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Abstract 

 Genetic and environmental factors are both known to contribute to susceptibility to 

complex diseases.  Therefore, the study of gene-environment (GxE) interactions has been a focus 

of research for several years.  In this manuscript, select examples of GxE from the literature are 

described to highlight different approaches and underlying principles related to the success of 

these studies.  These examples were broadly categorized as studies of: single metabolism genes, 

genes in complex metabolism pathways, ranges of exposure levels, functional approaches and 

model systems, and pharmacogenomics.  Some studies illustrated the success of studying 

exposure metabolism for which candidate genes can be identified.  Moreover, some GxE 

successes depended on the availability of high quality exposure assessment and longitudinal 

measures, study populations with a wide range of exposure levels, and the inclusion of ethnically 

and geographically diverse populations.  In several examples, large population sizes were 

required to detect GxE interactions.  Other examples illustrated the impact of accurately defining 

scale of the interactions (i.e. additive or multiplicative).  Lastly, model systems and functional 

approaches provided insights into GxE in several examples.  Future studies may benefit from 

these lessons learned.    
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Introduction 

Genetic and environmental factors are both known to contribute to susceptibility to 

complex diseases.  Studies of genetic variation range from hypothesis-driven studies examining a 

small number of candidate genes to more agnostic (i.e. hypothesis-free) surveys of variation 

across the entire genome, or genome-wide association studies (GWAS).  GWAS leverage 

patterns of linkage disequilibrium with a high density of genetic markers to capture a large 

proportion of the common genetic variation in a population. Therefore, gene-environment (GxE) 

interactions, defined broadly as the interplay between gene(s) and environmental factor(s) as 

they affect some trait [discussed in (1)], are a focus of studies addressing chronic diseases such 

as neurodegeneration, cancer, and asthma, and more recently also pharmacogenomics 

applications; the former to better understand biological pathways to disease or identify 

subpopulations susceptible to specific exposures in human studies; the latter to contribute to 

‘precision medicine’ and treatment plans tailored according to the genetic makeup of patients (2).  

We selected GxE examples that we knew to have been successful in reaching these aims 

illustrating different approaches and study designs which may have contributed to success.    

The purpose of this paper is to describe a spectrum of approaches and underlying 

principles that have been successful for identifying GxE interactions to inform future studies.  

These success stories may be broadly categorized as studies of: single metabolism genes, 

complex metabolism pathways, broad ranges of exposures, functional approaches and model 

systems, and pharmacogenomics. 

 

Single Metabolism Genes 
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Many of the genetic variants identified in GxE investigations are in metabolism genes 

and impact enzymatic function such that they may increase susceptibility to an environmental 

exposure and adversely affect health in exposed variant carriers.  Recent efforts have focused on 

studying the genetics (or in some cases, epigenetics) of metabolism to identify single nucleotide 

polymorphisms that, by altering exposure metabolism, ultimately alter susceptibility to disease 

outcomes.  Some of the oldest and best characterized GxE interactions with well-established 

biologic relevance and human health consequences are classic Mendelian genetic diseases of 

single metabolism genes that depend on the presence of common environmental (dietary or 

pharmacological) agents to adversely affect health (Table 1, Lesson 1), such as Phenylketonuria 

and Glucose-6-phosphate dehydrogenase (G6PD) deficiency.  Phenylketonuria is caused by a 

defect in the gene encoding the enzyme phenylalanine hydroxylase which is needed to break 

down the amino acid phenylalanine.  In children with Phenylketonuria, the resulting amino acid 

accumulation is responsible for severe intellectual and developmental disabilities, while dietary 

restrictions that eliminate phenylalanine intake can minimize or prevent adverse outcomes 

entirely (3).  Similarly, G6PD deficiency is the most common human enzyme defect associated 

with neonatal jaundice and acute hemolytic anemia triggered by consumption of fava beans or 

treatment with antibiotic and antimalarial drugs (4).   These disease phenotypes are entirely 

preventable and amenable to environmental interventions; the outcome only occurs if both the 

genetic and environmental factors are present (Table 1, Lesson 2).   

Genes in Complex Metabolism Pathways 

In contrast to Phenylketonuria and G6PD, many other metabolizing enzymes are 

biologically versatile and often redundant in their actions (e.g. (5)) which complicates relating 
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any single genotype to a phenotype of interest. Nevertheless, early GxE studies focused on 

polymorphic variants in many metabolism genes that impact enzymatic or metabolic function of 

proteins that activate or detoxify exogenous and endogenous toxins. Examples include members 

of the large microsomal oxidative cytochrome P-450 (CYP) superfamily of proteins (6), N-

acetyltransferase 2 (NAT2) (7), and glutathione S-transferases (GSTs) (8) that are implicated in 

cancer (9), Parkinson’s disease (PD) (10), and Alzheimer’s disease (11). For example, long 

before the first familial PD gene was identified, the “poor metabolizer” enzymatic phenotype of 

the CYP2D6 gene was the first PD candidate gene (12, 13) because the enzyme is active in the 

brain region linked to PD, metabolizes relevant endogenous neural compounds (14, 15), and 

inactivates neurotoxins known to cause Parkinsonism in animal models and humans (16). Many 

population studies have shown an increased risk of PD for CYP2D6 poor metabolizers compared 

with all other metabolizer types (17), and some PD studies that include pesticide exposures also 

observed GxE interactions for the poor metabolizer variants of CYP2D6 (18-21) (Table 1, 

Lesson 1).  

Additionally, common variants of the paraoxonase 1 (PON1) gene act on the toxic oxon 

metabolite of organophosphate pesticides and are well characterized with regards to influence on 

enzyme activity in human serum (22, 23).  Thus, in populations with chronic organophosphate 

exposure, carriers of PON1 gene slow metabolizer variants have been shown to be at increased 

risk for PD (elderly) and developmental deficits (children) (Table 1, Lesson 1) (24). The PD 

studies were conducted among central California residents using records from the California 

Pesticide Use Reporting System to generate long-term OP pesticide estimates with sophisticated 

geographic information system tools (25). The neurodevelopmental studies were able to rely on 

biomarkers of exposure collected during short but relevant periods in pregnancy (26, 27). In 
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these studies, considering the temporality of exposure was important due to the potential impact 

on early life (i.e. neurodevelopmental outcomes) and later onset disease outcomes (i.e. PD) that 

needed to be examined to best characterize the interactions (Table 1, Lesson 3).  Moreover, the 

exposure assessment approaches used in these studies were sophisticated and robust (Table 1, 

Lesson 4).  

Another GxE example related to variation in metabolism genes is one of the most well-

established GxE interactions in cancer -- the association of genetic variation in N-

acetyltransferase-2 (NAT2), smoking, and risk of bladder cancer (28) (Table 1, Lesson 1).  NAT2 

catalyzes metabolism of aromatic monamines which are known bladder carcinogens found in 

cigarette smoke.  Several common genetic variants in NAT2 are related to reduced enzyme 

activity (29) and segregate populations into rapid, intermediate, and slow acetylation phenotypes 

which influence the ability to detoxify aromatic amines. Since tobacco smoking is a strong risk 

factor for bladder cancer and aromatic amines found in tobacco smoke are known bladder 

carcinogens, reduced detoxification capacity was hypothesized to increase susceptibility.  

Indeed, studies in different populations consistently demonstrated that slow acetylation activity 

increases risk of bladder cancer among smokers, but not among never smokers (7, 30-34). Many 

studies utilized candidate gene approaches focusing on the hypothesis related to the role of NAT2 

in metabolism (7, 32-34).  A genome-wide interaction analysis of smoking and bladder cancer, 

however, observed interactions with different single nucleotide polymorphisms depending on 

whether the interaction was evaluated on an additive or multiplicative scale (30), highlighting the 

importance of defining the scale of measurement discussed in manuscript 2 of this series (1) and 

previously (28, 35, 36) (Table 1, Lesson 5).  Interestingly, the multiplicative interaction between 

NAT2 and smoking, even though it is supported by strong prior knowledge, did not reach a 
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genome-wide significance threshold. The authors estimated it would require over 15,000 cases 

with a 1:2 ratio of cases:controls to reach the statistical significance threshold, i.e. large sample 

sizes are required to discover GxE interactions without strong priors due in part to the stringent 

significance thresholds required for agnostic studies  (30).  Meanwhile, this interaction was 

observed in previous candidate gene studies with 1100-3000 cases illustrating the power of 

hypothesis-driven studies compared to GWAS approaches when prior knowledge exists (Table 

1, Lesson 5, 6).  

The well-established interaction between a variant in the aldehyde dehydrogenase 2 

(ALDH2) gene and alcohol on risk of esophageal squamous-cell carcinoma (37-41) highlights 

several other considerations. Alcohol is oxidized to form acetaldehyde, a carcinogen. ALDH2 

detoxifies acetaldehyde to acetate. The ALDH2*2 allele slows this detoxification process (Table 

1, Lesson 1). The obvious hypothesis that an increase in risk due to alcohol consumption will be 

larger among individuals who carry the ALDH2*2 allele has been borne out in observational 

studies (38-41). Originally studied as a candidate gene, the ALDH2*2 allele has also been 

‘rediscovered’ via GWAS, using both a marginal approach (testing for association without 

considering effect modification by alcohol intake) and using a GxE interaction approach (41). 

There are two particularities to the ALDH2 example worth noting. First, the ALDH2*2 allele is 

common in East Asian populations but quite rare in European-ancestry populations. This 

underscores the importance of conducting studies in ethnically diverse populations—not only 

can this increase the diversity of environmental exposures, it can increase the diversity of genetic 

exposures (Table 1, Lesson 7). Second, ALDH2*2 is associated with exposure. Individuals who 

carry an ALDH2*2 allele experience an unpleasant flushing reaction to alcohol and are less likely 

to drink regularly or heavily (37). This gene-environment correlation has implications for 



9 

 

downstream analysis. Tests that assume that genotype and environmental exposure are 

independent—such as the case-only test, a method to test association between genetic and 

environmental factors within exposed and unexposed cases only —can be more powerful than 

tests that do not make this assumption when the assumption holds (42). Although this assumption 

may be reasonable for many (or most) tested variants (42), when it is violated, tests assuming 

gene-environment independence can have inflated Type I error or decreased power. In the case 

of ALDH2*2, because the gene-environment correlation and GxE interaction act in opposite 

directions, the case-only test failed to detect the ALDH2*2-alcohol interaction at a nominal level 

of association in a study where the standard logistic regression test of interaction including 

controls was highly significant (43). As this example illustrates, the most appropriate method or 

approach for analyzing GxE interactions can be highly dependent on an understanding of 

underlying assumptions and correlations between risk factors.  As discussed in more detail in a 

companion paper,, no single GxE method is universally the most powerful approach and 

efficiency will depend on the hypothesis tested and the underlying true GxE model (1, 44) 

(Table I, Lesson 8).   

Variation of Exposure Levels 

Low exposure variability may be one key factor for not being able to identify GxE 

interactions (45).  A wide range of exposure levels among study participants provides greater 

statistical power for identifying GxE interactions (1) and an opportunity to contrast different 

models (e.g. linear, threshold, age-specific) to understand how exposure impacts the gene-trait 

relationship.  

A compelling example of the benefits of targeting a population with both high and low 

exposure scenarios comes from a study of interaction between physical activity and the fat mass- 
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and obesity associated (FTO) gene on waist circumference conducted in a multi-center study in 

India (46). The study included two sites, one in northern India (New Delhi) and the other in 

southern India (Trivandrum), each including close to 500 individuals. The population in Delhi 

had low levels of physical activity, similarly to what is typically observed in Caucasian 

populations. In contrast, the population in Trivandrum had a wide range of physical activity 

levels and included individuals with high or low activity. The original association between FTO 

genetic variation and obesity, generated primarily in Caucasian populations (47-49), was 

replicated in the Delhi but not the Trivandrum population.  However, in Trivandrum, an 

interaction was detected between physical activity and FTO – the association between FTO 

variant and obesity was strongest in individuals with low physical activity and diminished 

gradually with increasingly higher levels of physical activity.  This pattern of interaction has 

been replicated in studies conducted in Caucasian populations (50). However, due to a narrower 

range of physical activity a much larger sample size (N>200,000) was required for this 

interaction to achieve statistical significance (Table 1, Lesson 6).  This example demonstrates 

advantages of having robust measures of environmental factors with a wide range of exposure 

levels for identifying GxE interactions, with strong variation in exposure increasing the power to 

detect GxE. Studying geographically, culturally, or sociologically diverse populations may make 

it more likely to observe variations in exposure (Table 1, Lessons 4, 7, 9). Another study 

showed that the influence of a common FTO variant on body mass index varies across birth 

cohorts, calendar time periods, and life cycles (51) illustrating the importance that temporal 

considerations may have for GxE interaction studies and demonstrating that global or local 

environmental changes over time can modify the observed allelic penetrance of genetic risk 

factors for complex traits (Table 1, Lesson 3).    
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Another approach to achieving an adequate range of exposures is to examine a highly 

exposed population.  Long term exposure assessment on a study population highly exposed to a 

specific agent from the environment may provide unique insights for characterizing GxE if the 

population is well characterized longitudinally. Inorganic arsenic is a known human carcinogen 

(52) and the natural or man-made contamination of ground water used as drinking water in 

several regions across the globe makes this exposure a serious global health issue (53, 54), 

particularly in Bangladesh where >57 million people are exposed at levels exceeding the WHO 

recommended limit (55, 56).  A GWAS-approach was used to identify genetic polymorphisms 

associated with an “arsenic metabolism efficiency” phenotype, and these variants were found to 

affect risk of arsenical skin lesions (57).  Arsenic metabolism efficiency can be measured in 

urine as ratios of arsenic metabolites to total arsenic.  Dimethylarsinic acid, the end metabolite, is 

most readily excreted in urine, and individuals with high dimethylarsinic acid % are viewed as 

more efficient metabolizers with lower risk for arsenic toxicity (58-62). The recent GWAS (57) 

identified two independent association signals for dimethylarsinic acid % in a 10q24.32 region 

containing AS3MT, a gene involved in arsenic methylation, consistent with several candidate 

gene studies (reviewed in (63)).  The low-efficiency alleles at these two single nucleotide 

polymorphisms were independently associated with increased risk for arsenical skin lesions.  

Furthermore, the association between arsenic exposure and skin lesion risk was weaker among 

individuals with high-efficiency 10q24.32 genotypes than those with low-efficiency genotypes 

(64).  This example illustrates the strength of using a highly exposed population with sufficient 

variation in exposure (Table 1, Lesson 7) and using high-quality exposure measures to identify 

GxE (Table 1, Lesson 9).  This example further illustrates the strength of studying metabolism 

pathways of an exposure to identify genetic variants that impact disease (Table 1, Lesson 1).  
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Model Systems and Functional Approaches 

Replication has been a cornerstone of genetic association studies, and the requirement for 

independent replication contributed to the success of GWAS (65, 66).  In examples described 

above, particularly NAT2 x smoking with bladder cancer, FTO and physical activity with body 

mass index, and ALDH2 x alcohol with esophageal cancer, interactions were replicated multiple 

times in different populations.  However, as discussed in the accompanying manuscripts and 

previously, there are many challenges to replication in the GxE context and what constitutes 

appropriate replication in the GxE context is currently being debated (28, 44, 67, 68) and (Chirag 

J. Patel, Department of Biomedical Informatics, Harvard Medical School, unpublished 

manuscript).   Functional approaches can complement and support population based 

epidemiology studies by providing potential mechanistic insights to observed findings (Table 1, 

Lesson 10)  (69) and are described in a companion manuscript (68). These approaches include 

model systems, in vitro experiments, and biomarker measurements. They may also provide 

additional evidence for an interaction in situations where replication in another independent 

population is not possible due to lack of availability of an appropriate replication population, 

such as in studies of a rare disease or environmental exposure (28, 67).   

 An example where functional approaches helped to validate genetic associations that 

were difficult to resolve with human data involves chronic lead exposure and genetic 

polymorphisms affecting lead processing and excretion functions (70-72). Although genetically 

driven variations in human susceptibility to adverse health effects from lead toxicity is a well-

appreciated phenomenon (73, 74), studies trying to establish the genetics of human susceptibility 
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have been challenging due to the variety of clinical symptoms elicited by lead toxicity.  

Moreover, studies with chronic low levels of lead exposures require long-term exposure 

assessments that account for life cycle susceptibility such as during pregnancy and early 

childhood, which are difficult in human populations. Using Drosophila melanogaster, 

researchers used mutants to assess functional causality of candidate genes and were able to 

identify a genetic network related to lead susceptibility, building upon known genes previously 

identified in human GWAS (75) (Table 1, Lesson 10).   

Insights into the underlying mechanisms related to the FTO gene and interaction with 

physical activity for obesity phenotypes was provided in a series of mechanistic studies.  Energy 

balance is known to be modulated by both food consumption and physical activity as well as by 

the dissipation of energy as heat through constitutive heat generation (thermogenesis) in 

mitochondria-rich brown adipocytes in brown fat and through inducible thermogenesis in beige 

adipocytes in white fat.  Thermogenesis is triggered in part by response to exercise and partially 

controlled by mitochondria.  Functional studies have recently shown that one of the common 

FTO alleles associated with obesity phenotypes can repress mitochondrial thermogenesis in 

adipocyte precursor cells (76, 77). This leads to a developmental shift from energy-dissipating 

beige adipocytes to energy-storing white adipocytes with repression of basal mitochondrial 

respiration and increased lipid storage. These functional studies provide some biological 

evidence for the interaction of FTO and physical activity in generating obesity.  These 

predictions were further functionally validated with knockdown and overexpression of the FTO 

gene and other regulators in human patient tissue samples and mice models (76, 77) (Table 1, 

Lesson 10).   
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Furthermore, functional studies of Parkinson’s disease (PD) helped elucidate findings 

from human genetic association studies.  Pesticide exposure was suggested as an environmental 

risk factor for PD, though the mechanism was unknown.  Aldehyde dehydrogenase (ALDH) 

plays a key role in neuronal protection by metabolizing biogenic amine-related aldehydes, e.g., 

3,4-dihydroxyphenylacetaldehyde, and by protecting neurons against aldehyde- and oxidative 

stress-related neurotoxicity (78) (Table 1, Lesson 1). Therefore, researchers used an ex vivo 

model system to identify several pesticides which inhibited the enzyme activity of ALDH (Table 

1, Lesson 10).  These same pesticides were associated with an increased risk of PD in a 

population-based study, and genetic variation in the ALDH2 appeared to modulate PD risk due to 

these pesticide exposures (79).  

Identifying a plausible biological mechanism using biomarkers can also help validate 

human population study findings, as illustrated by GxE interactions in asthma. Exhaled nitric 

oxide (FeNO) levels are known biomarkers of airway inflammation that are predictive of 

childhood asthma (80).  Researchers found that common inducible nitric oxide synthase 2 

(NOS2) promoter haplotypes combined with residential traffic-related exposure appeared to 

interact to affect exhaled nitric oxide (FeNO) levels in children, presumably because NOS2 is 

induced by environmental exposures (81).  Previously, common genetic variants and promoter 

haplotypes of NOS2 were associated with childhood exhaled FeNO values (80).  Moreover, 

exposure to residential traffic and allergens were independently associated with elevated FeNO 

levels (81).  The discovery of this GxE interaction (NOS2 promoter haplotypes x traffic 

exposure) benefited from a large, well-characterized population with substantial variation in 

exposure levels (Table 1, Lessons 4 and 7).  In addition, higher FeNO levels were associated 

with elevated NOS2 mRNA in the bronchial epithelium of asthmatics after allergen exposure 
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(82).   Although this GxE finding needs to be replicated, the biomarker study correlating higher 

FeNO levels with higher NOS2 expression suggests a plausible biological mechanism of how 

ubiquitous air pollutants and genetic variation might impact a biological pathway relevant to 

inflammation that could contribute to asthma (Table 1, Lesson 10).   

Pharmacogenomics 

There are several lessons to be learned from pharmacogenomic GxE studies that may be applied 

more broadly to GxE studies of complex diseases.  Pharmacogenomics, which specifically 

examines the role of genetic variation in various drug response phenotypes (83-85), can utilize 

either targeted or untargeted GxE approaches with the drug as the environmental exposure and 

drug response phenotype as the outcome (86). Variations in drug response may cause some 

individuals to require a higher dose while others require a lower dose because of increased 

sensitivity or adverse side effects.  For example, common genetic variants in Cytochrome P450 

2C9 (CYP2C9) and Vitamin K epoxide reductase complex subunit 1 (VKORC1) genes 

contribute to variability in patients’ responses to treatment with the anticoagulant warfarin, 

explaining as much as 18-30% of the response variability observed in European populations (87) 

(Table 1, Lesson 2).   Notably, many successes in pharmacogenomics have been observed, 

despite the challenges of small population sizes and rarity of adverse events (84, 85, 88), due to 

the fact that the environmental agent (i.e. the drug), is known, easy to measure, and is often 

associated with a well-defined outcome phenotype, such as lowering blood pressure (84).  In 

addition, for many pharmaceuticals, the mechanism of action and metabolic pathways are well-

understood, making targeted studies with a prior hypothesis more successful than agnostic 
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GWAS studies, particularly given the usual small population sizes of these studies, and findings 

from such studies easily interpretable (Table 1, Lesson 1).   

An important lesson from pharmacogenomics studies relates to the importance of 

studying diverse populations since considerable variation in drug response across ethnicities 

have been observed.  In many cases, this variation is due to frequencies of genetic variants 

depending on population ancestry (84).  For example, in East and South-East Asian populations, 

a strong association of carbamazepine-induced Stevens Johnsons Syndrome was reported for the 

human leukocyte antigen-B (HLA-B)*1502 allele (OR 84.75; 95% CI 42.53-168.91; P=8.96 x 

10
-5

), while no associations were observed in Japanese or Caucasian patients (89). To date, a 

majority of GWAS and pharmacogenomics studies have been conducted in populations of 

European descent.  Performing genetic studies on populations of diverse ancestry will likely 

provide further insights into disease mechanisms and ensure that all populations derive benefits 

from pharmacogenomics research (90) (Table 1, Lesson 7).    

GxE findings in pharmacogenomics may also be applied to disease prevention, such as 

smoking cessation.  Evidence suggests that both nicotinic receptor α5 subunit (CHRNA5) and 

cytochrome P450 2A6 (CYP2A6) genotypes influence smoking cessation success and response to 

pharmacotherapy.  In a large smoking cessation trial, the effectiveness of smoking cessation 

pharmacotherapy and medication efficacy was dependent on CHRNA5 haplotype (91).  Similar 

pharmacogenomic interactions were observed in patient responses to nicotine replacement 

therapy with CHRNA5 (92) and CYP2A6 genetic variants (93). An additional study reported that 

the prescription medication varenicline was more efficacious than nicotine patches and depended 

on the CYP2A6 genotypes for slow metabolizers, while the effect of the common drug bupropion 



17 

 

on smoking relapse did not seem to be affected by CYP2A6 genotype-driven nicotine metabolism 

(93, 94).  These studies support the notion that personalized smoking cessation intervention 

based on genotype may increase the effectiveness of such treatments (Table 1, Lesson 2). 

In another example of GxE interactions in pharmacogenomics related to disease 

prevention, researchers performed an agnostic genome-wide GxE gene discovery study in 

colorectal cancer patients with regular use of aspirin or non-steroidal anti-inflammatory drugs or 

both medications.  Use of aspirin and/or non-steroidal anti-inflammatory drugs was associated 

with reduced risk of colorectal cancer in individuals with MGST1 TT genotypes and higher risk 

among those with the TA or AA genotypes (89). Meanwhile, regular use of aspirin and/or non-

steroidal anti-inflammatory drugs was associated with lower risk of colorectal cancer among 

individuals with IL16 AA genotypes but not with the less common genotypes.  These results may 

have implications for targeting populations at risk of colorectal cancer for specific intervention 

efforts such as treatment with non-steroidal anti-inflammatory drugs and/or aspirin based on 

genetic information (Table 1, Lesson 2).   To detect these interactions, the investigators 

combined data from 10 observational studies for a total of 8634 cases and 8533 controls.  Even 

with this large sample size, only a few interactions were observed (Table 1, Lesson 6). 

Conclusions 

The characteristics of the above examples illustrate several important lessons for GxE 

research.  First, studying variants that are known to disrupt exposure metabolism is a promising 

strategy for identifying disease-related variants that interact with exposure.  Other pathways 

where mechanisms of exposure action are well-understood (e.g. pharmacogenomics) may also be 

successful approaches.  Second, studying GxE in human studies designed to characterize a 
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specific exposure (such as arsenic or specific pesticides) over an extended period and in a large 

population will provide opportunities to utilize high-quality exposure measures, to study a wide 

range of exposure levels, and to examine longitudinal measures of exposure.  Importantly, using 

carefully collected and comprehensive exposure data with a wide variation among study 

participants will increase statistical power for GxE detection. Even with high quality exposure 

assessment, many of these studies required large population sizes for the GxE discovery.  In 

addition, GxE research should include diverse populations representing many geographic areas, 

cultures, and ethnicities.  Finally, functional studies including model systems, laboratory studies 

or biomarkers measured in human tissues may lead to valuable insights to GxE findings, 

complimenting large population based epidemiology findings. 
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Table 1.  Summary of Lessons Learned from GxE Examples 

Lessons Interaction and Phenotype 

1. GXE in metabolism genotype-phenotypes 
are usually related to ADME (absorption, 
distribution, metabolism, and excretion) 
characteristics of targeted exposures. 
These are an obvious place to explore 
biological pathways and candidate genes. 

 Phenylketonuria and Glucose-6-
Phosphate deficiency: single metabolism 
genes x diet/pharmacological agents   

 CYP2D6/PON1/ALDH2 with pesticide 
exposure for Parkinson’s disease 

 NAT2 and smoking for bladder cancer  

 ALDH2*2 and alcohol intake for 
esophageal cancer  

 AS3MT and arsenic for skin lesions 

 Pharmacogenomics examples 

2. GxE Discoveries can lead to 
environmental interventions to prevent 
diseases (especially in cases where 
presence of both are required for 
outcome) 

 Phenylketonuria and Glucose-6-
Phosphate deficiency: single metabolism 
genes x diet/pharmacological agents  

 CYP2C9/VKOR1 and warfarin for 
anticoagulation response 

 Nicotine metabolism genes and therapy 
for smoking cessation  

 Aspirin/NSAIDs use and MGST1/IL16 for 
colorectal cancer  

3. Temporal considerations (birth cohorts, 
timing of exposure, etc.) may impact GxE 
findings and need to be considered 

 PON1 and pesticide exposure for 
Parkinson’s disease  

 FTO and physical activity for BMI 

4. Quality of exposure assessment impacts 
detection of GxE 

 PON1 and pesticide exposure for 
Parkinson’s disease  

 FTO and physical activity for BMI  

 NOS2 and traffic pollution for respiratory 
symptoms 

5. Scale studied can impact detection of 
interaction  

 NAT2 and smoking for bladder cancer  
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6. Large population sizes typically needed 
for GxE discovery 

 NAT2 and smoking for bladder cancer  

 FTO and physical activity for BMI 
(Caucasian populations)  

 Aspirin/NSAIDs use and MGST1/IL16 for 
colorectal cancer 

7. Variability in exposure distribution 
increases power to detect G x E and 
importance of investigating different 
ethnically and geographically diverse 
populations  

 ALDH2*2 and alcohol intake for 
esophageal cancer  

 FTO and physical activity for BMI  

 AS3MT and arsenic for skin lesions 

 NOS2 and traffic pollution for respiratory 
symptoms  

 Carbamazepine x HLA-B for Stevens 
Johnsons Syndrome 

8. No GxE Method is Universally the Most 
Powerful - Appropriate GxE method 
depends on underlying assumptions; 
correlations between risk factors; and 
true GxE model 

 ALDH2*2 and alcohol for esophageal 
squamous-cell carcinoma  

 See Gauderman et al. companion 
manuscript (1) 

9. Studying highly exposed 
populations/cohorts can provide high 
quality exposure assessment  

 FTO and physical activity for BMI   

 10q24.32 x arsenic and arsenic lesions  

10. Model systems and functional 
approaches may provide GxE insights 

 Genetics of lead susceptibility (Drosophila 
model) 

 FTO and physical activity for BMI (human 
tissue samples/mouse models) 

 ALDH2 and pesticides for Parkinson’s 
disease (ex vivo model system) 

 NOS2 and traffic pollution for respiratory 
symptoms (biomarker study) 

 

Abbreviations:  ALDH2, aldehyde dehydrogenase 2; AS3MT, arsenite methyltransferase; CYP, 

cytochrome P-450; FTO, fat mass- and obesity; GxE, gene-environment; HLA-B, human 

leukocyte antigen-B; NAT2, N-acetyltransferase 2; NSAIDs, non-steroidal anti-inflammatory 



27 

 

drugs; NOS2, nitric oxide synthase 2; PON1, paraoxonase 1; VKORC1, Vitamin K epoxide 

reductase complex subunit 1 




