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Quantification of rainfall and its spatial and temporal variability is extremely important for reliable
hydrological and meteorological modeling. While rain gauge measurements do not provide reasonable areal
representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution.
However, uncertainties associated with remotely sensed rainfall estimates are not well quantified. This issue
is important considering the fact that uncertainties in input rainfall are the main sources of error in
hydrologic processes. Using an ensemble of rainfall estimates that resembles multiple realizations of possible
true rainfall, one can assess uncertainties associated with remotely sensed rainfall data. In this paper,
ensembles are generated by imposing rainfall error fields over remotely sensed rainfall estimates. A non-
Gaussian copula-based model is introduced for simulation of rainfall error fields. The v-transformed copula is
employed to describe the dependence structure of rainfall error estimates without the influence of the
marginal distribution. Simulations using this model can be performed unconditionally or conditioned on
ground reference measurements such that rain gauge data are honored at their locations. The presented
model is implemented for simulation of rainfall ensembles across the Little Washita watershed, Oklahoma.
The results indicate that the model generates rainfall fields with similar spatio-temporal characteristics and
stochastic properties to those of observed rainfall data.
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1. Introduction

Reliable direct measurements of ground surface rainfall can be
obtained only at very limited spatial scales using rain gauge stations.
However, rainfall is known to be highly variable in space and time
[54,10,13]. Inrecent years, satellites, weather radar systems and remote
sensing techniques have provided rainfall information at higher
temporal and spatial resolutions than was previously possible from
rain gauge measurements. Application of remotely sensed rainfall data
in hydrologic and meteorological predictions has increased significantly
in the past few decades. Despite extensive research, however, the
uncertainties associated with remotely sensed rainfall data have not yet
been well quantified [27,34,16,26,33,5,11]. Characterization and quan-
tification of such uncertainties are extremely important as it is believed
that spatial and temporal variability in input rainfall is one of the main
sources of error in rainfall-runoff processes and hydrologic predictions
[43,53,3,23].

Estimates of spatio-temporal uncertainties in remotely sensed
rainfall data can be obtained by simulation of a reasonable rainfall
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ensemble which consists of a large number of rainfall realizations, each
of which represents an equiprobable rainfall event that can occur. Unlike
geostatistical interpolation techniques [31,32], stochastic simulation
models preserve the typical variability and fluctuation patterns of
rainfall [15]. The generated rainfall ensembles can be used as input to
hydrological and meteorological models to assess model prediction
uncertainties. A great deal of effort has been made to develop stochastic
models for simulation of multivariate rainfall fields (e.g., gauge, radar
and satellite). In a number of studies, rainfall fields are directly
simulated using different multivariate stochastic techniques (e.g.,
[40,58,28,37,45,9,6]). Ciach et al. [8] developed an operational approach
based on empirical investigations of joint samples of radar and ground
surface data whereby the radar rainfall uncertainties consist of a
systematic distortion function and a stochastic component. The radar
error components are then estimated using non-parametric estimation
schemes. Based on the work presented by [8,56] developed a radar
rainfall field generator and a model to produce probability of
exceedance maps of radar rainfall conditioned on given radar rainfall
estimates. Ensemble of rainfall fields can be obtained by imposing
simulated random error fields over original rainfall estimates. [22]
proposed that radar estimates can be perturbed with stochastic fields in
order to obtain an ensemble of radar estimates. In a recent work, [2]
presented a random error model in which radar fields are perturbed
using two error components: a proportion error field to account for
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errors that are proportional to the magnitude of rain rate and a purely
random error field for the sum of errors from different sources.

A reasonable and robust model for rainfall simulation is expected to
produce rainfall fields with similar spatial and temporal dependencies
to those of the observed. It is well known that hydrological and
meteorological data are dependent in both space and time. Traditional
measures of dependence (e.g., Pearson linear correlation coefficient)
involve only the second moment statistics and thus can capture limited
aspect of the dependence among random variables. Copulas, on the
other hand, can be employed to describe the dependencies among n
random variables on an n dimensional unit cube (uniform). Description
of the spatial dependence structure independent of the marginal
distribution is one of the most attractive features of copulas. The
application of copulas in simulation of multivariate data and nonlinear
dependence structures has become popular in hydrological and
meteorological studies. In recent years, a number of copulas-based
models have been introduced for multivariate frequency analysis, risk
assessment, geostatistical interpolation and multivariate extreme value
analyses (see [14,21,42,4,49,20,60,46,1]). Using bivariate mixed dis-
tributions [48] and a copula-based Markov approach, [47] and [57]
introduced a model for radar rainfall estimation uncertainties. The most
recent applications of copulas in hydrology and meteorology are limited
to multivariate Gaussian or bivariate non-Gaussian copulas. The well-
known normal distribution can be extended to the multivariate normal
as described in [36]; however, the Gaussian copula cannot capture the
upper tail dependence that may exist among hydrometeorological data
[41]. On the other hand, some, but not all, non-Gaussian copulas, such as
the commonly used Archimedean copulas are restricted for large
dimensions. In this paper, a multivariate non-Gaussian copula-based
model is introduced for simulation of remotely sensed rainfall data. The
v-transformed copula is used to describe the dependence structure of
the rainfall data. Having described the dependencies using copulas, the
empirical distribution function of observed rainfall error is numerically
approximated and applied on the simulated error fields so that
simulated realizations are similar to those of the observed in terms of
the distribution function. The ensemble-based approach, presented
here, can be applied for the simulation of radar estimates, satellite
images and also multi-site rain gauge data. In an example, the model is
implemented for the simulation of 4 km gridded Stage IV radar data, also
known as Next Generation Weather Radar (NEXRAD) multi-sensor
precipitation estimates (Hereinafter, radar estimates). The NEXRAD
system is installed and maintained by the National Weather Service
(NWS). It consists of a network of Weather Surveillance Radars — 1988
Doppler (WSR-88D) that covers the entire United States [59,12]. Using
the presented model, ensembles of radar estimates are simulated with
conditions based on available observations. The generated rainfall
ensembles can then be used as input to hydrological and meteorological
models to assess model prediction uncertainties. Subsequent runs of a
hydrological or meteorological model using simulated realizations of
radar fields would then allow an assessment of uncertainty propagation
due to the precipitation input. In the following sections, after a brief
review on the study area and data resources, the mathematical
formulation of the model is explained in detail. The model is then
implemented over a relatively large watershed in Oklahoma, USA.

2. Data and study area

The Little Washita watershed located in the southwestern part of the
state of Oklahoma, USA was selected for this study. The climate of the
region is classified as moist sub humid and the average annual rainfall of
the watershed is approximately 760 mm, while the mean annual
temperature has been determined to be 16°C [18]. The area of the
watershed is approximately 611km? and the surface water drains into
the Little Washita River which is a tributary of the Washita River. Stage
IV radar estimates used in this study are provided by NCAR/EOL under
sponsorship of the National Science Foundation. The data is available

with a temporal resolution of 1 hour and a spatial resolution of 4 x 4 km.
The closest NEXRAD radar station is the Oklahoma City station located
approximately 70 km from the center of the watershed.

Hydrological and meteorological variables of the watershed have
been measured since the 1930s. The Micronet network, operated by
the Agricultural Research Service (ARS), is located within and around
the Little Washita boundaries. The Micronet network includes 42 rain
gauge stations, which are almost uniformly distributed throughout the
watershed. Fig. 1 shows the location of the watershed and the position
of the rain gauges and radar pixels. In addition to the Micronet
network, there are three stations of the Oklahoma Mesonet located
within the study area that are not included in the analysis due to the
fact that they are used in the radar precipitation estimation processing.
The Micronet network is equipped with tipping-bucket gauges that
record rainfall data with a temporal resolution of 5 min and an
accuracy of 0.254 mm [59]. The 5 min accumulations are aggregated to
hourly intervals in order to synchronize the rain gauge measurements
with radar estimates. The reference surface rainfall data are then used
to obtain estimates of the radar rainfall error across the study area. The
differences between the reference surface rainfall data and the radar
estimates are considered and termed as observed error. It is noted that
the observed error is estimated after removing the overall bias of the
rainfall estimates with respect to the rain gauge measurements as
described in [8].

3. V-transformed copula

The v-transformed copula is obtained through a non-monotonic
transformation of the multivariate Gaussian copula [4]. Eq. (1)
describes the multivariate Gaussian copula with correlation matrix p
as its only parameter [36]:

Chty, v, ty) = DI ((b_l(u1)7...,<b_1(un)> (1)
where: &= multivariate standard Gaussian distribution function.

The variable N is defined as an n-dimensional normal random
variable with a mean of zero, unit standard deviation and correlation
matrix p. The v-transformed copula can be derived with the following
transformation [4]:

if Nj>m

X, = {k(Ni_m) if Nj<m 2)

m—N;

where: k and m = copula parameters
The univariate marginal distribution of X; can be expressed as [4]:

F(x) = CD(% + m)—(—x + m) 3)

with the density function being [4]:

100 = 1ok +m) + o(—x +m) @)

where & is the standard normal distribution and the term ¢ denotes
the probability density function of the normal distribution:

1 2
2102 EXP (_ (XZOPZL) ) ’ ®)

There are many families of copulas developed for different practical
contexts. Each family of copulas has a number of parameters to describe
the dependencies. The main difference associated with different copulas
is in the detail of the dependence they represent. For instance, various
copula families may differ in the part of their distributions (upper tail/
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Oklahoma

Fig. 1. Little Washita research watershed, Oklahoma, USA.

lower tail) where the association is strongest/weakest. Tail dependence
describes the significance of the dependence in lower left quantile or
upper right quantile of a multivariate distribution function. The upper
tail expresses the probability occurrence of positive large values
(extremes) at multiple locations jointly. The tail behavior depends
solely on the type of copula and not on the choice of marginal
distribution. Thus, in copula-based simulation, the type of copula
strongly affects the tail dependence of simulated realizations. While the
Gaussian copula does not have upper tail nor lower tail dependence, a
number of non-Gaussian copulas have lower tail dependency, upper tail
dependency, or even both [35]. Thus a non-Gaussian copula is used in
this paper so that the model can capture the tail dependence more
accurately. For additional information regarding different copula
families, the reader is referred to [36] and [29].

4. Model description

As mentioned before, one way to account for uncertainties associated
with rainfall estimates is to generate an ensemble of rainfall realizations
that is a representation of possible variabilities in precipitation data.
Multiple realizations of rainfall fields can be obtained by imposing
random error fields over the original rainfall estimates. In this study, the
following formulation is used to generate an ensemble of rainfall
estimates:

Ry =R, +R x¢ (6)
where :

Rs simulated rainfall (rain rate)

R; rain rate

€ rainfall error

The term, R; X ¢, represents the error component which is known to
be proportional to the magnitude of rain rate [2,24,8]. Intuitively, one
may expect that small rain rates are not subject to very large random
errors. Similar behavior has been observed for measurement error of
rating curves (e.g., [38]). Previous studies confirm that when error is
proportional to the magnitude of the indicator variable (here, rainfall),
the associated uncertainties can be modeled using a multiplicative
error term (see [44] and [38]). A similar approach is adopted here by
using a multiplicative component (R; x ¢) to describe the uncertainties
of remotely sensed precipitation estimates. This approach guarantees

that simulated values to be proportional to the magnitude of rain rate.
That is, one can avoid unrealistically large errors where the rain rate is
insignificant.

It should be noted that copula parameters are to be estimated based
on the available observations which are typically obtained from pair of
radar estimates and rain gauge measurements. Having estimated the
parameters, the v-transformed copula is used for simulation of
multivariate error fields with a similar dependence structure to that
of the observed data. Using the method introduced here, radar error
fields can also be simulated unconditionally (without conditioning on
observations in the simulation process). Nonetheless, in either case,
the simulated error fields are transformed by applying the empirical
cumulative distribution function (CDF) of the observed rainfall error to
the simulated error fields. This can be achieved by approximating the
CDF of the observed error with a stairs function such that the step
heights are simply the data that fall within the step. It is worth
remembering that copulas are invariant to monotonic transformations
and hence the simulated error fields will have the same spatial
dependence structure after the transformation. This issue is illustrated
in Fig. 2 using an example with synthetic data. Fig. 2(a) shows the
correlation matrix (20x20) of 20 randomly simulated variables
(§=(&1),...,620). Fig. 2(b) displays the empirical rank correlation [36]
of the same variables (notice that Fig. 2(a) and (b) are not identical).
Fig. 2(c) and (d) present the Pearson correlation matrix and empirical
copula of the transformed variables (In(§) ), respectively. As shown, by
a logarithmic transformation of the variables the Pearson correlation
matrix changes significantly (compare Fig. 2(a) and (c)), whereas the
empirical copula remains unchanged (compare Fig. 2(b) and (d)).

Simulation of multivariate random fields can be performed based
on any given copula. In order to obtain a simulated field of x(x,...,X,)
with marginals of F,...,F,, the following three steps are required:

1. Estimation of the copula (C") parameters.

2. Simulation of uniform random variables u(u;, ..., u,) using the copula
.

3. Transformation of the univariate marginals to Fy, ..., F, using Sklar's
theorem ([50], see Appendix A; Eq. (10)): x;=F; !(u;).

As mentioned above, due to invariance of copulas to monotonic
transformations, applying the marginals (Step 3) does not affect the
underling dependence structure. Furthermore, Fy,...,F, do not
necessarily need to have the same distribution family. This is a great
advantage in simulation, as the variables may belong to different
probability distribution families or may have significantly different
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(a): Pearson Correlation

(€): Pearson Correlation
Transformed Variables

(b): Empirical Copula
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Fig. 2. Invariance of copulas to monotonic transformations: (a) Pearson correlation matrix of the data; (b) empirical copula of the data; (c) Pearson correlation matrix of the

transformed data; and (d) empirical copula of the transformed data.

empirical distribution functions. In other words, using copulas and the
Sklar theorem (see Appendix A), one can simulate random variables
with the same probability distribution as that of the input data while
preserving the dependence structure of the variables. This is one of
the main attractive features of copulas in simulation of spatially
dependent random fields. The interested reader is referred to [41] for
a detailed overview of the step-by-step conditional simulation using
copulas.

5. Case study

In the following, an example implementation of the model for the
simulation of two-dimensional radar rainfall fields is presented. In the
example, unconditional and conditional simulations of rainfall fields
are demonstrated for three rainfall events occurring in August 2003,
September 2005 and September 2006. During the first event, 42 rain
gauges were available while during the second and third events, 22
and 20 rain gauges were in operation and available for analysis. Table 1
displays summary statistics including the mean, standard deviation,
and 10 and 90% quantiles of the lumped rainfall accumulation for each
storm.

Using the available rain gauge measurements and radar estimates, the
parameters of the v-copula model are to be estimated first. The
v-transformed copula is parameterized with the correlation matrix and
two other parameters, k and m, that are used to transform the
multivariate normal copula. In this study the parameter estimation
method is based on [4] whereby the correlation matrix is described as a

Table 1
Summary statistics of rainfall accumulations for the selected storms.

parameter dependent on different distance vectors of d. Based on this
assumption, the correlation matrix can be obtained using the spherical
function. Here, the spherical function is defined with two sills (s; and s5),
two ranges (s; and s,) and a nugget parameter (so) as shown in Eq. (7):

Y(x) = v(xp) + v(xz) )

3%, x5
=St 5 ((Zﬁ_é>1(0.rl)(xl) + [[r,,w)(’ﬁ))

3%, %
+ 55 <<2rj_r§> Loy, (%) + I, ) (X2)>
2

where the indicator function Ip(x) is 1 if x D and 0 otherwise. A
likelihood approach is used where the likelihood function itself,
consists of the product of multiple likelihood functions obtained from
disjoint subsets of data (see [4] for details). Table 2 lists the
parameters (So, S1, S2, I'1, 2, k and m) of the v-transformed copula
used for simulations. Notice that for each event, the parameters are
estimated based on the seasonal observations (e.g., summer 2003,
summer 2005) in which the event occurs. Using the estimated
parameters, multiple rainfall fields are simulated for the selected
storms. Fig. 3(a) presents a radar rainfall image occurring during
Event 1 and Fig. 3(b) shows the corresponding rain gauge measure-
ments. Fig. 3(c) and (d) display two realizations of conditionally
simulated radar fields using the v-transformed copula. A visual
comparison confirms that the model reproduces the rain gauge values
at their locations.

Table 2

Event Date Duration ~ Mean  Standard Q10 Q90 The parameters of the spherical function.

Time [h] [mm] Deviation [mm] [mm] Event So $1 S r1 [m] 5 [m] k m
Event 1 8/30/03 07:00 12:00 43 5.5 0.8 8.8 Event 1 0.01 0.14 043 3400 14,000 1.2 2.0
Event 2 9/15/05 06:00 14:00 3.8 4.3 1.0 10.7 Event 2 0.03 0.12 041 2800 14,500 0.9 3.1
Event 3 9/17/06 15:00 10:00 10.1 15.5 1.0 22.7 Event 3 0.01 0.11 0.53 3800 14,000 1.0 1.5
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(a) Radar Estimates
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Fig. 3. Event 1: (a) one radar image; (b) corresponding gauge measurements; (c) and (d) two realizations of conditionally (CON) simulated rainfall fields; (e) and (f) two realizations

of unconditionally (UNCOND) simulated rainfall fields.

The presented model can also be used without conditioning on
observed errors estimated from rain gauge data and radar estimates. For
illustration, two radar fields are simulated unconditionally using the
aforementioned parameters and shown in Fig. 3(e) and (f). One can see
that in Fig. 3(c) and (d), simulated fields at gauge locations show similar
values to those of the rain gauge measurements, while in Fig. 3(e) and (f)
ground reference measurements are not reproduced at their locations.
Similarly, Figs. 4 and 5 present the results of conditional and unconditional
simulations for Events 2 and 3, respectively. In general, conditional
simulation is more desirable as it reflects reference measurements.

For Events 1 to 3, rainfall ensembles are obtained by imposing 500
conditionally simulated error fields over radar estimates. Fig. 6(a) to (c)
plots radar estimates and simulated rainfall ensembles (500 realiza-
tions) over one radar pixel (the square-marked pixel shown in Fig. 1).
The solid black line represents radar estimates and the gray lines are
simulated rainfall realizations over the length of the storm, or in other
words, estimated uncertainty associated with rainfall data. The
estimated ensemble (gray area) describes the uncertainty associated
with rainfall estimates. A statistical ensemble of rainfall includes a
significantly large number of equiprobable rainfall realizations, where
each realization could be a possible true observation. The figure shows
that using the multiplicative error term helps to account for the
proportionality of error to the magnitude of the rain rate. As mentioned
previously, an attractive feature of this model is that the empirical

marginal distribution of the observed rainfall error is applied to
simulated error fields so that simulated values will have the same
distribution function as that of observed. This can be achieved when
copulas are used for describing the dependencies as they are invariant to
monotonic transformations (see Eq. (11)).

In order to validate the model, rainfall ensembles were generated with
different numbers of gauges to evaluate whether or not the estimated
uncertainty encloses rain gauge measurements if less numbers of gauges
were available. For Event 1, Fig. 7(a) to (c) demonstrates estimated rainfall
uncertainty over the x-marked pixel which contained one of the removed
rain gauges. In Fig. 7(a) all available gauges were included, whereas in
Fig. 7(b) and (c), 20 gauges (marked with triangle and diamond in Fig. 1)
and 5 gauges (marked with diamond in Fig. 1) were used for simulations.
The solid and dashed lines represent radar estimates and rain gauge
measurements, respectively. The gray lines are simulated radar realiza-
tions over the entire storm. The results confirm that simulated realizations
(estimated uncertainty) reasonably encompass ground reference mea-
surements. It is noted that as the number of gauges decreases, the sample
size of the observed error decreases. This may, but not necessarily, result in
a shorter range of error (the difference between minimum and maximum
error). One can intuitively conclude that any change in the error range,
and thus the empirical distribution of error, will affect the estimated
uncertainty. One can argue that if the empirical distribution functions of
observed error do not change drastically as the gauges are reduced, the
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(2) Radar Estimates
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Fig. 4. Event 2: (a) one radar image; (b) corresponding gauge measurements; (c¢) and (d) two realizations of conditionally (CON) simulated rainfall fields; (e)

of unconditionally (UNCOND) simulated rainfall fields.

distribution functions of simulated error fields remain similar, although
their spatial dependence structure may be significantly different from
each other. The generated ensembles (rainfall uncertainty) using different
numbers of gauges are evaluated by counting the number of time steps
(noue) where the ground reference measurements do not fall inside the
95% confidence bounds of the estimated uncertainty. Table 3 lists
the number of time steps (n,,) in percentage. As shown, reducing the
available gauges to half (=1 gauge in 31 km?) results in an increase in
the n,,,. of approximately 3% to 5%. Further reduction of gauges to 12% (=~ 1
gauge in 130 km?), results in an increase of 1, to a maximum of 6.9%.
Overall the table indicates that even with few rain gauges across the
watershed, the estimated uncertainty obtained from the v-copula model
reasonably encloses the ground reference measurements.

In most previous works, temporal and spatial dependencies of
rainfall error fields were neglected, mainly due to unavailability of true
representation of rainfall in space and time. [51] modeled rainfall
random error assuming no spatial or temporal correlation beyond the
size of one radar pixel (4 kmx4 km). However, [30] argued that
significant dependencies may exist in rainfall error fields both in space
and time. [7] recognized this issue and indicated the need to account
for error dependencies. [30] presented a random cascade model for
simulation of error fields taking into account error correlations. The
results confirmed that the dependencies in the error fields were non-
negligible, particularly in space. By analyzing radar rainfall fields, [8]
showed that the rainfall random error component was correlated in
space and time and the estimated correlations were higher in the cold

(b) Gauge Data

30

(f) UCOND 2

O = m 30
20
10
0

and (f) two realizations

season. Additionally, [24] discussed that the spatial dependence of
radar error is not negligible and can have a significant effect on
streamflow hydrologic predictions. [56] described the spatio-temporal
dependencies of rainfall random error using the modified exponential
function. They reported that temporal and spatial dependencies were
captured reasonably well using the modified exponential function.

As mentioned before, in the present study, radar rainfall uncertainty
is assumed to be correlated in space and the v-transformed copula is
used for describing the dependencies. In order to evaluate the presented
model with respect to spatial dependencies, the Spearman's ps rank
correlation matrix is used to assess the dependence structure of the
simulated radar rainfall fields after imposing the error fields. The Rank
correlation matrix, unlike Pearson product-moment correlation, eval-
uates the degree of association in terms of ranks, which is known as
concordance. The Spearman rank correlation is a nonparametric method
of describing the dependencies in terms of ranks and is independent of
the marginal distributions [52,25]:

nlegl ZX[Z%] (8)
(T e — (e
where:
Xi rank of x; in X
& rank of y; in Y
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Fig. 5. Event 3: (a) one radar image; (b) corresponding gauge measurements; (c) and (d) two realizations of conditionally (CON) simulated rainfall fields; (e) and (f) two realizations

of unconditionally (UNCOND) simulated rainfall fields.

Fig. 8(a) to (c) shows the Spearman correlation matrices of the
rainfall events selected for this study. The figures show symmetrical
matrices that describe the rank correlation between pairs of radar
rainfall pixels. Fig. 8(d) to (f) demonstrates the correlation matrices of
one set of simulated rainfall data after imposing the rainfall
uncertainty on radar rainfall estimates. One can see that the rank
correlation matrices of simulated rainfall fields are not considerably
different than those of the radar rainfall estimates and the overall
dependence structure is preserved.

In addition to spatial dependence structure, temporal dependen-
cies of simulated rainfall fields are also tested. In a recent work, [24]
reported that the temporal autocorrelations of the rainfall error fields
were rather low at the first time lag and close to zero for larger time
lags. For this reason, ¢ was assumed to be temporally uncorrelated in
the formulation of the model (Eq. (6)). However, after imposing the
uncertainty term over rainfall estimates, the autocorrelations of the
rainfall field will be carried forward and simulated fields will have
quite similar temporal autocorrelations. Fig. 9(a) to (c) compares the
temporal autocorrelation of the radar estimates and the 500 sim-
ulated rainfall fields for the square-marked pixel in Fig. 1. One can see
that simulated fields have slightly weaker temporal autocorrelations
due to perturbation. However, the overall trend of the temporal
autocorrelations in all cases are similar to those of the original rainfall
estimates, indicating that the random error term added to the radar
rainfall estimates did not destroy the underlying temporal auto-
correlations. The figures confirm that even without explicitly ac-
counting for temporal dependencies in the model employed here, the

simulated rainfall data have realistic temporal self-correlation
characteristics.

A major difference associated with different copula families is the
inherent tail dependence. A particular type of copula may provide strong
upper tail dependence, whereas another copula may represent strong
lower tail dependence. In the following, the v-copula model is tested for
probability occurrence of extreme values. In this study, the 90th percentile
of the radar error estimates is assumed as the extreme value threshold. In
order to investigate the v-copula model with respect to extremes,
occurrences of rainfall above the thresholds in the simulated fields are
compared with those of the observations. Fig. 10(a) to (c) displays the
sum of the number of occurrences above the 90th percentile threshold
(solid black lines), the mean of the number of occurrences above the 90th
percentile in 500 realizations simulated using the v-copula (dashed lines)
and the number of occurrences above the threshold in each simulated
rainfall error realization (gray lines). In the figures, the x-axis shows the
number of simulated realizations (here 500) and the y-axis represents the
number of occurrences above the threshold (90th percentile) of the
observations. One can see that for Events 1 and 2 the v-copula model
slightly over estimates the number of joint occurrences, which indicates
that the v-copula shows a positive tail dependence.

6. Summary and concluding remarks

It is well known that remotely sensed rainfall data are subject to
different types of errors that affect the quality of rainfall estimates. We
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Fig. 6. 500 realizations of conditionally simulated rainfall data over the square-marked
pixel in Fig. 1.

presented a non-Gaussian copula-based model for simulation of
remotely sensed rainfall data through imposing simulated error fields
over remotely sensed rainfall estimates. In this paper, Stage IV radar
data are used as the input of the model to generate an ensemble of
rainfall estimates. Similarly, satellite data and reflectivity fields can
also be used as the input. In this model, the v-transformed copula was
employed to describe the dependence structure of the rainfall data
without the influence of the marginal distribution. Spatial dependen-
cies of the simulated radar rainfall fields were then investigated by
calculating their rank correlation matrix. The results revealed that
using this copula-based model, one can preserve the spatial depen-
dencies of simulated rainfall fields. It should be noted that no explicit
accounting for error temporal autocorrelation was included in the
model. However, the results showed that the trend of temporal
autocorrelations in simulated fields will be similar to the temporal
autocorrelation of the rainfall estimates, mainly due to the fact that the
temporal autocorrelations of the rainfall estimates were dominant.
The issue of accounting for spatial dependencies using copulas
requires further investigations, as the choice of copula itself plays an
important role [35,55,19]. Using cross validation and by taking the
mean absolute error (MAE) as the estimator, the fitted copula was
tested based on the available observations. Cross-validation is a well
known approach that can be used to evaluate fitted models to
observations and also to compare performances of different predictive
modeling procedures Picard and Cook [39]; Efron and Tibshirani [17].
Table 4 summarizes the results of the repeated random sub-sampling
cross validation Picard and Cook [39] for the fitted v-copula to the
observations. For the case where only 5 reference gauges were used in
simulations, the leave-one-out cross-validation (LOOCV) was
employed due to the limited observations (see column 4 in Table 4).
In this method, a single observation from the original sample is put
aside for validation, and the remaining observations are used as the
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Fig. 7. Estimated rainfall uncertainty over the x-marked pixel when: (a) all available
gauges; (b) 20 gauges (marked with triangle and diamond in Fig. 1); and (c) 5 gauges
(marked with diamond in Fig. 1) were used for simulations.

training data. This is repeated for the number of observations such that
each observation is used as the validation data once. It is noted that the
mean absolute error does not change considerably as the number of
gauges are reduced. Overall, it seemed that the v-transformed copula
was an appropriate choice for modeling spatial dependencies.
However, the parameter estimation and simulation process is
computationally demanding. Other copula families should also be
investigated to evaluate their reliability and robustness.

In most rainfall simulation models, a standard distribution
function is fit to the data and used for simulation in order to
simplifying the process. Often, the normal distribution is used for its
simplicity in terms of parameter estimation and simulation of
multivariate fields [2]. In this work, however, the empirical marginal
distribution of the observed rainfall error is applied so that simulated

Table 3
The number of time steps, ny,¢ (%), that the 95% uncertainty bound did not enclose the
rain gauge measurements.

All Gauges 50% of Gauges 12% of Gauges
Event 1 1.7 4.7 6.4
Event 2 19 3.6 6.9
Event 3 15 3.0 5.7
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Fig. 9. Temporal autocorrelation of rainfall estimates and 500 simulated rainfall
realizations for the square-marked pixel.

error values will have the same distribution function as that of the
observed. This can be achieved using copulas, as they are invariant to
monotonic transformations (see Eq. (11)). The presented model was
tested through investigation of the marginal distribution functions of
observed and simulated rainfall error using the Two-sample Kolmo-
gorov-Smirnov test. The results confirmed that the empirical
distribution function of the observed error was reasonably repro-
duced (figures not included). The model was validated by generating
rainfall ensembles with different numbers of gauges to investigate the
estimated uncertainty when fewer gauges were available. The
number of gauges used for simulations were reduced to 20 and 5
gauges (approximately 1/2 and 1/8 of the total number of measure-
ment stations) and rainfall uncertaintywas estimated using the
selected gauges. Verification of 95% confidence bounds of the
estimated uncertainty showed that even with few gauges the
estimated uncertainty reasonably encompassed the ground reference
observations.

It is noted that in this work, we have used one individual gauge in a
pixel to represent the true area average rainfall over a pixel size of
(4 kmx 4 km), which may not be very accurate. However, based on
the available rain gauge stations, this was the best possible
approximation of the true area average rainfall values. Unreliable
rain gauge measurements may result in inaccurate true area average
rainfall representation and thus errors in parameter estimation.
Consequently, this will affect the simulated rainfall fields, especially
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Table 4
The results of cross validation for the v-copula model (MAE estimator).

Event ID All Gauges 50% of Gauges 12% of Gauges
Event 1 0.90 091 2.40
Event 2 0.72 1.14 244
Event 3 1.06 1.56 2.66

in the case of conditional simulation. Overall, the results presented
here indicated that one can generate ensembles of rainfall fields
through perturbation of remotely sensed rainfall data with simulated
random error fields. Subsequent simulations of a hydrologic model
using a large number of generated radar rainfall fields can be used for
the purpose of investigating error propagation in modeling hydrologic
processes and also for uncertainty analysis of the model with respect
to the input rainfall. In order to verify the robustness of the model,
further research including simulations over different spatio-temporal
scales and different gauge network setups are required. Additionally,
in order to evaluate the effects of sampling error on simulated rainfall
fields, the sensitivity of the presented model to the number of gauges
available needs to be investigated. Various issues regarding this model
are still being investigated by the authors to ensure the validity of the
model's performance and its statistical robustness.
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Appendix A. Theoretical Background

Copulas are joint cumulative distribution functions that describe
dependencies among variables independent of their marginals ([29]
and [36]):

C"(ul,,,.,u") = Pr(UlgulwuaUnsun) (9)

where Cis an n-dimensional joint cumulative distribution function of
a multivariate random vector U= (Uy,...,U,) whose marginals are u
[0,1]. Note that throughout this paper, a common statistical
convention is used in which uppercase characters denote random
variables and lowercase characters are their specified variables. [50]
showed that each continuous multivariate distribution F(F;,...,F,) can
be represented with a unique copula C:

F(Xp, e, %) = C"(Fy(X1), o, Fp (%)) (10)

The copula can capture the dependence structure of multivariate
distributions. Having described the dependencies using a copula, a
transformation function can be applied to each variable in order to
transform the marginal distribution into the desired marginals [36]:

C" Uy tty) = F(F (), Fy (1) (11)

where F(Fy,...,F,) is the multivariate cumulative distribution function
(CDF) with marginals Fi,...,F, belonging to different distribution
families. The n-th partial derivative of an n-dimensional copula C" is
termed as copula density (for derivations, the reader is pointed to [36]
and [19]):

aﬂ

Cllhyeensth) = 5 s o C

MUy, ey Uy) (12)
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