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Deficits in Bioenergetics and Impaired Immune
Response in Granulocytes From Children With Autism

abstract
Despite the emerging role of mitochondria in immunity, a link between
bioenergetics and the immune response in autism has not been ex-
plored. Mitochondrial outcomes and phorbol 12-myristate 13-acetate
(PMA)–induced oxidative burst were evaluated in granulocytes from
age-, race-, and gender-matched children with autism with severity
scores of$7 (n = 10) and in typically developing (TD) children (n = 10).
The oxidative phosphorylation capacity of granulocytes was 3-fold
lower in children with autism than in TD children, with multiple
deficits encompassing $1 Complexes. Higher oxidative stress in cells
of children with autism was evidenced by higher rates of mitochon-
drial reactive oxygen species production (1.6-fold), higher mitochon-
drial DNA copy number per cell (1.5-fold), and increased deletions.
Mitochondrial dysfunction in children with autism was accompanied
by a lower (26% of TD children) oxidative burst by PMA-stimulated
reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxi-
dase and by a lower gene expression (45% of TD children’s mean
values) of the nuclear factor erythroid 2–related factor 2 transcrip-
tion factor involved in the antioxidant response. Given that the ma-
jority of granulocytes of children with autism exhibited defects in
oxidative phosphorylation, immune response, and antioxidant de-
fense, our results support the concept that immunity and response
to oxidative stress may be regulated by basic mitochondrial functions as
part of an integrated metabolic network. Pediatrics 2014;133:e1405–
e1410
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A higher incidence of mitochondrial dys-
function,1 altered immune response,2–4

increased cellular oxidative damage1,5,6

and decreased antioxidant defenses5,7–11

has been reported in autism, possibly
contributing to its etiology and/or
morbidity. Thus, we explored the pos-
sibility that these pathways could be
conceived as part of a common, inte-
grated mechanism in which basic mi-
tochondrial functions would play a
central role.12–15 To this end, oxidative
phosphorylation (OXPHOS) capacity, im-
mune response to phorbol 12-myristate
13-acetate (PMA), and markers of oxi-
dative stress (reactive oxygen species
[ROS] production, mitochrondrial DNA
[mtDNA] deletions) were evaluated in
granulocytes from children with au-
tism and typically developing (TD)
age- and gender-matched children. Al-
though the choice of studying periph-
eral blood mononuclear cells (PBMCs)
as a biological material could be criti-
cized in the context of autism research,
several reports have confirmed the use
of PBMC gene expression as a valid
surrogate for gene expression in the
brain.16–23 Furthermore, the novel role
for Toll-like receptor 9 (TLR9) in energy
metabolism and cellular protection
has reinforced the conservation of the
innate immunity pathway in non-
immune cells.24

The immune response was tested by
following the activation of granulocytes
by PMA. This soluble stimulus activates
the protein kinase C (PKC)–dependent
phosphorylation of cytosolic compo-
nents of reduced nicotinamide-adenine
dinucleotide phosphate (NADPH) oxidase,
eliciting the translocation of cytosolic com-
ponents to the plasma membrane, as-
sembly of a functional NADPH oxidase, and
the ensuing “respiratory burst”25–27. In
addition, gene expressionof nuclear factor
erythroid 2–related factor 2 (NFE2L2) was
also evaluated because NFE2L2-mediated
phase II antioxidant defenses seem critical
for protecting memory T cells, increasing

neuronal glutathione levels,28 decreasing
the damage mediated by inhibitors of
mitochondrial Complexes I and II,29,30 and
modulating the cellular response to
common environmental allergens.31

CASE REPORT

Granulocytes from 10 children with au-
tismwith severity scores of$7 (median
[quartile1, quartile 3]: 9 [8, 9]32) and 10
age-, gender-, and race-matched TD
children were sampled from individuals
previously described1 and enrolled in
the CHildhood Autism Risks from Ge-
netics and Environment (CHARGE) Study
at the University of California, Davis. All
details on patient selection, diagnosis,
demographic characteristics, and clini-
cal data of the study groups used in this
study were published previously1 and
are summarized in the Supplemental
Information. Detailed descriptions of
sample collection, cell isolation, and
evaluation of outcomes shown in this
study are included in the Supplemental
Information.

To evaluate the OXPHOS capacity of
granulocytes, restingoxygenuptakerates
were evaluated with intact, not activated,
cells suspended in 5 mM glucose in Hanks
buffer saline solution (Table 1). For both
diagnostic groups,.85% of the oxygen
uptake rate was sensitive to 0.2 nmol3
(mg protein)21 oligomycin (not shown),
a specific ATPase inhibitor,33 suggesting
that most, if not all, oxygen uptake ob-

served under these conditions is tightly
coupled to OXPHOS. Granulocytes from
children with autism exhibited a lower
OXPHOS capacity than did those from TD
children, characterized by a 2.9-fold lower
oxygen uptake under resting conditions.

Various segments of the electron trans-
port chain were tested in granulocytes,
namely reduced nicotinamide-adenine
dinucleotide (NADH) oxidase, succinate
oxidase, a-glycerophosphate oxidore-
ductase, and cytochrome c oxidase
activities, all normalized to citrate syn-
thase activity, a marker of mitochon-
drial mass.34 NADH oxidase includes the
transfer of electrons from NADH (de-
rived from malate) to oxygen through
a series of 3 carriers of the electron
transport chain (Complex I, III, and IV)
and finally to Complex V or ATPase. The
rate of oxygen consumption of per-
meabilized granulocytes from children
with autism under phosphorylating
conditions (supplemented with malate-
glutamate and adenosine diphosphate)
was 42% of that of TD children (P, .01;
see Table 1 for averages and Supple-
mental Table 3 for each individual pro-
band). Similarly, succinate oxidase
activity (which evaluates the segment
encompassing Complex II, III, IV, and V)
was 31%of that of TD children (P, .001;
Table 1, Supplemental Table 3). Mean
Complex V or ATPase activity was also
significantly decreased (by 63%; P ,
.005) in children with autism (Table 1,

TABLE 1 Mitochondrial Outcomes in Granulocytes

Outcome Children With Autism TD Children P

Resting O2 uptake 0.38 6 0.09 1.1 6 0.3 .05
NADH oxidase (95% CI) 4.6 6 3.1 (2–7) 10.9 6 4.9 (7–15) .01
Succinate oxidase (95% CI) 1.6 6 1.2 (1–2) 5.2 6 2.0 (5–13) .001
Glycerophosphate oxidoreductase (95% CI) 6.7 6 4.0 (4–10) 13 6 10 (3–23) —

Cytochrome c oxidase (95% CI) 9.9 6 4.3 (7–13) 16 6 13 (5–26) —

ATPase (95% CI) 46 6 28 (27–66) 123 6 54 (80–167) .005
Citrate synthase (95% CI) 166 6 37 (93–239) 110 6 28 (55–166) —

Rate of H2O2 production 0.11 6 0.02 0.07 6 0.02 .04
mtDNA deletions at CYTB 0.54 6 0.01 0.60 6 0.02 .03
mtDNA deletions at ND4 0.43 6 0.01 0.43 6 0.02 —

NFE2L2 gene expression level 0.45 6 0.01 1.00 6 0.03 .01

Data are presented as means 6 SDs. All activities were expressed as nmol 3 (min 3 mg protein)21, then normalized to
citrate synthase also expressed as nmol 3 (min 3 mg protein)21, and multiplied by 1000. CI, confidence interval; CYTB,
cytochrome b; ND4 NADH dehydrogenase subunit 4, .
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Supplemental Table 3), whereas mean
a-glycerophosphate oxidoreductase and
cytochrome c oxidase activities were
not significantly different between di-
agnostic groups.

The type of OXPHOS deficiencies and
the incidence of individuals with au-
tism with OXPHOS deficits followed the
same trend as that reported for the
lymphocytes from the same cohort of
children (.60% for both NADH- and
succinate-oxidase activities; .40% for
ATPase1; Supplemental Table 3), sug-
gesting that the observed effects are not
cell-type specific. Indeed, all mitochon-
drial outcomes tested in lymphocytes
correlated statistically with those ob-
tained with granulocytes from the same
individual (Supplemental Fig 2).

No differences inmitochondrialmass (as
judgedbytheactivityofcitratesynthase34)
were observed in granulocytes from
children with autism and TD children.
However, another putative marker for
mitochondrial mass, mtDNA copy num-
ber per cell, was significantly increased
in granulocytes from children with au-
tism (1.5-fold of that from TD children1;
Supplemental Table 4). Increased mtDNA
copy number without increases in
OXPHOS capacity and/or mitochondrial
mass, as observed in this study, has been
attributed to a cellular response to cope
with oxidative stress35 in an attempt to
sustain adequate levels of mitochondrial
transcripts from wild-type mtDNA.36

Consistent with this view, an increased
mean mitochondrial ROS production
(1.6-fold; Table 1) and increased mtDNA
deletions in the segment encoding for
cytochrome b (CYTB) but not in that
encoding for NADH dehydrogenase sub-
unit 4 (ND4) were observed in gran-
ulocytes from children with autism
(Table 1, Supplemental Table 4).

The respiratory burst in TD gran-
ulocytes, evaluated as the oxygen con-
sumption to produce superoxide anion
after PMA addition, was comparable to
reported control values (1.1 to 7.737 vs 4

nmol O2
.2 3 [106 polymorphonuclear

cells (PMN) 3 minute]21; Table 2,
Supplemental Table 5). Upon activation,
the maximum oxidative burst rate and
the total amount of oxygen consumed
in 5 minutes by granulocytes from
children with autism was 24% and 40%
of that from TD children, respectively
(P, .05; Table 2, Supplemental Table 5).
A longer interval between the addition
of PMA and the start of the oxidative
burst (also called latency) was ob-
served in 7 of 9 children with autism
(1.4-fold; Table 2, Supplemental Table 5),
which is suggestive of a delayed or
defective signal transduction pathway
involving PKC alone or in combination
with other pathways38 (eg, NFE2L2).

In search of a common mechanism that
would explain the above results, we fo-
cused on NFE2L2 because this nuclear
transcription factor regulates clusters of
genesthatcontrolcellularantioxidants,39–41

modulate both innate and adaptive
immune responses,42 and has a strong
association with mitochondrial function,
glucose and fatty acid homeostasis, and

immune response via peroxisome
proliferator-activated receptor g

(PPARg).43–46 Consistent with this hy-
pothesis, the transcript levels of
NFE2L2 (normalized to glyceraldehyde
3-phosphate dehydrogenase [GAPDH])
evaluated by quantitative polymerase
chain reaction were 45% of those of TD
children (Table 1).

DISCUSSION

Thisstudyperformedwithgranulocytes
from children with autism confirms
and extends that previously obtained
with lymphocytes from the samecohort
of children.1 Deficits in OXPHOS were ac-
companied by higher oxidative stress
(increased ROS production, increased
mtDNA deletions, and higher mtDNA
copy number) in both cell types, sug-
gesting that these features are not
cell specific. This report broadens our
knowledge because it includes studies
on the immune response of granulo-
cytes from probands. These cells pre-
sented a lower PMA-mediated oxidative

TABLE 2 Oxygen Uptake of PMA-Stimulated Granulocytes

Outcome Children With Autism (n = 10) TD Children (n = 10) P

Latency, s 42 6 5 30 6 6 .07
Maximum rate of O2 uptake, (nmol O2)

3 (min 3 mg protein)21
1.9 6 0.5 8 6 1 .003

Total O2 consumed in 5 minutes,
(nmol O2) 3 (mg protein)21

28 6 8 70.5 6 0.4 .005

Oxygen uptake rates were evaluated in 5 mM glucose-, calcium-, and magnesium-supplemented Hanks buffer saline solution
without phenol red (20°–22°C) before and after adding 20 mg PMA 3 mL21 and are presented as means 6 SDs.

FIGURE 1
Molecular network linkingNFE2L2-mediated antioxidant and immune responsesandmitochondrial (mt)
OXPHOS and ROS. A disruption of this network starting either with a functional disruption of NFE2L2 or
OXPHOS deficits may contribute to a state of chronic inflammation, accompanied by a diminished
capacity to compensate for conditions of increased oxidative stress, including exposure to environ-
mental triggers, possibly contributing to the etiology and/or morbidity of autism.
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burst with a longer latency to trigger
this response. Taken together, these
findings are in agreement with those
reporting immune dysregulation, mito-
chondrial dysfunction, increased oxida-
tive stress, and decreased antioxidant
or repair capacity in some cases of
autism.1–11,47–50

Several studies suggest that pre- or
perinatal exposure to certain triggers
might imprintastateofbothdysregulated
immune response and mitochondrial
dysfunction in the progeny as a result of
the integration of basic mitochondrial
functions with the immune response and
antioxidant defense mechanisms.51–55

Furthermore, maternal exposure during
pregnancy to various pathogens and/or
the maternal immune response (fever,
inflammation) have been associated
with significant increased risk of autism
spectrum disorder (ASD).56–59 In this
regard, gestational exposure to the viral
mimetic poly(I:C) in rodents resulted in
ASD-like behavioral abnormalities in the
progeny,60 and immune cells from the
same animals had OXPHOS deficits still
present in adulthood.61 These findings
are consistent with the current view
of chronic inflammation in which the
proinflammatory-phase response (mainly
fueled by ATP generated in glycolysis13)
predominates and persists unless ex-
ternal changes are implemented.62 In
our study, the frequency of children (for
whom all outcomes were available)
having both autism and concurrent
deficits in OXPHOS, immune response,
and antioxidant response (considering
values outside the 95% confidence in-

terval) was 6 out of 8, supporting the
concept that immunity and response to
oxidative stress are interconnected and
that they may be regulated by basic
mitochondrial functions as part of an
integrated metabolic network.14

Given the critical role of NFE2L2 as reg-
ulator of the antioxidant response, alone
or in combination with PKC,38 and its
strong association with mitochondrial
morphology,63 glucose and fatty acid
homeostasis, and immune response via
PPARg,43–46 it is likely that a dysregula-
tion in the NFE2L2 pathway may contrib-
ute to a state of chronic inflammation
with a diminished capacity to compen-
sate for conditions of increased oxidative
stress,64 including exposure to environ-
mental triggers,65,66 thereby limiting the
mitochondrial switch to a phase with
increased OXPHOS and more repara-
tive features and lower inflammatory/
cytotoxic responses14,15 (Fig 1). Our find-
ings should be interpreted with caution
because this is a case-control study, in
which blood samples were collected
postdiagnosis in a small number of
probands.

Although we cannot exclude other
mechanisms that could account for our
findings, comparisons between our
study and others reporting a down-
regulation in the expression of genes
encoding for Complexes I, III, IV, and V67,68

or the occurrence of pathogenic mtDNA
mutations69–72 are limited because of
the following issues: (1) the age of the
individuals used spanned from 2 to 60
years old,67,68 above the age range of
our subjects (2–5 years)1; (2) levels of

transcripts from postmortem (frozen
and with varied post-mortem intervals)
brain samples67,68 are likely not com-
parable to OXPHOS activities obtained
with freshly obtained PBMCs; (3) mes-
senger RNA expression does not nec-
essarily predict protein expression and/
or activity73–75; and (4) sequencing of
mtDNA segments of our samples did
not reveal a high incidence of any
pathogenic mutation6 as observed by
others.76 Although some of these ob-
servations could be reconciled con-
sidering differences between tissues
or proportions of mutant mtDNA, no
study has evaluated the gene expres-
sion for NFE2L2 in children with autism.
Thus, we cannot exclude the possibility
that the reported downregulation could
be downstream from NFE2L2.

In conclusion, this is the first report to
our knowledge suggesting a molecular
network linking mitochondrial OXPHOS
and the inflammation/immune response,
opening new doors for future studies
and pharmacologic targets. In this
regard, activation of the NFE2L2 path-
way has been reported as being ben-
eficial at decreasing the behavioral
abnormalities and brain pathology in a
murine model of Huntington disease.77
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