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Abstract

Ventral Corticostriatal Mechanisms of Response Suppression:

An Incentive Cue Responding Task

by

Ali Ghazizadeh Ehsaei

Adaptation to novel environments involves two classes of motivated behaviors;

promoting actions that lead to positive outcomes and suppressing actions that do not

lead to positive outcomes. For animals like mammals, it is likely that in any given

situation many more behaviors are inhibited than are promoted. Importantly, dimin-

ished inhibitory control is a feature of many pathological conditions and maladaptive

behaviors, including impulsivity.

Aspects of motivated behaviors, particularly those involving suppression of re-

sponses, in this thesis, are characterized in rodents using the DS task. In this task,

presentation of a discriminative stimulus (DS) signals availability of sucrose reward

upon a lever press. Importantly, presses outside the DS or during the neutral stim-

ulus (NS) is not rewarded and is shown to be suppressed during training. Given

the hypothesized role of Nucleus Accumbens (NAc) in guiding motivated behaviors,

I first tested its influence on this cued appetitive task. Pharmacological inactiva-

tions of NAc differentiated a sub-region specific contribution to the DS task: NAc

core promoted responding to rewarded cues while NAc shell suppressed unrewarded
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responding, including NS responding. Surprisingly subsequent electrophysiological

recordings in NAc, only showed moderate quantitative differences between the two

NAc subregions. These results, therefore, indicate that the dissociable roles of NAc

subregions are attributable at least partly to their distinct projection targets.

A growing body of evidence implicates the ventromedial prefrontal cortex (vmPFC)

in suppression of unnecessary actions. Since vmPFC projects heavily to NAc shell,

I hypothesized that this corticostriatal projection mediates the learned inhibitory

control in the DS task. Simultaneous vmPFC inactivations and NAc shell recording

confirmed this hypothesis. vmPFC inactivation led to a response disinhibition with

temporal patterns matching that of NAc shell inactivations. Importantly electrophys-

iological results indicate that vmPFC mediates its effect by controlling a dual neural

mechanism in NAc shell: suppression of NS excitations which can drive behavioral

responding to NS and increased firing of gating neurons that are believed to inhibit

spontaneous unreinforced responding.

Together the novel results presented, help reveal the ventral corticostriatal mech-

anism of action suppression with important ramifications for the study of decision

making and its aberrations such as impulsivity or addiction.

Finally, two novel methodologies for construction and interpretation of peri-event

time histograms (PETHs) are developed and used for analysis of scientific results

discussed. For the first method, it is argued that optimal binning of PETHs, is

necessary for accurate firing rate estimation and response detection. The search for

the optimal binsize, is addressed by adapting the Akaike Information Criterion (AIC)

vii



to binsize selection. The second method puts forth a novel iterative deconvolution

technique that can parse out the true event related firings which are often distorted

by conventional PETHs due to temporal proximity of experimental events. Both

methods, thus, address longstanding issues and are instrumental in interpretation of

neuronal firing.
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Overview

This thesis is organized into three parts: part one presents an introduction to

decision making and impulsivity which is followed by the main scientific results and

includes the first three chapters. Part two, the next two chapters, presents the compu-

tational methodology that is developed and used on the data presented in this thesis

to improve the analysis and interpretation of peri-event time histograms. The last

part is a summary and discussion of the scientific findings presented in this thesis.

In chapter 1, first I review some of the psychological concepts related to decision

making by discussing three of the elements that are important for impulsivity and goal

directed behaviors namely: drives, attention and actions. Since impulsivity is known

to be a multifaceted phenomenon (Evenden 1999b) various forms of impulsivity and

various animal models that are developed to test each aspect are also discussed and

differentiated. The behavioral review concludes by introducing the rodent behav-

ioral task used in this thesis to study impulsivity and by describing the behavioral

measures that are used to address various aspects of impulsive behavior. Chapter 1

ends by reviewing the anatomy of the nucleus accumbens (NAc) and its frontostriatal

projections and what is known about the role of this circuitry in action selection and

impulsivity.

Chapter 2 reports the results of my experiments to establish the causal role of the

NAc in incentive cue responding and to dissociate its sub-region specific contributions

1



Overview

to impulsivity using pharmacological inactivations. This is accompanied by single unit

recordings in the NAc showing similarities and differences in the encoding of various

components of goal directed behaviors in NAc sub-regions core and shell.

Chapter 3 presents the result of my investigation into the role of ventromedial pre-

frontal projections to the NAc in suppression of impulsivity. Ventromedial prefrontal

cortex (vmPFC) projects to NAc shell and is itself implicated in response suppression.

Simultaneous inactivation of vmPFC and recording in NAc shell is used to study how

the prefrontal influence in shell neural activity may mediate inhibition of impulsive

actions. The changes in the neural encoding of various task elements in the NAc shell

following inactivations of vmPFC is reported and shown to be consistent with the

role of vmPFC in suppression of unreinforced impulsive actions.

I have developed a few mathematical tools that are important for the neural

analysis presented in this dissertation and have a true potential to be useful for in-

vivo electrophysiology. The next two chapters describe two of the novel methods

developed and constitute the innovative method part of the thesis.

Chapter 4 lays out the theoretical foundations for a deconvolution method that

can separate event related neuronal firings (ERFs) from peri-event time histograms

(PETHs). This method is used to tease apart the components of neural firing in

response to temporally adjacent experimental events. Furthermore, application of

this method on simulated and actual data is presented and the improvement over

PETH is demonstrated.

Chapter 5 lays out the theoretical foundations for an optimal binning technique

2



Overview

that is used throughout this thesis when constructing PETHs. This method is also

tested on simulated and actual data and its advantages over equal binning of the

whole neuronal population are discussed.

Chapter 6 presents my research conclusions and incorporates them into our cur-

rent knowledge about the possible mechanisms of action selection and impulsivity.

This chapter also discusses new hypotheses generated by my results and the future

directions for impulsivity research.

3



Part I

First Part
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Chapter 1

Introduction

The ability to select appropriate actions based on the association of environmen-

tal cues, internal drives and previous action outcomes is key for maximizing survival.

At each moment of life, various needs which evoke motivation toward specific goals

compete to attain the control of the actions of the organism. The reason for com-

petition is that more often than not the actions required to satisfy these needs can

be mutually exclusive. For example, for a rat the decision between scratching an

itch or consuming food represents a conflict between two drives one of which tries

to minimize a discomfort while the other aims for gaining much needed energy and

nutrients1. Each need therefore signifies a goal to be satisfied. However, prioritizing

the goals is only the first step in determining the future course of behavior. Once a

goal has been selected, the animal needs to look for and focus its attention on the

stimuli that are relevant for that particular goal. In the case of our example if the

animal decides that the itch is the more urgent problem, it needs to determine the

location of the itch based on the somatosensory inputs while ignoring the irrelevant

sensations like the smell of the food. Afterwards, based on the information provided

1Let us assume here for simplicity that scratching behavior and food seeking can only be done in
serial and that the rat cannot do both at the same time. This behavioral analogy is used throughout
this thesis only as a toy model of decision making conflicts and does not make any claims as to the
actual mental processes in a rat’s brain.

5



chapter 1. introduction

by the sensory system various actions that are available to achieve a particular goal

need to be assessed. The action and its timing should minimize the energy and oppor-

tunity costs while at the same time maximizing the degree to which the behavioral

goal is achieved. Therefore a potentially beneficial action that is expressed at the

wrong time can be worse than not performing an action at all. If our example rat

is hungry and knows that food is going to be available only for a short period of

time, optimal strategy dictates delaying the scratch action until it has secured the

food. It is not hard to generalize based on these examples that all behavior can be

viewed as expression of a continuum of choices that are being made simultaneously

on at least three levels made up of drives, sensory processing and action expression.

It also signifies that aberrations at each of the three levels can reduce the efficacy of

the organism to deal with its environment and to ensure its survival.

This thesis concerns itself with one such behavioral aberration known as impul-

sivity. Impulsivity is generally defined as a tendency to perform ‘actions that appear

poorly conceived, prematurely expressed, unduly risky or inappropriate to the situ-

ation and that often result in undesirable consequences’ (Daruna and P.A. Daruna

and P.A. p.23). In humans strong impulsive tendencies are reported in a variety of

pathological conditions such as obsessive compulsive disorder (OCD), mania and at-

tention deficit hyperactivity disorder (ADHD). Impulsivity is also believed to be a

risk factor and the consequence of drug abuse and relapse (Allen et al. 1998; Belin

et al. 2008; Dalley et al. 2007; Jentsch and Taylor 1999; Kreek et al. 2005). Given the

enormous social and financial costs associated with the impulsivity-related behavioral

6



chapter 1. introduction

mal-functions each year, it is important to understand the neural mechanisms under-

lying impulsivity. Furthermore since impulsive behavior involves many of the same

brain structures that are involved in everyday decision making processes, studying it

can be viewed as an important step for understanding decision making processes in

the brain and with extension all behavior in general.

Before starting to study impulsivity, it is useful to develop a framework for action

selection in goal directed behaviors. Broadly speaking, with the exception of involun-

tary behaviors such as breathing or reflexes involving the autonomic nervous system,

all behaviors include choices happening at, at least, three levels which involve drives,

sensory processing and action expression. Before expressing a ‘goal-directed behav-

ior’, one needs to first prioritize and choose among various goals based on competing

drives and motivations. Then, the sensory information that is relevant to the chosen

motivated goal needs to be attended to while irrelevant information needs to be fil-

tered out. Finally, given the prior experience of the world and the current sensory

data a course of action needs to be selected and computed to achieve the goal (FIG

1.1). To understand what selection level entails the influential concepts and theories

at each level are discussed below.

1.1 Goal Directed Behaviors: Three Levels of Selection

1.1.1 Drives and Incentives:

Neal Miller a key figure in behavioral neuroscience in 1940s-80s defined drives as

the intervening variables that stand between causes and effects in behavioral responses

7
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Drive Space

Sensory Space

Action Space

Environment
&

Body

Internal 
State 

update

Figure 1.1: A Diagram for the three levels of decision making and their interactions.
Drives, sensations and actions are conceptualized to exist in three different spaces (layers) that are
all engaged in goal directed behaviors. Colored circles depict members of each space (e.g. hunger
or reproductive drives in the drive space, smell of food or site of mate in sensory space ,etc).
Internal state determines the relative strength of each drive. Each drive defines a region of focus
in the sensory space. Sensory inputs arising from environments or the body mediate selection of
appropriate behaviors in the action space. Actions eventually modify the current internal state to
close the loop.

(Miller 1971) For instance, when deprived of water a rat has a drive to drink. Here the

cause of drinking is water deprivation, the response is drinking and the intervening

drive that is not observable directly is thirst. However drinking water can have other

causes too such as eating salty food which is going raise plasma osmolarity. Osmod-

etectors in the hypothalamus sense this and cause the animal to increase drinking to

maintain homeostasis. One of the properties of true drives according to Miller is that

it can generate flexible behavior. That is a thirsty rat can be trained to press a lever

or cross a barrier or even endure a costs like a shock if needed to access hypotonic liq-

uid. Therefore thirst as a drive is a conceptual construct that integrates ideas about

various causes that increase the need for water and links them to an array of flexi-

8
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ble behaviors. Introduction of drive therefore simplifies thinking about cause/effect

relationships in goal directed behaviors and provides a parsimonious explanation for

actions.

Drives can be viewed as one aspect of another construct, motivation. This con-

struct is central in defining ‘goal-directed behaviors’. Truly goal directed behaviors

are often thought to satisfy three criteria (Epstein 1976):(1) flexible goal directedness

such as being able to learn new actions to achieve the goal or to overcome obstacles

(2) goal expectations which manifest in behaviors such as incentive contrast seen in

rats that run faster to the reward spout when the expected reward is greater (Crespi

1942) and (3) affect which can be thought as an emotional feedback after success or

failure in achieving the goal. However an animal can have more than a single drive

at any moment. In our example rat, the drive to respond to the itch versus the drive

to eat might represent a conflict at the level of drives. If the actions needed to ad-

dress the two drives are mutually exclusive, the animal has to choose which action to

perform.

Currently there are two prominent theories regarding motivation: drive-reduction

theories and incentive theories of motivation. Drive-reduction theories see goal di-

rected actions as ultimately fulfilling a physiological need in the organism, resulting

in a temporary reduction of the drives that promoted those actions in the first place.

Drive theorists of motivation have developed concepts such as homeostasis and al-

lostasis to explain the actions that are taken to rebalance the organism (Hull 1943;

Mowrer 1980). Concepts such as the hydraulic view of drives (Lorenz and Leyhausen
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1973) and opponent process theory (Koob 1996; Solomon and Corbit 1974) are exam-

ple of drive related theories. More recent developments in motivation research have

questioned the validity of simple drive and drive-reduction theories and have proposed

instead that the incentive value of sensory pleasures and other conditioned reinforcers

can independently promote the goal directed behaviors (Berridge 2001; Bindra 1978;

Pfaffmann 1960). One of the favorite counter examples for drive reduction theories

offered by incentive theory proponents is the case of a man with a gastrostomy fis-

tula who insisted on chewing his food while having a meal even though he could not

swallow it and had to spit it out (Wolf and Wolff 1943). Other experiments with

rats and dogs have shown that when given the choice they still prefer to taste their

food rather than just being fed intravenously or with an intragastric tube (Miller and

Kessen 1952; Turner et al. 1975).

Simple physiological drives are not sufficient to explain the whole range of goal

directed behaviors and the explanatory power of incentive/hedonic values of rewards

are also needed to understand motivation in most behaviors, Some of the obvious

examples of incentives that are not directly related to homeostatic regulation include

exploration and novelty seeking, social interactions and in the case of our example

rat, grooming. However, a pure version of incentive theories also fails to explain how

certain sensory stimuli can become rewarding without impacting homeostatic drives.

For example, the reinforcing effect of a sweet taste may be the evolutionary pairing

of this taste with nutrients in fruit that satisfy the energy need of the organism.

Therefore another possible explanation for the incentive value of sweetness that re-
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mains faithful to drive theories can be that it is indirectly linked to behaviors which

reduce a drive (Mowrer 1980). Furthermore behavioral effect such as ‘alliesthesia’

which point to modulation of incentive values by the physiological state such as in

‘salt appetite’ (Beauchamp et al. 1990; Cabanac 1979) as well as the anticipatory

mechanisms that induce preemptive goal directed behaviors toward maintaining a

‘homeostatic set-point’ (Fitzsimons and Le Magnen 1969) seem to argue in favor of

motivation constructs that incorporate physiological drive theories. Therefore moti-

vation theories of future may in fact resemble a synthesis between both the incentive

and drive reduction theories.

In any case it is clear that there should be a level of prioritization and selection of

‘drives’ or ‘incentives’2 before the animal can engage in a goal directed behavior and

this represents in my mind a condition required for initiating a goal directed behavior.

After choosing the ‘drive’ or ‘incentive’, the animal has to move on to planning stage

of an appropriate behavior which involves sensorimotor processing.

1.1.2 Sensory Selection and Attention:

In psychology attention is often defined as selective concentration on some aspects

of the environment while ignoring other aspects (Anderson 2010). Given the constant

bombardment of sensory information a selective focus on the task relevant information

is required for a successful goal directed behavior. Attention is known to enhance

and accelerate the processing of relevant sensory information and the subsequent

2It can be argued that animals do not always choose ‘incentives’ but may come upon them
inadvertently. However it is still plausible that the further processing of the encountered ‘incentive’
can be permitted or blocked therefore allowing for a degree of selection.
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choice of appropriate actions. In fact, an influential theory of attention known as

the early-selection model of attention posits that given that attentional resources

are limited; not all sensory information can be processed equally even at the early

stages of processing. Hence, selective focusing on the relevant information extends

from the higher order cognitive processes down to primary sensory areas where task

relevant sensory information is prioritized early in processing (Broadbent 1958). The

early-selection theory of attention receives support from a large number of studies in

the brain which show modulation of information in the primary sensory areas in a

top-down modulation for various sensory modalities (Macaluso et al. 2000; Steinmetz

et al. 2000; Woldorff et al. 1993). Even though the validity of a complete early

filtering of some stimuli has been called into question based on other experimental

evidence (Deutsch and Deutsch 1963), there is clearly enhanced processing of attended

compared to non-attended sensory information as manifested by faster reaction times

to attended stimuli (Posner 1980) and filtering of irrelevant stimuli in inattentional

blindness (Rock et al. 1992).

For our example rat, when hungry, sensory selection means ignoring the so-

matosensory itch information and attending instead to say the auditory cues that

can guide its behavior to food delivery. However, sensory selection does not only

work between modalities, it can also result in increased focus for particular features

of sensory information intra-modally. In fact, success in tasks such as Stroop test or

Wisconsin card sorting requires that the participant selectively attend to a particular

feature (e.g. meaning, color, number etc) of the visual stimuli. In an auditory ver-
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sion of attention subjects can easily learn to ‘shadow’ the streaming sound to one ear

while attending to and repeating the sounds played to the other ear (Broadbent 1958;

Woldorff et al. 1993). This predicts that our hungry rat not only can filter out the

itch sensation but should also provide preferential processing for the auditory stimuli

that signal food availability over other neutral auditory cues.

It should be noted though that goal directed attentional selection for task or goal

relevant sensory information can sometimes be interrupted by attention grabbing

salient but task irrelevant external stimuli (Corbetta and Shulman 2002). This ex-

plains how goal directed behaviors could be aborted before completion. Our rat most

probably will not finish its feeding behavior if a predator is detected nearby. This

means that changes in the environment can cause the animal to override the chosen

incentive or drive, switch its goals and update the rules for sensorimotor relevance.

Both the endogenous and exogenous attention mechanisms that are involved in sen-

sory selection therefore are important for promoting actions toward a goal as well

as switching between various goals. Disruption of these attentional mechanisms can

have adverse consequences for flexible goal directed behaviors.

1.1.3 Action Evaluation and Selection:

Once a goal is selected and its relevant sensory space is identified, various actions

that can satisfy the goal need to be evaluated and the one that best achieves the

goal with minimal cost needs to be selected. The value of each action in satisfying

a goal can be learned through experience. Theories of reinforcement learning such

as temporal difference and actor-critic model are widely used to explain both the
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mechanism of action evaluation and selection in goal directed behaviors (Peters and

Schaal 2008; Schultz et al. 1997). In the actor-critic model, the critic evaluates and

updates the value of each action at a given state based on prior reward history and the

actor then selects and expresses the best action based on the action values provided by

the critic. These models and others in the category of reinforcement learning choose

an action policy that maximizes the expected value of future rewards (Sutton and

Barto 1998). Furthermore researchers in the field of neuroeconomics have introduced

economical concepts such as maximizing expected utility of selected actions and have

found correlates of subjective desirability of the outcomes in the brain (Breiter et al.

2001).

Another aspect of action selection relates to the timing and sequencing of action

expression. To satisfy a behavioral goal it is not only enough to know what actions

should be performed but also when they should be expressed in regards to the acquired

behavioral and environmental contingencies. Current models of action selection also

provide a way to include those temporal and behavioral contingencies by integrating

time and other relevant statistics of environmental and behavioral events into an

augmented time dependent state space at which each action can be evaluated.

It is worth pointing out that finding the optimal solution to the action selection

problem can often require an exhaustive search in a high dimensional action space

which itself can be costly and/or slow (thus violating the optimality) and thus lower

the net value of the chosen action in real life situations. Therefore given the fact

that most organisms including humans lack the strict criteria for goal maximization
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and often have to rely on limited working memory and uncertain situations, they

aim instead to find a solution to the action selection problem which is adequate but

not necessarily always optimal. The idea of ‘satisficing’ instead of ‘maximizing’ put

forward by the Herbert Simon, the renowned sociologist, in 1956 attempts to capture

this adequacy criteria by proposing action selections that are just good enough (Si-

mon 1956). On the other hand it is argued that if the computational and executional

costs of all actions are taken into account then satisficing represents merely a new

optimization problem with a modified cost/benefit function making this a more stylis-

tic debate than a substantive one (Byron 2004). Even if representing a difference in

taste, the idea of satisficing and the fact that humans as well as other animals do not

always make choices based purely on optimizing the external utility of the selected

action (Herrnstein 1961; Kahneman and Tversky 1979) should be kept in mind when

studying and modeling the action selection behavior and can often have important

consequences for interpretation of experimental results.

1.2 Goal Directed Behaviors: Revisited

The view presented in the previous section on goal directed behaviors as consisting

of at least three elements namely drives, attention and action selection at the concep-

tual level favors a modular perspective on the behavior and the neural mechanisms

that produce it. A fair point to ask here is ‘does it even make sense to compartmental-

ize various components of goal directed behaviors or talk about selection mechanisms

at each stage?’ When we get thirsty and want to reach for a glass of water we do

not usually feel that we are going through sequential stages of choice in the sensory
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data and in the details of movement and grasp of our hand but rather this feels more

like a continuous flow of sensations and actions. In fact it can be argued that the

nervous system as a prime example of a complex systems shows a good deal of self

organization phenomena and many of the observed behaviors can be interpreted as

emergent properties of a system described by dynamic flows rather than by a classical

mechanical interpretation which favors discrete modules with dissociable roles. This

view is gaining ground especially in sensorimotor neuroscience as an alternative to

the more classical hierarchical views (Kelso 1995). It can be shown that seemingly

hierarchical behaviors can be generated from distributed nonhierarchical structures

with attractors that determine the flow and sequence of behaviors (Botvinick 2007).

In our case a clear example of a nonhierarchical system that can produce goal

directed behaviors can be found in swarm intelligence. Swarm intelligence describes

the collective behavior of decentralized and self organized systems and has abilities

that emerge only through the interaction of many simple interacting units (Kennedy

et al. 2001). The defense behavior of a school of sardines that are attacked by a shark

clearly demonstrate at the macro level an active avoidance, a well known example of

a goal directed behavior. Yet this macro level conceptual construct is an emergent

property of thousands of individual sardines following simple local rules of movement.

The choice of fragmenting a larger school into two to evade the incoming shark and

its subsequent rejoining is not made in any centralized decision center or through

a deliberation of selection mechanisms but rather follows rules of self organization.

The closely related concept of synergetics attempts to explain such self organizing
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behaviors by using a few quantities known as order parameters. Order parameters

are quantities that allow for a low dimensional description of the dynamical behavior

of a complex high dimensional system (Haken 1983).

This new view on the organization of actions provides an exciting alternative to

the current thinking on action selection and goal directed behaviors and at least can

serve to caution us about the more mechanical and component based interpretations

of brain and behavior. However it looks like as far as the brain is concerned there

are strong arguments to be made about the modularity and functional specialization

as well. Models of swarm intelligence usually assume a symmetric role for the indi-

vidual agents of the system in generating the overall behavior. However, we know

that various structures in the brain are organized rather hierarchically with regard to

the nervous system’s motor output and their role and impact on the final common

pathway is not by any means equal3. Furthermore as the size of the brain increases

the cost of rewiring and connection of neurons favors clusters of highly interconnected

regions that are connected with each other through longer range projection in a small

world scheme (Ringo 1991). This clustered structure favors modular organization of

functions. Furthermore it can be argued that evolution may favor functional special-

ization of various clusters as each component can be optimized independent of the

others, thus reducing the hurdles of interdependence (Wagner and Altenberg 1996).

Finally it can be argued that while we can express behavior that can be explained by

self-organization and neuronal swarm intelligence, we find ourselves equally capable

3Although it is still plausible that within a brain structure the activity of neurons can operate in
a self organizing manner.
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of behaving according to the more classical models of action selection. For instance

our subjective interpretation of our decision making process in a game like chess con-

forms better to the modularized concepts of action selection while behaviors which

require skillful sensorimotor coordination such as balancing ourselves on a bicycle

maybe explained better by self-organization phenomena.

More research is needed to describe the range of behaviors that follow each model

and to determine the mechanisms responsible for their generation. For this thesis

due to novelty of concepts like complexity and emergent behavior and the proved

usefulness of the modularized view of goal directed behaviors the interpretation of

results will be made with emphasis mainly on the three previously discussed aspects

of the goal directed behaviors. However the possibility of alternative interpretations

based on self organization and emergence will also be recognized when appropriate.

1.3 Impulsivity:

Impulsivity is known to encompass a wide range of behaviors that have to do with

reduced ability to inhibit proximal inappropriate or suboptimal responding. Impul-

sivity as a personality trait has been studied extensively in human populations and

various personality and temperament questionnaires have been developed to identify

the impulsive tendencies while dissociating it from other psychopathologies such as

anxiety or depression (Cloninger 1987; Eysenck and Eysenck 1977; Patton et al. 1995).

In addition to these tests that are largely based on introspection and self report there

is a voluminous literature on impulsivity that has employed behavioral approaches in
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humans and in animals.

Despite extensive studies there is still little agreement on how to categorize and

group the various dimensions of impulsivity. There is not a unified terminology for

aspects that seem similar even when referring to the same behavioral paradigm. One

popular classification divides impulsivity into impulsive action (e.g. inability to in-

hibit premature responding) versus impulsive choice (e.g. preference of small imme-

diate over larger but delayed reward). Similar impulsivity dimensions are referred to

by others as motor and cognitive impulsivity. Cognitive impulsivity is also referred

to as a failure to delay gratification and is proposed to represent a reduction in self

control (Logue 1988). Still another form of cognitive impulsivity known as reflection

impulsivity was proposed to describe the inability to collect and evaluate all neces-

sary information before reaching decisions (Kagan 1966). In an important series of

reviews on impulsivity and its varieties, John Evenden proposed a three component

model for impulsive behavior: preparation to respond, response execution and assess-

ment of outcome (Evenden 1999b; Evenden 1999a). Here the impulsivities related to

the first component (i.e. preparation to respond) refer to responses that are made

before all the relevant information is obtained (similar to reflection impulsivity). The

second component, impulsive execution, was defined as a failure to waiting for one’s

turn and interrupting others. The third component, preference for impulsive outcome

refers to intolerance for delayed rewards. Other groups have proposed similar three

component models having to do with (1) input: accumulation of sensory informa-

tion (2)processing: evaluation and selection of actions and (3) output: execution and
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planning of actions (Chambers and Potenza 2003). There are yet other aspects to be-

havioral inhibition that are addressed in the literature which covers a wider range of

executive, motivational and attentional inhibition processes. Some of those processes

can be further classified based on whether they are mediated centrally (higher order

cognitive processes) or more peripherally (sensorimotor processes) or whether they

are effortful suppressions versus more automatic suppressive processes (Nigg 2000).

Examples of effortful suppressions include resistance to distracter or proactive in-

terference by simultaneously presented but irrelevant stimuli (Friedman and Miyake

2004). Examples of more or less automatic suppression can be seen, for instance,

in an attentional phenomenon known as the inhibition of return where it is shown

that the visual stimuli attended within 500-3000ms ago are suppressed (Posner et al.

1985).

Due to the richness of the impulsivity construct and the differences in how it is

defined by different investigators, the most successful behavioral paradigms used to

study this phenomenon are those that focus on a few aspects of it. Below I will

discuss some of the popular tasks used for the study of impulsivity in rats that are

most relevant to the kinds of impulsivity that my thesis research was designed to

investigate.

1.3.1 Impulsive Choice:

This aspect of impulsivity is often assessed by using a delay discounting task. In

this task two possible actions are offered to the animal, one of which results in an im-

mediate reward while the other action leads to a larger delayed reward. Importantly,
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this task is designed in such a way that the number of choices allowed in a session is

the same regardless of action chosen, ruling out the possibility of earning a greater

total reward by choosing multiple small rewards in a given session. The studies using

this task both in primates and rodents agree that the subjective value of the reward

follows a hyperbolic reduction as a function of delay (Ainslie 1975). However the

steepness of the discount curve is highly variable in different individuals with high

steepness corresponding to impulsive choice (tendency to choose small immediate re-

wards) (Bezzina et al. 2007; Cardinal et al. 2001). Similar tasks with manipulation

of reward probabilities are also used where impulsive choice is defined as tendency

to choose a less probable but greater magnitude reinforcement compared to a certain

but smaller reward which can result in a lower total reward obtained (Cardinal 2006).

1.3.2 Response Inhibition:

Impulsivity in this category is recognized to contain at least two forms: action

cancellation and action restraint (Schachar et al. 2007). Action cancellation involves

successful inhibition of an action after it has been initiated while action restraint

refers to delayed initiation of a pre-potent response until appropriate conditions for

expression is reached.

Impulsivity in action cancellation is often measured using a stop signal reaction

time task (SSRT). In this task the subject is required on the majority of trials to

make short latency responses to presentation of a go cue. In some trials a stop cue is

presented after the go cue and the subject has to stop the execution of the response

after it has started. As the time interval between the go cue and stop cue increases
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it becomes more difficult to abort the response. A theoretical race model is proposed

and used for calculating the unobserved stop signal reaction time (Logan and Cowan

1984). This model assumes that there are two independent processes involved in this

task namely the go and the stop. Once the go process is launched the stop process

can only overtake it if it is itself launched within a short delay. Long stop signal

reaction times are considered as an indication of compromised inhibitory control.

Response restraint on the other hand seem to be doubly dissociable from response

cancellation (Robinson et al. 2009) and can be measured by tasks other than SSRT.

One of the popular tasks in this category is the go/no-go task. In this task the

subjects are supposed to respond to go cues and withhold responding to no-go cues

to get rewarded but unlike SSRT go and no-go cues are presented on separate trials

(although the percentage of no-go trials can be much smaller than the go cue, similar

to SSRT). The main difference between these two tasks is that in the go/no-go one has

to cancel a planned action (restraint)4 while in SSRT an action that is already initiated

is canceled. Another common task used to assess restraint is differential reinforcement

for low rates of responding (DRL)(Dalley et al. 2008). In this procedure, rats are

required to space their responding on a lever by a specific interval of time, pressing

the lever within this interval will reset the interval and is taken as a failure of action

restraint. A criticism of the DRL paradigm in measuring impulsivity has been that it

cannot distinguish well between changes in the general levels of activity and specific

premature responding (Evenden 1998). A related procedure, which is proposed to be

4The fact that action execution may start before completion of cue processing that reveals its
nature (go/no-go) may weaken the distinction between SSRT and Go/No-Go tasks.
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less sensitive to general changes of responding, is fixed consecutive number or paced

fixed consecutive number schedule (FCN). In this task, rat has to do a predetermined

number of consecutive lever presses on one lever (FCN lever) before pressing a second

lever (reinforced lever) to obtain food. Premature abortion of FCN lever presses

before moving to the reinforced lever is not rewarded and is considered to result

from impulsivity. A second rationale for introducing this task is that it allows for

studying another facet of impulsivity known as the lack of perseveration, which often

presents itself as the inability to remain focused on the current task (Evenden 1998).

However, another interpretation may be that premature abortions of FCN presses

reflect intolerance to delayed reward. Finally, the 5 choice serial reaction time task

(5CSRT) has been used extensively by Robbins and colleagues to evaluate impulsivity

(Belin et al. 2008; Robinson et al. 2009). This task, was originally developed as the

rodent equivalent of continuous performance test to study sustained and divided

attention and it has parameters that are suited for studying action restraint. In this

task the rat has to attend to five holes in the wall waiting for a brief light cue to enter

into one of the holes. A successful nose poke in the illuminated hole with a short

latency (<5 sec) results in the delivery of a food pellet that can be retrieved from

in a food receptacle on the opposite wall. Premature responses to any of the holes

during the inter-trial interval (ITI) wait period (which usually lasts about 5 sec) are

considered a failure in response restraint.

Another closely related concept to the response disinhibition aspect of impulsivity

is the issue of compulsive over responding or perseverative responding. For instance,
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in the 5CSRT task, perseverative responding to the recently rewarded nose poke hole

occurs and is hypothesized to reflect a failure to disengage from a response driven by

a predicted reward. Tasks such as set shifting or reversal learning have been used

extensively to study the response suppression that would prevent perseveration and

similar responses and the brain regions involved (Floresco et al. 2006; Ragozzino et al.

2002). In these tasks, a rat is trained to learn a particular set of rules or contingencies

for obtaining a reward. Upon successful learning, the contingencies will be changed.

The animal has to adapt to the new set of rules. In this context, errors that indi-

cate animal’s failure to adapt to the new contingencies are considered compulsive or

perseverative. It should be noted, however, that perseverative behavior when framed

as a problem of disengagement contrasts with the distractibility facet of impulsivity

discussed previously as the inability to remain focused on a task. In fact compulsivity

and distractibility can be viewed as two extremes in the engage/disengage framework

with the latter implying inappropriate and frequent disengagements from a task while

the former indicates remaining engaged in a task despite a reduction in its utility.

1.3.3 Impulsivity: Drives, Attention and Action Selection

Different aspects of impulsivity can be assigned to the three components of goal

directed behaviors representing a dysfunction of selection mechanism at each level.

For instance aspects of impulsivity such as intolerance to delayed gratification or

compulsive behavior can be attributed to incentive sensitization which was originally

proposed to explain drug addiction (Robinson and Berridge 1993). Incentive sensiti-

zation proposes that a particular drive can hijack the ‘wanting’ system such that any
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cue or action that might satisfy that drive becomes hyper-salient. Incentive sensiti-

zation therefore can be conceptualized as an aberration in motivational weight such

that one incentive becomes dominant in almost all situations. On the other hand the

problem of distractibility, lack of preservation aspect of impulsivity as well as reduced

resistance to other types of interference can be viewed as a dysfunction of sensory

processing and attention. Here the selection and maintenance of relevant informa-

tion in the face of interfering bottom-up exogenous influences is compromised such

that a transient attentional shift due to distracters leads to a shift of the intentional

network or a change of goals. Equivalently based on the context, various forms of

impulsivity such as impulsive choice, premature responding and perseverative behav-

iors can result from problems and inefficiencies in the action selection component

and the ability to engage/disengage in various action sequences. Therefore, correct

classification of observed impulsive behaviors with respect to drives, attention and

action selection requires carefully designed experiments to control for confounding

interpretations and might even require studying the behavior across various tasks.

On the other hand, the difficulty in disambiguating the confounding interpretations

in impulsive behavior maybe taken as a sign that such behaviors are the emergent

property of a fluid non-modularized nervous system that is intrinsically resistant to

any modular compartmentalization at the level of either concept or brain structure.

1.4 DS task and The Study of Impulsivity:

In this thesis, we focus on concomitant promotion of a specific goal directed be-

havior and the inhibition of task irrelevant actions. This dual function is required to
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improve efficiency on the task; i.e. optimizing reward receipt while minimizing the

energy expended. The task used in this thesis to address this issue is known as the

‘DS task’ (FIG 1.2). Except for minor details and modifications between groups, the

general description of the task is as following: The task is run in behavioral chambers

that contain a food receptacle with two levers on either side, all installed on one of

the chamber walls. The levers are assigned randomly as the active and inactive lever

for each rat. A speaker installed close to the chamber roof is used to play two dis-

tinct auditory cues (a siren and an intermittent tone). The two tones are randomly

assigned to each rat as the discriminative stimulus (DS) or the neutral stimulus (NS)

both of which are played on a variable interval schedule with an average of 30s. NS

is played for 10s and DS is played for up to 10s unless terminated by an active lever

press. A sucrose pump containing a 10% sucrose solution is connected to the recep-

tacle and is used to pump 60µl of liquid sucrose into the receptacle as reward. Rats,

food restricted to ∼90% of their normal weight, are trained to press the active lever

only during the DS in order to obtain sucrose reward. Presses on the active lever

terminate the DS and result in reward delivery in the food receptacle. Pressing the

active outside the DS or the inactive lever does not results in reward delivery but the

animals are not punished by a time-out either (Nicola et al. 2004a).

The training of rats in the DS task for this thesis was typically done in the following

order: first the rats were habituated to the DS chamber through a magazine training

session. In this session reward was delivered after a fixed interval schedule upon the

rat’s entry to the food receptacle, no levers or cues were presented at this stage. The
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Figure 1.2: Design of the DS task and relevant behavioral events. Two cue tones (up to 10 s
for the rewarded discriminative stimulus [DS]; 10 s for the unrewarded stimulus [NS]) were randomly
presented on a variable-interval schedule with an average interval of 30 s. An active lever-press was
required during DS presentation to terminate the DS and cause the delivery of a 10% sucrose reward
into an adjacent receptacle. Inactive lever presses or active lever presses outside the DS was never
rewarded. The timings of all the events shown were recorded for behavioral analysis.

session continued for one hour or until 99 rewards were obtained. From the second

session levers were presented together with the DS. Only presses on the active lever

when the DS was played resulted in the sucrose reward delivery. Reward delivery

terminated the DS and initiated an inter trial interval (ITI) which was gradually

increased over the sessions to 30s. Initially after the ITI expired the DS was played

until terminated by an active lever press. This was changed for later groups of rats

such that the DS was terminated after a set interval if no active lever press occurred.

For these groups the DS duration shrank over sessions until reaching of 10s or less.

The reason for this change was the observation that the DS termination after a set

interval facilitated the association of DS with reward availability. Similar to the DS

task, inactive lever presses did not have any programmed consequences. In addition,

the NS was not presented during this stage of training. After the rats reached criterion

for responding to the DS (latencies less than 5s and >80% DS followed by a response
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if DS had a set interval), they were switched to the full DS task with both DS and

NS. Neither the NS nor responses to the NS had any programmed consequences.

Behavioral criteria in the DS task for the rats to be included in our studies was

>80% DS ratio and <20% NS ratio (DS ratio and NS ratio are the percentage of DSs

and NSs that are followed by a an active lever press respectively). This was usually

accompanied by DS response latencies of less than 3s.

The use of the DS task to study impulsivity is novel. This task was originally de-

veloped to have experimental control over the rat’s appetitive responses using stimuli

that signaled reward availability5. Nevertheless the task schedule has a structure

that makes it useful for studying various aspects of impulsivity. Learning the DS

task involves two components. The first component, which is usually acquired faster,

requires rats to learn that presses on the active lever can result in reward delivery

(action-outcome). The second component requires the rats to learn that this action

outcome contingency is only valid during the DS presentation. This learning, which

usually develops later, involves suppression of lever pressing outside DS as well as its

promotion during the DS. In fact, the total number of lever presses as well as the

NS ratio is initially high for the rats just after they are switched to the DS task.

These measures decrease over multiple sessions without affecting the high DS ratios,

reflecting the development of inhibitory control over task irrelevant behavior. Below

we discuss how various task events in the DS task can be used to address the different

aspects of this inhibitory control.

5The design of the task (Cue-Action-Outcome) also helps with the interpretation of electrophys-
iological recordings to cues compared to a design using CSs. Since the response to the CS can be
contaminated by approach and consumption.
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1.4.1 General Response Inhibition:

The DS task contains ITIs which average around 60s between presentation of two

consecutive DSs (DS and NS are presented with equal probability with variable inter-

vals averaging 30s). Active lever presses that happen during this 60s period when the

DS is not presented therefore reflect a failure in response control similar to the DRL

schedule with two notable differences. First in the DRL task early responding resets

the time-out and therefore that task imposes a greater cost for high levels of respond-

ing than the DS task. On the other hand one could argue that it should be easier

to induce response disinhibition in the DS task compared to DRL exactly because

there is a low cost in ITI responding in the DS task. The second difference is that

unlike DRL the end of ITI is explicitly cued in the DS task which should minimize the

influence of other confounding effects such as time perception in response initiation.

Both of these differences therefore can be advantageous when studying changes in

the general response levels in the DS task. The rate of lever pressing during the ITI

can reflect the strength of general response inhibition in the task as well as strength

of motivation. Food restriction and weight monitoring can be used to minimize the

effect of motivational changes across sessions. Finally, increased inactive lever presses

can be an indication of failed general response inhibition although significant increases

can reflect a problem in action selection as well.

1.4.2 Specific Response Inhibition: Response to Neutral Stimuli

Distractibility is an important aspect of impulsivity. Presentation of a neutral

auditory cue (NS) in the DS task provides an opportunity to measure the strength
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of inhibitory control to similar but irrelevant sensory stimuli beyond the general

response suppression during the ITI. Dysfunctions in the ability to inhibit actions in

response to information that is irrelevant to the chosen goal is an important facet of

impulsivity and is an example of interference control (Nigg 2000). However increased

NS responding can have other equally valid interpretations. It could represent a

problem in processing and discrimination of the two cues. If the rat’s ability to

discriminate between DS and NS is compromised or significantly slowed, an increase

in NS responding should be observed. Increased NS responding could also result

from a general reduction of inhibitory control on responding. This can be true even

if the increase in NS responding is greater than the general increase in lever pressing

during the ITI since it is possible that the mapping between motivation to respond

and the actual responding follows nonlinear (say a sigmoidal) psychometric mapping.

That means that if we assume the initial drive to respond is higher during the NS

than during the ITI, it follows that a uniform reduction of drive inhibition would

increase NS responding to a disproportionately higher degree than ITI responding.

Examining each of these three possibilities would require modifications of the DS task

as currently designed.

1.4.3 Specific Response Inhibition: Post Reward Perseveration

Perseverative or compulsive over responding is also an important concept related

to impulsivity. Here in the DS task we observed that certain pharmacological manipu-

lations can increase perseverative active lever presses or receptacle checkings following

reward consumption. These phenomena, which can be reframed as a disengagement
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problem from the goal directed epoch, may represent an enhancement of the motiva-

tion for a reward upon its receipt and might have similar mechanisms as the priming

effects of reward on response initiation.

1.4.4 Specific Response Inhibition: Impulsive Entry

Another recent observation in the DS task on impulse control is that during the DS

presentation rats sometimes enter the receptacle before pressing the active lever. In

fact analysis of a subset of behavioral data showed that these premature receptacle

entries occur in about 30% of rewarded trials. This type of failure of inhibitory

control6 may represent a form of motor impulsivity and taps into mechanisms usually

assessed by tasks such as FCN where the rat has to complete a sequence before being

rewarded. It is also related to the concept of impulsive choice as the rat has to choose

the correct sequence of rewarded actions after DS presentation.

Finally sequences of available actions in the task during the cues or ITIs can

be used to help with the interpretation of behavioral disinhibitions. For example

increases in the active lever presses that are followed by receptacle entry might have

a mechanism distinct from that resulting in increases in isolated lever presses.

1.5 Fronto-Striatal Basis of Impulsivity:

Impulsivity is hypothesized to depend upon a number of different brain structures.

One of the most relevant circuits in this regard includes the nucleus accumbens in the

6It should be noted that many forms of discussed response disinhibition in this thesis may not
necessarily reflect a failure in response suppression but an increase in the rate of exploration of
alternative action routes which may lead to reward.
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ventral striatum and its cortical inputs in the medial prefrontal cortex (Basar et al.

2010; Dalley et al. 2008). Here I will review some of the anatomical and functional

data as they relate to the study of impulsivity.

1.5.1 Nucleus Accumbens: Anatomy and Histochemistry

Nucleus accumbens (NAc) is located in the ventral striatum which also includes

the olfactory tubercle and is often used synonymously with it. On the rostral and

lateral side it borders the external capsule and on the medial side it is bounded by the

septum. Caudally it merges with the bed nucleus of the stria terminalis and ventrally

with the olfactory tubercle (Zahm and Brog 1992). Even though the dorsal border of

NAc and the rest of striatum cannot always be easily defined, a combination of histo-

chemical criteria can be used for satisfactory delineation (Groenewegen et al. 1999).

Being a part of ventral striatum, NAc is the input nucleus of the ventral stiatopalli-

dal complex and is comprised largely of medium spiny GABAergic projection neurons

(MSNs). In the rat striatum, the proportion of MSNs is estimated to be around 90-

97% (Tepper and Bolam 2004). The rest of neurons (about 3-10%) belong to various

groups of interneurons namely: aspiny cholinergic neurons, parvalbumin positive as-

piny GABAergic neurons and the neurons co-expressing nitric oxide, somatostatin

and neuropeptide Y which are also probably GABAergic (Tepper and Bolam 2004).

There is some evidence linking these two GABAergic interneuron classes to the two

physiological classes of fast spiking and low threshold spiking interneurons respec-

tively (Kawaguchi et al. 1995). The cholinergic interneurons are also believed to

correlate with the in-vivo class of tonically active neurons or TANs (Cragg 2006).
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The NAc itself is further subdivided into at least two subregions core and shell.

Core and shell can be distinguished on the basis of histochemical and connectiv-

ity differences. The core is distinguished histochemically from the surrounding shell

(Jongenrelo et al. 1994; Zahm 1999). Most notably staining for calretinin and acetyl-

cholinesterase are more strongly expressed in the shell than core while calbindin

densely stains core and dorsomedial striatum but not shell (Zahm 1999; Zahm and

Brog 1992). In some respects the internal structure of the core resembles the adjacent

dorsomedial striatum. The morphology of its MSNs in terms of size and spine density

is similar to the rest of the striatum. MSNs in shell on the other hand are smaller in

size and less differentiated in terms of dendritic arbor (Meredith et al. 1992). Also

similar to the rest of striatum, core projections target other basal ganglia nuclei. On

the other hand, shell is unique among the striatal regions in having direct projections

to structures outside the basal ganglia such as the hypothalamus ((Zahm and Brog

1992) but also see recent evidence showing weaker projections arising from core as

well (Tripathi et al. 2010)).

The general architecture of dorsal basal ganglia involving direct and indirect path-

ways and their associated dopamine receptors and peptides seems to hold in the

NAc with some exceptions. The output of core direct pathway in the rats reaches

the entopenduncular nucleus (EP) and the dorsomedial segment of substantia nigra

reticulata (SNr) (Deniau et al. 1994). The indirect pathway in core has reciprocal

projections to dorsolateral section of ventral pallidum (VPdl) which is the ventral

extension of globus pallidus (Heimer et al. 1991) VPdl projects to the subthalamic
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nucleus (STN) and to GABAergic neurons in the dorsomedial SNr which is the same

region targeted by the core direct pathway. Dorsomedial SNr and EP constitute the

ventral striatal output nuclei and project to ventromedial and dorsomedial thalamic

nuclei. These thalamic nuclei are in reciprocal connection with medial prefrontal and

insular cortex which themselves project back to the medial and lateral core and lateral

shell (Voorn et al. 2004) thus completing an open loop in the corticostriatothalamic

pathway that involves NAc core (Alexander et al. 1986).

The shell direct pathway projects to EP (Heimer et al. 1991) but not to SNr.

Instead, shell targets non-dopaminergic neurons (possibly including GABA neurons)

in the ventral tegmental area (VTA) (Hjelmstad et al 2011) which is medial to SNr.

The indirect pathway in shell consists of projections to the medial ventral pallidum

(VPm) (Groenewegen et al. 1993). However this part of VP appears to not project to

subthalamic nucleus or SNr. It instead has direct projections to mediodorsal nucleus

in thalamus which raises the possibility that VP may have a combined functionality

as both internal and external segments of globus pallidus (Nicola 2007; Zhou et al.

2003). Interestingly the thalamic projections of VPm seem to project to the cortical

areas that send their axons to the core thereby suggesting a possible feed-forward

mechanism from NAc shell to core (Zahm 2000). Another similar feed-forward mech-

anism has been proposed to run through the mesencephalic dopamine related regions

where projections from shell to medial VTA affect the core projecting neurons in

an ascending spiral (Haber et al. 2000). Such feed-forward mechanisms suggest a

possible hierarchy in the organization and control of goal directed behaviors with
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information flowing from the more ventral limbic regions to the dorsomedial associa-

tion regions and finally to the dorsolateral sensorimotor regions in the basal ganglia

(Although again see Tripathi et al. 2010 for evidence that core neurons collateralize

more frequently in shell than vise versa). Finally VPm also has projections to lateral

hypothalamus and pedunculopontine nucleus (PPtg) both of which also receive direct

projections from shell (Groenewegen et al. 1993).

There is also a body of evidence suggesting that, similar to the dorsal striatum,

D1 expressing neurons in the NAc co-express substance P and dynorphin and D2

neurons co-express enkephalin (Lu et al. 1998; Zhou et al. 2003). Similar to the

dorsal striatum, about 6% of core neurons co-express both D1 and D2 receptors.

However, this percentage is significantly higher in shell (∼17%) (Bertran-Gonzalez

et al. 2008). While in the dorsal striatum D1 and D2 expressing neurons constitute

the direct and indirect pathways respectively; in the NAc the D1 and D2 expressing

MSN populations projecting to the VP are about the same size. This deviation from

the direct-indirect architecture is greater in shell than core (Lu et al. 1998;Zhou et al.

2003). However, due to the projections of VP to thalamus it is possible that the D1

dominant projections to the pallidum terminate on thalamic projection neurons which

would be consistent with their having a role in the direct pathway. Furthermore,

consistent with the direct-indirect architecture, the D2 dominant neurons project

selectively to VP and projections to SNr/EP and VTA regions only arise from the

D1 dominant population (Lu et al. 1998; Zhou et al. 2003).

Inputs to the NAc arise from a variety of cortical and subcortical structures.
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Among the cortical inputs to the NAc in rats are the glutamatergic medial prefrontal

cortex projections comprising the prelimbic (PL) and Infralimbic (IL) areas. The

more ventral regions in mPFC including the IL have stronger projections to the

ventromedial accumbens or shell while the more dorsomedial prefrontal areas project

more strongly to the more dorsolateral regions in the core (Uylings et al. 2003; Voorn

et al. 2004). The dorsal and ventral insular cortex, thought by some as the equivalent

of orbitofrontal cortex in rats, also have projections that are more prominent in core

and shell respectively. Among the subcortical projections to NAc are the ones from

the hippocampal complex. These afferents contain ventral subiculum and ventral

CA1 projections to shell, and medial and lateral entorhinal cortex projections to shell

and core respectively (Swanson and Cowan 1977; Totterdell and Meredith 1997).

Another notable limbic area projecting to NAc is the basolateral amygdala with the

more caudal regions targeting the shell and more rostral regions targeting the core

(Wright et al. 1996). Dopaminergic projections to NAc shell arise from medial VTA

and to the core from the lateral VTA and medial SNc (Ikemoto 2007). Medial shell

is also unique in that it is targeted by noradrenergic input possibly from caudal

brain stem; this projection is mostly absent from the rest of the striatum (Berridge

et al. 1997). Thalamic projections to the NAc arise mainly from intralaminar and

midline divisions of thalamus with intralaminar mostly projecting to the core and the

midline in particular the paraventricular nucleus targeting the shell (Berendse and

Groenewegen 1990; Groenewegen et al. 1999).
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1.5.2 Nucleus Accumbens and Impulsivity:

Nucleus accumbens has been the focus of many studies concerned with goal di-

rected behaviors and in particular impulsivity related phenomena (Basar et al. 2010).

NAc influences impulsivity measures across a large range of behaviors implicating it

in the selection and expression of the three components of goal directed behaviors

discussed before. Here I will review the role of NAc in control of impulsive behaviors

and outline our predictions about how this control can be manifested in the DS task.

Response inhibition:

As previously discussed, response inhibition can be further divided into response

cancelation, which is normally assayed by experimental designs such as SSRT, or

response restraint, which is monitored through premature responses in tasks such as

5CSRT and DRL or error no-go trials in go/no-go tasks. Interestingly, even though

lesions of medial dorsal striatum seem to impair inhibitory function in SSRT, lesions

of NAc core do not impair performance of this task (Eagle and Robbins 2003a;Eagle

and Robbins 2003b). On the other hand, there are many reports of disruption of

response restraint following lesions or inactivation the whole NAc or its subregions

core and shell. Lesions of the core increase premature responding in the 5CSRT task

(Christakou et al. 2004) and increase mean lever press responses per reward in DRL

tasks (Pothuizen et al. 2005; Reading and Dunnett 1995). Shell lesions on the other

hand don’t change premature responding or response rates in either 5CSRT or DRL

tasks (Christakou et al. 2004; Pothuizen et al. 2005). Shell inactivations using GABAA

receptor agonists increase Pavlovian conditioned approach (Blaiss and Janak 2009) as
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well as lever presses following a food paired cue in reinstatement (Floresco et al. 2008).

Both of these studies and others using either lesions or inactivations of the core have

found a decrease in incentive cue or second order conditioning responses (Blaiss and

Janak 2009; Floresco et al. 2006; Parkinson et al. 2000). In the DS task inactivations

of the whole NAc by glutamate receptor antagonists increases active lever presses

outside the cue and inactive lever presses (Yun et al. 2004). Even though the DS

response ratio seems not to be affected by NAc inactivation, the response latency

increases significantly suggesting that there might be two processes that are disturbed

by the inactivation: a process that inhibits responding outside the DS and a process

that promotes fast responding to incentive cues. Given the contrasting role of core

and shell in incentive cue responding suggested by some of the previously mentioned

studies, one of the aims of this thesis was to test the hypothesis that core is more

involved in the promotion of rapid responses to reward predictive cues while shell

primarily has a role in response inhibition (see Ch. 2).

Inactivation and cell body lesions of NAc also increases the rate of perseverative

responding in some tasks such as 5CSRT (Christakou et al. 2004) or after reversal

and extinction of matching to position (Reading and Dunnett 1991) but not always

(Floresco et al. 2006). In the DS task, perseverative responses are observed after

reward receipt but the role of NAc in this behavior has not been characterized. This

behavior was analyzed in the context of NAc core and shell inactivations and will also

be reported in Ch. 2.

It is worth noting that a possible confound in interpreting response disinhibition
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after NAc inactivations or lesions is the spontaneous increase in locomotion that

we and others have observed following NAc inactivation (Burns et al. 1994; Eagle

and Robbins 2003b; Reading and Dunnett 1995; Yun et al. 2004). In fact it is

well known that NAc has an inhibitory effect on locomotion (Pennartz et al. 1994)

and a recent study in our lab showed that electrical stimulation of the NAc elicited

consistent pauses in animal’s ongoing licking and locomotion (Krause et al. 2010).

The observed hyperactivity and increase in locomotion following NAc inactivation

suggests that elevation of nonspecific responding in the DS task for example, might

not arise solely from an increased rate of engagement in sucrose seeking behavior but

might be due to an increased rate of switching between the various behaviors that are

expressed by the animal in the chamber including the elements of the DS task. Such

an interpretation can implicate NAc in maintaining the focus on the chosen goal and

suppression of competing drives and will be discussed further in future chapters.

Attentional impulsivity:

Nucleus accumbens has been implicated in resistance to interference by either

earlier associations or irrelevant stimuli. Specifically NAc shell is involved in latent

inhibition (LI) where repeated non-reinforced presentations of a stimulus impairs an

animal’s ability to associate that stimulus with an outcome. Inactivation of shell but

not core reduces LI in subsequent training (Jongen-Relo et al. 2002; Pothuizen et al.

2005). Also inactivation of shell during learning a response rule facilitates learning of a

new rule while inactivation of core after the rule switch reduced its learning (Floresco

et al. 2006). Inactivations of both core and shell increases perseverative responding
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during extinction of a matching to position task (Reading and Dunnett 1991). In the

same task NAc lesions impair the working memory for the matching to positions at

long delays as well. In the DS task responding to the unrewarded stimulus, which

is possibly under LI increases following inactivation of both core and shell. In the

next chapter using selective inactivation of shell and core I will demonstrate that this

effect is more prominent following shell inactivation. Also, as discussed earlier, I will

attempt to separate the specific increase of responding to the NS from the general

disinhibition that arises from inactivation.

Impulsive choice:

Nucleus accumbens is also involved in the selection of actions in goal directed

behavior. In choices that involve temporal discounting of rewards, lesions of core

in rats increases their preference for immediate small rewards (Bezzina et al. 2007;

Cardinal et al. 2001; Pothuizen et al. 2005) and this effect seems to be independent

of shell (Pothuizen et al. 2005). Although a recent study showed no effect of core

inactivation on the choice of holding a nose poke longer for larger rewards suggesting

that at least some forms of impulsive choice might not be dependent on NAc core

(Gill et al. 2010). It has also been shown using a quantitative analysis of choices that

the deficit following core inactivation is not due to a deficit in perceiving the value

of the larger reward but of steepening of the delay discounting hyperbolic function

(Bezzina et al. 2007). Interestingly another study has shown that individual rats that

tend to engage in impulsive intertemporal choices might overlap with the ones that

emit high premature responses during the ITI but not with the ones that are impaired
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in SSRT response cancelation (Robinson et al. 2009). This is consistent with the fact

that NAc is implicated in impulsive choice and premature response but not in SSRT

as discussed previously.

Another aspect of impulsive choice involves effort instead of time. In fact, lesions

of NAc core impair effort-based choice and biases the actions toward less effortful

options (Hauber and Sommer 2009). This effect has been proposed to be mediated

through the dopamine signaling in the NAc as dopamine depletion renders rodents

unwilling to engage in effortful choices (Salamone et al. 2007)

The role of core and shell in the impulsivity manifest in the DS task as reward

receptacle entry before lever press during DS was not addressed previously and will

be assessed in this thesis. However, it should be noted that for the DS task both

of the interpretations regarding the temporal versus effort-based choice are equally

likely and a clear distinction between the two cannot be made as lever press before

entry requires both effort and can be perceived to delay reward collection.

1.5.3 Medial Prefrontal Cortex:

Even though somewhat controversial it is generally accepted that rats do have a

prefrontal cortex (PFC) with regions that parallel that of primates (Uylings et al.

2003). Following the Rose and Woolsey definition, PFC is the cortex reciprocally

connected with mediodorsal thalamus (Rose and Woolsey 1948). In rats PFC is

furthered divided into the medial, lateral and the ventral subdivisions all of which

are important in executive functioning and in goal directed behaviors (Cardinal et al.

2002; Dalley et al. 2004; Miller 2000).
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In particular, medial prefrontal cortex (mPFC) which has strong projections to

the NAc is implicated in impulsivity and its related pathologies in rats and primates

(Dalley et al. 2004; Kolb 1984; Winstanley et al. 2006). Medial PFC dorsally includes

precentral and anterior cingulate (ACC) cortices and ventrally is divided into prelim-

bic (PL), infralimbic (IL) and medial orbital (MO) cortices. The dorsal part of mPFC

which includes the ACC is involved in inhibition of impulsive choice in tasks requir-

ing differential effort. On the other hand, the impulsivity in intertemporal choice is

suppressed by orbitofrontal cortex in ventral PFC regions (Rudebeck et al. 2006). In

the context of response inhibition lesions of medial PFC and especially its ventral

division including IL increases premature and perseverative errors in the 5CSRT task

(Chudasama et al. 2004; Muir et al. 1996) and this effect is mediated through its

connections with the NAc (Christakou et al. 2004).

In the DS task inactivations of mPFC also result in behavioral disinhibition in

responding to the NS and spontaneous lever pressing with the effect size being larger

in the more ventral IL area compared to dorsal PFC areas (Ishikawa et al. 2008a).

The temporal specificity of this increased responding in the DS task is not known and

will be studied in more detail in later chapters of this thesis. Finally simultaneous

inactivations of ventromedial PFC and single unit recordings in the NAc will be

used to further investigate the role of ventral corticostriatal projection in controlling

various aspects of impulsive behavior (see Ch. 3.
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Roles of nucleus accumbens core and
shell in incentive cue responding and
behavioral inhibition

2.1 Abstract

The nucleus accumbens (NAc) is involved in many reward-related behaviors. The

NAc has two major components, the core and the shell. These two areas have differ-

ent inputs and outputs suggesting that they contribute differentially to goal-directed

behaviors. Using a discriminative stimulus (DS) task in rats and inactivating the

NAc by blocking excitatory inputs with glutamate antagonists, we dissociated core

and shell contributions to task performance. NAc core but not shell inactivation de-

creased responding to a reward predictive cue. In contrast, inactivation of either sub-

region induced a general behavioral disinhibition. This reveals that the NAc actively

suppresses actions inappropriate to the DS task. Importantly, selective inactivation

of the shell but not core significantly increased responding to the non-rewarded cue.

To determine if the different contributions of the NAc core and shell depend on the

information encoded in their constituent neurons, we performed electrophysiologi-

cal recording in rats performing the DS task. Although there was no firing pattern

unique to either core or shell, the reward-predictive cue elicited more frequent and
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larger magnitude responses in the NAc core than in the shell. Conversely, more NAc

shell neurons selectively responded to the non-rewarded stimulus. These quantita-

tive differences might account for the different behavioral patterns that require either

core or shell, and neurons with similar firing patterns could have different effects on

behavior in this task.

2.2 Introduction

Nucleus accumbens (NAc) neurons contribute to behaviors elicited by reward

predictive sensory cues (Cardinal et al. 2002; Humphries and Prescott 2010; Nicola

2007). Lesions or pharmacological manipulation of the NAc impair the ability of

conditioned stimuli (CS) to promote operant responding for drugs of abuse or natural

rewards (Cardinal et al. 2002;DiCiano et al. 2008; Floresco et al. 2008). However,

reversible inactivation of the NAc failed to reduce cue responding in a discriminative

stimulus (DS) task and instead increased unreinforced lever-pressing (Yun et al. 2004).

In contrast to general inactivation of the NAc, blockade of dopamine receptors in

the core strongly reduces incentive-cue responding (Ambroggi et al. 2008), whereas

dopamine receptor blockade in the shell has minimal effects on similar behaviors

(Nicola 2010). This indicates that NAc core and shell have distinct roles in task

performance. Indeed, lesions of the core but not shell reduce performance in different

incentive-cue responding tasks (Chaudhri et al. 2010; DiCiano et al. 2001; DiCiano

and Everitt 2001; DiCiano et al. 2008; Floresco et al. 2008; Ito et al. 2004). We

therefore investigated the differential contribution of NAc core and shell to behaviors

in the DS task.
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A subpopulation of NAc neurons responds to reward predictive cues. The magni-

tude of these responses correlates with both the predictive value of the cue and the

action elicited by the cue (Ito and Doya 2009; Nicola et al. 2004a; Roesch et al. 2009;

Taha et al. 2007) . Furthermore, inactivating structures that provide afferent input to

the NAc, such as the ventral tegmental area (VTA), the basolateral amygdala (BLA)

and the dorsal prefrontal cortex (PFC) disrupts both responses in NAc neurons and

behaviors elicited by reward predictive cues (Ambroggi et al. 2008; Ishikawa et al.

2008a; b; Yun et al. 2004).These observations strongly support the hypothesis that

that incentive-cue-elicited firing responses in NAc neurons promote reward-seeking

behavior. However, it leaves open the question of which neuronal firing patterns nor-

mally inhibit reward-seeking actions during intervals when reward is not available.

The differential contribution of the NAc core and the shell to reward-seeking

behavior raises the possibility that their constituent neurons encode different infor-

mation. Consistent with this idea, NAc core and shell receive different afferent pro-

jections (Groenewegen et al. 1999). On the other hand, some brain regions project to

both the NAc core and shell (Fields et al. 2007; Humphries and Prescott 2010; Voorn

et al. 2004). Consequently, NAc core and shell neurons could encode similar informa-

tion but have different effects on behavior depending upon the downstream regions

they innervate. Indeed, NAc core and shell projection to downstream structures can

be somewhat distinct and non-overlapping (Groenewegen et al. 1999; Humphries and

Prescott 2010; Nicola 2007; Tripathi et al. 2010; Voorn et al. 2004). The difference of

outputs raises the possibility that similar information encoded in the NAc core and
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the shell could play markedly different roles in behavior. To address this issue, we

recorded the activity of NAc core and shell neurons during the DS task.

2.3 Results

Cues
Active LPs
Rewards

≤10s~30s 10s

DS NS DS DS NS

a

b ShellCore

+1.7

+1.6

+1.2

+1.7

+1.6

+1.2

c

Figure 2.1: Schematic of the DS task and histology. (a) Two cue tones (up to 10 s for
the rewarded discriminative stimulus [DS]; 10 s for the unrewarded stimulus [NS]) were randomly
presented on a variable-interval schedule with an average interval of 30 s. A lever-press was required
during DS presentation to terminate the DS and cause the delivery of a 10% sucrose reward into an
adjacent receptacle. Histological reconstruction of injectors placements in (b) the core and (c) the
shell.

All rats in this study were trained on the DS task (FIG 2.1). Two auditory cues,

the rewarded discriminative stimulus (DS) and the non-rewarded stimulus (NS), were

randomly presented on average every 30 s. During a DS presentation, rats pressed

the active lever which turned off the auditory cue and delivered the reward. They

then quickly entered the reward receptacle to retrieve the reward. After consumption

of the sucrose reward rats would exit the reward receptacle to await the next cue
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presentation. During the inter-trial interval and following the NS, rats also intermit-

tently pressed the active and inactive levers or entered the reward receptacle, despite

the fact that those actions were never rewarded.

2.3.1 Pharmacological inactivation of the NAc core and shell.

Two groups of animals with guide cannulae in either the NAc core or shell received

micro-injections of CSF and a mixture of glutamate antagonists CNQX/AP5 (1 and

2 ug respectively in 0.5 µl) on separate days (FIG 2.1b,c).

Incentive cue responding: The DS response ratio (defined as the proportion of

DSs the animals responded to), the number of rewarded active lever-presses and the

latency to lever-press after DS presentation are related to the strength of the incentive-

cue (the DS) to promote behavior to obtain the reward. All measures were signifi-

cantly affected by the injections (FIG 2.2a-c, 2-way ANOVAs, Region F(1,17)>6.7,

P<0.02, Injection F(1,17)>39, P<0.001, Region x Injection F(1,17)>22, P<0.001 for

all variables). Inactivation of the NAc core but not the shell significantly reduced

the DS ratio (FIG 2.2a, post-hoc, P<0.001) and increased the latency to lever-press

after DS (FIG 2.2b, post-hoc, P<0.001).

Disinhibition of active lever-presses: The above results demonstrate that the

NAc core but not shell is required for incentive-cue responding. In contrast, both NAc

core and shell inactivation produced significant behavioral disinhibition. The NS ra-

tio was increased following inactivation but did not depend on the region (FIG 2.2a,

2-way ANOVA Region F(1,17)=2.2, P=0.15, Injection F(1,17)=7.4, P=0.01, Region
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x Injection F(1,17)=0.7, P=0.4). Similarly, the number of unrewarded (active) lever-

presses (those occurring outside the DS presentations) was also increased after inac-

tivation independent of the region (FIG 2.2c, 2-way ANOVA Region F(1,17)=1.7,

P=0.2, Injection F(1,17)=15.2, P=0.002, Region x Injection F(1,17)=2.6, p=0.1).

The fact that unrewarded active lever-presses were increased after NAc inactiva-

tion raises the question of the temporal specificity of the increase during the NS. Do

rats press the active lever in response to the NS or is the NS ratio increase due pri-

marily to a non-specific general increase in lever-pressing? To address this question,

we analyzed the frequency of lever-pressing during different time windows: during the

inter-trial interval (spontaneous), during the DS, during the NS, and in the 10 sec after

the rats consumed the reward and exited the receptacle (post-reward) (FIG 2.3 a).

The injections affected the frequency of active lever-presses differently (FIG 2.3 b,

3-way ANOVA, Region F(1,68)=12.8, P=0.001, Injection F(1,68)=3.7, P=0.06, Win-

dow F(3,68)=211, P<0.001, Region x Injection x Window F(3,68)=7.2, P<0.001).

NAc core inactivation reduced lever-pressing during the DS but did not significantly

increase lever-pressing in the spontaneous or NS windows. Compared to CSF injec-

tion, inactivation of the core increased lever-pressing immediately after collection of

the reward (post-reward window) to a greater degree than in the spontaneous win-

dow. NAc shell inactivation had greater disinhibitory effects: active lever-pressing

was increased during the spontaneous, NS and post-reward windows. Furthermore,

the increase in active lever-pressing in these two latter windows was stronger than

that during the spontaneous window. This shows that the increase in NS ratio caused
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by shell inactivation is the combination of a general increase in lever-pressing and the

removal of a more specific NS-driven inhibition of responding.
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Figure 2.2: Effect of pharmacological inactivation (CNQX/AP5, 1 and 2 µg/0.5 µl re-
spectively) of the NAc core and shell on the DS task. (a) Average DS (left panel) and NS
(right panel) response ratios (proportion of DSs or NSs during which the animal pressed the active
lever). (b) Average DS (left panel) and NS (right panel) response latencies (time from cue onset
to the lever-press). (c) Average number of rewarded (i.e. occurring during DS presentations, left
panel) and unrewarded (outside DS presentations, middle panel) lever-presses on the active and total
number of lever-presses on the inactive lever (right panel). (d) Average number of reward receptacle
entries. + p<0.05, ++ p<0.01, +++ p<0.001 compared to CSF injections and # p<0.05, ###
p<0.001 compared to shell injections.

Because the disinhibitory effect of shell inactivation consisted, in part, of a specific

increase in responding during the NS coupled with no effect on DS responding, one

possibility is that shell inactivation reduces animals’ ability to discriminate between

the two cues. However, animals clearly continued to discriminate DS from NS after

shell inactivation, as they responded to 80% of DSs and only 20% of NSs (FIG 2.2a).

More importantly, shell inactivation increases responding in the absence of cues (FIG

2.2c & 2.3b). These results are more consistent with a contribution if the NAc shell

to response inhibition than to cue discrimination.
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Figure 2.3: Time window analysis of lever-pressing after pharmacological inactivation of
the NAc core and shell (a) Schematic illustrating the time windows in which the frequency of
lever-pressing was analyzed. DS and NS windows correspond to the entire duration of the cues.
The post-reward window corresponds to the 10 s following the consumption of the reward. The
spontaneous window (Spont) corresponds to the remaining time. Frequency of (b) active and (c)
inactive lever-pressing in the different time windows after CSF or CNQX/AP5 injections in the
core (left panel) or the shell (right panel). * p<0.05, ** p<0.01, ***, p<0.001 compared to the
spontaneous window; + p<0.05, ++ p<0.01, +++ p<0.001 compared to CSF injections and #
p<0.05, ## p<0.01, ### p<0.001 compared to shell injections.

Disinhibition of inactive lever-presses: Inactivation of the NAc also increased

the number of presses on the inactive lever (FIG 2.2c, 2-way ANOVA, Region

F(1,17)=0.8, P=0.4, Injection F(1,17)=25, P<0.001, Region x Injection F(1,17)=5.12,

P=0.03). NAc shell inactivation significantly increased inactive lever-presses (post-

hoc P<0.001) whereas NAc core inactivation produced a non-significant trend toward

an increase (Post-hoc, P=0.06).
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When analyzed in different time windows, the number of presses on the inactive

lever after NAc inactivation showed an injection effect and a Region x Injection ef-

fect (FIG 2.3c, 3-way ANOVA, Region F(1,68)=1.5, P=0.2, Injection F(1,68)=35,

P<0.001, Window F(3,68)=1.1, P=0.4, Region x Injection x Window F(3,68)=0.4,

P=0.7) indicating that the increase in inactive lever-pressing is stronger for shell

than core inactivation (post-hoc on Region x Injection interaction effect, P=0.01).

However, in contrast to active lever-presses, we found no time window effect. This

indicates that the disinhibition of inactive lever-presses is independent of cues or re-

ward; i.e. that there is no temporally specific relation of NAc mediated inhibition of

inactive lever-pressing to any specific component of the task.

Reward receptacle entries: The total number of receptacle entries was affected

by inactivations (FIG 2.2d, 2-way ANOVA, Region F(1,17)<0.1, P=0.9, Injection

F(1,17)=13, P=0.002, Region x Injection F(1,17)=10.5, p<0.005) with a reduction

after NAc core (post-hoc, P<0.001) but not shell inactivation (post-hoc, P>0.05).

Because the number of receptacle entries is more than five times larger than the

number of rewards earned (compare FIG 2.2c&d), the prominent reduction of entries

after NAc core inactivation cannot be due solely to reduced DS responding, but also

reflects lower motivation to check the reward receptacle in the absence of cues.

2.3.2 Electrophysiological activity of NAc core and shell neurons.

We recorded 983 neurons located in the NAc of 12 rats (Table 2.1) over 166

sessions during the DS task. After exclusion of the neurons with a low baseline firing
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rate (<0.03 Hz), 456 and 484 neurons located respectively in the NAc core and shell

remained and were selected for further analysis (FIG 2.4a). A small proportion

of the neurons (n=44, dark gray dots in FIG 2.4a) were located in an area where

the NAc shell and the ventral pallidum were indistinguishable both anatomically and

electrophysiologically. Excluding neurons located in this area had no consequence of

the effects reported below (data not shown). Therefore, since many of these neurons

were probably shell neurons, we performed all our analyses on the entire shell data

set.

Behaviorally, rats responded more and faster to the DS than the NS (FIG 2.4b).

The basal firing rate in the NAc core and shell was similar (3.56 +/- 0.24 and 3.65+/-

0.34 Hz respectively, t(938)=0.21, P=0.83). As previously shown in the DS task,

different but overlapping subpopulations of NAc neurons respond to cues, operant

actions, reward consumption and exit of the reward receptacle (Nicola et al. 2004a).

Here, we examine the distributions of each of these firing responses across NAc core

and shell.

Cue-related responses in NAc neurons: We found cue-related responses in both

the core and the shell. However, DS excitations were more frequent in the NAc core

than in the shell (permutation test, P<0.007, FIG 2.5 a). This difference was not

seen for NS excitations (permutation test, P>0.3). Neurons with cue-evoked inhibi-

tions were equally common in the NAc core and shell (permutation test, P>0.26). For

both DS and NS neuronal responses, onset latencies depended on the type of response

(excitation/inhibition) and the structure (FIG 2.5 b, 2-way ANOVA, for DS struc-
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Figure 2.4: Behavioral performance of the rats during electrophysiological recordings and
histology (a) histological reconstruction of electrode placements in the NAc core (open circles) and
shell (black and gray dots). Gray dots represent the electrode sites close to the ventral pallidum
that were included in the shell data. (b) Response ratio (top) and behavioral latency to respond
(bottom) during recording sessions. *** P<<0.001 cue effect.

ture F(1,286)=0.35, P=0.55, Response Type F(1,286)=21.7, P<0.001, Region x Re-

sponse Type F(1,286)=4.65, P=0.03; for NS, Region F(1,56)=4.82, P=0.03, Response

Type F(1,56)=16.56, P=0.002, Region x Response Type F(1,56)=5.28, P=0.03). The

onset latencies for both DS and NS excitations did not differ between core and shell

(post-hoc P>0.27). Cue-evoked inhibitions however, appeared at longer latencies in

the shell than in the core (for DS and NS, post-hocs P<0.05). Analysis of the dura-

tion of DS responses revealed a main effect of response type (F(1, 286)=14.5, P<0.005

and a Region x Response-type interaction (F(1,286)=9.2, P<0.005). Notably, DS in-

hibitions in the NAc core were significantly longer than all the other response types

(post-hocs P<0.005). Indeed, some NAc core neurons were inhibited for over 10 sec

(FIG 2.5c) while in the shell, the duration of inhibitions was similar to excitations

(post-hoc P=0.58). Importantly, rats pressed the lever an average of 2.9+/-0.05 s af-
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ter the DS was presented (FIG 2.4a). This implies that many inhibitions in the core

encompassed the lever-press and reward consumption. This effect contrasts with the

durations of other DS response types that usually terminated before or around the

time of lever-press. We then sorted the neurons according to whether they responded

to one of the cues or both (FIG 2.6a,b). Interestingly, despite similar proportions

of NS excited neurons, the overlap between DS and NS excitations was larger in the

NAc core than in the shell (permutation test, P<0.05).
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The fact that some neuronal responses span multiple task events is a potential

confound for analyzing event-related neural responses. This is particularly true for

responses to cues followed at short latency by actions. For example, most DSs were
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Figure 2.6: Overlaps between DS and NS responses. Venn diagram showing the proportion
of DS-excited (red), DS-inhibited (dark blue), NS-excited (orange) and NS-inhibited (light blue)
responses for (a) the core and (b) the shell. The overlaps represent the neurons having two types
of responses. Average responses to DS and/or NS in (c) the core and (d) the shell. Top: neurons
responding only to DS. Middle: neurons responding to both DS and NS with the same response
direction (excitation or inhibition). Bottom: neurons responding only to NS. (e) AUC and (f) peak
of DS and/or NS responses. *P<0.05 structure effect, ### P<0.001 cue effect.

rapidly followed by a lever-press while NSs typically were not. A different firing

pattern following either DS or NS could therefore be primarily related to lever-press.

We recently developed an analysis method for parsing the firing related to multiple

sequential events. The procedure uses the natural variability in time between events

to separate the firing that could be related to either or both events and thereby isolate

the firing relative to a single event (Ghazizadeh et al. 2010 or see Ch.4). We applied

this method to 3 events: DS, lever-press and reward receptacle exit. Because reward
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receptacle entry occurred at relatively constant latencies after lever-presses (Nicola

et al. 2004b; Nicola 2010), we did not include reward receptacle entry in our analysis.

The lever-press related responses studied below could therefore be also related to

receptacle entry.

Analysis of the neuronal population responsive only to the DS (FIG 2.6c-f, top

row) revealed that excitations and inhibitions were larger in the NAc core than in

the shell (FIG 2.6e-f, top row, excitations t(114)<-2.0, P<0.05 for both AUC and

peak; inhibition t(132)=-2.4, P<0.05 for AUC and t(132)=-0.7, P=0.47 for peak).

For the population of neurons excited by both cues, deconvolved DS (DSd) responses

were considerably larger than NS responses in both the core and the shell (FIG

2.6c-e, middle row, 2-way ANOVA, cue F(1,25)>4.2, P<0.05, Region F(1,25)>0.52,

P>0.47, cue x Region interaction F(1,25)<0.51, P>0.48 for both AUC and peak). We

found no significant effect for inhibitions (2-way ANOVA, F(1,6)<4, P>0.09). The

subpopulation of neurons responsive only to NS had small responses similar in core

and shell (FIG 2.6c-f, bottom row, excitations t(10)<-0.64, P>0.47 for both AUC

and peak; inhibition t(6)<0.61, P>0.56 for both AUC and peak) with less defined

peaks. Excitation peaks appeared at considerably longer latencies than the other

cue-related responses (excitations: 550 and 460 ms for NS responses of NAc core

and shell respectively compared to 120 ms for all other cue responses in DS-only and

DS/NS responsive neurons, P>0.05).

Overall, these results show that the DS is more robustly represented in NAc core

than shell neurons. Indeed, the proportion of DS excitations and the magnitude of
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both DS-excitations and inhibitions are larger in the NAc core for neurons responding

only to the DS. Notably, this is not the case for neurons co-excited by DS and NS,

but this represents a considerably smaller population than those responsive to DS

only. Although the proportion of NS responding neurons is similar in core and shell,

more shell neurons respond selectively to the NS.

NAc neuronal correlates of rewarded lever-press responses: We then ana-

lyzed phasic responses occurring around rewarded active lever-presses (FIG 2.7, see

methods). Neurons inhibited during the lever-press were more frequently found in

the NAc shell than the core (FIG 2.7a, permutation test, P=0.027). Onset laten-

cies of excitations and inhibitions were similar across structures (FIG 2.7b, 2-way

ANOVA Region F(1,188)<0.1, P=0.8, Response type F(1,188)=0.1, P=0.7, Region

x Response Type F(1,188)<0.1, P=0.8). Excitations were stronger in the NAc core

than in the shell (Figure 2.7c-h, AUC, t(74)=4.47, P<0.001 and peak t(74)=3.31,

P<0.005) but inhibitions were similar (AUC, t(114)=0.69, P=0.49 and peak t(114)=

0.94, P=0.94). In conclusion, there is a reciprocal pattern of dominant neuronal rep-

resentation of rewarded lever-presses in the NAc core and shell: stronger magnitude

of excitations in the core but more frequent inhibitions in the shell.

NAc responses to reward consumption. Previous studies show that many NAc

neurons respond during reward consumption (Krause et al. 2010; Nicola et al. 2004b;

Roitman et al. 2005; Taha and Fields 2005) although whether their firing changes

encode reward valence or promote responding for reward has been debated. Both
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Figure 2.8: Neuronal responses to reward consumption (a) Percentage of excitation and inhi-
bition in response to the reward consumption in the core and the shell. (b) Cumulative percentage
of response duration of consumption-related responses. Normalized and color coded PETHs aligned
to the middle of the reward consumption for (c) core and (d) shell. Consumption-excited neurons
are displayed at the top and consumption-inhibited neurons at the bottom. Within each category,
neurons are sorted by response durations (shorter responses at the top for excitations and at the
bottom for inhibitions). Average response for consumption-responsive neurons in (e) the core and
(f) shell. *P<0.05 compared to core.
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NAc core and shell neurons were more often inhibited than excited during reward

consumption (permutation test, P<0.01 for both core and shell, FIG 2.8a). Inhi-

bitions in the NAc core during reward consumption were far more frequent than in

the shell (permutation test, P<0.001, FIG 2.8a,c,d). Although inhibitions in the

core did not last significantly longer than in the shell (FIG 2.8b-d, 2-way ANOVA

Region F(1,325)=2.2, P=0.14, Response Type F(1,325)=3.2, P=0.07, Region x Re-

sponse Type F(1,325)=2.4, P=0.12), they had a larger AUC (t(234)=2.3, P=0.02,

FIG 2.8e-g). These strong inhibitions in the core are reminiscent of the long lasting

inhibitions found after DS presentation (FIG 2.5b,c and FIG 2.6). Excitations

in the NAc core displayed a trend toward a significantly greater firing rate increase

relative to the shell (t(91)=1.8, P=0.07).

NAc responses to reward receptacle exit. Consistent with previous reports

(Nicola et al. 2004b), NAc neurons respond to the exit of the reward receptacle. NAc

core neurons were more often excited by receptacle exit (permutation test, P<0.05,

FIG 2.9a,c,d). Response onset latency depended on the structure and the response

direction (FIG 2.9b-d, 2-way ANOVA Region F(1,194)=2.9, P=0.09, Response Type

F(1,194)=13.8, P<0.001, Region x Response Type F(1,194)=8, P=0.005). Inhibition

onset in the NAc core occurred earlier than onset of all other response types (FIG

2.9b, post-hoc P<0.05). We found no difference between NAc core and shell neu-

rons in term of response magnitude (AUC excitation, t(102)=0.58, P=0.56; peak

excitation, t(102)=1.29 P=0.2; AUC inhibition, t(92)=-0.9, P=0.36; peak inhibition,

t(92)=1.23, P=0.22).
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2.4 Discussion

Here we dissociate the effect of NAc core and shell inactivation in a discriminative

stimulus task. Blockade of glutamate receptors in the core but not the shell impairs

responding to a reward predictive cue. On the other hand, shell but not core in-

activation produces a temporally specific increase in responding to the unrewarded

cue. Although we did not find neuronal firing patterns specific to core or shell, we

did find stronger neuronal representation of the DS in the core, and more selective

representation of the NS in the shell. This is consistent with the hypothesis that DS

responses in core promote behavioral responding to reward-predictive cues, whereas

NS responses in the shell suppress responding to less relevant cues.

Role of the NAc core and shell in incentive-cue responding. Inactivation

or lesion of the NAc core impaired performance in tasks where discrete sensory cues

controlled operant behaviors (DiCiano et al. 2008; Floresco et al. 2008; Fuchs et al.

2004; Hall et al. 2001; Ito et al. 2004). However, inactivation of the entire NAc

failed to decrease responding in the DS task and instead increased nonspecific re-

sponding (Yun et al. 2004). The present study resolves this issue by showing that

selectively inactivating the core reduces responding to the DS. Shell inactivation, on

the other hand, strongly increased unrewarded responding. The lack of reduction of

DS-cued responding by general NAc inactivation (Yun et al. 2004) might therefore

be due to opposing inhibitory and disinhibitory effects of core and shell inactivation,

respectively, on cue responding.
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The finding that core inactivation markedly reduces responding to the DS sug-

gests that neuronal activity occurring between the DS and the lever-presses promotes

responding. In line with this, NAc neuronal responses to the DS were greater when

the rat made an operant response to the cue than if it did not (Nicola et al. 2004a).

Overall, we found that both DS and lever-press neuronal responses were larger in

the core than in the shell. This provides a potential explanation for the differential

involvement of the core and shell in behavioral responding to the DS. On the other

hand, many neurons in the shell did respond to the DS and lever-press with response

characteristics similar to those of core neurons. Despite this fact, inactivating the

shell had no effect on DS responding. Therefore, the differential contribution of core

and shell to DS responding is likely to be due to differences in the projection targets

of neurons with similar firing patterns. For instance the NAc core projects to the lat-

eral ventral pallidum, the subthalamic nucleus and the medial substantia nigra pars

reticulata, while the shell projects more frequently to the medial ventral pallidum, the

VTA and the hypothalamus (Groenewegen et al. 1999; Heimer et al. 1991; Tripathi

et al. 2010).

The similarity of DS representation in core and shell raises the question of the

origin of the afferent input that drives the DS in these subregions. We previously

showed that the VTA is necessary for DS-evoked responses in NAc neurons (Yun

et al. 2004). Furthermore, cue-evoked dopamine release is similar in the core and

shell (Wanat et al. 2010), consistent with the idea that dopamine promotes DS-evoked

firing of both core and shell neurons. The BLA is also a critical source of input for
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DS firing. BLA inactivation blocks DS-evoked firing in the core (Ambroggi et al.

2008; Jones et al. 2010). Although lesions of BLA reportedly failed to block shell

DS responses (Jones et al. 2010), the rostral BLA, known to project preferentially

to the core (Shinonaga et al. 1994) was targeted by Jones et al. (2010) . The

caudal BLA, which projects to the shell, could therefore contribute to cue-evoked

responses in the shell. On the other hand, it is also possible that distinct inputs

contribute differentially to DS-driven responses in the core and shell. Indeed, the

dorsal PFC, which projects preferentially to the core, promotes both behavioral and

neuronal responses to incentive-cues (Ishikawa et al. 2008b). Whether shell responses

are specific to other PFC inputs requires further investigation.

Role of the NAc core and shell in suppressing task-irrelevant behaviors.

We found that NAc inactivation induced two different forms of behavioral disinhi-

bition. One, produced by both core and shell inactivation, is a general increase in

responding on both levers. Previous studies found that such effects were specific to

shell inactivation (Floresco et al. 2008; Peters et al. 2008). The larger volume in-

jected in our study and possible diffusion from one site to the other could explain this

discrepancy. However, we also found a shell-specific form of behavioral inhibition: a

temporally specific increase in active lever-pressing during the NS.

Our neuronal recordings cannot reveal potential physiological correlates of the

non-specific increase in lever-pressing caused by NAc inactivation because it is im-

possible to determine when successful inhibition of a behavior occurred. However, the

fact that more neurons are inhibited by lever-presses in the shell compared to the core
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is consistent with fact that behavioral disinhibition is stronger after shell inactiva-

tion. This suggests that this pattern of activity allows for the occurrence of rewarded

lever-pressing. On the other hand, the increased responding during the NS window

following shell inactivation indicates that NAc neurons can generate temporally spe-

cific response suppression during the NS. In fact, we found a greater population of

neurons excited by the NS (but not by the DS) in the shell than in the core. These

NS-specific neuronal responses in the shell may inhibit operant responding promoted

by the NS.

The population of NS responsive neurons in shell was relatively small, as was

the increase in NS-induced lever-pressing following shell inactivation. What could

explain this relatively weak effect? Rats initially lever-pressed to the NS when it was

first introduced in training (see FIG 3.1) and had to learn to actively suppress such

responding. Across several months of training, the degree of suppression of prepotent

responding to the NS probably decreased over time. If the shell participates in sup-

pressing responding, therefore, its involvement might be stronger at the beginning of

extinction, when behavioral suppression is strongest. This hypothesis is supported by

data obtained by Ghitza and collaborators (Ghitza et al. 2003): NAc neurons were

recorded on the first day of extinction of a similar discriminative stimulus task where

the cue was presented but the reward (cocaine) was not. They report that neurons in

the shell responded more strongly to the cue than those in the core. We suggest that

this was due to the fact that a population of shell neurons was recruited by extinction

and that these neurons suppressed responding to a cue that was no longer associated
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with the reward. Interestingly, the ventral PFC, which preferentially targets the shell

(Voorn et al. 2004), has been implicated in extinction (Peters et al. 2008) and its

inactivation induces behavioral disinhibition in the DS task (Ishikawa et al. 2008a).

Therefore, activity related to action suppression in shell neurons may depend on

ventral PFC inputs. Further experiments are needed to test this hypothesis.

Role of excitations versus inhibitions in promoting and stopping behavior

A critical unanswered question is whether excitation or inhibition of NAc neurons

promotes or suppresses behavior. Because initial studies in primates did not report

inhibitions in the striatum (Bowman et al. 1996; Cromwell and Schultz 2003; Hassani

et al. 2001), most of the theories of the function of the ventral and dorsal striatum are

related to excitations (Hikosaka 2007; Humphries and Prescott 2010; Nicola 2007).

However, studies in rodents have shown that NAc neuronal inhibitions are prevalent

in several appetitive behaviors (Janak et al. 2004; Krause et al. 2010; Taha and

Fields 2006). The presence of long-lasting inhibition, such as those reported here in

the core, have been proposed to act as a gate for extended goal-directed behaviors.

This hypothesis states that a subpopulation of NAc neurons tonically suppresses

behavior and that their inhibition is necessary for a behavior to occur. The fact that

these inhibitions are more widespread and longer lasting in the core might appear

to contradict to the stronger behavioral suppression exerted by the shell in this and

other paradigms (Kelley and Swanson 1997; Pecina and Berridge 2000; Reynolds and

Berridge 2002; Stratford and Kelley 1997). However, electrical stimulation of both

NAc core and shell produces powerful inhibition of sucrose licking (Krause et al. 2010).
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Furthermore, inhibitions (or excitations) in the core and shell could have opposing

effects on behavior. Selective manipulation of excited and inhibited neurons will be

required to determine their specific behavioral roles.

2.4.1 Conclusion

The NAc core and shell make distinct contributions to the DS task. Our recordings

revealed that no event-related firing was specific to the core or the shell, suggesting

that functionally similar populations of neurons are distributed across both regions.

The fact that these sub-territories project to somewhat non-overlapping brain regions

might therefore be more relevant to understand their opposing effects on behavior.

2.5 Materials and Methods

2.5.1 Animals

The subjects were male Long–Evans rats (Harlan Sprague Dawley, Indianapolis,

IN) weighing ∼350 g on arrival and individually housed on a 12 hr light/dark cycle.

Experiments were conducted during the dark phase. After receipt, rats were allowed

at least 1 week of ad libitum food and water, followed by 1 week of restricted food

before training. Throughout all experiments, food restriction was adjusted daily at

the end of experimental manipulations to maintain the rats at ∼90% of their initial

body weight. Animal handling and experiments conformed to National Institutes of

Health and Ernest Gallo Clinic and Research Center animal care and use policies.
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2.5.2 DS task

The behavioral pharmacology study was conducted in standard operant chambers

(23.5 x 30.5 cm) and the electrophysiological study was conducted in larger cages

(40.6 x 40.6 cm). All cages contained two retractable levers located on one wall of

the chamber (one on each side of a reward receptacle), two house lights, a white

noise speaker and a tone speaker (Med Associates, St. Albans, VT). Liquid sucrose

reward was delivered into a well in the reward receptacle by a syringe pump. The

DS task structure was similar to our previous experiments (Nicola et al. 2004a; Yun

et al. 2004; Yun et al. 2004). Rats were run daily on the DS task for one or two

hours (for behavioral and electrophysiological studies, respectively). Two tones, the

discriminative stimulus (DS) and the non-rewarded stimulus (NS), were presented

on a variable interval schedule with an average interval of 30 sec. Pressing one of

the two levers (designated the active lever, randomly chosen across rats) during DS

presentation resulted in the delivery of 50 µl of 10% sucrose into the reward receptacle

and termination of the DS tone. Each DS lasted for up to 10 sec, and each NS lasted

10 sec. Responding on either lever during the NS or in the absence of the DS was

never rewarded. The cues were either an intermittent 4 kHz tone (40 ms on and 50

ms off), or a siren tone (ramped from 4 to 8 kHz with a 400 ms period). Tones were

randomly assigned to be the DS or the NS across rats.

Over the course of training, animals’ responding to the DS increased while NS

responding and uncued lever-pressing decreased. Surgeries were performed when the

rats reached criterion performance of >80% DS response ratio and <20% NS response
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ratio (defined as the proportion of all DSs or NSs in the session to which the animal

responded).

2.5.3 Surgeries

For the behavioral study, rats were bilaterally implanted with microinjection guide

cannulae (27 gauge, Plastics One, Roanoke, VA, USA) in the NAc Shell (AP +1.6,

ML ±0.8, DV -6.0 mm relative to bregma) and NAc core (AP +1.6, ML ±2 and DV

-6.0 mm).

For electrophysiological recordings, 2 arrays of 8 electrodes (NB Labs,Denison,TX,

50 µm stainless steel wires arranged in 2 rows of 4) were attached to a microdrive

device that allowed the entire arrays to be lowered by 80 µm increments. Target

coordinates of the medioposterior electrode of each array were as follows: core, AP

+1.2, ML±2.0 and DV -6 to -8.5 mm and shell, AP +1.2, ML ±0.8, DV -6 to -8.5

mm).

Animals were anesthetized with isoflurane (5%) and placed in a stereotaxic ap-

paratus. Anesthesia was maintained with isoflurane (0.5-2.0%) during surgery. Mi-

crodrives were secured to the skull with bone screws and dental acrylic, and wire

obturators were inserted into the guide cannulae; the ends of the obturators were

flush with the ends of the guide cannulae. Rats were given at least 7 days of recovery

before being retrained on the DS task and habituated to the handling procedures.
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2.5.4 Microinjections

To block excitatory transmission in the NAc, we used a cocktail of the α-amino-3-

hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) and N-methyl-d-aspartate (NM-

DA) antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphono-

pentanoic acid (AP5) which inhibit NAc medium spiny neuron activity (Horne et al.,

1990; Pennartz & Kitai, 1991; Pennartz et al., 1991; Nicola et al., 1996; Hoffman

& Lupica, 2001) because these neurons require glutamatergic input to fire (Wilson,

1998; Nicola et al., 2000). CNQX (4mg/ml) and AP5 (8mg/ml) were dissolved sepa-

rately in 1M NaOH. After adjusting the pH to 7.0 with 1M HCl, the solutions were

combined.

To inject animals, the obturators were removed and 30 gauge injector cannulae

were inserted into the guides. Injectors extended 1.5 mm below the tip of the cannula.

A volume of 0.5 µl of CSF or the cocktail CNQX/AP5 (1 and 2 µg respectively)

was injected over 2 min. After a 1 min post-injection period, the injectors were

gently removed, the obturators were replaced, the animal was immediately placed

into the behavioral chamber, and the behavioral session began. CSF or the cocktail

CNQX/AP5 were injected on different days (with at least one intervening day with

no injection), in random order, in the same animals.

2.5.5 Electrophysiology

Electrophysiological recording was conducted as described previously (Ambroggi

et al. 2008; Nicola et al. 2004a). Animals were connected to the recording apparatus
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(Plexon, Inc.), which consisted of a headstage with operational amplifiers, cable and

a commutator to allow the animal free movement within the chamber. Rats were run

for 2 hr daily sessions of the DS task. The microdrive carrying the electrode arrays

was lowered by 80 or 160 µm at the end of each session to get a new set of neurons

every day.

Spike sorting. Isolation of individual units was performed off-line with Offline

Sorter (Plexon, Inc., Dallas, TX) using principal component analysis. Only units

with well defined waveforms were included in this study. Interspike interval distri-

bution, crosscorrelograms and autocorrelograms were used to insure that single units

were isolated. Additionally, only units in which waveform characteristics were con-

stant over the entire recording session were included in this study.

Determination of the optimal bin size. The size of the bins greatly influences the

information contained in peri-event time histograms (PETH). We have developed a

principled way of finding optimal binsizes for each PETH using the Akaike Information

Criterion (AIC) (Ch.5). Because the optimal bin size is usually rather large for most

neurons (∼0.1-1sec), and because the AIC commonly shows a fast reduction over

small bin sizes followed by slow changes around the optimal bin size, we also made

PETHs using the smallest possible bin size that showed less than a 10% change from

the optimal AIC value. This bin size is referred to as the deflection point bin size and

was on average 60 msec across our neuronal population.
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Response detection. PETHs constructed around the behavioral events, with the

optimal bin size, were used to detect excitations and inhibitions and the time at which

they occurred. The 10 sec period before cue onset was used as a baseline period.

Excitation and inhibition to each event was determined by the presence of at least

one bin above (for excitations) or below (for inhibitions) the 99% confidence interval

of the baseline during the analysis window for each event. Each unit was assigned,

based on its firing pattern, to at least one of the subsets of neurons exhibiting the

response types. Onset detection was performed using a telescopic approach. We

selected the first significant bin using the optimal size and searched, within this time

window for the first bin using the deflection point bin size that was beyond 99%

confidence interval of the baseline made with this new bin size. If found, we then

repeated the search within this deflection point bin, for the first 10ms bin that was

beyond 99% confidence of the baseline made with 10ms bin size. With this method,

the onset is defined by the highest valid resolution for each PETH. Response duration

was computed by finding the first bin after the detected onset that fell into the 99%

confidence interval of the baseline based on the optimal bin size only. The choice of

different strategies used for onset and duration detection was based on our observation

that the telescopic approach and the optimal bin size tend to be more accurate for

onset and duration estimation respectively. For some neurons the response types,

onsets and durations were also visually inspected afterwards to ensure accuracy.

Deconvolution. We have shown previously that PETHs made for temporally close

events do not allow one to accurately account for the neuronal responses to each in-
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dividual event. We have developed and validated an iterative deconvolution method-

ology (see Ch.4) that can parse out the neuronal responses of each individual event

from the PETHs (Ghazizadeh et al. 2010). During DS trials, four events usually

happen within a short period of time, namely: DS, lever-press, receptacle entry and

receptacle exit. PETHs made for each of the events can potentially be distorted due

the presence of the other events that are correlated with it in time. This can specif-

ically pose a problem for comparing the DS to the NS firing which is not normally

followed by other events. For each neuron, we deconvolved single event responses by

using the maximum number of iterations that had a cross validation error lower than

the PETHs (average iteration of 4.95 for the entire data set) (Ghazizadeh et al. 2010).

Therefore instead of the PETHs, we used, when appropriate, deconvolved responses

to report the average activity. The area under the curve (AUC, integrated from re-

sponse onset to offset) and the peak were obtained from the deconvolved responses

and used for statistical comparisons.

Data transformation and plotting. Color-coded maps were constructed with op-

timal bins and average PETHs across neurons were constructed with the deflection

point bins. Prior to averaging, the firing rate of each neuron during each bin was

transformed to a Z-score: (Fi – Fmean ) / Fsd where Fi is the firing rate of the ith bin

of the PETH, and Fmean and Fsd are, respectively, the mean and the SD of the firing

rate during the 10 sec preceding cue onset.
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2.5.6 Histology

Animals were deeply anesthetized with pentobarbital and perfused intracardially

with saline and 4% formalin (plus 3% ferrocyanide for rats with electrode arrays).

Brains were removed, sectioned (40µm), and stained for Nissl substance in order to

locate injection or recording sites (labeled by passing a DC current through each

electrode before perfusion).

2.5.7 Statistical analysis

T -tests or ANOVAs followed by Newman-Keuls post-hoc tests were used when

appropriate. A permutation test was used to compare proportions. All results were

considered significant at P<0.05.
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2.5.8 Table

Rat Target Core Shell
1 core and

shell
57 39

2 core and
shell

24 34

3 core and
shell

144 34

4 core and
shell

58 10

5 core and
shell

14 15

6 core and
shell

28 63

7 core 73 0
8 core 8 0
9 core 72 0
10 shell 0 198
11 shell 0 59
12 shell 0 53
total: 478 505
total>0.03Hz: 456 484

Table 2.1: Distribution of neurons recorded per rat in the NAc core and shell
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Ventromedial Prefrontal Cortex Sup-
presses Unreinforced Actions and
Their Representations in the Nu-
cleus Accumbens Shell: Corticos-
triatal Implications for Impulsivity

3.1 Abstract

Suppression of unnecessary or premature actions is typically essential for optimal

performance of goal directed behaviors. Furthermore, diminished inhibitory control

over unnecessary and/or competing actions is a feature of many pathological condi-

tions and maladaptive behaviors, including impulsivity. The ventromedial prefrontal

cortex (vmPFC) is involved in suppression of actions with extinguished outcome

contingencies during both aversive and appetitive conditioning. Here our pharmaco-

logical inactivation data indicates that vmPFC activity is required for inhibition of

unnecessary actions in a learned appetitive task. Furthermore simultaneous electro-

physiological recordings in NAc shell, a major vmPFC projection target indicates that

vmPFC exerts this behavioral inhibition by suppressing neurons that preferentially

encode responses to unrewarded actions. We also present evidence for differential

modulation by vmPFC of presumed action promoting and action suppressing shell
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neurons. These results reveal a robust mechanism for suppression of unreinforced

actions in the context of a learned operant task and identify vmPFC and NAc shell

as critical elements of the circuit relevant for this suppression.

3.2 Introduction

In animals with flexible behavioral repertoires optimal action selection is criti-

cal for inclusive fitness. In adaptation to novel environments two major classes of

behavioral change are required; increasing the probability of actions that promote

a positive outcome and reducing the probability of actions that do not promote a

positive outcome. For animals like mammals with relatively complex repertoires of

possible actions, in any given situation it is likely that as they learn how to perform

an operant task many more behaviors are inhibited than are promoted. How are

unnecessary actions inhibited when animals perform a learned appetitive task?

There is a growing body of evidence that specifically implicates the prefrontal cor-

tex in suppression of unnecessary actions. Over the course of mammalian evolution,

the PFC has undergone a marked increase in size and functionality in species with

increasingly complex behavioral repertoires. Dysfunctions or damage to the PFC is

associated with loss of inhibitory control (Bechara and Van der Linden 2005; Dalley

et al. 2004; Miller 2000). Previous studies in rodent found that the ventromedial

part of the PFC (vmPFC, mostly the infralimbic area) is involved in suppression of

behaviors such as conditioned fear or cocaine self-administration following extinction

(Milad and Quirk 2002; Peters et al. 2008). Based on these observations, we hy-
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pothesized that a major function of the PFC is to promote behavioral optimization

by limiting the execution of unnecessary actions in tasks where reward availability is

restricted to discrete well-signaled or predictable times. To test this possibility, we

first studied the development of behavioral suppression during training as rats’ per-

formance improved in a learned appetitive behavior. We then inactivated the vmPFC

after the rats had learned to suppress unnecessary actions.

How the vmPFC ultimately affects the motor system is unclear. The vmPFC is

one of the major inputs to the NAc shell (NAcS) and the circuitry that includes these

regions has been implicated in cocaine-seeking reinstatement (Peters et al. 2008).

Consistent with the idea that vmPFC inhibits unnecessary or unreinforced actions

through connections to the NAcS, we recently showed that electrical stimulation of

the NAcS interrupts licking behavior at short latency (Krause et al. 2010) and that its

inactivation induces behavioral disinhibition ((Ambroggi et al 2011) see also (Basar

et al. 2010)). Therefore combining NAcS electrophysiology with inactivation of the

vmPFC, we investigated the contribution of vmPFC inputs in shaping the firing

of NAcS neurons that could mediate learned inhibitory control over unreinforced

behavior.

3.3 Results

All rats in this study were trained in the DS task. Figure 3.1a shows a diagram

of the chamber wall with levers and receptacle and the temporal sequence of events

in the DS task. Briefly, two auditory cues, the rewarded discriminative stimulus (DS)
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and the non-rewarded neutral stimulus (NS), were randomly presented on average

every 30s. During the DS presentation, rats pressed the active lever which turned off

the auditory cue and delivered sucrose into the reward receptacle.

3.3.1 DS Training

Learning of DS response promotion and unrewarded response suppression:

Optimal performance in this task requires the acquisition of two conceptually separate

components. The first component represents the instrumental contingency between

the active lever press and reward delivery while the second restricts the validity of

this instrumental contingency to the time that DS is presented. Therefore, the first

component entails promotion of appetitive responding on the active lever while the

second component leads to suppression of identical but unreinforced actions such as

lever pressing or receptacle entries outside the DS. We analyzed several components

of rat behavior throughout the course of training for the DS task (consisting of two

phases, see Methods).

During the early phase of training in the cued FR1 task, the rates of both ac-

tive lever presses and reward receptacle entries increased significantly as rats learned

the action outcome contingency between active lever presses and reward (FIG 3.1b

first column) (1-Way ANOVA Session F(6,44)=3.35 P=0.008 for lever press, Session

F(6,44)=3.03 P=0.014 for entry). After learning this rats were switched to the full

DS task and the overall rates of active lever pressing and receptacle entry decreased

(FIG 3.1b second column) (ANOVA Session F(6,47)=7.82 P<0.001 for lever press,

Session F(6,47)=3.32 P<0.01 for entry). This change occurred despite the fact that
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Figure 3.1: Schematic of the DS task and performance during training (a) Two cue tones
(up to 10 s for the rewarded discriminative stimulus [DS]; 10 s for the unrewarded stimulus [NS])
were randomly presented on a variable-interval schedule with an average interval of 30 s. A lever
press was required during DS presentation to terminate the DS and cause the delivery of a 10%
sucrose reward into an adjacent receptacle. (b) The rate of active lever presses and receptacle
entry significantly increases during the first 7 days of cued FR1 training (left column). Rats learn
to suppress responding to NS and unnecessary lever pressing and receptacle entry is decreased
significantly without affect the DS responding (middle column). Stabilization of performance with
high DS and low NS ratios along with lower rate of lever presses and receptacle entry (right column).

there was no change in the rate of rewards earned as evident by the persistence of high

DS ratios. Thus the reduction in the active lever presses was mainly due to reduced
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responding outside the DS. Analysis of changes in the DS and NS ratios during the

second phase showed similar trends of reduction for NS ratio from a high of about

60% (not different from DS ratio, post hoc P>0.05) to less than 20% over 7 ses-

sions (2-Way ANOVA Cue F(1,102)=318 P<0.001, Session F(6,102)=4.2 P<0.001,

Cue x Session F(6,102)=4.8 P<0.001). The same trend for reduction of inactive

lever presses was observed although this effect did not reach significance (ANOVA

F(6,47)=1.3 P=0.27).

All animals received DS training until reaching criterion (>80% DS ratio and

<20% NS ratio) for at least 3 consecutive sessions. Prior to surgery the NS ratio as

well as rates of lever pressing and receptacle entry remained significantly smaller than

the first session of DS training (FIG 3.1b third column). These behavioral measures

remained stable during this pre surgery stage indicating that the development of

response suppression is completed.

Together the data shown in Figure 3.1b clearly shows the two components of

learning: a response promoting component that develops initially and a response sup-

pressing component that restricts active lever presses to times of reward availability

and inhibits other task-irrelevant actions.
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3.3.2 vmPFC Inactivation: Behavioral Results

If vmPFC mediates response suppression then its inactivation should result in

disinhibition of the same responses that rats had learned to suppress during the

second phase of training.

General disinhibition of unrewarded actions following vmPFC inactiva-

tion: Consistent with our previous findings (Ishikawa et al. 2008a) inactivation of

vmPFC disinhibited NS responding (FIG 3.2b left column). On the other hand,

the DS ratio was not affected. The DS ratio remained significantly higher than the

NS ratio and the latency of response to the DS remained lower than that of the NS

indicating that the animals still discriminated between DS and NS. (2-Way Ratio

ANOVA Cue F(1,114)=465 P<0.001, Injection F(1,114)=1.17 P=0.28, Cue x In-

jection F(1,114)=16 P<0.001; 2-Way Latency ANOVA Cue F(1,111)=4.37 P=0.04,

Injection F(1,111)=0.03 P=0.85, Cue x Injection F(1,111)=0.25 P=0.6).

Inactivation of vmPFC also resulted in significant increases in the overall rate

of active lever presses, receptacle entries and inactive lever presses throughout the

session (FIG 3.2c left three panels). Interestingly, similar to the NS ratio these three

disinhibited actions were among those suppressed during DS training (see FIG 3.1b

second column). This disinhibition of responding also led to a significant reduction

of efficiency as shown by the increase in the number of active lever presses per reward

(FIG 3.2c last panel on right).
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Temporal specificity of behavioral disinhibition following vmPFC inacti-

vation: Both the general disinhibition of active lever presses and the increase in

NS ratio following vmPFC inactivation raises the question about whether the disin-

hibitory effect has temporal specificity. Is the disinhibition of lever pressing uniform

over time or is it dependent on temporally specific task events such as presentation

of cues or recent reward experience? A general increase in lever pressing could ac-

count for an apparent increase in NS responding, however, such an increase could be

temporally correlated with NS presentation. We divided the DS task into 4 epochs

to quantify the temporal specificity of active lever press changes (FIG 3.2d). These

epochs include the DS and NS periods, the Post reward period which includes all

the active lever presses that happen in the 10 sec following rewarded receptacle exit

and Spont period which includes spontaneous active lever presses happening out-

side the other 3 epochs. There was a strong modulation of active lever presses over

epochs and injections in both CSF and B/M condition (2-Way CSF ANOVA Injection

F(1,182)=8 P<0.01, Epoch F(3,182)=1780 P<0.001, Injection x Epoch F(3,182)=10

P<0.001, 2-Way B/M ANOVA Injection F(1,217)=30 P<0.001, Epoch F(3,217)=398

P<0.001, Injection x Epoch F(3,217)=25 P<0.001). Presentation of the DS induced

a rate of active lever pressing higher than any other epoch in both CSF and B/M

conditions (post hoc p<0.001) (FIG 3.2e). However, after inactivation of vmPFC

there were significant temporally specific increases in the lever pressing during NS

and Post reward epochs (post hoc p<0.001 compared to pre-injection period) (FIG

3.2e right column). Inactivation of vmPFC also resulted in a trend toward increase

in active lever presses during the Spont epoch. Furthermore the increase in active
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lever pressing during the NS and Postreward epochs were significantly higher than

the Spont epoch (post hoc p<0.001). This supports the hypothesis that the observed

increased NS ratio after vmPFC inactivation is not due to a general increase in lever

pressing across all epochs. It should be pointed out that in both injection conditions

the active lever press rate during the DS showed a moderate yet significant reduction

(post hoc P<0.001 CSF and P<0.01 B/M).

Analysis of receptacle entries in the same time windows revealed overall similar

effects (FIG 3.3a) suggesting that the vmPFC controls both active lever press and

receptacle entry components of of reward-seeking behavior. Interestingly, vmPFC

inactivation also increased the rate of premature receptacle entries during the DS that

happen before active lever presses indicating that these two components of reward

approach can be emitted independently and that some aspects of impulsivity such as

inappropriate choice or sequencing of actions might also be manifested during the DS

epoch (FIG 3.3b).
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Figure 3.2: Injection paradigm and behavioral results (a) rats were run in the DS task for 1-2
hours before cortical microinjection (PRE) then were taken out randomly and received injection of
aCSF or B/M in the vmPFC and immediately put back for another 1-2 hours following injection
(POST) (b) Rates of responding to DS and NS and latency of responses in the post aCSF (gray)
or B/M (black) injections. (c) Rates of active and inactive lever presses, receptacle entry and
active lever presses per reward respectively from left to right for aCSF and B/M post-injection. (d)
Depiction of epochs used for behavioral microanalysis. (e) Rates of active lever presses during each
epoch for pre- and post-injection periods for both aCSF (left) and B/M (right) conditions (Total
sessions: n=27 for aCSF and n=32 for B/M).
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Gating model or impulse model? We earlier posited that the optimal responding

in the DS task requires both promoting relevant and inhibiting irrelevant actions. An

important question is how these two processes interact throughout the task epochs to

promote accurate and efficient acquisition of the desired outcome. There are at least

two distinct models that could generate the learned pattern of optimal responding we

observed in the DS task (FIG 3.4a). The first model here called the “gating model”

assumes a constant positive motivational process that increases the probability of

responding throughout the task. The actual temporal pattern of responding posited

in this model is produced by timing of periods when the suppression strength is

reduced, similar to opening a gate that allows responding. The second model we

call the “impulse model” proposes that motivated actions are produced when the

process that promotes responding rises to exceed the constant background levels of

suppression. Both models assume that responding is proportional to the magnitude

of the difference between opposing processes and only happens when the difference is

positive.

If we assume that the inactivation of vmPFC effectively eliminates the suppressive

process the temporal rate of responding in this condition should specifically reveal

the shape of the promotive process. Even though we cannot yet directly measure the

dynamics of the action suppressive process its shape can be inferred by subtracting

the rate of responding in the B/M condition which is affected solely by the promotive

process from the CSF condition which is affected by both promoting and suppressing

processes (FIG 3.4b). The temporal dynamics of promotion and suppression suggests

87



chapter 3. vmpfc, nac shell and behavioral suppression

a combination of gating and impulse model in motivated responding in the DS task.

This analysis showed that suppression was negligible during the DS but increases

during Post reward and NS. Therefore these results suggested that the reduction

of suppressive process following vmPFC inactivation should not affect the neural

representation of events during the DS epoch in NAcS but should have considerable

consequences during other epochs. We tested this hypothesis using our simultaneously

recorded neural data.
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Figure 3.4: Models of motivated responding in the DS task (a) schematics of gating model
(left) and impulse model (right) of interactions between the promoting and suppressive process. (b)
Interpolated and smoothed rate for active lever pressing during various task epochs in the CSF
condition (left) and B/M condition (right red trace). Response rate during the B/M is assumed to
be solely due to promoting component. Suppressing component can be inferred by comparing the
CSF and B/M conditions (right blue dashed line).
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3.3.3 vmPFC Inactivation: electrophysiological recordings in NAc shell

We recorded a total of 178 neurons in the B/M condition and 128 neurons in the

CSF conditions during the DS task in 32 and 27 sessions, respectively. After exclusion

of neurons with very low baseline firing rate or the neurons that were not present in

both pre- and post-injection epochs, 131 and 98 neurons, respectively, in B/M and

CSF condition remained in our sample for further analysis. Here we examine the

responses of these neurons in each condition before and after injection.

No net change in the representation of the reward related events: On the

majority of trials after the DS was presented the rats pressed the active lever and

entered the receptacle to consume the sucrose reward. Immediately following reward

consumption rats exited the receptacle. Inactivation of vmPFC did not affect this

aspect of the DS task. At the neuronal level, DS correlated activity in the NAcS was

also unaffected by vmPFC inactivation. Such inactivation did not produce significant

changes in either the percentage of DS responsive neurons or the magnitude of their

response to the DS, rewarded lever press, receptacle entry, consumption or receptacle

exit (FIG 3.5).

This result is interesting in the light of our behavioral results suggesting that the

contribution of vmPFC to NAcS neuronal firing in the DS epoch would be negligible.

However, despite the lack of change in the phasic firing that is temporally correlated

with rewarding events, we did observe a significant reduction of the baseline activity in

neurons showing phasic inhibitions to rewarded actions (post hoc rewarded lever press
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P=0.02, rewarded entry P=0.008, consumption P=0.02, rewarded exit P=0.003).

This means that the firing of these neurons is normally increased by vmPFC inputs

during periods outside the DS epoch.
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Figure 3.5: Encoding of sequence of actions in the rewarded trials following DS presen-
tation before and after vmPFC inactivation (a-e) Changes in the baseline (first column) and
the peak firing Z-score (second column) of the neurons responsive to rewarded DS, rewarded LP,
rewarded receptacle entry, reward consumption and rewarded exit in either pre- or post-injection
period in the B/M condition. Blue is inhibition and red is excitation. (Total neurons in first and
second column: n=37,14 for DS+,-; n=35,40 for LP+,-; n=40,56 for Entry+,-; n=27,44 for Cons+,-;
n=32,47 for Exit+,-) (f-j) Percentage of neurons responsive to rewarded DS, rewarded LP, rewarded
receptacle entry, reward consumption and rewarded exit in the pre- and post-injection periods in
CSF and B/M conditions.
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vmPFC inactivation enhances the neural representation of unreinforced

events: Unlike the neural activity correlated with the DS, we observed significant

changes in encoding of unrewarded actions outside the DS. There was a significant

increase in Z-scores of the peaks of both excitations and inhibitions correlated with

the unrewarded lever press following injection of B/M in vmPFC (FIG 3.6a) (post

hoc P<0.05 and P<0.001 for excitation and inhibition respectively). In the neurons

that encoded unrewarded receptacle entry a significant reduction in the baseline firing

for inhibited neurons following vmPFC inactivation was observed (FIG 3.6b) (post

hoc P<0.001). Similar trends toward reduction of basal firing was also present for

unrewarded lever press inhibited neurons (post hoc P=0.052). There was also a

large increase in the percentage of unrewarded lever press inhibited neurons (FIG

3.6c) (+238%, permutation test P<0.001, compared to the CSF condition). vmPFC

inactivation produced no significant change in percentage of neurons responsive to

unrewarded entry in B/M compared to CSF condition (permutation test P>0.05)

(FIG 3.6d).

Importantly, the increase in lever-pressing during the NS following vmPFC inac-

tivation (FIG 3.2b,e) was associated with a significant increase in NS-evoked firing

in a subset of NAcS neurons. With vmPFC intact, the proportion of NS responsive

neurons was low. Inactivating the vmPFc inactivation recruits a new population of

NS excited neurons. Overall, the percentage of NS-excited neurons increased by 58%

after inactivation (permutation test p=0.019, FIG 3.7b). Furthermore the peak fir-

ing Z-score of NS excitations showed a significant increase after vmPFC inactivation
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Figure 3.6: Encoding of unreinforced actions in NAcS neurons before and after vmPFC
inactivation (a-b) Changes in the baseline (first column) and the peak firing Z-score (second
column) of the neurons responsive to unrewarded lever press (top row) or unrewarded receptacle
entry (bottom row) in either pre- or post-injection period in the B/M condition. Blue is inhibition
and red is excitation. (Total neurons: n=32,29 for Unrew LP+,-; n=45,54 for Unrew Entry+,-) (c-
d) Percentage of neurons responsive to unrewarded lever press (top row) or unrewarded receptacle
entry (bottom row) in the pre- and post-injection periods in CSF and B/M conditions.

(post hoc p=0.025 FIG 3.7a). Figure 3.7c shows an example neuron with emergent

phasic short latency NS excitation following vmPFC inactivation. Interestingly, all

the neurons with emergent NS excitations were also excited by the DS suggesting

that their activation promotes reward predictive cue responding. However, despite

the clear enhancement of NS-excitations by vmPFC inactivation in neurons showing

either emergent (n=9) or enhanced (n=3) NS excitations, the average DS response

for this same population of neurons was not significantly changed by vmPFC inac-

tivation, suggesting that vmPFC exerts an inhibitory effect on NS excitations that
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is specific to both the sensory qualities and timing of the unrewarded cue neurons

(FIG 3.7d). NS-responsive neurons in our task were distributed throughout the

medial shell (FIG 3.8) but there was no relationship between the magnitude of the

firing changes in the B/M condition and the rostrocaudal or dorsomedial axes or their

interactions (R2=0.2, P=0.26).

Since the rate of lever-pressing increased after vmPFC inactivation, the emergence

of NS excitations could be coincidental and not strictly correlated in time with the

occurrence of the NS. However, some observations ruled out this possibility. First,

NS behavioral responses appeared at short latency to cue onset (<0.5 sec compared

to >2sec average lever press latency to NS). Second, NS emergent neural responses

remained even if we only included trials when no lever pressing occurred during the

NS (FIG 3.7c overlaid red line,FIG 3.8). Furthermore, in some sessions, we per-

formed unilateral vmPFC inactivations to investigate the laterality of NS emergence.

Overall 17 and 22 neurons were recorded ipsi- and contra-lateral to the injection site.

Consistent with bilateral vmPFC projection to the NAcS, emergent NS excitations

were found both ipsi and contra-lateral to the side of inactivation (FIG 3.7e).The

increase in the total number of NS excitations following unilateral inactivations was

significant compared to the CSF condition after combining the results of both ipsi

and contralateral conditions (the percentage of emergent NS excitations were similar

in ipsi- and contra-lateral sites; 2 out of 17 for ipsi and 3 out of 22 for contra, permu-

tation test P=0.73) (FIG 3.10b top row). Again similar to the bilateral inactivation

there was no significant change in the percentage of DS encoding neurons following
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unilateral inactivations (FIG 3.10b bottom row). Interestingly, unilateral vmPFC

inactivations did not induce significant behavioral disinhibition (n=7 sessions, FIG

3.10a). This further strengthens our previous argument, that the changes in the NS

firing are not secondary to increased lever pressing.
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Figure 3.7: Encoding of neutral stimuli in NAcS before and after vmPFC inactivation
(a) Changes in the baseline (first column)and the peak firing Z-score (second column) of the neurons
responsive to NS (top row) or DS (bottom row) in either pre- or post-injection period in the B/M
condition. (Total neurons: n=21,7 for NS+,-;) (b) Percentage of neurons responsive to NS (c)
Example neuron showing emergent NS excitation following bilateral vmPFC inactivation. Overlaid
red line shows the PETH made with NSs not followed with a behavioral response (top row) (d)
Average Z-score of NS PETHs for neurons showing emergence or significant increase in excitations
to NS before (gray) and after (black) vmPFC inactivation (top row) and average Z-score of DS
PETHs for the same neurons as above (bottom row). (e) Example neurons showing emergent NS
excitation following (top row) ipsi- or (bottom row) contra-lateral vmPFC inactivations. Overlaid
red line shows the PETH with NSs not followed with a behavioral response.
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Figure 3.8: location of the NS responsive neurons. Pre- or post-injection for B/M condition
color-coded for changes in the peak Z-score firing to NS following vmPFC inactivation (red increases,
blue decreases).
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Figure 3.9: Increased NS excitation is not secondary to increased lever pressing. Average
Z-score of NS PETHs for neurons showing emergence or significant increase in excitations to NS
before (gray) and after (black) vmPFC inactivation using only NSs not followed by behavioral
responding (top) and average Z-score of deconvolved DS PETHs for the same neurons (bottom).
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Figure 3.10: Comparison of unilateral B/M and bilateral CSF injection in vmPFC(a)
Rates of responding to DS and NS and latency of responses in the post CSF (gray) or unilateral
B/M (black) injections (top row) and rates of active and inactive lever presses, receptacle entry and
active lever presses per reward respectively from left to right for CSF and unilateral B/M post-
injection (Total sessions: n=27 for CSF and n=7 for unilateral B/M) (b) Changes in the percentage
of neurons responsive to NS (top row) or DS (bottom row) in the pre- and post-injection periods in
CSF and unilateral B/M conditions.
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Differential modulation of action encoding neurons: The reduction of the

basal firing rate of action inhibited neurons and the emergence of unrewarded lever

press inhibited neurons is consistent with a reduction of excitatory input to the NAcS

following vmPFC inactivation. However, the increased magnitude of NS excitations

indicates that some NAcS neurons are normally inhibited by vmPFC during the

NS and that there is differential modulation of action excited neurons and action

inhibited neurons by vmPFC. Consistent with this hypothesis, the neurons whose

basal firing increased following vmPFC inactivation were, on average, excited prior

to unrewarded receptacle entries while those with decreased basal firing were inhibited

(3.11 top row). Also neurons with significant increases in baseline firing on average

showed excitation to NS while neurons with significantly reduced baseline were not

NS responsive. This was consistent with inhibition by vmPFC of NS excited neurons

that presumably drive NS responding (3.11 bottom row).

One simple hypothesis is that the firing of action excited neurons promotes re-

sponding while the firing of action inhibited neurons suppresses responding. If this

hypothesis is true then the magnitude of the difference between the firing of action

excited minus action inhibited neurons should also be similar to the changes in the

response rate during the DS task epoch and following vmPFC inactivation. The av-

erage response of action excited and action inhibited neurons in the both CSF and

B/M conditions are shown (FIG 3.12a top row left and right respectively). In fact

plotting the firing difference between neurons that were action excited (∼30%) and

the neurons that were action inhibited (∼50%) over the 4 behaviorally relevant epochs
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Figure 3.11: Neurons with significant increase and decrease in baseline are on average ex-
cited and inhibited to unrewarded events Responses of neurons with significant decreases (left
column) and increases (right column) in their baseline following vmPFC inactivation to unrewarded
receptacle entry (top row) and NS (bottom row). PETHs during pre- (gray) and post-injection
(black) are overlaid.

revealed a pattern similar to the behavioral lever pressing data in Figure 3.2e in

both injection conditions (FIG 3.12b). In the CSF condition this difference was

significantly higher than zero only during the presentation of DS in both pre- and

post-injection periods (post hoc P<0.001). This was consistent with high rate of lever

pressing during the DS. The same pattern was observed in the pre-injection period

in B/M condition. However following the vmPFC inactivation there was a significant

increase in the magnitude of difference between firing of action excited and action in-

hibited neurons similar to the behavioral increase in active lever pressing (2-Way CSF

ANOVA Injection F(1,462)=1.08 P=0.29, Epoch F(3,462)=18 P<0.001, Injection x

Epoch F(3,462)=0.13 P=0.9, 2-Way B/M ANOVA Injection F(1,749)=21 P<0.001,

Epoch F(3,749)=7.3 P<0.001, Injection x Epoch F(3,749)=0.2 P=0.9)).
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Figure 3.12: Firing difference between action excited and action inhibited neurons during
task epochs (a) Average PETH Z-scores for neurons that respond to either unrewarded lever press
or unrewarded entry by excitation (action excited: red) or inhibition (action inhibited: blue) in
CSF or B/M conditions (left and right respectively) (b) modulation of the firing difference between
action excited and action inhibited neurons across trial epochs before and after injection of CSF or
B/M (left and right respectively).
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3.4 Discussion

Here we demonstrate that successful performance in a learned appetitive task re-

quires at least two distinct processes mediated by the nucleus accumbens: a process

that promotes and invigorates performance of actions leading to reward (promotive

process) and a complementary process that inhibits responding that is irrelevant to

reward acquisition and consumption (suppressive process). In the DS task used in this

study the promotive process is learned early during training while the suppression of

active lever presses outside the DS presentation emerges later (FIG 3.1b). We pre-

viously demonstrated that the promotive process in the DS task requires projections

to the NAc core from the ventral tegmental area (VTA), basolateral amygdala (BLA)

(Ambroggi et al. 2008; Yun et al. 2004) and dorsomedial prefrontal cortex including

the prelimbic area (PL) (Ishikawa et al. 2008b) .

In contrast, inactivation of the vmPFC (largely the infralimbic area (IL) disin-

hibits task irrelevant actions indicating that it normally inhibits NS responding in the

DS task (Ishikawa et al. 2008a). Consistent with this finding, vmPFC also inhibits

premature and perseverative errors in a 5-choice serial reaction time task (Chudasama

et al. 2004; Muir et al. 1996). Furthermore, in the fear conditioning paradigm phasic

activation of vmPFC neurons including IL inhibits freezing to a tone previously paired

with foot-shock (Milad and Quirk 2002). The current study extends understanding

of the mechanisms by which vmPFC can inhibit actions that rats have learned are

irrelevant and potentially in conflict with to the goals of the task in which they are

engaged (FIG 3.1b).
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Analysis of active lever pressing following vmPFC inactivation reveals disinhi-

bition of responding in all epochs of the task except the DS period. However the

increased rate of active lever pressing is not uniform over time. For instance we find

a greater increase in responding during NS compared to the Spont epoch. This result

suggests that the promotive process is stronger during NS than Spont periods. In

fact, our analysis of the temporal dynamics of promoting and suppressing processes

during the DS task reveals little evidence for a suppressive process during the DS

while an active suppressive process powerfully opposes the promotive process for the

active lever press during unrewarded epochs. The overall pattern of responding indi-

cates the existence of promoting tendencies along with temporally specific reduction

of suppression (gating) during the reward consummatory period (FIG 3.4).

Our previous studies indicate that a subpopulation of NAc neurons promotes

responding (’cue incentive neurons’ see (Ambroggi et al. 2008; Yun et al. 2004)) while

another, larger subset (gating neurons) show pauses in their firing beginning just prior

to reward approach and consumption (Taha and Fields 2006) in learned appetitive

tasks. We recently reported that both types of neurons are found in NAc core and shell

but that while shell inactivation produces robust disinhibitory phenomena; unlike core

inactivation, it has no effect on DS responding (Ambroggi et al 2011). In the current

study we chose to focus on the suppressive process and therefore studied the influence

of vmPFC on NAcS neuronal activity. In fact, anatomical and functional data show

that striatal projections arising from the IL mainly target the medial NAcS and that

these projections are required for suppression of unrewarded responding (Christakou
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et al. 2004; Peters et al. 2008; Voorn et al. 2004). The current work extends those

studies by showing how different subsets of NAcS neurons contribute differentially to

inhibition of task irrelevant actions.

Given the role of shell in suppression of unrewarded actions and the glutamatergic

projections from the IL we hypothesized that inactivation of IL would reduce the firing

of a subpopulation of shell neurons whose firing is inversely correlated with actions.

Consistent with this proposal there is a significant reduction in the basal firing of

neurons that are inhibited with unrewarded receptacle entry and a trend toward

reduction for unrewarded lever press inhibited neurons (FIG 3.6a,b). Furthermore,

following vmPFC inactivation there is a significant increase in the number of NAcS

neurons showing inhibition when the rat makes unrewarded lever presses (FIG 3.6c).

The strength of phasic inhibitory responses correlated with unrewarded lever press

as measured by peak Z-score firing is also significantly increased in the post- versus

pre-injection period in the B/M condition (FIG 3.6a). This is consistent with our

recent result that implicates firing pauses in NAc neurons in gating (or permitting)

appetitive actions (Krause et al. 2010; Taha and Fields 2006).

We also discovered a significant increase in the average peak of unrewarded lever

press excitations following inactivations (FIG 3.6d). This argues that inactivation

of vmPFC concomitantly increases the phasic firing of unrewarded lever press exci-

tation and decreases the firing of unrewarded lever press inhibitions. Consistent with

this differential modulation of these two subgroups of NAcS neurons by vmPFC an

analysis of changes in the basal firing rates compared to the CSF condition shows
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that neurons that significantly increase their basal firing after vmPFC inactivation

are on average excited prior to unrewarded receptacle entry while the population

with significant reduction of baseline on average are inhibited around receptacle en-

try (FIG 3.11). Further analysis confirms that vmPFC inactivation increases the

difference between the firing of neurons showing action excitations and those showing

action inhibitions over 4 distinct behaviorally relevant epochs and that this firing

difference resembles the increased occurrence of active lever presses (compare FIGs

3.12b&3.2e).

Another aspect of the observed behavioral disinhibition following vmPFC inac-

tivation has to do with the increase in responding to the NS above that of uncued

behavioral responding. Importantly, the increase in behavioral responding to the NS

after vmPFC inactivation is accompanied by an increase in the magnitude of NS exci-

tations in the NAcS through a combination of emergent and increased NS excitations.

The short latency of these NS neuronal excitations as well as the fact that the in-

crease is present even in the trials when no NS elicited lever pressing occurred argues

against the emergent firing being secondary to the increase in NS elicited active lever

presses. Rather, this is consistent with the hypothesis that these NS excitations pro-

mote behavioral responding to the NS (FIG 3.7 & 3.9). The observed emergence of

NS excitations following both ipsilateral and contralateral inactivations (FIG 3.7e &

3.10b) is consistent with anatomical data showing a bilateral projection from vmPFC

to NAc (Sesack et al. 1989).

Although there are other possible pathways by which vmPFC can affect the firing
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of NAcS neurons, there are significant direct projections from vmPFC to NAcS. Since

these direct projections are glutamatergic, the emergence of NS and unrewarded lever

press excitations after inactivation implies the existence of at least one layer of in-

tervening GABAergic neurons that receive the direct excitatory vmPFC input and

inhibit the emergent responses under normal conditions. Within the striatum this

could be achieved through fast spiking interneurons by fast feedforward inhibitions

(Mallet et al. 2005) or by lateral inhibitions from the collaterals of other medium spiny

projection neurons (MSNs) (Taverna et al. 2004). For instance, what we observed

as a significant reduction of baseline firing in many action inhibited neurons (∼50%)

might be responsible for the emergence of excitatory responses to unrewarded cue

and actions. Future studies will be required to address this issue.

To explain how vmPFC control of NAcS neurons contributes to action promotion

and inhibition we propose a circuit model illustrated in Figure 3.13. In this model

the action inhibited neurons receive direct excitatory input from vmPFC and act to

suppress responding. We further propose that these action inhibited neurons inhibit

action excited neurons via local axon collaterals. Based on this model and the behav-

ioral data, this lateral inhibition is reduced normally only during the DS presentation

when the vmPFC derived inhibition decreases (FIG 3.4b). Removal of this vmPFC

derived inhibition on the action excited neurons allows excitatory inputs from other

structures such as the VTA and BLA to promote responding during the DS. This

model also proposes that inactivation of vmPFC results in emergent excitations to

events (e.g. the NS) that were previously suppressed through firing of action inhibited
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Figure 3.13: Proposed circuit model for shell neurons that suppress or promote respond-
ing (a) vmPFC input excites action inhibited neurons (blue) to suppress responding. This input
also indirectly inhibits the firing of action excited neurons (red) to unreinforced cues or actions (b)
following vmPFC inactivation firing of action inhibited neurons is reduced. Action excited neurons
can now be driven by other inputs to promote responding.

neurons.

3.4.1 Conclusion

Here we reveal a promoting and a suppressive process that develop early and late

in training respectively. We describe the temporal dynamics of each process during

the learned appetitive task and show the suppressive process to be dependent on the

intact function of vmPFC. We also demonstrate that vmPFC inactivations change
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the balance of neurons that may promote and suppress actions in the NAcS which

is a major vmPFC projection target and is itself implicated in response suppression.

Specifically vmPFC inactivations increase representation of unrewarded events but

not rewarded events. Furthermore consistent with an overall role of NAcS in action

suppression we observe a reduction of basal firing in the action inhibited but not action

excited neurons. We propose a circuit model in which action inhibited neurons receive

direct excitatory input from vmPFC and inhibit responding directly by projecting to

downstream areas as well as indirectly by inhibiting action excited projection neurons.

3.5 Materials and Methods

3.5.1 Animals

The subjects were male Long–Evans rats (Harlan Sprague Dawley, Indianapolis,

IN) weighing ∼350 g on arrival and individually housed on a 12 hr light/dark cycle.

Experiments were conducted during the dark phase. After receipt, rats were allowed

at least 1 week of ad libitum food and water, followed by 1 week of restricted food

before training. Throughout all experiments, food restriction was adjusted daily at

the end of experimental manipulations to maintain the rats at ∼90% of their initial

body weight. Animal handling and experiments conformed to National Institutes of

Health and Ernest Gallo Clinic and Research Center animal care and use policies.

3.5.2 Operant Chambers

The behavioral pharmacology studies and the electrophysiological studies were

conducted in standard operant chambers (23.5 x 30.5 cm). All cages contained two
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retractable levers and one reward receptacle located on one wall of the chamber (one

on each side of a reward receptacle) (FIG 3.1a left). There were also two house

lights, a white noise speaker and a tone speaker installed in the chambers (Med

Associates,St. Albans, VT). 50µl of 10% of liquid sucrose delivered into a well in the

reward receptacle by a syringe pump was counted as a reward and an infrared beam

installed across the reward receptacle detected receptacle entry and exits.

3.5.3 Magazine and Cued FR1 Training

The first training session was designed to habituate the rats to the experimental

chambers and to introduce them to the liquid sucrose reward delivered into the reward

receptacle. After the session started, an entry into the receptacle resulted in delivery

of sucrose reward into the receptacle. This would be followed by a 10 sec time out

during which additional receptacle entries had no programmed consequences. The

magazine session continued until each rat earned 100 rewards which on average took

40 ± 4 (mean + SD) minutes.

The rats were then switched to a cued FR1 task on the same day or the next. At

the beginning of a session one of the two levers was inserted into the chamber and

an auditory cue was presented. The randomly inserted lever was designated as the

active lever and remained as such during all other phases of training for each rat.

The inactive lever was not presented in this stage. The auditory cue was randomly

chosen for each rat to be either an intermittent 4 kHz tone (40 ms on and 50 ms

off), or a siren tone (ramped from 4 to 8 kHz with a 400 ms period). A press on

the lever during the cue resulted in cue termination and delivery of reward into the
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receptacle. An ITI would follow the reward delivery during which active lever presses

had no programmed consequences. The ITI duration were gradually increased over 7

sessions from 10 seconds to 30 seconds. After ITI expiration the auditory cue would

be played signaling reward availability upon active presses. For 4 of the 9 rats there

was no maximal cue presentation length while for 5 rats cue duration was gradually

shortened across 7 sessions from 60 seconds to 10 seconds. The animals were trained

in the cued FR1 task every day or every other day for 2-4 hours.

3.5.4 DS task training

The DS task structure was similar to our previous experiments (Nicola et al.

2004a; Yun et al. 2004). After the rats finished training in the cued FR1 task they

were switched to the DS task. Here both the active and inactive levers were inserted

into the chamber. Also both the siren and the intermittent tones were presented on

a variable interval schedule with an average interval of 30 sec. The tone that was

initially used for each rat in the cued FR1 task continued to signal reward availability

upon active lever press and is referred to as the discriminative stimulus (DS). The

novel auditory cue is referred to as the neutral stimulus (NS). Pressing the active lever

during the DS presentation resulted in the reward delivery and termination of the DS

tone similar to cued FR1 task. Each DS lasted for up to 10 sec if no active lever

press occurred, and each NS lasted 10 sec regardless of the rat actions. Responding

on either lever during the NS or in the absence of the DS was never rewarded in this

study.

The animals were trained in the DS task every day for about 2 hours. Surgeries
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were performed when the rats reached criterion performance of >80% DS response

ratio and <20% NS response ratio (defined as the proportion of all DSs or NSs in the

session to which the animal responded).

3.5.5 Surgeries

Bilateral guide cannulae (27 gauge, Plastics One, Roanoke, VA, USA) aimed at

the ventromedial PFC were implanted. A 14 degree rostral angle was used for the

cannulae to allow enough space for the electrode array and the microdrive. The target

cannulae coordinates were AP +4.2, ML ±0.8 and DV -2.8 mm. The injectors were

cut to extend 2.5 mm beyond the cannulae therefore the target injection coordinates

were AP +2.9, ML ±0.8 and DV -5.15 mm in the vmPFC.

For electrophysiological recordings, both bilateral (4 rats) and unilateral (5 rats)

electrode arrays were used. In 2 animals 32 electrodes (16 in each side) were used

while all other animals had 16 electrodes, The electrodes (NB Labs, Denison, TX, 50

µm stainless steel wires in 5 animals or Innovative Neurophysiology, Durham, NC,

50 µm tungsten wires in 4 animals) were attached to a homemade microdrive that

allowed the entire array to be lowered by 80 µm increments. Target coordinates of

the medioposterior electrode of each array for NAcS during surgery was AP +1.2,

ML ±0.8, DV -6.5 or -7 mm.

Animals were anesthetized with isoflurane (5%) and placed in a stereotaxic ap-

paratus. Anesthesia was maintained with isoflurane (0.5-2.0%) during surgery. Mi-

crodrives were secured to the skull with bone screws and dental acrylic, and wire

obturators were inserted into the guide cannulae; the ends of the obturators were
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flush with the ends of the guide cannulae. Rats were given at least 7 days of recovery

before being retrained on the DS task and habituated to the handling procedures.

3.5.6 Microinjections

To inactivate ventromedial PFC a cocktail of Bacolfen and Muscimol (B/M,

GABAB and GABAA receptor agonists respectively) was used. To inject animals,

the obturators were removed and 30 gauge injector cannulae were inserted into the

guides (for unilateral inactivations only one side was used for injection). Injectors

extended 2.5 mm below the tip of the cannulae 0.5 µl of artificial CSF (hereafter

CSF) or B/M (12.5 ng) was injected over 2 minutes. After a 1 min post-injection

period, the injectors were gently removed, the obturators were replaced back.

3.5.7 DS task: vmPFC inactivation and NAc shell recording

After the rats regained the performance criteria (>80% DS response ratio and

<20% NS response ratio) following surgery they were introduced to the final phase

for data collection. In this phase the rats were run in the DS task for 1-2 hours.

They were then removed from the chamber and microinjected in the vmPFC with

CSF or B/M according to a randomized schedule for each animal. There was at

least a day interval between two consecutive injections. Following the injection the

animals were immediately put back in the behavioral chamber and were run in the DS

task for 1-2 more hours (FIG 3.14a). The behavioral data and electrophysiological

recordings were obtained before and after injection during the task performance. Each

rat received multiple injections of B/M and CSF between which the electrodes were
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lowered to record a new set of units. Therefore all behavioral data presented are

from injections that both within and between animals (for histological locations of

the injections sites see FIG 3.14a). All the bilateral injection data reported here are

from 27 CSF and 32 B/M sessions. There were 3 sessions with CSF injections and 8

sessions with B/M injections which are excluded from our analysis due to absence or

low rate of behavioral responding following injections (DS<30%).

Sessions with unilateral injections of B/M were also done in a select few ses-

sions to investigate the laterality of the effects and to help establish the direction of

causality between neuronal changes and changes in the behavior. It should be men-

tioned that almost all of the unilateral injections were done following sessions were

NS emergence was observed after bilateral inactivations and before driving down the

electrodes. This strategy was taken to increase chances of recording neurons with

emergent NS responses. A total of 4 sessions with ipsilateral injections and 3 sessions

with contralateral injections are reported here.

3.5.8 Electrophysiology

Electrophysiological recording was conducted as described previously (Ambroggi

et al. 2008; Nicola et al. 2004a). Animals were connected to the recording apparatus

(Plexon, Inc.), which consisted of a head-stage with operational amplifiers, cable and

a commutator to allow free movement within the chamber. The microdrive carrying

the electrode arrays was lowered by 160 µm or more at the end of each session to get

a new set of neurons every day. Histological analysis was done to verify the location

of vmPFC cannulae and electrodes in the NAcS. We excluded neurons with a low
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baseline firing rate (<0.03Hz). 131 neurons out of 178 recorded in B/M condition

and 98 out of 128 neurons in the CSF condition met these criteria (FIG 3.14b).
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Figure 3.14: Coronal sections showing the histological sites of injection and recording
(a) vmPFC injections and (b) NAcS recordings in CSF (left column) and B/M (right column)
conditions.

Spike sorting: Isolation of individual units was performed off-line with Offline

Sorter (Plexon, Inc., Dallas, StateTX) using principal component analysis. Only

units with well defined waveforms were included in this study. Interspike interval

distribution, cross-correlograms and autocorrelograms were used to insure that single

units were isolated. Additionally, only units in which waveform characteristics were

constant over the entire recording session were included in this study.

Determination of the optimal bin size. The size of the bins greatly influences the

information contained in peri-event time histograms (PETH). I have developed a

principled way finding optimal binsizes for each PETH using Akaike Information

Critera (AIC) (Ch.5). Because the optimal bin size is usually rather large for most

neurons (∼0.1-1sec), and because the AIC commonly shows a fast reduction over
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small bin sizes followed by slow changes around the optimal bin size, we also made

PETHs using the smallest possible bin size that showed less than a 10% change from

the optimal AIC value. This bin size is referred to as the deflection point bin size and

was on average 60 msec across our neuronal population.

Response detection: PETHs constructed around the behavioral events, with the

optimal bin size, were used to detect excitations and inhibitions. The 10 sec period

before cue onset was used as the baseline period. Excitation and inhibition to each

event was determined by the presence of at least one bin above (for excitations) or

below (for inhibitions) the 99% confidence interval of the baseline during the analysis

window for each event. Onset detection was performed using a telescopic approach.

We selected the first significant bin using the optimal size and searched, within this

time window for the first bin using the deflection point bin size that was beyond

99% confidence interval of the baseline made with the deflection point bin size. If

found, we then repeated the search within this deflection point bin, for the first 10ms

bin that was beyond 99% confidence of the baseline made with the 10ms bin size.

With this method, a high resolution for onset is achieved for each PETH. Response

duration was computed by finding the first bin after the detected onset that fell into

the 99% confidence interval of the baseline based on the optimal bin size only. For

some neurons the response types, onsets and durations were also visually inspected

afterwards to ensure accuracy. For a neuron to be included as responsive to an event

it should have had an onset latency of no later than 0.5s to that event. With the

exception of consumption PETHs there was no restriction on the duration of responses

115



chapter 3. vmpfc, nac shell and behavioral suppression

and therefore no distinction is made between phasic versus sustained responses to

events. Consumption PETHs were required to have be at least 1s in duration. This

is based on our observation that consumption related responses are often sustained

from receptacle entry to receptacle exit (often longer than 3s).

Data transformation and plotting: For average PETHs across neurons, the firing

rate of each neuron during each bin was transformed to a Z-score: (Fi – Fmean ) /

Fsd where Fi is the firing rate of the ith bin of the PETH, and Fmean and Fsd are,

respectively, the mean and the SD of the firing rate during the 10 sec preceding cue

onset.

3.5.9 Histology

Animals were deeply anesthetized with pentobarbital and perfused intracardially

with saline and 4% formalin (plus 3% ferrocyanide for rats with stainless steel elec-

trode arrays). Brains were removed, sectioned (50 µm), and stained with Nissl sub-

stance in order to locate injection or recording sites (labeled by passing a DC current

through each electrode before perfusion).

3.5.10 Statistical analysis

T -tests or ANOVAs followed by post-hoc tests corrected for multiple comparisons

by Bonferroni or Bonferroni-Holms methods were used when appropriate. Bootstraps

with permutation were used to compare proportions. All results were considered

significant at P<0.05.
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Chapter 4

Isolating Event Related Neuronal
Responses by Deconvolution

4.1 Abstract:

Although many studies in neuroscience are based on comparing neuronal responses

to single, isolated sensory or motor events, multiple events frequently occur in close

temporal proximity in freely moving animals. This often obscures the precise temporal

correlation between each event and the relevant brain activity. By simulating neuronal

responses in multi-event tasks, we show that peri-event time histograms (PETHs)

greatly distort the underlying true responses. We propose a multi-event deconvolution

method that can separate the contribution of each event to the overall neuronal

activity. The improvements over PETH in analyzing real data are demonstrated

using simulated data and a sample electrophysiological recording obtained from rats

in a task involving responses to a reward predictive cue.

4.2 Introduction:

An important goal in neuroscience is to understand how brain activity generates

sensation and behavior. A major step toward achieving this goal is to determine

how changes in neuronal activity patterns correlate with transient stimuli or motor
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actions. In many situations, several events occur closely in time, making it difficult

to determine to which event an observed change in neuronal activity is correlated.

In some situations, this problem can be addressed by experimentally separating the

events in time or by using experimental conditions where only one event is present.

However, in many other situations, the behavioral response to one event as well as

its related activity is contingent on other events and therefore cannot be separated

experimentally. (Hollerman et al. 1998; Lau and Glimcher 2008; Lauwereyns et al.

2002; Nicola et al. 2004b; Samejima et al. 2005). For instance, to study how the brain

translates sensory information into immediate actions one has to determine (in each

relevant brain region) whether the neuronal activity between the stimulus and the

action codes for the sensory stimulus or the action that follows it. It is also possible

that in some regions the observed activity specifically encodes some unique function

of the relation of the two events.

The ambiguities that arise from response overlap are known in the field of elec-

trophysiology and some methods have been put forward to address it (Jin et al.

2009; Lau and Glimcher 2008; Nicola et al. 2004a; Taha et al. 2007). Most of these

methods assume that if the average neural activity is more correlated to one event

than another, the response to that event should be of shorter duration and larger

magnitude compared to the response to the other event. Some have extended this

concept by comparing the rise time of the responses to each event to determine the

most correlated event (Taha et al. 2007). Another group has used a shuffling of event

timings between trials for each event to separate significant changes in the firing pat-
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terns that indicate response correlation with one event compared to others (Jin et al.

2009). Though intuitively accurate in many cases these methods can only report

which of the events correlates better with the neural response. They cannot rule out

the dependency of the response to the event with the lower correlation nor can they

determine the precise relation of each event to the neuronal response. Here we de-

velop a method to dissociate these activities and test it on extracellular recording of

single neurons obtained in behaving rats. Importantly, this method could in theory

apply to any type of time varying brain activity such as voltammetry, event-related

potentials or functional-MRI.

4.3 Results

4.3.1 Deconvolution Intuition:

In electrophysiology, the conventional method to estimate a neuron’s response to

a stimulus is to shift and time-lock its spike train to that stimulus and then make a

peri-event time histogram (PETH) by averaging the time-locked activity over many

trials. An example PETH for an actual neuron is shown in Figure 4.1. The firing of

this neuron is time-locked to both a sensory cue and the motor action that follows it

(FIG 4.1a). The PETHs in Figure 4.1b show a broad excitation after the cue and

a sharp peak of activity around the motor action. However the firing rasters show

that the activity of this neuron is more tightly locked to the motor action compared

to the cue, but because the motor actions happen in temporally close yet variable

intervals after the cue a broad excitation appears shortly in the cue PETH following

cue onset. Therefore based on the PETH results, one could hypothesize that this
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neuron is excited to the cue presentation as well as the motor action which can lead

to an error in response classification. Our proposed deconvolution method can be

used to address this issue by teasing apart the motor activity from the cue activity

as the following. If the neuron is only responsive to the action and not the cue, one

should be able to account for the cue PETH by using the action PETH in each trial

shifted to the time of the action in that trial and then adding the shifted versions of

the action PETH over all the trials as shown in Figure 4.1c. A simple overlay of

the predicted cue PETH constructed by this technique on the raw cue PETH shows

a good degree of overlap between the two responses (FIG 4.1d left); indicating that

the broad excitation appearing on the cue PETH is likely the result of the neuron’s

response to the action shifted over many trials. Subtracting the predicted cue PETH

from the raw cue PETH then successfully eliminates the influence of motor action on

cue related firing (FIG 4.1e left, baseline is added back for comparison).

On the other hand, since most of the neuron’s response is due to the action and

not the cue, the same procedure performed on the raw motor PETH (subtracting the

predicted PETH made by shifting the cue PETH in each trial from the motor PETH)

does not account for the activity of the neuron around the motor action (FIG 4.1c-e

right, FIG 4.1e baseline is added back for comparison). Therefore this neuron is

more accurately categorized as action-encoding but not cue-encoding after we account

for the response to the motor action in the raw cue PETH.

In general if we define an event-related firing (ERF) to be the true firing of a

neuron to one event independent of other event timings, then it follows that PETHs
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Figure 4.1: Deconvolution intuition using activity of an example neuron time-locked to
a cue and the action it elicits. (a) Firing rasters time-locked to the cue (left) or to the action
(right). (b) Raw PETHs made for each event showing the increase in firing after both the cue (left)
and the action (right).(c) Construction of the predicted PETH for each event based on the firing
estimate of the other event. Raw PETHs are shifted to the time of occurrence for each event in a
trial and a mean predicted PETH is made over all trials. (d) The predicted and the raw PETH for
each event are overlaid for comparison. (e) The subtraction of the predicted PETH from the raw
PETH for each event results in an estimate for the actual event-related firing or the ERF after firing
overlaps are accounted for. This neuron is correctly categorized as responsive to the motor action
but not the cue based on the adjusted responses.

themselves are a superimposition of the ERFs that are time shifted and mixed based

on the relative timings of the events. In a linear and time independent regime, PETHs

represent a convolution of the ERFs with the event timings. To recover the ERFs,

one needs to reverse the convolution or in other words deconvolve the PETHs. This

can be done either by trying to solve the inverse problem of convolution in one step
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(complete deconvolution) or iteratively where the current ERF estimates in each step

are used together with the event timings to improve the ERF estimates in the next

step (partial deconvolution). The general formulation for the deconvolution is laid

out in the Methods section where the procedure presented above in Figure 4.1 is

shown to constitute only the first iteration in using raw PETHs and timing of all

events repeatedly for partial deconvolution of the ERFs. This iterative approach

is carried out in the time domain and will be referred to as deconvolution in time

or temporal deconvolution (see Methods EQ (4.6)). The complete deconvolution

which aims to solve the deconvolution in one step through a direct matrix inversion

is carried out in the frequency domain and will be referred to as deconvolution in

frequency or frequency deconvolution (see Methods EQ (4.8)). It is important to

note that due to the correspondence of time and frequency domain the choice of

performing partial deconvolution in time and complete deconvolution in frequency is

rather arbitrary and therefore the true comparison in the following sections is between

partial and complete deconvolutions not between time and frequency domains per se.

The following sections will examine the deconvolution results first for simulated data

and then for actual single unit recordings.

4.3.2 Simulation Results:

In this section we first show how response overlaps can distort ERFs obtained for

an event by simulating two hypothetical experiments. One of the examples involves

multiple events happening closely in time and another involves high frequency rep-

etitions of a single event. We show that in both cases deconvolution in time or in
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frequency can recover the ERFs successfully.

Multi-event Deconvolution:

For the first experiment, we assume to have four events A, B, C and D. For

simplicity we assume that each event happens only once during each trial and always

in the order ABCD with a total of 40 trials. The inter-event intervals between events

in a given trial are drawn randomly from Poisson distributions. We assume to have

a neuron with ERFs that show excitation to event A, excitation then inhibition to

event B, inhibition to event C and inhibition then excitation to event D (FIG 4.2c,

dotted lines). The firing of this neuron in two different trials in the presence of all 4

events is shown in Figure 4.2a. The PETHs are obtained by convolving the ERFs

with the event timings (EQ (4.1) with Gaussian noise, sd=1). Figure 4.2c shows

the event-locked PETHs overlaid on their corresponding ERFs. This figure clearly

demonstrates that the raw PETHs built by simply averaging the firing over trials can

deviate considerably from the true ERFs and as such provide poor estimates of the

true ERFs.

It is important to note that in this example and in other multi-event experiments

where the number of each event per trial does not change between trials, the DC

contents of the ERFs are not deconvolvable. This can be verified in the current

example by looking at the determinant of the convolution matrix and noticing that

it is zero (and therefore not invertible) at or near DC frequencies (FIG 4.2b). This

is because the DC contents of the ERFs are not affected by the timing jitters that

are used to deconvolve the higher frequency contents and as such different trials here
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do not provide additional information on the value of the ERFs DC content. This

leaves us with an ill posed problem of one equation for the total DC content and four

unknowns corresponding to each ERF. Nevertheless after correcting for DC shifts in

the results the application of deconvolution method successfully recovers the ERFs

with high fidelity in time or in frequency as shown in Figure 4.2d and in Figure

4.2e respectively.

The ERF estimation error can be measured by the average mean squared error

(hereafter MSE) for all 4 events integrated over time and as a function of decon-

volution iterations (FIG 4.2f). The ERF estimation error shows more than 70%

improvement just after the first deconvolution iteration in time compared to the raw

PETHs (MSE=0.7 versus 2.6). The ERF estimate continues to converge to the true

ERFs and the error goes down by another order of magnitude after 1000 iterations

comparable to average PETH firing noise (MSE=0.03 versus 0.025 for noise variance

in 40 trials). Our ability to fit the raw firing PETHs in the presence of all 4 events

based on the deconvolved ERFs also greatly improves over deconvolution iterations

with errors as low as 10−7after 1000 deconvolution iterations (FIG 4.2g). A final

deconvolved signal (equivalent to infinite iterations in time domain) can be obtained

from frequency deconvolution with errors that are not distinguishable from the aver-

age firing noise (MSE=0.027 versus 0.025 for noise variance in 40 trials) (FIG 4.2f).

Fast Occurring Single Event Deconvolution:

For the second experiment, let us assume an event A happening 10 times in each

trial with randomly spaced inter-event intervals from a Poisson distribution. We
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Figure 4.2: Deconvolution of event-related firings in a simulated four event task.(a) Firing
rate of a hypothetical neuron in two randomly chosen trials with different inter-event intervals. Each
event in a trial is shown with a cross with four different colors (pink, blue, green and red indicating
four different events A, B, C and D respectively in the task). The following distributions were used
to draw the event timings for each trial:
tA = 0 tB = 1− log(1− τ) tC = tB +0.5− log(1− τ) tD = tC +2−1.5× log(1− τ) τ ∼ U(0, 1)
(b) Determinant of the convolution matrix normalized by its maximum value over a range of fre-
quencies from 0 to 50 Hz. (c) ERFs for each event (dashed lines) and their corresponding raw
PETHs (solid line, derived from convolving the respective ERFs) after averaging 40 trials. (d, e)
The deconvolved ERFs after 1000 iterations in the time domain (D, solid line) and the frequency
domain (E, solid line) overlaid on the actual ERFs. Deconvolution in both time and frequency
shows considerable improvement over the raw PETH estimates and is successful in recovering the
true ERFs. (f) Log of the mean squared error between the estimated ERFs and the true ERFs be-
fore deconvolution (cyan triangle), over iterations in time domain and after frequency deconvolution
(blue triangle) corresponding to infinite iterations in time. Raw PETH noise variance is indicated
by the dashed line. (g) Log of the mean squared fitting error between the raw PETH and the PETH
constructed from the temporally deconvolved ERFs as a function of deconvolution iterations.
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assume to have a neuron with an ERF that shows excitation then inhibition to this

event and inter-event intervals that are shorter than the ERF duration. The firing

of this neuron in two different trials in the presence of 10 event repetitions is shown

in FIG 4.3a. The raw PETH is again obtained by convolving the ERF with the

event timings (EQ (4.1) with Gaussian noise, sd=1). The close temporal spacing

between events in this case results in a broad distortion of ERF estimate based on

the raw PETH. Figure 4.3c demonstrates a gross overestimation of both amplitude

and duration of the ERF. Applying the deconvolution method in time or in frequency

successfully recovers the actual neuronal response to a single occurrence of event A

(FIG 4.3d and FIG 4.3e). Although small jitters in the event timings tend to

reduce the determinant of the convolution matrix in low frequencies, in this case the

convolution matrix is invertible over all frequencies making the deconvolution in the

frequency domain feasible for all frequencies (FIG 4.3b).

ERF estimation error measured by MSE again shows considerable improvement

close to an order of magnitude only after the first deconvolution iteration compared

to the raw PETH (MSE=1.5 versus 9.8). This error continues to go down after

some 500 iterations to levels undistinguishable from average firing noise. The MSE

resulting from the frequency domain deconvolution (equivalent to infinite iterations

in time domain) is also comparable to the average PETH firing noise (MSE=0.0022

for both time and frequency deconvolution versus 0.0025 for noise variance in 40 trials

containing 10 event repetitions each) (see FIG 4.3f). Also the raw PETH fitting

accuracy using the deconvolved ERF improves rapidly over deconvolution iterations
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Figure 4.3: Deconvolution of ERFs in a simulated repetitive event task.(a) Firing rate of
a hypothetical neuron in two randomly chosen trials with different inter-event intervals. Timing of
each event occurrence in a trial is shown with a blue cross. The following distribution was used to
draw the timings of the 10 repetitions of event A in each trial:

t1A = 0 tiA = ti−1
A + 1 − log(1−τ)

4 for 1 < i 6 10 τ ∼ U(0, 1) where t1A indicates time of the first
occurrence of event A and so on.
(b) Determinant of the convolution matrix normalized by its maximum value over a range of frequen-
cies from 0 to 50 Hz. (c) ERF (dashed line) and the corresponding raw PETH (solid line, derived
from convolving the ERF) after averaging 40 trials. (d, e) The deconvolved ERFs after 1000 iter-
ations in the time domain (D, solid line) and the frequency domain (E, solid line) overlaid on the
actual ERF. Deconvolution in both time and frequency shows considerable improvement over the
raw PETH estimate and is successful in recovering the true ERF. (f) Log of the mean squared error
between the estimated ERF and the true ERF before deconvolution (cyan triangle), over iterations
in time domain and after frequency deconvolution (blue triangle) corresponding to infinite iterations
in time. PETH noise variance is indicated by the dashed line. (g) Log of the mean squared fitting
error between the raw PETH and the PETH constructed from the temporally deconvolved ERF as
a function of deconvolution iterations.

where after 1000 iterations the MSE for predicting PETHs goes down to a negligible

10−12 (FIG 4.3g).
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4.3.3 Cross-validation of Deconvolution:

The simulation results in the previous section demonstrate the feasibility of com-

plete deconvolution of the ERFs when the data is generated based on the deconvo-

lution model assumptions, with the ERF estimation error bounded only by a linear

combination of the raw PETH noise variances (see Methods EQ (4.7) and EQ (4.12)).

In dealing with the actual firing data the assumptions of the model can be vio-

lated to varying degrees. For instance, the ERFs might not be stationary over time

or might show dependence on the inter-event intervals (a.k.a. ERF interactions).

Furthermore in dealing with the actual data we might be limited by the number of

available trials to average out the trial noise which would raise the lower bound of

deconvolution error. These factors can adversely affect our ability to fully recover

the true ERFs. If the ERFs were known one could simply measure the MSE of the

deconvolved ERFs in predicting the true ERFs and obtain a quantitative measure of

how the assumption violations or trial noise are affecting the deconvolution perfor-

mance over the iterations. Such a quantitative performance measure is in fact shown

for the simulation results in Figures 4.2f and 4.3f where the ERF estimation error

was calculated and plotted over deconvolution iterations. In dealing with real data,

obviously the true ERFs are not known and therefore another approach is needed to

monitor the model performance over the deconvolution iterations.

One way of characterizing the effectiveness of the deconvolution for real firing data

is by cross-validation of deconvolved ERFs. Cross-validation is a simple but powerful

statistical technique that can be used to choose between models (Stone 1974) which
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in our case would be between performing or not performing the deconvolution and

also between different levels of deconvolution for a given neuron. Cross-validation

can be done by randomly dividing the trials into two groups, one used for finding

the ERFs using a certain deconvolution iteration and the other one for validating the

estimated ERFs to see if they can convolve back to predict the PETHs made from

the test trials (see Methods EQ (4.13)).

We first tested the sensitivity of the deconvolution to noise by decreasing the signal

to noise ratio in the 4 event deconvolution experiment shown in Figure 4.2. The

signals to noise values tested were 22dB, 12 dB, 6 dB and 4 dB. Increasing the noise

level resulted in increasing levels of cross-validation error as expected. Although in

all cases some levels of partial deconvolution outperformed the raw PETH in cross-

validation, the deconvolution iteration resulting in the lowest cross-validation error

decreased in conjunction with the signal-to-noise ratio. (see FIG 4.4a left). Since in

the case of simulation we a priori know the true ERFs, MSE for ERF prediction error

at each noise level can be calculated as well. One can see that the trend of changes

for the ERF prediction error is qualitatively the same as that of cross-validation

(corrcoef=0.85, P<0.001) though the iteration with minimum error for each noise

level is not necessarily the same for the two error measures (FIG 4.4a right). This

confirms that in the absence of the ERF prediction error, cross-validation error can

provide a comparable criterion for finding the appropriate level of deconvolution in a

given neuron (for a derivation of the relationship between ERF and cross-validation

MSEs look at EQ (4.14) and EQ (4.15) in the Methods).
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It is important to note that the changes in the cross-validation and ERF MSE

reflect changes in both the estimates bias and variance. In cases of low signal two

noise ratio the amount of noise that is added after a few iterations integrated over

time more than cancels out the improvement in the ERF estimate bias which results

in the rising of the cross-validation MSE after only a few trials as can be seen in

Figure 4.4a both right and left column (also see Methods EQ (4.7) for added noise

terms in each trial).

We also tested the sensitivity of the deconvolution to increasing levels of ERF in-

teractions in one of the many possible ways that such interactions may occur. In this

case we assumed that the amplitude of the ERFs would decrease and their duration

would increase with the interval between the events. The performance of the decon-

volution model was compared when there were no interactions versus when there was

interactive modulation of the first ERF, the first and second ERFs, up to the point

that all four ERFs were modulated by the spacing between their events and the next

event except for the last event’s ERF that was modulated by the interval between

itself and the previous event. Again Increasing levels of ERF interactions resulted in

increased cross-validation error as expected. And although in all cases deconvolution

outperformed the raw PETH in cross-validation, the deconvolution iteration resulting

in the lowest cross-validation error decreased by increasing ERF interactions (FIG

4.4b left). Here too the ERF prediction error showed a similar trend of changes as

a function of ERF interaction and deconvolution level to the cross-validation (cor-

rcoef=0.6, P<0.001) but the iteration with minimum ERF prediction error was not
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necessarily the same as that of the cross-validation error (FIG 4.4b right).
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Figure 4.4: Changes in cross-validation error depend on the level of noise and the degree
of ERF interactions. The trend of changes in the cross-validation error matches that of the
ERF prediction error. Cross-validation is done by constructing a PETH prediction based on the
deconvolved ERFs made from 90% of trials (36 training trials) to be compared with the raw PETH in
the remaining 10% of trials (4 validation trials). (a) Mean squared error for cross-validation between
the predicted PETHs and the validation PETHs normalized by the raw PETH cross-validation error
(left) and mean squared error between the predicted ERFs and the true ERFs (right) normalized by
the raw PETH ERF estimation error over a range of signal–to-noise ratios (4dB, 6dB, 12dB, 22dB)
(b) Mean squared error for cross-validation between the predicted PETHs and the validation PETHs
normalized by the raw PETH cross-validation error (left) and mean squared error between the
predicted ERFs and the average of true ERFs (right) normalized by the raw PETH ERF estimation
error over increasing levels of ERF interactions (interaction for 0, 1, 2, 3 and 4 ERFs).

It is also worth pointing out that in both cases of low signal-to-noise ratio or

high degree of ERF interactions, the estimate provided by frequency deconvolution

(equivalent to complete deconvolution) can be inferior to a partial deconvolution (ob-

tained after some deconvolution iterations). A fact that is demonstrated both by the

ERF estimation error and the cross-validation error for varying levels of noise or ERF

interactions. This can be partially due to the singularity of the convolution matrix
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(FIG 4.3b) in this experiment for the lowest frequencies as well as the discussed

effect of noise in low signal to noise ratio signals in raising the estimate errors

In using the cross-validation as a tool for selecting the appropriate deconvolution

iteration we define the “optimal iteration” to be the iteration resulting in the lowest

significant cross-validation error compared to the raw PETH error and the “maximal

iteration” to be the highest iteration having a cross-validation error significantly lower

than that of the raw PETH (paired t-test P<0.01 for significance). Optimal and max-

imal iterations therefore define the most and least conservative criteria respectively

for the degree of deconvolution that can be safely applied to the data.

Finally it is worth mentioning that we could have chosen an alternative way of

characterizing the effectiveness of the deconvolution by dividing the data randomly

into two equal parts and using the complete deconvolution from one half to estimate

the ERF MSE directly based on the plug in principle. This direct method which

normally yields similar results to cross-validation (see Methods EQ (4.16)) requires

double the amount of deconvolution compared to cross-validation and therefore is

more computationally intensive. Furthermore in many cases complete deconvolution

of ERFs might not be available or might show large fitting errors (see Experimental

Results FIG 4.6b and FIG 4.7a). Therefore we have used cross-validation as the

faster and more robust approach in this paper thought when applicable all of our

results with regard to cross-validation should be replicable using this direct method

as well.
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4.3.4 Experimental Results:

In this section we demonstrate the use of the deconvolution method to parse out

actual neuronal responses and will use the cross-validation technique introduced in

the previous section to calibrate the number of deconvolution iterations applied on

each neuron given its firing pattern and the degree of noise.

We used a sub-set of equal to 106 neurons that were recorded in the nucleus ac-

cumbens (NAc) in a discriminative stimulus task (Ambroggi et al. 2008). Briefly, two

auditory cues, discriminative stimuli (DS) and neutral stimuli (NS) were randomly

presented (with durations of up to 10 s for the DS and 10 s for the NS) on a variable

interval schedule with an average interval of 30 s. A lever press was required during

DS presentation to cause the delivery of a reward into an adjacent reward receptacle

and responding during NS was never rewarded. For simplicity, only the DS is dis-

played in Figure 4.5 with intervals between the two DS’s shown on average to be

60s.

Firing of neurons on trials when the animal successfully responded to the cue

can be modulated by four events which happen shortly one after the other. These

events include presentation of the DS, lever press (LP), receptacle entry (Ent) and

receptacle exit (Ext). Many of the neurons recorded in this task show changes that

are time-locked to more than one event. In fact complex responses to multiple events

are quite common in the rat ventral striatum (Humphries and Prescott 2010; Nicola

et al. 2004a; Nicola 2007; Schultz et al. 1992). Figure 4.6a shows the firing raster

of a putative medium spiny neuron recorded in rat NAc during the rewarded tri-
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Figure 4.5: Experimental procedure (a) Rats were placed in 40 x 40cm chambers containing two
levers (active and inactive) on each side of a reward receptacle. A speaker played the auditory cues
above the chamber. (b) Behavioral paradigm showing hypothetical sequence of events. Only active
lever presses during the cue presentation resulted in reward delivery in the receptacle after which
the rat would normally enter the receptacle to consume the reward and exit the receptacle after the
consumption. The event sequence consisting the cue, active lever press, receptacle entry and exit in
the presence of reward is counted as one rewarded trial (shaded area).

als. This neuron is excited after the DS, shows inhibition during the consummatory

period between receptacle entry and exit and then has a brief excitation following re-

ceptacle exit. Although the PETH fitting error decreases rapidly over deconvolution

iterations, cross-validation for this neuron reaches a minimum after about 3 decon-

volution iterations (optimal deconvolution) but then increases back with increasing

degree of deconvolution with the maximal deconvolution happening at iteration 22

(FIG 4.6b and FIG 4.6c). The result of partial deconvolution with optimal and

maximal iterations is shown together with the raw PETHs in Figure 4.6a. One can

see that the excitation to DS based on the deconvolved ERF has a shorter duration

compared to what was previously estimated by the raw PETH. This can be verified

by looking at the firing raster time locked to the DS where part of the excitation can
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be seen to be due to lever press preparation. Deconvolution also removes the broad

consumption-related inhibition from the DS PETH as well as the lever press and cue

related excitations from the Ent and Ext PETHs. The presence of the excitation fol-

lowing the receptacle exit in the Ext ERF shows that in fact this activity is correlated

with exiting the receptacle and not a contamination by other events.

The fact that the partial deconvolution outperforms the raw PETHs in cross-

validation shows that the neuron’s activity obeys at least partially the deconvolu-

tion model (see Methods EQ (4.1)). But possibly due to interactions, nonlinearities

and moderate signal-to-noise ratio (∼10dB, FIG 4.4a), complete deconvolution of

responses is not feasible. Another fact that further complicates the complete decon-

volution of this neuron’s firing is the fact that the determinant of the convolution

matrix made from event timings shows a rather wide notch for low frequencies which

will make complete deconvolution at those frequencies erroneous. This results in high

PETH fitting errors for frequency deconvolution in Figure 4.6b. (see FIG 4.6d for

the convolution determinant)

Among the 106 neurons recorded, 85 were responsive to at least one event in

rewarded trials. As shown in Figure 4.7a the average PETH fitting error for re-

sponsive neurons decreases rapidly over deconvolution iterations while on average the

frequency deconvolution shows large errors in deconvolving the ERFs. Once more

the poor performance of the frequency deconvolution can partially be explained by

average determinant of the convolution matrix which shows a wide notch over low

frequencies (see FIG 4.7c for the average convolution determinant). As discussed
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Figure 4.6: Optimal and maximal deconvolution in an example neuron responding to
all the task events.(a) The firing rasters from 46 trials (top) and the corresponding raw PETHs
(bottom, blue lines) time-locked to DS, LP, Ent and Ext. The deconvolved ERFs after the optimal
(green line) and maximal (red line) iterations are displayed. A bin size of 200 ms was used for
all the histograms. (b) Log of the mean squared fitting error gradually decreases as a function of
deconvolution iterations. (c) Normalized cross-validation mean squared error reduces after partial
deconvolution with three iterations having the lowest error (optimal) and the twenty second iteration
being the highest iteration with significantly lower error than raw PETH cross-validation error
(maximal). (d) Determinant of the convolution matrix normalized by its maximum value over a
range of frequencies from 0 to 50 Hz.

previously this is a direct consequence of multi-event experimental paradigms with

unchanging number of occurrences for each event per trial in which case a partial

temporal deconvolution usually outperforms frequency deconvolution.

The optimal deconvolution for each of the responsive neurons can be determined

by finding the minimum of the cross-validation error term. The population average
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of the cross-validation error for the responsive neurons indicates that on average

partially deconvolved ERFs outperform raw PETHs in predicting the validation trial

firing patterns with the average cross-validation error being significantly lower than

the average raw PETH errors for up to 6 iterations (multiple comparison P<0.01

Bonferroni) and a maximum improvement of about 8% in the average cross-validation

MSE (FIG 4.7b).

For 25% of the neurons, the minimum of the cross-validation error happens for

one or more iterations. For the other neurons, this minimum happens at the zero level

deconvolution. The deconvolved ERFs at zero iteration are simply the raw PETHs

from the training trials normalized by a factor which in this case is the number of

event types (see Methods EQ (4.5)). The fact that in all the responsive neurons par-

tial deconvolution outperforms raw PETHs in predicting the validation trial firings

means that the raw PETHs time-locked to each event are influenced by the timing

of the surrounding events. The optimal deconvolution found for each neuron is cor-

related with the signal-to-noise ratio (corrcoef=0.71 p<0.01) with higher degrees of

deconvolution corresponding to higher signal–to-noise ratios (FIG 4.7d). The maxi-

mal deconvolution iteration for each neuron shows a wider distribution over iterations

with an average of about 6 iterations (mode equal to 4 iterations). The maximal it-

eration also shows dependence on the level of signal to noise with higher iterations

corresponding to higher levels of signal to noise ratio. (corrcoef=0.40 p<0.01) (FIG

4.7e).

The neuronal responses shown in Figure 4.8a demonstrate that in fact in com-
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Figure 4.7: Deconvolution error and distribution of optimal and maximal iterations for
all responsive neurons.(a) Log of the average (for all neurons) mean squared fitting error as
a function of deconvolution iterations. Complete deconvolution in frequency deconvolution does
not provide a good estimate on average. (b) Average normalized cross-validation mean squared
error as a function of deconvolution iterations. (c) Average determinant of the convolution matrix
normalized by its maximum value for all the recorded sessions over a range of frequencies from 0 to
50 Hz. Shaded area shows the standard error of the mean. (d, e) Distribution of the optimal (d)
and maximal (e) deconvolution iterations among all the responsive neurons. Color coding of the
bars correspond to the average signal to noise ratio for all neurons in each optimal deconvolution
(Black: low signal to noise, White: high signal to noise) The signal to noise is calculated here and

for previous simulations as:10 log( var(PETH)
var(baseline PETH) )

instead of the more usual formulation: 10 log(var(PETH)−var(baseline PETH)
var(baseline PETH) )

since the argument of log in this formulation can become negative and the signal to noise undefined
when dealing with the actual data.

parison with the raw PETHs the degree of contamination by non time locked events

is reduced for all of the deconvolved ERFs after partial deconvolution (results of max-

imal iteration shown). For instance the duration of excitations following the DS is

reduced significantly based on the deconvolved DS ERF compared to the raw DS

PETH (average 1.51 sec vs. 2.18 sec, paired t-test P<0.05), pointing to the fact that

the post-DS excitations in these cells were probably contaminated by excitations pre-
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ceding the lever presses (FIG 4.8b). Interestingly, some responses were not affected

by deconvolution. Indeed, receptacle exit ERFs maintained post-exit excitations af-

ter deconvolution (P>0.05 paired t-test for average response from -1 to 1 sec around

receptacle exit) while the cue and lever press contaminations on the exit ERFs are

attenuated after deconvolution (P<0.01 paired t-test for average response from -7 to

-5 sec around receptacle exit corresponding to average time of cue presentation and

lever press respectively). Also inhibitions during the consumption period are shown

to be mainly correlated with the receptacle entry and not with the receptacle exit

since the sustained inhibition prior to the exit is removed after deconvolution from

Ext ERFs. On the other hand Ent ERFs still show inhibition during the consump-

tion even after the deconvolution (FIG 4.8b). However it is important to be cautious

when interpreting the appearance or disappearance of broad sustained changes com-

pared to the faster phasic changes in the ERFs following the deconvolution due to the

problematic nature of low frequency deconvolution in this experiment (FIG 4.7c).

Besides changes in response dynamics there is a considerable change in the per-

centage of responsive neurons to each event after deconvolution. The total number

of neurons responsive to each event was reduced by 36% on average (averaged over

all 4 events) (see FIG 4.8a right versus left columns). This reduction happens while

the total number of neurons that are responsive to at least one event stays roughly

the same before and after deconvolution (85 neurons before versus 79 neurons after).

This indicates that the deconvolution method is effective in reducing the neurons that

are falsely categorized as responsive to multiple events (FIG 4.8c).
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Figure 4.8: Comparison of population profile of responses to each event based on raw
PETHs and deconvolved ERFs. (a) Color coded raw PETH Z-scores (left column) and decon-
volved ERF Z-scores (right column) for all the responsive neurons to each event. The four rows from
top to bottom correspond to DS, LP, Ent and Ext responsive neurons. Each line in the color coded
plots corresponds to the firing of one neuron in Z-score. Only Z-scores outside the 90% confidence
interval of baseline (pre-cue firing) are color coded. Values within the confidence interval are all
colored at zero.(b) Average raw PETH Z-scores versus deconvolved ERF Z-scores. Red and blue
correspond to excitatory and inhibitory responses based on raw PETHs respectively. Magenta and
cyan correspond to excitatory and inhibitory responses based on deconvolved ERFs respectively.(c)
Number of neurons being categorized as responding to one, two, three or four events before decon-
volution based on raw PETHs (left) and after partial maximal deconvolution based on deconvolved
ERFs (right). The comparison shows a reduction in the number of neurons categorized as responding
to multiple events.
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4.4 Discussion:

The ambiguity that typically occurs in the analysis of neuronal coding of tempo-

rally close events can be viewed as a problem with the PETHs being the convolved

readout of several underlying ERFs that are time-shifted with respect to each other

over trials. We first demonstrated that the raw PETHs in some cases provide a

poor estimate of the underlying ERFs due to their overlap. We then presented a

deconvolution formulation that is suited to the specific problem of finding ERFs in

a multi-event task based on raw PETHs. We derived a pair of theoretically equiv-

alent formulations for deconvolution in the time and in the frequency domains and

showed through simulation that the formulation proposed can successfully parse out

individual ERFs in multi-event and in fast occurring single event tasks. Since convo-

lution in time is equivalent to multiplication in frequency (Oppenheim et al. 1997),

deconvolution in the frequency domain theoretically simplifies the inversion of the

convolution matrix and so is used for complete deconvolution. On the other hand,

the temporal approach involves a step-by-step deconvolution to approximate this in-

verse. Although the two methods are theoretically equivalent, the iterative approach

in the temporal deconvolution is more robust when applied to actual data. This is

due to the fact that the deconvolution model entails validity of certain assumptions

such as linearity and stationarity of responses and non-singularity of the convolution

matrix which are not necessarily true when dealing with actual event timings and

neuronal responses. In dealing with neuronal recordings, the temporal approach has

the advantage of permitting a partial deconvolution given the level of the noise and
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the degree to which the data deviates from model assumptions. In this sense, the

iterative temporal approach can be more flexible than the complete deconvolution

approach in the frequency domain.

Noise can also play a limiting role on the degree of deconvolution that can be

successfully applied to the actual PETHs (FIG 4.4&4.7). We therefore recommend

using a low pass filter on the data by applying Gaussian smoothing or Wiener filters

(Papoulis 1977) on the data or have bin sizes that are large enough to limit the

noise power before applying the deconvolution. Noise levels can also be lowered

proportional to the square root of the number of trials. As shown in the result

section, neurons with higher signal–to-noise ratios tend to have higher optimal and

maximal deconvolution iterations.

It is also important to note that the experimental design and the amount of jitter

in the event timings can influence the effectiveness of the deconvolution procedure,

especially in deconvolving the broad tonic changes in the ERFs (which correspond to

low frequency content of the signals). In fact there are two channels of information

that are used for deconvolution, one is the changes in the number of occurrences of

each event per trial and the other is the changes in the inter-event intervals between

different events over trials. Of these two factors the former is more important when

deconvolving the tonic changes as they are less affected by the event timing jitters

due to their slow temporal dynamics. For example in the discussed experimental

paradigm where each event occurred only once per trial the deconvolution of the lowest

frequencies was not well defined. In such cases caution is recommended when drawing
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conclusions about changes in tonic components of the ERFs. The best case scenario

for successful deconvolution ERFs therefore includes variable number of occurrences

of events per trial with extensive event timing jitter between trials.

Cross-validation can be used as an effective criterion to choose between using

raw PETHs without deconvolution or a partial deconvolution to obtain the best

possible estimates for the ERFs. Depending on the error tolerance a range of partial

deconvolutions from optimal to maximal can be chosen for each neuron. The result

of the partial deconvolution should provide ERF estimates that are closer to the true

ERFs. This in turn can inform the response detection algorithms to provide a better

estimate of the responsive neurons to each event.

Deconvolution on real data obtained from extracellular recordings provides the

proof-of-concept that this method can modify the conclusions obtained from such

data. First it allows better categorization of the response types. Indeed, as shown in

Figure 4.1 and 4.6, based on raw PETHs, neurons can be erroneously categorized

as responsive to a given event if they respond strongly to another close event. The

fact that cross-validation finds the iteration zero on average to fit the validation

data better than the raw PETH (FIG 4.7b) supports the idea that many of the

raw PETHs are dependent on the responses to the surrounding events. Categorizing

the neurons based on their deconvolved ERFs addresses this issue. As expected

using the deconvolved ERFs instead of the raw PETHs reduces the number of events

the neurons are responsive to (FIG 4.8c). Furthermore, the deconvolution allows a

better estimation of the response dynamics, both in duration and amplitude. Notably,
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if a neuron is responsive to two temporally close events, the responses add up. For

example we find that the duration of the neuronal responses to reward predictive cues

(DS) is reduced after deconvolution. This results from correcting for the preparatory

responses to the lever press following the cue onset. Therefore deconvolution provides

a better estimate of duration in the presence of temporally proximal events.

The ambiguities that arise from response overlap are not only relevant in elec-

trophysiology but in neuroscience as a whole. In fact there are studies in functional

MRI and EEG literature that have identified this issue and provided methods for

deconvolution of responses (Bohrquez and Ozdamar 2006; Dale 1999; Glover 1999;

Hinrichs et al. 2000) However all of these methods only allow for a complete decon-

volution (like the one presented here in frequency domain) and as such are prone

to large errors in the presence of interactions and convolution matrix singularities as

discussed and demonstrated in this paper. Furthermore some of these studies are only

appropriate for a single event deconvolution and are not general enough to allow for

multiple event types (Bohrquez and Ozdamar 2006; Glover 1999). To our knowledge

the method presented here is the most general formulation of deconvolution for trial

based experimental paradigms. It is also the first to allow for a partial deconvolution

with a criterion based on cross-validation to address the success of varying degrees of

deconvolution in dealing with the real data.

Finally our formulation of deconvolution assumes the timings of all the events in

a task to be available. It may be the case in some experiments that the existence

and/or the timings of some events are not known or recorded. These unknown event
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occurrences especially when correlated in time with the recorded events can introduce

significant errors in the ERF estimations. In these cases other techniques such as blind

deconvolution or source separation (Comon 1994; Haykin 1994) can be used. These

techniques not only estimate the original signals (in our case the ERFs) but also

try to approximate the mixing or convolution matrix. Methods such as independent

component analysis (ICA) that assume statistical independence between the original

signals are successfully applied in many source separation problems. The number of

unknown events that needs to be estimated in this way might in turn be decided by

a model selection technique such as cross-validation. Such an extensive model which

includes known events and optimizes for unknown events and their timings however

would be heavily parameterized and computationally intensive. The usefulness of

such models in deconvolving the ERFs remains to be tested in the future.

In conclusion, we have described and tested a novel technique that allows separa-

tion of the components of the neuronal activity that are associated with temporally

close but distinct behavioral events. We have demonstrated the value of the de-

convolution method using simulated data showing that it can significantly improve

estimates of the event related neuronal responses compared to the raw PETHs. We

then applied our method to single unit recordings of nucleus accumbens neurons ob-

tained in behaving rats showing that the deconvolution of the neuronal responses

disambiguates the classification of responsive neurons to each event and adjusts each

event-related response by reducing the response component that is due to the overlap

of temporally adjacent events. We believe that this novel analytical tool can greatly
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improve the interpretability of data and as such is essential for understanding the

temporal relationship of neuronal activity to behavioral events.

4.5 Methods:

4.5.1 Deconvolution Model:

The deconvolution model assumes that the total firing rate of a neuron in each

trial is equal to the linear sum of the contributions of each ERF delayed by the

event latencies in that trial. It further assumes that the shapes of the ERFs are

independent of inter-event intervals and of time. This means that properties of ERFs

such as duration or amplitude do not change by changing the spacing between events

and are also stationary over trials. Given these assumptions, the firing of a neuron

in trial m with a total of K event types and T time samples can be written as:

fm(t) =
K∑
k=1

T∑
τ=1

zmk(τ − t)hk(τ) + ηm(t) (4.1)

Here fm(t) represents the firing of the neuron in trial m as a function of time and

hk(t) is the neuron’s ERF for event k. The term zmk(t) is set to one when event k

occurs and is zero otherwise. Furthermore ηm(t) represents the noise in trial m and

can model both the inherent randomness of neuronal firing as well as the contributions

of all other potential events in the task that are not explicitly included in the model.

If the firing rates and noise terms are collected over time and over all the M trials

in column vectors F = [f1(1) . . . f1(T ) . . . fM(1) . . . fM(T )]T and N = [η1(1) . . . η1(T )

. . . ηM(1) . . . ηM(T )]T and the ERFs to be estimated are also collected into another
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column vector H = [h1(1) . . . h1(T ) . . . hK(1) . . . hK(T )]T and correspondingly the

event timings zmk are turned into a MT × KT matrix referred to as Z, the convolu-

tion equation can be written as linear regression:

F = ZH +N (4.2)

EQ (4.2) shows the full model for the convolution of ERFs over all the trials for

a given neuron. The goal of deconvolution is to find an unbiased estimator Ĥ to

approximate the true ERFs in H given that the firing of a neuron in all trials (a.k.a

F ) as well as the timing of all events (a.k.a Z) in each trial are known. Raw PETHs

aligned to each event can be derived from EQ (4.2) by multiplying both sides of the

equation with ZT and normalizing (dividing) by the number of trials.

H̄ =
1

M
ZTF =

1

M
VH +

1

M
ZTN (4.3)

where H̄ = [h̄1(1)...h̄1(T )....h̄k(1)...h̄k(T )] is a KT × 1 column vector containing

the raw PETHs for all events. V called hereafter the convolution matrix is defined as

and is a KT × KT square matrix that is mapping the K ERFs to the corresponding

K PETHs.

EQ (4.3) shows that PETHs are in general themselves only a convoluted version

of true ERFs. The further the convolution matrix V is from identity matrix the more

distorted h̄ will be from h . This in turn will depend on the distribution of event

timings in each trial. EQ (4.3) not only confirms our main argument that PETHs can
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be very different from the actual neuronal ERFs but also provides a way to formulate

this difference simply as a multiplication between a matrix containing all the event

timings and the ERFs. To find the best estimate for the ERFs, one needs to undo

all the time shifts that are applied to H by the convolution matrix 1
M
V . This can

be done either iteratively (see EQ (4.6)) or in a single pass using the least squares

technique (see EQ (4.11)). For computational reasons the least squares technique is

more efficiently implemented in the frequency domain while for the iterative approach

we find it more intuitive to stay in the time domain. However the iterative approach

and the least square approach are theoretically applicable in either domain.

4.5.2 Iterative Deconvolution in Time:

To undo the effect of convolution matrix V on the ERFs, an inverse matrix V −1

needs to found. It can be shown that for an invertible and properly scaled matrix B,

B( − 1) can be calculated using the Neumann series (Stewart 1998):

B−1 =
∞∑
i=0

(I −B)i (4.4)

One can verify that the matrix V which is equal to ZTZ is a symmetric positive

semi-definite matrix and when V −1 exists, it can almost always be properly scaled

for the Neumann series to converge. To properly scale the convolution matrix 1
M
V in

EQ (4.3) one can divide it by any real positive number S > λmax

2
where λmax is the

largest eigenvalue of 1
M
V .

The normalized PETH formed can be represented as:
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H̄/S =
1

MS
VH +

1

MS
ZTN (4.5)

Here we use H̄/S(t) to represent the normalized vector of raw PETHs by S . The

inverse of convolution matrix 1
MS

V (t) can then be found using EQ (4.4). The result

can be convolved with both sides of EQ (4.5), after which we have:

Ĥ(∞) =
∞∑
i=0

(I − 1

MS
V )iH̄/S = H̄/S + (I − 1

MS
V )H̄/S + (I − 1

MS
V )2H̄/S + . . .

Ĥ(0) = H̄/S

Ĥ(1) = H̄/S + (I − 1

MS
V )H̄/S

Ĥ(2) = H̄/S + (I − 1

MS
V )H̄/S + (I − 1

MS
V )2H̄/S (4.6)

...

E(n) =
1

MS

n∑
i=0

(I − 1

MS
)iZTN − 1

MS

∞∑
i=n+1

(I − 1

MS
)iV H

E(∞) = Ĥ(∞) −H = V −1ZTN (4.7)

EQ (4.6) shows that can be constructed by adding the terms of the Neumann

series in each iteration with superscripts representing the iteration number and the

zero iteration being the normalized PETHs themselves. EQ (4.7) shows an estimate

of the final deconvolution error in predicting the true ERFs and its dependence on

the trial noise terms.
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4.5.3 Complete Deconvolution in Frequency:

Given the fact that convolution in time domain is equivalent to multiplication in

frequency domain (Oppenheim et al. 1997) we can rewrite EQ (4.1) this time in the

frequency domain, we have:

fm(ω) =
K∑
k=1

zmk(ω)hk(ω) + ηm(ω) (4.8)

One of the benefits of representing the deconvolution problem in the frequency

domain is that as can be seen in EQ (4.8) the value of fm(ω) at ω = ω0 depends

on the values of zmk(ω), hk(ω)and ηm(ω) only at ω = ω0 and as such is decoupled

from all other frequencies and can be studied independent from them. Therefore if

the firing rates and noise terms over all the M trials are collected for each frequency

in column vectors F (ω) = [f1(ω)....fM(ω)]T and N(ω) = [η1(ω)....ηM(ω)]T and the

ERFs to be estimated are also collected into another column vector for each frequency

H(ω) = [h1(ω)....hK(ω)]T and correspondingly the event timings zmk are turned into

a M × K matrix referred to as Z(ω), the convolution equation can again be written

as linear regression this time in the frequency domain:

F (ω) = Z(ω)H(ω) +N(ω) (4.9)

Similar to the time domain the raw PETHs can be obtained by multiplying both

sides of EQ (4.9) by ZT (−ω):
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H̄(ω) =
1

M
V (ω)H(ω) +

1

M
ZT (−ω)N(ω) (4.10)

Where V (ω) is a K × K the convolution matrix and is equal to Z(−ω)TZ(ω).

To deconvolve we need to find the inverse of 1
M
V (ω) at each frequency. Multiplying

both sides of EQ (4.10) with this inverse results in the deconvolved ERF vector in

the frequency domain:

Ĥ(ω) = M × V −1(ω)H̄/k(ω) (4.11)

Assuming white noise, the power density of the error term will be:

See(ω) = σ2V −1(ω) where σ2 is the noise variance (4.12)

Equations EQ (4.6) and EQ (4.11) should yield equivalent results for deconvolving

the ERFs. In theory the frequency domain approach is more efficient for complete

deconvolution due to decoupling the convolution effect on each frequency. However in

practice due to singularities of the convolution matrix at some frequencies or violations

of the model assumptions the partial deconvolution in time domain might provide

more accurate results.

The deconvolution requires the convolution matrix to be invertible whether in

time or in frequency domain. This means that the data should have enough number

of trials with some minimum amount of jitter in the event timings so as to provide
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the deconvolution model with enough power to parse out ERFs over all frequencies.

This is especially true for the lower frequencies where larger jitters are needed to

reveal their amplitude changes over time. In fact in the case of single occurrence of

each event in a given trial it can be shown that the DC mapping of the ERFs to the

PETHs is not invertible since is a KxK matrix with all its elements set to one. In

such cases where deconvolution is not well defined for low frequencies, the deconvolved

ERFs may show spurious upward or downward DC shifts that can be corrected back

to zero. Having a variable repetition of at least some events during each trial can

resolve the ambiguity of the ERFs DC content since the changing number of events

in each trial can provide another dimension of information beside the temporal jitters

for the deconvolution of the ERFs.

4.5.4 Cross-Validation:

In cross-validation we divide the trials into two groups, one which usually in-

cludes the majority of trials is used for training and one with the remaining trials for

validation. We have:

H̄t = VtH + ZT
t Nt Ĥ

(n)
t =

1

MS

n∑
i=0

(I − 1

MS
Vt)

iH̄t

H̄v = VvH + ZT
v Nv

where subscript t represents the training trials and subscript v represents the

validation trials. The cross-validation MSE for iteration n is defined as:
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MSECV = E((H̄v − VvĤ
(n)
t )T (H̄v − VvĤ

(n)
t )) (4.13)

We can show that this error is correlated with the ERF estimation error and

therefore can be used in its place when the true ERFs are not known.

We have:

MSEcv = E((H̄v − VvĤ
(n)
t )T (H̄v − VvĤ

(n)
t ))

= tr(E((VvH + ZT
v Nv − VvĤ

(n)
t )(VvH + ZT

v Nv − VvĤ
(n)
t )T ))

= tr(V 2
v E((H − Ĥ

(n)
t )(H − Ĥ

(n)
t )T )) + tr(Vvσ

2) (4.14)

MSEERF = E((H − Ĥ
(n)
t )T (H − Ĥ

(n)
t )) = tr(E((H − Ĥ

(n)
t )(H − Ĥ

(n)
t )T )) (4.15)

As can be seen in EQ (4.14) and EQ (4.15) the cross-validation error is similar to

ERF error except for an added noise term and scaling by Vv. It can be shown that if

ERF estimation error goes down to zero then the cross-validation error goes down to

its lower bound set by noise.

We can also divide the data randomly into two equal halves and use the ERFs

estimated by one part and the plug in principle to try to directly estimate the ERF

estimation error as the following:
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H̄1 = V1H + ZT
1 N1 Ĥ

(n)
1 =

1

MS

n∑
i=0

(I − 1

MS
V1)iH̄1

H̄2 = V2H + ZT
2 N2 Ĥ

(∞)
2 = V −1

2 H̄2

where subscripts 1 and 2 represent the first half and second half of the trials. The

MSE for this direct method is defined as:

MSEdirect = E((Ĥ
(∞)
2 − Ĥ

(n)
1 )T (Ĥ

(∞)
2 − Ĥ

(n)
1 ))

= tr(E((H − Ĥ
(n)
1 )(Ĥ − Ĥ

(n)
1 )T )) + tr(V −1

2 σ2) (4.16)

This shows that the MSE of the direct method is comparable to both the ERF and

cross-validation MSEs and in fact where the results of the complete deconvolution is

well behaved can be preferred over the cross-validation as being more similar to ERF

MSE shown in EQ (4.15).

4.5.5 Behavior and electrophysiology:

Rats were trained with reward predictive auditory cues (up to 10s) randomly

presented on a variable interval schedule with an average interval of 60s. A cartoon

of the experimental apparatus is shown in FIG 4.5.a (For a detailed description of

the experimental paradigm see (Ambroggi et al. 2008; Nicola et al. 2004a). Active

lever presses only during presentation of the cue resulted in the termination of the cue

and delivery of a 10% sucrose reward into an adjacent reward receptacle. The timing

of cue presentations, lever-presses and the entries into and exits out of the reward
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receptacle were all simultaneously recorded together with the firing of ventral striatal

neurons using chronically implanted micro-array electrodes. A sub-set of randomly

chosen neurons (n=106) from a previous study (Ambroggi et al. 2008) is used here.

4.5.6 Simulation and data analysis:

All simulations and data analyses were done in MATLAB 7.9.0. The algorithms

used for simulation and analysis are available upon request.
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Optimal Binning of Peri-Event Time
Histograms Using Akaike Informa-
tion Criterion

5.1 Abstract

Peri-event time histograms (PETH) are widely used to study correlations between

experimental events and neuronal firings. The quality of information that is commu-

nicated via PETHs critically depends on the choice of binsize used. We show that the

choice of the optimal binsize for a PETH depends on factors such as the trial numbers

and the temporal dynamics of the firing rate. These factors warn against use of a

one-size-fit-all binsize when analyzing PETHs from various neurons coming from ses-

sions with different trial numbers. Here we propose a binsize selection mechanism by

adapting Akaike information Criterion (AIC) to this problem. Simulations show that

optimal binsizes estimated by AIC closely match the true optimal binsizes. In real

data optimal binning is shown to improve detection of responses and their dynamics.

Furthermore it is shown that different response types (excitations versus inhibitions)

may require different binsizes depending on the response strength. Together our anal-

ysis strongly supports the use of optimized binning of PETHs and proposes an AIC

based method as a computationally efficient approach for this optimization process.
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5.2 Introduction

The rate coding theory of the nervous system proposes that neurons encode in-

formation via changes in their average firing rate. To estimate a neuron’s firing rate,

its spike trains are usually aligned to a given event and the number of spikes that

occur in short time bins are counted. These count histograms are then normalized by

the number of trials and by the bin durations resulting in what is known as a peri-

event time histogram or PETH. One of the parameters that can affect the accuracy

of a PETH in estimating the firing rate is the chosen binsize. However, due to the

lack of a straight forward and principled method, assigning the appropriate binsize

is often left to the experimenter’s subjective assessment. Furthermore, in spite of

the fact that noise levels and firing dynamics in different neurons may warrant using

variable binsizes for each PETH, it is a common practice to use the same binsize for

all the neurons recorded in a task. Importantly, a one-size-fits-all procedure ignores

the inherent differences in the temporal resolution of PETHs, which can negatively

affect the conclusions drawn from the population analysis of the neuronal activity by

increasing response detection error and errors in estimating the response dynamics

such as response onset and duration.

Here, we propose that the search for the optimal binsize can be viewed as a

special case of a model selection problem where the number of bins (and therefore

the binsize) chosen to estimate the firing represent the number of model parameters.

As for all model selection problems having a large number of parameters, or in our

case small binsizes, results in over-fitting the data while lack of enough parameters
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(or large binsizes) fails to capture the variance of the data. Here we develop and

propose a method based on Akaike information criterion (AIC) to determine the

optimal binsize for each PETH. Our simulation results indicate that in most cases

this method provides an accurate estimate of the optimal binsize which minimizes the

mean squared error (MSE) between the firing rate estimate and the true firing rate.

5.3 Results

5.3.1 Optimal Binsize Motivation:

It is known that changing the bin duration can affect the quality of the firing

rate estimation when making PETHs. The trade off here is between two desirable

qualities, one is high temporal precision which favors smaller binsizes and the other

one is low noise levels which favor large binsizes. To demonstrate this trade off let

us consider two rather extreme examples. For the first example we assume to have

a neuron with a constant firing rate during a trial with spikes counts that follow a

Poisson distribution. Although in this case the firing rate is constant, the timing of

spikes in each trial will be variable as shown in FIG 5.1a. Therefore one expects that

using larger binsizes can help eliminate the local variation in the inter spike intervals

while small binsizes overfit the observed spike data resulting in noisy estimates of the

firing (FIG 5.1b). The MSE between the PETH estimates using different binsizes

and the true firing rate, shows that in this case the estimation error decreases by

increasing the binsizes (FIG 5.1c). Therefore in this example the largest binsize

possible is the optimal binsize to be used. However this conclusion does not hold

for our second example neuron. Here we have a neuron that changes its firing rate

159



chapter 5. optimal binning

rapidly during a trial as shown in FIG 5.1d. Unlike the previous example the choice

of excessively large binsizes for this neuron results in loss of temporal resolution in

estimating the firing rate for this neuron. In this case one might be tempted to use

the smallest possible binsize. However choosing too small of a binsize results in noisy

estimates by over fitting the local jitters in firing (FIG 5.1e). This is in fact what

we observe after plotting the MSE between the estimate and the true firing rate. As

FIG 5.1f shows in this case the optimal binsize takes an intermediate value in the

range of binsizes from the smallest to the largest.

These results clearly demonstrate the importance of choosing the right binsize for

accurate estimation of firing dynamics for neurons. It also shows that the optimal

binsize can be different for different neurons and therefore questions the validity of

populational analysis of data with fixed binsizes without regards to the needs of

individual PETHs. In the next section we investigate the role of parameters such as

the number of trials and the temporal dynamics of firing on the optimal binsize using

simulated data. We also show in dealing with real data when the true firing rate is not

known the optimal binsize can be approximated by minimizing Akaike Information

Criterion (AIC) as a cost function that behaves similarly to the MSE (see Methods).

5.3.2 Simulation Results:

Given certain regularity conditions, any signal can be approximated as an integral

of sinusoids over a range of frequencies (i.e. frequency decomposition). Therefore

studying the optimal binsize for sinusoidal firing patterns as basis functions should

provide insights that are generalizable to other arbitrary firing patterns.
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Figure 5.1: Dependence of firing rate estimate on the binsize choice(a) Firing rate and
simulated spike train raster with constant Poisson rate of 20Hz. (b) Firing rate estimate using 10
ms binsize (1st row) 75 ms (2nd row) and 1 sec (3rd row). (c) Mean sum of squared error for the
constant Poisson firing monotonically decreases by increasing the binsize. Green triangles mark the
10 ms, 75 ms and 1 sec binsizes used in the estimates shown in part A. (d) Firing rate and simulated
spike raster with a sinusoidal oscillating firing rate with an average of 20Hz and oscillation frequency
of 2Hz. (e) Firing rate estimate using 10 ms binsize (1st row) 75 ms (2nd row) and 1 sec (3rd row).
(f) MSE for the oscillating Poisson firing reaches a minimum at 75 ms. Green triangles mark the 10
ms, 75 ms and 1 sec binsizes used in the estimates shown in part c.

Let us start with the hypothetical neuron shown in FIG 5.2a. As shown in

the figure this neuron has an oscillatory firing with an average of 20 spikes/sec and a

sinusoidal modulation of ±10 spikes/sec at 1Hz. Let us further assume that we have
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recorded the activity of this neuron in 50 trials of 5 second durations each. As can be

seen over trials the neurons activity follows the general rise and fall of the underlying

sinusoidal rate while the details of spike timings vary from trial to trial as is typically

seen with real neuronal activity.

To estimate the underlying firing rate we can construct firing rate histograms using

varying binsizes and calculate their MSE in estimating the true sinusoidal firing rate.

As expected too large or too small of a binsize fail to capture the true fluctuations of

the firing rate over time as shown by the changes of MSE over binsize values in FIG

5.2c. In this case the minimum of the MSE happens at 115ms. If we now use the

spike timings shown in FIG 5.2a and calculate and plot the AIC cost (see EQ (5.3))

over the same binsize range on one can see that in fact the changes of AIC and MSE

as function of binsize are quite similar (FIG 5.2c). The optimal binsize estimate

based on AIC also closely matches the estimate base on MSE (AIC 110ms vs MSE

115ms). The significance of this result lies in he fact that it shows the possibility

of accurately predicting the effect of binsize change on firing rate estimation error

without using or knowing the true firing rate. The PETH made with the optimal

binsize is shown in FIG 5.2b as the best approximation of the true sinusoidal firing.

In general the value of the optimal binsize is a function of number of trials avail-

able. One can expect that increasing the number of trials should decrease the optimal

binsize as more trials improve the signal to noise ratio by cancelling the noise over

trials thus allowing smaller binsizes to be used. For the example neuron shown in

FIG 5.2 simulations show that this in fact is the case. The optimal binsize which

162



chapter 5. optimal binning

b c

d e

0 0..5 1 1..5 2 2.5 3 3.5 4 4..5 5

10

20

30

40

50

0 0...5 1 1..5 2 2.5 3 3.5 4 4..5 5
-10

0

10

20

30

40

10
-2

10
-1

10
00

0.2

0..4

0..6

0..8

1

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0. 1

0.15

0. 2

0.25

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

a

Time (sec) Time (sec)

Time (sec)

Trial Trial

Tr
ia

l
H

z

N
or

m
al

iz
ed

 
co

st
s

B
in

si
ze

 (s
ec

)

B
in

si
ze

 (s
ec

)

Figure 5.2: An example of finding optimal binsize using AIC measure and its dependence
on the number of trials (a) Simulated spike train raster with a sinusoidal oscillating firing rate
with an average of 20Hz and oscillation frequency of 1Hz. (b) Firing rate estimate using the optimal
binsize (blue) and the true sinusoidal firing rate (red) overlaid. (c) MSE (solid blue) and AIC costs
(dashed green) as a function of the binsizes overlaid. AIC changes over the binsizes closely match
that of MSE. (d) Decrease of the optimal binsize as estimated by MSE (solid blue) and by AIC
(dashed green) by increasing the number of trials from 10 to 200. Changes of the optimal binsize
as predicted by MSE and AIC closely match each other. (e) The decrease of the optimal binsize by
increasing the number of trials as predicted theoretically (solid red) matches the estimates made by
MSE (solid blue) over a range of trials from 10 to 200.

minimizes the MSE decreased from 180ms with only 10 trial to lower than 70ms with

200 trials (FIG 5.2d solid blue). Once more we can see that over this moderate

range of trial numbers the optimal binsize based on the AIC closely follows the trend
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of changes in the optimal binsize based on MSE (FIG 5.2e dashed green).

In fact the dependence of optimal binsize of data histograms on the sample size

has been studied theoretically in the field of nonparametric density estimations as far

back as 1979 (Izenman 1991; Scott 1979). The result of those studies which can be

generalized to firing rate histograms mostly suggest that the optimal binsize decreases

proportional to ∼ N
− 1

3 with N being the number of trials (or samples in their

case). This is slower than the rate of the reduction of noise power which changes as

∼ N
− 1

2 but in fact matches the reduction of optimal binsize seen in Figure 5.2

for the simulation data (FIG 5.2d,e). Therefore the cube root law can provide a

convenient tool to extrapolate the number of trials that is needed in a given neuron

to reach a certain binsize precision.

Besides the dependence on the trial number, the optimal binsize should also show

dependence on the rate of firing rate changes during a trial. Again the intuition here is

that the faster the firing rate changes over time the smaller the optimal binsize should

be in order to capture the temporal changes. Figure 5.3 shows the dependency of the

optimal binsize on the frequency of the sinusoid used in our simulations. The optimal

binsize based on MSE and AIC (solid and dashed lines, respectively) show an inverse

relation to the firing rate frequency. Furthermore over the range of frequencies used

AIC based optimal binsize is in good agreement with MSE based optimal binsize

(FIG 5.3a).

The dependence of optimal binsize to frequency of firing rate changes can also be
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Figure 5.3: Codependence of the optimal binsize on the firing rate bandwidth and the
trial number(a) The optimal binsize decreases by increasing the frequency of the firing rate changes
(0.1 to 2 Hz) and also by increasing the trial numbers (10, 50 and 200 shown by blue, green and red
respectively). Solid lines are based on the MSE and the dashed lines are based on the AIC. (b) The
decrease of the optimal binsize by increase of either the trial numbers or the firing rate frequency
as predicted theoretically (black) matches the estimates made by MSE over a range of bandwidths
and trial numbers.

derived theoretically and can be shown to be proportional to ∼ ω
− 2

3

0 where ω0

represents the frequency of the sinusoid (see Methods EQ (5.5)). This can in fact be

verified in Figure 5.3b where the power law is shown to match the changes of MSE

over the range of simulated frequencies.

5.3.3 Experimental Results:

In this section we first demonstrate the effect of varying the binsizes in detection

of responses to a reward predictive cue. We used a sub-set of 106 neurons recorded in

the nucleus accumbens (NAc) in a discriminative stimulus task. Briefly, two auditory

cues, discriminative stimuli (DS) and neutral stimuli (NS) were randomly presented

(with durations of up to 10 s for the DS and 10 s for the NS) on a variable interval

schedule with an average interval of 30 s. A lever press was required during DS

presentation to cause the delivery of a reward into an adjacent reward receptacle and
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responding during NS was never rewarded. For simplicity, only the DS is displayed

in Figure 5.4 with intervals between the two DS’s shown on average to be 60s. (For

a detailed description (Nicola et al. 2004a))

a

b
~60 s

DS DS

DS: discriminative stimulus
= rewarded if lever press

Cues

Lever presses

Reward

D S

DS

Active lever

Inactive lever

Reward Receptacle

Receptacle Entry

Receptacle Exit

Figure 5.4: Experimental procedure(a) Rats were placed in 40 x 40cm chambers containing two
levers (active and inactive) on each side of a reward receptacle. A speaker played the auditory cues
above the chamber. (b) Behavioral paradigm showing hypothetical sequence of events. Only active
lever presses during the cue presentation resulted in reward delivery in the receptacle after which
the rat would normally enter the receptacle to consume the reward and exit the receptacle after the
consumption. The event sequence consisting the cue, active lever press, receptacle entry and exit in
the presence of reward is counted as one rewarded trial (shaded area).

Responses of neuron to the DS can be obtained by making PETHs that are time

locked to the cue presentation. Significant changes in the firing rate of the neuron

were detected whenever the firing rate of the neuron fell outside the 95% percentile of

the baseline (pre-cue) firing rate. Thus excitations are defined as significant increases

and inhibitions are defined as significant decreases in the firing rate. Figure 5.5a

shows the spike rasters of 5 example neurons that show changes in their spiking

pattern following the DS presentation. It can be seen that using small binsize of only
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10ms for the neurons results in noisy estimates of their firing rate (FIG 5.5b). The

noisiness of the estimate seem to especially affect the detection of inhibitory responses

that follow the cue (neurons #1,2,3 and 5). This is because the depression in the firing

rate fails to reach the threshold for significance due to the noisiness of low baseline

firing (floor effect). In some of these cases the threshold for inhibition is at zero which

makes it impossible for detect any significant inhibitions (neurons #2,3 and 5). The

noisiness of the estimate not only reduces the detection of inhibitions, thus increasing

the false negative error rate, but can also increase detection of spurious activity and

thus introduce false positive errors. For example in FIG 5.5b neurons 1,2,3 and 4

all show seemingly short excitatory or inhibitory activity in the baseline or long after

the cue onset. These are most likely spurious based on a cross examination of the

firing raster and by using less noisy PETHs made by larger binsizes. On the other

hand using the optimal binsize for each PETH reveals the inhibitory responses to the

cue. It also eliminates many of the falsely detected activities thus reducing the false

positive rate (FIG 5.5d). Looking at the AIC curve over a range of binsizes from

10ms up to 1 sec for each neuron shows that estimation error to decrease rapidly by

for binsizes <∼60ms. This is followed by a deflection point (DP) in the AIC curve

after which the changes of the AIC curve over the binsizes become small (see FIG

5.5e). The optimal binsize which corresponds to the AIC minimum in these cases

happens for values larger than the DP binsize.

Although using the optimal binsize results in the best estimate of the firing rate

as shown in Figures 5.5d and 5.5e, due to rather large sizes (>500ms for neurons
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3,4 and 5) it results in insufficient temporal resolution when a more precise detection

of changes in the firing is required. Since the AIC gain of using optimal binsize

over the DP is rather small (<10% increase in AIC cost) in cases where temporal

precision is important like detecting the response onset one might choose to use the

DP instead of the optimal binsize. However it should be noted that using DP can

yield suboptimal results in response detection. For example while it outperforms the

minimum binsize in revealing the inhibitions for neurons 1,2 and 3, in the more noisy

cases for neurons 4 and 5 it fails to detect the excitation and inhibition to the cue

(FIG 5.5c). Cross examination of rasters in Figure 5.5a show the presence of a

weak excitation in neuron 4 and an a weak inhibition in neuron 5 following the cue

onset which is correctly detected if optimal binsizes are used instead (FIG 5.5d)

AIC curves shown in FIG 5.5e also demonstrate that that the optimal binsize is

different for each of the neurons shown. Neurons that have a more robust and less

noisy response have a smaller optimal binsizes (neurons 1 and 2 with 155ms and 265ms

optimal bins respectively) while for neurons with more noisy firings larger optimal

binsizes are required to reveal the significant fluctuations in their rate (neurons 3, 4

and 5 with 685ms, 835ms and 940ms optimal bins respectively). On the other hand

the DP binsize which turns out to be roughly the same for all neurons in the task

(∼60 ms) marks a lower bound on the level of temporal resolution that is possible for

this population of neurons before the AIC cost gets prohibitively large.

We know from theoretical and simulation results that the optimal binsize for each

neuron depends on the number of trials. If neuronal response is stationary over trials
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Figure 5.5: Example PETHs using small, DP and optimal binsizes.(a) Firing raster of five
example neurons and their corresponding PETHs with (b) binsize of 10ms, with (c) binsize equal to
the AIC deflection point and with (d) optimal binsize for each neurons. (e) The AIC cost function
for each neuron over a range of binsizes from 10ms to 1 sec. The AIC at 10ms binsize, deflection point
and the optimal binsize are marked by black, magenta and green triangles, respectively (columns
1-5 correspond to neurons 1-5).

(i.e. its response only depend on the time locked event not trial per se) the optimal

binsize should be a decreasing function of the trial number following the previously

discussed ∼ N
− 1

3 power law. However there are often other behavioral events

that happen with variable timing in trials relative to the time locked event that can
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cause significant non-stationarities. For instance DS PETHs like the ones shown in

Figure 5.5 are often modulated by other temporally close events such as lever press

and entry into the receptacle which vary in their latency in each trial. Therefore one

should predict that the reduction of optimal binsize with the real firing data should be

much lower than the theoretical rate. One way to estimate the dependence of optimal

binsize for the PETHs of a given neuron is by choosing various random subsets of the

available trials and calculate the resulting optimal binsize for a given trial number.

Performing this analysis on our experimental data shows that on average, the optimal

binsize decreases by adding more trials to the experiment. However, as expected the

rate of this decrease is slower than predicted for stationary rates (FIG 5.6a). The

distribution of the decrease rates of optimal binsize over trial numbers for all the

neurons also shows that while some neurons follow the theoretical value of ∼ N−0.33

most neurons show a slower decrease as a function of trial number while others show

no change or even an slight increase of the optimal binsize as a function of trial

number (FIG 5.6b). This results in average rate being ∼ N−0.1 for this population

of neurons.

Another parameter that is known to affect the optimal binsize is the bandwidth

of the firing rate. Firing rates with higher bandwidths that have larger and more

frequent changes require smaller binsizes to capture their temporal variation compared

to firing rates with slower changes. Although we do not have access to the true firing

rate of our neurons we should be able to get a relatively accurate estimate of their

bandwidth by using the firing rate estimates made with the optimal binsize. Plotting

170



chapter 5. optimal binning

the optimal binsize of each neuron as a function of its firing bandwidth in fact shows

a relatively good agreement with the theoretical values as the optimal binsizes are

shown to be a decreasing function of the bandwidth with a rate proportional to

∼ ω−0.66
0 is close to theoretical rate of ∼ ω−1

0 (FIG 5.6c).

The optimal binsize shows a bimodal distribution over in our neuronal population

with two peaks one around 0.2 sec and another around 0.9 sec. Further separation of

the binsize distribution between the neurons excited to the cue and inhibited to the

cue shows that in fact the peak with the smaller binsize corresponds to excitatory

responses while the second peak with the larger binsizes corresponds to the inhibitory

responses (FIG 5.6d) The distribution of the DP binsize on the other hand shows

a much narrower spread around 50ms for excitations and 70ms for inhibitions (FIG

5.6e). The average AIC measure for excitatory and inhibitory responses also demon-

strate the fact that the optimal binsize of the average AIC for inhibitions are larger

than for excitation with the difference diminishing for the DP binsize (FIG 5.6f).

As discussed previously for the examples in Figure 5.5 the choice of binsize can

greatly affect the detection of responses and their temporal dynamics including the

magnitude, onset and offset of excitations and inhibitions. To further examine this

effect we detected response to DS using both the optimal binsize and a fixed 60ms

(DP-like) binsize. Since the value of DP binsize was very similar for all neurons and

was shown to be around 60ms (FIG 5.6e) the choice of this binsize gives similar

results to DP binning while having the added benefit of being the same for all neu-

rons. While similar number of responsive neurons is detected using 60ms or optimal
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Figure 5.6: Distribution of optimal binsize in the recorded neurons and its codependence
on the trial number and firing rate bandwidth (a) The optimal binsize decreases on average
for the recorded neurons as the number of trials increases (solid blue: average optimal binsize, blue
shade: standard error of the mean). The theoretical rate of decrease (dashed red) and the polynomial
fit to the data (dashed black) showing a slower rate of decay for recorded data compared to what is
predicted for an idealized stationary data. (b) The distribution of the rate of decay of the optimal
binsize by the number of trials. Negative values indicate decreasing and positive values indicate
increasing with larger trial numbers. Theoretical rate of decay (dashed red) and the average rate
from the recorded data (dashed black). (c) The optimal binsize decreases on average for the recorded
neurons as bandwidth of the firing rate increases. Each open circle corresponds to one neuron. The
theoretical rate of decrease (dashed red) and the polynomial fit to the data (dashed black) showing
a similar rate of decay for recorded data compared to what is predicted. (d) Density of the optimal
binsizes among all cue responsive neurons overlaid for excitations (red) and inhibitions (blue).

binsize (49 and 54 for OP and fixed 60ms, respectively) the profiles of detected cue

responses look different in each condition (FIG 5.7a). Using the optimal binsize
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generally results in much higher Z-scores in the responsive neurons compared to the

baseline mainly due to reduction of baseline noise. This is true for both excitatory

and inhibitory responses. The average Z-score for each response type shows a marked

increase by using the optimal binsize over 60ms binsize (FIG 5.7b). Inhibitory

responses are specifically enhanced in their Z-score after using the optimal binsize

resulting in a more symmetrical look in the amplitude of excitatory and inhibitory

Z-scores using optimal binsizes for each neuron.

The distribution of response durations also shows that using the optimal binsizes

results in detecting an array of durations from less than 1 sec to more than 8 sec

while most of the response durations detected by the DP are detected to be less than

0.5 sec (FIG 5.7c). This is the result of the many discontinuities observed in the

profile of responses using DP binsize for each neuron as shown in FIG 5.7a. On the

other hand due to the relatively large values of the optimal binsizes the distribution

of the response onsets using optimal binsizes lacks the resolution to show the natural

variation seen when using smaller binsizes. Therefore using a small DP like binsize

to make PETHs has a higher resolution for the onset detection and results in more

accurate estimates of the response onset for this dataset (FIG 5.7d).
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Figure 5.7: Comparison of population profile of responses to the cue based on PETHs
made with optimal versus fixed DP-like binsizes (a) Color coded PETH Z-scores made with
fixed 60ms (left column) and with optimal binsize (variable) (right column) for all the responsive
neurons to the cue. Each line in the color coded plots corresponds to the firing of one neuron in Z-
score. Only Z-scores outside the 90% confidence interval of baseline (pre-cue firing) are color coded.
Values within the confidence interval are all colored at zero. (b) Average PETH Z-scores made with
fixed 60ms binsize versus Z-scores made with optimal binsize. Red and blue correspond to excitatory
and inhibitory responses made with DP binsize respectively. Magenta and cyan correspond to
excitatory and inhibitory responses made with optimal binsize respectively. (c) Distribution of the
cue response durations made with fixed 60ms (left column) and with optimal binsize (variable)
(right column) for all the responsive neurons to the cue. (d) Distribution of the cue response onsets
made with fixed 60ms (left column) and with optimal binsize (variable) (right column) for all the
responsive neurons to the cue.
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5.4 Discussion

One of the main goals of systems neuroscience is to relate the firing of neurons

in the brain to the behavioral or environmental events that are generated by it or

influence its rate. PETHs are widely used in the field for exactly this purpose and have

contributed in a major way to our functional understanding of the nervous system.

The usefulness of PETH depends on at least two qualities. First is how well the

PETH manages to cancel the firing variability across time and trials to best portray

the firing rate modulation that is related to the event of interest. Second is how well

it can illustrate the temporal changes of this firing modulation with high resolution.

Maximizing both of these qualities is often not possible since noise cancellation often

requires use of larger binsizes for a PETH that in turn reduces the temporal resolution

(FIG 5.1).

We have addressed this trade off between noise and temporal resolution by propos-

ing a principled way for choosing the optimal binsize for each PETH by using Akaike

information criteria or AIC. Briefly this method defines a cost with one term that

favors smaller binsizes to minimize a MSE cost and another term that favors larger

binsizes to minimize the total number of bins (considered as the number of model

parameters) used for PETH construction. The simulation results show that PETHs

made with the AIC optimal binsize often have the lowest MSE errors when compared

to the true firing rates.

We investigated two of the parameters that can affect the optimal binsize for a

PETH. The first parameter affecting the optimal binsize is the number of trials used

175



chapter 5. optimal binning

to make a PETH. Intuitively the higher the number of trials is the more confident

one get about the quality of the firing rate estimation and lower binsizes can be used

because a good portion of noise cancellation is done over trails. Theoretical results

estimate the inverse relation between trial number and optimal binsize to follow a cube

power law. Our simulation results is again in good agreement with this result (FIG

5.3). An important assumption for this relationship is that the true neuronal firing to

the event of interest should not change from trial to trial (stationarity). However, the

mere presence of other variably occurring events that can modulate the firing of the

neuron during a trial nullifies this assumption when dealing with actual neural data.

In line with the violation of stationarity we find that the actual decrease rate of the

optimal binsize as a function of trial number is often much slower than cube power

with an average power of about -0.1 (FIG 5.6a,b).The second parameter is how

much and how fast the firing of a neuron shows changes to the event of interest. The

faster these changes happen in the firing the smaller the binsize required to capture

their temporal dynamics. Theoretical results show that the optimal binsize is almost

inversely correlated with the frequency content of the firing rate modulation. We find

good agreement with this theoretical result in both simulations (FIG 5.2&5.3) and

in analysis of actual data (FIG 5.6c).

We also showed that binsize has a dramatic impact on the response detection.

Many false positives or false negatives can result if binsizes that are too small or too

large are used for a PETH. The optimal binsize for each PETH differs according to

the number of trials and its firing dynamics. This difference in the optimal binsizes
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means that using the same binsize for analysis of neural population can lead to mis-

classification or even misinterpretation of the data. In our population of neurons in

the NAc which are considered to be mainly low firing medium spiny neurons this

misinterpretation can particularly occur when comparing excitations and inhibitions.

Due to the floor effect of low baseline firing and the slower dynamics of inhibitions it

is often useful to make inhibitory PETHs with larger binsizes (>0.5). In fact using

binsizes that are often sufficient for detection of excitations often result in missing

weak inhibitions in the neuronal population (FIG 5.5). In fact analysis of optimal

binsize across excitations and inhibitions clearly show this separation of optimal bin-

sizes across the two groups with inhibitions having a mode around 0.8s while the

mode for excitations happen much earlier at 0.2s. Interestingly use of optimal binsize

for both excitations and inhibitions show that the average magnitude of inhibitions

can be comparable to excitations in the NAc, a fact that is easily missed if small 60ms

binsizes are used for all neurons (FIG 5.7b).

One draw back using optimal binsizes can be the loss of high resolution estimates

of the response onset times since optimal binsize is often large (>0.2). A solution that

we put forward is to use the binsize at the deflection point of AIC cost. This binsize

(DP binsize ∼60ms) happens after the sharp drop of the AIC cost but is usually much

smaller than the optimal binsize (FIG 5.5e). We demonstrated that the use of DP

binsize can improve the onset estimation while having little effect on the percentage

of detected neurons (FIG 5.7d). However, for the response duration optimal binsize

still seem to provide more accurate results compared to short binsizes (FIG 5.7c).
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In conclusion we demonstrated the importance of the binsize choice in accuracy of

firing rate estimations using PETHs. We proposed that optimal binsize for a PETH

can be estimated by using an AIC-based cost and we investigated the dependence

of this optimal binsize on other parameters such as firing rate modulation and the

trial number. Furthermore our results showed that for neurons with low basal firing

rate like NAc medium spiny neurons small binsizes can miss many of the inhibitory

responses to the events. Accordingly optimal binsizes for inhibitions turn out to be

much larger than excitations. There we propose use of optimal binsize for PETH

based response detection.

5.5 Methods

5.5.1 Model Selection Approach to Binning:

Let us assume that we have multiple trials of a neuron’s firing with the same

underlying rate λ(t) in each trial. Our goal is to find λ̂(t) which minimizes the mean

sum of squared error or MSE defined as following:

MSE = E(
1

T

T∑
t=1

(λ̂(t) − λ(t))2) (5.1)

Where E refers to expectation over all trials and T represents the trial duration

in samples where time is considered to be a discrete variable which depends on the

sampling rate. Minimizing MSE with respect to λ̂(t) should result in a minimum

variance estimate of the true firing rate during a trial which is usually unbiased.

The difficulty of minimizing MSE arises from the fact that in dealing with actual
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data λ(t) in not known. Therefore one needs to find an approximate way to minimize

the MSE.

Here our model space includes the PETHs that are used to estimate λ(t). We

have:

λ̂(t,∆) =
P∑
i=1

(
K(i∆) −K(i∆ − ∆)

N∆
Π(t− i∆,∆)) (5.2)

Where ∆ refers to the binsize and P ≡ T
∆

is the total number of bins during a trial.

We define K(t) as the total number of spikes in all the Ntrials from the beginning of

the trials up-to time t and finally Π(t) is a rectangular function defined as following:

Π(t,∆) =


1

0

0 < t < ∆

elsewhere

Using the PETH formulation presented in EQ (5.2), we observe that the total

number parameters that are used to construct the PETH is equal to the number of

bins. Therefore the problem of choosing the best binsize which minimizes MSE can

be viewed as a model selection problem with different number of parameters being

the number of bins.

Among the various model selection methods in statistics, Akaike Information Cri-

teria or AIC is one that is probably the most popular and at the same time the most

effective for a vast range of model selection problems. Therefore we have adapted

this method for choosing the optimal binsize. In deriving the AIC formulation for
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our current problem we assumed that the estimation errors are close to normally

distributed in which case we have:

AIC = T ln(
SSE

T
) + 2P where SSE =

T∑
t=1

(λ̂(t,∆) − λ̂(t, 1))2 (5.3)

Here λ̂(t, 1) represents the firing rate estimate with the smallest binsize equal to

1 sample unit. λ̂(t, 1) is taken to be the model free raw data that is being estimated

by λ̂(t,∆). SSE is minimized when ∆ is goes to one in which case the number of

parameters P is as large as the number of samples or T . However since AIC includes

a term that penalizes large parameter numbers in most cases AIC is only minimized

at intermediate binsizes that result in lower number of parameters compared to T .

This is not accidental since very small binsizes can result in over fitting the data and

are not necessarily optimal.

In the simulation results we will demonstrate that in fact the AIC formulation

presented in EQ (5.3) behave similarly to MSE as a function of binsize over a wide

range of experimental conditions including number of trials and firing rate changes.

5.5.2 Dependence of optimal bin to the frequency content:

This dependency is also theoretically worked out using a similar measure of op-

timality as MSE (Scott 1979). Adapted to our problem and assuming a continuous

time firing rate the dependency of the optimal binsize to the true firing rate looks

like the following:
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∆∗ ∼ (

∫ +∞

−∞
(
dλ(t)

dt
)2dt)

1
3 (5.4)

Using Parseval’s theorem and Fourier transform properties we can rewrite EQ

(5.4) in the frequency domain as following:

∆∗ ∼ (

∫ +∞

−∞
ω2λ(ω)2dω)

1
3 (5.5)

For the sinusoidal firings considered here EQ (5.5) can be solved explicitly and

shows the optimal binsize to be proportional to ∼ ω
2
3
0 where ω0 represent the fre-

quency of the sinusoid. This can in fact be verified in Figure 5.3b where the power

law matches the changes of MSE over the range of simulated frequencies. More gen-

erally for firing rates that have relatively constant power upto a cutoff frequency the

optimal binsize will be simply proportional to the inverse of the cutoff frequency or

alternatively ∼ ω−1
c with ωc refereeing to the cutoff.

5.5.3 Other Methods:

In an elegant study by Shimazaki and Shinomoto, the authors mathematically

derived a cost function based on the MSE for firing rates that follow Possion distri-

bution (Shimazaki and Shinomoto 2007). This cost function adapted to our notation

is:

C(∆) =
2

N∆
< λ̂(t,∆) > − 1

T

T∑
t=1

(λ̂(t,∆)− < λ̂(t,∆) >)2
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where < λ̂(t,∆) >= 1
T

∑T
t=1 λ̂(t,∆)

However as they point out their method diverges for slow fluctuating rates if the

number of trials is not large enough. This is in part due to the fact that their deriva-

tion is an approximate solution to the problem of minimizing the MSE where the

expectation in EQ (5.1) is replaced by the trial average. Therefore at its current

formulation Shimazaki-Shinomoto method is the same as a maximum likelihood es-

timate based on the observed data which should converge to the true MSE as long

as the law of large numbers applies given a large number of trials. AIC on the other

hand tries to minimize the MSE over all possible observations and as such provides a

superior estimate compared to any maximum likelihood approach. As can be seen in

Figure 5.8 the Shimazaki-Shinomoto cost function tends to overestimate the optimal

bin size for slow changing firing rates and low trial numbers. Increasing the number

of trials brings this error down for a given frequency (FIG 5.8a). This overestima-

tion of the binsize for slow changing firing rates (lower frequencies) translates into a

larger MSE when using the Shimazaki-Shinomoto cost function compared to the AIC

although both methods seem to perform equally well for fast changing firing rates

(FIG 5.8b,c).

In another study authors have suggested to use an information based technique

for optimal firing rate estimation (Paulin and Hoffman 2001). Although they have

used their method to find the optimal level of smoothing, their method can readily

be generalized to finding an optimal binsize. The measure of optimality used here

is closely related to an information theoretic concept known as “cross-entropy” and
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aims to minimize the disparity between the predicted probability of spiking and the

observed probability of spiking in each moment of time. This is done by dividing the

data into two halves one used to make predictions and the other for testing. Therefore

this approach is equivalent to using a cross validation technique using an information

based measure. In fact it has been shown that AIC, itself is equivalent to a cross

validation method (Stone 1974) Although we can verify that their method with some

modification should be equivalent to AIC ,however, given the relative complexity of

the cross entropy compared to AIC and the computational extensiveness of cross

validation we propose AIC as the simpler and more straightforward measure to be

used for finding the optimal binsize.

5.5.4 Behavior and electrophysiology:

Rats were trained with auditory cues (up to 10s) randomly presented on a variable

interval schedule with an average interval of 60s. A cartoon of the experimental

apparatus is shown in FIG 5.4a (For a detailed description of the experimental

paradigm see (Nicola et al. 2004a)). Active lever presses only during presentation of

the cue resulted in the termination of the cue and delivery of a 10% sucrose reward

into an adjacent reward receptacle. The timing of cue presentations, lever-presses and

the entries into and exits out of the reward receptacle were all simultaneously recorded

together with the firing of ventral striatal neurons using chronically implanted micro-

array electrodes. A sub-set of randomly chosen neurons (n=106) from a previous

study is used here. From these neurons only 64 that had basal firing rate of higher

than 1Hz are used for analysis shown in Figure 5.6a-c.
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Figure 5.8: Comparison of AIC with Shimazaki-Shinomoto method(a) Comparison of the
optimal binsizes as estimated by MSE (solid lines) and Shimazaki-Shinomoto method (dashed lines)
over a range of firing rate frequencies and trial numbers. Shimazaki-Shinomoto method tends to
overestimate the optimal binsize for low frequency (slowly changing) firing rates.Comparison of
the average sum of squared error between the true firing rate and the estimated firing rate using
optimal binsize estimated by minimizing MSE, AIC and Shimazaki-Shinomoto method for (b) slowly
changing firing rates <0.5Hz or low bandwidths and (c) fast changing firing rates>0.5Hz or high
bandwidths.

5.5.5 Simulation and data analysis:

All simulations and data analyses were done in MATLAB 7.9.0 by the first author.

For all the firing rate simulations, the spike trains are generated using a Poisson point

process with a temporally changing rate. The algorithms used for simulation and

analysis are available upon request.

184



Part III

third Part

185



Chapter 6

Summary and Discussion

6.1 Background and Summary of Aims:

Success in goal directed behaviors often requires not only learning to express the

reinforced actions but also to avoid engaging in irrelevant or harmful behaviors. One

of the key results of this thesis is the demonstration that the action suppressive

component in a learned appetitive task lags behind the action promotive component

during training (FIG 3.1b). The animals used in my experiments, Long Evans rats,

tend to initially express actions at high rates. Some of those actions are rewarded

and some are never rewarded but nevertheless expressed. After many days of train-

ing animals learn to weed out the unnecessary actions and fine tune the rewarded

actions to a minimal rate sufficient for most efficiently earning a maximum number

of rewards. The presence of an active suppressive component even after many weeks

of training is revealed following inactivation of NAc or vmPFC. Inactivating either

region disinhibits some of the same actions that rats have learned to suppress dur-

ing training (Chs.2&3). This is consistent with the idea that response extinction

is a general feature of operant conditioning. However, my results indicate that the

response extinction does not have to be learned only following extinction of action-

outcome associations (see (Peters et al. 2008; Quirk et al. 2006)) but can happen
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spontaneously when no explicit outcome extinction is present.

Previously in Ch.1, I proposed a conceptual framework which included three lay-

ers of selection that are engaged prior to and during goal directed behaviors namely:

drive selection, selection and attention to the relevant sensory space and selection

and expression of appropriate actions that satisfy the current drive. As I argued pre-

viously, the assumption of a selection mechanism necessitates the existence of a dual

process, one that promotes selection and the other that suppresses the unselected but

potential competition. Hence, the suppressive component in goal directed behaviors

can be manifested at any or all the three levels. This may partially explain why it is

hard to provide a simple model of impulsivity and why there are many impulsivity-

related constructs and behavioral models within the field of experimental psychology

and cognitive/systems neuroscience (Evenden 1999a; Nigg 2000).

The DS task used in this thesis provides a unique opportunity to probe into a

variety of impulsivity-related measures specially the aspects that have to do with

response inhibition and to some degree impulsive choice (e.g. premature entry) (Ch.

1& FIGs 3.2&3.3). The work in this thesis was launched after earlier work in

our lab implicated NAc and vmPFC in inhibition of NS responding and unrewarded

lever pressing (Ishikawa et al. 2008a; Yun et al. 2004). For my dissertation I focused

on three specific aims: 1) what are the details of behavioral disinhibition that is

observed in the DS task following NAc or vmPFC inactivations and how would they

relate to the selection levels discussed previously? 2) How much of the similarities

and differences in the behavioral role of NAc core and shell, revealed through aim 1, is
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reflected in their neuronal representation of the DS task? 3) Given the anatomical and

some functional disconnection evidence implicating vmPFC projections to NAc shell

in action suppression, how do vmPFC projections influence the activity of neurons in

the NAc shell for action suppression?

For the first aim, I developed an assay for analysis of behavioral microstructure in

the DS task. This assay looks at the rate of responding (e.g. lever pressing, receptacle

entry, etc) in four behaviorally relevant epochs during a session. These epochs include

responding during the DS, responding during the NS, responding followed by the

reward receipt (Post reward) and spontaneous responding (Spont) which includes all

responses outside the other three epochs. This behavioral assay was an outgrowth of

the engage-disengage perspective (FIG 6.1) of the DS task that I developed when I

was originally introduced to the DS task and was influenced by views put forth in a

paper by Saleem Nicola (Nicola 2007). I used rats that had cannulae targeting NAc

core or shell as well as vmPFC to inactivate each region during the DS task. I then

analyzed the behavioral changes using both aggregate and microstructural measures

to dissect the roles of core and shell as well as vmPFC in each element of the DS task.

For the second aim, I recorded neuronal activity from rats implanted with mi-

croarray electrodes in the NAc shell in the DS task and to further elucidate the role

of NAc subregions in the DS task,. I then used the neural data recorded in this batch

of rats and the data that was available from a previous experiment in the NAc core

in the DS task (Ambroggi et al. 2008) to look for differences and similarities in the

neural code in each sub-region that may explain their role in the DS task.

188



chapter 6. summary and discussion

Go About 
Your Business 

Cue On Reward
Predictive?

What/When/How
To Do 

Engage?

Engage?

Engage?

Disengage?

yes

No

yes

No
Reward

Obtained?

yes

yesNo
No

yes

No
yes

DSNS

SPON POST
REW

Figure 6.1: Engage-disengage paradigm This figure demonstrates a possible algorithm for deci-
sion making in the DS task. The proposed paradigm provides a rationale for microstructural analysis
of responding in four epochs: DS, NS, Spont and Post reward which is used in this thesis.

Finally for the third aim, rats were implanted with both cannulae in the vmPFC

and electrode arrays in the NAc shell to allow for simultaneous inactivations of

vmPFC inputs to the NAc shell which allowed concomitant analysis of behavioral

and neuronal changes following inactivation. To my knowledge, this method pro-

vided for the first time the opportunity to probe the influence of vmPFC on the NAc

neurons mediating suppression of actions in awake behaving animals.

It is also worth mentioning that I have developed a few novel methodologies for the

analysis of neural data that mainly have to do with construction and interpretation

of PETHs. Implementation and discussion for each method and its mathematical

foundations can be found in Chs.4&5 and are not further discussed here.
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6.2 Aim 1: Pharmacology and Behavioral Analysis

Our data indicate that the inactivation of either NAc shell or vmPFC results in

significant disinhibition as measured by aggregate behavioral measures such as NS

ratio, rates of active and inactive lever pressing and receptacle entry. Also both

inactivations result in specific increases in active lever presses during the NS and

Post reward epochs beyond the increase in the Spont epoch. There is a significant

increase and a trend toward significant increase in the spontaneous lever pressing

(Spont epoch) following NAc shell and vmPFC inactivations respectively. Compared

to CSF no significant change in the DS ratio or DS response latency is observed after

shell or vmPFC inactivations. This situation is in stark contrast with NAc core inac-

tivation which results in a significant reduction of DS ratio (by about 50%) as well as

a significant increase in the latency to respond to the DS. Mild disinhibitory effects

are also observed after NAc core inactivation as measured by increased responding

during Post reward. But many of the disinhibitory effects observed after shell inacti-

vation are shown to be smaller or absent with core inactivations (e.g. inactive lever

rate increase is higher in shell than core and NS and Spont active lever rate increases

are specific to shell) (FIG 2.3&3.2).

Our behavioral results suggest that NAc core is mainly involved in the promotive

process of the DS task consistent with other studies that showed it to be invigorating

incentive cue responding (Blaiss and Janak 2009; Floresco et al. 2008). Inactivations

of excitatory inputs to this sub-region was shown in a previous study to also reduce

DS ratio dramatically (Ishikawa et al. 2008b). On the other hand NAc shell and the
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prefrontal region projecting to it namely, vmPFC are shown here to powerfully inhibit

various unreinforced behaviors (e.g. unrewarded active and inactive lever presses) and

to exert this inhibition over at least three of the four epochs studied (i.e. SPON, NS,

Post reward). In particular vmPFC is known to inhibit actions after their outcome

associations are extinguished over training in both fear conditioning and appetitive

conditioning paradigms (Peters et al. 2008; Peters et al. 2008; Quirk et al. 2006) but

see (Bossert et al. 2011). One of the novel results in this thesis is that it expands

the tentative role of vmPFC and NAc shell to suppression of all unnecessary actions

whether or not they have gone through explicit outcome extinction training. (In

the DS task none of the suppressed actions such as NS responding or inactive lever

pressing was ever explicitly paired with reward)

I have previously discussed (Ch.1) how behavioral disinhibition in each behav-

ioral epoch might be interpreted as and find parallels in other behavioral paradigms

that are designed to probe various aspects of impulsivity. My results indicate that

inactivation of vmPFC or NAc shell increases impulsive responding in at least four

distinct categories: 1) The inactivations reduce the ability of the animals to exercise

action restraint during the ITI as measured by increased lever pressing during the

Spont epoch. I argued before that this aspect is similar to the response disinhibition

seen in tasks such as DRL (Ch.1). 2) The inactivations reduce the ability of the

animals to suppress responding to the interfering stimuli (i.e. the NS). This ability

was discussed under the general category of attentional impulsivity and resistance

to distracters in Ch.1 and has potential links to the phenomena of latent inhibition
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3) The inactivations increase the rate of perseverative responding following reward

receipt with potential links to perseveration and compulsivity 4) Finally the inactiva-

tion of vmPFC is shown to increase premature entry during the DS. This effect may

address a similar phenomenon measured by tasks such as FCN or impulsive choice

and may reveal inefficiencies in accurate sequencing of actions.

Together the task impairments that are seen following vmPFC or NAc shell or

core inactivations in the DS task implicate this corticostriatal circuitry at all the three

selection levels involved in goal directed behaviors: Increased spontaneous lever press-

ing and post reward perseverative responding can be interpreted as problems in drive

selection or switching in and out of an appetitive behavior. Reduction of responding

to DS (core) and increased responding to NS (shell, vmPFC) can be related to com-

promised attentional and sensory selection and increased premature entry or inactive

lever presses can reflect suboptimal action selection. These interpretations are consis-

tent with role of mPFC and NAc in many other tasks that indicate multiple roles for

this circuitry in goal directed behaviors such as drug self-administration (drive or in-

centive sensitization), latent inhibition (sensory suppression) and set-shifting (action

selection).

6.3 Aim 2: NAc Core and Shell Neuronal Responses

Surprisingly, a comprehensive analysis of neural firing in core versus shell shows

that virtually all the response types that are present in one structure are also present

in the other despite the differences in the behavioral role of each region in the DS task.
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However there are several notable quantitative differences in the neural representation

of task events in each region. Consistent with the role of NAc core in invigorating the

DS response, a significantly larger percentage of neurons are found to be DS excited

in the core compared to shell (18% vs. 12%). Furthermore the Z-score peak and

area under the curve (AUC) of DS excitations in neurons that selectively responded

to DS but not NS are larger in core compared to shell. Shell, on the other hand,

shows a significantly higher proportion of active lever press inhibited neurons. If

one assumes that these inhibitions gate the expression of active lever press similar to

other gating responses reported in the NAc (Taha and Fields 2006), then this result is

consistent with the stronger disinhibitory effect that is observed following NAc shell

inactivation compared to NAc core. On the other hand, lever press excitations in

core are shown to have a higher Z-score peak and AUC compared to shell consistent

with their presumed role in the promotive component of goal directed behaviors.

Overall, the presence of many event-related firings in both core and shell suggests

that their different behavioral effects in the DS task may be instead mediated through

their different projection targets. I previously (Ch.1) reviewed the differences in the

efferent projections of NAc core and shell. Most notably there is a mediolateral

divide between core and shell projection targets in the VP and midbrain dopamine

areas (i.e. shell projecting to more medial and core to more lateral subregions). Also

shell is believed to be unique among striatal regions in having direct projections to

structures outside basal ganglia such as lateral hypothalamus (Zahm and Brog 1992

but see Tripathi et al. 2010). Furthermore there is a feedforward connection from NAc
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shell to core both through thalamocortical loops and mesencephalic ascending spirals

(Haber et al. 2000; Zahm 2000) which argues for a possible hierarchy in behavioral

control. Further experiments looking at the basal ganglia nuclei downstream to core

and shell are needed to test whether these differences in the projection targets can

better account for the dissociable behavioral role of NAc core and shell.

6.4 Aim 3: NAc Shell Firing Modulation Following vmPFC
Inactivation

Simultaneous inactivation of vmPFC and recordings in NAc shell reveal significant

changes in the tonic and phasic responses of neurons that encode unrewarded actions

in the NAc shell consistent with their hypothesized role in promotion or suppression

of responding along with behavioral disinhibition of unrewarded actions. There is a

significant increase in the Z-score peak of both unrewarded lever press excitations and

inhibitions. As I argued previously in comparing the neural firing in core and shell

if we assume the excitations to be promoting and inhibitions to be gating actions,

this result points to one possible neural mechanism that can mediate the increased

rate of lever pressing following vmPFC inactivation. Furthermore, I find a significant

increase in the Z-score peak of all NS excitations that include emergent NS excitations

following vmPFC inactivation. Again, if the role of cue excitations is taken to be

promotion of responding like the argument for DS excitations (Ishikawa et al. 2008b;

Yun et al. 2004), the emergence of NS excitations in the shell following vmPFC

inactivation can point to a possible explanation for the elevated NS ratio beyond

spontaneous increases in responding. On the other hand, on average none of reward
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related neural firings show a significant change following vmPFC inactivation. This

is important as it matches the behavioral results that show disinhibition only in

unreinforced actions but no significant change in responding to DS following vmPFC

inactivation.

Moreover, the data show both significant increases and decreases in baseline (tonic

firing) in the B/M condition compared to the CSF. Interestingly neurons with in-

creased baseline tend to be on average excited to the receptacle entry and NS while

neurons with decreased baseline tend to be on average inhibited to the receptacle en-

try and not responsive to NS. In fact many action inhibited neurons show significant

(or a trend toward significance) decreases in their baseline. If these action inhibited

neurons which represent a large proportion of NAcS neurons, are in fact causally sup-

pressing unrewarded actions (i.e. gating) the reduction in their baseline is consistent

with a higher rate of unrewarded action expression. In fact analysis on the modu-

lation of magnitude of firing difference between action excited and action inhibited

neurons show that not only can this difference recreate the pattern of lever pressing

in the CSF condition during the behavioral epochs discussed before, but it can reflect

to some degree the increase in the rate of lever presses after vmPFC inactivations in

those same epochs.

Finally, given the fact that the projections from vmPFC to NAc shell are supposed

to be excitatory, the emergence of excitations requires an intervening GABAergic in-

fluence. Currently some of the likely explanations are thought be feedforward inhibi-

tions by fast spiking interneurons in the NAc, lateral inhibitions of MSN or feedback
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or feedforward projections from other structure such as VP or BLA. Investigating the

mechanism of these emergent excitations awaits future experiments.

6.5 Future Directions:

Given the results presented in this thesis new questions can be raised about the

neural circuitry in the NAc and mPFC that mediates behavior in goal directed be-

haviors such as in DS task. Some of these questions are discussed below:

1) What is the neural representation of DS task in the vmPFC? Also how does

the encoding of the DS task evolve in the vmPFC and NAc circuitry?

To further explore the corticostriatal circuitry involved in suppression of unneces-

sary actions in the DS task, it is essential to have data on how this task is represented

in the vmPFC. There is already evidence of emergent cue excitations in the IL area

following extinction in the fear conditioning (Milad and Quirk 2002). It would be

tempting to speculate that the NS representation in the IL might also emerge follow-

ing the suppression seen during training. Representation of other event related firings

in the vmPFC and their influence on the NAc activity in the DS task are not known

and beg to be studied in the future.

Moreover since our behavioral training data argue for development of both pro-

motive and suppressive processes during learning, it would be interesting to have

neuronal recordings in the vmPFC and NAc shell and core during learning of the

DS task to study the time course of the evolution of event related responses and to

compare it with behavioral improvements observed. Electrophysiological parallels to
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behavior during learning can be conducive to finding neural correlates of promotive

and suppressive components in goal directed behaviors.

2) What are the causal roles of various event related responses in NAc core and

shell?

I find robust encoding of DS in both NAc core and shell regardless of their differ-

ential role in DS responding. Specifically, the pharmacological results show that NAc

core has a key role in promotion of DS responding while NAc shell does not seem to

affect DS responding. It was previously shown in our lab that both phasic DS exci-

tations and inhibitions decrease dramatically in NAc core following VTA or dmPFC

inactivations (Ishikawa et al. 2008b; Yun et al. 2004). This reduction of DS coding

is accompanied by a significant reduction of DS responding. These results, combined

with core inactivation results, argue strongly for a causal role for DS responsive neu-

rons in NAc core in behavioral DS responding. But we currently do not have a clear

understanding of the role of DS responsive neurons in shell. For example, it is not

known what happens to DS responsive neurons in NAc shell after the inactivation

of dmPFC or VTA when DS responding is reduced. There are data suggesting that

at least some cue excited neurons in NAc might have a role in response suppression

instead of response promotion (Ambroggi et al, unpublished results in a go/no-go

task). An interesting possibility that is consistent with shell inactivation data is that

some cue excitations in this region might be similar to no-go neurons. This possibility

is strengthened if experiments that manipulate the rates of responding ( e.g. inacti-

vations, devaluations or contingency degradations) show that cue responses in core
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and shell are modulated in the opposite direction after devaluation or contingency

degradation (e.g. core DS excitations decrease while shell DS excitations increase fol-

lowing devaluation). However, the emergence of NS excitations in shell after vmPFC

inactivation that accompanied behavioral disinhibition suggests that at least some

cue excitations in shell are involved in response promotion as well. Furthermore neu-

ral recordings as well as pharmacological inactivation in areas downstream from NAc

core and shell can be performed in the DS task to test the idea that the differences in

the projection targets of core and shell may explain differential or similar functions

for cue responses in each sub-region.

Similar questions regarding the causal roles of the neurons that encode lever

presses, receptacle entry, exit and consumption are still not fully answered. My

vmPFC inactivation results argue for instance that unrewarded lever press related

excitations and inhibitions might have opposite roles in the DS task (promote and

suppress responding respectively). However until there is a way to selectively ma-

nipulate the firing of these neurons in the NAc the question of causality is not fully

resolved. Addressing the causality issue is in fact one of the main motivating factors

for the next future direction.

3) What are the histochemical cell type characteristics and anatomical connections

of various event related neurons in the NAc?

Almost all the events or states in the DS task are encoded by a population of

neurons in the NAc. One of the key questions at this stage is to be able to identify

whether neurons belonging to various response types also segregate in terms of their
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anatomical afferent and efferent connections or their histochemical and receptor ex-

pressions. This is an extremely crucial piece of data if one wants to understand the

neural circuitry that mediates goal directed behaviors in the NAc. Recent develop-

ments in the optogenetic field along with the promise of transgenic rats with cell type

specific promoters have created high hopes for resolving some of the longstanding gaps

in our understanding about the circuitry underlying these goal directed responses in

the NAc. Future experiments are needed to systematically identify the cell type and

connection characteristics of various event related populations that are involved in

response promotion and suppression. Specifically in relation to vmPFC-shell circuitry

and its role in response suppression, further details on the cell type characteristics

and anatomical connections of the emergent responses (e.g NS excitations, lever press

inhibitions etc) await future experimentations. The discoveries made in this area can

also be crucial for exploring the question of causality by allowing selective manipula-

tion of cells that share similar firing patterns in the behavior if they turn out to have

similar immunohistochemistry or anatomical connections.

6.6 Conclusion:

In conclusion I have established the role of vmPFC and NAc in particular its

shell sub-region in suppression of unreinforced actions. My results implicate this

corticostriatal circuitry in multiple aspects of impulsivity. vmPFC is proposed to

suppress unrewarded behavioral responding by differentially modulating neurons that

promote and suppress responding in NAc shell through inhibition and excitation of

each population respectively. My results also implicate NAc core but not shell in
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the promotion of rewarded actions. The presence of similar firing patterns in the

neuronal in NAc core and shell in the DS task suggests that the differences in the

neuronal representation alone may not fully explain the dissociable role of these two

subregions in response promotion and suppression and differences in the functional

roles of downstream projection targets for each sub-region should be investigated in

the future.

Finally I have developed novel methodologies for construction and interpretation

of PETHs that are widely used for analysis of neural activity. Notably a deconvolution

method is presented that efficiently eliminates PETH contaminations by temporally

close events with an iterative approach that is sensitive to signal to noise ratios

in each PETH. Furthermore an optimal binning technique is presented which takes

into account the number of trials as well as the firing dynamics of each neuron to

choose the best binsize for a given PETH. I have demonstrated that these methods

significantly improve the analysis and interpretation of data. Both methods are used

for the analysis of the results presented in this thesis.
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