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A Virtual Sky Imager Testbed for Solar Energy
Forecasting

Benjamin Kurtza,∗, Felipe Mejiaa, Jan Kleissla

aCenter for Renewable Resources and Integration, Department of Mechanical and Aerospace
Engineering, University of California, San Diego, United States

Abstract

Whole sky imagers are commonly used for forecasting irradiance available for

solar energy production, but validation of the forecast models used is difficult

due to sparse reference data. We document the use of Large Eddy Simulations

(LES) and a 3D Radiative Transfer Model to produce virtual clouds, sky im-

ages, and radiation measurements, which permit comprehensive validation of

the sky imager forecast. We then use this virtual testbed to investigate the

primary sources of sky imager forecast error on a cumulus cloud scene. The

largest source of nowcast (0-minute-ahead forecast) errors is the converging-ray

geometry implied by use of a camera, while longer-term forecasts suffer from

overly-simplistic assumptions about cloud evolution. We expect to use these

findings to focus future algorithm development, and the virtual testbed to eval-

uate our progress.

Keywords: whole sky imager, forecast, Large Eddy Simulations

1. Introduction1

In recent years, whole-sky imagers have become popular for forecasting solar2

energy availability on short time horizons [1, 2, 3, 4, 5]. However, validation3

of these forecasts can be tricky; reference data is often limited to at most a4

few irradiance sensors, and even in the case where many sensors are present5
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over a large area, detailed validation data on the cloud field itself is uniformly6

unavailable. Under these circumstances, validation can determine the forecast7

accuracy, but apportionment of the forecast error to different components of8

the algorithm is difficult due to the lack of data about the actual state of the9

atmosphere and the resulting radiation field. Therefore prioritization of forecast10

development work is usually not well-informed and is unable to follow cost-11

benefit principles.12

We propose to address some of these limitations by producing a virtual sky13

imager testbed, in which the configuration of the clouds and resulting irradiance14

is known. The purpose of this paper is to describe the setup of the virtual testbed15

and briefly illustrate its potential through a case study. The virtual testbed is16

used to design and test improvements to whole-sky imager forecast methodology17

developed at UC San Diego, but it is straightforward to adapt it to any other18

algorithm.19

Simulating clouds is one of the grand challenges of atmospheric physics as20

it includes scales from micrometers (cloud condensation nuclei) to kilometers21

(cloud size), multiple phases (vapor, liquid, ice), and even chemistry (hydropho-22

bicity of aerosol species). In terms of short-term (order of 10 minutes) cloud23

dynamics that are most relevant to sky imager solar forecasting, the multi-scale24

and multi-phase fluid dynamics need to be represented. In particular atmo-25

spheric turbulence plays a critical role in cloud formation (e.g. thermals) and26

cloud dynamics. Not only do clouds “live” in the turbulent atmospheric bound-27

ary layer flow field, but they also generate their own turbulence due to longwave28

radiative cooling at the cloud top and latent heat release. Large Eddy Simula-29

tion (LES) is a uniquely suited tool to simulate these boundary layer and cloud30

dynamics. In LES the large turbulent eddies that are responsible for most of the31

momentum, heat, and moisture transport are explicitly resolved and simulated32

faithfully based on the Navier Stokes equations. The small scales (less than33

about 10 meters) cannot be resolved due to computational cost and are param-34

eterized through subfilter scale models [6]. LES also simulates all modes of heat35

transfer, water vapor transport and phase change, as well as cloud microphysics.36
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LES is a mature field in engineering and atmospheric science and the resolution,37

subfilter scale models, and microphysics models have been continually improved38

over the past decades [7, 8].39

Virtual cloud fields will be produced using LES. Surface-level irradiance40

fields and simulated whole-sky images will be derived from a 3-dimensional41

radiative transfer model (3D RTM). These tools (LES and 3D RTM) are signif-42

icantly more physically grounded and accurate than current sky imager forecast43

algorithms, so there is considerable scope for improving sky imager forecasts44

based on the virtual testbed. It is worth noting that the virtual testbed need45

not reproduce a given observed cloud field for this to be useful, so long as the46

virtual clouds behave similarly to real clouds. Why not just use the LES and47

3D RTM for forecasting in the first place? First, while recent GPU-accelerated48

LES codes [9] approach the speeds necessary to produce operational forecasts,49

the computational requirements for LES and 3D RTM tools are currently too50

large to be feasible for short-time-horizon forecasting. Furthermore, even in51

those cases where LES has been run operationally on a wide variety of mea-52

sured data [10, 11], the cloud fields are statistically accurate on timescales from53

tens of minutes to hours. To produce meaningful forecasts of individual clouds,54

LES would require input of a detailed state of the atmosphere including detailed55

humidity and velocity fields which, as noted, are generally unavailable. Even56

here, the virtual testbed is useful, as it allows improved testing of 3D cloud57

detection algorithms for whole-sky imagers, which could eventually be used as58

input to an LES-based forecast.59

In section 2, we present the virtual testbed and whole-sky imager forecast.60

Section 3 compares the results of the sky imager forecast to those of the virtual61

testbed, paying special attention to the newfound ability to determine errors62

of difficult-to-measure quantities such as wind speed aloft and 3D cloud struc-63

ture. Differing geometrical perspectives and cloud field dynamics constitute the64

largest sources of error in the current forecast, with geometry playing a larger65

role at short forecast horizons, and cloud evolution dominating the error for66

further-ahead forecasts. Discussion and conclusions are provided in Section 4.67
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2. Virtual Testbed Components68

2.1. Large Eddy Simulation69

LES are carried out using the UCLA LES [12, 13, 14], which has been thor-70

oughly validated and tested for a number of cases including continental cu-71

mulus [15], raining cumulus [8], and stratocumulus clouds [13]. The UCLA72

LES uses the Smagorinsky sub-gridscale model, and parameterizes cloud micro-73

physics following Stevens and Seifert [8]. Interactive radiation is implemented74

via a Monte Carlo version [16] of the delta-four-stream model [17]. Cloud droplet75

radius for both radiation and microphysics is modeled by assuming a fixed cloud76

droplet mixing ratio.77

A single 14.5 hour simulation was carried out using example input data78

modeled for continental cumulus clouds, following the base case in [18], which79

is itself based on a detailed LES study of measurements taken at the Southern80

Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM)81

program [15]. Following prior simulations [18], precipitation was disabled in82

the microphysics model, leaving cloud liquid water diagnosed as the total water83

mixing ratio in excess of the saturation mixing ratio, and with the fixed cloud84

droplet mixing ratio of 70 × 106/kg. Initial profiles of atmospheric tempera-85

ture and humidity, as well as input surface fluxes are shown in Figure 1. Small86

volumetric forcings are applied as in [15] in order to represent observed large-87

scale advection in the periodic simulation domain. This day represents typical88

formation of a convective boundary layer due to surface heating, with cumulus89

clouds forming at the top of the (initially clear) boundary layer. As the day90

progresses, the cloud base rises from 1000 m to around 1500 m, with maximum91

cloud thickness of around 1250 m. Both the boundary layer and the clouds92

continue to deepen until late afternoon when solar radiation has decreased sig-93

nificantly. Typical horizontal cloud size is 400 m. Hemispherical cloud cover94

peaks just above 65% around solar noon; Figure 6 later shows hemispherical95

cloud cover over the course of the day.96

LES grid cells are 50 meters across in both horizontal dimensions and 4097
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Figure 1: Profiles of temperature and humidity at simulation start, along with surface con-

vective heat fluxes during the simulation.

meters high, spanning a 6.4 km domain that is 5.1 km deep. Periodic boundary98

conditions are used in the horizontal dimensions. A 10-cell thick sponge layer is99

used at the top of the domain to prevent wave reflection, while the lower surface100

uses a no-slip boundary with roughness length of 0.035 m, representative of long101

grass.102

LES requires on the order of an hour of simulation time to properly “spin-up”103

the turbulent flow and cloud field. After spin-up, the 3D state of the atmosphere104

(velocity, temperature, pressure, humidity, and liquid water content) is saved105

every 60 seconds of simulation time for input into the 3D RTM and reference106

against the sky imager forecast results.107

2.2. 3D Radiative Transfer Model108

The Spherical Harmonic Discrete Ordinate Method (SHDOM) [19] is used to109

solve the 3D Radiative Transfer Equation. SHDOM is the most computationally110

intensive portion of the virtual testbed, requiring over half of the approximately111

5000 CPU-core-hours used for the run presented here. SHDOM inputs are112

derived from the liquid water content output by UCLA LES, combined with113

the aerosol loading shown in Figure 2, which is based on the nauru19990707114

data file included with SHDOM adjusted to match the observed annual-average115

aerosol concentration, and effective radius at the ARM SGP AERONET site116

in 2013. This rapid decrease in aerosol concentration with height matches the117
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Figure 2: Aerosol loading and effective radius used to produce blue sky in SHDOM.

exponential decay proposed in [20]. SHDOM also uses atmospheric temperature118

when computing scattering properties; input vertical temperature profiles were119

derived from LES outputs. In order to simplify interpretation of the results,120

SHDOM is run with a constant sun position (solar zenith angle of 45◦) for121

the entire simulation time period; this avoids changing clear sky irradiance and122

geometric perspectives.123

At each time step, SHDOM produces a map of surface global horizontal124

irradiance (GHI) across the simulation domain. In addition, it produces one125

or more simulated sky images (essentially a map of radiance versus direction126

at a single location) that can be fed into the sky imager forecast routines.127

SHDOM results at three different wavelengths (450 nm, 550 nm, and 670 nm)128

are combined to produce full-color images, and are averaged to approximate129

broadband GHI. As in the LES, periodic boundary conditions are used.130

Figure 3 shows an example of clouds from the LES and the corresponding131

virtual sky image from SHDOM.132
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Cloud Map Cloud Motion Radiation

Sky Image (si) Pixel Motion (pix) kt Histogram (kthist)

LES Converging Ray (conv) LES Layer Mean (llm) Per-class Mean (ktmean)

LES Zenith Parallel Ray (zen) No Quantization (noquant)

LES Sun Parallel Ray (sun) kt Advection (ktadv)

Table 1: Naming shorthands for modified versions of the forecast algorithm. The standard

forecast is si-pix-kthist.

2.3. Sky Imager Forecast133

The sky imager forecast [1] investigated here models clouds as occurring134

in a single plane at the height of the cloud base. Current cloud positions are135

detected based on the color of the input image, and future positions are forecast136

using the “frozen cloud advection” assumption, which assumes that the entire137

cloud field moves in a uniform direction without changing shape. Inputs to the138

sky imager forecast are a sky image, cloud base height usually derived from139

lidar (Light Detection and Ranging) data, and recent measured GHI—used to140

estimate average cloud optical thickness, which is difficult to determine from the141

image. Figure 4 illustrates data flow through the sky imager forecast algorithm,142

along with inputs from the virtual testbed. In addition, several variations of143

the algorithm are discussed as part of the virtual testbed; naming conventions144

for these variations are given in Table 1.145
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Figure 4: Data flow through sky imager forecast algorithms with inputs from virtual testbed.

Solid arrows indicate the standard flow of data through the algorithm, while dashed lines show

where “correct” data from the virtual testbed can be used in place of a step in the forecast

algorithm. Outputs of LES or SHDOM are shown with a thin solid outline, while derived

results have a dashed outline; steps in the basic sky imager forecast have no outline.

2.3.1. Cloud Detection and Geometrical Mapping146

In the virtual sky imager testbed, cloud base height is determined based147

on the first grid cell to have significant liquid water content. As lidar point148

measurements of cloud base height are generally accurate, the “correct” LES-149

derived cloud height is used directly for forecasting. In practice, errors would be150

introduced in the process of interpolating point measurements of cloud height151

into an accurate height for an entire layer, particularly in the presence of to-152

pography or heterogeneous land surface and over larger areas. In the interest153

of brevity, we do not address these errors here.154

Cloud detection operates on the virtual sky images in the same manner as155

real sky images, and classifies each pixel of the input image as clear sky, thin156

cloud, or thick cloud, by applying thresholds to the difference between the red-157

blue ratio (RBR) of the image being analyzed and RBR of a clear sky. Pixels158

with RBR − RBRclear ≥ 0.4591 are considered thick cloud, while those with159

0.4591 > RBR − RBRclear and RBR − RBRclear · HCF ≥ 0.3044 are considered160
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cloud maps from sky images, and “sun projection” is used to map from the cloud plane to

shadows on the ground.

thin cloud. These thresholds generally vary with camera and location, and these161

values were manually selected specifically for use with the virtual testbed based162

on five images. HCF is the haze correction factor, and helps distinguish thin163

clouds from background haze. It is iteratively determined for each frame so that164

the average RBR of portions of the image detected as clear matches the RBR165

of the haze-corrected clear sky.166

Reference cloud maps are derived from LES optical depth, with optical167

depths greater than 1.5 considered thick clouds and any smaller non-zero op-168

tical depth considered thin cloud. Optical depth is the integral of extinction169

coefficient µ along the rays of the projection, normalized by ray orientation.170

Optical Depth =

∫
µ
dz

ds
ds (1)

171

µ =
3

2

LWC

ρlre
, (2)

where LWC is the liquid water concentration in kg/m3, ρl is the density of172

water, and re is the effective droplet radius, here fixed at 8 µm.173

As there is no obviously “correct” way to compress a 3D cloud into a plane,174

reference optical depth maps are computed using three different geometries (il-175

lustrated in Figure 5): zenith projection, sun projection, and converging-rays176

projection. Zenith and sun projected cloud maps compute the cloud optical177
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depth along parallel rays, while the converging-ray projection computes cloud178

optical depth along rays emanating from the location of the camera. Because it179

uses the same projection function as the camera, the converging-ray projection180

is representative of the best results we can expect to achieve with a pixel-by-181

pixel cloud detection on a sky image, while the sun projection is most relevant to182

the actual irradiance received at ground level. The zenith projection is similar183

to the view from a satellite positioned directly overhead.184

2.3.2. Cloud Velocity and Cloud Map Advection185

The sky imager forecast computes cloud speeds based on pixel motion be-186

tween adjacent frames. Motion vectors are determined for small regions of the187

image, and then clustered and averaged to produce a single wind vector that188

will be used to advect the entire cloud field. Assuming that clouds travel on the189

background flow, reference wind vectors can be obtained directly from the LES190

as the vector average wind at the cloud base height.191

2.3.3. Shadow Mapping and GHI Forecast192

The final step of the forecast is to place cloud shadows and estimate GHI(x, y, t).193

The correct way to estimate surface GHI is to run a 3D RTM on a 3D field of194

extinction coefficients, which accounts for attenuation of the direct beam and195

3D photon transport for diffuse radiation. Sky imager forecasts require simpli-196

fications both because 3D fields are not available and due to the computational197

complexity of 3DRTM. At present (kthist in Table 1), effects on direct and dif-198

fuse irradiance are lumped by assigning a clear-sky index kt (fraction of clear-sky199

GHI that will be received) to each cloud class:200

GHI(x, y, t) = GHIcsk(t) × kt(cloud class(x, y, t)) (3)

with cloud classes projected from the cloud plane to the ground using “sun201

projection” geometry from Figure 5. The kt for each cloud class is selected by202

finding three peaks (modes) in the histogram of measured GHI data from the203

past 2 hours. If fewer than three peaks are found, defaults of 0.42, 0.70, or 1.06204

10



(for thick, thin, and clear respectively) are used. “Correct” kt for each class is205

determined by averaging the SHDOM GHI of pixels located in the shadows of206

each class.207

In addition to reference GHI computed in SHDOM, we also compare several208

other radiation schemes, designed to illuminate the errors that arise in the209

existing forecast model. 1. Following the current sky imager forecast method,210

but using the “correct” kt for each class (ktmean). 2. Converting directly from211

optical depth (Eq. 1, any projection) to kt at each point via an exponential212

model fit at each time step, without quantizing into cloud classes (noquant).213

3. kt advection, i.e. kt(x, y, t) = kt(x − ut, y − vt, 0), for clouds moving with214

velocity (u, v), without reference to detected clouds (ktadv). 4. Persistence, i.e.215

kt(x, y, t) = kt(x, y, 0). Method (1) removes errors in the kt assignment, while216

(2) removes errors due to quantization. Methods (3) and (4) are initially perfect,217

and are included primarily to illustrate model performance as the cloud field218

changes. We note that methods (2) and (3) require more detailed information219

about the cloud field than is generally available outside the virtual testbed.220

2.3.4. Error Calculations221

Comparison of each of these intermediate forecast quantities to the reference222

values can obviously be done directly, but it is also beneficial to compare the rel-223

ative effects of errors at each step. For example, it is not clear how a cloud-speed224

error of 1 m/s relates to an error in cloud-cover of 10%. For this purpose, we225

compare the final forecast errors that result from substituting various reference226

values into subsequent forecast steps. For example, we might calculate forecast227

cloud positions and shadows using the “correct” sun projection reference cloud228

map rather than the cloud map derived from the sky image (corresponding to229

sun-pix-kthist in Table 1). This and other varying paths through the forecast230

algorithm are drawn in Figure 4. Naming conventions for variations are sum-231

marized in Table 1.232

Note that domain-average GHI is nearly constant over short periods of time,233

so errors are computed for all points, rather than for the domain average. Er-234
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rors thus obtained are representative of validating sky imager forecasts against235

point measurements at weather stations. Forecasts for power plants exhibit re-236

duced random error magnitudes due to spatial averaging. Forecasting and error237

reporting commence 15 minutes before the formation of the first clouds and238

extend through the end of the simulation.239

When comparing the error E of different methods to a baseline case, it is240

also useful to define forecast skill,241

forecast skill = 1 − E

Eref
, (4)

which is small positive number (up to 1 for a perfect forecast) if a method242

performs better than the baseline, and a negative number if the method under243

consideration is worse.244

3. Results and Discussion245

3.1. Errors in Intermediate Quantities246

Time series of cloud cover, cloud velocity, and kt results are illustrated in Fig-247

ure 6 and demonstrate the forecast’s ability to match overall atmospheric con-248

ditions. During the simulation run, the sky imager forecast had errors (RMS) of249

2.0 m/s and 1.7 degrees for the detected cloud velocities compared to LES wind250

at the cloud base height. Considering multiple cloud classes, 83% of pixels were251

correctly classified, with 7% that were classified as a cloud of the wrong class,252

and the remaining 10% classified as clear when they should have been cloud or253

vice versa. Detected kt values from the existing histogram-based method were254

also relatively reliable, with errors (RMS) of 0.033, 0.078, and 0.079 for clear,255

thin, and thick categories.256

Based purely on these error numbers, only the cloud speed error appears257

large enough to be of concern; the following sections consider the relative im-258

portance of these different errors to the GHI forecasts. Errors at short time259

horizons will mainly be influenced by the cloud mapping and radiation models,260

while longer forecasts rely significantly on the ability to predict the evolution of261

the cloud field.262
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kt values against the references derived from LES. Cloud motion filtering smooths data and

removes points where cloud cover < 0.05. Clear-sky kt exceeds 1 during much of the simulation

due to cloud enhancement.
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3.2. Projection263

Figure 7 illustrates the difference between the different cloud projection264

schemes. The standard sky imager forecast errors and persistence forecast errors265

follow the trend observed in previous work involving real-world data [1]. The266

converging-ray reference cloud map produces slightly better short term fore-267

casts, but does no better at longer time horizons. Most notable, however, is268

the significant improvement that comes from using one of the parallel-ray pro-269

jections, particularly at short time horizons. The sun projection method works270

best for short forecasts because it best matches the actual path light takes271

through the atmosphere, while zenith projection seems to work better at longer272

time horizons. We suspect this is because cumulus clouds form convectively,273

and as a result are more dynamic in the vertical dimension (which is hidden in274

the zenith projection) than the horizontal dimensions. Converging-ray projec-275

tion was generally known (e.g. [21]) to cause some degree of perspective error,276
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but the authors had not previously realized just how much of the error (over277

2/3 at the shortest time horizons) was a result of this. The remaining error at278

zero time horizon (“nowcast”) is due to cloud detection (thresholding of optical279

depth) and the complex 3D diffuse irradiance field that is not captured by the280

kt assignment; this error is further investigated in the following section. The in-281

adequacy of the frozen cloud advection hypothesis and to a lesser extent, cloud282

speed errors (Figure 6), result in all the methods having larger errors at long283

time horizons.284

3.3. Radiation285

To investigate the remaining nowcast errors, we consider the radiation com-286

ponent of the forecast algorithm. The current algorithm makes two significant287

approximations. First, it treats GHI as depending only on the value in the 2D288

cloud map at a single point. This is accurate for the direct beam, but not at all289

representative of how diffuse irradiance propagates. Secondly, as a result of this290

single-point approximation and our quantized cloud map, the cloud shadows are291

also quantized. To assess the performance implications of these assumptions, the292

results of relaxing each of these assumptions are demonstrated in Figure 8. The293

sun projection is used for this comparison as it is most physically representative,294

and performs best (Figure 7) at short time horizons.295

Nowcast errors are independent of cloud motion and therefore reveal the296

radiation model errors. Choosing the optimal (mean observed at zero horizon)297

kt for each class (red line) results in modest (around 12%) improvements in the298

radiation model. However, even eliminating the quantization (blue line) leaves299

over 40% of the nowcast error. The remainder requires properly dealing with300

diffuse irradiance and 3D cloud structure.301

At longer time horizons, the difference between the various methods decays302

as the advected static cloud map becomes less representative of the real cloud303

field. The kt advection scheme uses the initial measured kt(x, y), and is thus304

perfect initially, but by 5 minutes is hardly any better than the standard algo-305

rithm. Interestingly, the mean kt method actually performs better at long time306
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horizons, presumably because localized fluctuations about the mean values tend307

to change more quickly with time and smoothing forecast fields therefore tends308

to reduce errors.309

It should also be noted that this cloud scene contains only medium-thickness310

fair-weather cumulus clouds which probably tends to improve the performance311

of the baseline radiation model compared to conditions with a mix of thin and312

thick clouds. In particular, the algorithm would likely have more difficulty313

selecting the correct peaks from a more complicated kt histogram.314

3.4. Cloud Evolution315

To address errors at longer forecast horizons, additional comparisons were316

run using the nominal average wind vector from LES. As illustrated in Figure 9,317

using the nominal wind vector from LES results in less than 4% improvement in318
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Figure 9: Forecast errors for frozen cloud advection compared with reference motion vectors

from LES. Algorithm variations shown are X-Y -kthist. Similar behavior is observed for other

forecast variants not shown.

forecast accuracy. For the sun and zenith projections, these improvements are319

relatively small (median 1.1% and 1.6% respectively across forecast horizons) in320

comparison to the overall increase in error with forecast horizon, suggesting that321

the current sky imager forecast’s motion vector algorithm works well (at least,322

for this simple, one-layer cloud case), and that we have essentially saturated the323

capabilities of the frozen cloud advection model; further improvements would324

require a more dynamic model for cloud development. After a forecast horizon325

of 5 minutes, a forecast that assumes constant kt thoughout the domain (not326

shown) outperforms all other forecast variants. Thus, 5 minutes can be consid-327

ered to be the decorrelation time scale of this cloud field and an upper bound328

for the validity of the frozen cloud assumption; the decorrelation time scale is329

expected to vary with atmospheric conditions.330

Some additional attention is required to the motion estimation algorithm as331

applied to the sky image or converging cloud map. In Figure 6 previously, a332

significant deviation was observed between the detected cloud speed and the LES333
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reference speed—the pixel motion estimation consistently under-predicts speed.334

While the contribution to overall error is still always less than 4% (median335

2.9%) in this case, approximately half of the forecast-horizon-dependent error336

is attributable to this velocity under-prediction. This under-prediction appears337

to be related to the vertical geometry of the cloud, as Figure 10 shows that the
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Figure 10: Cloud speed estimates based on pixel motion for the different projections in com-

parison to the LES reference speed. The black (llm) and red (si-pix) lines are also shown in

Fig. 6.

338

detected speeds in the sun and zenith projections match the LES results much339

more closely. Furthermore, experiments with non-physical clouds occupying340

only a single grid layer showed no issues with motion estimation, suggesting341

that cloud depth or wind shear is involved. At present, a complete explanation342

for this under-prediction of velocity is lacking; it will be investigated in more343

detail in future work. As noted above, the more accurate projections also yield344

more accurate motion estimates without additional work, so this investigation345

is primarily of interest until it becomes possible to generate 3D cloud maps from346

sky imagery.347
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4. Discussion and Conclusions348

The virtual sky imager testbed is a valuable and versatile tool, allowing us349

to validate the quality of outputs from many steps of the sky imager forecast al-350

gorithm, and to assess the source of remaining errors. Here, the testbed demon-351

strated that for a simple cloud scene with scattered cumulus clouds, nowcast352

errors already negated most of the utility of sky imager forecasting. Nowcast353

errors primarily originated in the converging-rays projection of 3D clouds into354

a 2D plane, while cloud detection contributed relatively minor errors.355

Sky imager forecast errors further increase from the nowcast errors, never356

managing to outperform a persistence forecast. The virtual sky imager testbed357

allowed cloud motion estimation errors to be examined separately and these er-358

rors were found to be small except for converging-ray projections, and of minor359

consequence there. Further, the virtual sky imager testbed demonstrated that360

even with projection errors in the nowcast corrected, the frozen-cloud-advection361

assumption for forecasting future cloud positions increasingly deteriorates fore-362

cast accuracy at longer time horizons.363

However, the virtual testbed suffers from a number of limitations as well.364

LES is mostly limited to boundary layer clouds over flat and homogeneous or at365

least idealized (periodic) ground surfaces. The current LES setup is therefore366

limited in its ability to produce high clouds, including cumulonimbus and cirrus,367

as well as multiple cloud layers and topographic clouds. In principle, use of a368

larger domain, non-idealized measured inputs, and advances in numerical codes369

can enable simulations of these other cloud types (e.g. as in [22, 10]), but with370

considerable computational and human resource investments. Varying types371

of clouds and topography would likely influence the measured errors quantita-372

tively, but qualitative conclusions would likely be similar to those for cumulus373

clouds. For example, clouds with smaller vertical extent such as stratocumuli374

would likely reduce projection errors, but sun or zenith projection would still375

be expected to outperform converging-ray projection. Therefore, while not nec-376

essarily sufficient to validate forecasts under the variety of conditions seen in377
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the real world, for development of generic forecast algorithms it is preferable to378

utilize simpler-to-implement, well-studied cases. Multiple cloud layers, on the379

other hand, considerably complicate cloud detection (shadows of upper layers on380

lower layers), cloud mapping (single-cloud-plane model is no longer accurate),381

and motion estimation (distinguish multiple layers moving independently), and382

are therefore more likely to reveal qualitatively different results. In a future383

iteration of the virtual testbed, multiple cloud layers might be approximated by384

running multiple separate LES simulations and stacking the results, though this385

is obviously not physically realistic. Finally, the process of producing virtual386

sky images currently omits both stray light and sensor noise. Noise, and in par-387

ticular stray light tend to cause issues with cloud detection, so cloud detection388

in the virtual testbed is likely more accurate than for real images. Models for389

noise and stray light could be added in a future version of the virtual sky imager390

testbed.391

Despite these limitations, the virtual testbed is expected to be a valuable392

tool for validating and improving sky imager forecast algorithms. The authors393

would be happy to share the virtual sky images and ancillary data with other394

researchers.395
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