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Abstract—SQL is five decades old and has outlasted many
programming and query languages that have come and gone
during its lifetime. It was born shortly after the introduction
of the relational model, and was designed for querying a flat
and typed tabular world. Support for modern, flexible data in
the SQL standard and in relational database systems has largely
been approached via the addition of new column types (e.g. XML
or JSON) together with functions to operate on them. It is time
for a cleaner solution that retains the benefits that have allowed
SQL to be so successful for so long.

We describe SQL++, a SQL extension that relaxes SQL’s
strictness in terms of both object structure (flat — nested) and
schema (mandatory — optional), along with a multi-party effort
to agree on a core definition and syntax supportable by multiple
vendors. SQL++ sees relational data as a subset of a more flexible
object model and it sees collections of document data (e.g., JSON)
as a natural and supportable relaxation as opposed to a “bolt on”
addition via a SQL column type. We describe the core features of
SQL++ and explain how its definition can accommodate flexible
data, while staying true to SQL in situations where the target
data is tabular and strongly typed.

Index Terms—semistructured data, query, JSON, SQL, NoSQL

I. INTRODUCTION

Since the start of the cloud era, the database world has
seen the emergence of multiple database systems that are
designed to serve specific purposes. These database systems,
often referred to as “NoSQL” systems, generally support semi-
structured data models, and have adopted a wide variety of
languages and/or APIs. The variations among these languages
are often due to the fact that they were designed to serve
specific access patterns very efficiently. For example, key-
value stores focus on one specific access pattern.

Specialized query languages are often lacking in expressive
power, and they are sometimes tightly-coupled to a specific
data storage format. As these multiple database systems have
grown and evolved, they have not been converging in either
syntax or semantics. This lack of syntactic/semantic coherence
may be diluting our field’s resources and impeding the creation
and adoption of new database applications.
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If a widely-recognized query language like SQL could be
extended to handle semi-structured and other modern data
formats well, then the skills, experience, and tools of the
SQL community could be brought to bear on developing more
modern applications. Broadening the scope of SQL itself in
this way is the goal of the SQL++ language. SQL++ is a
backward-compatible extension of SQL that is designed to
handle semi-structured, nested, and schema-optional data. We
believe that the time is ripe for the appearance of such a
language.

SQL++ builds on initial research that was done at UC
San Diego [1], [2]. The initial UCSD work showed how the
query capabilities of eleven different NoSQL and NewSQL
languages could be captured under a minor expansion of the
SQL syntax, utilizing a handful of configuration modifiers
to capture their occasional semantic differences. A user-
friendly combination of those configuration modifiers became
the SOL++ dialect used by the Apache AsterixDB system
(which originated at UC Irvine and UC Riverside) [3] and
later by Couchbase Server originally under the name NIQL
(for non-1NF query language) [4]-[6]. Concurrently, AWS
adopted and further elaborated on a SQL-compatible version
of UCSD SQL++ under the name PartiQL, and released a
PartiQL open source reference implementation [7]. Amazon
Redshift [8], Amazon QLDB [9], Amazon DynamoDB [10],
Amazon S3/Glacier Select [11], AWS IoT TwinMaker [12]
and various Amazon internal systems consequently adopted
PartiQL. Inspired by a recent SIGMOD keynote talk [13], an
effort was formed to bring the aforementioned dialects together
under a single SQL++ definition, and we present this effort’s
results herein.

The effort to define a unified SQL++ definition has been
based on the following tenets:

o SQL compatibility: SQL++ should facilitate adoption
by maintaining compatibility with SQL. Existing SQL
queries should continue to work, with identical syntax and
semantics, in SQL query processors that are extended to
provide SQL++. This avoids any need to rewrite existing
SQL queries, and it makes it easy for developers and
business intelligence tools to leverage SQL++.
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o First-class nested data: The data model for SQL++ treats
nested data as a fundamental part of the data abstraction.
Consequently, the SQL++ query language provides syn-
tax and semantics that comprehensively and accurately
access, query, and construct nested data, while naturally
composing with the standard features of SQL.

o Optional schema and query stability: SQL++ does not
require a predefined schema over a query’s target input.
However, SQL compatibilities that pertain to schemas
should also be respected. Technically, the result of a
working query should not change if a schema is imposed
on existing data, so long as the underlying data itself
remains the same.

o Composability: SQL++ should have a minimum number
of extensions over SQL. The extensions should be easy to
understand, lend themselves to efficient implementation,
and compose well with one another and with SQL itself,
much as functions in functional programming languages
do. This enables intuitive filtering, joining, aggregation,
and windowing on a combination of structured, semi-
structured, and nested data.

o Format independence: SQL++’s syntax and semantics
should not be not tied to a particular data format. A
query should be written identically across underlying
data in any of today’s many nested and/or semistruc-
tured formats: JSON [14], Parquet, Avro, ORC, CSV,
CBOR [15], Ion [16], and others. Queries should operate
on a comprehensive logical type system that maps to
diverse underlying formats.

While these tenets are generally orthogonal to each other,
SQL compatibility and composability are occasionally in
conflict. Fundamentally, this is due to the fact that in ANSI
SQL, we cannot fully model each of the FROM, WHERE, GROUP BY,
SELECT and other clauses as being fully composable operators
that simply feed inputs and outputs to each other. Aggregate
functions and handling of nested query results are SQL’s two
most prominent violations of functional composability. For
the purpose of reconciling compatibility and composability
SQL++ takes two measures: First, we define a SQL++ Core,
consisting of fully composable operators. Then SQL itself is
defined as “syntactic sugar” rewritings over the SQL++ Core.
Moving the needle between compatibility and composability
turns into choosing whether to incorporate or not these rewrit-
ings. We include a SQL compatibility flag in SQL++ whose
setting can be toggled between prioritizing composability or
prioritizing SQL compatibility. Another advantage of relying
on a functional SQL++ Core is that the semantics of SQL++
and of SQL become shorter and more concise, despite adding
more functionality to SQL.

The composability of SQL++ can also be perceived as a
relaxation of SQL restrictions, which leads to achieving more
functionality (i.e., querying semistructured data) mostly by
removing constraints rather than by adding features.

SQL++ relaxes a number of aspects of SQL:

1) While SQL collections (a.k.a. relations or tables) consist

of homogeneous tuples [17], SQL++ allows collections
to be anything composed by arrays, multisets, structs,
and scalars, without requiring homogeneity. Schema is
optional in SQL++.

2) Typing rules are dynamically checked in SQL++, with
the possibility of static type checking when the optional
schema is present. In the interest of processing flexi-
bly semistructured data, SQL++ allows processing to
continue even when dynamic type errors happen (see
Section IV) so that the processing of “healthy” data can
proceed, while a convenient signal, which most often
leads to data exclusion, happens for the data that led to
typing errors. To support applications that want to catch
type errors early and stop processing when they happen,
SQL++ also offers a stop-on-error mode.

3) Unlike SQL’s FroM clause variables, which can only bind
to tuples, the FrRoM clause variables in SQL++ can bind
to any type of SQL++ data. For example, FrRoM variables
can bind to tuples, or to arrays, or to scalars, or to any
combination thereof.

4) SQL++ is fully composable in the sense that subqueries
can appear anywhere, potentially creating nested results
when they appear in the SELECT clause.

5) The groups created by the SQL++ GrouP BY clause are
directly usable in nested queries — as opposed to SQL’s
approach where they may only participate in aggregate
functions in very limited and particular ways. Indeed,
the SQL++ approach ends up explaining SQL’s grouping
and aggregation in a simpler, direct way.

In the interest of inspiring further community collaboration
on SQL++, in 2019 AWS released its PartiQL open source
reference implementation [7], while Apache AsterixDB has
offered open source SQL++ support since 2017 [18].

The remainder of this paper discusses the key aspects of
SQL++, which can be mostly conceived as relaxations of
SQL. Section II describes the data model underlying SQL++.
Section III talks about SQL++’s support for querying nested
data. Section IV describes how SQL++ deals with the world
without schemas. Section V discusses how SQL++ enables the
creation of nested data and how doing so relates to aggregation
both in SQL and SQL++. Section VI discusses how SQL++
can turn attribute names into data and vice versa, by unpivoting
and pivoting. Section VII briefly touches on prior related
language work. Finally, Section VIII provides a recap of the
paper and a call to arms for our community and industry.

II. DATA MODEL

SQL++ generalizes, mostly by relaxation, the SQL data
model. A SQL++ database contains one or more SQL++
named values. A name is an identifier, such as a collection
name, that is associated with a SQL++ value. It may also be
a dotted/namespaced identifier, such as hr.emp nest tuples,
that could reflect the database/table hierarchy of a MySQL
database or the schema/table hierarchy of a Postgres database.

For the examples in this paper, we will be using an
object notation using SQL literals that is similar to a data
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format such as JSON, CBOR, or Ion. This object notation is
meant to represent data that is self-describing and thus to be
interpreted without a schema. We have adapted examples from
the PartiQL tutorial [7] here to aid in explaining SQL++.

H
{
id’: 3,
"name’: ’Bob Smith’,
"title’: null,
’projects’: [
{’name’: ’Serverless Query’},
{’name’: ’OLAP Security’},
{’name’: ’'OLTP Security’}
]
I
{
'id’: 4,
"name’: ’Susan Smith’,
"title’: ’Manager’,
"projects’: []
'id’: 6,
'name’: ’Jane Smith’,
"title’: ’Engineer’,
'projects’: [
{’name’: ’'OLTP Security’}
]
}
H

Listing 1. An example SQL++ collection named hr.emp nest tuples.

A value can be absent, scalar, tuple, collection, or any
composition thereof. Further subtyping applies to these types.
Collections may be arrays, denoted by [ ... 1, or bags (i.e., |
multisets), denoted by {{ ... }} (or << ... >>). The scalars ;
are the SQL scalar types. The full extent of the SQL type *
system coverage is left up to SQL++ implementations. SQL
relies on schema to dictate what the data types in its values
are, but SQL++ relaxes this reliance to allow data to be self-
describing.

A tuple is a set of attribute name/value pairs, where each
name is a string (as in SQL). A tuple in the SQL++ data
model is unordered. Notice the contrast with schemaful SQL:
a conventional SQL tuple is an ordered tuple since the schema
dictates the order of the attributes and certain SQL operations
may use this order. Also, unlike SQL, the SQL++ data model
allows for the possibility of duplicate attribute names. This is
in the interest of compatibility with non-strict data in formats
such as JSON, Ion, and CBOR. However, SQL++ does not
encourage duplicate attribute names. In particular, navigation
into tuples via the conventional dot notation (Section III) can
lead to nonreproducable results in the presence of duplicate
attribute names.

SQL++ offers two kinds of absent values: NULL and MISSING
are both available for representing missing information. The
motivation is as follows: Unlike SQL, where a query that
refers to a non-existent attribute name is expected to fail during
compilation, in semi-structured data one expects a query to be
permissive and keep operating in many situations where SQL

would fail. One such situation is when some of the tuples do
not define an attribute that a query’s path mentions. Another
situation is when functions input wrongly-typed arguments.
Addressing both cases, SQL++ contains the special value
MISSING, which is the path result in cases where navigation
fails to bind to any information or where a function fails due
to missing or wrongly typed inputs. The distinction between
MISSING and NULL enables retention of the original distinction
between a missing attribute and a present but null-valued
attribute. The utility of MISSING (as opposed to just having
nuLL) will become further apparent when navigation into semi-
structured data and construction of semi-structured results is
discussed below, where we will see that the value MISSING may
not itself appear as an attribute’s value.

III. ACCESSING NESTED DATA

The data model of SQL-92 only has tables with tuples
that contain scalar values (the “normal form” of [17]). A
key feature of many modern formats is nested data. That is,
modern data can have attributes whose values may themselves
be tables (i.e., collections of homogenous tuples of scalars), or
may be arrays of scalars, or arrays of arrays and many other
combinations.

In Listing 1, the value of the projects attribute is an array,
which happens to be an array of tuples. The following SQL++
query finds the names of employees who work on projects that
contain the string ’security’ and outputs them along with the
name of the security project.

SELECT e.name AS emp name,
p.name AS proj name
FROM hr.emp nest tuples AS e,
e.projects AS p
WHERE p.name LIKE ’'%Security¥%’

Listing 2. A SQL++ query accessing nested tuples.

This query effectively joins each employee tuple with the
project tuples that are nested inside it. This feature requires no
syntactic extensions to SQL. It simply allows expressions in
the FroM clause to refer to variables that are defined earlier in
the FroM clause (in this case, the expression e.projects refers
to the variable e defined earlier). This feature, which relaxes
a constraint of SQL, is called “left-correlation.”

Once we allow left-correlation, the query’s semantics are
similar to SQL. The alias e (also called a variable in SQL++)
gets bound to each employee, in turn. For each employee, the
variable p gets bound to each project of the employee, in turn.
Thus the query’s meaning, much as for cross products or joins
in SQL, is illustrated by Pseudocode 1.

Notice that the query involves a variable that is ranging over
a nested collection (p in the example), along with a variable
(e in the example) that is ranging over a “table”, as standard
SQL aliases do. All variables, no matter what they range over,
can be used as needed in the FroM, WHERE, and SELECT clauses,
as we will see in the examples that follow.



Pseudocode 1 SQL++ query with nested tuples.

1: for each employee TUPLE e € hr.emp nest tuples do
2: for each project TUPLE p € e.projects do

if p.name LIKE ’%Security%’ then

output TUPLE

‘emp name’ > e.name

A

'proj name’ +> p.name

The explicit denotation of variables is essential to SQL++
Core — unlike SQL, wherein one might simply write name to
imply e.name. In SQL, the presence of schema allows this
form of static disambiguation, but since schema is optional in
SQL++ a query has to explicitly call out the variables. Nev-
ertheless, if schema is available, then SQL++ also allows ex-
pressions that are disambiguated using the schema. Formally,
disambiguation results in the rewriting of the user-provided
SQL++ query into a SQL++ Core query that explicitly denotes
the variables that were omitted.

A. Aliases may bind to any value — not just tuples

The previous example has illustrated nested attributes that
were arrays of tuples and variables (aliases) that were ranging
over the nested tuples. It need not be the case, however,
that the nested attributes are collections of tuples. They may
just as well be arrays of scalars, arrays of arrays, or any
combination of data that one can create by composing scalars,
tuples and arrays. The user need not learn a different set of
query language features for each case. The unnesting feature,
which we have already seen, is sufficient since variables may
bind to any type of value. For example, we could modify the
data from Listing 1 so that projects are arrays of scalars, as
illustrated below in Listing 3.

H
{

'id’: 3,

"name’: ’'Bob Smith’,

title’: null,

"projects’: [
’Serverless Querying’,
"OLAP Security’,
"OLTP Security’

]

I

:

Listing 3. Collection hr.emp nest scalars: The arrays of tuples of hr.
emp nest_tuples in Listing 1 are replaced with arrays of scalars.

SELECT e.name AS emp name,
p AS proj name

: FROM hr.emp nest_scalars AS e,

5 WHERE p LIKE

e.projects AS p
%Security%’

Listing 4. A SQL++ query with nested scalars.

The query in Listing 4, again, finds the names of employees
who work on projects that contain the string ’security’ and
outputs them along with the name of the security project.
Notice that the variable p ranges (again) over the content of e.
projects. In this case, though, since e.projects contains strings
(as opposed to tuples), the variable p binds each time to a
project name string.

Pseudocode 2 demonstrates that this query is semantically
very similar to the earlier query.

Pseudocode 2 SQL++ query with nested scalars.

1: for each employee TUPLE e € hr.emp nest scalars do
2: > Notice that p is not a tuple. <
for each project STRING p € e.projects do
if p LIKE ’%Security%’ then
output TUPLE
‘emp name’ > e.name

N hw

'proj name’ > p

To wrap up, the above example exhibits a key relaxation
(and, thus, a generalization) of the SQL++ semantics as
compared to SQL semantics. The tuple calculus-based the-
oretical underpinnings of SQL define the semantics of its
FROM clause as delivering bindings of the aliases into tuples.
In contrast, SQL++ treats the FroM clause as a function that
delivers bindings of the variables to arbitrarily typed values.
In our example, the FroM clause produced bindings of the form
(e:...,p:...)and, as we saw, the p bindings were to strings.

IV. ABSENCE OF SCHEMA AND SEMI-STRUCTURED DATA

Many data formats do not require a schema that describes
the data - that is, they involve schemaless data. In such cases
it is possible to have various “heterogeneities” in the data:

e One tuple may have an attribute = while another tuple
may not have this attribute.

o In one tuple of a collection of tuples an attribute = may
be of one type, e.g., string, while in another tuple of the
same collection the same attribute  may be of a different
type — e.g, array.

o The elements of a collection (be it a bag or an array) can
be heterogeneous (not have the same type). For example,
the first element may be a string, the second one may
be an integer, and the third one may be an array. While
we do not recommend such data modeling practices, they
can arise as a result of requirements evolution or due to
legacy. For example, it turns out that converters of XML
into JSON sometimes create such heterogeneities.

o Generally, any composition is possible, as we can bundle
heterogeneous elements together in arrays and bags.

Heterogeneity is not particular to schemaless data. NewSQL
schemas may allow for heterogeneity in the types of the data.
For example, one of the Hive data types is the union type [19],
which allows a value to belong to any one of a list of types, as
in the Hive schema of Listing 5 example where the projects
attribute may be either a string or an array of strings.



CREATE TABLE emp mixed (

id INT,
name STRING,
title STRING,

projects UNIONTYPE<STRING, ARRAY<STRING>>
D) 5

Listing 5. A Hive data definition for a SQL++ table with a mixed attribute.

Thus, we see that data may have heterogeneities, regardless °

of whether it is described by a schema or not. SQL++ tackles
heterogeneous data in ways that we will see in the next few
use cases and feature descriptions.

A. Missing Attributes

Consider the collection of tuples named emp null of List-
ing 6. Bob Smith has no title and, as is typical in SQL, his
lack of title is modeled with the null value.

{{
{’id’: 3,
"name’: ’Bob Smith’,
‘title’: null },
{’id’: 4,
"name’: ’Susan Smith’
"title’: ’Manager’ },
{’id’: 6,
’name’: ’Jane Smith’,
"title’: ’Engineer’}
1}

Listing 6. Example hr.empl null “table” with NULL values.

Nowadays, many semi-structured formats allow their users
to represent “missing” information in two ways: The first way
is by use of a NULL datum. The second kind is the plain absence
of the attribute from the tuple. That is, we could represent the
fact that Bob Smith has no title by simply having no title
attribute in the "Bob Smith’ tuple:

{{
{’id’: 3,
"name’: ’Bob Smith’}, -- no title
{’id’: 4,
"name’: ’Susan Smith’
"title’: ’Manager’ },
{’id’: s,
"name’: ’Jane Smith’,
"title’: ’Engineer’}
1}

Listing 7. Example hr.emp missing of a “table” omitting an attribute value.

SQL++ does not adopt a position about when to use NULL

versus when to use “missing”. Myriads of existing data
already use one of the two or both. However, SQL++ enables
queries to distinguish between NULL and missing values, and it
also enables query results that have nulls and missing values.
Indeed, SQL++ makes it very easy to propagate source data
nulls through as query result nulls and source data missing
attributes through as query result missing attributes using the
special value MISSING.

B. MISSING as a Value

Consider the SQL++ query of Listing 8, which happens to
also be a valid SQL query:

SELECT e.id,
e.name AS emp name,
e.title AS title
FROM hr.emp missing AS e
WHERE e.title = ’Manager’

Listing 8. A SQL++ query referring to a potentially missing attribute.

What will happen when this query processes the Bob Smith
tuple, which has no title? The first step to answering this
question is understanding the result of the path e.title when
the alias (variable) e binds to the tuple {’id’: 3, ’name’: ’
Bob Smith’}. Or in more basic terms, what is the result of the
expression {’id’: 3, ’'name’: ’Bob Smith’}.title? The SQL++
answer is that it is the special value MISSING.

Generally, MISSING values are produced in three cases:

1) Navigation into a missing attribute. For example, {’id’
: 3, 'name’: ’Bob Smith’}.title returns MISSING.

2) A function or operator is evaluated over arguments of the
wrong types. Essentially, the flexible mode of SQL++
prefers to return MISSING instead of a dynamic type error
when evaluating expressions such as 2 * ’some string’.
Whenever a function or operator has a MISSING input,
it returns a MISSING result. This ensures that MISSING
values created by Cases 1 and 2 can be easily propagated
through a series of transformations. However, in SQL-
compatibility mode, this rule has one exception: if an
SQL expression, given a null input, would return a non-
null result, the same expression in SQL++ returns the
same result when given a MISSING input. For example, the
expression COALESCE(MISSING, 2) will return 2 because
this is what SQL’sS COALESCE(NULL, 2) will do.

3)

The next question is how to utilize MISSING values in result
construction. For starters, in SQL++’s SQL compatibility
mode, the user can treat them as identical to NULL if he or she
doesn’t care about the distinction between null and missing
values. More precisely, in SQL compatibility mode, SQL++
delivers the following guarantee: Given a working SQL query
q over a collection d that has null values and a collection d’
where some nulls have been replaced with missing attributes,
the SQL++ query ¢ will deliver the same result ¢(d’) as the
SQL result g(d), except that some attributes that would have
null values in ¢(d) will be simply missing in ¢(d’). From a
SQL compatibility point of view, this difference is immaterial
to the SQL user who doesn’t care about the difference between
the two. However, the null-missing distinction enables SQL++
to expand into (a) flexibly executing queries that would not
work in SQL and (b) easily propagating MISSING from inputs
to outputs. In the earlier example, when the query outputs
the Bob Smith tuple, the expression e.title will evaluate to
MISSING and the output tuple will not have a title attribute.
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SELECT e.id,
e.name AS

CASE WHEN

emp name,
e.title LIKE
THEN "Executive"
ELSE "Worker"
END AS category
FROM hr.emp missing AS e

"Chief %’

Listing 9. SQL++ query operating on MISSING.

Thanks to the easy propagation of MISSING, the same treat-
ment of MISSING would happen if, say, we had a query that
sorts employees into categories based on their titles, as shown
in Listing 9.

Again, for Bob Smith, the CASE WHEN e.title ...
evaluate to CASE WHEN MISSING ...

END will

END, which will in turn eval- ,
uate to MISSING. (Note that in JDBC/ODBC communication, -

1

with a schemaful result, the M1sSING will be communicated as >

NULL for communication compatibility purposes.)

V. RESULT CONSTRUCTION, NESTING, AND GROUPING

SQL++ allows for queries that create nested results as well
as for queries that create any type of result collection — not
just collections of tuples of scalars. At the SQL++ Core level,
its power comes from relaxing the SQL SELECT clause into the
SQL++ SELECT VALUE clause and exposing the groups created
by SQL’s Group BY clause.

A. Creating Collections of Any Value

The SQL++ Core grounds its ability to construct results in
its SELECT VALUE clause, which provides the power to construct
collections of any type of data. Consequently, the SELECT clause
of SQL can be explained as being syntactic sugar over SELECT
vALUE. For example, the query shown in Listing 10 outputs each
tuple of hr.emp nest scalars (Listing 3), except that instead
of keeping all of their projects, each tuple has only the security
projects of each employee. Notice how SELECT VALUE p is being
used in the query. The result of this query is shown in Listing
11.

A SELECT VALUE <expression> query (or subquery, as in this
example) returns a collection of whatever the <expression>

evaluates to. Thus SQL’S SELECT can be rewritten into the
SQL++ Core SELECT VALUE as follows:

SELECT €1 AS aq, ..
is equivalent to
SELECT VALUE { aj:eq, ..

.,€n AS @, FROM ...

., Qp:€p } FROM ...

SELECT e.id AS id,

name AS emp name,

title AS emp title,

SELECT VALUE p

FROM e.projects AS p

WHERE p LIKE ’%Security%’
) AS security proj

FROM hr.emp nest scalars AS e

e.
e.
(

Listing 10. SQL++ query projecting a nested value.

H
{

'id’: 3,
"name’: ’'Bob Smith’,
title’: null,

"security proj’: {{
"OLAP Security’,
"OLTP Security’

1}

T

{
'id’: 4,
"name’: ’Susan Smith’,
"title’: ’Manager’,
’security proj’: {{}}

e

{
'id’: 6,
'name’: ’Jane Smith’,
"title’: ’Engineer’,
"security proj’: {{

"OLAP Security’

1}

}

b

Listing 11. Example result from nested SELECT VALUE.

However, when a SQL SELECT appears as a subquery, SQL
compatibility requires that it not be treated simply as being a
shorthand of SELECT VALUE. Rather, the context of the subquery
designates whether the subquery’s result should be coerced
into a scalar value (e.g., when 5 = <subquery>), coerced into
a collection of scalars (e.g., when 5 IN <subquery>), etc. None
of this implicit “magic” applies to SELECT VALUE, which always
produces a collection that will not be coerced. Indeed, SQL++,
when not operating in SQL compatibility mode, always treats
SELECT as a shorthand for SELECT VALUE, thus delivering the
composability and simplicity of functional programming lan-
guages and enabling a proper treatment of nested data and
nested results.

B. GROUP BY and GROUP AS

Another pattern for creating nested results in SQL++ is via
the GrROUP As extension to SQL’s Grour BY clause. This pattern
is more efficient and more intuitive than nested SELECT VALUE
queries when the required nesting is not based on the nesting
of the input. (To clarify, the example in Section V-A is one
where the nesting in the output follows the nesting of the input,
so the intuitive solution does not require GROUP BY.)

The SQL++ GROUP AS extension generalizes the SQL GROUP
BY clause by making the formulated groups (and their content)
available in their entirety to a SQL++ query’s SELECT and HAVING
clauses. This is in contrast to SQL’s GROUP BY, where the SELECT
and HAVING clauses can have aggregate functions over grouped
columns but they cannot access the individual values contained
in the grouped columns (due to the fact that nested data is not
available in the data model that underlies SQL).

To better understand the workings of GROUP BY ... GROUP AS,
it is best to think of a SQL++ query as being a pipeline of
clauses, starting with the FroM, continuing with the optional



WHERE, proceeding to the optional GROUP BY, and then the op- .
tional HAVING, and finishing with the SELECT clause. Each clause °
is a function that inputs data and outputs data. In that sense, in 4
the upcoming example, the GROUP BY ... GROUP AS clause is a s
function that inputs the result of the FrRoM and outputs its result °
to the SELECT. (SQL++ also supports the post-SELECT clauses of
SQL, e.g., ORDER BY, LIMIT, and OFFSET.) 9

In keeping with this model of a query-block as a pipeline °
of functional clauses, SQL++ allows the SELECT clause to be |
written either at the beginning of the query-block (as in SQL) i
or at the end of the block (which is both more consistent *
with the execution model and much clearer regarding where ‘“
variables mentioned in the SELECT clause are coming from).
This flexibility can be considered as another example of where
SQL++ relaxes a constraint of SQL.

The query in Listing 12 inverts the hierarchy of employees
with nested projects. It produces a list of the security projects
(after conversion to lower case) and it includes nested lists
of the names of employees that work on each project. Notice
that in this query, as an aside, the SELECT clauses appear at the
ends of their respective query-blocks rather than at the start.
(Either placement is fine in SQL++.) The nested result created
by this query follows in Listing 13.

FROM hr.emp nest scalars AS e, e.projects AS p

> WHERE p LIKE ’%Security%’
; GROUP BY LOWER(p) AS p GROUP AS g

SELECT p AS proj name,
(FROM g AS v
SELECT VALUE v.e.name) AS employees

Listing 12. SQL++ query with grouping.

{{
{
'proj name’: ’OLTP Security’,
“employees’: {{
’Bob Smith’
1}
{
'proj name’: ’OLAP Security’,
“employees’: {{
’Bob Smith’,
’Jane Smith’
H
}
1}

Listing 13. Example result from query using GROUP AS.

Let’s examine what’s going on with GROUP AS here. In this
query, the FrRoM clause delivers a collection of bindings for e
and p. The GROUP BY ... GROUP AS ... then produces a multiset
of objects that has one field for each value of the group-by
expression (i.e., for each security project LOWER(p) AS p) and
a second field g whose value (in each row) is the collection
of employee/project e/p tuples that belong to that group. Thus
the GROUP BY ... GROUP AS ... output is the collection of p/g
bindings illustrated in Listing 14.

-- first binding

p: 'olap security’
9: {
{ e: { ’id’: 3, ’name’: ’Bob Smith’, 1,
p: ’OLAP Security’
Lo
{ e: { ’id’: 6, ’name’: ’Jane Smith’, 1,
p: ’OLAP Security’
}
b
-- second binding
p: 'oltp security’
9: {{
{ e: { ’id’: 3, ’name’: ’Bob Smith’, ...},
p: 'OLTP Security’
}
i
Listing 14. Output of the GROUP BY ... GROUP AS ... clause.

Finally the SELECT clause takes the output produced by the
GROUP BY ... GROUP AS ... clause as its input and outputs the
final query result.

Before leaving this section it is important to note that SQL
has additional analytical features such as CUBE, ROLLUP, and
GROUPING SETS for grouped aggregation as well as window func-
tions (i.e., ovEr) for more advanced analytics. These features
are wholly compatible with SQL++ and then become able to
operate on and produce nested and heterogeneous data (e.g.,
see [20]). Their compatibility stems from SQL++’s defining
equality identically to SQL in the exclusive presence of scalars
and NULL. (And for each SQL feature that does not error on
NULL, the feature will also work with MISSING.)

C. Aggregate Functions

As noted earlier, aggregate functions like AVG are among
the SQL features that lack composability. For each of the
traditional aggregate functions of SQL, SQL++ Core provides
a fully composable function that takes a collection as input and
returns the aggregated value of that collection. The compos-
able version of AvG is named coLL AvG. This naming convention
applies to the other SQL aggregate functions as well: MAX has
a composable version named COLL MAX, etc.

In this section we will illustrate, by example, how SQL
queries containing aggregate functions are transformed into
SQL++ Core queries using composable functions. The exam-
ples are based on a flat collection named hr.emp with (at least)
four columns: name, deptno, title, and salary. The theme of
the transformation process is that the data or group of data
that is being aggregated is first (conceptually) materialized and
then passed (conceptually again) to the composable function
which aggregates it. (It is important to point out that this
materialization is conceptual; under the hood a SQL++ engine
is free to optimize, e.g., by using pipelineable aggregation
operations when evaluating a query.)

The first SQL query, shown in Listing 15, finds the average
salary of engineers in the hr.emp collection. Its SQL++ Core
equivalent is shown in Listing 16.



SELECT AVG(e.salary) AS avgsal
FROM hr.emp AS e

; WHERE e.title = ’Engineer’

Listing 15. First aggregation query, SQL version

{{
{’avgsal’:
COLL AVG(
SELECT VALUE e.salary
FROM hr.emp AS e
WHERE e.title = ’Engineer’

i3

Listing 16. First aggregation query, SQL++ core version

The second SQL query, shown in Listing 17, lists all of the

1

4

6

departments in the hr.emp collection and the average salaries |

of their engineer employees. Its SQL++ core equivalent in

shown in Listing 18. This SQL++ Core query is written using s

the permitted SELECT-clause-last style.

SELECT e.deptno, AVG(e.salary) AS avgsal
FROM hr.emp AS e

; WHERE e.title = ’Engineer’

)

GROUP BY e.deptno

Listing 17. Second aggregation query, SQL version

FROM hr.emp AS e
WHERE e.title = ’Engineer’

3 GROUP BY e.deptno AS d GROUP AS ¢

PENNS

%

10

SELECT VALUE
{deptno: d,
avgsal: COLL_AVG(
FROM g AS gi
SELECT gi.e.salary
)
}

Listing 18. Second aggregation query, SQL++ Core version

VI. PIVOTING AND UNPIVOTING

In use cases that require the structuring and/or reorganizing
of semistructured data it is important to have the ability to
flexibly turn data into attributes and vice versa. This is what the
pivoting and unpivoting features described next accomplish.

A. Unpivoting Tuples

Let us begin by examining the use case for unpivoting. The
collection of Listing 19 is an interesting example, as it uses as
attribute names data that would typically be attribute values
in the SQL world. The query given in Listing 20 unpivots the
stock ticker/price pairs in this data set and returns the result
shown in Listing 21.

{{
{’date’: ’4/1/2019",
’amzn’: 1900, ’goog’: 1120, ’fb’: 180},
{’date’: ’4/2/2019",
‘amzn’: 1902, ’goog’: 1119, ’fb’: 183}

P

Listing 19. The closing prices collection

SELECT c."date" AS "date",
sym AS symbol,
price AS price

FROM closing prices AS c,

UNPIVOT c AS price AT sym
WHERE NOT sym = ’date’

Listing 20. A query that unpivots ticker/price pairs

{{

{
‘date’: ’'4/1/2019°,
’symbol’: ’amzn’,
"price’: 1900

s

{
’date’: '4/1/2019°,
’symbol’: ’goog’,
‘price’: 1120

s

{
‘date’: ’4/1/2019°,
’symbol’: ’£fb’,
‘price’: 180

b

{
"date’: '4/2/2019°,
"symbol’: ’amzn’,
"price’: 1902

T

{
‘date’: ’4/2/2019°,
’symbol’: ’goog’,
"price’: 1119

b

{
‘date’: ’'4/2/2019°,
’symbol’: ’£fb’,
"price’: 183

}

i3

Listing 21. The result of unpivoting ticker/price pairs

SELECT sym AS symbol,
AVG(price) AS avg price

: FROM closing prices c,

IS

UNPIVOT c AS price AT sym
WHERE NOT sym = ’date’

s GROUP BY sym

Listing 22. A SQL++ query that computes average stock prices

Unpivoting tuples enables the use of attribute names as if
they were data. For example, it becomes easy to compute the
average price for each symbol as in the query of Listing 22.



{

2 {’symbol’: ’amzn’, ’price’: 1900},
{’symbol’: ’goog’, ’price’: 1120},

4+ {’symbol’: ’'fb’, "price’: 180}

s 3}

Listing 23. The today_stock prices collection

| PIVOT sp.price AT sp.symbol
> FROM today stock prices sp

Listing 24. A PIVOT query

i
2 “amzn’: 1900,
3 "goog’: 1120,
4 "fb’: 180

5}

Listing 25. The result of pivoting

B. Pivoting Tuples

Pivoting, conversely, serves to turn a collection into a
tuple. For example, consider the collection today stock prices
shown in Listing 23. Using this collection as input, the PIVOT
query of Listing 24 produces the tuple shown in Listing 25.

The query of Listing 26 uses the grouping features of
SQL++ together with pivoting in order to create a single tuple
for all of the stock prices of each date when it inputs the
collection of Listing 27. Listing 28 shows this query’s result.

i SELECT sp."date" AS "date",

(PIVOT dp.sp.price AT dp.sp.symbol
3 FROM dates prices AS dp) AS prices
+ FROM stock prices AS sp
s GROUP BY sp."date" GROUP AS dates prices

Listing 26. Combination of grouping and pivoting

e
2 {’date’: ’4/1/2019’,
3 ’symbol’: ’amzn’, ’price’: 1900},
) {’date’: ’4/1/2019°,
5 ’symbol’: ’goog’, ’price’: 1120},
¢ {’date’: ’4/1/2019°,
7 ’symbol’: ’fb’, ’price’: 180 },
8 {’date’: ’4/2/2019’,
9 ’symbol’: ’amzn’, ’price’: 1902},
10 {’date’: ’4/2/2019’, ’symbol’:
1 ’goog’, ’price’: 1119},

{’date’: ’4/2/2019°,
3 "symbol’: ’fb’, ’price’: 183 }
« 1)

Listing 27. The stock prices input

C
: A

"date’: ’4/1/2019°,
4 'prices’:
{’amzn’: 1900, ’goog’: 1120, ’fb’: 180}
¢ +,
{
8 ‘date’: ’4/2/2019°,
9 ‘prices’:
10 {’amzn’: 1902, ’goog’: 1119, ’fb’: 183}
11 }‘
1}

Listing 28. The output of pivoting stock prices by date

VII. PRIOR WORK

The history of the SQL language goes back five decades
[21]. As commercial relational database offerings began to
take hold in the business data world, the database community
began expanding its reach to incorporate newer and richer
forms of data. One target was engineering data, which led
to a decade or so of work on object-oriented database systems
with data models inspired by concepts from object-oriented
programming languages [22], [23]. Languages like OQL [24]
borrowed ideas from SQL but extended their reach to typed
nested data. More or less in parallel, traditional relational
database enthusiasts sought to extend the reach of relational
systems to incorporate object-oriented ideas, leading to so-
called object-relational systems such as Postgres, Starburst
and others [23]. These systems also had SQL-like languages
that could operate over richer but typed table structures with
extensible column types.

Fast forwarding to 25 years ago, the database community
became interested in exploring support for semistructured data.
The Lore project at Stanford with its OQL-inspired query
language Lorel [25] was arguably the seminal work in this di-
rection. The XML data format was also becoming prevalent in
roughly the same time frame, and was a practical, commercial
example of self-describing, schema-less data. Query languages
capable of querying XML data garnered much interest in both
research and industry, and the W3C XQuery language standard
[26] was the result of a community effort to meet that need.
XQuery faced many of the challenges that SQL++ faced, but
it focused on XML and departed significantly from SQL in
many of its details.

Fast forwarding to the recent past, to the so-called “big
data” and/or “NoSQL” eras, leads to the problem of querying
and manipulating massive quantities of semistructured data (as
well as applying parallelism to scale). On the NoSQL side,
Cassandra and its CQL query language [27] emerged; CQL
can be characterized as a SQL-like language, minus joins,
for operating on nested but schema-ful tables. MongoDB also
appeared; its approach to querying involves a mix of a basic
“CRUD” API [28] and an “aggregation pipeline” API [29].
Microsoft’s document database offering, Cosmos DB [30], has
a SQL-based query language for querying single collections
of documents that is roughly like a single-collection subset of
SQL++; only intra-document joins are possible, for example.



Big data analytics engines, such as Hive [19] and later
Spark [31], also appeared in this time frame. Both initially
targeted very large volumes of mostly flat, schema-ful data,
intending to supplant traditional data warehouse systems, so
they each based their query languages (HiveQL and Spark-
SQL, respectively) on SQL. As time has progressed, their
query languages have moved closer to SQL compliance; they
also include features such as generic “explode” or “unnest”
table functions to address the need to query non-flat data (e.g.,
Parquet files or schema-ful JSON). Most recently, Rockset has
arrived on the scene as a data integration and indexing offering
fronted with a heavily SQL-inspired query language [32] that
relaxes SQL’s restrictions in ways not unlike SQL++.

VIII. CONCLUSION

In this paper we have described the SQL++ query language.
SQL++ is a SQL extension that relaxes SQL’s strictness in
terms of both object structure (moving from flat — nested)
and schema (moving from mandatory — optional). SQL++
sees relational data as a subset of a more flexible object model
and it sees collections of document data as a natural and
supportable relaxation as opposed to a “bolt on” addition such
as a new SQL column type [33]. We toured the core features
of SQL++ and explained how its definition can accommodate
flexible data while also remaining true to SQL in situations
where a query’s target data is tabular and strongly typed.

As we have described, a multi-party effort is well underway
to converge on a Core SQL++ definition and syntax that is
supportable by multiple vendors. Work is also underway to
incrementally close the syntactic and semantic gaps between
their existing SQL++ based offerings and the core. Future joint
work is expected to include developing a shared “compatibility
kit” for use in checking for compliance with Core SQL++ in
both its composability mode and its SQL compatibility mode.
In closing, we would like to invite other systems’ developers
and tool providers to “relax” with us and join the effort.
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