., and Omichinski, J.G. 
(2017). Structural characterization of interactions between transactivation domain 1 of the p65 
subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res. 45, 5564–5576. 

Li, Q., Estepa, G., Memet, S., Israel, A., and Verma, I.M. (2000). Complete lack of NF-κB 
activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev. 
14, 1729–1733. 

Lim, C.-A., Yao, F., Wong, J.J.-Y., George, J., Xu, H., Chiu, K.P., Sung, W.-K., Lipovich, L., 
Vega, V.B., Chen, J., et al. (2007). Genome-wide mapping of RELA(p65) binding identifies 
E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Mol. Cell 27, 
622–635. 

Ling, L., Cao, Z., and Goeddel, D.V. (1998). NF-kappaB-inducing kinase activates IKK-alpha by 
phosphorylation of Ser-176. Proc. Natl. Acad. Sci. U. S. A. 95, 3792–3797. 

Liu, S.F., and Malik, A.B. (2006). NF-κB activation as a pathological mechanism of septic shock 
and inflammation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 290, L622–L645. 

Liu, T., Zhang, L., Joo, D., and Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal 
Transduct. Target. Ther. 2, 17023. 

Luo, J.-L., Kamata, H., and Karin, M. (2005). IKK/NF-κB signaling: balancing life and death – a 
new approach to cancer therapy. J. Clin. Invest. 115, 2625–2632. 

Malek, S., Huang, D.-B., Huxford, T., Ghosh, S., and Ghosh, G. (2003). X-ray Crystal Structure 
of an IκBβ·NF-κB p65 Homodimer Complex. J. Biol. Chem. 278, 23094–23100. 

Malinin, N.L., Boldin, M.P., Kovalenko, A.V., and Wallach, D. (1997). MAP3K-related kinase 
involved in NF- K B induction by TNF, CD95 and IL-1. Nature 385, 540. 

Mercurio, F., Zhu, H., Murray, B.W., Shevchenko, A., Bennett, B.L., Li, J. wu, Young, D.B., 
Barbosa, M., Mann, M., Manning, A., et al. (1997). IKK-1 and IKK-2: Cytokine-Activated IκB 
Kinases Essential for NF-κB Activation. Science 278, 860–866. 



 

24 

Mitchell, S., Vargas, J., and Hoffmann, A. (2016). Signaling via the NFκB system. Wiley 
Interdiscip. Rev. Syst. Biol. Med. 8, 227–241. 

Monaco, C., and Paleolog, E. (2004). Nuclear factor kappaB: a potential therapeutic target in 
atherosclerosis and thrombosis. Cardiovasc. Res. 61, 671–682. 

Moore, P.A., Ruben, S.M., and Rosen, C.A. (1993). Conservation of transcriptional activation 
functions of the NF-kappa B p50 and p65 subunits in mammalian cells and Saccharomyces 
cerevisiae. Mol. Cell. Biol. 13, 1666–1674. 

Mukherjee, S.P., Behar, M., Birnbaum, H.A., Hoffmann, A., Wright, P.E., and Ghosh, G. (2013). 
Analysis of the RelA:CBP/p300 Interaction Reveals Its Involvement in NF-κB-Driven 
Transcription. PLOS Biol. 11, e1001647. 

Mulero, M.C., Shahabi, S., Ko, M.S., Schiffer, J.M., Huang, D.-B., Wang, V.Y.-F., Amaro, R.E., 
Huxford, T., and Ghosh, G. (2018). Protein Cofactors Are Essential for High-Affinity DNA 
Binding by the Nuclear Factor κB RelA Subunit. Biochemistry 57, 2943–2957. 

Müller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L., and Harrison, S.C. (1995). Structure of the 
NF-κB p50 homodimer bound to DNA. Nature 373, 311–317. 

Muta, T. (2006). IκB-ζ: An Inducible Regulator of Nuclear Factor-κB. In Vitamins & 
Hormones, (Academic Press), pp. 301–316. 

Muta, T., Yamazaki, S., Eto, A., Motoyama, M., and Takeshige, K. (2003). IkappaB-zeta, a new 
anti-inflammatory nuclear protein induced by lipopolysaccharide, is a negative regulator for 
nuclear factor-kappaB. J. Endotoxin Res. 9, 187–191. 

Nakshatri, H., Bhat-Nakshatri, P., Martin, D.A., Goulet, R.J., and Sledge, G.W. (1997). 
Constitutive activation of NF-kappaB during progression of breast cancer to hormone-
independent growth. Mol. Cell. Biol. 17, 3629–3639. 

Nolan, G.P., Ghosh, S., Liou, H.-C., Tempst, P., and Baltimore, D. (1991). DNA binding and 
IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related polypeptide. Cell 64, 961–969. 

O’Dea, E., and Hoffmann, A. (2009). NF-κB signaling. Wiley Interdiscip. Rev. Syst. Biol. Med. 
1, 107–115. 

Ohmori, Y., and Hamilton, T. (1993). Cooperative interaction between interferon (IFN) stimulus 
response element and kappa B sequence motifs controls IFN gamma- and lipopolysaccharide-
stimulated transcription from the murine IP-10 promoter. J. Biol. Chem. 268, 6677–6688. 

Perkins, N.D. (2006). Post-translational modifications regulating the activity and function of the 
nuclear factor kappa B pathway. Oncogene 25, 6717–6730. 

Pomerantz, J.L., and Baltimore, D. (2002). Two Pathways to NF-κB. Mol. Cell 10, 693–695. 



 

25 

Régnier, C.H., Song, H.Y., Gao, X., Goeddel, D.V., Cao, Z., and Rothe, M. (1997). 
Identification and characterization of an IkappaB kinase. Cell 90, 373–383. 

Rennert, P.D., James, D., Mackay, F., Browning, J.L., and Hochman, P.S. (1998). Lymph node 
genesis is induced by signaling through the lymphotoxin beta receptor. Immunity 9, 71–79. 

Roman-Blas, J.A., and Jimenez, S.A. (2006). NF-κB as a potential therapeutic target in 
osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14, 839–848. 

Rothgiesser, K.M., Fey, M., and Hottiger, M.O. (2010). Acetylation of p65 at lysine 314 is 
important for late NF-κB-dependent gene expression. BMC Genomics 11, 22. 

Rudolph, D., Yeh, W.C., Wakeham, A., Rudolph, B., Nallainathan, D., Potter, J., Elia, A.J., and 
Mak, T.W. (2000). Severe liver degeneration and lack of NF-kappaB activation in 
NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862. 

Rushe, M., Silvian, L., Bixler, S., Chen, L.L., Cheung, A., Bowes, S., Cuervo, H., Berkowitz, S., 
Zheng, T., Guckian, K., et al. (2008). Structure of a NEMO/IKK-Associating Domain Reveals 
Architecture of the Interaction Site. Structure 16, 798–808. 

Sarkar, F.H., and Li, Y. (2008). NF-kappaB: a potential target for cancer chemoprevention and 
therapy. Front. Biosci. J. Virtual Libr. 13, 2950–2959. 

Schmitz, M.L., and Baeuerle, P.A. (1991). The p65 subunit is responsible for the strong 
transcription activating potential of NF-kappa B. EMBO J. 10, 3805–3817. 

Sen, R., and Baltimore, D. (1986). Inducibility of κ immunoglobulin enhancer-binding protein 
NF-κB by a posttranslational mechanism. Cell 47, 921–928. 

Senftleben, U., Cao, Y., Xiao, G., Greten, F.R., Krähn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, 
A., Sun, S.C., et al. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-
kappa B signaling pathway. Science 293, 1495–1499. 

Shih, V.F.-S., Tsui, R., Caldwell, A., and Hoffmann, A. (2011). A single NFκB system for both 
canonical and non-canonical signaling. Cell Res. 21, 86–102. 

Shih, V.F.-S., Davis-Turak, J., Macal, M., Huang, J.Q., Ponomarenko, J., Kearns, J.D., Yu, T., 
Fagerlund, R., Asagiri, M., Zuniga, E.I., et al. (2012). Control of RelB during dendritic cell 
activation integrates canonical and noncanonical NF-κB pathways. Nat. Immunol. 13, 1162–
1170. 

Siebenlist, U., Franzoso, G., and Brown, K. (1994). Structure, Regulation and Function of NF-
kappaB. Annu. Rev. Cell Biol. 10, 405–455. 

Siggers, T., Chang, A.B., Teixeira, A., Wong, D., Williams, K.J., Ahmed, B., Ragoussis, J., 
Udalova, I.A., Smale, S.T., and Bulyk, M.L. (2011). Principles of dimer-specific gene regulation 



 

26 

revealed by a comprehensive characterization of NF-κB family DNA binding. Nat. Immunol. 13, 
95. 

Song, H.Y., Régnier, C.H., Kirschning, C.J., Goeddel, D.V., and Rothe, M. (1997). Tumor 
necrosis factor (TNF)-mediated kinase cascades: Bifurcation of Nuclear Factor-κB and c-jun N-
terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. 
Sci. 94, 9792–9796. 

Stanic, A.K., Bezbradica, J.S., Park, J.-J., Matsuki, N., Mora, A.L., Kaer, L.V., Boothby, M.R., 
and Joyce, S. (2004). NF-κB Controls Cell Fate Specification, Survival, and Molecular 
Differentiation of Immunoregulatory Natural T Lymphocytes. J. Immunol. 172, 2265–2273. 

Sun, S.-C. (2011). Non-canonical NF-κB signaling pathway. Cell Res. 21, 71–85. 

Tak, P.P., and Firestein, G.S. (2001). NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 
107, 7–11. 

Thanos, D., and Maniatis, T. (1995). NF-kappa B: a lesson in family values. Cell 80, 529–532. 

Thu, Y.M., and Richmond, A. (2010). NF-κB inducing kinase: a key regulator in the immune 
system and in cancer. Cytokine Growth Factor Rev. 21, 213–226. 

Trinh, D.V., Zhu, N., Farhang, G., Kim, B.J., and Huxford, T. (2008). The nuclear I kappaB 
protein I kappaB zeta specifically binds NF-kappaB p50 homodimers and forms a ternary 
complex on kappaB DNA. J. Mol. Biol. 379, 122–135. 

Truhlar, S.M.E., Torpey, J.W., and Komives, E.A. (2006). Regions of IkappaBalpha that are 
critical for its inhibition of NF-kappaB.DNA interaction fold upon binding to NF-kappaB. Proc. 
Natl. Acad. Sci. U. S. A. 103, 18951–18956. 

Tsui, R., Kearns, J.D., Lynch, C., Vu, D., Ngo, K.A., Basak, S., Ghosh, G., and Hoffmann, A. 
(2015). IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat. 
Commun. 6, 7068. 

Tumang, J.R., Owyang, A., Andjelic, S., Jin, Z., Hardy, R.R., Liou, M.L., and Liou, H.C. (1998). 
c-Rel is essential for B lymphocyte survival and cell cycle progression. Eur. J. Immunol. 28, 
4299–4312. 

Udalova, I.A., Richardson, A., Denys, A., Smith, C., Ackerman, H., Foxwell, B., and 
Kwiatkowski, D. (2000). Functional Consequences of a Polymorphism Affecting NF-κB p50-
p50 Binding to the TNF Promoter Region. Mol. Cell. Biol. 20, 9113–9119. 

Urban, M.B., Schreck, R., and Baeuerle, P.A. (1991). NF-kappa B contacts DNA by a 
heterodimer of the p50 and p65 subunit. EMBO J. 10, 1817–1825. 



 

27 

Verma, I.M., Stevenson, J.K., Schwarz, E.M., Antwerp, D.V., and Miyamoto, S. (1995). Rel/NF-
kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9, 2723–
2735. 

Wan, F., and Lenardo, M.J. (2009). Specification of DNA Binding Activity of NF-κB Proteins. 
Cold Spring Harb. Perspect. Biol. 1, a000067. 

Wan, F., Anderson, D.E., Barnitz, R.A., Snow, A., Bidere, N., Zheng, L., Hegde, V., Lam, L.T., 
Staudt, L.M., Levens, D., et al. (2007). Ribosomal protein S3: a KH domain subunit in NF-
kappaB complexes that mediates selective gene regulation. Cell 131, 927–939. 

Weih, F., and Caamaño, J. (2003). Regulation of secondary lymphoid organ development by the 
nuclear factor-κB signal transduction pathway. Immunol. Rev. 195, 91–105. 

Xia, Y., Shen, S., and Verma, I.M. (2014). NF-κB, an Active Player in Human Cancers. Cancer 
Immunol. Res. 2, 823–830. 

Xiao, G., Harhaj, E.W., and Sun, S.C. (2001). NF-kappaB-inducing kinase regulates the 
processing of NF-kappaB2 p100. Mol. Cell 7, 401–409. 

Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S.T., Weil, R., Agou, F., Kirk, H.E., Kay, R.J., 
and Israël, A. (1998). Complementation Cloning of NEMO, a Component of the IκB Kinase 
Complex Essential for NF-κB Activation. Cell 93, 1231–1240. 

Yilmaz, Z.B. (2003). RelB is required for Peyer’s patch development: differential regulation of 
p52-RelB by lymphotoxin and TNF. EMBO J. 22, 121–130. 

Yin, L., Wu, L., Wesche, H., Arthur, C.D., White, J.M., Goeddel, D.V., and Schreiber, R.D. 
(2001). Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in 
NIK-deficient mice. Science 291, 2162–2165. 

Zabel, U., and Baeuerle, P.A. (1990). Purified human I kappa B can rapidly dissociate the 
complex of the NF-kappa B transcription factor with its cognate DNA. Cell 61, 255–265. 

Zabel, U., Schreck, R., and Baeuerle, P.A. (1991). DNA binding of purified transcription factor 
NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. J. 
Biol. Chem. 266, 252–260. 

Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M., and Karin, M. (1997). The IκB Kinase 
Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for IκB 
Phosphorylation and NF-κB Activation. Cell 91, 243–252. 

Zhang, Q., Didonato, J.A., Karin, M., and McKeithan, T.W. (1994). BCL3 encodes a nuclear 
protein which can alter the subcellular location of NF-kappa B proteins. Mol. Cell. Biol. 14, 
3915–3926. 



 

28 

Zhang, Q., Lenardo, M.J., and Baltimore, D. (2017). 30 Years of NF-κB: A Blossoming of 
Relevance to Human Pathobiology. Cell 168, 37–57. 

Zhao, B., Barrera, L.A., Ersing, I., Willox, B., Schmidt, S.C.S., Greenfeld, H., Zhou, H., Mollo, 
S.B., Shi, T.T., Takasaki, K., et al. (2014). The NF-κB Genomic Landscape in Lymphoblastoid 
B-cells. Cell Rep. 8, 1595–1606. 

Zhong, H., Voll, R.E., and Ghosh, S. (1998). Phosphorylation of NF-κB p65 by PKA Stimulates 
Transcriptional Activity by Promoting a Novel Bivalent Interaction with the Coactivator 
CBP/p300. Mol. Cell 1, 661–671. 

Zhong, H., May, M.J., Jimi, E., and Ghosh, S. (2002). The Phosphorylation Status of Nuclear 
NF-ΚB Determines Its Association with CBP/p300 or HDAC-1. Mol. Cell 9, 625–636. 

 

  



 

29 

 
 
 
 
 
 
 

CHAPTER 2: 
 
 

Dissecting the Regulatory Strategies of NFkB RelA 

Target Genes in the Inflammatory Response  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

30 

ABSTRACT 

NFkB RelA is the potent transcriptional activator of inflammatory response genes. We 

stringently defined a list of direct RelA target genes by integrating physical (ChIPseq) and 

functional (RNAseq in knockouts) datasets. We then dissected each gene’s regulatory strategy by 

testing RelA variants in a novel primary-cell genetic complementation assay. All endogenous 

target genes required that RelA makes DNA-base-specific contacts, and none could be activated 

by the DNA binding domain alone. However, endogenous target genes differed widely in how 

they employ the two transactivation domains. Through model-aided analysis of the dynamic 

timecourse data we reveal gene-specific synergy and redundancy of TA1 and TA2. Given that 

post-translational modifications control TA1 activity and intrinsic affinity for coactivators 

determines TA2 activity, the differential TA logics suggests context-dependent vs. context-

independent control of endogenous RelA-target genes. While some inflammatory initiators 

appear to require co-stimulatory TA1 activation, inflammatory resolvers a part of the NFkB 

RelA core response where TA2 activity mediates activation even when TA1 is inactive. 
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INTRODUCTION 

An impactful concept of molecular biology is the modular domain organization of 

transcription factors (Keegan et al., 1986), typically distinguishing between a DNA-binding 

domain (DBD) and a separable transcriptional activation domain (TAD) that could be fused to a 

heterologous DBD. Prominent mammalian TFs, including NFkB RelA (Schmitz and Baeuerle, 

1991; Schmitz et al., 1994), conform to the modular domain model.  Such studies utilized 

exogenous reporter genes that provided a convenient assay for TF activity. However, they lacked 

the physiological context of endogenous regulatory regions, which may involve complex protein-

protein interactions, and are often considerable distances from the transcription start site.  Indeed, 

subsequent studies provided numerous examples where the functional distinction between DNA 

binding and transcriptional activation did not neatly segregate into distinct structural domains, 

with the DBD providing transcriptional activity (Corton et al., 1998) or, conversely, not being 

required for TF recruitment to the target gene (Kovesdi et al., 1986).  

Given that the regulatory context of endogenous target genes determines a TF’s mode of 

function, next generation TF structure-function studies may be considered probes of the 

regulatory diversity of its endogenous target genes. However, only with the advent of 

quantitative transcriptomic and epigenomic measurement capabilities enabled by Next 

Generation Sequencing has it become feasible to undertake such studies. The present study is 

leveraging such technological development to dissect the regulatory strategies of inflammatory 

response genes that are regulatory targets of NFkB RelA. 

The NFkB family member RelA is a ubiquitously expressed potent transcriptional 

activator that is induced by exposure to pathogens and inflammatory cytokines to activate the 
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expression of a large number inflammatory and immune-response genes (Hayden and Ghosh, 

2008; Hoffmann and Baltimore, 2006). The signaling mechanisms involved in regulating NFkB 

RelA activity have been elucidated in detail (Basak et al., 2012; Mitchell et al., 2016), but there 

is much more uncertainty about how it controls endogenous target genes. Indeed, while many 

genes have been identified to be potentially NFkB regulated (http://www.bu.edu/nf-kb/gene-

resources/target-genes/), there is no database that lists the NFkB target genes in a particular 

physiological condition, defined cell type and stimulus.  

RelA’s domain organization is characterized by the Rel Homology Region (RHR), which 

mediates dimerization and DNA binding functions (Baeuerle and Baltimore, 1989) and was 

structurally characterized by X-ray crystallography (Chen et al., 1998; Chen et al., 2000). 

However, it is possible that for some endogenous target genes, promoter recruitment of RelA is 

mediated primarily by protein-protein interactions, for example via pre-bound CBP (Mukherjee 

et al., 2013). 

RelA’s C-terminus contains two transactivation domains, TA1 and TA2 (Moore et al., 

1993; Schmitz and Baeuerle, 1991). TA1 consists of the last 30 amino acids in sequence in the 

very C-terminus, while TA2 is directly adjacent to TA1. The initial thought of TA1 being the 

principal transactivation domain for RelA transcriptional activity is due to the fact that structural 

features of TA1 domain are highly conserved across species and that it has been shown to be 

sufficient and potent in inducing transcriptional activity (Schmitz and Baeuerle, 1991); however, 

when deleting these residues, the authors showed that the unique C-terminal third of RelA 

contained at least another distinct transcriptional activation domain that is directly adjacent to 

TA1. TA1 consists of an amphipathic helix characteristic of an acidic activation domain. TA2 
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interacts with  CBP/p300, and its structure with the CBP-derived TAZ1 peptide was 

characterized by nuclear magnetic resonance (Mukherjee et al., 2013; Nyqvist et al., 2019). 

However, CBP/p300 was also reported to interact with the RHR via phosphorylated S276 

(Zhong et al., 2002), and knock-in mutations of the S276A or S276E mutation showed complex 

mouse phenotypes and transcriptional defects (Dong et al., 2008). To add to this complexity, it 

also remains possible that trans-activation of some target genes is mediated by other sequences 

within RelA, for example between RHR and TA2/TA1. 

Interestingly, a key difference between TA1 and TA2 is the role of post-translational 

modification.  Unlike TA2, TA1’s conformation is thought to be regulated (Savaryn et al., 2016) 

by phosphorylation of any of 7 potential sites (S529, S535, S536, S543, S547, S550, and S551 in 

human RelA) altering cofactor interactions (Milanovic et al., 2014), and hence transcriptional 

activation potential (Hochrainer et al., 2013).  In particular, S536 is a prominent phospho-

acceptor site (Christian et al., 2016), that is a reliable biomarker for RelA activity. This suggests 

a model in which TA1’s transactivation activity is dependent on a phosphorylation event that 

integrates the activity of other signaling pathways, such as CKII, CaMKIV, RSK1, TAK1/TAB1, 

PI3K/Akt, ATM, and IKKe (Bae et al., 2003; Bao et al., 2010; Bird et al., 1997; Bohuslav et al., 

2004; Buss et al., 2004; Haller et al., 2002; Moreno et al., 2010; Sabatel et al., 2012; Sakurai et 

al., 2003; Wang et al., 2000; Yoboua et al., 2010), whereas TA2’s transactivation potential is 

intrinsic to its biochemical structure. Remarkably, however, it remains unknown whether NFkB 

response genes show differential regulation by TA1 vs. TA2; this is an important question as 

TA2-regulated genes would be expected to provide for a core NFkB-mediated inflammatory 

response, whereas TA1-regulated genes are dependent on other signaling pathways as well. 
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Here, we report the stringent identification of endogenous NFkB target genes induced by 

TNF in primary fibroblasts, and a genetic complementation system for RelA variants to probe 

their regulatory strategies.  We found that all RelA target gene binding was dependent on base-

specific contacts within the kB sequence, and all transactivation was dependent on the two C-

terminal activation domains; neither protein-protein interactions proved sufficient for target gene 

selection, nor was the RHR sufficient to drive transcriptional activation. However, we discovered 

remarkable gene-specific regulatory strategies involving TA1 and TA2. Though most genes were 

regulated by both TA1 and TA2, the two transactivation functioned either redundantly or 

synergistically, forming logical OR or AND gates in a gene-specific manner. While OR gate 

genes were robustly activated by the constitutive TA2 activity, on AND gate genes TA2’s role is 

to boost the PTM-regulated TA1 activity. Thus, our study distinguishes NFkB RelA target genes 

as being largely signaling context independent vs. largely context-dependent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

35 

RESULTS 

Stringent identification of TNF-responsive NFkB RelA target genes  

To identify high-confidence NFkB RelA target genes, we applied two rigorous criteria, 

namely: (i) TNF-induced NFkB/RelA binding to the target gene’s regulatory regions, and (ii) 

TNF-induced transcriptional activation that is genetically NFkB-dependent.  To examine the 

genome-wide binding pattern of NFkB, we performed chromatin immunoprecipitation followed 

by sequencing (ChIP-seq) with RelA-specific antibody during a short time-course of TNF 

stimulation of 0, 0.5hr and 3hr in wild-type (WT) primary murine embryonic fibroblasts (MEFs). 

Bioinformatic analysis of the replicate datasets (FDR<0.01) identified in 9,829 RelA peaks that 

were TNF-inducible at 0.5hr or 3hr (Figure 2.1A). Overall, these ChIP-enriched RelA binding 

events were notably enhanced at 0.5hr and largely remained at 3hr (Figure 2.1B, left panel). We 

identified the locations of these RelA peaks to be 44% intergenic, 21% within promoter regions, 

and 36% within intronic regions of genes (Figure 2.1B, right panel).  Genome browser tracks of 

two known NFkB target genes, Nfkbia and Cxcl10 confirmed easily discernible peaks above a 

low background that are highly inducible in response to TNF and highly reproducible between 

the two datasets (Figure 2.1C). 

To assess the NFkB-dependent transcriptional response to TNF, we performed gene 

expression analysis of nascent transcripts via chromatin-associated RNA-seq (caRNA-seq) in 

WT and crel-/-rela-/- MEF cells (Figure 2.1D).  We chose caRNA-seq analysis rather than polyA+ 

RNA-seq to ensure that we identified transcriptional induction rather than changes in mRNA 

levels mediated by post-transcriptional mechanisms, for example, changes in mRNA half-life.  

Previous work had shown that the absence of RelA can be partially compensated by the NFkB 
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family member cRel (Hoffmann et al., 2003), necessitating the use of the combination knockout 

to assess RelA-dependent gene expression.  Our 1-hour time-course analysis revealed 419 TNF-

inducible genes in WT MEFs whose caRNA levels were more than two-fold induced in WT 

MEFs at any time point after TNF stimulation relative to the unstimulated (0hr) time point 

(Figure 2.1D). Setting the maximum RPKM for each gene to 1 and the basal RPKM in 

unstimulated WT cells to be 0, we plotted data from crel-/-rela-/- MEF cells next to WT data. We 

found that 259 genes had peak expression values that were less than half in the mutant relative to 

WT, and 160 genes showed expression that was more than half, leading us to label the former as 

largely “NFkB-dependent” and the latter largely “NFkB-independent”.  Motif enrichment 

analysis of the regulatory DNA regions associated with transcription start sites using HOMER 

(Heinz et al., 2010) revealed a preponderance of kB sites in the NFkB-dependent genes but no 

highly significant motif for NFkB-independent genes (Figure 2.1E). Focusing on those that are 

protein-coding (229 and 120, respectively), we undertook gene ontology (GO) analysis with 

Enrichr Ontologies (Kuleshov et al., 2016) for over-represented functional pathways in each 

category. We found that the top five most highly enriched GO terms (by p-value) for the NFkB-

dependent genes described the inflammatory response and NFkB activation (Figure 2.1E), 

whereas the NFkB-independent genes did not yield highly significant terms. Line graphs of two 

NFkB-dependent genes, Nfkbia and Cxcl10 (Figure 2.1F) exemplify the high degree of NFkB-

dependence in their TNF-induced expression. 

To develop the list of stringent NFkB RelA-regulated target genes, we intersected the 

above-described physical/binding data (within 10kb of each gene’s transcription start site) and 

the genetic/functional data and further ensured that the nascent transcripts are indeed processed 
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into mature mRNA by performing polyA+ RNA-seq from total RNA isolated from WT MEF 

cells in response to TNF, extending our time course analysis to 3 hours (0.5, 1, and 3 hr time 

points). Selecting for peak fold-change in response to TNF of ≥ 2, an FDR of <0.01, and ≥50% 

NFkB dependence of the maximum value in the time course, we generated a list of 113 

stringently selected NFkB/RelA-regulated target genes (Figure 2.1G). The replicate datasets 

showed a high level of concordance. The corresponding caRNA-seq data (Figure 2.1H) indicates 

that aside from the very early gene group, the timing of peak mRNA abundance may not be 

driven by transcriptional mechanisms, but rather post-transcriptional, such as mRNA processing 

(Pandya-Jones et al., 2013) or mRNA half-life (Hao and Baltimore, 2009). Mapping the RelA 

ChIP-seq data associated with each gene (Figure 2.1I) identified probable RelA binding events 

responsible for gene induction, but did not reveal a correlation between RelA binding location 

and transcriptional induction dynamics.  
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Figure 2.1 Identifying NFkB RelA target genes in the TNF response of murine embryonic 
fibroblasts 
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Figure 2.1 Identifying NFkB RelA target genes in the TNF response of murine embryonic 
fibroblasts. (A) Genome-wide binding of NFkB RelA in wild-type (WT) primary murine 
embryonic fibroblasts (MEF) stimulated with TNF (10ng/mL) at 0.5hr and 3hr by chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) with RelA specific antibody. 9,829 
RelA binding events were identified in two independent replicate experiments. Heatmap shows 
read density along ± 0.5kb of DNA centered around the peak read density for each binding event 
and ordered by high to low read density.  (B) (Left panel) The normalized RelA ChIP-seq density 
over identified peaks within the genome. (Right panel) Pie chart shows where RelA peaks are 
found to be located. (C) Genome browser tracks of two replicates (R1, R2) of RelA binding 
events in WT MEFs for two known NFkB target genes, Nfkbia and Cxcl10. (D) Heatmap of the 
relative induced expression of 419 nascent transcripts measured by via chromatin-associated 
RNA sequencing (caRNA-seq), whose maximal induced expression was ≥ 1 RPKM and ≥ 2 fold 
over basal. Of these 419 genes, 229 genes were protein-coding and NFkB-dependent, as their 
maximal expression was less than 50% in crel-/-rela-/- compared to WT MEF. The heatmap of gene 
expression is ordered by high to low NFkB dependence. (E)  De novo motif and gene ontology 
analyses for NFkB-dependent genes identified the most highly enriched motif (within -1.0 to 
0.3kb of TSS) and GO terms (using Enrichr Ontologies tool (Kuleshov et al., 2016). For NFkB-
independent genes top motifs and GO terms showed substantially less significance. (F) Line 
plots of chromatin-associated RNA (caRNA) abundance (RPKM) for known NFkB target genes 
Nfkbia and Cxcl10 genes. (G) Heatmap of mature mRNA (polyA+RNA) relative induced 
expression (as in D) for 113 NFkB target genes, which were defined by the presence of RelA 
ChIP-seq peak and TNF-inducible NFkB-dependent caRNA expression. Two biological 
replicates of WT MEFs are shown, ordered by their peak time of expression. (H) Heatmap of 
relative induced expression of nascent transcripts determined by caRNA-seq for these 113 
NFkB-dependent genes shown in the same order as in G. (I) A map of 297 RelA-binding peaks 
identified by ChIP-seq for each of the 113 NFkB target genes within ±10kb of TSS, shown in the 
same order as in G and H. 
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An experimental system to dissect regulatory strategies of NFkB RelA target genes  

To characterize the regulatory strategies of NFkB RelA target genes by probing them for 

their requirements of RelA functional domains, we developed an experimental workflow for 

retroviral complementation of RelA-deficient MEF cells with specifically engineered variants of 

RelA, and subsequent transcriptomic analysis in response to TNF. In order to prolong the 

lifespan of primary MEFs (Todaro and Green, 1963), which would otherwise not be amenable 

for such genetic manipulation, we investigated whether we could use MEFs deficient in p53. 

Transcripts induced by TNF, IL-1b, or LPS, revealed similar gene expression patterns between 

two biological replicates of p53-deficient MEFs and their littermate WT control (Figure 2.2A). 

Pairwise comparisons revealed high reproducibility in inducible gene expression between p53-/- 

and WT MEFs at each time point (Figure 2.2B-E ), justifying the use of p53-deficient MEFs for 

studies of inflammatory response genes. 

To develop the primary MEF RelA complementation system, we bred knockout mouse 

strains to produce a strain that is not only deficient in NFkB subunits but also p53, which 

allowed production of primary p53-/-crel-/-rela-/- MEF cells from E12.5 embryos (prior to 

embryonic lethality of this genotype at E13). Following expansion of these cells for about a 

week, we retrovirally transduced them with RelA-WT (Figure 2.3A), selected transduced cells 

with puromycin, and examined complementation by biochemical assays. Immunoblotting 

revealed RelA expression in reconstituted cells at about the same level as WT control MEFs 

(Figure 2.4A). Electrophoretic mobility shift assay (EMSA) with a kB site probe showed strong 

DNA binding activity following TNF stimulation (Figure 2.4B).  
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Figure 2.2 p53 deficiency does not affect TNF-induced gene expression 
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Figure 2.2  p53 deficiency does not affect TNF-induced gene expression. (A) Heatmap 
visualization of upregulated genes in response to IL-1b (10ng/mL), TNF (10ng/mL), or LPS 
(100ng/mL) stimulations at indicated times in WT or p53-/- MEFs. One biological replicate of WT 
and two biological replicates of p53-/- MEFs are shown.  Genes with  ³100 normalized counts in 
at least one condition and an induction  ³4 were sorted into five groups via K-means clustering. 
(B) Scatterplots between significantly up-regulated genes in all genotypes at all time points of 
IL-1β stimulation are plotted, with number of genes and R2 value indicated.  Rows are 0.5, 1, 3 
and 8hr respectively. Columns are p53-/--2 vs. p53-/--1, p53-/--1 vs. WT, and p53-/--2 vs. WT, 
respectively.  We restricted our analysis to genes that were up-regulated by at least 2-fold in one 
of the two conditions compared. (C) Scatterplots between significantly up-regulated genes in all 
genotypes at all time points of LPS stimulations are plotted, with number of genes and R2 value 
indicated. (D) Scatterplots between significantly up-regulated genes in all genotypes at all time 
points of TNF stimulations are plotted, with number of genes and R2 value indicated. (E) 
Summary of correlations between different stimuli conditions where bar plots of the R2 values 
from panels B-D are shown. 
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To further test the genetic complementation system, we examined NFkB RelA binding 

via RelA ChIP-seq using RelA-WT reconstituted MEFs with and without 0.5hr of TNF 

stimulation, on previously identified endogenous NFkB target genes (Figure 2.1G), such as 

Nfkbia and Cxcl10 (Figure 2.3B).   Importantly, we found that RelA binding peaks identified in 

WT MEF control were indeed also present in the reconstituted RelA-WT cells (Figure 2.3C).  

Next, we examined gene expression responses to TNF in reconstituted MEFs stimulated 

with TNF using polyA+ RNA-seq. We found high reproducibility in replicate reconstituted 

MEFs on Nfkbia and Cxcl10 (Figure 2.3D). Extending our analysis to the 113 NFkB target 

genes, a scatter plot analysis demonstrated good correlations in polyA+RNA expression patterns 

between WT MEF control and the reconstituted RelA-WT MEFs at each time point analysis 

(Figure 2.4C). Specifically, we found that 104 genes satisfied the same criteria applied to WT 

and crel-/-rela-/- MEFs, namely TNF fold change over time of ≥2, an FDR of <0.01 and ≥50% 

NFkB dependence of the maximum expression value in the time-course (Figure 2.3E), thereby 

validating the primary MEF complementation system. In sum, our analysis revealed 104 NFkB 

target genes (Supplementary Table 2.1) that showed robust RelA DNA binding and RelA-

dependent TNF-inducible expression at both nascent and mature mRNA transcript level.  
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Figure 2.3 A RelA genetic complementation system for studying the control of endogenous 
NFkB RelA target genes 
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Figure 2.3  A RelA genetic complementation system for studying the control of endogenous 
NFkB RelA target genes.  (A) Schematic of the domain structure of the mouse RelA protein 
(with relevant amino acid numbers) and the primary cells to be complemented, and the  
experimental assays to be performed. (B) Genome browser tracks of RelA binding events on the 
Nfkbia and Cxcl10 genes in WT MEFs and p53-/-crel-/-rela-/- MEFs reconstituted with RelA-WT, 
data from two independent experiments (R1, R2) are shown. (C) Heatmap of the read density 
along ±0.5kb of RelA ChIP-seq peaks following 0.5hr TNF treatment for 104 genes identified as 
NFkB-dependent genes in WT MEFs and p53-/-crel-/-rela-/- MEFs reconstituted with RelA-WT. (D) 
Line plots of polyA+RNA expression (RPKM) of Nfkbia and Cxcl10 genes. (E) Heatmap of 
relative induced expression in reconstituted RelA-WT and Empty Vector (EV) in p53-/-crel-/-rela-/- 
MEFs as determined by polyA+RNA. Two independent experiments are shown. (F) A map of 
the NFkB binding sites (kB DNA sequences) within each of the 223 RelA ChIP-seq peaks 
identified with an FDR <0.01 and associated with the 104 NFkB target genes. Full kB elements 
refer to 9, 10, and 11 bp sequences conforming to the consensus: 5’-GGR(N3-5)YCC-3’, where R 
= A or G; Y = C or T; N = any nucleotide (A, C, G, or T). Half kB elements refer to 5’-GGR-3’ 
and 5’-YCC-3’.  
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Figure 2.4 Retroviral transduction of RelA in p53-/-crel-/-rela-/- MEF provide a suitable 
complementation system for studying NFkB RelA target genes 
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Figure 2.4 Retroviral transduction of RelA in p53-/-crel-/-rela-/- MEF provide a suitable 
complementation system for studying NFkB RelA target genes. (A) Western blotting of RelA 
levels and a-Tubulin as loading control in unstimulated WT MEFs and p53-/-crel-/-rela-/- MEFs 
reconstituted RelA-WT and empty pBABE-puro (EV). (B) Analysis of nuclear NFkB DNA-
binding activity by Electrophoretic Mobility Shift Assay (EMSA) for kB DNA and NF-Y 
(loading control) probes of nuclear extracts prepared at indicated times after TNF stimulation 
from same cells as (B). (C) Scatter plots for all 113 identified genes with polyA+ RNA-seq 
showing their RPKM in log2 for each time point (0, 0.5hr, 1hr, and 3hr) in response to TNF 
between WT MEF cells and p53-/-crel-/-rela-/- MEF reconstituted with RelA-WT. R2 values of 0.69 
to 0.83 are found across all time points and outliers were removed to produce the list of 104 
target genes in subsequent analyses. (D) A map of the NFkB binding sites (kB DNA sequences) 
within each of the 234 RelA ChIP-seq peaks identified with an FDR <0.05 and associated with 
the 104 NFkB target genes. Full kB elements refer to 9, 10, and 11 bp sequences conforming to 
the consensus: 5’-GGR(N3-5)YCC-3’, where R = A or G; Y = C or T; N = any nucleotide (A, C, 
G, or T). Half kB elements refer to 5’-GGR-3’ and 5’-YCC-3’.  (E) Correlation between RelA 
peak size and relative affinity of kB site sequence. Normalized counts of RelA ChIP-seq peaks 
retrieved from RelA ChIP-seq data with RelA-WT expressing MEFs are plotted against PBMA-
determined z-scores of strongest kB binding site sequences for RelA:RelA, RelA:p50, and 
p50:p50 dimer retrieved from (Siggers et al., 2012). 
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All TNF-induced NFkB target genes require that RelA makes base-specific contacts within 

the kB element  

Prior structural and functional studies of NFkB-DNA complexes demonstrated that 

NFkB binds to a variety of kB sites where NFkB recognizes 9 to 11 base pair palindromic kB 

DNA elements to the sequence: 5’-GGR(N3-5YCC)-3’ (Hoffmann et al., 2006). Using this 

information, we identified all kB DNA elements that are associated with all identifiable RelA 

ChIP-seq peaks (Figure 2.1I) for each of the 104 genes (Supplementary Table 2.1). Mapping the 

RelA ChIP-seq data and kB DNA elements associated with each gene within 10kb of their TSS 

(Figure 2.3F), we found kB DNA elements for 223 RelA binding peaks on 104 genes. These 223 

RelA binding events harbor 617 full kB and 12,768 half kB DNA elements with an FDR of 

<0.01. When the FDR is relaxed to <0.05, 234 RelA binding events are identified harboring 663 

full kB and 14,072 half kB DNA elements, and the conclusions are confirmed (Figure 2.4D). 

Overall, we did not observe a correlation between the relative affinity of the kB site sequence 

determined by in vitro protein binding-DNA microarrays (Siggers et al., 2012) and the number of 

reads within a peak (Figure 2.4E).  

To determine whether DNA-base-specific contacts of the RelA protein are in fact 

required for recruiting NFkB to target sites and for activating target genes upon inflammatory 

stimulation, we generated a triple amino acid mutation (R35A, Y36A, and E39A), depicted in 

Figure 2.5A, termed the RelA DNA-binding mutant (RelADB). The mutations abrogate base-

specific contacts within the kB sequence (Figure 2.5B) (Chen et al., 1998a). We retrovirally 

transduced this DNA-binding mutant into primary p53-/-crel-/-rela-/- MEFs and examined NFkB by 
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biochemical assays. Immunoblotting confirmed expression of reconstituted RelADB protein, albeit 

at slightly lower levels (about 75%) than RelA-WT (Figure 2.5C). Co-immunoprecipitation 

confirmed that the RelADB mutant is able to associate with p50 to form dimeric NFkB and to 

interact with p105, IkBa and IkBb to form higher order IkB-NFkB complexes, characteristic of 

latent NFkB in unstimulated cells  (Figure 2.6A). We next assessed the NFkB DNA-binding 

activity via EMSA and found that RelADB showed no kB site-binding activity in response to TNF 

stimulation unlike the RelA-WT control (Figure 2.5D), though immunoblotting of nuclear 

extracts confirmed nuclear presence (Figure 2.6B). In sum, the RelADB mutant does not support 

high affinity NFkB DNA-binding in vitro.  

We next examined NFkB RelA binding in vivo by RelA ChIP-seq. On previously 

identified 9,829 endogenous chromatin sites (Figure 2.1A), RelADB mutant showed dramatically 

diminished TNF-induced RelA binding (Figure 2.5E).  For example, on Nfkbia and Cxcl10 

genes, TNF-induced RelA binding was dramatically reduced (Figure 2.6C). Focusing on the 104 

NFkB target genes (Figure 2.3E), we evaluated every previously identified RelA binding peak 

and found that the vast majority showed a substantial > 2-fold reduction in the RelADB mut 

(Figure 2.5F). Detailed differential RelA ChIP peak analysis (Supplementary Table 2.1) revealed 

that those few RelA peaks that were less affected by the RelADB mutant were generally less 

prominent in wild-type cells (Figure 2.5G), which we interpreted to be indicative of the strong 

contribution of high affinity DNA binding ability. Furthermore, they generally showed poorer 

kB site motifs, as quantified by in vitro protein-DNA microarray studies (Figure 2.5H and Figure 

2.6D). Overall, our analysis reveals that NFkB RelA selects the majority of inflammatory 

response target genes via direct RelA-DNA interactions via base-specific contacts. 
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Figure 2.5 High affinity binding by RelA is required for the TNF-induced expression of all 
NFkB target genes 
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Figure 2.5 High affinity binding by RelA is required for the TNF-induced expression of all 
NFkB target genes. (A) Schematic representation of the targeted mutations in the DNA binding 
mutant of murine RelA (R35A, Y36A, E39A). (B) Schematic of the kB DNA contacts made by 
RelA:p50 NFkB heterodimer, adapted from  (Chen et al., 1998a). The heterodimer structure 
reveals base-specific contacts made by specific amino acids in the RelA protein, indicating the 
critical roles of R35, Y36 and E39.  Arrows denote hydrogen bonds; brown ovals indicate van 
der Waals contacts. (C) Protein expression of RelA, IkBb, IkBa, and Histone 3 as loading 
control, by immunoblotting in unstimulated cells genetically complemented with indicated EV, 
RelA-WT and RelADB. Quantified protein expression is shown on right. (D) Analysis of nuclear 
NFkB activity by EMSA with kB and NF-Y (loading control) probes of nuclear extracts 
prepared at indicated times after TNF stimulation of genetically complemented cells shown in 
(C). *NS is non-specific. The data is representative of two independent experiments. (E) 
Heatmap of RelA peaks at 9,829 locations defined in Figure 2.1A, in genetically complemented 
(RelA WT and RelADB) p53-/-crel-/-rela-/- MEFs in response to 0.5hr of TNF stimulation. (F) A map 
of RelA binding events associated with 104 NFkB target genes indicating whether RelA-binding 
is reduced ≥ 2 fold  in the RelADB mutant (red bar).  (G) Quantification and comparison of RelA 
peaks shown in (F). Averaged normalized counts from two replicates of RelA ChIP-seq 
experiments in RelA-WT or RelADB expressing MEFs are plotted to compare RelA peaks that 
highly dependent on high affinity binding by RelA vs. those that are less dependent.  For each 
category, Mann-Whitney U-test indicates that peaks less dependent on high affinity binding by 
RelA show a lower read count in RelA-WT control cells. (H) Correlation between RelA ChIP-
seq peaks and PBMA-determined z-scores of strongest kB binding site sequences for RelA:p50 
and RelA:RelA dimers retrieved from Siggers et al. Of the 7 10-bp kB site sequences within not-
reduced RelA peaks, 5 with the strongest z-scores were plotted. (I) Heatmap for the 
transcriptional TNF response of the 104 target genes in genetically complemented RelA-WT and 
RelADB cells, analyzed by polyA+RNA-seq.  
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Figure 2.6 High affinity DNA binding by RelA is required for all TNF-induction of NFkB 
target genes 
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Figure 2.6 High affinity DNA binding by RelA is required for all TNF-induction of NFkB 
target genes. (A) RelA DNA binding mutant shows normal interactions with p50, IkB⍺ and 
IkBβ as detected by RelA immunoprecipitation using whole-cell extracts (WCE) from 
unstimulated cells followed by immunoblotting. (B) Nuclear extracts (NE) and cytoplasmic 
extracts (CE) from TNF-stimulated MEFs were analyzed by immunoblotting for antibodies 
against RelA, IkBb, IkBa, p105/p50, p84 (nuclear loading control), and ⍺-Tubulin (cytoplasmic 
loading control). (C) Genome browser tracks of RelA binding events in reconstituted RelA-WT 
and RelADB cells for known NFkB target genes, Nfkbia and Cxcl10, in response to 0.5 hr of TNF 
stimulation. Data is representative of two independent experiments. (D) Correlation between 
RelA peak dependence on RelA’s high DNA affinity and PBMA-determined z-scores of 
strongest kB binding site sequences for p50:p50 dimer retrieved from Siggers et al. Of the seven 
10-bp kB site sequences within not-reduced RelA peaks, the five with the strongest z-scores 
were plotted. (E) Line plots of polyA+RNA-seq data for Nfkbia and Cxcl10 genes shown in 
RPKM in response to TNF at indicated times in WT and RelADB-reconstituted in p53-/-crel-/-rela-/- 
MEFs. (F) Principal Component Analysis (PCA) plot of the 104 NFkB-dependent genes in 
response to TNF at indicated times using log2 of RPKM. (G) Genome browser tracks of RelA 
ChIP-seq for Rrad gene in reconstituted RelA-WT and RelADB mutant cells. 
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Next, we investigated whether the reduced kB recruitment of the DNA binding mutant 

results in a diminished transcriptional response of NFkB target genes.  We performed polyA+ 

RNA-seq in reconstituted MEFs stimulated with TNF over a 3-hour time-course analysis (0.5, 1, 

and 3 hr). Examining the model target genes, Nfkbia and Cxcl10, we found that RelADB mutant 

did not support their gene expression (Figure 2.6E). Extending the analysis to the 104 NFkB 

target genes, we found that the TNF-induced gene expression response was almost entirely 

abolished in the RelADB mutant cells (Figure 2.5I). This is also evident in a principal component 

analysis of the 104 genes (Figure 2.6F) which shows that the transcriptional response of the 

mutant largely overlaps with the empty vector control. Only one gene retained 50% 

transcriptional activation, Rrad (Ras related glycolysis inhibitor and calcium channel regulator). 

Close examination revealed some residual RelA binding within the promoter region (Figure 

2.6G), including a kB binding site at -123 bp (5’-GGGAATCCCC-3’) whose 4G-stretch could 

provide sufficient affinity to heterodimeric NFkB via the p50 binding partner (Cheng et al., 

2011).  

In sum, our analysis showed that for the vast majority of genes the triple amino acid 

mutation abrogates TNF-induced in vivo DNA binding (RelA ChIP data) and target gene 

expression. Our results suggest that RelA target gene selection depends on base-specific 

interactions between RelA and the kB site; our data do not rule out that protein-protein 

interactions with chromatin-bound factors contribute to binding site selectivity, but indicates that 

such interactions do not suffice for the activation of inflammatory response NFkB target genes. 
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All TNF-induced NFkB target genes are regulated by two C-terminal TA domains 

To investigate the role of RelA’s C-terminal region in the transcriptional activation of 

endogenous NFkB target genes, we first generated two truncated variant forms of murine RelA; 

a full truncation of its C-terminal region (deleting amino acids 326-549; D326-549), referred to 

as C-termD, and a deletion specifically of its two TA domains (deleting residues 429-549; D429-

549), referred to as TADD (Figure 2.7A).  

Immunoblotting of reconstituted MEFs showed close to WT expression of the TADD 

mutant but slightly lower levels of RelA, IkBa and IkBb in C-termD mutant (Figure 2.7B).  

Nevertheless NFkB DNA-binding activity was detected by EMSA at comparable levels to that of 

reconstituted RelA-WT controls (Figure 2.7C). Upon stimulation, both mutants showed a normal 

onset of TNF-inducible binding activity of NFkB; however, post-induction repression 

characteristic of TNF-induced NFkB activity was abrogated, indicative of defective negative 

feedback control. Indeed, no TNF-induced Nfkbia mRNA expression was observed in either 

mutant (Figure 2.7D).  

Extending the analysis to RNA-seq data of the 104 NFkB target genes, the PCA plot 

showed that both mutations result in severe deficiency in TNF-induced gene expression response 

(Figure 2.7E), largely equivalent to the EV control. Single gene analysis by heatmap 

visualization confirmed this global picture (Figure 2.7F): none of the 104 genes showed normal 

TNF induction, with only one gene, Slfn2, being induced to about 50% in the TADD mutant.  In 

sum, despite the elevated TNF-induced NFkB activity in these mutant cells (due to deficient 
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negative feedback control), the data indicates that all transcriptional activation functions of 

NFkB require the C-terminal activation domains TA1 and TA2.  

To determine whether NFkB target genes have differential requirements for either TA1 

or TA2, we constructed variants of RelA (Figure 2.8A), a deletion mutant lacking residues 520 to 

549 that define the TA1 (hereafter is referred to as TA1D), a double amino acid mutant L449A 

and F473A, which abrogates the RelA TA2 function of interacting with the TAZ1 domain of 

transcriptional coactivator, CBP/p300 (Mukherjee et al., 2013), referred to as (TA2CI), and a 

double mutant (TA2CITA1D). (Internal deletion of TA2 appeared to disrupt the function of TA1, 

which prompted us to design point mutations within the domain.)  Following reconstitution of 

p53-/-crel-/-rela-/- MEFs, we confirmed that expression levels of RelA variants and the canonical 

IkBs were close to those in RelA-WT control (Figure 2.8B). Further, gel mobility shift analysis 

confirmed that these targeted mutations did not interfere with NFkB dimerization, activation, and 

DNA binding to kB sites upon TNF stimulation (Figure 2.8C).  However, similar to C-termD and 

TADD mutants examined previously we found that NFkB DNA-binding activity was persistent 

over the 3-hour time course indicative of a loss of proper negative feedback control. Indeed, 

TNF-induced Nfkbia mRNA expression was substantially diminished in single mutants and 

abrogated in the double mutant (Figure 2.8D).  
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Figure 2.7 The RelA C-terminal portion is required for TNF induction of all NFkB target genes 
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Figure 2.7 The RelA C-terminal portion is required for TNF induction of all NFkB target 
genes. (A) Schematic illustrates the RelA variants to be tested: RelA C-termD (aa 1-325) and 
RelA TADD (aa 1-428). (B) Protein expression of RelA, IkBb, IkBa, and Actin as loading 
control, in indicated unstimulated cells assayed by immunoblotting. (C) Analysis of nuclear 
NFkB activity by EMSA with kB and NF-Y (loading control) probes of nuclear extracts 
prepared at indicated times after TNF stimulation of genetically complemented cells shown in 
(B). (D) Line plots of mRNA expression for NFkB target genes Nfkbia and Cxcl10 genes in 
response to TNF in same cells. (E) PCA plot of all 104 NFkB target genes in response to TNF in 
same cells. (F) Heatmap of the transcriptional response to TNF of the 104 target genes in same 
cells. Relative induced expression is shown. 
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Figure 2.8 RelA transactivation domains TA1 and TA2 both contribute to the TNF response of 
NF-kB target genes 
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Figure 2.8 RelA transactivation domains TA1 and TA2 both contribute to the TNF 
response of NF-kB target genes. (A) The schematic illustrates the RelA variants to be tested: a 
deletion mutant of TA1, a CBP-interaction mutant of TA2 (TA2CI) and a combination mutant. (B) 
Protein expression of RelA, IkBb, IkBa, and Actin as loading control, in indicated unstimulated 
cells assayed by immunoblotting with antibodies specific to RelA, IkBb, IkBa, and b-Actin. (C) 
Analysis of nuclear NFkB activity by EMSA with kB and NF-Y (loading control) probes of 
nuclear extracts prepared at indicated times after TNF stimulation of genetically complemented 
cells shown in (B). (D) Line plots of mRNA expression for Nfkbia and Cxcl10 genes in response 
to TNF stimulation in same cells. (E) PCA plot of all 104 NFkB target genes in response to TNF 
in same cells. (F) Heatmap of the transcriptional response of the 104 target genes in same cells. 
Relative induced expression is shown. 
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To extend the gene expression analysis to the 104 NFkB target genes, we analyzed RNA-

seq data for all described mutants. PCA revealed that both single mutants showed global 

deficiencies in the TNF-induced gene expression response, while the double mutant appears 

almost entirely deficient in transcriptional activation, akin to the complete TADD mutant (Figure 

2.8E). Interestingly, visualizing the data at single gene resolution in the heatmap format (Figure 

2.8F) revealed subtle differences in the functionality of the mutants that warranted a quantitative 

analysis.  

A model-aided analysis reveals gene-specific logic gates formed by RelA TA1 and TA2  

For each RelA target gene to assess the functional requirements of TA1 and TA2 

quantitatively, we had to address the potentially confounding effect of alterations in the NFkB 

activation time course (Figure 2.8C). We developed a mathematical formalism that considers 

both the measured time courses of mRNA and NFkB DNA-binding activity that drives 

transcription; hence, an ordinary differential equation (ODE) model of RelA-dependent gene 

expression was constructed (Figure 2.9A). The model consists of a single ODE representing the 

rate of change of mRNA that results from NFkB-driven synthesis and mRNA decay (see 

Methods). NFkB-driven mRNA synthesis is a function of the amount of NFkB DNA binding 

activity and the specific activation activity (#$%&)	of the particular RelA variant.   

Given the DNA binding activity measured for each RelA TA mutant, we could identify 

the activation rate (#$%&) for each gene that optimally accounts for the measured mRNA profile 

(Figure 2.9B). Other parameters ()*, ,-.// , #012) were also fit but assumed to be the same for all 

RelA variants, as they represent intrinsic properties of the gene promoter of mRNA. Particle 
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swarm optimization was used to minimize the distance between simulated RNA time courses and 

the measured RNA-seq data for each of the 104 genes and the model was able to recapitulate the 

experimental findings indicating that altered activation strengths associated with each TA mutant 

could explain the altered RNA-seq results (Figure 2.9C). A stringent criterion (ln(dist) < −2.5, 

see Methods) was applied to exclude 28 genes with unsatisfactory fits. For the remaining genes a 

wide range of activation strengths (#$%&) values were identified for the TA1D and TA2CI mutants, 

from ~1 (where TA mutation did not affect gene induction strength relative to RelA-WT) to 0 

(where TA mutation of a single TA domain entirely abrogated gene expression) (Figure 2.9C). 

Our hope for this analysis was to identify differences in relative dependence on TA1 vs. 

TA2 among the 104 RelA target genes, and we found modest specificity: for example 

inflammatory genes Cxcl2, Cd83 and ICAM1 were more TA1-dependent, whereas Pdlim4 (Src 

inhibitor), Gsap (protease) showed a higher degree of TA2-dependence.  However, for many 

genes the optimally parameterized #$%& values for TA1D and TA2CI mutants were correlated 

(Figure 2.9C) with marked differences in the degree of the decrease associated with both mutants 

(Figure 2.9D). For example, Cxcl1, Cxcl2, and Tnf, showed a substantial decrease in 

transcriptional activity with mutating either TA domain (Figure 2.9D and E bottom left), whereas 

Il15ra and Il1rl1 when either TA domain was removed (Figure 2.9D and E top right). On the 

former class of genes, the inability of either TA domain to function effectively on its own 

suggests that TA1 and TA2 function synergistically, whereas on the latter class of genes, they 

seem to function redundantly or independently. Thus, the unexpected conclusion from this 

analysis is that RelA target genes differ whether they impose an AND gate or OR gate logic on 

the two TA domains within RelA.  Given that the activity of TA1 is dependent on the 
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phosphorylation status of serines in its amphipathic helix, an AND vs OR gate logic determines 

distinct regulatory role of TA2: in the latter case, TA2 may be primary driver of transcriptional 

activation, but in the former case, TA2 merely assists or boosts TA1-driven gene activation. 
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Figure 2.9 A math model-aided analysis reveals gene-specific requirements for TA1 and TA2 
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Figure 2.9 A math model-aided analysis reveals gene-specific requirements for TA1 and 
TA2. (A) Schematic of the ordinary differential equation (ODE) used to obtain simulated mRNA 
dynamics from quantified NFkB activity timecourses. (B) Schematic of the Particle Swarm 
Optimization (PSO) pipeline used to quantify activation strengths (#$%&) for TAD mutants. First 
)*, ,-.// , #012 are fit to RelA-WT data with #$%& = 1. The identified parameters are then 
maintained with new #$%& fit for each TAD mutant to obtain remaining activation strength (see 
Methods). (C) experimental (left, RNA-seq) and simulated best-fit mRNA time-course (middle) 
heatmaps, along with identified #$%& for TA2CI (yellow) and TA1Δ (pink). #$%& is shown relative 
to RelA-WT with brighter colors indicating closer activity to RelA-WT (no effect of mutation) 
and white indicating complete loss of activity in the mutant (#$%& = 0). Gray indicated a fit with 
ln(dist) < −2.5 (see methods) was not found. (D) Scatter plot of #$%& for TA2CI and TA1Δ for 76 
genes with good fit in panel C. Center color represents effect of either single mutation (from 
green #$%& = 1 with no change from RelA-WT and redundancy with respect to a single mutation, 
to blue #$%& = 0 where either mutation abrogates gene induction and both domains work 
synergistically to achieve full gene activation). Border color represents off-diagonal effect where 
a gene shows specific loss of induction in TA2CI (pink) or TA1Δ (yellow). Gray lines indicate 
standard deviation of #$%& from 3 repeated runs of optimization pipeline. (E) Bar graphs of #$%& 
(relative to mean RelA-WT #$%&)  for RelA-WT, TA2CI, TA1Δ and TA2CITA1Δ mutants, shown for 
4 example genes arranged to indicate their relative positions in panel D. Error bars indicate 
standard deviation of #$%& from 3 repeated runs of optimization pipeline. 
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A knock-in mouse reveals that regulatory strategies of RelA target genes are generally 

conserved in different cell types but are often stimulus-specific 

The complementation of RelA-deficient primary MEF cells with mutated variants of 

RelA allowed us to study the effects of numerous specific mutations on the TNF-response. To 

dissect regulatory strategies of endogenous target genes in other cell types and in response to 

other stimuli, we engineered a mouse strain that harbors the previously described RelA 

TA2CITA1D variant as a knock-in mutation, termed RelATA (Figure 2.10A). Homozygous RelATA/TA 

mice are not embryonic lethal, unlike RelA-/- mice, but are sickly and smaller than their 

heterozygous littermates (Figure 2.10B), whose genotype was verified by PCR (Figure 2.10C). 

To examine whether RelA target genes showed similar or differential regulatory strategies in 

other cell types and other inflammatory stimuli, we produced an extensive RNA-seq data by 

stimulating wild-type and RelATA/TA primary MEFs and BMDMs with TNF or Toll-Like 4 Receptor 

ligand lipopolysaccharide (LPS).  

We first identified genes that were activated in both MEFs and BMDMs by a stringent 

log2 fold change >2 threshold (Figure 2.11A). We found 37 such genes in response to TNF 

stimulation and 481 in response to LPS (Figure 2.11A). After peak-normalizing the data for each 

gene, we plotted the relative expression data from WT and RelATA/TA MEFs and BMDMs in order 

of induction peak time in WT MEFs and subsequent hierarchical clustering (Figure 2.11B).  We 

found that the majority of gene activation events were diminished in both mutant MEFs and 

BMDMs. We evaluated the phenotype by plotting the percentage of expression in RelATA/TA cells 

relative to the WT peak expression at the same time point for each gene (Figure 2.11C). In MEFs  
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Figure 2.10 Generation of a RelA Transactivation Domain mutant knock-in mouse strain 
 

 
 
 
Figure 2.10 Generation of a RelA Transactivation Domain mutant knock-in mouse strain.  
(A) Schematic of the knock-in strategy, first targeting the RelA gene with a mutant allele 
containing the CI mutation in TA2 and deletion of TA1, as well as a Neo gene that is flanked by 
FRT sites, then deleting Neo with FRT. (B) Confirmation of genotype. PCR product using 
primer set NDEL1B and NDEL2 with genomic DNA from tail DNA isolated from indicated 
pups was used to screen mice. PCR product for wild-type band showed at 273 bp, mutant band at 
371 bp, visualized by 2% agarose gel. Genotyping results for Mouse IDs corresponds to the mice 
in (C). (C) Photo of 12 day-old littermate mice of indicated genotypes (WT, RelATA/-, and 
RelATA/TA) prior to isolation of bone-marrow. 
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Figure 2.11 A knock-in mouse reveals that the dual TAD-requirement pertains to other 
cell-types and stimuli 
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Figure 2.11 A knock-in mouse reveals that the dual TAD-requirement pertains to other 
cell-types and stimuli. (A) Venn diagrams indicating of overlap in induced transcriptional 
response in MEFs and BMDMs. Induced genes satisfy two criteria: log2 fold-change ≥ 2 and max 
RPKM > 1, by polyA+RNA-seq over a 3 hr timecourse analysis. (Left panel)  In response to 
TNF (10ng/mL) 159 genes are induced in WT MEFs and 310 are induced in WT BMDMs. 
(Right panel) In response to LPS (100ng/mL), 939 genes are induced in WT MEFs and 805 
induced genes in WT BMDMs. (B)  Heatmaps of relative expression of induced genes in WT 
and RelATA/TA mutant MEFs or  BMDMs in response to (Left panel) TNF or (Right panel) LPS. 
Gene names and data plotted in heatmaps are listed in Supplementary Table 2.2 and Table 2.3 for 
TNF and LPS, respectively. (C) NFkB dependence of induced genes: percentage of peak 
expression in RelATA/TA mutant vs. WT. (Left panel) Genes induced by TNF in MEFs and BMDMs. 
Gene names and data plotted in heatmap are listed in Supplementary Table 2.4. (Right panel)  
Genes induced by LPS in MEFs and BMDMs. Gene names and data plotted in heatmap are listed 
in Supplementary Table 2.5.  (D) Venn diagrams indicating of overlap in induced transcriptional 
response to TNF and LPS (Left panel) In WT MEFs, 159 genes were induced by TNF and 939 
by LPS.  (Right panel)  In WT BMDMs, 310 genes were induced by TNF and 805 were induced 
by LPS. (E) Heatmaps of relative expression of TNF- vs. LPS-induced genes in WT and RelATA/TA 
mutant (Left panel) MEFs or  (Right panel) BMDMs. Gene names and data plotted in heatmap 
are listed in Supplementary Table 2.6 and Table 2.7 for MEFs and BMDMs, respectively. (F) 
NFkB dependence of induced genes: percentage of peak expression in RelATA/TA mutant vs. WT. 
(Left panel) Genes induced by MEFs by TNF and LPS.  Gene names and data plotted in heatmap 
are listed in Supplementary Table 2.8. (Right panel) Genes induced by BMDMs by TNF and 
LPS. Gene names and data plotted in heatmap are listed in Supplementary Table 2.9. 
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the majority of genes were TA-dependent (28/37), and most of these (25/28) were also TA-

dependent in BMDMs. In response to LPS, the majority of genes were TA-independent in both 

MEFs and BMDMs, given the strong activation of NFkB-independent signaling pathways of 

IRF3/ISGF3 and MAPK p38. However, of the 154 genes that were identified as TA-dependent in 

MEFs, about 90% showed an equivalent degree of TA-dependence in BMDMs. These data 

suggest that regulatory strategies of RelA target genes are generally conserved in different cell 

types when induced by the same stimulus. 

We then asked whether regulatory strategies of NFkB target genes may be stimulus-

specific.  To this end we identified 146 genes that were induced by both TNF and LPS in MEFs 

and 185 that were induced by both stimuli in BMDMs (Figure 2.11D). Heatmap visualization of 

the gene expression timecourses revealed that most genes induced rapidly by TNF peaked later 

in response to LPS (Figure 2.11E left and right panels). Examining their RelA TA-dependence 

by collapsing the data to the peak timepoint, we found that of the 120 MEF genes that were TA-

dependent in response to TNF, only 60% showed an equivalent degree of TA-dependence in 

response to LPS, and 15% were entirely TA-independent (Figure 2.11F left and right panels). 

Similarly, of the 26 genes whose TNF induction was TA-independent half showed TA-

dependence in response to LPS. In BMDMs the lack of equivalence was even more pronounced: 

only 25% showed an equivalent degree of TA-dependence (or independence) in response to TNF 

and LPS, and more than 40% showed entirely opposite regulatory requirements for RelA’s TA 

domains. 

We wondered whether compensation by cRel, which was documented in RelA-/- MEFs 

(Hoffmann et al., 2003), was affecting our results. We thus bred the RelATA knock-in strain to a 
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crel-/- background and produced RNA-seq data from crel-/-RelATA/TA and crel-/- MEFs in response to 

TNF and LPS stimulations. Focusing on the previously mentioned list of 146 genes that were 

found induced by both TNF and LPS in WT MEFs, we found 145 also induced in crel-/- MEF 

controls (Figure 2.12A, only Mmp10 gene did not satisfy the stringent criteria of log2FC >2 and 

max RPKM >1; thus, it was grayed out). Our results with crel-/-RelATA/TA and RelATA/TA MEFs 

demonstrate that the lack of RelA TA-dependence is generally not due to cRel compensation 

(Figure 2.12B).  

In sum, our transcriptomic analysis using newly developed RelATA/TA mice revealed that 

regulatory strategies of RelA target genes were generally conserved between MEFs and BMDMs 

when the same stimulus was used, but that in either cell type, RelA TA dependence observed in 

response to TNF was not well correlated with dependence in response to LPS. These data 

indicate that many NFkB target genes engage differential regulatory strategies to different 

stimuli, consistent with the notion that RelA transactivation activity may integrate signaling 

pathways that are triggered by some stimuli but not others. 
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Figure 12.12 Lack of RelA-TAD-dependence in the transcriptional response of MEFs to TNF or 
LPS is not due to cRel compensation  

 
 
 
Figure 2.12 Lack of RelA-TAD-dependence in the transcriptional response of MEFs to 
TNF or LPS is not due to cRel compensation. (A) Heatmaps of the transcriptional response 
146 genes that are induced in cRel-/- MEFs in response to TNF and LPS. Shown is the relative 
expression in cRel-/- and cRel-/-RelATA/TA mutant MEFs in response to (Left panel) TNF or (Right 
panel) LPS. Gene names and data plotted in heatmap are listed in Supplementary Table 2.10. (B) 
NFkB dependence of TNF- and LPS-induced genes in MEFs: percentage of peak expression in 
(Left panel)  RelATA/TA mutant vs. WT, and (Right panel)  cRel-/-RelATA/TA mutant vs. WT.  Gene 
names and data plotted in heatmap are listed in Supplementary Table 2.8. 
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SUPPLEMENTARY TABLES 

Supplementary Table 2.1 List of RelA binding locations and TNF-induced gene expression 

for 104 NFkB target genes. The table shows all identifiable RelA-binding peaks and their 

associated kB DNA elements for each of the 104 NFkB target genes, from -10kb to gene TSS and 

to +10kb downstream of gene TSS.  

 
Column A: Genomic location of each RelA ChIP-seq peak.  
Column B: Distance from gene TSS for start of RelA peak.  
Column C: Distance from gene TSS for end of RelA peak.  
Column D: Gene coding strand direction (-1 refers to antisense or negative strand, 1 refers to sense 
or positive strand).  
Column E: each kB sequence respective to its RelA ChIP-seq peak.  
Column F: Genomic location of each kB sequence relative to gene TSS 
Column G: ChIP-seq score for RelA peak in reconstituted RelA-WT (Figure 2.3 and Figure 2.5).  
Column H: ChIP-seq score for RelA peak in reconstituted RelADB mutant (Figure 2.5).  
Column I: Ratio of RelA ChIP-seq score (RelADB mutant over RelA-WT).  
Column J: RelA ChIP-seq peak classification based on results in Column I (not_reduced is defined 
by ratio of RelADB mutant over RelA-WT ≥0.5 and reduced is if ratio of RelADB mutant over RelA-
WT <0.5).  
Column K: Percentage of dependence on NFkB based on nascent transcript expression, analyzed 
by caRNA-seq in WT vs crel-/-rela-/- MEFs stimulated with TNF.  
Column L: Fold-induction (Log2) of nascent transcript expression (caRNA-seq) in response to TNF 
in WT MEFs. Peak expression in WT divide by its unstimulated condition.   
Column M: Mean of fold-induction (Log2) of mRNA, analyzed by polyA+RNA-seq in WT MEFs 
stimulated with TNF.  
Column N: Ensemble Gene ID for each gene annotated with biomaRt (R).  
Column O: Gene symbol. 
Column P: Description of Gene. 
 

Supplementary Table 2.2  

The table contains the relative expression data plotted in heatmap visualized in Figure 2.11B. 37 

genes were found upregulated in both WT MEFs and BMDMs in response to TNF stimulation 

by a stringent log2 fold change >2 threshold. For each gene, relative expression data in WT or 
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RelATA/TA MEFs and BMDMs were plotted by peak-normalizing the data in order of the time point 

of peak induction in their respective WT control (see Materials and Methods) and subsequent 

hierarchical clustering was performed within each peak timing of induction. Of note, averaged 

RPKMs from WT and RelATA/TA MEFs data (from two replicate) were used to calculate relative 

expression for each gene. Same ordering of genes were plotted in WT and RelATA/TA BMDMs data. 

Scale of 0 to 1; 0 corresponds to no inducible expression and 1 corresponds to similar expression 

in WT control, respectively. 

 
Supplementary Table 2.3:  

The table contains the relative expression data plotted in heatmap visualized in Figure 2.11B. 481 

genes were found upregulated in both WT MEFs and BMDMs in response to LPS stimulation by 

a stringent Log2 fold change >2 threshold. For each gene, relative expression data in WT or RelATA/TA 

MEFs and BMDMs were plotted by peak-normalizing the data in order of the time point of peak 

induction in their respective WT control and subsequent hierarchical clustering was performed 

within each peak timing of induction. Same ordering of genes were plotted in WT and RelATA/TA 

BMDMs data. Scale of 0 to 1; 0 corresponds to no inducible expression and 1 corresponds to 

similar expression in WT control, respectively. 

 
Supplementary Table 2.4:  

The table contains the percentage of expression data for the 37 TNF-responsive genes in RelATA/TA 

MEFs and BMDMs that were plotted in Figure 2.11C heatmap. For each gene in response to TNF 

stimulation, averaged percentage of expression data (from two replicate) in RelATA/TA MEFs and 

BMDMs (1 replicate) relative to their respective WT peak expression at the same time point were 
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plotted. Same ordering of genes were plotted for percentage of expression data in WT and RelATA/TA 

BMDMs. For heatmap visualization, these genes were first identified by their TA-dependence 

relative to WT MEFs (<50% referred to as TA-dependent and ³50% referred to as TA-

independent). Within each category, genes were furthered ordered by their TA-dependence found 

in BMDM data. Scale of 0 to 100 corresponds to no expression and 100 is similar expression to 

WT control, respectively.  

 
Supplementary Table 2.5:  

This table contains the percentage of expression data for the 481 LPS-responsive genes in RelATA/TA 

MEFs and BMDMs that were plotted in Figure 2.11C heatmap. For each gene, percentage of 

expression in RelATA/TA MEFs and BMDMs relative to their respective WT peak expression at the 

same time point were calculated. For heatmap visualization, these genes were first identified by 

their TA-dependence relative to WT MEFs (<50% referred to as TA-dependent and ³50% referred 

to as TA-independent). Within each category, genes were furthered ordered by their TA-

dependence found in BMDM data. Scale of 0 to 100 corresponds to no expression and 100 is 

similar expression to WT control, respectively.  

 
Supplementary Table 2.6: 

The table contains the relative expression data for 146 genes induced in WT and RelATA/TA MEFs by 

TNF and LPS stimulation found by a stringent log2 fold change >2 threshold that were plotted in 

Figure 2.11E (left panel) heatmap. For each gene, relative expression data in WT and RelATA/TA MEFs 

in response to either TNF or LPS stimulation were calculated. Of note, averaged RPKMs from WT 

and RelATA/TA MEFs data (from two replicate) in response to TNF were used to calculate relative 
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expression for each gene. Ordering of gene list is based on TNF-stimulated data in WT and same 

ordering of genes (from top to bottom of heatmap and table) were shown for LPS-stimulated data. 

Scale of 0 to 1; 0 corresponds to no inducible expression and 1 corresponds to similar expression 

in WT control, respectively. 

 
Supplementary Table 2.7: 

The table shows the relative expression data for 185 genes induced in BMDMs by TNF and LPS 

stimulation identified in WT BMDMs data. Heatmap visualization of this data in WT and RelATA/TA 

BMDMs is shown in Figure 2.11E (right panel) heatmap. For each gene, relative expression data 

in WT and RelATA/TA BMDMs in response to either TNF or LPS stimulation were calculated. 

Ordering of gene list is based on TNF-stimulated data in WT and same ordering of genes (from 

top to bottom of heatmap) were shown for LPS-stimulated data. Scale of 0 to 1; 0 corresponds to 

no inducible expression and 1 corresponds to similar expression in WT control, respectively. 

 
Supplementary Table 2.8:  

The table shows the percentage of expression data for the 146 upregulated genes in RelATA/TA and 

146 genes in crel-/-RelATA/TA MEFs in response to TNF and LPS stimulation, visualized in Figure 

2.11F and Figure 2.12B, respectively. These heatmaps represent the degree of RelA TAD 

dependence by evaluating the phenotype of RelATA/TA and crel-/-RelATA/TA mice. For each gene, 

percentage of expression data in RelATA/TA or crel-/-RelATA/TA relative to their respective WT  or crel-/- 

peak expression at the same time point. Scale of 0 to 100 corresponds to no expression and 100 is 

similar expression to WT or crel-/- control, respectively.  
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Supplementary Table 2.9:  

The table shows the percentage of expression data for the 185 upregulated genes in RelATA/TA 

BMDMs in response to TNF and LPS stimulation, visualized in Figure 2.11F (right panel). These 

heatmaps represent the degree of RelA TAD dependence by evaluating the phenotype of RelATA/TA 

mice. For each gene, percentage of expression data in RelATA/TA BMDMs relative to their respective 

WT peak expression at the same time point. Scale of 0 to 100 corresponds to no expression and 

100 is similar expression to WT control, respectively.  

 
Supplementary Table 2.10: 

The table shows the relative expression data for 146 genes induced in crel-/- and crel-/-RelATA/TA MEFs 

by TNF and LPS stimulation. Heatmap visualization of these genes in crel-/- and crel-/-RelATA/TA MEFs 

are visualized in Figure 2.12A. Of note, Mmp10 gene is included in this gene list to preserve the 

ordering of genes as in WT MEFs control; however, the gene did not satisfy the stringent criteria 

of log2FC >2 and max RPKM >1 in crel-/- and crel-/-RelATA/TA MEFs and thus, “NA” was filled in for 

the data. Only 145 genes were also induced in crel-/- MEF controls and was plotted in Figure 2.12A 

(left panels).   
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MATERIALS AND METHODS 

Reagents  

For cell stimulations we used 10ng/mL mouse TNF (R&D Systems # 410-MT), 

100ng/mL LPS (Sigma, B5:055), and 10ng/mL mouse IL-1b (R&D Systems, catalog #401-ML-

CF) to stimulate cells. pBABE-puro plasmid vector is commercially available through Addgene 

cat #1764. Antibodies used for western blotting were specific for RelA (Santa Cruz 

Biotechnology, sc-372, sc-109), IkBa (Santa Cruz Biotechnology, sc-371), IkBb (Santa Cruz 

Biotechnology, sc-945), p50 (BioBharati LifeScience #BB-AB0080), a-Tubulin (Santa Cruz 

Biotechnology, sc-5286), b-actin (Santa Cruz Biotechnology, sc-1615), Histone 3 (Abcam, 

#ab1791), and p84 (Abcam, #ab131268). 

 

Construction of Mutant RelA Plasmids  

The pBABE-puro plasmid vector containing RelA was constructed by ligating the 

polymerase chain reaction (PCR) amplified coding region of murine RelA (amino acids 1 to 549) 

restricted with EcoRI and SalI. Agilent QuikChange II Site-Directed Mutagenesis Kit (Agilent 

Technologies) was used for all RelA point mutation and deletion variants. DNA binding mutant 

(RelADB) within amino-terminal were mutated by a triple substitution at residues Arg35, Tyr36, 

and Glu39 to Ala (R35A, Y36A, R39A). Mutagenesis of the carboxyl-terminal region for C-

termD, TADD, and TA1D were performed by displacing residues Pro326, Ala429, and Ser520, 

respectively, with a STOP codon sequence. All site-specific mutations were verified by Sanger 
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sequencing analysis and sequencing analyses of the resulting RelA mutants showed that the 

targeted sites were the only changes in the DNA sequence. 

 

Cell Culture  

Wild-type or mutant primary MEFs were generated from E11.5-13.5  embryos and 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% bovine calf 

serum (BCS), 1% penicillin-streptomycin and 1% L-Glutamine. BMDMs were made through the 

isolation of 5 x 106 bone marrow cells from mouse femurs of WT or RelATA/TA C57BL/6 mice 

following red blood cell lysis and seven-day culture with 30% L929-conditioned medium.  

 

Genetic Complementation of MEFs  

For transfection, Platinum-E (Plat-E) retroviral packaging cell line (Morita et al., 2000), a 

modified cell line derived from HEK-293T, were plated on 10-cm plates 16-hr the day before 

transfection at 50% confluent in DMEM supplemented with 10% fetal calf serum, 1% penicillin-

streptomycin and 1% L-Glutamine. Cells were transfected using 300µL of Opti-MEM medium 

(ThermoFisher Scientific) and polyethylenimine (PEI; 1µg/µL in 1xPBS pH4.5, Polysciences 

#23966-2) with 7µg of retroviral construct DNA, pBABE-puro EV control or RelA expressing 

constructs (4:1 ratio of PEI (µL):plasmid DNA (µg)). Transfection complex (Opti-MEM 

medium, PEI reagent, plasmid DNA) were incubated for 20-min at room temperature then added 

drop-wise to Plat-E cells for 6 hours. Transfected media was replaced with fresh DMEM media 

containing 10% fetal calf serum, 1% penicillin-streptomycin and 1% L-Glutamine. Cells were 

further incubated for a total of 48-hr post-transfection and prior to collecting viruses. Viruses-
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containing supernatant were filtered through a 0.45 µm filter and used to infect p53-/-crel-/-rela-/- 

MEFs with the addition of 4µg/mL Polybrene. 48-hr post-infection of cells with viruses the 

stably transduced cells were selected with 2µg/mL puromycin for a total of 72 hours. Post 

selection with puromycin, puromycin-containing medium is removed and cells are passaged 

twice for recovery prior to being expanded in culture for experiments. pBABE-puro empty 

vector without the RelA gene fragment is used as a negative control, to maintain a stable 

retrovirally transduced RelA knockout cell line, meanwhile pBABE-puro containing full-length 

RelA (RelA-WT) is used as a positive RelA cell line control. 

 

Western Blotting  

For whole cell extracts, 3 x 106 cells were lysed with RIPA buffer containing 1mM PMSF 

and 1mM DTT followed by lysing with 1x SDS-PAGE sample buffer containing 5% b-

mercaptoethanol. Cell lysates were separated by SDS-PAGE and subjected to western blotting.  

Nuclear and cytoplasmic extracts were performed with standard methods as described previously 

(Hoffmann et al, 2002; Werner et al, 2005). Western blots were probed with antibodies against 

RelA (Santa Cruz Biotechnology, sc-372), RelA (Santa Cruz Biotechnology, sc-109), IkBa 

(Santa Cruz Biotechnology, sc-371), IkBb (Santa Cruz Biotechnology, sc-945), p50 (BioBharati 

LifeScience #BB-AB0080), a-Tubulin (Santa Cruz Biotechnology, sc-5286), b-actin (Santa 

Cruz Biotechnology, sc-1615), Histone 3 (Abcam, #ab1791), p84 (Abcam, #ab131268).  
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Electrophoretic Mobility Shift Assay (EMSA) 

EMSA was carried out with standard methods as described previously (Hoffmann et al, 

2002; Werner et al, 2005). In brief, 2.5µL total normalized nuclear extracts were incubated for 

15-min with 0.01pmol of P32-labeled 38bp double-stranded oligonucleotide containing two 

consensus kB sites (5’-GCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGG-3’; or 

with NF-Y loading control (5′-GATTTTTTCCTGATTGGTTAAA-3′ ; 5’-

ACTTTTAACCAATCAGGAAAAA-3’) in binding buffer [10mM Tris-Cl (pH 7.5), 50mM 

NaCl, 10% glycerol, 1% NP-40, 1mM EDTA, 0.1mg/mL Poly(deoxyinosinic-deoxycytidylic)], 

in a final reaction of 6µL. The reaction mixtures were run on a non-denaturing 5% acrylamide 

(30:0.8) gel containing 5% glycerol and 1X TGE buffer [24.8mM Tris, 190 mM glycine, 1mM 

EDTA] at 200 volts for 2 hours. The gel was visualized by Typhoon Scanner (GE Healthcare 

Life Sciences), in which the NF-Y loading control gel was used to normalize for loading 

variability.  

 

Immunoprecipitation 

Whole cell extracts (WCE) were lysed with RIPA buffer containing 1mM PMSF and 

1mM DTT. Anti-RelA antibody (Santa Cruz Biotechnology, sc-372G) was conjugated to 

prewashed magnetic protein-G beads (Life Technologies Dynabeads) for 30-min at room 

temperature followed by addition unstimulated WCE in RIPA buffer containing 1mM PMSF and 

1mM DTT  and incubation overnight (~ 16-hr). The beads were then washed thoroughly with 1X 

TBS-T buffer and IP samples were eluted with 1X SDS-sample buffer containing 5% b-
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mercaptoethanol. Samples were resolved on SDS-PAGE and western blotting with antibodies 

specific for anti-RelA, anti-IkBa, anti-IkBb, and anti-p50. 

 

RNA Isolation and Sequencing (RNA-seq)  

MEF cells at ~80% confluence were serum-starved by overnight incubation in 

Dulbecco’s Modified Eagle’s Medium supplemented with 0.5% bovine calf serum (BCS), 1% 

penicillin-streptomycin and 1% L-Glutamine prior to stimulation. For chromatin-associated 

RNA-seq (caRNA-seq), nascent RNA transcripts were prepared from the chromatin fraction 

(Tong et al., 2016) using TRIzol according to the manufacturer’s instruction (Life Technologies) 

and purified using Direct-zol RNA Microprep Kit (Zymo Research cat#R2060). RNA libraries 

were prepared from ribo-depleted using KAPA Stranded RNA-Seq Kit with RiboErase (KAPA 

Biosystems, cat#KK8483) with 400ng of starting total RNA material. For polyA+RNA-seq 

analysis, total RNA was isolated with the Qiagen RNeasy Mini Kit according to the 

manufacturer’s instructions, quantified using Epoch Spectrophotometer System (Biotek), and 

purified from 1µg of starting total RNA material using oligo (dT) magnetic beads before 

fragmenting at high temperature with divalent cations. Complementary DNA libraries were 

generated using KAPA Stranded mRNA-Seq Kit (KAPA Biosystems, cat#KK8421), and 

quantitation was performed using Qubit 2.0 fluorometer using dsDNA BR assay kit #Q32853. 

Sequencing was performed on Illumina HiSeq 2000 and HiSeq 4000 with single-end 50-bp 

sequencing, according to manufacturer’s recommendations and prepared by Broad Stem Cell 

Research Center core facility at the University of California, Los Angeles.   
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RNA-seq Data Analysis 

Reads were aligned with STAR to Gencode mouse mm10 genome and RefSeq genes and 

featureCounts were used to obtain aligned raw counts. Only uniquely mapped reads with a 

mapping quality score of ³20 were kept for further analysis, using samtools. Read counts were 

normalized for library size and transcript length by conversion to RPKM and gene below the 

maximum RPKM <1 were excluded from downstream analysis. DESeq2 was used identify 

induced genes for subsequent analysis using the following criteria: ³2-fold increase in expression 

at any one time point over basal with FDR threshold of 0.01. Principal components were 

calculated with prcomp package and plotted with ggplot. caRNA-seq and polyA+RNA-seq 

heatmaps were plotted using pheatmap package. HOMER (Heinz et al., 2010) was used to assess 

for enrichment of de novo and known transcription factor binding motifs for NFkB dependent 

genes with promoter sequences 1 kb upstream and 0.3 kb downstream of the transcription start 

site. An in-depth description of this software can be found at homer.ucsd/edu/homer. Gene 

ontology analysis in biological processes for NFkB target genes were performed using Enrichr 

(Chen et al., 2013; Kuleshov et al., 2016). The 5 most enriched GO terms were selected for 

NFkB-dependent genes. 

 

Chromatin Immunoprecipitation and Sequencing (ChIP-seq) 

MEF cells (8 x 106 cells per plate) were serum-starved overnight with 0.5% BCS medium, 

then stimulated with 10ng/mL TNF at indicated time points. For ChIP, cells were double cross-

linked with 100mM disuccinimidyl glutarate/PBS solution (DSG, ThermoFisher Scientific 

#20593) for 30-min followed by 1% methanol-free Formaldehye/PBS solution (ThermoFisher 
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Scientific #28908) for 15-min. Cross-linked cells were quenched with 125mM Glycine for 5 min 

and washed twicewith cold PBS followed by snap freezing with dry ice. The cell pellets were 

thawed and lysed in Lysis Buffer 1, on ice. Cells were briefly sonicated with Diagenode 

Bioruptor 300 sonication system (medium power, 15 sec ON/15 sec OFF, 2 cycles) in Diagenode 

1.5mL TPX microtubes (100µl-max 300 µl/tube). After centrifugation, cell pellets were lysed in 

Lysis Buffer 2 and incubated for 10 min at room temperature. Following centrifugation, cell 

nuclear pellets were lysed in Lysis Buffer 3. Nuclear lysates were sonicated with Diagenode 

Bioruptor 300 sonication system (low power, 30 sec ON/30 sec OFF, 12 cycles) in Diagenode 

1.5mL TPX microtubes. Sonication was stopped every 4 cycles for incubation on ice for 1 min, 

gentle inversion and pulse-spin. Sonicated nuclear supernatant containing DNA fragments were 

consolidated with the same sample into a single 1.5 mL polypropelene tube. The lysates were 

centrifuged at max speed for 10 min at 4ºC. The supernatants were transferred to 2 mL no-stick 

microtubes (Phenix Research cat# MH-820S) with 3 volumes of Dilution buffer and 5µg anti-

RelA antibody (Santa Cruz Biotechnology, sc-372), incubated overnight at 4ºC. Next day, 

antibody-chromatin complexes were incubated with 30µL magnetic protein G beads (Life 

Technologies Dynabeads protein G #1004D) for 5 hours at 4ºC. Chromatin-immunoprecipitates 

were washed 3 times (4 min wash at 4ºC) with each of the following buffer in this order: low-salt 

wash buffer, high-salt wash buffer, LiCl buffer, and TE buffer. ChIP DNA was eluted in elution 

buffer overnight at 65ºC. 1% inputs and ChIP DNA fragments were subjected to reverse cross-

linking, RNase A digestion (50µg), Proteinase K digestion (50µg), and purification with 

AMPure XP beads (Beckman Coulter). Input DNA samples were quantified with dsDNA BR 

assay kit #Q32853, and ChIP DNA samples were quantified with dsDNA HS assay kit 
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(Q32854).  Quantitation was performed using Qubit 2.0 fluorometer. ChIP-Seq DNA libraries 

were prepared from 5ng of Inputs or ChIP DNA using NEBNext Ultra DNA Library Prep Kit for 

Illumina (New England BioLabs, # E7370L).  

ChIP Buffer composition 

Lysis Buffer 1: 50mM HEPES-KOH (pH 7.6), 140mM NaCl, 1mM EDTA, 10% Glyercol, 0.5% 

NP-40, 0.25% Triton X-100 [with freshly added 1X EDTA-free protease inhibitors]. 

Lysis Buffer 2: 10mM Tris-Cl (pH 8.0), 200mM NaCl, 1mM EDTA, 0.5mM EGTA [with 

freshly added 1X EDTA-free protease inhibitors]. 

Lysis Buffer 3: 10mM Tris-Hcl (pH 8.0), 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na 

Deoxycholate, 0.5% N-lauroylsarcosine sodium salt, 0.2% SDS [with freshly added 1X EDTA-

free protease inhibitors]. 

Dilution Buffer: 10mM Tris-Cl (pH 8.0), 160mM NaCl, 1mM EDTA, 0.01% SDS, 1.2% Triton 

X-100 [with freshly added 1X EDTA-free protease inhibitors]. 

Low Salt Wash Buffer: 50mM HEPES-KOH (pH 7.6), 140mM NaCl, 1mM EDTA, 1% Triton 

X-100, 0.1% Na Deoxycholate, 0.1% SDS [with freshly added 0.5X EDTA-free protease 

inhibitors]. 

High Salt Wash Buffer: 50mM HEPES-KOH (pH 7.6), 500mM NaCl, 1mM EDTA, 1% Triton 

X-100, 0.1% Na Deoxycholate, 0.1% SDS [with freshly added 0.5X EDTA-free protease 

inhibitors]. 

LiCl Buffer: 20mM Tris-HCl (pH 8.0), 250mM LiCl, 1mM EDTA, 0.5% Na Deoxycholate, 

0.5% NP-40 

TE Buffer: 10mM Tris-HCl (pH 8.0), 1mM EDTA 
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Elution Buffer: 10mM Tris-HCl (pH 8.0), 1mM EDTA, 1% SDS 

 

ChIP-seq Data Analysis  

Sequencing reads were aligned to the mouse mm10 genome and RefSeq genes using 

Bowtie 2 (Langmead and Salzberg, 2012) and filtered using Samtools. Uniquely mapped reads 

were used to identify peaks for each sample individually with MACS2 version 2.1.0 using 

default settings except for FDR of 0.01. Differential RelA binding events were plotted as 

heatmap using plotHeatmap from deepTools (Ramírez et al., 2016). ChIP-seq peak annotation 

for genomic locations were plotted as pie chart using ChIPseeker (Yu et al., 2015). For mapping 

of kB elements to NFkB target genes,  any TNF-inducible RelA ChIP-seq peaks within ±10kb 

from gene TSS  were annotated to kB elements (unique half and full kB DNA sequences were 

annotated within the mm10 genome) and were mapped to each RelA ChIP-seq peak centered at 

500bp window (±250bp from each peak of  kB sequence) on every gene using Bedtools 

intersect. Full-length kB elements were defined by the consensus sequence 

5’GGRNNNNNYCC-3’ for unique 9, 10, or 11bp DNA sequence; where R is a A or G, Y is a T 

or C, and N is any nucleotide. kB half sites were defined by the consensus sequence 5’GGR or 

YCC-3’ DNA sequence. kB motifs were extracted from UCSC mm10 genome using Biostrings 

and BSgenome packages. Mapping of kB motifs and RelA ChIP-seq peaks were visualized by 

ggplot2 geom_segment. Scatter plots and box plots of RelA ChIP-seq data were visualized by 

ggplot. Wilcox.test function in R was used to find the statistical significance of reduced vs non-

reduced RelA peaks (Mann-Whitney U-test). Integrative Genomics Viewer (IGV) was used to 

acquire RelA ChIP-seq tracks for example genes (Robinson et al., 2011). 
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Computational Modeling  

An ODE model was constructed representing the rate of change of mRNA for each gene.  

>RNA
>? = #$%& ∙ RelA&

A

)*A + RelA&
A −	#012 ∙ RelA	 

	 

RelA is a time-dependent variable obtained by quantifying RelA DNA-binding activity from 

EMSA and linearly interpolating between discrete timepoints. Basal mRNA for a given 

parameter set was obtained by analytically solving the ODE with RelA fixed at the basal value:  

RNAC =
#$%& ∙ RelAC

A

#012 	 ∙ ()*A + RelAC
A) 

Induced time-course response was obtained using ode23s in MATLAB (The MathWorks, Inc.). 

The distance between experimental and modeled mRNA time courses was quantified using a 

combination of Pearson correlation and MSE to take into account both dynamics and absolute 

values (dist = (1 − Pearson) + MSE). As )*, ,-.// , #012 are assumed to be gene-specific 

properties, unaffected by TAD mutations these were first fit to WT data using particle swarm 

optimization (PSO)_ to minimize the distance between modelled mRNA time-course and 

measured RNA-seq (50 particles, terminating at either 100 epochs or distance below 0.001). As 

the RNA-seq time-course did not capture a decrease in mRNA levels for late-induced genes,  

#012 could not be fit but was assumed to be equivalent to an 8 hour half-life. Following the fit to 

the WT data )*, ,-.// , #012 were fixed for data from mutant cells and a new #$%& was obtained 

for each TAD mutation using the same optimization approach. 
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Animal Use 

Wild-type and gene-deficient C57BL/6 mice were maintained in specific pathogen-free 

condition at the University of California, Los Angeles. The animal protocol for this study were 

approved by the Institutional Animal Care and Use Committee and by the University of 

California, Los Angeles Division of Laboratory Animal Medicine. Targeted Neo deleted RelA 

transactivation domain heterozygous knock-in mutant mice were generated by ingenious 

Technology Lab (iTL, www.genetargeting.com). 

 

Data Availability 

All sequencing data presented in this publication have been deposited to the NCBI Gene 

Expression Omnibus (GEO) and accessible under SuperSeries accession number GSE132540, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132540. 
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In Chapter 2 of this dissertation, we focused on the RelA subunit of the transcription factor 

NFkB. We revealed gene-specific regulatory strategies of endogenous RelA target genes in 

primary cells by probing their stimulus-induced expression with engineered RelA variants. We 

stringently identified target genes by both functional and physical binding criteria. We developed 

an experimental system to test mutational variants in primary cells, and systematically analyzed 

both chromatin DNA recruitment and transcriptional trans-activation at single gene resolution. A 

key transcriptional activation domain mutation was introduced by a knock-in mouse line to 

examine other cell types and stimuli and a mathematical modeling approach enabled a 

quantitative analysis to reveal gene-specific logic gates formed by the two TA domains. 

Although we focused only on inducible genes that are expressed when NFkB is functionally 

active, the genes that NFkB can down-regulate via gene repression are also worth exploring in 

future work. Identifying endogenous genes that are expressed or repressed by NFkB activity can 

explain the differential outcomes of NFkB activation in healthy versus unhealthy cells that may  

be important for developing novel therapeutic interventions designed to target NFkB responses.  

In this study, we first showed that in primary fibroblasts, RelA recruitment and 

transcriptional activation of all endogenous NFkB target genes induced by TNF are dependent 

on direct high-affinity DNA binding of RelA. A previously report had shown in X-ray structures 

of NFkB dimer-DNA complex that binding to only one half-site of kB DNA targets is sufficient 

for DNA recognition (Chen et al., 2000). Here in our study, we observed that the DNA base-

specific contacts made by both NFkB subunits to kB DNA targets are indispensable for the 

downstream gene activation of target genes. In our RelADB mutant analysis, the dimerization 

partner p50 may still contribute to DNA binding, but it appears insufficient to mediate 
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downstream gene expression. Hence, the transcriptional activation potential of NFkB was 

inhibited as loss of NFkB transcriptional activity was observed (Figure 2.5H). Nevertheless, to 

confirm our findings in Chapter 2 and our observations that p50 binding in our RelADB mutant 

analysis is insufficient for TNF-induced activation of NFkB target genes, ChIP -seq experiments 

with a p50-specific antibody could confirm whether the genomic locations where RelA binding 

was inhibited in the RelADB mutant cell line show unaltered p50 binding. Alternatively, for a 

deeper understanding of the mechanisms of DNA binding, we could use biophysical approaches 

to assess DNA binding in the RelADB mutant. In this regard, performing structural 

characterization of the RelADB mutant in complex with DNA through X-ray crystallography or 

nuclear magnetic resonance (NMR) may address whether base-specific contacts with kB DNA 

are fully prevented in RelADB. Solving the structures of RelADB mutant as a RelA homodimer or as 

a heterodimer with p50 could allow a more accurate assessment of the physical properties of 

RelA-containing dimers binding to DNA and possibly confirm that p50 is required for DNA 

binding, but insufficient for NFkB-mediated transcription of genes in a RelADB mutant context.  

While the gene expression response to TNF is rapid, future studies may address whether the 

dependence on DNA base-specific contacts also pertains to long-term expression dynamics 

mediated by NFkB. An example of inducers that mediate longer NFkB activity and long-term 

expression dynamics is bacterial lipopolysaccharide (LPS) that activates toll-like receptor 4 

(TLR4) signaling. NFkB activation in response to LPS stimulation has been shown to result in 

more delayed and persistent NFkB activity (Werner et al., 2005).  Additionally, LPS-induced 

activation of the TLR4 signaling pathways is more complex as it results in the activation of other 

transcription factor activity in addition to NFkB, such as interferon regulatory factors (IRFs). 
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Although IRFs are known to co-regulate TLR4-induced genes with NFkB (Lu et al., 2008), e.g. 

the expression of Ccl5/RANTES gene (Tong et al., 2016), we predict that the dependence on 

DNA base-specific contacts in NFkB RelA may also pertains to TLR4-response genes.  

Our studies further indicate that all endogenous target genes induced by TNF require the C-

terminal region of RelA that harbors two transactivation domains, TA1 and TA2. That is 

remarkable given that phosphorylation of RelA at S276 was reported to play critical roles in 

recruiting CBP/p300 (Zhong et al., 1998), and knock-in mutant mice harboring the S276A 

mutation showed striking animal phenotypes and alterations in the expression of many genes, 

including some known NFkB target genes (Dong et al., 2008). Our analysis suggests that the intact 

N-terminal RHR containing phosphorylated S276 is insufficient for TNF-induced NFkB target 

gene activation and may support the notion that the phenotype of S276 mutation may be due to 

alterations at larger time and epigenetic scales (Cheng et al., 2008). 

In this dissertation, mathematical modeling was also used to assess the functional 

requirements of each RelA transactivation domain quantitatively, which may be confounded in 

the experimental system (i.e. alterations in the NFkB activation time course, Figure 2.8C). 

Hence, by probing target genes for the roles of the two C-terminal activation domains, TA1 and 

TA2, we found remarkable gene-specificity in our mathematical model-aided analysis. Target 

genes did not differ very much in whether they were more highly regulated by TA1 vs. TA2, but 

they differed in whether they required only either TA or required both TAs for gene activation. 

In other words, some NFkB target genes allow TA1 and TA2 to function independently, forming 

a logical OR gate while other NFkB target genes require the synergistic function of TA1 and 

TA2, with the TAs forming a logical AND gate.  These distinct regulatory strategies may be 
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mediated by distinct mechanistic requirements for the recruitment of molecular co-activators. For 

example, genes that exhibit an OR gate logic, might be activated sufficiently by recruiting 

CBP/p300 via TA2, but genes exhibiting an AND gate logic might need to recruit not only 

CBP/p300 but also additional co-activators via TA1.  

The functionality of TA1 was characterized as being regulated by PTMs, particularly 

phosphorylation, while TA2 has intrinsic transactivation activity via its interaction with 

CBP/p300. Yet S467 within TA2 was reported as a potential phosphorylation site that may dampen 

its activity (Buss et al., 2004a; Geng et al., 2009; Mao et al., 2009; Schwabe and Sakurai, 2005). 

To investigate whether S467 plays a role in the TNF-induced expression of NFkB target genes in 

fibroblasts, we constructed the S467A variant within full length RelA, TA1 deleted RelA, or the 

CBP-interaction mutant TA2CI (Figure 3.1A). Gel mobility shift analysis showed TA2S467A did not 

alter the DNA-binding activity of NFkB compared to each respective parent construct (Figure 

3.1B, cf. Figure 2.8C), and protein expression levels of these RelA variants and the canonical IkBa 

and IkBb were normal (Figure 3.1C). We then undertook polyA+ RNA-seq analysis and PCA 

revealed only minimal alteration in the TNF-induced gene expression response with S467A in the 

WT or TA2CI context (Figure 3.1D). Furthermore, in a heatmap with single-gene resolution (Figure 

3.1E), we observed very little effect by the S467A mutation. Only chemokines Cxcl1, Cxcl2 and 

Ccl20, which are rapidly and highly induced, showed a slight reduction but no enhancement. Our 

data thus confirms that an intrinsic CBP/p300 interaction affinity (probed with the TA2CI mutation) 

is the primary mode of function of the TA2 domain.  This contrasts with how TA1’s functionality 

is enhanced by phosphorylation events mediated by coordinated kinases such as CKII and IKKe 

(O’shea and Perkins, 2008; Buss et al., 2004b; Wang et al., 2000).  
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Figure 3.1 The RelA TA2 domain functions primarily via intrinsic affinity for CBP/p300.  
(A) Schematic of the RelA variants involving mutation of the phosphorylation site S467. (B) 
Analysis of nuclear NFkB activity by EMSA of nuclear extracts prepared at indicated times after 
TNF stimulation of genetically complemented fibroblasts of indicated genotype. (C) Protein 
expression of RelA, IkBb, IkBa, and Actin in unstimulated cells as assayed by immunoblotting. 
(D) PCA plot of the transcriptional TNF response of all 104 NFkB target genes at indicated times 
and cell variants. (E) Heatmap of relative induced expression in response to TNF stimulation of 
the 104 target genes in same cell variants, as analyzed by polyA+RNA-seq. 
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What are the implications of this regulatory distinction of TA1 vs. TA2 for the transcriptional 

control of NFkB target genes, which differ in how they employ TA1 and TA2?  Considering NFkB 

target genes that are regulated redundantly by TA1 OR TA2, we would expect these genes to 

respond to all inflammatory stimuli that activate the IKK-NFkB axis as TA2 is effective for their 

induction, and regulated TA1 activity may merely provide some modulation.  On the other hand, 

NFkB target genes that are regulated synergistically by TA1 AND TA2 will be strongly activated 

only by those inflammatory stimuli that also induce the phosphorylation of TA1 serines that 

potentiate its acidic activation function. Alternatively, TA1 phosphorylation may be a function of 

the micro-environmental context, thus rendering the activation of these genes tissue context-

dependent. We note, for such genes, controlled by an AND gate of TA1 and TA2, the role of TA2 

is to amplify the effect of phosphorylation-mediated regulation of TA1 in activity, rendering them 

more responsive to these PTMs then if they were regulated only by TA1. 

Examining the types of genes that are regulated redundantly vs. synergistically by TA1 and 

TA2, we noted that many genes that provide for negative regulation of inflammation, such as 

Il15ra, IL1rl1, Trim47, Slfn2 or RelB fall into the former category. For these genes, TA 

redundancy means that they constitute an inflammatory core response that includes provisions for 

inflammatory resolution. In contrast, the latter category includes genes that are key initiators of an 

inflammatory response such as TNF, Ccl20, Ccl2, Cxcl1. For these genes, TA synergy means that 

their expression is activated only in response to a subset of inflammatory stimuli, or when tissue-

environmental context provides for the co-stimulatory signal that TA1 requires. 

The here-described paradigm of NFkB RelA-responsive gene expression being either 

redundantly or synergistically mediated by TA1 and TA2 should prompt a range of further studies 
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that extend past work on the signals and pathways that control TA1 phosphorylation and the  

molecular mechanisms that determine whether a target gene requires the dual TA1/TA2 

functionality. We may imagine that the involvement of differential co-activators, mediator 

complexes, the nucleosome movements or other complex chromatin interactions, or recruitment 

or release of RNA polymerase may play a role in determining diverse regulatory logics.   

More broadly, the study in this dissertation suggests that the structure-function 

relationship of key transcription factors provides an informative probe to dissect the diverse gene 

regulatory strategies that govern their many target genes. Dissecting the regulatory mechanisms 

of how endogenous gene expression is regulated is important to understand the TFs’ 

physiological function and can therefore help in the development of therapeutic interventions. 

Quantitative datasets produced by Next Generation Sequencing approaches allow a focus on 

endogenous genes that may be effectively quantitatively evaluated with gene-specific resolution 

using mathematical models of the gene expression process to reveal regulatory diversity instead 

of the more traditional bioinformatics methods focusing on  average behavior, assuming certain 

commonalities. Thus, we hope that our study provides an analysis blueprint for future studies; 

indeed, advances of CRISPR/Cas9 technology that enable the engineering of variants into the 

endogenous gene locus is powering studies of endogenous gene regulatory circuits at single gene 

resolution. 
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