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Association of Hyperautofluorescence
Signals with Geographic Atrophy Progression
in the METformin for the MINimization of
Geographic Atrophy Progression Trial

Abu Tahir Taha, BS,1,* Liangbo Linus Shen, MD,1,* Antonio Diaz, BS,1 Noor Chahal, BS,1 Jasmeet Saroya, BS,1

Mengyuan Sun, PhD,2 Michael J. Allingham, MD, PhD,3 Sina Farsiu, PhD,3 Glenn Yiu, MD, PhD,4

Jeremy D. Keenan, MD, MPH,1,5 Jay M. Stewart, MD1,6

Purpose: To investigate the association between rim area focal hyperautofluorescence (RAFH) signals and
geographic atrophy (GA) growth rates, as well as the impact of oral metformin on the longitudinal change of
RAFH.

Design: Secondary analysis of a randomized controlled trial.
Participants: Seventy-one eyes from 44 participants with GA and �6 months of follow-up in the METformin

for the MINimization of geographic atrophy progression study.
Methods: Fundus autofluorescence images were captured using a 488 nm excitation wavelength. Two

masked graders identified and measured RAFH lesions using proprietary semiautomatic segmentation software
and ImageJ. We calculated RAFH by dividing the areas of hyperautofluorescence within a 450-mm rim circum-
scribing the GA by the total area enclosed within this rim.

Main Outcome Measures: Longitudinal changes in RAFH and GA area.
Results: Baseline RAFH was positively associated with the baseline square root of GA area 0.065/year (P <

0.001). In the entire study cohort, higher baseline RAFH was associated with a faster GA area growth rate in mm2/
year (Spearman’s r ¼ 0.53; P < 0.001). The association became weaker in square root-transformed GA area
growth (r ¼ 0.19, P ¼ 0.11) and perimeter-adjusted GA growth rate (r ¼ 0.28, P ¼ 0.02), achieving statistical
significance only in the latter. When this analysis was stratified into 3 baseline GA tertiles, the first and second
tertiles showed weak to moderate association with statistical significance in all 3 modes of GA growth rates. Rim
area focal hyperautofluorescence increased slightly but significantly over time at 0.020/year (P < 0.01). Rim area
focal hyperautofluorescence increased slightly but significantly over time at 0.020/year (P < 0.01). The use of oral
metformin was not significantly associated with the change in RAFH over time compared with the observation
group (0.023/year vs. 0.016/year; P ¼ 0.29).

Conclusions: Increased baseline RAFH is associated with faster GA area progression. However, the effect
size of this association may depend on the baseline GA lesion size such that small to medium-sized GA lesions
display this relationship regardless of the mode of the calculation of GA growth rate.

Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures
at the end of this article. Ophthalmology Science 2025;5:100620 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Geographic atrophy (GA), an advanced form of age-related
macular degeneration, affects the vision of >5 million in-
dividuals globally.1 Perifoveal atrophy impacts visual
functions such as reading, driving, and seeing in low-light
conditions. In contrast, foveal involvement can signifi-
cantly impair central visual acuity. Geographic atrophy is
characterized by the progressive deterioration of photore-
ceptors, retinal pigment epithelium (RPE), Bruch’s mem-
brane, and the choriocapillaris, primarily in the macula.2
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/). Published by Elsevier Inc.
The United States Food and Drug Administration recently
approved 2 complement-factor inhibitors for slowing GA
progression, and clinical trials evaluating other therapies are
underway.3e7

The enlargement rate or the enlargement of GA area over
time assessed by fundus autofluorescence (FAF) imaging is
the most common primary endpoint in GA clinical trials.3,4,8

However, the GA growth rate varies widely across different
patients.8e12 Several studies have investigated various
1https://doi.org/10.1016/j.xops.2024.100620
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biomarkers on FAF imaging to stratify the progression rate
of GA.8,13e16 One such biomarker is hyperautofluorescent
signals in the junctional zone of existing GA lesions. Prior
studies suggest that hyperautofluorescence patterns in the
junctional zone may be associated with GA enlargement
rates.17e20 However, grading these patterns is subjective,
which poses a challenge in clinical trials that use these
patterns as inclusion or exclusion criteria.21e23 Alterna-
tively, a few studies have attempted to quantify junctional
hyperautofluorescent signals to establish their associations
with GA growth.24e26 Bearelly et al defined rim area focal
hyperautofluorescence (RAFH) as the percentage of area
with increased autofluorescence within the 500-mm border
around GA.25 This concept was further improved by
Allingham et al using semiautomatic software that
quantified RAFH as a ratio of hyperautofluorescent areas
over the total amount of area enclosed within a 450-mm
border around GA (Fig 1).24 These studies found that the
enlargement rate of GA area (in mm2/year) was positively
associated with the baseline RAFH. However, these prior
studies did not account for baseline GA lesion size or peri
GA area.27e30 Thus, the nature of the relationship between
junctional hyperautofluorescent signals and GA growth rate
remains unclear. Additionally, junctional hyper-
autofluorescent regions may correspond with disease activ-
ity,26,27,31 but to our knowledge, the longitudinal change of
RAFH remains understudied.

Building on prior work, we investigated the association
of baseline RAFH with the GA growth rate while adjusting
for baseline GA lesion size. We further explored whether
baseline RAFH is associated with other clinical and
Figure 1. Blue autofluorescence image of the left eye of a 79-year-old female w
history of ocular interventions who was diagnosed with age-related macular dege
best-corrected visual acuity of 49 letters. A, Shows the raw image autofluoresc
imposed delineation of GA in red, junctional hyperautofluorescent areas in b
METformin for the MINimization of Geographic Atrophy Progression trial an
After correcting any perceived errors in the identified hyperautofluorescent area
code in MATLAB by dividing the total area in blue by the area interposed be
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demographic factors known to be associated with the pro-
gression of GA.32,33 We also used data from the METformin
for the MINimization of Geographic Atrophy Progression
(METforMIN) trial, which did not find a benefit to oral
metformin in slowing down GA progression, to
investigate the change in RAFH over time and to
determine whether oral metformin impacts its overall
growth.34

Methods

Study Design and Eligibility Criteria

The current study is a secondary analysis of METforMIN clinical
trial (ClinicalTrials.gov identifier: NCT02684578).34 METformin
for the MINimization of Geographic Atrophy Progression was a
multicenter phase II clinical trial that investigated the efficacy of
oral metformin in slowing down the rate of progression of GA.
The study protocol, design, and primary results of the clinical
trial design can be found in our previous publication.34 Briefly,
we recruited nondiabetic participants >55 years of age with GA
secondary to nonexudative age-related macular degeneration
from 12 clinical sites. These patients were selected based on the
investigator’s expertise at each clinical site. The items considered
during this assessment included the history of the disease, clinical
examination, and imaging findings. We randomized 66 eligible
participants in a 1:1 ratio to either metformin or observation.
Participants in the metformin arm were instructed to gradually
increase the metformin dose to 1000 mg twice daily, which par-
ticipants took for 18 months. These participants were then followed
for an additional 6 months without treatment. In the observation
arm, we followed participants according to the standard of care
every 6 months for 24 months. We obtained FAF and OCT
ith a past medical history of smoking and cardiovascular disease without a
neration in 2000. This participant was enrolled in the study in 2017 with a
ence image before any processing. B, Depicts the same image with super-
lue, and the 450-mm border in green. GA grading was adopted from the
d the shown hyperautofluorescence areas were delineated by the software.
s, rim area focal hyperautofluorescence was calculated using a custom-made
tween the 450-mm border and the GA lesion. GA ¼ geographic atrophy.

http://ClinicalTrials.gov
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imaging using Heidelberg Spectralis with BluePeak FAF (488 nm
excitation wavelength). Our current analysis included 71 eyes (34
metformin; 37 observation) from 44 participants (21 metformin; 23
observation) with GA area measurements at the baseline and �1
follow-up visit. We investigated the growth of RAFH over 24
months and the impact of metformin on RAFH change for 18
months. In a separate supplementary analysis applicable only to the
aim of investigating the impact of metformin on RAFH over 18
months, we excluded participants who were not adherent to taking
metformin �75% of the time (3 participants). We included 66 eyes
(29 metformin; 37 observation) from 41 (18 metformin; 23
observation) participants in the analysis.

The study was conducted in accordance with the tenets of the
Declaration of Helsinki and was approved by the institutional re-
view board at each clinical site. The METforMIN trial obtained
written informed consent at enrollment and complied with the
Health Insurance Portability and Accountability Act.
Outcome Measures and RAFH Grading

We performed a comprehensive eye examination during each visit,
obtained FAF and OCT imaging, and assessed participants’
adherence to metformin. We also obtained other clinical and de-
mographic information such as sex, race/ethnicity, body mass in-
dex (BMI), and history of smoking or cardiovascular disease
(CVD).

We used information from the METforMIN trial to obtain the
following FAF image characteristics:34 area of GA lesions, baseline
focality of GA lesions (unifocal vs. multifocal), and classification of
junctional hyperautofluorescent patterns (group 1: “None” and
“Focal”; group 2: “Banded,” “Patchy,” and “Diffuse”).18,35 A
simpler FAF hyperautofluorescent classification was chosen to
improve intergrader reproducibility.36 Specifically, 2 independent
graders, who were masked to the treatment allocation of the
patients, graded each FAF image for the total GA area and
specified the FAF phenotype. Two expert graders further reviewed
GA gradings to ensure accuracy. A detailed description of GA
grading and FAF phenotyping protocol can be found in the
Supplemental Methods of this manuscript, available at https://
www.ophthalmologyscience.org.

For the present study, 2 masked graders (A.T.T. and A.D.) used
a validated proprietary semiautomatic software24 to identify the
perilesional 450-mm border and potential hyperautofluorescent
regions of interest. A detailed description of the
hyperautofluorescent signals thresholding process can be read in
the original publication by Allingham et al.24 Briefly, once the
software drew the perimeter surrounding the GA lesions, it
applied a local threshold of þ40 pixel value (with intensity
values ranging from 0 to 255; 0 represents black, and 255
represents white) to the circumscribed region between the
perimeter and the GA. It then marked areas above this threshold
as hyperautofluorescent. Both graders independently corrected
any perceived tracing errors and then delineated
hyperautofluorescent regions within the 450-mm border in the
FAF images using ImageJ (National Institutes of Health).37 The
450-mm width was chosen based on the prior reports, which
noted most hyperautofluorescent areas to be confined within a
width of approximately 450 mm.24,25,38 An example delineation
of RAFH as performed by the software before any manual
alterations can be seen in Figure 1B. We calculated RAFH as the
sum of all hyperautofluorescent areas within the 450-mm border
divided by the total area enclosed between GA and its 450-mm
border using a custom code in MATLAB (MathWorks).39 Each
grader independently graded the entire image set. For images
with RAFH outside the 95% limits of agreement between the 2
graders, both graders assessed their gradings together, discussed
their approach, and reached mutual consensus.
Statistical Analysis

We used R software40 (version 4.0.4, R Foundation for Statistical
Computing) to perform all statistical analyses. We used a
BlandeAltman plot and intraclass correlation coefficients to
assess the reliability between the 2 graders. We calculated the mean
RAFH measurements between the 2 graders for all subsequent
analyses. We used Spearman’s rank correlation (r)24e26 to deter-
mine the association between the baseline RAFH and growth rate
of GA area (mm2/year), the square root-transformed GA growth
rate (mm/year), and perimeter-adjusted GA growth rate (mm/year).
We calculated the annual GA growth rate (mm2/year) by sub-
tracting the GA area at the first visit (mm2) from the GA area at the
last visit (mm2) and dividing the result by the time interval (years).
We included GA growth rate to compare our results with previous
studies reporting on GA progression, which also utilize this method
of quantifying GA growth. Furthermore, recent GA clinical trials
have also report GA growth in mm2.3,4 We calculated the square
root-transformation of GA growth rate (mm/year) by subtracting
the square root of GA at the first visit (mm) from that at the last
visit (mm) and divided the result by the time interval (years).
Lastly, we determined perimeter-adjusted GA growth rate by
dividing the GA area growth (mm2/year) by the mean GA perim-
eter between the first and the last visits (mm).30 We further
stratified the list of baseline GA areas of the 71 eyes into 3
tertiles, splitting them into 3 equal groups based on the size of
the GA area.41 The tertiles-based method to account for the po-
tential impact of baseline GA area on the subsequent growth rate
has been replicated previously by other studies.29,42,43 We then
repeated the same analysis to establish the association between
RAFH and GA growth rate within each tertile. We used a
univariate linear mixed-effects regression model with a random
effect for participant to account for intereye correlations (“lme4” R
package)44 to investigate the association between baseline RAFH
and each of the following baseline characteristics separately
(fixed-effects): age, sex, BMI, history of smoking, presence of
CVD, baseline focality of GA lesions (unifocal vs. multifocal),
baseline hyperautofluorescence pattern (group 1: “None,” “Focal”
vs. group 2: “Banded,” “Patchy,” “Diffuse”), baseline perimeter,
and baseline square root-transformed GA area. We then chose all
characteristics that were statistically significantly associated with
baseline RAFH (P < 0.05) in the univariate models and entered
them in a multivariable mixed-effects model that was constructed
similarly. In the analysis investigating the impact of metformin on
RAFH growth, we included patients with varying levels of follow-
up visits up until 18 months. At that time, metformin administra-
tion was discontinued per the METforMIN trial protocol. We
modeled RAFH as a function of fixed effects of time, treatment
arm, and the interaction between the 2, with nested random in-
tercepts for eye (to account for repeated measures in the same eye)
and crossed random intercept for participant (to account for the
correlation of eyes from the same person) as well as a random slope
for eye across study visits.34 The model assessing the longitudinal
change of RAFH over 24 months was constructed similarly except
for removing predictor variables of the treatment arm and the
interaction between time and treatment arm.
3
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Results

Participant Characteristics and Intergrader
Reproducibility of RAFH

Seventy-one eyes (34 metformin; 37 observation) from 44
participants (21 metformin; 23 observation) were included
in the final analysis. Two hundred eighty-two total FAF
images (136 metformin; 146 observation), with each image
belonging to a single visit, were graded separately by the 2
graders. Further baseline characteristics of participants can
be seen in Table 1. The intraclass correlation coefficient
between the 2 graders after corrections was 0.78 (95%
confidence interval, 0.72e0.83) with a mean difference of
0.016, and BlandeAltman limits of agreement
between �0.106 and 0.137 (Fig 2). Sixteen of the 282
(5.7%) images had RAFH grading outside the limits of
agreement, requiring a discussion and mutual agreement
between the 2 graders.

Baseline RAFH Was Associated with Baseline
GA Area

Baseline RAFH was positively associated with the baseline
square root of GA area (P < 0.001) and baseline GA
perimeter (P < 0.01) based on the univariate analysis, but
not with age, sex, BMI, focality of baseline GA lesions,
FAF pattern, as well as history of smoking or CVD
(Table 2). In the multivariate model, only the baseline
square root of GA area was significantly associated with
baseline RAFH (P < 0.001).

Increased Baseline RAFH Was Associated with
Faster GA Progression

The growth rate of GA area (mm2/year) was positively
associated with baseline RAFH (Spearman’s r ¼ 0.53 and P
< 0.001, Fig 3A). The association remained positive but
became weaker in square root-transformed GA area
growth (r ¼ 0.19 and P ¼ 0.11, Fig 3B) and perimeter-
adjusted GA growth rate (r ¼ 0.28 and P ¼ 0.02, Fig 3C).
Table 1. Baseline Clinical and Imaging

Characteristic Metformi
N ¼ 34 Eyes; 21 P

Age (yrs), median (IQR) 74 (68e83
Male sex, n (%) 14 (41)
FAF phenotype classification, n (%)
“None” and “Focal” 22 (65)
“Banded,” “Patchy,” and “Diffuse” 12 (35)

Foveal involvement, n (%) 29 (85)
Longest follow-up interval (yrs), median (IQR) 1.99 (1.52e2

FAF ¼ fundus autofluorescence; IQR ¼ interquartile range.
Wilcox rank sum test is used for all continuous variables; chi-square test of indep
for expected cell count <5.
n (%) refers to number of eyes.
*Wilcoxon rank sum test; Pearson chi-squared test; Fisher exact test.
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After we stratified eyes into 3 tertiles based on baseline
GA area, the association between baseline RAFH and GA
growth rate remained positive and statistically significant in
the first and second tertile for GA area growth (mm2/year)
and perimeter adjusted GA growth (in mm/year), and in the
second tertile for square root-transformed GA growth rate
(in mm/year) (Fig 4). Geographic atrophy growth rate was
not significantly associated with baseline RAFH in the
third GA size tertile using any of the 3 GA growth rate
measurements.

RAFH Increases over Time

In the combined metformin and observation group, RAFH
increased slightly but significantly at 0.020 � 0.006 units/
year (P ¼ 0.002) over 24 months. The annualized change
rate of mean RAFH was 0.023 � 0.009 units/year in the
metformin group (34 eyes from 21 participants) and
0.016 � 0.008 units/year in the observation group (37 eyes
from 23 participants) (Fig 5). Oral metformin did not
significantly affect the change in RAFH over 18 months
(P ¼ 0.29). After removing 5 eyes from 3 participants
who were <75% adherent to oral metformin, the results
did not change significantly (P ¼ 0.37).

Discussion

To our knowledge, this is the first study to investigate the
association of baseline RAFH and GA progression after
accounting for baseline GA area and perimeter. We found
that RAFH was significantly higher in eyes with larger GA
size. A larger baseline RAFH was significantly associated
with faster GA area progression (in mm2/year) (r ¼ 0.53
and P < 0.001). The association remained positive but
became weaker after we used the growth rate of square root-
transformed GA area (r ¼ 0.19 and P ¼ 0.11) and
perimeter-adjusted growth rate (r ¼ 0.28 and P ¼ 0.02) in
mm/year, suggesting that the previously reported association
between baseline RAFH and GA area growth rate in mm2/
year may be partly confounded by baseline GA area and
Characteristics of Study Participants

n Observation P Value*
articipants N ¼ 37 Eyes; 23 Participants

) 78 (75e81) 0.12
10 (27) 0.21

0.45
27 (73)
10 (27)
32 (86) >0.99

.05) 1.63 (1.45e2.00) 0.25

endence is used for expected cell count >5, whereas Fisher exact test is used



Figure 2. BlandeAltman plot showing comparisons between the RAFH
measurements of 2 graders (N ¼ 282 images). Overall, RAFH had a mean
difference of 0.016 (the solid line) and 95% limits of agreement of �0.106
to 0.137 (dashed lines), with an intraclass correlation coefficient of 0.78.
RAFH ¼ rim area focal hyperautofluorescence.
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perimeter.24e26 Although it is well known that the square
root transformation (mm/year) is preferred to track GA
growth over the area growth in mm2/year,28,45 recent
clinical trials still reported changes in GA size in mm2.3,4

Our study further found RAFH to increase slightly but
significantly over time, and oral metformin did not
significantly affect the change rate of RAFH.

Our overall Spearman’s correlation coefficient of 0.53 (P
< 0.001) between RAFH and GA area growth rate (mm2/
year) is comparable to previously reported values of 0.4924

and 0.60.26 When using square root-transformed or
perimeter-adjusted GA growth rate, the reduced correlation
strength suggests that the observed association between
baseline RAFH and GA area growth rate may be partly
confounded by baseline GA area and perimeter. This result
highlights the advantage of either of the 2 methodsdsquare
root-transformed and perimeter-adjusteddwhen calculating
GA growth rate as an endpoint,9,28,30,45,46 as opposed to the
traditional approach in mm2/year. In addition to adjusting
for baseline GA area, few studies have shown that the
perimeter-adjusted GA growth also adjusts for additional
features, such as the number of GA lesions and their
circularity index.30,47 Interestingly, we found a moderate
positive correlation between RAFH and square root-
transformed as well as perimeter-adjusted GA growth rate
in the first 2 baseline GA area tertiles but not in the third
baseline GA area tertile (Fig 4), suggesting that baseline
RAFH may have a better prognostic value in small and
medium-sized GA (under 8.0 mm2) than in large GA
(above 8.2 mm2).48,49 The exact reason for this phenomenon
is unclear. One explanation is that GA lesions of tertiles 1
and 2 may be at different stages of the natural history of
the disease and, therefore, display different GA growth
rates.48e51 This is supported by studies that found a
sigmoidal pattern of GA growth rate to be more represen-
tative of the natural course of atrophic lesions.49,52 Smaller
lesions may also vary in topographical distribution more
than large, coalesced lesions, which may result in distinct
growth patterns since locations farther away from the
fovea tend to exhibit faster rates.50 The pathological
underpinning for chronological and topographical
variations in GA growth rate is also not fully
understood.51 However, some studies have implicated that
differences in macular pigment distribution, higher
susceptibility of rods to atrophy progression, and the
presence of genetic variants of pathological significance
play an important role in explaining this
variation.8,50,51,53,54 With the advent of complement
inhibitors to slow the rate of GA progression,55 the
predictive value of RAFH may help clinicians identify
patients who could benefit the most from such
pharmacological therapy. The correlation between RAFH
and the extent of photoreceptor loss on OCT in the
junctional area may also offer insights into GA
progression dynamics56 and should be the subject of
future studies as deep learning algorithms required for
such analysis become more readily available.57

The hyperautofluorescent signals surrounding GA lesions
were initially thought to represent lipofuscin-accumulated
RPE cells at a higher risk of dying.17,18 However, more
recent studies have associated these signals with
morphological changes such as vertical stacking,
migration, or redistribution of RPE cells.58e61 Some histo-
logical studies characterize the border of atrophy as an area
undergoing RPE cell apoptosis and transdifferentiation, thus
contributing to spatio-morphological alterations in the RPE
layer.60,62 As such, the migration of RPE cells may
correspond with the local movement of signals on FAF or
with hyperreflective foci on OCT, as some have
suggested.62,63 In this context, the association between
greater RAFH and faster GA progression in tertiles 1 and
2 may indicate an overall state of high RPE stress and
disease activity, though it is unknown why this
relationship is restricted to small and medium GA (under
8.0 mm2). Although histologic autofluorescence per RPE
cell is reported to decrease with increasing RPE cell
dysmorphia,63e65 high interindividual autofluorescence
variation in normal eyes,66 the effect of age and retinal
location,62,63,66 aggregation of RPE cells or pigment
granules,62,64,65 and the phenomena of RPE shedding and
degranulation,60,63,64,67 may contribute substantial
variation and thus, pose a significant challenge in
elucidating the relationship between autofluorescence and
RPE pathology. Future studies may focus on
corresponding hyperautofluorescence signals on FAF with
hyperreflective foci on OCT in the junctional area of GA,
which may further illuminate the role of each biomarker
in predicting GA progression.

Another potential biomarker previously reported is an
increase in the thickness of the sub-RPE complex found
near the atrophic border, which may correspond to RPE
5



Table 2. Cross-Sectional Association of Baseline RAFH with Clinical and Imaging Characteristics

Baseline Factor Category Number of Eyes

Univariate model* Multivariate modely

Coefficient Estimate (95% CI),
Arb. units P Valuez

Coefficient Estimate
(95% CI), Arb. units P Valuez

Lesion number - 71 0.002 (�0.006, 0.01) 0.64
Square root of GA area, mm - 71 0.053 (0.036, 0.07) <0.001 0.065 (0.039, 0.09) <0.001
GA perimeter, mm - 71 0.002 (0.001, 0.004) 0.003 �0.001 (�0.003,0.00) 0.22
BMI - 63 �0.003 (�0.008, 0.002) 0.21
Age, yrs - 71 0.00 (�0.003, 0.002) 0.79
Sex Male 23 �0.018 (�0.069, 0.033) 0.48

Female 48 Reference -
CVD history Yes 38 0.001 (�0.048, 0.049) 0.97

No 33 Reference -
Smoking history Yes 26 0.016 (�0.034, 0.065) 0.53

No 45 Reference -
FAF pattern “Banded,” “Patchy,” and “Diffuse” 23 0.005 (�0.035, 0.045) 0.79

"None" and "focal" 48 Reference -
GA foveal involvement Yes 63 �0.006 (�0.063, 0.051) 0.83

No 8 Reference
GA focality Multifocal 47 �0.015 (�0.054, 0.025) 0.47

Unifocal 24 Reference -

BMI ¼ body mass index; CI ¼ confidence interval; CVD ¼ cardiovascular disease; FAF ¼ fundus autofluorescence; GA ¼ geographic atrophy; RAFH ¼ rim area focal hyperautofluorescence.
*Factors were entered one-by-one separately in the univariate model.
yOnly factors with univariate P < 0.05 were included in the multivariate model.
zValues in bold denote statistical significance at P < 0.05.
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Figure 3. Spearman plots with correlation coefficients (r) and P values showing the association between baseline RAFH and A, growth rate of GA area
(mm2/year); B, growth rate of square root-transformed GA area (mm/year); and C, perimeter-adjusted GA growth rate (mm/year). The growth rate of GA
area (mm2/year) was positively associated with baseline RAFH (r ¼ 0.53 and P < 0.001). The association remained positive but became weaker in square
root-transformed GA area growth (B, r ¼ 0.19 and P ¼ 0.11) and perimeter-adjusted GA growth rate (C, r ¼ 0.28 and P ¼ 0.02). The gray shaded area
surrounding the line represents standard error. N ¼ 71 eyes. arb. unit ¼ arbitrary units; GA ¼ geographic atrophy; RAFH ¼ rim area focal
hyperautofluorescence.
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distress and structural alterations.60,68 This is also known as
basal laminar deposits. Some reports have suggested the
pronounced thickening of basal laminar deposits in the
“diffuse-trickling” FAF phenotype to potentially explain
extraordinarily fast GA progression.69e71 Since these de-
posits may contain aggregates of autofluorescent granules,72

they can potentially alter the autofluorescence seen on FAF
imaging.60 Future studies may aim to correlate the thickness
of basal laminar deposits in different FAF phenotypes with
their respective GA growth rates using OCT.

In this study, we also investigated whether baseline
RAFH is associated with risk factors previously reported
with the progression of GA, including clinical characteris-
tics (age,8 sex,73 BMI,74 smoking history,74 and history of
CVD73) as well as morphological GA factors (baseline
lesion focality,8,30 baseline lesion number,30,50

hyperautofluorescence pattern,35 baseline GA perim
eter,30,75 and baseline square root-transformed GA area29).
The only statistically significant association of baseline
RAFH with baseline square root-transformed GA area re-
inforces that bigger GA lesions may be at a later stage in
their natural course of the disease than the smaller ones,
hence showing different extents of RAFH at their
border.48,76 The lack of association of RAFH with clinical
risk factors associated with the incidence and progression
of GA may be due to our small sample size. We also
recognize that this analysis did not encompass all GA
morphological features associated with GA progression.
One such example is GA lesion diameter.77 However, we
did include GA perimeter in our analysis, which is closely
related to GA lesion diameter. Correlating clinical
characteristics of patients with RAFH in larger studies
may help us further our understanding of the pathological
role of hyperautofluorescence signals in GA progression.

Our last goal of this studywas to assess the change inRAFH
over time and investigate the impact of oral metformin on
minimizing RAFH growth. The limited effect of oral metfor-
min on influencingRAFH’s growthmay be attributed to a lack
of statistical power to detect notable differences, insufficient
follow-up time, inappropriate dosing, and the possibility of a
lack of biological effect of the medication on this disease
process.34 Thus far, no studies have looked at the evolution of
RAFH longitudinally. The temporal changes in RAFH may
offer insights into the pathogenesis of GA growth. For
example, after inducing diffuse outer retinal injury using
intravenous injection of sodium iodate in a rat model,
Pankova et al tracked the formation of hyperautofluorescent
regions. They found hyperautofluorescent patterns to be
spatially dynamic. Over 2 months, hyperautofluorescent
areas percolated inwards from the peripheral retina and
morphed from distinct bright perilesional areas to diffuse
granular in appearance.31 Similarly, using subretinal
injections of sodium iodate in rats, another study generated
distinct regions of GA, which showed multilayered stacking
of RPE at the GA border and anterior retinal migration of
detached RPE cells on histology.78 Changes in the intensity
of autofluorescence and its migration are essential features,
as they may determine the amount of hyperautofluorescence
within the 450-mm border of atrophy. The mobilization of
RPE cells at the border of a healthy retina and GA was also
suggested by Biarnés et al, who proposed that junctional
hyperautofluorescent regions may be the result of GA
enlargement rather than the cause of it via an unknown
underlying process.76,79 Some studies have implied
migrating RPE cells to be undergoing transdifferentiation
from epithelial to mesenchymal origin based on loss of
immunoreactivity to retinoid markers80 and changes in
emission spectra.81 However, others have classified these
migrating cells as macrophages with engulfed melanofuscin
granules.82 Thus, the increase in RAFH over time observed
in our study may be a manifestation of the slow mobilization
of RPE cells, which in turn may adopt different
7



Figure 4. Spearman plots with correlation coefficients (r) and P values showing the association between baseline RAFH and GA growth rate stratified by
baseline GA area tertiles. Tertiles are arranged in increasing order of baseline GA area. A, Growth rate of GA area in (mm2/year). B, Square root-
transformed GA area growth in (mm/year). C, Perimeter-adjusted GA area growth rate in (mm/year). In all 3 panels (A, B, C), GA growth rate was
positively associated with baseline RAFH in tertiles 1 and 2, but the relationship was not statistically significant in tertile 3, suggesting that RAFH may
predict GA growth more in the earlier stage than in the later stage of the disease course. The gray shaded area surrounding the line represents standard error.
N ¼ 71 eyes in each panel. arb. unit ¼ arbitrary units; GA ¼ geographic atrophy; RAFH ¼ rim area focal hyperautofluorescence.
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morphologies, such as vertical stacking. Alternatively, it may
be a marker of the high burden of melanophages secondary to
increased RPE stress and dysmorphia. How this mobilization
relates to GA growth and underlying pathogenesis warrants
further investigation. However, it is imperative to note that
8

variation in camera position between serial visits for the
same eye may influence the quantification of
autofluorescence at the border of GA,83 which can
potentially confound the measurement of RAFH over time.
Instruments with an internal autofluorescence reference,



Figure 5. Mean RAFH over time of participants in each arm. Vertical bars represent standard error. The annualized change rate � standard error of mean
RAFH in the metformin group was 0.023 � 0.009 units/year (34 eyes from 21 participants) and 0.016 � 0.008 units/year in the observation group (37 eyes
from 23 participants). Oral metformin did not significantly impact the change rate of RAFH over 18 months (P ¼ 0.29). RAFH ¼ rim area focal
hyperautofluorescence.
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such as quantitative autofluorescence, may be used to align
specific locations in quantitative autofluorescence images
with OCT scans to elucidate the relationship between
different biomarkers further.84,85

This study has several limitations. First, our intergrader
intraclass correlation coefficient of 0.78 is acceptable but
not excellent, which may have influenced our ability to
establish the association between RAFH and GA growth.
However, our mean difference (lower 95%, upper 95%)
between the 2 graders was 0.016 (�0.106, 0.137), compa-
rable to Allingham et al’s mean differences, which ranged
between �0.005 and 0.017.24 We believe that variations in
the lens and media opacity,86 patient positioning,24,25,83 eye
movements,24,83 and camera alignment24,83 are some factors
that are bound to impact people’s grading in different ways.
To mitigate this impact, we used the average RAFH of the 2
graders. The METforMIN trial also did not document the
lens status of the participants, which may also confound
FAF intensity.
Second, our sample size could be bigger, which likely
limited the power of some of our analyses. Furthermore, in
the METforMIN trial population, participants either dropped
from the study or missed interval visits between the baseline
visit and the prespecified follow-up interval of 24 months,
which may have introduced bias.

In conclusion, increased baseline RAFH was associated
with faster GA area progression. The association remained
positive but weakened after adjusting for baseline GA area or
perimeter in the entire cohort.However, tertile analysis showed
that baseline RAFH had a stronger prognostic value for GA
growth rate among eyes with small and medium GA lesions
(less than 8.0mm2) than large GA (greater than 8.2mm2). This
finding could help designate pharmacological treatments for
patientswith the highest risk ofGAprogression.Rimarea focal
hyperautofluorescence increased significantly over time, and
oral metformin did not significantly affect the growth rate of
RAFH. Future studies may consider using baseline RAFH as a
prognostic factor for eyes with small and medium GA.
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