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ORIGINAL ARTICLE
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Abstract

Rationale: Idiopathic pulmonary fibrosis (IPF) is a rare,
irreversible, and progressive disease of the lungs. Common
genetic variants, in addition to nongenetic factors, have been
consistently associated with IPF. Rare variants identified by
candidate gene, family-based, and exome studies have also been
reported to associate with IPF. However, the extent to which rare
variants, genome-wide, may contribute to the risk of IPF remains
unknown.

Objectives: We used whole-genome sequencing to investigate
the role of rare variants, genome-wide, on IPF risk.

Methods: As part of the Trans-Omics for Precision Medicine
Program, we sequenced 2,180 cases of IPF. Association testing
focused on the aggregated effect of rare variants (minor allele
frequency <0.01) within genes or regions. We also identified
individual rare variants that are influential within genes and

estimated the heritability of IPF on the basis of rare and
common variants.

Measurements and Main Results: Rare variants in both TERT
and RTEL1 were significantly associated with IPF. A single rare variant
in each of the TERT and RTEL1 genes was found to consistently
influence the aggregated test statistics. There was no significant
evidence of association with other previously reported rare variants.
The SNP heritability of IPF was estimated to be 32% (SE=3%).

Conclusions: Rare variants within the TERT and RTEL1 genes
and well-established common variants have the largest
contribution to IPF risk overall. Efforts in risk profiling or the
development of therapies for IPF that focus on TERT, RTEL1,
common variants, and environmental risk factors are likely to
have the largest impact on this complex disease.

Keywords: whole-genome sequencing; interstitial lung disease;
TOPMed; genetic association studies; telomerase
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Idiopathic pulmonary fibrosis (IPF) is a rare,
irreversible, and progressive disease of the
lungs that affects an estimated 5 million
individuals worldwide and is associated with
a median survival of 3–5 years (1–3). IPF is
associated with older age, cigarette smoking,
and other environmental exposures (4, 5). In
addition, both rare mutations and common
genetic variants are reported to contribute to
the etiology of IPF, although the heritability
of the disease remains unknown.Within
11p15, we discovered a gain-of-function (6)
promoter variant inMUC5B (rs35705950)
that is the dominant genetic risk factor for
IPF, present in.50% of affected patients
(7, 8). Genome-wide association studies have
identified and validated several other genetic
loci with more moderate associations with
IPF risk, including genes involved in
telomerase maintenance, host defense, and
cell-cell adhesion (7–15). Candidate gene
studies, family-based studies, and exome
sequencing analyses have also identified rare

mutations that associate with IPF (16–26).
However, critical unresolved questions
concerning the genetics of IPF remain,
including 1) the extent and types of rare
variants genome-wide that contribute to risk,
2) the relative contribution of rare versus
common variants to risk, and 3) the genetic
heritability of IPF. To address these
questions, we have conducted a whole-
genome sequencing study of IPF with
genome-wide analysis of rare variations.

Methods

Study Populations and Sequencing
To comprehensively investigate the role of
rare variants in the development of IPF, we
collected DNA from patients who were
diagnosed with IPF according to criteria
established by the American Thoracic
Society/European Respiratory Society from
institutions across the United States, Europe,

and Australia (see Table E1 in the online
supplement). Whole-genome sequencing
was performed by the NIH Trans-Omics for
PrecisionMedicine (TOPMed) Program
(27). Subjects with IPF were compared to
out-of-study control subjects selected from
other TOPMed study populations and
identified as unaffected (without evidence of
interstitial lung disease). Within the TOPMed
program, sequencing of our case and control
populations was performed at multiple
centers (Table 1). TOPMed sequencing
data from the IPF samples were made
available in separate “data freezes,” which we
used to define our discovery and validation
case populations. Samples that were included
in TOPMed Freeze 8 were used for the
discovery phase of the analysis, in which
1,264 IPF cases were compared with 1,257
unaffected control subjects selected from the
COPDGene study (Table 1). The validation
cohort comprised 916 IPF cases and 1,200
unaffected control subjects who were selected
from the FraminghamHeart Study and the
Multi-Ethnic Study of Atherosclerosis and
included in TOPMed Freeze 10. Because the
vast majority of our IPF cases were non-
HispanicWhite, we filtered our case and
control samples to those with European
ancestry using ancestry informative principal
components to minimize population
stratification (see Supplemental Methods in
the online supplement).

Statistical Analysis
We conducted a preliminary analysis of
common genetic variants with a minor allele
frequency (MAF) of.0.01, genome-wide,
using the combined discovery and validation
cohorts. For our primary analyses of rare
variants, we used SKAT-O, the Sequence
Kernal Association Test - Optimal Unified

At a Glance Commentary

Scientific Knowledge on the Subject: Common genetic variants, in addition to
nongenetic factors, have been consistently associated with idiopathic pulmonary
fibrosis (IPF). Rare variants identified by candidate gene, family-based, and
exome studies have also been reported to associate with IPF, but the extent to
which rare variants genome-wide may contribute to the risk of IPF
remains unknown.

What This Study Adds to the Field: This is one of the first studies to
comprehensively assess the impact of rare variants in IPF, using an agnostic
analysis strategy. These results have advanced the understanding of IPF genetics
by highlighting the etiologic importance of only two well-established rare genetic
variants (TERT and RTEL1), replicating common variants, and defining the
heritability of IPF. In aggregate, these findings simplify the genetics of IPF.
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Test (28) to conduct association testing of
the aggregated effect of rare variants within
genes or regions, defined as those with a
MAF<0.01. All analyses were adjusted for
sex as a covariate in the models, as well as
principal components of genetic ancestry to
control for any residual fine-scale population
stratification.We used a Bonferroni
correction for the effective number of tests
(Keff) in each analysis, which is based on the
estimated minimum achievable P value for
each test (28). Any gene or window-based
variant sets with a P, 0.05/Keff were
considered genome-wide significant and
included in validation testing: 1.763 1025,
3.223 1026, and 3.243 1028 for the
loss-of-function (LOF), LOF and missense,
and window-based analyses respectively.
Our primary analysis strategy included
LOF variants aggregated within gene-based
sets. For this primary analysis, gene sets
with P, 53 1024 were also included in
validation testing on the basis of moderate
association. Our prespecified secondary
analyses included LOF andmissense variants
aggregated within gene-based sets, and
comprehensive testing of all rare variants
aggregated into nonoverlapping windows
across the genome on the basis of spatial
clustering (29). Variant sets that had been
previously reported in the literature and were
moderately associated with IPF in our
secondary analyses (P, 53 1025 for
missense variant analysis or P, 53 1027 for
window-based analysis) were also included
in validation testing. We used a Bonferroni
correction to assess significance in the
validation cohort, adjusting for a total of
nine tests (P, 5.53 1023). We used the
Rare Variant Influential Filtering Tool (30)
to identify individual variants that had a
strong influence on the aggregated test
statistic for variant sets that were
significantly associated with IPF in the
validation cohort. For each analysis strategy,
we performed a meta-analysis combining

statistics from the discovery and validation
cohorts. Finally, we used a genome-based
restricted maximum likelihood method (31)
to estimate SNP heritability in the
combined dataset of discovery and
validation samples, using all measured
variants. Additional details of the sample
selection, variant filtering, and statistical
methods can be found in the online
supplement (see Supplemental Methods).

Results

In our preliminary analysis of common
variants, using the discovery and validation
cohorts combined, we observed genome-
wide significant (P, 53 1028) associations
with loci previously identified in genetic
studies of IPF, including variants in
MUC5B, TERT, TERC, DSP, and others
(Table E2). In addition, we identified two
novel associations between IPF and
variants in the third intron ofMCL1 (odds
ratio [OR], 0.77; 95% confidence interval
[95% CI], 0.71–0.84; P= 6.413 1029) and
the first intron of long noncoding RNA
gene ENSG00000260803 (OR, 1.72; 95%
CI, 1.42–2.08; P= 3.123 1028). The
findings from this common variant analysis
are consistent with previous genome-wide
association studies and validate the utility
of our case and control populations.

In our primary rare variant analysis,
which only included LOF variants aggregated
into gene-based sets, none of the genes met
the criteria for genome-wide significance, but
there were five genes that met our criteria for
moderate association in the discovery cohort
(Figure 1A; Table 2). ALOX15B and RTEL1-
TNFRSF6B (a read-through transcription
between RTEL1 and TNFRSF6B) were most
strongly associated with IPF (P=2.813 1025

and P=3.493 1025, respectively). Rare
variants in the RTEL1 (P=1.113 1024),
UNC93A (P=3.443 1024), andNFX1

(P=4.673 1024) genes were also moderately
associated with IPF. These five genes were
tested in our independent validation
cohort of 916 IPF cases and 1,200 unaffected
control subjects of European ancestry
using a Bonferroni P value threshold for
significance that was corrected for a total
of nine tests (P, 5.53 1023). In the
validation analysis, only the RTEL1 gene was
statistically significant after adjustment for
multiple testing (P=2.533 1023). None of
the other associations from our LOF analysis
strategy replicated within the validation
cohort; however,NFX1was nominally
significant (P=33 1022).

In a prespecified secondary analysis that
included missense variants in addition to
the LOF variants, aggregated into gene-base
sets, TERT (P=3.253 10216) and RTEL1
(P=7.493 1029) were both strongly
associated with IPF, exceeding the criteria for
genome-wide significance in our discovery
cohort (Figure 1B; Table 2). The third
strongest association signal in this analysis
was the SPDL1 gene (P=2.733 1025).
Because a rare missense mutation within the
SPDL1 gene has been previously reported to
be associated with IPF (32), we included this
gene in our validation testing of rare LOF
andmissense variants along with TERT and
RTEL1. In the validation cohort, the
association with TERTwas replicated with
P=9.393 1028. The associations with
RTEL1 and SPDL1 did not reach our
Bonferroni-corrected significance threshold
for the validation cohort, but were nominally
associated with IPF (P=2.073 1022 and
P=1.633 1022, respectively).

In our final analysis of all rare variants,
spatially aggregated within nonoverlapping
windows, none reached our genome-wide
significance threshold. At a more moderate
level of significance, an�3,200-bp window
(chr11:1284193–1287389) within the
TOLLIP gene at 11p15 was associated with
IPF (P=1.453 1027; Table 2). Because

Table 1. Summary of Discovery and Validation Cohorts by Case-Control Status

Variable

Discovery Validation

Cases Controls Cases Controls

n 1,264 1,257 916 1,200
Sequencing center Washington University Broad Institute of MIT

and Harvard
Broad Institute of MIT

and Harvard
Broad Institute of MIT

and Harvard
Age, mean (SD) 65.5 (9.4) 59.4 (6.3) 67.3 (9.1) 70.0 (9.4)
Male, n (%) 895 (70.8) 676 (53.8) 609 (66.5) 792 (66.0)
Ever smoker, n (%) 783 (68.1) 1198 (95.3) 563 (67.5) 742 (61.8)
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Table 2. Significant Rare Variant Sets Identified in the Discovery Cohort

Variant Filtering, Aggregation Unit Gene or Window P Value, Discovery Cohort P Value, Validation Cohort*

Loss-of-function, by gene† UNC93A 3.4431024 3.4631021

NFX1 4.6731024 2.9031022

ALOX15B 2.8131025 7.0531021

RTEL1 1.1131024 2.5331023

RTEL1-TNFRSF6B 3.4931025 1.0631021

Loss-of-function or missense, by gene‡ TERT 3.25310216 9.3931028

RTEL1 7.4931029 2.1031022

SPDL1 2.7331025 1.6031022

All rare, by window§ Chr11:1284193-1287310
(TOLLIP)

1.4531027 2.8931026

*Significance in validation cohort assessed at P, 5.53 1023.
†Genes included in validation analysis based on P, 53 1024.
‡Genes included in validation analysis based on genome-wide significance (P,3.231026) or P,53 1025 for previously reported genes.
§Genes included in validation analysis based on genome-wide significance (P,3.231028) or P,53 1027 for previously reported genes.

Figure 1. Manhattan plot for rare loss-of-function variants (A) and loss-of-function and missense variants (B), aggregated by gene, in the
discovery cohort. Horizontal lines represent the genome-wide significance thresholds adjusted for the effective number of tests (solid) and the
total number of tests (dashed).
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previous studies have reported an association
between IPF and variants within the
TOLLIP gene (10), we tested this window
for association within the validation cohort,
where the strength of the association was
similar (P= 2.893 1026). Given the
proximity of this region to the gain-of-
function polymorphism within the promoter
of theMUC5B gene, rs35705950, we
repeated the test of association, adjusting
for theMUC5B variant. After adjustment
for theMUC5B promoter polymorphism,
the window within TOLLIP was no longer
associated with IPF (P= 7.93 1021).

The results of meta-analyses of the
discovery and validation cohorts largely
reflected the findings from the individual
cohorts (Figure 2; Table 3). In themeta-
analysis of LOF variants, RTEL1 had the
strongest association signal, with a P value just
below the threshold for genome-wide

significance (P=4.253 1026), followed
by RTEL1-TNFRSF6B (P=9.123 1025),
SPSB2 (P=1.023 1024), and PARN
(P=1.433 1024). In the LOF andmissense
variantmeta-analysis, bothTERT andRTEL1
reached genome-wide significance levels.We
tested the association with TERT, adjusting for
the previously identified common IPF risk
variant rs4449583 within TERT (13). The
aggregate test statistic remained significant
(P=3.473 10221), indicating that rare variants
within TERT influence IPF risk independent
of the effect of this common TERT variant.
We also tested the association with RTEL1
after adjusting for the recently identified IPF
risk variant rs41308092 (33). The aggregate test
statistic for RTEL1 remained significant
(P=6.113 10211). The evidence for
association with SPDL1was just below the
level of genome-wide significance for the
meta-analysis. In the window-based analysis,

the windowwithin TOLLIPwas significantly
associated with IPF but not independent of the
MUC5B variant, as demonstrated by the
model adjusting for the rs35705950 genotype
(P=13 100). None of the other P values for
rare variant associations changed substantially
after adjustment for previously identified
common IPF risk variants that reside on the
same chromosome or theMUC5B promoter
variant (Table 3).

We did not adjust for age in our
analyses, because age was missing for
.10% of our cases. However, we performed
a sensitivity analysis in which association
testing was repeated in the discovery cohort,
with age as a covariate. It is interesting that
the P values for TERT, RTEL1, and SPDL1
decreased after adjustment for age. The other
P values increased slightly, to a degree
expected on the basis of the reduced sample
size (Table E3).

Figure 2. Manhattan plots for meta-analysis with rare loss-of-function variants (A) and loss-of-function and missense variants (B). Horizontal
lines represent the genome-wide significance thresholds adjusted for the total number of tests.
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On the basis of the findings of a
previous study that IPF patients without the
MUC5B risk (T) allele at rs35705950 had a
higher burden of rare missense or LOF
variants in TERT than those without the risk
allele (34), we examined the frequency of rare
variants in TERT and RTEL1 among IPF
cases within strata defined by carriage of the
MUC5B risk allele (GG vs. GT/TT). We did
not find a significant difference in the burden
of rare LOF and missense alleles in TERT.
However, the burden of rare LOF and
missense alleles in RTEL1was greater in
cases without the risk allele than in cases
carrying one or more copies of the risk allele
(33 1023 vs. 0.001, P=23 1022).

We applied a recently developed
statistical method, the Rare Variant
Influential Filtering Tool (30), to identify
variants within the RTEL1, TERT, and
SPDL1 variant sets that had a strong
influence on the aggregate test statistic.
A single variant in the RTEL1 LOF variant
set, rs373740199, was classified as influential
in both the LOF, and LOF and missense
variant sets and in both cohorts (Figure E1).
This variant is within the 30th exon of
RTEL1 and was previously identified in an
exome sequencing study (26). The minor
allele was present at a frequency of 0.17%
among IPF cases and absent among control
subjects. A previously reported IPF risk
variant in TERT (24), rs199422297, was
influential in the TERT LOF andmissense
variant set across cohorts (Figure E2). This is
a stop-gain variant within the fifth exon of

TERT, and the minor allele was present at a
frequency of 0.25% among IPF cases and
absent among control subjects. These
influential TERT and RTEL1 variants are
reported in the database dbSNP to be rare
among Europeans (MAF,,0.01%) and
absent in other populations. A single variant,
rs116483731, first identified by exome-wide
association (32), was also classified as
influential in the SPDL1 LOF andmissense
variant set across cohorts (Figure E3). This
variant is in the second exon of SPDL1, and
theMAF was 2.2% among cases and 0.8%
among control subjects (OR, 2.86; 95% CI,
1.96–4.17). In dbSNP, theMAF is reported
as 0.7% among Europeans and 0.07% among
Africans, and it is absent among other
populations. Although other variants may
have contributed to the aggregate association
test statistics, and to the overall risk of IPF,
our analyses suggest that a single rare
variant is largely responsible for observed
associations in each of the RTEL1, TERT,
and SPDL1 genes.

We compared the minor allele counts of
the three identified rare, influential variants
in TERT, RTEL1, and SPDL1 in cases with
and without a family history of disease.
Among IPF cases with nonmissing family
history data, there were 1,065 sporadic cases
and 837 cases with a family history of disease
included in our analyses. There was no
difference in the proportion of familial and
sporadic IPF cases carrying the identified
influential minor alleles in RTEL1 or SPDL1.
Although the minor allele of the influential

rare variant in TERT, rs199422297, was
observed among both sporadic and familial
cases, the cases with a family history of
disease were more likely to carry the TERT
minor allele (2/1,065 sporadic vs. 8/837
familial; P=33 1022).

Finally, we used the linkage
disequilibrium andMAF-stratified genome-
based restricted maximum likelihood
method (31) to estimate the heritability of
IPF. Using whole-genome sequence data
from the combined discovery and validation
cohorts, we estimated the single nucleotide
variant (SNV) heritability of IPF to be 32%
(SE=3%).

Discussion

Our findings indicate that rare variants in
RTEL1, TERT, and likely SPDL1 contribute
to the risk of IPF. Although these genes have
been reported by others to contain rare
variants associated with IPF, (13, 17, 20,
23–26, 32), we have found that a single rare
variant in each of the implicated genes
(RTEL1, TERT, and SPDL1) appears to
be largely responsible for the observed
associations. Our whole-genome sequence
analysis also suggests that rare variants
identified in more focused studies of familial
pulmonary fibrosis—including TERC (17),
the surfactant protein genes (16, 18, 21, 22,
35, 36), TINF2 (37), and ABCA3 (38)—do
not appear to substantially contribute to the
overall risk of IPF, at least in a sample of this

Table 3. Meta-analysis P Values for Rare Variant Sets Included in Validation Analysis, with and without Adjustment for Common Variants

Variant Filtering,
Aggregation Unit Chr Gene or Window

Variant Set
P Value

Common Variant
Covariate

Variant Set P Value,
Adjusted for

Common Variant

Loss-of-function, by gene 6 UNC93A (ENSG00000112494) 2.2231023 rs2076295 2.1831023

rs35705950 9.7031024

9 NFX1 (ENSG00000086102) 2.8431024 rs35705950 9.7031023

17 ALOX15B (ENSG00000179593) 1.2831022 rs1981997 1.5631022

rs35705950 1.7331022

20 RTEL1 (ENSG00000258366) 4.2531026 rs35705950 1.0531025

rs41308092 4.2231026

20 RTEL1-TNFRSF6B
(ENSG00000026036)

9.1231025 rs35705950 6.7131025

Loss-of-function or missense,
by gene

5 TERT (ENSG00000164362) 2.74310221 rs4449583 3.47310221

rs35705950 2.39310219

5 SPDL1 (ENSG00000040275) 4.8131026 rs4449583 5.1431026

rs35705950 1.4331026

20 RTEL1 (ENSG00000258366) 1.00310210 rs35705950 3.83310211

rs41308092 6.11310211

All rare, by window 11 11:1284193-1287310 (TOLLIP) 1.04310211 rs35705950 1.003100

Definition of abbreviation: Chr=chromosome.
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size (Table E4). To further assess any
potential effect of individual, previously
reported rare variants within our combined
dataset, we tabulated the number of minor
alleles observed among cases and control
subjects (Table E5). Although additional
exceedingly rare variants may prove to be
risk factors in unique families or relevant to
specific IPF subtypes, given their frequency,
these rare variants will only influence risk for
a very small proportion of the IPF
population. Moreover, our common variant
analysis highlights the importance of
telomerase maintenance, host defense, and
cell-cell adhesion genes in the development
of IPF, and our overall analysis estimated IPF
heritability to be 32%. In aggregate, our
results have narrowed the focus of IPF
genetics to a few well-established rare
variants and replicated common variants.

We found that the estimated SNP
heritability for IPF (based on all measured
rare and common variants) was 32%
(SE=3%). This estimate is similar to our
previous estimates of 28% (SE=2%) to
31% (SE=3%), which were based only on
common variants, excluding theMUC5B
variant (8). On the basis of these results, we
hypothesize that the majority of IPF
heritability can be explained by common
genetic variation. However, larger
sequencing datasets are needed to explicitly
estimate the contribution of rare variation to
the overall heritability of IPF. Additionally,
given the relatively high heritability of IPF,
common variants could be used to identify
early interstitial lung disease, especially
among unaffected family members (39, 40).
Although early interstitial lung disease is
known to have a poor prognosis (40–42),
screening guidelines for early interstitial lung
disease have not been established, and
therapeutic intervention for early interstitial
lung disease has not been studied.

Although identifying common IPF risk
variants was not a primary aim of this study,
preliminary analyses that included common
variants identified two previously unreported
loci that were significantly associated with
IPF. Within these loci, the variants with the

strongest associations include an indel in
MCL1 (an apoptosis regulator in the BCL2
family at 1q21.2) and an indel in a long
noncoding RNA gene at 16p13.3. These indel
variants may not have been well represented
by the markers included in previous GWA
studies and will require validation in an
independent cohort.

This is one of the first whole-genome
sequencing studies of IPF, with a
comprehensive assessment of rare variant
associations outside of the exome. However,
this study also has some limitations.
Although this study included one of the
largest collections of IPF patients to date, the
identification of rare variants is highly
dependent on sample size, and lower
frequency IPF risk alleles could possibly be
identified by larger studies. Consequently,
extremely rare variants in genes, such as
TERC, TINF2, ABCA3, and the surfactant
protein genes, previously identified through
targeted candidate gene studies may play a
role in the heritability of IPF; however, given
their frequency, they were not identified in
our study population and will only influence
risk for a very small proportion of the IPF
population. In addition, the MAF threshold
used to define rare variants (MAF,<1%) is
somewhat arbitrary, and the power to
identify aggregated variant sets that are
associated with IPF will depend on the
distribution of allele frequencies among risk
variants included in a set. This study was also
limited to subjects of European ancestry, and
there are likely different rare variants that
influence IPF risk in populations of other
ancestries. Finally, the effect of rare variants
may depend on age, sex, family history of
disease, or other common variant genotypes.
Additional analyses will be required to
understand how interactions among genetic
and nongenetic risk factors contribute to the
etiology of IPF.�
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