UC Irvine
UC Irvine Previously Published Works

Title
Semigeostrophic Theory on the Hemisphere

Permalink
https://escholarship.org/uc/item/2br2r74\

Journal
Journal of the Atmospheric Sciences, 48(12)

Authors

Magnusdottir, Gundrun
Schubert, Wayne H.

Publication Date
1991-06-01

DOI
10.1175/1520-0469(1991)048<1449:STOTH>2.0.CO;2

Copyright Information

This work is made available under the terms of a Creative Commons Attribution
License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2br2r74v
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

15 JUNE 1991

GUDRUN MAGNUSDOTTIR AND WAYNE H. SCHUBERT

Semigeostrophic Theory on the Hemisphere
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Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

(Manuscript received 23 July 1990, in final form 18 December 1990)

ABSTRACT

This paper presents the combined isentropic and spherical geostrophic coordinate version of semigeostrophic
theory. This is accomplished by first proposing a spherical coordinate generalization of the geostrophic momentum
approximation and discussing its associated conservation principles for absolute angular momentum, total
energy, potential vorticity and potential pseudodensity. We then show how the use of the spherical geostrophic
coordinates allows the equations of the geostrophic momentum approximation to be written in a canonical
form that makes ageostrophic advection implicit. This leads to a simple equation for the prediction of the
potential pseudodensity. The potential pseudodensity can then be inverted to obtain the associated wind and
mass fields. In this way the more general semigeostrophic theory retains the same simple mathematical structure
as quasi-geostrophic theory—a single predictive equation which does not explicitly contain ageostrophic advection
and an invertibility principle. The combined use of isentropic and spherical geostrophic coordinates is crucial
to retaining this simplicity.

In order to demonstrate how the theory applies to problems of barotropic-baroclinic instability and Rossby~
Haurwitz wave dispersion, we derive the semigeostrophic generalization of the Charney-Stern theorem and
compare the semigeostrophic Rossby-Haurwitz wave frequencies with those of Laplace’s tidal equations. The
agreement between these frequencies is generally better than 0.5%. Thus, the theory appears to encompass a
wide range of meteorological phenomena including both planetary-scale and synoptic-scale waves, along with
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their finer scale aspects such as fronts and jets.

1. Introduction

Semigeostrophic theory on the f~-plane (Hoskins
1975; Hoskins and Draghici 1977), which combines
the geostrophic momentum approximation and the
transformation to geostrophic coordinates, has been
widely and successfully used to study phenomena such
as fronts, jets and the life cycle of baroclinic waves.
Recent theoretical research has explored the possibility
of extending semigeostrophic theory to include variable
/. In particular, Salmon (1985) has used Hamilton’s
principle to generalize the definition of the coordinate
transformation and the geostrophic balance to take ac-
count of a variable Coriolis parameter in a Cartesian
framework. Shutts (1989) has extended this approach
via Hamilton’s principle to propose a planetary semi-
geostrophic theory. Using a more conventional ap-
proach that did not involve the use of Hamilton’s prin-
ciple, Magnusdottir and Schubert (1990) made use of
Salmon’s definitions to derive the geostrophic mo-
mentum approximation on the 8-plane and the general
form of B-plane semigeostrophic theory using the is-
entropic coordinate. In the present paper we again fol-
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low the more conventional approach and further gen-
eralize semigeostrophic theory to take account of the
full variation of the Coriolis parameter on the sphere,
defining a more general geostrophic balance and
spherical geostrophic coordinates. Again, we use the
isentropic coordinate in the vertical since combining
it with the spherical geostrophic coordinates reduces
the whole dynamics to just two equations—a predictive
equation for the potential pseudodensity and a diag-
nostic equation (or invertibility principle) whose so-
lution yields the balanced wind and mass fields from
the potential pseudodensity. In isentropic and spherical
geostrophic coordinates the divergent part of the cir-
culation remains entirely implicit. The theory pre-
sented here has been developed as an extension of f-
plane and $-plane semigeostrophic theory and is ap-
propriate for the study of midiatitude phenomena when
the full effects of the earth’s sphericity are deemed nec-
essary. It is subject to the same criticisms of its pre-
decessors concerning the distortion of curvature effects
and the neglect of the geostrophic advection of the
ageostrophic flow. The theory is generally inappropriate
for the study of equatorial phenomena and should thus
be regarded as hemispheric rather than global. In this
respect it should be considered a theory that is com-
plementary to that of Shutts (1989), whose primary
goal has been the development of a global extension
of semigeostrophic theory.
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The outline of the paper is as follows. In section 2
we propose a generalization of the geostrophic mo-
mentum approximation to the sphere [Egs. (2.1)-
(2.7)] and show that this spherical geostrophic mo-
mentum approximation satisfies angular momentum
and energy principles similar to the primitive equations,
the primary difference being that the wind is evaluated
geostrophically. Both the definitions of the geostrophic
wind and the spherical geostrophic coordinates are
generalizations of the S-plane definitions. We then de-
rive the potential pseudodensity equation (section 3)
and the invertibility relation (section 4), the combi-
nation of which constitutes the entire dynamics. In
sections 5 and 6 we examine some consequences of
linearized versions of the theory. We derive the gen-
eralized form of the Charney-Stern theorem on com-
bined barotropic-baroclinic instability and compare
the frequencies of semigeostrophic Rossby-Haurwitz
waves with the frequencies obtained from Laplace’s
tidal equations.

2. Generalizations of the geostrophic momentum ap-
proximation and geostrophic coordinates

Using longitude A, latitude ¢, and potential tem-
perature 8 as independent variables, let us approximate
the primitive equations by

D .
=2 _ 2Q[v sin® + vy(sing — sind)] — 2 [vg tand
Dt a
cosd oM
+ —v)tanp|+ ——— =0, (2.1
(vg cos ¢ v) anga} a cospon (21)
Dy

Dtg + 2Q[u sin® + u,(sing — sin®)] + % [ug tand

cos® oM
+ - + o= 2.2
(u cos ¢ ug) tan<p} adep 0, (22)

oM
— =11 2.
% , (2.3)
Do du d(v cosg) a0
— +—=1=0, (2.4
Dt G(a cos¢pdN  acospdd a0 (24)
where
D 9 ] 0 . 0
—_ = _— —+6= (2.
Dt ot “ a cos¢ar v ado a0 (2.5)

is the total derivative, M = 6II + gz the Montgomery
potential, IT = ¢,(p/po)" the Exner function, ¢ = —3dp/
a0 the pseudodensity, (u#, v) the eastward and north-
ward components of the velocity, (u,, v,) the geo-
strophic wind components given by

( cos® cos¢)

v —u
cosgp’ Ccosd

o1 (oM oM
29 sin® \ a cos¢pd\’ ado

), (2.6)
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® the latitude part of the spherical geostrophic coor-
dinates

v

A, sin®) = { A+ ———2——,
(4, sin®) ( a2Q sin® cos

U, cos P

SING = o0 sind

) , (2.7)
and tang = (sin® + sing)/(cos® + cos¢). We shall
henceforth refer to (2.1)~(2.7) as the spherical geo-
strophic momentum approximation. Equations (2.1)
and (2.2) revert to the primitive equations when (1,
vg) are replaced by (u, v) and & is replaced by ¢. Just
as in the fplane geostrophic momentum approxima-
tion the total time derivative acts only on the geo-
strophic part of the wind, which results in the same
limitations regarding curvature effects as discussed in
Hoskins (1975). The second parts of the Coriolis terms
in (2.1) and (2.2) can be regarded as corrections for
the fact that the first parts contain the Coriolis param-
eter evaluated at ® rather than ¢. A similar interpre-
tation can be applied to the tang terms. The trans-
formed latitude, the second part of (2.7), which enters
the definition of the geostrophic wind (1, v} in (2.6),
is an approximation to Hack et al.’s (1989) potential
latitude coordinate. Because of the sin® factor in the
denominator of (2.6), there is difficulty in applying
the theory globally. In the following we shall regard
the theory as hemispheric and applicable primarily to
midlatitude phenomena.

~ The motivation for the approximations (2.1)-(2.2)
and the definitions (2.6)-(2.7) is that they collectively
lead to the canonical momentum equations (2.18)-
(2.19) and consequently to a form of the total deriv-
ative that does not have any horizontal ageostrophic
advection. For typical atmospheric flows the positional
shifts in transforming from (A, ¢) to (A, &) are small.
For example, in a midlatitude region with geostrophic
velocity components of order 10 m s™!, the positional
shifts are about 100 km.

The spherical geostrophic momentum approxima-
tion maintains important conservation principles of
the primitive equations. The absolute angular mo-
mentum principle is obtained by simply noting that
(2.1) can also be written as

D oM
— (Qa? cos?®) + — =
Dt(acos ) N 0,

(2.8)
where, by (2.7), Qa? cos?® = Qa? cos’¢ + ua cosd
X (sing + sin®)/(2 sin®) is the approximate absolute
angular momentum. This shows that ® is an approx-
imate absolute angular momentum coordinate. '
The kinetic energy principle associated with the
spherical geostrophic momentum approximation can

“be obtained by adding u, times (2.1) and v, times (2.2).

When this is done, there is cross-cancellation of the
tan® terms and the second part of the Coriolis terms.
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Collecting the remaining terms and using (2.6) and
(2.7) we obtain

DK, +u oM +v oM
Dt a cos¢g ol aded

where K, = §(1,* + v,?) is the geostrophic kinetic en-
ergy. Combining this result with (2.4) we obtain

=0,

d
5 (KD + Lou(K, + g2)]

9
a cospar

g
+ m {ov cos(K, + gz)]
ot

Multiplying (2.4) by ¢, 7 we obtain the thermodynamic
energy equation

+ (—% [o’b(Kg +gz)— gz @] +oaw=0. (2.9)

i)
Ey (oc,T) + (ouc,T)

a cosgan
+———(ov os¢cT)+i( 0c,T)
2 cosgdg 0 PPl ) T 5 LoVG

(2.10)

where Q = I14. The addition of (2.9) and (2. 10) causes
cancellation of the conversion term oaw and leads to
a total energy equation. We take the same view of the
lower boundary as in Hoskins et al. (1985), assuming
that isentropic surfaces cross the earth’s surface, con-
tinuing just under it with pressure equal to the surface
pressure. At any horizontal position where two distinct
isentropic surfaces run just under the earth’s surface,
there is no mass trapped between them, so that ¢ = 0
there. Let us regard the bottom isentropic surface as
the largest value of § which remains everywhere below
the earth’s surface. Assuming the top boundary is both
an isentropic and isobaric surface, assuming no topog-
raphy and vanishing 6 at the top and bottom, we can
integrate the total energy equation over the entire at-
mosphere to obtain

— gaw = ¢,

a% f f f (Kg + ¢,T)0a? cospd\dedb

- f f f Qoa’ cospdNdpdd. (2.11)

Thus, except for the fact that the kinetic energy is eval-
uated geostrophically, the governing equations (2.1)-
(2.7) have a total energy conservation principle iden-
tical to the one that exists for the primitive equations.

We will now proceed to transform (2.1) and (2.2)
into the spherical geostrophic coordinates defined by
(2.7). The purpose of the coordinate transformation
is to make the ageostrophic flow completely implicit.
Combining spherical geostrophic coordinates with the
isentropic coordinate produces the desired result. De-
fining ® = ¢ and T = ¢ (but noting that 9/9 and 9/t
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imply fixed A, ¢ while 8/30 and d/dT imply fixed A,
®), we can show that derivatives in (A, ¢, 6, ) space

are related to derivatives in (A, ®, ©, T') space by

S5k an
a?f%% ga%’ (2.14)

Applying (2.12)-(2.15) to the Bernoulli function AM*
= M + 1(u,* + v,%), it can be shown that

aM oM oM GM oM* oM™

N dsing’ 30 ° dA ’Isind

U + 1% (cos’® —s1n2‘1>) oM™ OM* (2.16)
sind cos’® 40 > 9T ) T

In most cases the additional term in the meridional
transformation constitutes a small correction. An es-
timate of the ratio of the magnitude of this term to the
magnitude of M/ d sing is (V/Qa)(1 + cos2®)/(sind
X sin2®) where V denotes the typical magnitude of
the geostrophic wind. For ¥ ~ 10 m s™! this ratio is
1/14 at 30°N, 1/75 at 60°N, and approaches zero at
the pole. However, for strong flows such as the win-
tertime East Asian jet, this ratio may approach 1/2,
in which case the additional term is not negligible. In
section 4 we shall point out some simplifications which
result from the neglect of this additional term.

The transformation relations (2.12)-(2.15) also
imply that the total derivative (2.5) can be written as

D 9

3
DA D23 .0

Dt 6T+ Dt 0A ' Dt 9 a0 (217)
With the aid of (2.16) we can now show that (2.1) and
(2.2) take the canonical form

D® oM *
—_—— 2.1
24 sinda Dt  acos®IA’ (2.18)
DA oM™
—2Q sin® b — = . .1
sin®a cos D 200 (2.19)

When (2.18) and (2.19) are used in (2.17) for DA/ Dt
and D®/Dt, we see that a major advantage of the
transformation from (X, ¢, 0, t) space to (A, ®, 0, T')
space is the absence of ageostrophic advection in
(2.17).
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3. Fundamental prognostic equation: Potential pseu-
dodensity equation

Here we shall use potential pseudodensity rather
than potential vorticity as a fundamental variable be-
cause the theory in isentropic coordinates produces an
elegant form of the potential pseudodensity equation.
First we derive the equation for the absolute isentropic
vorticity. Combining the derivatives of (2.18) and
(2.19) in such a way as to form the total derivative
of 2Qsin®J(A,sin®)/d(A,sing), i.e., forming

Ay[(2.18) cos Plsing — (SINP )sing[ (2.19)/cos ®],
— Aging[(2.18) cos @], + (sin®),[(2.19)/cos Pling,
results in

D_§‘+§_( ou

a cospar

+ (v cos¢))

Dt a cos¢ap

d d \.
- (£5+ n(-)sinq&)a =0, (3.1)

where

(&n, ) =2Q

5 sin<1>( d(A, sin®) (A, sin®) I(A, sm<I>)) .

d(sing, 8) * 3(8,N) (A, sing)
(3.2)

Eliminating the horizontal divergence between (2.4)
and (3.1) we obtain
d

DP 3 . 80
"E—(Sa“?asim*%)”—faé’ (3:3)

where P = {/ o is the Rossby-Ertel potential vorticity.
The last step in (3.3) follows from (3.2) and (2.13)-
(2.15). This shows that d/90 is actually the derivative
along the vorticity vector and thus we could refer to
(A, @, 0, T) as “vortex coordinates.”

We define the potential pseudodensity ¢* by

. _ 2Q sind
e

so that the potential vorticity P and the potential pseu-
dodensity o* are related by Pe* = 2Q sin®. Thus, when
(3.3)is manipulated into an equation for ¢* and when
the total derivative is expressed in geostrophic space

o, (34)
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using (2.17)—(2.,19); we can write the fundamental
predictive equation of the model in the flux form

9a* 9 __o*  oM*
dT  acosPIA 2Q sin® add
J ot M*\ 8 .
* Y * == U, .
a cos PP (29 sin® adA ) + 90 (a*0) = 0. (3.5)

In the next section we shall discuss how the ¢* predic-
tions of (3.5) can be inverted to obtain M™* and the
associated wind and mass fields.

Invertibility
principle

The potential pseudodensity is a combination of the
mass field ¢ and the wind field 2Q sin®/ = d(A, sing)/
d(A, sin®). Since o is related to M* through hydro-
static balance and 3(A, sing)/d(A, sin®) is related to
M* through geostrophic balance, ¢* depends only on
M*, Thus, all the balanced fields may be obtained from
the potential pseudodensity through the invertibility
principle. This relation between M* and ¢* is derived
as follows. From the definition of ¢* we have

d(A, sing, II)

+ To* =
3(A, sin®, 8) 0,

(4.1)

where T' = dI1/dp = «I1/p. If the additional term in
the second entry of (2.16) is neglected, the geostrophic
relation for u, simplifies, with the result that the geo-
strophic and hydrostatic relations in (A, ®, ©) space
take the form

oM™ oM* oM*
acos®IN’ add®’ 90

(fog, = fug, I1) = ( ) » (4.2)

where f = 2Q sin®. Using these geostrophic relations
in the spherical geostrophic coordinate relations (2.7),
we can express A and sing in terms of M* as

1 oM*
A=A 2 a? cos>®OA (43)
® oM*
sing = sin® — C(}Sz prrre (4.4)

Substituting (4.3), (4.4) and the last entry of (4.2)
into (4.1), we obtain

FM* 7 reoss o (L OM* 2 M*
a? cos?PIA? ad® \ f? acos®?®dN| acosPIAIO
1 > M* , @ cosd IM* 5 9> M*
- == - + To* = 0. 4.
7| Zcosvonse 7 acos<I>6<I>( 12 a6<I>) I~ e%ae =0 (452)
82 M* 82 M* 82 M*
a cos®IN0O adPoo 902
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Neglecting the effects of topography and assuming that
the lower boundary is the constant height surface z = 0
and the isentropic surface ® = O, we conclude that
M = OII at © = Oz. Written in terms of M*, this lower
boundary condition becomes

M 1 M* \? oM*\?
0 — M* +— -
90 212 [(acos@&A) +(a6<b)] 0
at 0 =03 (4.5b)

Assuming that the upper boundary is an isentropic and
isobaric surface with potential temperature ©; and
pressure pr, the upper boundary condition for (4.5a)
becomes

oM*
a0

The only lateral boundary condition required can be
imposed at the equator or a conveniently chosen low
latitude and depends on the particular application. For
a given o*, we can regard (4.5) as a nonlinear second-
order problem in M*. Although I' depends on M*,
this additional nonlinearity is weak.

Equations (3.5) and (4.5) form a closed system for
the prediction of ¢* and the diagnosis of M*. An ef-
ficient solver for (4.5) is a prerequisite since it must
be solved at each time step. Fulton (1989) and Fulton
and Schubert (1991) have described a multigrid solver
for the two-dimensional f-plane problem. This solver
addresses the problem of isentropes intersecting the
earth’s surface by adopting the massless region ap-
proach outlined in section 2. The discontinuity in ¢*
on an isentropic surface also puts strict requirements
on the numerical procedure for predicting o* using
(3.5) since one might expect a ripple effect from the
discontinuity. However, a problem similar to this one
has been solved by Arakawa and Hsu (1990) and Hsu
and Arakawa (1990). For solving (2.4) in a primitive
equation model they proposed a finite difference
scheme that has very small dissipation and computa-
tional dispersion, and guarantees positive definiteness.
Thus, the massless layer approach to the lower bound-
ary, which is consistent with the work of Bretherton
(1966), seems to be useful not only conceptually but
also computationally.

=II(p;y) at 0O = 0. (4.5¢)

5. The Charney-Stern theorem generalized to semi-
geostrophic theory on the hemisphere

The Charney-Stern (1962) theorem is so funda-
mental that one would expect it to be valid for any
consistent balanced theory. Here we derive the form
of this theorem for semigeostrophic flow on the hemi-
sphere. Our approach is similar to Eliassen’s (1983)
and to the approach used for 8-plane semigeostrophic
theory (Magnusdottir and Schubert 1990) and consid-
ers particle displacements around a mean flow. The
mean flow is a vertically and meridionally varying zonal
current. Neglecting frictional and diabatic effects, and
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linearizing the potential pseudodensity equation (3.5)
around the mean flow, we obtain

Dot 3 [
— P | — =0
$t+vgfa6<1>(f) ’

where D/ Dt = 8/dT — (1/f)(0M*/ ad®)d/a cos POA
and fv, = AM*'/a cos®IA. Introduction of the north-
ward geostrophic particle displacement 7%/, defined by
v, = Dy'/ Dt, allows us to integrate (5.1) to obtain

(5.1)

d [a*
a*' + n’f;gg(T) = 0.

Multiplying (5.2) by v, and taking the zonal average
at fixed ®, we obtain

(5.2)

9
T

1= 0 (TN = _
[277 fa&@(f)]+vgo 0.

The linearized version of the invertibility relation (4.1)
can be written as

(5.3)

N 3(5ing, 7)
JdA d(sind, ©)

d((sing)’, p)
a(sin®, 0)
d(sing, p')
3(sin®, ©) |
where fa cos®)\ = —v, and fa(sing)’' = u}, cos®. Mul-

tiplying (5.4) by v} and taking the zonal average, we
obtain

+o*' =0, (5.4)

—— _ .. 0P 9(sing) 3p d(sing)’
beo T T 36 0 sin®

. Jdsing ap’ 9 sing Qg_’
2\ 00 9dsin® JIsin®dd/ "
Multiplying this by f cos®, rearranging with the aid

of the zonally averaged thermal wind equation, and
then substituting the result into (5.3), we obtain

K e PRSP
aT[Z"f cos® o\ 7

9 [f(amv,_p,_

+ cos®iP 0 ¢

i Q I (1 /_amﬁ —
+6®[f(aq>vg(sm¢) 7% vgp)]—O, (5.5)

0 ———;
30 ve(sing) ) cos<1>]

which relates the time change of the wave activity to
the divergence of the Eliassen—Palm flux. We now in-
tegrate (5.5) over the meridional plane, from the lower
bounding latitude to the pole. The boundary flux at
the top vanishes since both dp/d® and p’ vanish there.
To show that the lower boundary flux vanishes, we
proceed as follows. From the lower boundary condition
on the basic state flow we have ©I1 — M* + 7,%/2
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= (), Differentiating this with respect to sin® and using
the geostrophic relation, we obtain

ap d sing
0P o®
=0 at ©=05 (56)

From the lower boundary condition on the perturba-
tion flow we have OgI' — M*’ + i, ,u, = 0. Multiplying
this by v, and taking the zonal average, we obtain
OI'v,p’ + a2Q tandu,v,(sing) =0 at © = Q5.
(5.7)

ol — + a2Q tandu,

Combining (5.6) and (5.7), we conclude that

d singg —
90 VP =0 at 0=0z (58)

Thus, the lower boundary flux also vanishes and the
result of integrating (5.5) over the meridional plane is

iff17f2cos2¢i "\azdo =0, (59)
orJJ 27 ad® \ f W
and we conclude that the integral in (5.9) must be
constant in time. In order for disturbances to grow in
time, i.e., for 5’ to grow in time, d(v */f)/9® must
have both signs. This is the spherical semigeostrophic
generalization of the Charney-Stern theorem, which
states that a necessary condition for combined baro-
tropic-baroclinic instability is that the isentropic me-
ridional derivative of the inverse potential vorticity
must have both signs, i.c., potential vorticity must have
an extremum along isentropes that slope from equator
to pole.

0p ——,
Y3 vg(sing)’ —

6. Rossby-Haurwitz wave solutions

Consider adiabatic, frictionless flow for the quasi-
Boussinesq case in which I' is set equal to the constant
I'vc = R/pp. Then, linearizing about a basic state of
rest with a9 = (pp — pr)/(Or — 03), the linearized
potential pseudodensity equation (5.1) and the linear-
ized invertibility relation (5.4) can be combined into

9 [_M* sin’® 9 (cosd OM*

T | cos?®IA2  cos® 0P \sind 9
+ 40242 sin2® 9> M*’

90?2

oM™’
oA

}+29 =0. (6.1)

I‘()O'O
Searching for solutions of the form

M*'(A, 2,0, T)

, (6.2)

PP [AUSL

(0r — 03)
we obtain the meridional structure equation

L(M) = ¢, M, (6.3)
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where
Lo (o), (s
cos®d® \sin’® d®) sin’® \w cos’®/’
(6.4)
w = »/2Q is the nondimensional frequency, e,

= 4Q%a?/c,? is Lamb’s parameter, ¢,, = ¢/ a,, and c?
= Tooo(Or — 93)2 = R(®7 — ©p)(ps — pr)/ps. The
linearized lower boundary condition is satisfied if the
constants «,, are the solutions of the transcendental
equation «,, tana,, = (07— 05)/ 0. For the U.S. Stan-
dard Atmosphere we have O = 333 K, pr = 22.5 kPa,
0p = 287 K, pg = 100 kPa, in which case ¢ = 101.2 m
s™!, and the solutions of the transcendental equation
are a,, =~ 0.1241mx, 1.0160x, 2.008 1=, 3.0054x, - - -,
correspondingtom =0, 1,2, 3, « + +. The first of these
roots (m = 0) corresponds to the external mode and
yields co = 259.6 m s™! and ¢ = 12.81, while the re-
maining roots (which are approximately integral mul-
tiples of ) correspond to internal modes, the first of
which yields ¢, = 31.71 m s™! and ¢; = 858.6. For
convenience of comparison of our results with the La-
place tidal equation results of Longuet-Higgins (1968),
let us solve the eigenvalue problem (6.3) for ¢, = 10
and ¢; = 1000, which are characteristic of the external
and first internal modes. We have discretized (6.3) on
a uniform grid using second-order finite differences
with A® = 0.5 deg and with boundary conditions
=0 at & = 0, v/2. The resulting matrix eigenvalue
problem has been solved for the eigenvalues w and the
corresponding eigenvectors using EISPACK routines.
The eigenvalues for s = 1, 2, + - -, 5 and for the first
two meridional modes are shown in Table 1. For com-
parison, the values in parentheses give the percentage
deviations of the semigeostrophic eigenvalues from
Longuet-Higgins’ (1968, Table 5) eigenvalues for those
Rossby-Haurwitz modes with M = 0 at & = 0. In
general, the semigeostrophic theory gives eigenvalues
very close to those of Laplace’s tidal equations, with a
maximum error in Table 1 of 0.56%. This close agree-
ment of semigeostrophic theory with tidal theory can
be understood by noting that the tidal theory also leads
to the eigenvalue problem (6.3) but with £ defined by
[Siebert 1961, Eq. (3.27); Matsuno 1966, Eq. (24);
Longuet-Higgins 1968, Eq. (2.10); Chapman and
Lindzen 1970, p. 110, Eq. (21)]

I= d cos¢ d
cos¢dg \sin%p — w? do

1 s(sin%¢ + w?) s

sin%¢ — w? \w(sin?¢ — w?) cos?p

) . (6.5)

The only difference between the semigeostrophic op-
erator (6.4) and the Laplace tidal operator (6.5) is the
neglect of the w? factors, which, according to Table 1,
are quite small for Rossby-Haurwitz wave motion.
This explains why the errors in the semigeostrophic
eigenvalues become even smaller as w becomes smaller.



15 JUNE 1991

TABLE 1. Semigeostrophic eigenvalues w = v/2Q for ¢,, = 10 and
1000, first and second meridional modes, and zonal wavenumber s
=1,2, - - -, 5. The values in parenthesis are the percentage deviations
of the semigeostrophic eigenvalues from the eigenvalues computed
using the Laplace tidal equations (Longuet-Higgins 1968, Table 5).
A negative percentage deviation means that the semigeostrophic ei-
genvalue is an underestimate of the Laplace tidal equation eigenvalue.

en = 1000 (first internal

em = 10 (external mode) mode)

s=1

057793 .028366 0063949 .0036298

(—0.40%) (—0.04%) (—0.03%) (+0.04%)
s=2

.082053 .042745 .012528 0071675

(—0.56%) (—0.07%) (—0.11%) (40.02%)
s5=3

.088949 049692 .018172 .010529

(—0.47%) (—0.07%) (—0.24%) (—0.00%)
s=4

.088402 .052626 023161 .013643

(—0.34%) (~0.06%) (~0.37%) (—0.04%)
s=35

.084922 .053365 .027398 .016460

(—0.24%) (—0.05%) (—0.49%) (—0.07%)

With such small errors in the Rossby-Haurwitz wave
frequencies, one would expect the semigeostrophic
model and the primitive equation model to give very
similar simulations of Rossby-Haurwitz wave disper-
sion, with the obvious exception that the semigeo-
strophic model would not allow energy propagation
across the equator. .

In passing, it is interesting to note that the meridional
structure equation (6.3 ) is very similar to one obtained
by Matsuno (1970, 1971) in his heuristic extension of
linear quasi-geostrophic theory to spherical coordinates
for the study of wave propagation into the stratosphere.

7. Concluding remarks

The main results presented here are the generalized
geostrophic momentum approximation and the spher-
ical geostrophic coordinates (2.1)-~(2.7), which to-
gether produce the two fundamental equations (3.5)
and (4.5) for the prediction of potential pseudodensity
¢* and the diagnosis of M* from ¢*. Thus, in isentropic
and spherical geostrophic coordinates, the mathemat-
ical structure is the same as for semigeostrophic theory
in isentropic coordinates on the f-plane (Schubert et
al. 1989) and on the B-plane (Magnusdottir and
Schubert 1990). In fact, we have encountered this same
mathematical structure in previous studies of the gra-
dient balanced vortex model of tropical cyclones
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(Schubert and Alworth 1987) and the zonal balanced
model of the Hadley circulation (Schubert et al. 1990).
The success of this general approach suggests that it
may be the simplest way of looking at all types of bal-
anced flows—whether they be planetary scale waves,
synoptic scale midlatitude baroclinic waves with as-
sociated jets and fronts, or thermally forced tropical
systems. The fact that the present theory is not global
and does not encompass the tropical cyclone and Had-
ley circulation theories as special cases indicates that
a more general theory should be sought. This more
general theory would be global and would be based on
a balance condition more general than geostrophy. This
condition would include gradient balance as a special
case, which would allow simulation of flows with large
curvature vorticity. The formulation of the proper bal-
ance condition and coordinate transformation for such
a theory remains a challenging and attractive problem.
The attraction is that such a theory would be nearly
all-encompassing. It would describe all balanced flows
of meteorological interest with the exception of certain
tropical systems which are not determined by potential
vorticity dynamics. Work in this direction will be dis-
cussed in a forthcoming paper.
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