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ABSTRACT

Dataflow is presented as an alternative to the von Neumann

model as the basis for computer system design. The need for a new

semantic basis is supported by current reseaxch both in software

methodologies and in computer architecture. Dataflow systems

emphasize asynchronous and functional computation. We present a

high-level dataflow language Id, and its companion base language.

Id supports programming with streams, programmer-defined data types,

and facilities for nondeterministic prograxnming. The base language

when interpreted by the unfolding interpreter generates a potentially

large number of independent activites which can be executed con

currently by a dataflow machine. The unfolding interpreter seems very

promising for implementation on a machine composed of large numbers

of LSI processors.

Key Words and Phrases: Dataflow, high-level language, machine
language, streams, resource management,
abstract data types, parallel processing,
computer architecture, program schemata.
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1. Introduction

It is well known that LSI technology is capable of economically

producing large numbers of similar, small and complex devices. It

is equally clear that use of LSI technology has not yet provided

a breakthrough in the computing power available in a single system.

Rather, the best that has been accomplished is simple reduction in

the physical size of all too familiar systems.

Our goal is to exploit LSI technology by making these complex

devices the building blocks of a large general-purpose computer.

Such a machine, comprising hundreds, perhaps thousands of small

processors, must allow these processors to operate asynchronously

and (almost) independently. Each processor will accept and perform

a small task generated by a program, produce partial results, and

then send these partial results to other processors in the' system.

Thus many processors would cooperate towards the common goal of

completing the overall computation. A natural concomitant effect

of such behavior would be the potential for increasing speeds of

computation as new processor modules are added to the machine.

Many computer architects have imagined machines that might

exhibit such behavior. However we are convinced that such machines

cannot be successfully constructed simply by devising some

appropriate bus and machine interconnection scheme, or by designing

a machine which, for example, can efficiently manipulate arrays or

interchange numbers. Rather, the difficulties are due to one of

the fundamental bases of computer design; the von Neumann model.

Indeed, more than 30 years have passed since John von Neumann first

laid down the model that virtually all machines and languages have



adopted ever since. The von Neumann model has become so ingrained

in our thinking that we rarely even consider it, let alone question

it, but this is precisely what has prevented the creation of the

kind of machine just described.

Two particularly troublesome attributes of the von Neumann

model are [Dennis73, GIMT74, Backus78] sequential control, and

memory cells. Sequential control is troublesome since it prohibits

the asynchronous behavior and distributed control that we consider

essential to the machine we wish to design. 1; also burdens the

programmer with the need to explicitly specify (or to employ an

analyzer to determine) exactly where concurrency may occur. The

concept of a memory cell, along with the idea of assigning a value,

presents a difficulty since its existence forces the programmer to

consider not only what value is being computed, but also where

that value is to be kept. This places additional burden on the

programmer and presents particularly thorny problems in program

verification. Furthermore, the use of memory cells to coordinate

asynchronous processes causes serious problems in a distributed

machine. Such coordination calls for rather complex synchronization

controls to ensure orderly use of shared variables. These controls

are difficult to design into a machine and may be very costly in

execution time. They are also tedious for programmers to use,

especially where large numbers of activities are to be coordinated.

We contend that the above two cornerstone principles of the

von Neumann model (sequential control and the memory cell) must be

rejected if we are to realize our goal. We offer evidence in the

rest of this paper in support of this contention. In place of these



two principles, we adopt a language that is asynchronous except

where synchronization is explicitly specified (i.e., no sequential

control), and in which values are the subject of computation rather

than the locations where those values are kept (i.e., no memory

addresses). An asynchronous language assumes computations are

unrelated, and thus concurrent, unless otherwise specified. The

absence of memory cells ensures that only simple control mechanisms

are needed to coordinate access to data, since races to "store"

data will never occur. Such a semantic basis should work well with

a machine composed of many asynchronous cooperating processors.

The principal arguments against the von Neumann model are not

to these authors and have been noted by several researchers

[Dennis73, GIMT74, Backus78]. The approach is one of avoiding the

difficulties currently plaguing multiprocessor design rather than

suffering with them. Rejecting von Neumann's model may at first

seem a radical approach. However, a brief survey of much of the

current work in programming language design and software methodology

reveals that this is, in fact, taking place already, albeit in a

much disguised form and at a very slow pace. For instance,

structured programming can be viewed as an attempt to produce

programs that are more functional in their operation. According

to modern programming methodology, a procedure which produces results

by modification of shared variables is less desirable than a

procedure that returns values as the result of a function call.

The fact that writing such a function-type procedure is not even

possible in many languages (particularly if more than one result

or an array of results is to be returned) is not the fault of the



functional approach, rather it is the fault of language restrictions

that do not allow the returning of such values. We can also give

several examples of the movement away from the von Neumann model

in the field of programming language design. Note that EUCLID

has imposed many restrictions on PASCAL that make variables

inaccessible to procedures when those variables are declared outside

those procedures, the effect of which is to force procedures closer

to the ideal of a mathematical function. Also, the current interest

in (abstract) data types [Guttag77, LSAS77, SW:.77] points away from

the semantic base implied by a von Neumann machine, since function

ality (information hiding) appears essential to both data and

program abstraction. Finally, we can observe the recent work on

the linguistic aspects of resource control [Jones77] as a movement

away from arbitrary specification of program synchronization using

semaphores to more highly controlled and encapsulated specifications

such as monitors [Brinch-Hansen72, Hoare74]. This movement is in

the direction of providing the programmer with a more functional

view of a computation that involves resources. However, resource

management is one of the areas in programming language design which

has not yet seen solutions that go far enough in the direction of

functionality to provide hard evidence of this movement. We hope

to convince the reader of what can be accomplished with an even more

functional approach [AGP77] by giving a concrete example later in

this paper (Section 5). Lastly, we mention program verification,

where some researchers have noted the potential benefits of a

language with semantics more closely tied to mathematical languages.

The concept of a memory cell is not natural to mathematics, and can



often complicate what otherwise would be a simple proof of correct

ness [Guttag77, Ashcroft & Wadge76, Kahn74, Kahn & MacQueen77].

The chief thrust of the above argument is that a proposal to

replace von Neumann's model with a new semantic model is not

capricious. All too often studies on the high cost of software

have ignored the architectural base on which software and software

tools have been developed and continue to exist. The unstated

assumption is that von Neumann semantics will remain. Our position

is that if we are going to fully utilize LSI technology, we cannot

retain the von Neumann basis. We also believe that the required

semantic foundation coincides with the principles now evolving

in software engineering and programming language design. However,

by beginning with a new semantic base rather than continuing to

develop "restrictions" on the old, we see a much smaller and more

elegant semantics resulting [Kahn74, Arvind & Gostelow77a, Kosinski76,

78] — an essential for future development.

One system that has been proposed in the past and which

incorporates new principles more compatible with the needs we see,

is dataflow [Dennis73, Bahrs72, Kosinski73, Arvind & Gostelow77b].

(Pure LISP [McCarthy60] and FFP languages [Backus73, 78] were not

chosen for adoption because, even though their semantic bases are

elegant and functional, neither caters to asynchronous and history

sensitive operation.) A dataflow program is a set of partially

ordered operations on operand values where the partial order is

determined solely and explicitly by the need for intermediate

results; operationally:



1. a dataflow operation executes when and only when all of
the required operands become available, and

2. a dataflow operation is purely functional and produces no
side-effects as a result of its execution.*

Arguments in the past against dataflow have centered around the

lack of a high-level language, the questioned ability of people

to program in such a language (were it to exist), the inability to

handle database problems, and efficiency. In this paper we provide

definite answers to some of these objections. We present a complete

high-level dataflow language incorporating all of the usual pro

gramming concepts, as well as some new concepts not usually found

in contemporary languages (for example, streams, functionals, and

nondeterministic programming). Also, the implementation of these

concepts (both old and new) is often easier in dataflow than in

conventional languages due to the simplicity of dataflow semantics.

In this category we include definition and manipulation of proce

dures, programmer-defined data types, and operator extensionality.

Our language also has the capability to handle resource (database)

problems, a capability which current applicative languages do not

have. Regarding "efficiency," one should not evaluate

dataflow in terms of a von Neumann implementation, for dataflow

not only allows a new kind of machine design but in fact requires

it. It is most important that dataflow languages be considered

in their own terms and not be forced to fit into measures valid only

for conventional systems.

Two languages will be described here: a high-level language

In this respect dataflow models are very similar to applicative
programming models.



Id (for ][rvine dataflow) , and a base machine language

that serves as the semantic language of Id. The syntax of Id is

not important beyond the fact that some syntax is needed to

communicate the ideas. However, several compilers which accept

the syntax presented in this report are currently in use. In

Section 2 we show how to write elementary Id programs and we

explain the meaning of these programs in terms of their base language

translations. In Section 3, we give more details on how base

language programs are interpreted by a machine and how these pro

grams achieve highly concurrent operation. Streams are introduced

in Section 4, while issues concerning indeterminacy and resource

managers are discussed in Section 5. Programmer-defined data types

and functionals are presented in Section 6, a brief discussion of

dataflow architectures is contained in Section 7, while

Section 8 summarizes the work and presents our conclusions.



2. Elementary Programming in Dataflow

Id (for Irvine dataflow) is a block-structured expression-

oriented single-assignment language. Throughout this paper Id

syntax is explained through examples and the semantics by the

corresponding base language schemata. The base language is used

not only to define and explain Id, but is also the machine language

to be directly executed by our dataflow computer. Since we allow

a program to be written only in Id, we are less concerned with how

the base language operators behave in isolation than how they

behave in concert with one another in building a basic schemata.

A program in Id is a list of expressions. In this section,

values and the four most basic expressions — blocks, conditionals,

loops, and procedure applications — are explained.

2.1 Values

Id variables are not typed. The internal representation of

values is simply self-identifying and type is thus associated with

a value and not with a variable. However, the primitives necessary

to test the type of a value, and to coerce a value to a different

type are assumed available.

There are ten primitive types of Id values; integer, real,

boolean, string, structure, procedure definition, manager definition,

manager object, pdt (£rogrammer-defined data type), and error.

The first four need no discussion; structure values are discussed

below; procedure definition values will be discussed in Section

2.5; manager definitions and manager objects will be discussed in

Section 5; while pdts will be discussed in Section 6. Error values

are not discussed at all (see [Plouffe78] ).



A structure value is either the distinguished empty structure

A or a set of <selector;value> ordered pairs. A selector is an

integer or string value; a value is any Id value. An example of a

structure is shown in Figure 2.1a where "name", "height", "weight",

and "age" are string selectors (string selectors are not quoted

when used in figures). There are exactly two operators defined

on structure values: SELECT and APPEND. If t is the structure value

in Figure 2.1a, then values can be selected from t, for example,

by writing t["weight"] and t["height"][1] (giv?ng 175 and 6, res

pectively) . The APPEND operator is somewhat more complex. Given

a structure, a selector, and a value to be associated with that

selector, APPEND creates a new structure. For example. Figures 2.1b

and 2.1c are the results of the append operations t+["sex"]"M" =

APPEND(t,"sex","M") and t+["sex"]"M"+["weight"]180 = APPEND(APPEND

(t,"sex","M"),"weight",180), respectively. Most importantly, the

structure created by an APPEND is neither the original structure t

nor any modified version of t. Rather each APPEND creates a new

and logically distinct structure, and the old structure (t in the

examples of Figure 2.1b and 2.1c) has an existence of its own,

possibly concurrent with the new structures. This means that the

value of t may be referenced by some other expression in the program

even after the APPENDS have been completed. SELECT and APPEND may

be summarized by the following equations (where a variant of APPEND

means to delete a selector)

(t+[s]v) [sn
Ms-]

(t-[s]) [s'l
A-[s^]

(if s^=s then v else t[s'])
error

(if s'=s then error else t[s'])
error



Some syntactic shorthands are available in Id for manipulating

structure values. The expression xll,2] means (x[l])[2], and in

the case of string selectors, the notation x.weight can be used

instead of the more cumbersome x["weight"]- The angle-bracket

notation

<height;<6,5>, weight:175, age;33>

can be used for construction instead of

A + ["height"] (A + [1]6 + [2]5) + ["weight"]175 + ["age"]33

where <6,5> refers to a structure with 2 values hanging by the

integer selectors 1 and 2 respectively.

2. 2 Block expressions

To evaluate the two roots of a quadratic equation we can write

the following Id program (i.e., an expression) that contains two

expressions;

((-b+sqrt(b+2-4*a*c))/(2*a),
(-b-sqrt(bf2-4*a*c))/(2*a)) (2.1)

However it is often more efficient and convenient to first compute

several intermediate results as shown in the following block

expression;

( X sqrt(b+2-4*a*c);
y 2*a
return (-b+x)/y, (-b-x)/y ) (2.2)

Expressions (2.1) and (2.2) each require three inputs (a, b,

and c) and produce two (ordered) outputs. Expression (2.2) compiles

into the base language schema shown in Figure 2.2. Note that

an assignment statement simply names the output(s) of an expression.

The name itself is called a variable and is used to specify inter-



connections among operators (the boxes in Figure 2.2). Assignment

statements in a block are separated by semicolons and can always

be commuted without affecting the result(s). The inputs to a

block expression are exactly those variables referenced but not

assigned within the block. The return clause is the last item

and specifies the (ordered) outputs.

Assignment in Id is not an operator as it is in other languages,

rather it is a specification to the compiler to label an output.

The scoping rules of Id are similar to Algol with some important

exceptions. Since there are no explicit declarations in Id,

assignment is equivalent to declaration. Thus assignment to a

variable name which is defined in an outer block is equivalent

to defining a new variable. Hence, variables x and y are not

visible outside the block expression (2.2); and if the same names

X and y were also assigned outside (2.2) they would not be visible

inside (2.2). There is a further restriction that an Id variable

is assigned (defined) exactly once in a block. This single assign

ment rule [Chamberlin71] makes the connection shown in Figure 2.3

impossible.

Values in the base language are carried by tokens that flow

along lines. Note that a constant in Id does not represent a value

but rather a constant function which produces that value when

triggered by a token carrying any value (e.g., "4" is triggered

by "a" in Figure 2.2). t'fhenever a token enco\inters a fork

while traversing a line, it replicates and follows all out-branches

of the fork (figure 2.4). Notice that a token that carries a

structure logically carries the whole strucuture as its value.

In an actual machine this is impractical where large structure

values are involved. However, the fact that structures are acyclic and



that dataflow operators are pure functions has allowed Dennis [Dennis73]

to devise a technique whereby a memory may be used to store the

actual structure while only pointers to the structures are actually

carried by the tokens. That is, the underlying implementation of

structure values in dataflow may use pointers, share common sub

structures, employ reference count garbage collection, and use many

other techniques in order to reduce overhead [Dennis74, Newell &

Tonge60]. We do not discuss memory mechanisms in detail here, but

it is important to emphasize that any such memory system that may

be used to implement dataflow is never seen by the programmer. A

memory system would be present only to reduce the amount of infor

mation that would otherwise be carried by a token.

According to the first principle of dataflow, an operator

may execute when and only when all its required input tokens

have arrived. The operator executes by absorbing all input tokens,

computing a result, and producing an output token that carries

that result as its value (Figure 2.5). Note that the operators

internal to the block expression of Figure 2.2 will start executing

*

as soon as any tokens on lines a, b, or c arrive. Thus an Id

expression is asynchronous because all of its subexpressions are

independent of one another unless otherwise constrained by an

explicit need for intermediate results. This approach to expressing

asynchrony is in contrast to the usual method where sequencing is

Please note the use of triggers for constant functions in Finure 2.2.
The choice of which line to use as a trigger affects only the time of
execution of an expression and not the final results.



the default and parallelism is explicitly specified by special

programming constructs such as cobegin-coend which often have side

effects. The need for synchronization in computing intermediate results

is removed by the single-assignment rule that eliminates the

possibility of a race, and furthermore implies that Id programs

are determinate (unless, of course, some operator is used which

-is internally nondeterministic, as in Section 5)[Patil70, Kosinski76,

78, Arvind & Gostelow77a].

2.3 Conditional expressions

Consider the Id conditional expression

(if p(x) then f(x) else g(x)) (2.4)

and its base language translation in Figure 2.6. Whenever a token

arrives on line x the predicate p is evaluated to produce a boolean

value. If the predicate is true then the token from x is sent by

the SWITCH operator to schema f, otherwise it is sent to schema g. The

symbol ® is used in base language schemata to indicate a legal

merging of two lines, as in this case where only one of the two

lines will actually receive a value. The notion of a legal schema

is made more precise in Section 3.

To execute, a conditional expression requires a token on each

of its input lines regardless of the branch to be taken. For example,

the expression

(if p(x) then f(x) else g(x,y)) (2.5)

always takes an input token from y (Figure 2.7), but whenever p(x)

is true that token is simply absorbed and is not used. The proper



order of tokens flowing along all lines is thereby maintained,

and regardless of whether an Id expression is a block, a conditional,

or any other kind of expression, one token is absorbed from each

input and one token is produced for each output on each execution

of that Id expression. Note that an entire expression behaves

similar to a primitive operator.

In a conditional expression the then clause and the else

clause must contain an equal number of expressions. Thus the

following is illegal:

y,z •<— p(x) then f(x),l else g(x)) **illegal**

2.4 Loop expressions

Loop expressions in Id are provided essentially as a conven

ience for writing programs as they can be regarded as a special

case of procedures. However, we will show in Section 3 that

our implementation of loops provides more asynchrony than procedures.

A loop expression comprises four parts: an initial part, a predicate

to decide further iteration, a loop body, and a list of expressions

to return values from the loop. A loop expression to
n

compute Z f(i) is
i=l

1 ( initial i 1;
2 sum <— 0

3 while i<n

4 new i i+1;
5 new sum sum+f(i)
6 return sum) (2.6)

An Id loop is a set of first degree recurrence equations. For

example, a set of recurrence equations for computing the above values

of i and sum are



where = 1i . ., = i . + 1
D+1 D

= sunij + f(ij) sunij^ = 0

The loop body specifies that two values called new i and new sum

are to be created at each iteration. However, any reference to a

recurrence variable in the body of a loop refers to the "old"

value of that variable unless the reference is preceded by the

word "new". Thus the i in line 5 of (2.6) does not refer to the

value new i computed in line 4. (The value of new i could be

referenced in line 5 by writing new i instead of just i.) The

translation of expression (2.6) into the base language is given

in Figure 2.8. Note that changing the order of statements in the

loop body affects neither the results nor the base language

translation. (The reader will have to wait until Section 3 to

understand the meanings of the D, D L, and L ^ operators. These

operators do not affect the values of the tokens passing through

them, and for now we treat them as identity functions.)

Now let us briefly consider the execution of (2.6). Suppose

function f of line 5 takes a long time to execute. The loop

predicate i<n, however, does not depend upon the evaluation of f(i),,

Therefore it is possible for several tokens to accumulate on line

i going into function box f, since generating tokens with values

from 1 to n is a relatively fast process. Now if i were treated

as a memory cell then the notion that i might be several values at

the same instant would be meaningless. We will show in Section 3

that the machine's interpretation of the base language is such

that instead of simply accumulating tokens on line i, many instan

tiations of function f may proceed concurrently. This greauly



increases the apparent asynchrony and concurrency of loop expressions

Id supports many different loop constructs such as for-loops.

repeat—until—loops, and for—while—loops. The semantics of all

loops (except for those involving streams*) are encompassed within

the general while-loop construct given in expression (2.7).

( initial x f(a)
while p(x,c) ^

y •«- g (x,c) ;
new X h(x,y,c)

return r(x,c) ) (2.7)

In an actual loop expression there might be more than one variable

in category a, x, y, or c. Variables assigned in the initial part

(x variables) circulate in the loop and thus have both old and

new values. Variables not assigned in the initial part but that

are assigned in the loop body (y variables) are simply intermediate

results and can be used only within the body; a y variable never

circulates. Variables referenced but not assigned in a loop (or

assigned only in the initial part) are loop constants (c variables).

A c variable behaves exactly like an x variable in that it circulates

(see n in Figure 2.8) and one can assume that a statement new

c •*" c exists in the loop body. All variables referenced on the

right-hand side of assignments in the initial part (a variables)

are treated as inputs to the loop expression and must originate

outside that loop expression. Hence, x f(x) appearing in the

initial part of a loop expression would be a valid assignment state

ment only if x were defined outside the loop expression. Assignments of the

Streams are discussed in Section 4.
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type x<—X may be omitted from the initial part without ambiguity.

Finally, the assignment

new X [i] •«- v

stands for the APPEND operation new X"«- x+[i]v.

2.5 Procedure applications and definitions

Figure 2.2 showed the Id sqrt function implemented by the

machine primitive SQRT. If sqrt were instead a procedure application,

then the SQRT box would be replaced by the schema of Figure 2.9.

The APPLY operator expects a token carrying a procedure definition

value and another token carrying the argument value. It applies

the procedure definition to the argument when both have been

received. Note that sqrt is the name of a line, and we would now

say that expression (2.2) needs sqrt in addition to a, b, and c

as inputs. The line sqrt is connected to a box (a constant function)

that outputs the following procedure definition value (or a compiled

encoding) whenever triggered.

procedure(a)(initial x a/2
while ^bs(xt2-a)>.000001 do

new X •<— (xf2+a)/2*x
return x) (2.8)

That is, just as the Id constant 5 actually represents a constant

function that produces 5 as its value, so does a procedure defini

tion imply a function that produces that procedure as its value.

In all other respects, variable sqrt is like any other variable

and can be passed as an argument to a procedure, appended to a

structure, or operated on by any operator defined on the type of
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value carried by sqrt.

The APPLY operator accepts a procedure and one argument, and

produces exactly one result. However, Id syntax permits procedure

definitions and applications with multiple arguments and multiple

results. For example let f be the following procedure definition

for multiplying two matrices a and b of sizes £ by m and m by n

respectively

procedure (a,b,£,m,n)
(initial c A
for i from 1 £ do

new c[i] (initial d <- A
for j from 1 n ^

new d[j]<— (initial s<—0
for k from 1 m do

new s<—s+ali,k]*b[k,j]
return s)

return d)
return c) (2.9)

Procedure f is applied by writing

f(x,y,2,3,2) •

which means

APPLY(f,<x,y,2,3,2>)

Every Id procedure definition is translated to expect one

structure parameter a (with integer selectors) that contains all

the arguments. For example expression (2.9) becomes

f •«- procedure (a)
(a ^ a[l] ; b ^ a [2] ; £ •<- a [3] ;
m ^ a[4i ; n a [5]
return (initial

Note that if there are more actual than formal arguments,

the extra actual arguments will be ignored; if insufficient actual
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arguments are sent, error values will be produced for some para

meters.

Multiple results are handled in a similar way. A result

structure 3 is formed inside the procedure and taken apart in the

environment where the results are used. For example,

<x,y> f{a)

means

3 <- f (a); X 3 [1]; y 3 [2]

Both X f(a) and <x> f(a) mean that x receives the value 3 [1] .

It is also possible to give a name to an Id procedure which

can be very useful in writing recursive programs. Below, the named

procedure f calculates the factorial function

y procedure f(n) (i^ n=0 then 1 else n*f(n-l)) (2.10)

as does the following

z procedure (n,f) (if n=0 then 1 else n*f(n-l)) (2.11)

Note that zC3,z)=y(3).

Another operator defined on procedure values is COMPOSE. This

operator is actually a simple but very powerful functional.

COMPOSE takes the input procedure value and "freezes" one or more

of the procedure's formal parameters to particular actual values,

and then removes the parameters that were frozen from the formal

parameter list and outputs the resulting procedure. For example,

we can freeze the parameters in position 3, 4, and 5 (i.e.,

parameters I, m, and n) in the matrix multiply procedure of expression
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(2.9) to the values 2, 3, and 2, respectively, by

r compose(f,<<3,2>,<4,3>,<5,2>>)

The procedure value assigned to r, when applied, behaves as if the

programmer had written

r procedure (a,b) (£«-2; m 3; n 2
return ( ))

The argument of compose is a list of subarguments of the form

<formal-parameter-position, value>.

As another example, we use z from (2.11) and write

w compose(z,<<2,z>>)

so that w(3)=z(3,z)=3: . In fact, named procedures are implemented

by COMPOSE. Thus statement (2.10) actually translates into

y (f ^ procedure (f ,n)
(if n=0 then 1

else n*compose(f,<<l,f>>)(n-1))
return compose {f ,<<1,f'>>))

so that any reference to f within y, regardless of how y is further

composed, always refers to the original definition of f. A named

procedure definition f is translated according to the following

steps:

Construct a new procedure definition f^:

- insert the original procedure's name f as the first
parameter of the argument list; and

- alter the code inside the original procedure f by
replacing every occurrence of f by the code compose
(f,«l,f») .

Return the procedure compose(f ^,<<l,f "">>).
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The COMPOSE operator is useful for tailoring a procedure to

special forms by freezing certain parameters. COMPOSE is used

extensively in Section 6 for implementing programmer-defined data

types. It furthermore provides a way in which (dynamic) program

linking can be performed, since such linking is actually just the

freezing of certain formal parameters to actual parameters, where

the actual parameters would generally be subprograms.

2.6 Examples

Hoare's quicksort written in Id is presented in expression

(2.12). We have chosen a conventional algorithm for two reasons.

First of all, we want to show that a programmer proficient in

Algol-60 would have no difficulty writing dataflow programs. Second,

we want to show that even conventional algorithms often contain

significant concurrency when expressed in Id, though a complete

discussion of this point must wait until Section 3 because it is

related to the unraveling interpreter of the base language.

procedure quicksort(a,n)
(middle a[l];
below,j,above,k

(initial below A; j 0;
above A; k 0

for i from 2 ^ n do
new below,new j,new above,new k

(if a[i]<middle
then belowt[j+1]a[i],j+l,above,k
else below,j,above+[k+1]a[i],k+l)

return (if j>l then quicksort (below, j ) else below) . j,
(if k>l then quicksort(above,k) els^ above),k)

return (initial t below+[j+1]middle
for i from 1 to k do

new t t+Ti+j+1] above [i]
return t)) (2.12)
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On a single-processor machine, quicksort takes an average of
2

0(n log n) time and in the worst case 0(n ) time. The above Id

counterpart, when compiled into the base language and executed

under the unraveling interpreter, has an average of 0(n) and a

worst case behavior of O(n^), but requires an average of 0(n)

processors. The time complexity is reduced because of the possibility

of executing the recursive procedure calls in parallel. Given

sufficient processor resources, this will occur automatically and

without any analysis of the program. The mechanism which accom

plishes this is the unraveling interpreter discussed in Section 3.

Consider briefly the matrix multiply procedure given in

expression (2.9). It executes in 0(£+m+n) time utilizing in the

worst case O(lmn) processors and in the best case 0(£n) processors.

The unraveling interpreter will try to execute all of the multi

plications and In of the £mn additions in parallel, thus reducing

the usual time complexity of 0(£mn) to 0(-£+m+n).

Id is not just another idiosyncratic language. It is

a high-level dataflow language which has an asynchronous control

structure. This is required for the development of the base

language (Section 3) and a machine that can utilize a large number

of processors (Section 7).
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Figure 2.1c The structure (t + ["sex"] "M") + ["weight"] 180





Figure 2.3 An illegal connection

Figure 2.4 Behavior of a fork

Figure 2.5 Execution of a dataflow operator
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3. The Base Language and the Unraveling Interpreter

Let each distinct execution of an operator be termed an activity.

Now imagine the operator f of Figure 3.1a in the body of a loop at

a time when two complete sets of input values are ready for process

ing. Since both input values and y^ are present, the first

principle of dataflow permits the first activity (execution of

the operator) to take place (Figure 3.1b). Immediately after that

the second activity can occur (Figure 3.1c). However, the second

principle of dataflow (freedom from side-effects) implies that the

second activity actually need not wait for the first and in fact

both may be executed currently.

The purpose of the unraveling interpreter is to generate as

many such activities as possible. Of course, the main problem is

to keep the different sets of tokens from being mixed, since it is

essential that x^^ be matched only with y^. This is accomplished by

tagging each token with the name of its destination activity. Each

activity is assigned a unique activity name whereby:

Activity x accepts all and only those
tokens that carry destination activity
name x.

Within a dataflow procedure, each operator is uniquely labeled

and has some specific number of input and output ports. Each token

thus specifies its destination as a particular input port of a

particular activity and is represented as a subscripted ordered

pair

<data, destination activity name>

* This use of angle brackets in describing tokens is not related
to Id syntax for structures.



where the "destination activity name" is of the form u.c.s.i and p

is the destination input port. The specifications c,s, and p specify

that the token is moving along a line of the program graph connected

to input port p of operator s in procedure c. This implies, of

course, that the activity that produced that token must be a pre

decessor of operator s in procedure c consistent with the static

structure of the program. The remaining fields u and i give,

respectively, the context (for example, the procedure application

context) and the iteration count (for example, this is the i^^

iteration of the loop) consistent with the dynamics of program

execution. All tokens carrying the activity name u.c.s.i in their

destination field comprise the input token set to the activity

named u.c.s.i

Below we specify in detail the semantics of dataflow operators

where we often make use of definition by case. That is.

(a^->b; c^->d; . . .; e->f.; g_)

means that if a holds then token b is the result; otherwise, if c

holds then token d is the result, etc.; finally, if no condition

holds then token g is the result. If no result token is specified

(i.e. <p) , then none is produced.

3.1 Block schema (functions and predicates)

This includes all arithmetic, boolean, and relational operators,

as well as the SELECT and APPEND operators. The binary function f

typically specifies the operators of this class:

input token
output token

set = {<x,u.c.s.i> ,<y,u.c.s.i> }
set = {<f(x,y),u.c.s'.i> }



In general, we will use primes to denote successor operator

labels. We also move each fork back to the output port to which it

is connected and make the output port perform the token replication

task. Hence, even an operator with only one output port may actually

produce more than one token. For simplicity we will quite often

neither write port numbers nor indicate that an operator might have

more than one successor.

We define the history of a line (i.e., tokens with fields

c, s, and p common in their activity names) to be valid if in a

given context (i.e., u) no two tokens have the same iteration count.

A schema is defined to be valid if given valid input histories it

produces valid output histories, and corresponding to the input token

set with iteration count i there is one and only one output token

set with iteration count i.

Since functions and predicates do not affect the iteration

count, they are clearly valid schemata. A block schema comprising

acyclic interconnections of functions and predicates, and other

valid schemata, is also valid because no two lines ever converge

on a single input port. A rigorous proof of the validity of block

schema and other schemata presented in this section can be derived

using the formalism given in [Arvind & Gostelow77a].

As noted earlier, the activity name generation rule given here

does not require two initiations of a block schema to initiate or

terminate in any particular order. In fact, activities corresponding

to the initiations can execute quite independently of each other.



3.2 Conditional schema

The SWITCH operator needed to implement the conditional schema

(Figure 2.6) may be described by

input = {<x,u.c.s.i> , <b,u.c.s.i> ^ ,}
data control

output = (b=true {<x,u.c.s^.i>};
b=false {<x,u.c.s„.i>};(i>)

Note that exactly one of the successor operators s or s
T F

receives a token, and that the total number of successors need not

be the same on both sides of the SWITCH, if the history of line x

is valid then so will be the history of lines going to schemata f and

g. However, due to the SWITCH, the iteration counts of the tokens

going into f and g will be mutually exclusive. If f and g are

valid schemata then the iteration counts of the tokens on the output lines

of f and g will also be mutually exclusive. Hence only a valid

history will result after m.erging the two lines via 0. Therefore

the conditional schema is a valid schema.

3 . 3 Loop schema

A simplified loop schema is shown in Figure 3.2 where the

corresponding Id expression is

(while p(x) do
n^ X <- f (x)

return x ) (3.1)

A loop needs operators D, D L, and L as well as a SWITCH.

None of these operators affects the data portion of the tokens

passing through them. They do, however, affect activity names,

An execution of a loop expression can receive information only



from tokens explicitly input to it because Id loops have no memory.

Thus in the case of nested loops it is quite possible that the input

tokens for several instantiations of an inner loop may be available

at the same time. It is the L operator (in conjunction with the

L Dand D^ operators) which capitalize on this fact by creating
a new context u^ for each instantiation of a loop. An L operator

may be described as

input = {<x,u.c.s.i>}
output = {<x,u'.c.t^.l>} where u' = (u.s.i)

The iteration count of a token in a loop has to be incremented

every time a token goes around the loop. Corresponding to every

new X type variable in a loop, a D operator is present which

accomplishes this as follows:

input = {<x,u".c.t.j>}
output = {<x,u'.c.t^.j+l>}

If after n-1 iterations the loop predicate p turns false,

the loop terminates, and sends a token (i.e., the value in the return

clause) with iteration count n to the p"^ operator, which changes it

to 1.

input = {<x,u''.c.w.n>}
output = {<x,u'" .c.w'.1>}

The L ^ operator returns its input tokens to the context

before loop initiation. An L ^ operator behaves as follows:

input = {<x,u".c.w'.l>} where u' = (u.s.i)
output = {<x,u.c. s''. i> }

where s' is the successor of the L~^ operator.



Note that the L operator generates exactly one set of input

tokens for a loop schema with a given context (u' = (u.s.i)). Therefore

the input lines of f, D, and SWITCH have valid histories provided

f is a valid schema. Clearly the D ^ operator never receives more

than one token, and hence L ^ also receives and produces exactly

one token on each line. The L ^ operator unstacks the context

part stacked by the corresponding L operator and hence the tokens

produced by L ^ have an iteration count equal to that of the input

to the L operator. Hence, the loop schema is a valid schema.

Logically, activity names can become arbitrarily long because

the context field is recursive. For terminating computations, names

can physically be kept within bounds by proper encoding of the

information. For example, an L operator can send the new context

u' = (u.s.i) on a special "diimmy" token directly to its mate L ^

operator, and use a small unique integer (essentially equal in size

to u) as a tag in place of u"*. With the help of the dummy token

the L ^ operator will be able to generate the proper output.

All activities belonging to a particular instantiation of a

loop are said to constitute a loop domain and can proceed independent

of activities outside the loop domain including those of the nested

loop. It is interesting to note that tokens need not go around a

loop in any particular order unless constrained by the need for

intermediate results. This situation was illustrated earlier by

the program in Figure 2.8 where several initiations of f could

s t
execute concurrently. Even if the j+1 execution of f terminates

before the execution, no mismatch of activity names can result.

Automatic unraveling of loops, constrained only by those data



dependencies that are actually present, greatly increase the

asynchrony of programs (for example if f were another nested loop),

many of which would otherwise be considered completely sequential.

3.4 Procedure application schema

Figure 3.3 demonstrates the elements of procedure application,

where APPLY actually comprises the two operators A and A~^. Also

shown is the fact that each procedure is prefixed by a BEGIN operator

and suffixed by an END operator. The A operator must (1) create a

new context u within which the procedure on line q may execute,

and (2) pass the argument value on line a to that context. The

A operator is described by

input token set =

output token set =

'<'''U- =-=A-i>proc'<c''U-o.Sft.i>„g}
{<a,u'.c .begin.1>} where u' = (u.c.s„.i)

q _1 T 'with s^ the A mate of operator s^.

That is, the "return address" u.c.s^.i is stacked and u' becomes

the new context in which procedure q is executed. The output of

A goes to the BEGIN operator, a member of the class of functions

and predicates discussed earlier (Section 3.1). BEGIN is very

simple and serves only to replicate tokens for the fork in its

output line. The END operator is more complex. It returns the

result back to the caller by unstacking the "return address":

input token set = {<3,u''.c .end.l>} where u' = (u.c.s .i)
T. X

output token set = {<3fU.c.s^.i>}

Finally, the A ^ operator is straightforward as it too, just like
the BEGIN operator, serves only to replicate its output for its

successors. If the procedure on line q is syntactically correct, hence



is a valid schema, then the END operator will receive exactly one

token. Thus if A receives only valid histories, A ^ will receive

from END and will produce only valid histories. Hence APPLY is a

valid schema.

All the activities belonging to a procedure invocation

constitute a procedure domain, and can proceed independent of other

activities. Similarities between a procedure application schema

and a loop schema go beyond the idea of domains. A loop schema is

like a procedure without a name which is invoke 1 from exactly one

place. Hence, creation of a new context for a loop instantiation

requires less information (i.e., u.s.i as opposed to u.c.s.i).

Procedures are generally less asynchronous than loops because in our

implementation all actual parameters of a procedure must be present

(i.e., in the a structure) before it can be applied. One can look

at the functions of the D and D~^ operators as an inexpensive way of

creating new activity names. In systems based on activity names,

the difference between a cyclic and a noncyclic schema is not very

fundamental because the concept of a line does not manifest itself

in the dynamic behavior. Hence, we can treat Id loops as nameless

procedures that have somewhat more efficient and asynchronous

implementations than general procedures.

3.5 Asynchrony in a sequential algorithm

Here we analyze the procedure given in Section 2.5 for multi

plying two matrices. The procedure of expression (2.9) assumes a i;natrix

is represented by a structure, such that a[i] is the structure value

representing the i row of matrix a. While discussing loop schema in

Section 3.3, we showed that the unraveling interpreter exploits loop



asynchrony in two ways: by unraveling, and by permitting concurrent

invocations of the same loop. Asynchrony in matrix multiply depends

on both. The innermost dot product will unravel; for if the structure

selections and the multiplications take longer than generating m

values for k, the a[i,k]*b[k,j] operations will overlap. But the

addition in the innermost loop of (2.9) must be done serially, so

it will take 0(m) time to generate each dot product s (each element

of row d).

Even though the value of new d depends upon the old value of

d (just like s above), many initiations of the innermost loop might

execute concurrently because values of j can be generated faster

than a complete execution of the innermost loop. Hence the time

complexity of the j loop is determined by the sequentiality of the

append operations as opposed to the time to generate each element

of d. Since the first append operation on d cannot begin until

the innermost loop produces an answer, the total time to generate

a row d is 0(m+n). Similar arguments can be made for the loop

with index i to show that the total time complexity of the matrix

multiply program is 0(£+m+n). Note that the total number of

multiplications, i.e., the total work, has not changed from that of

a purely sequential execution of the same program — only the

overlapping of operations in time has changed. The importance of

the unraveling interpreter lies in the fact that it does not

recognize unnecessary data dependencies and thereby exploits the

semantics of Id programs to enhance the attainable asynchrony.

The above analysis was done assuming unlimited processors.

On a machine with p processors the time complexity would be
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max {0(-e+m+n), 0(£mn/p)}

which is the minimiom for this matrix multiply algorithm.





begin:I BEGIN

APPLY

/' >

: A-1

end: END

domain u domain u"

Figure 3.3 The APPLY operator and its execution



Prograinining with Streams

4.1 Introduction to streams

The values discussed in Sections 2 and 3 are simple values

(e.g., integer, structure); any simple value is represented in its

entirety on a single token. A stream value is represented by a

(possibly unbounded) ordered sequence of tokens, each token carrying

a simple value, and where the last token in the sequence carries

the special value est (which is not accessible to the programmer),

meaning end-of-stream. The stream value consti'uctor for streams

of length n is written [Xj^,...,x^] in Id, so the constant stream

value [1,1,2,3,5] of length five is represented by six tokens as

shown in Figure 4.1. The empty stream (consisting of exactly the

est token) is written [].

Id variables are typed as simple or stream. In this paper,

stream variables are written in upper-case letters. To give variable

A the stream value [1,1,2,3,5] we write

A ^ [1,1,2,3,5]

Two primitive stream functions are first and rest. For example,

the Id statements

a •«- first (A) ;

B 'i- rest (A) ;

would give a = 1 and B = [1,2,3,5]. That is, the entire sequence

of tokens in A was input to exactly two activities. The activity

carrying out first produced a sxmple result (a single token), while

the activity carrying out rest produced a stream (a sequence of

output tokens). Input and output of streams through an activity may



be asynchronous, so that not all input tokens need be defined before

some output can be produced. Thus an activity executing rest, given

only the input token in position k (k^l), can immediately output the

token in position k-1; that activity must also remain in existence

until all input tokens have been received and all output tokens

have been produced.

The remainder of this subsection will illustrate

a looping construct on streams to give the reader some understanding

of streams before going into details. Consider the following state

ment to generate stream A comprising the first k Fibonacci numbers:

A (initial i •<- 1; nexti 1
for counter from 1 ^ k do

new i nexti;
new nexti •<" i + nexti

return all i)

The clause return all i outputs, in order, the sequence of all values

assumed by i as long as the loop predicate is true. If k<l initially,

then A will receive the empty stream.

As a second example, consider the electrical circuit shown in

Figure 4.2. Let the state of an electrical line be represented

by a voltage stream consisting of structured values of the form

<time:t,voltage:v> giving the voltage and the time when that

voltage is said to exist on that electrical line. If the input

voltage v varies in discrete steps then the output voltage w may

be described at times of input change by the equation

= w. + (v.-w.)(l-e ^^^i+1 ^i^)
1 1

where t is the circuit time constant (see Figure 4.2b). The Id



statement (4.1) below can model the circuit with arbitrary precision

if sufficiently fine time steps are used.

(initial v-^vq; w-<-Wq ; tq
for each status ^ V do

new t status.time;
new V status .voltage ;
new w w+ (v-w) * (1-ei (-T* (new t-t)))

return all <time;new t, voltage;new w>) (4.1)

The for each loop above is a new construct which for each

token arriving on stream line V places that token on the simple line

called status, and executes the body of the loop once. As before,

the all construct causes one token to be contributed to the output

voltage stream W on each iteration. Execution of (4.1) terminates

on receiving the end-of-stream token est on input V. This example

demonstrates not only asynchronous input and output of streams, but

also the operation of a "history-sensitive" function. That is,

the output produced for a given input depends upon input tokens

previously received.

Viewing the inputs and outputs of some operating system

routines (e.g., I/O drivers) as streams is not new. Streams have

also been used by Landin [Landin65] in describing the applicative

semantics of loops in Algol-60. There Landin defined a stream as

a list (i.e., structure) with some special properties regarding

the sequencing of evaluation. Essentially, the elements of a

stream (here as well as Landin's) have a total linear ordering

and are not required to exist simultaneously. Thus the sequence

of values assumed by a loop variable in Algol can be modeled by a

stream. However streams also have practical advantages over



structures especially when subjected to a pipeline of processes.

For example, in applicative languages (such as Id) streams enable

one to perform operations on lists without using an item-by-item

representation of the intermediate resulting lists. More inter

esting is the fact that streams enable one to postpone the evaluation

of the expressions that produce the items of a list until those

items are actually needed. Friedman and Wise have exploited these

ideas in pure LISP and other related languages [Friedman & Wise76a,76b]

Streams also form an integral part of the language for networks of

parallel processes developed by Kahn and MacQueen [Kahn & MacQueen77].

Streams were first introduced into dataflow by Weng in [Weng75]

where he gave formal rules for constructing "well-formed" dataflow

schemas with streams in Dennis' Dataflow Language [Dennis73]. We

have extended Weng's ideas by incorporating streams into loops,

and by the for each construct introduced above. Streams in dataflow

are essential for doing applicative programming of history-sensitive

functions such as updating a data base (see Section 5). However,

streams are also interesting because they introduce still another

level of asynchrony which can be very significant in exploiting

machine concurrency.

4.2 Extending the semantics of control operators for streams

Extending the notation of Section 3, we denote the token in

stream X carrying the value Xj^ to input port p of activity u.c.s.i by

<-j:X, ,kf, u.c.s.i>

We may denote an entire stream A by the set



{<'):Xj. ,k:f, u.c.s.i> | l£k£#A}
It

where X^^=est.

The basic rules given in Section 3 for generating activity

names are also valid for streams. Even though an activity may

input or output more than one token through a port, no two tokens

will have identical stream positions. Hence, each token in the

input set of an activity is still uniquely identified. Furthermore,

a stream never has a missing token position (that is, for stream

A a token is defined for each stream position k such that l<k<#A).

The semantics of the control operators SWITCH, D, D~^, L, and

L ^ are trivially extended to deal with streams since none of these

operators affects the value or the position of any token. Thus

all fields in activity names are manipulated according to the

rules already explained in Section 3. We illustrate the idea with

the SWITCH operator.

The SWITCH operator still expects a simple (non-stream)

boolean token at the control input port. Depending upon the boolean

it switches the entire stream at the data input port to either the

T or the F output port:

input = {<"j:X, ,k:f,u.c.s.i>
data

l<k<#X} u {<b,u.c.s.i> . ,}
control

output = (b=true ^ {<<|:Xj^,k:f ,u.c. s,j,. i> | l<k<#X};
b=false ->• {<<}:Xj^,k:}-,u.c.Sp.i> | l<k<#X};<j))

Note that if the boolean has already arrived then each token in the

input data stream can be immediately output without waiting for further

input. Also note that due to token communication delays it is

possible that a stream token may appear as input to an activity



ci "txins which is out of phssc with its physicsl stxcsin position#

This latter point causes no difficulty and is in fact essential to

resource manager operation (Section 5).

Extending the semantics of procedures to permit stream arguments

and stream results is not so straightforward. Due to the asynchronous

nature of streams, the A operator cannot wait for all the tokens

of a stream argument to arrive before passing them on to the corres

ponding BEGIN operator. In other words, a stream argument cannot

be part of the structure a explained in Section 2.5. The problem

is solved by creating a separate port for every stream parameter

which then works asynchronously with respect to the simple port

or the other stream ports. The extended semantics of the A operator

can now be given as follows:

input = {<q.u.c.s^.i>p^Q^,<a,u.c.s^.i>^^g} u
{<<t:Zj^,k:|>,u.c.s^.i> l<k<#Z}

stream

output = {<a,u'.Cg.begin.l>^^g}
{<<}:Z, ,k:|-,u^.c .begin. 1>

stream
l<k<#Z}

where u^ = (u.c.s^.i)

The semantics of BEGIN, END, and A~^ can also be extended in

a similar way. Finally, concerning the problem of mismatched para

meters, the A operator simply ignores (i.e., absorbs) any extra

input strecims after examining the definition of the received

procedure value. In case a BEGIN operator has more stream ports

than the corresponding A operator, the A operator sends error

tokens to the appropriate ports of the BEGIN operator. Similar

rules can be specified for the END and A^ operators.



4.3 Some new functions on streams

Several functions and predicates are defined below on streams,

of which the first five are primitive in the base language. A few

of these functions and predicates will be used in implementing

various Id constructs to be discussed later.

(a) [ ] (generate an empty stream); This function produces an
empty stream on receiving a (simple) trigger.

input = {<x,u.c.s.i>}
output = {<-|:est, 1^ ,u.c.s^.i>}

(b) empty(A); This predicate produces a boolean token true if
A = [ ], otherwise a false token is produced.

input = {<<{:Aj^,k:j>,u.c.s.i> | l<k<#A}
output = (#A = 1 -> {<true,u.c. s^ . i>}; {<false,u.c. s^ .i>})

(c) first(A): This function outputs the first token of stream A
provided stream A is not empty.

input = {<<l:Aj^,k:f ,u.c.s.i> ] l<k<#A}
output = (#A = 1 -> {<error ,u.c .s'. i>}; {<Aj^ ,u.c. s'. i>})

(d) rest(A): The result stream is all but the first member of
stream A.

input = {<-|:A^,k:}',u.c.s.i> | l<k<#A}
output = (#A = 1 {<^est,l^,u.c.s^.i>};

'k:|> ,u.c. s^ .i> | l<k<#A-l})

(e) cons(x,A); The output stream has x as the first number and
A as the rest, i.e., if X represents the output stream then
X = cons(first(X), rest(X)).

input = {<x,u.c.s.i>^} u I l:sk<#A}
output = {<^x,l:f,u.c.s'.i>} u {<<|:Aj^_^,k:f ,u.c.s'.i> | 2<k<#A+l}

(f) cons£(A,x): This function is similar to cons except that the
input X appears at the end of the output stream.

(g) concatenate(A,B); The output is a stream with the tokens
of A (except the est token) preceding the tokens of B.



(h) filter(x,A): This function produces two output streams. The
stream on output port 1 contains all those tokens of A that
are not equal to x, while the stream on output port 2 specifies
the input stream position of those tokens selected to appear
at output port 1.

(i) equalizeCA,B): This function outputs two equal length streams
formed from input streams A and B by truncating the longer of
A and B to the length of the shorter. The truncated portions
of A and B are also output as remainders (at least one of these
two output remainder streams will be empty by definition).

{j) extend(A^x,B,y); This function also outputs two streams of
equal size, formed from the input streams A and B. However,
the length of the output streams is equal to the longer of
streams A and B. The shorter stream is extended by x or by y
depending upon which is the shorter input stream.

(k) exif(A,B,x): This operator means "extend A to the length of
B by X, if necessary." It produces a stream equal in length
to stream B. In case A is longer than B, the output stream
contains the first #B-1 tokens of A. Otherwise enough x tokens
are added behind stream A to extend its length to that of
stream B. The remainder of stream A is also produced on a
separate output port. It can be implemented as

( AEQ, BEQ,AREM, BREM -^-equalize (A,B,);
AEX, BEX -(-extend (AEQ, x,B,x)
return AEX,AREM )

(£) size(A): It produces a simple token containing the value #A-1.

As previously shown [a,b,c] is a syntactic shorthand for

cons(a,cons(b,cons(c,[]))).

4.4 Some new constructs on streams and their implementation

4.4.1 The for each-while construct

Consider the for each loop in statement (4.1). The implementa

tion appears in Figure 4.3, where the unimportant details are

subsumed by schemata f and g. The E and j^est operators implement the

for each construct. The E operator takes a single stream of tokens

as input and produces a sequence of simple tokens for distinct

initiations (activities) of its successor operator:

input = {<-j:Xj^, k:|-, u. c .s. 1> j l<k<#X}
output = u.c.s'.k> 1 l<k<#X}



Since an E operator is always preceded by an L operator the input

stream to E always has an iteration count of 1; the iteration counts

of the output tokens correspond exactly to the positions of those

tokens in the input stream. The predicate y^est tests a simple

token for the special est value to terminate the loop. (This pred

icate is not accessible to the Id programmer.) The all construct

is implemented by taking output tokens from the T side of the loop

SWITCHes, and feeding them to the E ^ operator to form a single

output stream. It places tokens in proper ord^r by using their

iteration count as their position in the output stream:

input = {<x,u.c.s.i>}
output = {<^:x, i^,u.c.s'*.l>}

Note that every initiation of operator E ^ with activity name

u.c.s.i contributes to the production of the same stream, and that

this output stream always has an iteration count of 1. The final

token to be inserted into the output stream is triggered by a token

from the F side of a loop SWITCH. It is an est token and is

produced by the est operator (which is also used for generating an

empty stream). Note that the est operator is triggered only once

for each execution of the entire loop. The E ^ and est operators

work together to create a valid output stream with no missing tokens.

A program equivalent to expression (4.1) written without using

either the for each or the all construct is:

procedure RC(v,w,t,V)
(if empty (V) then []

else (status -t- first(V);
t^ •*- status.time;
V* •«- status.voltage;
w^ -<- w+(v-w) * (1-ei (-T* Cf-t)))
return cons (<time:t^,voltage:w^>,

RC(v^,w', ,rest(V))))) (4.2)
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However, procedure RC generates a much larger number of tokens.

This is due to handling of streams using the first, the rest, and

the cons operators instead of the E and E ^ operators. Even though

only one token from the input stream V is used in each procedure

invocation, the whole stream V has to be input. Similarly, cons

requires the whole stream constructed at the later recursive calls

of RC to be returned to the earlier invocations. If there are n

2
tokens in the input stream procedure, RC internally generates 0(n )

tokens instead of the 0(n) tokens generated by expression (4.1).

We can now explain the most general construct involving loops

in Id. The base language schemata generated by the for each

construct and the while construct (discussed in Section 2.4) are

both particular cases of the base language schema generated by the

for each-while loop [Kathail78]. Consider the following expression

using the for each-while construct;

Cinitial x a
for each b B while p(b,x) do

new X •*- f (x, b)
return x, all x) (4.3)

The code following ^ is executed for each token of B only as long

as predicate p holds. The major difficulty in implementing such

a loop is to make it self-cleaning so no tokens from B remain

in the loop after termination to clutter up the machine. One way

to solve this problem is to release tokens of stream B on demand.

That is, let a token from B enter the loop only when it is needed.

To do this, we translate a loop such as (4.3) intc the form

given by (4.4).*

*

We are grateful to Vinod Kathail for this observation.
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{x,X,S' (initial xa
for each b ^ B' while(if b=e then false else p(b,x))do

new X f (b, X)
return x, all x, all true);

S cons (true, S );
B'' -f- exif (B, S, e )
return x,X) (4.4)

where e is a special signal value not available to the Id programmer.

In this form, the loop within (4.4) can be implemented by only a

slight modification of the implementation shown in Figure 4.3. The

actual implementation of (4.4), and hence of M.B) is given

in Figure 4.4. A new operator, delete est (shown as ) has

been included just after the E operator to remove the last token.

To explain how it all works, note that stream S and hence stream

B' always have at least one non-est token each. We consider the

case when stream B runs out of tokens before p(b,x) turns false.

When this occurs, an e token is generated for B' which shuts off

the loop, generating no more tokens in S"*. Since B' has exactly one

more token than S', only the est token of B' will enter the loop

after b=e. This last est token will be absorbed by the delete est

operator. Now consider the case when p(b,x) turns false and there

are one or more tokens (including the est token) left in stream B.

Shutting off the loop, as before, prevents any more tokens from

going into stream S^. This in turn generates the est tokens for

both S and B^. The extra tokens of B are simply absorbed by the

exif operator, and the est token of B"* is absorbed by the delete

est.

Id also allows us to write return all X in a loop return clause,

in which case the stream returned is the ordered concatenation of
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all the X streams generated in the loop (this is used in Section 5.4)

It is important to note that an ordinary stream, as opposed to a

stream of streams, is produced. This construct is very useful but

unfortunately our implementation of it is inelegant and is not

discussed here.

4.4.2 The but construct

This construct is used in conjunction with the all construct to

withhold some tokens from a stream. For example, if the return

clause of a loop expression is

return all x but a

then only those values of x that are not equal to a will be returned,

Its implementation is straightforward using the filter function.

4.4.3 The remainder stream

In expression (4.3), if we write remainder B in the return

clause, then a stream containing all those elements of B that

were left over when p(b,x) became false is generated. This stream

is produced easily by consing the last token to enter the loop to

the remainder stream produced by the exif operator.

4.4.4 The parallel looping construct

Several for each x X type of clauses can be combined to

form a parallel looping construct as follows:

for each x in X; y in Y while p(x,y) do

where the while clause is optional. The loop terminates as soon

as either stream X or Y runs out of tokens, or if p(x,y) turns

false. The base language translation is straightforward to derive
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by treating the while predicate as (if x=est v y=est then false

else p(x,y)) and generating the appropriate signal stream. Two

exif operators are used to control X and Y with the help of the

signal stream.

4.5 Pipelining effect in stream programs

We illustrate the natural cascading effect of streams by the

program in (4.5) to generate primes according to the Sieve of

Eratosthenes algorithm. A recursive version of this procedure is

given in [Weng75].

procedure SIEVE(LIST)
(while not empty(LIST) do

prime first (LIST) ;
new LIST •*- (Idelete all the multiples of prime from LIST I

for each item ^ LIST ^
a mod (item, prime) = 0 then X else item)
return all a but X)

return all prime) (4.5)

The above procedure, when applied to a stream of integers from

2 through n, will iteratively create sieves, each of which filters

out multiples of the first item of the LIST input to it. Each

iteration of the outer loop generates one prime number and a new

LIST. Sifting of the LIST produces a stream of integers for the

next sieve if that stream is not empty (see Figure 4.5). The

predicate empty(LIST) can be decided by examining any token of

stream LIST. Therefore the next iteration of the loop will begin

as soon as any token of the stream new LIST is produced. Since the

LIST gets smaller after every sifting, it is possible that many

sieves may work simultaneously. The amount of time it takes to do

tilthe i iteration of the outer loop is O(s^) where s^^ is the



4.14

number of tokens in the LIST for the i iteration. (Note that

filtering is a completely sequential operation.) However, due to

the pipelining of sieves the total time to execute procedure SIEVE

will also be 0(s) where s is the size of the largest LIST. Obviously

the size of the initial LIST is the largest and thus procedure

SIEVE will take 0(n) time (assuming an unlimited number of processors

is available).

In order to illustrate the asynchrony of this stream procedure

we compare it with the following non-stream version of the Sieve of

Eratosthenes:

procedure sieve(list, s) Is is the number of elements in the list I
(initial p A; i •«- 1
while s?^0 do

new p[i] list[l];
new i i+1;
new list, new s

(initial a A;k 0; prime list[l]
for j from 2 to s do

new a, new k •«- Cif mod (list [ j] ,prime)
then a+[k+1]list[j],k+l
else a, k)

return a, k)
return p) (4.6)

Even though each sieve still takes O(Sj^) time, this procedure
m

takes 0( E s.) time, assuming there are m primes in the first n
i=l ^

numbers. Since a complete new list has to be produced before the

next iteration begins, no overlapping of the sieves is possible.

We again want to emphasize the fact that these significant

speedups of programs take place automatically. Dataflow programs

generally are more asynchronous than their counterparts in

sequential languages, and dataflow programs with streams are even

more asynchronous than comparable dataflow programs without streams.

It should also be noted that the actual number of processors or
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their configuration are of no concern in writing programs. All

dataflow programs will naturally run slower if there is a lack of

resources.





new V

Figure 4.3 Compilation of statement (4.1)



new X

X X S'

Figure 4.4 The for each-while schema



13,5,7,...]

prune.

[5,7,11,13,...]
sieve2 ^ • • •

^prime2

Figure 4.5 The Sieve of Eratosthenes in execution



5. Resource Managers

Id is also intended as a language for writing operating systems,

Thus the concept of a resource, and mechanisms for synchronizing

accesses to it,must be included. In non-applicative languages,

memory cells are used to represent the state of a resource, while

accesses to the resource are synchronized through appropriate

reading and writing of these cells. A resource may be shared

among several processes by sharing those memory cells. Id, however,

utilizes quite a different model for resources and synchroniza

tion mechanisms. Furthermore, since some degree of nondeterminism

is usually implied in the use of resources (for example, the order

in which a computer responds to two terminals), Id also incorporates

a facility for nondeterministic programming.

5.1 A primitive resource manager

Figure 5.1 outlines the body of a primitive resource manager

in which the token on line s represents the current state of the

resource being managed. The state s is part of a loop, so the

next value of s (new s) is determined by function f acting on the

current value of s and the incoming user request, each request

arriving as a component of the input stream X.

In statement (5.1) below, mdl is assigned a manager definition

value that describes the manager with the body of Figure 5.1.

mdl •<- manager (s^)
(entryX ^

RESULT (initial 3-<-Sp
for each x in X do

<new s, answer> <- f(s,x)
return all answer)

exit RESULT )
(5.1)



A manager definition value is essentially a pattern from which

many instances of manager values (i.e., managers) may be created.

For example.

m create (mdl, a) (5.2)

makes m an instance of mdl initialized with value a for s (s is
o ' o

called a creation time parameter). This, of course, bears close

resemblance to classes and class objects in SIMULA.

To use manager m the programmer sends an input value y (an

argument) to m by writing

z use(m,y) (5.3)

and the result produced by manager m is returned as the value of the

use expression, much like a procedure application. The effect of

(5.3) is to make the token from line y a component of stream X in

manager m. However, the exact position of y in stream X cannot

be determined a priori since many independent users of manager m

may be sending an argument to it simultaneously. Hence the order

of arrival of tokens at the entry of m is indeterminate. Entry

thus performs two tasks: it changes simple tokens into stream

components, and nondeterministically merges the stream, components

into a single stream (stream X in the case of manager m). Conversely,

response tokens on line RESULT must leave the manager through

exit where they are converted back to simple tokens and are then

returned to the waiting use. Together, entry and exit ensure that

ththe use activity that sends the i member of X is the use activity

that receives the i member of RESULT.

For convenience. Id permits multiple entry-exit pairs to



appear in a manager definition, in which case all such pairs must

be labeled, for example:

md2 manager
[entry name^:

name : X
n n

exit name^^: ;

name : R )
n n

(5.4)

Here m2 •«- create (md2) returns a structure with string selectors

"name^^" through "name^" which then requires the user to specify

which entry of the created manager is to be used,such as use(m2.namel,b)

5.2 Implementation of resource managers

5.2.1 Creation of managers

Manager definitions with creation time parameters are actually

converted to definitions without creation time parameters by incor

porating a new entry called "&parameters". Furthermore, if the

original manager has only an unnamed entry, then that entry is

given the name "Snoname".* In the case of statement (5.1) we then

A programmer cannot write entry names beginning with &.



manager

(entry &parameters: Sj
Snoname: X

do

s' first (S) ;
s. ^ TTTT:0 I -1- j f

RESULT •«- (initial s Sq
for each x in X do

<new s, answer>

return all answer)
exit Sparameters: S;

Snoname: RESULT)

f(S.x)

Then any create statement such as (5.2) actually compiles as

create(md);
use(m^.Sparameters,<a>);
(if m^.Snoname ^ error then m'.&noname
else m' - ["&parameters"] ) (5.5)

where m' is not accessible to the programmer. Note that a structure

is formed using the creation time parameters for initialization.

The problem of mismatched parameters is handled exactly as in

procedure application. If a stream S is used as an actual argument

for a creation time parameter, then the second line of (5.5)

compiles into

done ^ (initial akw X
for each s in S do

new akw useTme" . Sparameters, s) when akw
return true when akw)

where the when construct is used to hold a comp|utation in abeyance

until some specified event has occurred. In dataflow such an event

can only be the arrival of a token. Thus

f(x) when t

prevents evaluation of f(x) until a token arrives on line t. The

when construct is easily implemented and is necessary for programming



resource managers.

Creation of a manager is accomplished by a new base language

operator CREATE. Assuming the manager definition md2 of (5.4) is

input the CREATE operator may be described as:

input = {<c ,u.c.s.i>}
^ m

output = {<<name^: u'.Cj^.entry^^.l,

5.2.2 Using managers

name„: u^.c^.entry^.1>, u.c,s^.i>}
n m n

where u' = (u.c.s.i) and c is the manager's
m

program code,

A USE, like APPLY, comprises two operators U and U . Figure

5.2 shows the execution of the expression use(m,y) where manager m

was created in (5.2). Note that m names the actual activity that

is to receive the argument value y. The following details the

functioning of the new operators where as before c^^ is the manager' s

program code.

The U operator sends a token, containing the argument and the

"return activity name" to the specified entry port of the manager

object:

input = {< (u'.Cjjj. entry. 1) /U. c. s^. i>j^gj., <y,u.c. s^.
output = {<<y, (u.c.s^.i) >,u'.Cj^.entry.1>}

The ENTRY operator accepts simple tokens coming from many sources

(i.e., each U operator that receives the corresponding entry name as

input), changes those tokens to stream components, and merges them

nondeterministically into a single stream. Two streams are output:



one stream contains the input data while the other stream contains

the "return activity name" for the EXIT operator;

input = {<<y, (u. c. s^.i)>,u'.Cj^. entry. 1>}
output = {<<|:y,k:f ,u'.Cm.s^ .l>,<'t: (u.c.s^.i) ,k:|> ,u^ .Cj^.exit. 1> }

•hVi

where k means this is the k such input to this ENTRY.

Note that even though many sources may be sending tokens to this

one ENTRY, it is a single activity and thus can keep a count k of

each token as it (nondeterministically) arrives. The EXIT operator

returns the tokens from its data input stream, after transforming

them back to simple tokens, to the activity specified in the "return

activity name" input stream called RA:

input = {<<|:Xj^,k:f,u.Cjj^.exit.l>^^^^ 1 l^k^n} u

{<<1: {u.c.s^.i)j^,k:f ,u'.Cj^.exit.l>^^ 1 1<
output = {<Xj^, (u.c.s^.i) j^> I lik^n}

l^k^n}

The U~^ operator like A~^ in procedure applications, acts only to

distribute results in the calling environment.

5.2.3 Destruction of managers

The main problem in destroying a manager is to decide when

a manager is no longer in use. A manager which cannot be referenced

is an obvious candidate for destruction. However, unlike structures,

circular name references are possible among managers (see Section 5.5)

Therefore, in a hierarchical system two managers which are referenced

only by each other may be eligible for destruction. We have not

been able to devise a practical scheme for the detection of circular

references. This problem is still under investigation.



5.3 Nondeterministic stream merge

Let A and B be streams. Then the stream produced by merge(A,B)

is the result of nondeterministically merging streams A and B subject

to the restriction that the i token is taken from A only if the

i-1®^ token of A has already been output. The same behavior must

hold for B. An est token is output only after an est is taken from

both A and B. The merge construct is implemented by a MERGE operator.

Aside from entry, which can be used only in the header"of a manager

definition, merge is the only nondeterministic function available to

the programmer.

The behavior of the MERGE operator cannot be described in terms of

a stream in - stream out function since the output stream is not

uniquely determined by the input streams. The semantics of MERGE

also cannot be described in terms of the set of all possible

streams that preserve the token order within the input streams.

This latter point is rather subtle and is due to the use of cyclic

schemata within a program. A semantic specification of MERGE is

beyond the scope of this paper and can be found in [Kosinski78].

5.4 An example - the readers and writers problem

The problem [CHP71,Hoare74] is to devise a resource manager

to allow simultaneous read access but exclusive write access to the

file under its control. The manager* fmd has two logical parts;

an agent which performs the actual computation on the file, and

a scheduler that blocks and enables individual requests within the

agent. Figure 5.3 outlines the structure of such a manager. An

instance fm of fmd to control file x may be created by

fm •«- create (fmd,x)

*The solution presented here is taken from [AGP77].



Thus an expression to read the file x is

use(fm.read,r)

Each such request enters stream READQ. A write request is made in

a similar manner and enters the stream WRITEQ. Each queued request

waits until matched with an enabling signal from the streams

READ_ENABLE or WRITE_ENABLE generated by the scheduler. When matched

a queued request is released to the access_resource routine. Proper

operation of the resource manager requires that the scheduler be

notified whenever a request enters the manager or completes its

read or write access. Since these signals are nondeterministically

generated, we merge them within the resource manager to form a

single stream X of signals to the scheduler.

A program for the file resource manager is given in (5.6) where

the scheduler state is represented by the number of active readers

(ra), the number of active writers (wa), the number of waiting

readers (rw), and the number of waiting writers (ww). The scheduler

enables requests to leave the waiting queues by producing a stream

of reader enabling tokens (RE) or one writer enabling token (we).

Note that

1. wa<=l at all times,
2. if wa=l then ra=0,
3. if ra>0 then wa=0.

The manager (5.6) implements Hoare's version of the readers and writers

problem [Hoare74]. In this version a new reader is not permitted

to proceed if a writer is waiting, and all readers that are waiting

when.a writer completes are allowed to proceed. This prevents in

definite exclusion ("starvation") of both the readers and the writers.



fmd •<"

manager(file)
(entry ~read: READQ;

write: WRITEQ do

READ RESULT, READ_DONE
(for each r READQ; re ^ READ_ENABLE ^

s •«- access_resource (file,r) when re
return all s, all "read exit" when s);

WRITE_RESULT, WRITE_IDONE •<-
(for each r ^ WRITEQ; we ^ WRITE_ENABLE do

s access_resource (f ile,r) When we
return all s, all "write exit" when s);

READERS •*- (for each r in READQ do
return all "deader");

WRITERS •«- (for each r in WRITEQ ^
return all Writer");

X merge (READERS,WRITERS, READ_DONE,WRITE_DONE) ;

READ ENABLE,WRITE_ENABLE •«-
Tinitial rw, ww, ra, wa 0, 0, 0, 0

for each x ^ X do
new rw, new ww, new ra, new wa, RE, we •«-

(if X = "reader"
then (if wa=0 and ww=0

then rw, ww, ra+1, wa, ["go"], X
else rw+1, ww, ra, wa, [], X)

else X = "writer"

then (if wa=0 and ra=0
then rw, ww, ra, 1, [], "go"
else rw, ww+1, ra, wa,[], X)

else if X = "read exit"
then (if ra=l and ww>0

then rw, ww-^l, 0, 1, [], "go"
else rw, ww, ra-1, wa,[], X)

else Jx = "write exit"!

(if rw>0
then 0, ww, rw, 0,

(for i from 1 ^ rw do
return all "go"), X

return all RE, all we but X)

exit read: READ_RESULT;
write: WRITE RESULT)

then rw, ww-1, ra, wa, [], "go"
else rw, ww, ra, 0, [], X)))
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Two other versions of the problem appear in [CHP71] and are easily

programmed by simple alteration of the scheduler.

5.5 Dataflow managers and modularity

We also wish to make two more points about resource managers

in Id. The first point concerns indeterminancy, which in sequential

languages is usually a secondary effect of shared variables. In

dataflow, indeterminacy is provided by explicit operators (MERGE and

ENTRY in the base language) which gives the programmer more conven

ient control over nondeterministic behavior. The second point

concerns the degree to which the requesting process is separated

from the manager's internal controlling mechanisms. In a sequential

language, each requesting process actually controls and executes

the code inside the monitor [Brinch-Hansen72, Hoare74]. This

characteristic of monitors makes it difficult, for example, to

replace a software resource with a hardware resource. It also makes

it difficult to guarantee valid use of the resource control mechanisms

within a monitor, such as enforcing conventions on the proper sequence

in which procedures of the monitor are to be called. Id, however,

implements a resource manager as a closed module which nondeter-

ministically receives requests from other processes, and acts upon

these requests according to the scheduler (written by the programmer)

enclosed within that manager. The requesting processes have no

control over, and are entirely independent of the resource manager

module which is itself an independent process. Such a model

completely separates the user from the resource and should make

hardware/software module interchange easier to achieve. In [Jammel

fit Stiegler77], a model of managers is presented in the von Neumann
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context that incorporates some of the ideas presented here.

Managers also provide a good model for processes themselves.

If two managers know about each other, then the full expressive

power of Id can be used for interprocess communication. Let md3

be a manager definition that requires a manager as a creation time

parameter. Then two managers that reference each other are created

m^ create (md3 ,m2) ;
m2 create (md3,mj^) ;

This does not result in a circular reference as can be deduced by

the implementation of create given in Section 5.2.1.

5.6 Use of managers in determinate computation

Consider the following manager definition

md4 manager (S)
(entry~X ^
RESULT (for each x ^ X; s ^ S ^

return all s)
exit RESULT) (5.7)

which returns the next element of the stream S whenever it receives

a token in stream X. A token in X essentially represents a request

for a token from stream S. Kathail [Kathail78] has shown that (5.7)

may be very useful in solving determinate problems. We illustrate

his technique by a program to generate in ascending numerical order

the first n elements of the set {2^3^5'̂ | i,j,k>0} [Dijkstra76, Kahn

& MacQueen77]. One method for generating this sequence uses the

three queues XI, X2, and h^. Queue XI contains numbers which are

two times the number last output, while queue X2 contains numbers
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which are three times the niomber last output. The third queue h^

is of length one and contains five times the number last output.

At any given point, the next number output is the smallest number

at the head of the three queues (i.e., min (hj^,h2,h2) where h^ is
til. 11-the head of the i queue). If the i queue has the smallest

number at its head (thus becoming the next number output), then a

new element is added to every queue before the i queue, according

to the rules stated above.

The following expression produces the desired set as the

output stream A. The resource manager nexthl releases tokens from

input stream XI on demand, thus treating stream XI as a resource.

(nexthl -f- create (md4, XI) ;
nexth2 ^ create(md4,X2);
A,X1,X2 Cihltial h2^,h2/fi3 2,3,5

for i from 1 n 6^
c •«- min (hj^, h^ >h^) ;
a,Xj^,X2,new h,new h2f new h^

(if c=h^ then h^, 2*h^, X,
use(nexthl,X), h2, h^

else if c=h2 then h2/ 2*h2, 3*h2,
hj^, use (nexth2 , X) , hj

else !c=h2J h^r 2*hq, 3*h2,
h^, h2, 5*h3)

return all a, all x^^, all X2 but X)
return A)
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Figure 5.1 The body of a primitive resource manager
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Figure 5.3 A file resource manager



6. Progrannner—defined Data Types and Operator Extsnsionality

6.1 Data abstraction

Data abstraction deals with defining objects of a type not

implemented by the system and various operations on the objects of

that type. If done successfullyf data abstraction relieves the

^g0j- from the burden of knowing the internal representation of

either the object or the implementation of the associated operations

In most languages, a special construct is used for definition of the

abstraction and to serve as a template for generating instances

of the new type. Generally, the operations on the data type are

defined as procedures encapsulated in the definition. The class

construct of SIMULA, the forms of ALPHARD [SWL77], and clusters of

CLU [LSAS77] are examples of such definitional devices.

Even though the model for data abstraction in Id was not

derived from any of the above languages, it has similarities to

the SIMULA class concept. Consider defining a stack abstraction

with the following operations;

"push": stack x item -*• stack
"pop": stack stack

"empty": stack boolean
"top": stack -»• item

In SIMULA a class named stack may be written as follows:

class stack
ref ^iton) array s;
integer Ij

begin
procedure push (v);
ref (item) v;
begin

I := l+l',
s [£] : - v;

end;



procedure pop;
I := 1-1;

boolean procedure empty;
empty := 1=0;

ref (item) procedure top;
top :- sl£J;

where item is the name of another class that includes every type

that may be used as stack elements. An empty stack (i.e., an object

of type stack) is generated by writing

X new stack (a,0)

This statement gives x essentially a private integer I (with initial

value 0), array s (initialized to a), and the capability to access

the stack operations contained in the class definition. These

operations are invoked by writing x.push(b), x.pop, etc. The

effect of push and pop is to change the internal state of x (i.e.,

s and t) . Hence, if the same stack instance pointed to by x is

also pointed to by another variable, the value of that other

variable is also changed.

In Id, data abstraction may be implemented by a procedure.

The procedure definition represents the abstraction template;

creating an instance of the abstraction is equivalent to freezing

certain parameters of the procedures. Invoking an operation is

done by applying the procedure with arguments that specify the

operation to be carried out. Consider the following Id procedure

which represents the stack abstraction.



z •<- procedure stack (f,u,v,s,£)
(if f = "push" then compose (stack, <<4 ,s+ [-f+1]v>, <5,-£+!>>)
else if f = "pop" tl^en compose (stack, <<4, s- [£] >, <5 y-f-l>>)
else Tf f = "empty" then £=0
else if f = "top" then s[£]
else error("illegal operation on stacks")) (6.1)

An empty stack is generated by writing

X ^ compose(z,<<4,A>,<5,0>>)

Note that procedure x is a copy of procedure stack with parameters

s and I frozen. Value b may be pushed onto stack x by writing

X("push",x,b). For convenience, the syntax lf|(u,v,w) is used in

Id to represent APPLY(u,<"f",u,v,w>).

A major difference between the Id and SIMULA data abstraction

facilities is the removal of side effects. Procedure stack does

not implement push and pop operations by altering the internal

state of the stack; rather it creates a new stack on every push

and pop operation. This effect can be achieved in SIMULA also by

creating new stacks on every push and pop operation. However, such

a stack implementation will be considerably costlier in

execution time than the SIMULA stack given in this section. Dis-

truction of an old stack in SIMULA also requires a programmer to

explicitly delete references to that stack.

6.2 Operator extensionality and pdts

The stack example, and other examples in [Ravi Prakash78]

suggest that current methodologies for data abstraction can be

implemented by Id procedures and streams. However, we have chosen

to distinguish a procedure to implement a programmer-defined

data type (pdt) from other procedures. The procedure stack of



(6.1) can be made a pdt by replacing the word procedure by pdt.

This distinction has been made to limit the problems encountered

in operator extensibility.

There are exactly two functions defined on pdt values:

ptype and compose. The operation ptype(x) returns the primitive

or system type of the value x; thus ptype(5) returns "integer"

and ptype(z) returns "pdt". The compose operator on pdts acts

exactly like it acts on procedure values. Like any other Id

value, a pdt can be passed as an argument and appended to a struc

ture .

A pdt definition is often enclosed within a procedure to

"hide" the initialization of the pdt from the programmer. For

example, procedure stack_gen permits generation of only empty

stacks and makes the internal state of the pdt stack (i.e.,

parameters s and Z) inaccessable to a user.

procedure stack_gen ( )
(z pdt stack (f,u,v,s,£) ( ... )
return compose(z,<<4,A>,<5,0>>))

If a user is to be allowed to generate non-empty stacks, the

procedure stack_gen would perform error checking on its input

parameters before performing the compose operation. Note that

stack_gen does not affect the pdt stack, it only ensures the

proper use of the abstraction.

Operator extensionality in Id is derived by extending the

semantics of all non-control base language operators (except

PTYPE and COMPOSE) as shown in Figure 6.1. Essentially an

operator becomes an APPLY whenever its first argument is a pdt

value. The control operator A is also extended.



This semantic extension of operators permits using "= " to

test the equality of two stacks. Suppose the following code is

included in the conditional expression of the pdt stack definition:

else if f = "="

then (initial flag true
for i from 1 to I while flag a not(|empty|v) do

new V Ipop Iv;
new flag s[Zfl-Z]

return flag a i>t a |empty|v)

If an element of stack v is another pdt instance then equality

in s[i] = Itop IV will dynamically change to an APPLY and check

for equality according to the rules specified within the value s[i].

It is also worth noting that as long as "pop" and "empty" are defined,

the internal representation of v is of no consequence.

To simplify type checking of pdts, one may observe the conven

tion of including "type" as one of the operations on every pdt

definition. Hence in the stack example we will include the

following clause

else if f = "type" then "stack"

The predicate type(z) will respond by APPLY (z ,< "type", z>) if z

is a pdt value, otherwise, it will return ptype(z). (Please note

that if z is a pdt and the programmer wrote z("type",z), the result

would be APPLY(z,<"apply",z,<"type",z>>) because of operator

extensionality) .

6.3 Example - the programmer-defined data type set

We represent* a set as a boolean membership procedure which

tests an element for membership in the represented set. In other-

words, the set {x |p(x)} will be represented by the boolean pro

cedure p. We include only the following operations in our

W© are obliged to G. Ravi Prakash [Ravi Prakash78] for this
representation.



definition of a set:

"type": set -*• "set"
e: set x value -*• boolean

u: set X set -*• set

n: set x set ^ set

To perform an operation like u u v, we only need to generate

another boolean procedure q that is the disjunction of the boolean

procedures of u and v. However, one can not and should not extract

the boolean procedure from v because set v may not use the same

representation for sets as does u. Hence, only a legitimate opera

tion on V, such as the membership test, should be used in creating

procedure q. Consider the following definition:

procedure set_gen (p) Ip is a boolean procedure!
( z •«- pdt set (f,u,v,p)

(if f = "type" then "set"
^se if f = "e" then p{v)
else f = "u"

then (q procedure (x.p. v)
(p(x) V ]e1(v,x));

q^ •*- compose (q,<<2,p>,<3,v>>)
return compose(set,<<4,q^>>))

else if f = "n"
then (q procedure (x,p,v)

(p(x) A lel(v,x));
q' compose (q, <<2 ,p>, <3 , v>>)

return compose(set,<<4,q^>>))
else error("undefined operation on sets"))

return (if ptype(p) = "procedure"
then compose(z,<<4,p>>)
else error("This set definition requires a

boolean procedure"))) (6.2)

This definition of sets works properly on finite as well as

infinite sets. It does only the minimal execution needed to carry

out the union and intersection operations. Again, nothing is assumed

about the internal representation of the other set involved in these

operations. And, in fact, different representations of the same



pdt may be intermixed as long as the operators seen by the programmer

are the only operations used, both by the programmer and the differ

ent representational definitions themselves,



Figure 6.1.
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An Architecture for a Dataflow Machine*

Our primary goal is to exploit parallelism present in programs

by distributing activities generated during execution over a

machine comprising hundreds of processors. However, unless care

is exercised, the gains due to concurrent execution of activities

can be overshadowed by communication costs. In this section, some

general principles are stated for balancing such costs. We are not

yet ready to specify a final design, but the basic unit of an

architecture under study is shown in Figure 7.1. Simulation is the

major tool for evaluating our ideas about architectures, and con

clusions based on these results are also included where appropriate.

Simulation experiments have been conducted by executing Qompiled

Id programs on an architecture comprising several subdomains

shown in Figure 7.1 [Gostelow & Thomas78 . Several physical sub-

domains are combined into one physical domain by two disjoint bus

networks: a tokfen bus that connects the upper bus connectors

(BC), and a memory bus connecting the lower BCs. We have not

yet experimented with interconnection of physical domains because of

experimental limitations and therefore do not suggest any particular

physical domain connection scheme.

7.1 The token bus structure and locality

Each activity (the basic unit of computation) is assigned to

a processing element (PE) for execution. When a PE completes

execution of an activity, it manufactures the output tokens and

*Robert Thomas contributed much to the work reported in this Section.



evaluates an assignment function to determine the address of the

destination PE for each token produced. This address is calculated

using the destination activity name present on each output token.

Note that any two PEs that are to send tokens to the same activity

must agree on a particular assignment function.** Since an assign

ment function may assign more than one activity to the same PE at

the same time, it is required that each PE sort all tokens received,

by their activity names. Sorting capabilities may add complexity

to PE design, but the alternative of scheduling PEs only when a PE

is free, is either too centralized or complex.

The assignment function, instead of distributing activities

over processors at random, follows a principle of locality, that

is, activities logically close together are to be executed physical

ly close together. Amongst the activities generated by the

unravelling interpreter, the activities belonging to a logical

domain are considered logically close. In Section 3 it was shown

that activities within one logical domain do not interact with

activities outside that domain (except for initial values and final

results). Since activities from two domains are not usefully

mixed, keeping them physically separate already effects some

degree of locality.

** Physical mapping of activities on PEs is very different from the
allocation schemes of our earlier architecture [Arvind & Gostelow77b]
There an activity could essentially obtain any free PE. We have
rejected this undisciplined allocation of PEs on the basis of
simulation results by Gostelow and Thomas [Gostelow & Thomas78].



A compiler can also enhance locality hy coalescing se

quentially dependent operators (such as a D operator and the

operator that feeds it) into a single operator. However, coalescing

also affects the "grain" of activity and thereby has a major

impact on the design of a PE. We suspect that PEs should execute

more complex operations that just +, etc.

Many bus structures are possible for interconnecting PEs,

but the choice is affected by the particular assignment function

used. We will use functions that accentuate lo-ality (i.e.,

distribute messages nonuniformly). Thus an expensive bussing

structure such as a cross bar switch which makes all PEs equidistant

from each other is not needed. Due to high bandwidth requirements

a centralized store and forward message switching facility is

also unacceptable. However, between these two extremes are several

hierarical bussing structures [Wittie76, Pierce72] with O(log n)

delays among interconnected PEs.

Simulation results indicate that the assignment fxinction is

fundamental to balancing the need for distributing activities

throughout the machine and at the same time ensuring locality.

All assignment functions currently in use map each logical domain

(procedure and loop instance) onto one physical sub-domain. The

activities within such a logical domain are then confined to

those PEs, giving locality in token transmission (and also in memory

access). Since there are many such groups of locally connected

PEs, and each group functions (essentially) independently, con

currency is exploited.



7.2 The memory system and redundancy

Memory in dataflow systems is needed to implement structures

and to store program code. It is impractical to carry a complete

structure on a token so a structure value is actually kept in

memory while only a pointer to that structure is transmitted

on a token. (We again emphasize that this memory system is not

seen by the programmer.) For convenience we imagine all PEs

share one large address space; however, memory modules (M) will

be physically distributed. Every PE will have direct access

to a (possibly shared) local memory module (Figure 7.1), and

indirect access to memory modules local to other PEs. If the

pointer on a token carries a physical memory address then a PE

performing a structure operation can determine the memory module

actually holding the structure. We expect each memory module

to be connected to a memory controller (MC) which will be

responsible for routing memory requests and for memory management

tasks. An MC may store newly a newly created structure value directly

in its local M or request a distant MC to do so.

In spite of similarities between token bus and memory bus

requirements, there are also major differences. For example,

the traffic on the memory bus will most likely involve information

packets of variable size. Also, patterns of use may be quite

different since every select operation implies two-way traffic

(that is, (i) sending a request to the target memory module, and

(ii) receiving the data from the target).



It should be noted that storing a structure in memory can

have two detrimental effects. First, consider a structure that

is being referenced by a large number of PEs. Since the memory

module processes these requests one at a time, the gain due to

distribution of activities on these PEs is essentially lost.

Second, a PE referencing a structure can be physically quite

distant from the memory module holding the strucutre, and hence, may

have to wait a long time to receive a response. Our system

follows a principle of redundancy, that is, data resident in

memory may be physically present in more than one memory unit.

This reduces memory conflicts as well as data communication time

at the expense of memory space and copy time.

A local MC, when requested to perform an operation on a

structure not stored locally, requests a copy of the level of the

structure from the distant controller. After receiving a copy,

the local controller updates its map of locally held structures.

The local controller then performs the operation originally requested'

and is ready for any subsequent requests for that same structure —

a fairly probable event if the first request occurred within a loop

executing in that sub-domain. Thus each memory controller acts

as a local cache with respect to the rest of the memory system.

As stated earlier, the architecture under investigation is

primarily for testing implementation principles. It also provides

an evaluation of the effectiveness of the unfolding interpreter.

We simply note that many other architectures are possible, and

in this section we have concentrated on architectures that are



suitable for implementing the unfolding interpreter. Several

other interpreters of dataflow and their corresponding machines

have been proposed [Dennis & Misunas74, Sonnenburg & Irani74,

Treleaven77, Rumbaugh77, Davis78, GVJG78].





8. Summary and Future Directions

In this paper we have presented an asynchronous computing

system. The high level language. Id, and the base language are

integrated and support each other. The unfolding interpreter for

the base language exploits the asynchrony inherent in a program

by unfolding loops and generating a potentially large number of

independent activites. Many architectures have the potential to

exhibit a high degree of concurrency while executing these activites.

Id not only makes it convenient for the user to program in

dataflow by providing recursive procedures, loops, streams, managers,

and pdts, but it also imposes very strong structure on the base

language. There are only five basic schemata in the base language;

blocks, conditionals, for each-while loops, procedure and pdt appl

ications, and managers. Due to their rigid structure, the correct

ness and other desirable properties of these schemata can be easily

proven.

Plouffe [PlouffeVS] is developing an error recovery model

that integrates error handling into Id with minimal expansion

of the base language. In addition, Bic [Bic78] has shown that

four new primitive operations, a tag field on each token, and

some additional Id syntax permits solution of most of the security

and protection problems found in the literature. Undoubtedly

the clean semantics of the base language with the structure

imposed by Id is the main reason for the success of these models.

The semantics of Id are not as elegant as that of Backus'

FFP system [Backus78]. However Id is a more complete language

because it permits expression of history sensitive as well as

indeterminate computation. It may be worth incorporating some of



these ideas into Backus' FFP systems.

The ultimate success of the system presented here will

depend upon the design of machines that can execute the base

language efficiently. Current experiments on an architecture

suggest that the goal of designing high performance dataflow

machines is not unreasonable [Gostelow & Thomas78].
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