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Discriminative dimensionality reduction for analyzing EEG data
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Abstract since typical experiments consist of thousands of depédnden

We propose a novel way to use discriminative analysis to variables (GrOpp?’ Urbach, & Kutas, 2011).
project high-dimensional EEG data onto a low-dimensional When comparing ERP components where the latency of

discriminative space for visualization, analysis, andistiaal the component is known a priori (such as the P300 or N400)
testing. This multivariate analysis directly controlstioe mul- . . !
tiple comparison problem (MCP) by effectively reducing the ~ the standard approach is to compare the amplitudes of the

number of test variables. A major advantage of this approach component from the different conditions by averaging over

is that it is possible to compare the brain activity acros&léo  the samples within a given time window (Luck, 2005). The
tions even when the trial count is low, provided that a sidfiti . . . ) ! .
number of trials are used to establish the initial hyperg(a)) spatial locations of interest are often restricted basegkiom

meaning that error conditions and conditions that divide-su ~ knowledge. This simple approach effectively increases the

tle behavioral differences can be readily compared. Ctlyren i i idi i -
these data are either ignored or lumped with other datalifiere SNR of the signal while avoiding the comparisons across ad

losing the ability to reveal the neural mechanisms undeglyi  jacenttime samples. The component of interest is thendeste
subtle behavioral differences. The proposed method pes\ad for significance using a statistical approach such as ANOVA

powerful tool to analyze conditions with relatively smalim- or t-tests. Many cognitive experiments deal with intei@usi
bers of trials from high-dimensional neural recordings. . . . . .
L . S in a cross factorial design so ANOVA is a common choice.
Keywords: MCP; statistical testing; pattern classification; e
multivariate analysis However, the test will fail to reveal any unexpected effégts
ing outside of the temporal, spectral, or spatial analysis w
Introduction dow.

Electroencephalography (EEG) is extensively used in cogni Another common method used to conduct statistical analy-
tive neuroscience and related fields to reveal the neural résis on EEG data is a non-parametric randomization test using
sponses associated with specific sensory, cognitive, and méluster-based correction (Maris & Oostenveld, 2007). Rath
tor operations. In a standard EEG experiment, subjects af@an averaging over a pre-defined window, the cluster-based
given a number of trials representing different experiraent method figures out the time/spatial/spectral cluster whth t
conditions (i.e. type of stimulus presented, type of respon Most significant activity from the data. First, the testistat
elicited) while the EEG signal is recorded. One way to anatiC between the two test conditions (stimulus type, behravio
lyze the EEG signals is to use event related potentials (ERPs'esponse, etc.) is calculated for each variable (time sampl
ERPs are computed by averaging over the EEG in respondeequency bin, or electrode position). Clusters are then-d
to a given stimulus across numerous trials. ERP analysis rdified by finding adjacent variables with significant difface
veals the time- and phase-locked brain response to a ssmulubetween the two conditions (below a certain p-value, e.qg.
which would not be visible in a single trial of EEG. Another P < 0.05). The cluster-level statistic is calculated by sum-
way to analyze EEG signals is to conduct a frequency-domaifing up these differences for each cluster and selecting the
analysis. By computing the spectral power changes over timgluster with the maximum value. This result is compared to
and averaging over multiple trials, we can produce a twoihe cluster-based statistic of the permutation distrdsugien-
dimensional map often referred to as event-related spectrgrated from a large number of random permutations of the
perturbations (ERSPs) (Scott Makeig, 2004). trial labels. This approach allows the researcher to direct
In order to determine whether a certain effect is statisti-solve the MCP but the sensitivity of the test depends on the
cally significant based on the hypothesis underlying the exthreshold used to select significant variables.
periment, statistical testing methods are applied to compa In order to increase the statistical power of a test, it is de-
between different experimental conditions (or factor)w-  sirable to have many observations in a given condition. This
ever EEG recordings are high-dimensional in nature due toneans that conditions with few trials (e.g. sub-categbrica
the spatio-temporal structure of the data. Hence, we ofteqonditions or error trials) are often not analyzed or corabin
come up against the multiple comparison problem (MCP)with other conditions due to low statistical power. Thesera
when conducting statistical analysis to compare the brain a conditions however are likely to reveal critically intetiag
tivities from different conditions. It is usually difficulo con-  information about how neural activity gives rise to complex
trol the family-wise error rate (FWER) using standard stati  behavior.
cal procedures that operate at the level of a single congraris  Data from two highly discriminative behavioral conditions
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can be used to train a classifier to learn the discriminatyve h anytraining procedure. The trials from the two highly dis-
perplane between the two conditions ¢tassek The pattern  criminative conditions would ideally have significantlyf-di
classifier efficiently combines the temporal, spatial aretsp ferent outputs when projected onto the vector provided that
tral features from the EEG data and projects the data ontthere is discriminative information in the neural signatsia

a vector which is perpendicular to the discriminative hyper appropriate feature extraction and classification metfaods
plane defined by the two discriminative conditions. For ex-used. Specific feature extraction and classification method
ample, if the two conditions were remembered vs. forgotfor EEG signals will not be discussed here since it is not un-
ten trials from a recognition memory experiment, the projec der the scope of the current paper.

tion values would be related to encoding success. The ob- The observations from the remaining conditions ¢
servations from the remaining conditions which have simi-{1,2}, e.g. trials with low confidence responses in an
lar cognitive components can be projected onto this vectogpisodic memory experiment) can be projected onto this vec-
and the resulting values can be compared across condition®r in the same manner but without risk of overfitting. The
This classifier-based method can be considered a multivaraverage projection values for the different conditions lban

ate analysis which directly controls for the MCP. We showcompared using conventional statistical methods such as t-
that this approach can reveal significant differences batwe tests or ANOVA. Here we only consider comparing the fea-
conditions without requiring prior assumptions based on extures in the temporal domain, but the proposed method can be
isting data or theory. The proposed method also gives highpplied to spatial, spectral, or a combination of featunes i
sensitivity even for low trial count conditions, providddta  similar manner.

sufficient number of trials are used to establish the inftial

perplane(s) and that the conditions are related to theiigin Analysison a simulated dataset

conditions. This method was applied to a simulated datas
and compared to the conventional t-test and cluster-based t
to investigate its effectiveness.

eIthe effectiveness of the proposed algorithm was evaluated
using artificial datasets. One evaluation set was designed t
test sensitivity with different means across the differont-
Method ditions and the other set was designed to test specificity wit
0as equal means. The sensitivity and specificity of the current
Let us consider a dataset of EEG recordings from a CognimethOd was ComparEd to that of two conventional methOdS,
tive experiment where there are two highly discriminatiee b Namely the t-test and the cluster based statistical testigMa
havioral conditions (e.g. recollected vs. forgotten grim a & Oostenveld, 2007).
recognition memory experiment). We can formulate a super-.,
vised learning problem with two classes using this dataset.S|mUIated dataset
Let St = {(X.yi)}}; be the training set witiN trials. Each  Artificial datasets were generated from real EEG data to sim-
pair consists of the recorded signaland the class (or con- ulate EEG from a single channel during memory retrieval.
dition) y; € {1,2} from one of the two discriminative con- ERPs were calculated using data from an actual recogni-
ditions. Also letSg = {(X,yi)}N" | be the set of observa- tion memory experiment (see Experiment 2 from Mollison
tions from the remaining conditiong; (¢ {1,2}) which share and Curran (2012) for details of the experimental proce-
some cognitive components with the discriminative condi-dures) from two conditions which typically show the pari-
tions. The goal is to construct a functibn x; — p; where  etal old/new effect (class 1: source correct old trialsssla:
pi is a projection of triali onto the vector perpendicular to correctly rejected new trials). Data from the left postesio-
the discriminative hyperplane. In this paper, we n@po perior electrodes were averaged to acquire the ERP tersplate
gi which is a value between 0 and 1. The composed funcfor each class. As illustrated in Figure 1, the parietalrdg/
tion can be considered as a mapping of the EEG signal onteffect can be observed between 500-800 ms after item pre-
the [0,1] interval where a value closer to 0 (1) implies that sentation (noted as 0 ms).
the given trial shows features which are more similar toéhos  Gaussian noise was added to each of the ERP templates
from training condition 1 (2). to generate the training set (50 observations per classjewhe
The trials from classes 1 and 2 are then projected ontthe standard deviation of the noise was 2 times as large as
a vector which is perpendicular to the discriminative hyper the standard deviation of the ERP templates (the same noise
plane. Careful attention is required when projecting trdstr  parameters were used for the evaluation sets). Note that
from the conditions used to train the pattern classifier. Thehis training set was only used to train the classifier for the
trials used as the training set should not be used to evalelassifier-based method. Two evaluation sets were geuwerate
ate the classifier performance or the significance of an expewhere each evaluation set had two classes. The evaluation
imental variable. In other words, the trial being projectedsets were designed to represent intermediate conditiogs (e
onto the vector should always be isolated from the classisub-conditions with smaller effects) between the two train
fier training procedure in order to eliminate any overfittinging conditions. The sensitivity evaluation set consistéd o
(Bishop, 2006). This can be achieved via cross-validation otwo classes with different means while the specificity eval-
by pre-designating an evaluation set which is excluded fronuation set consisted of two classes with equal means. The
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ing the classifier, the dimensionality of all trials werewedd
—Class 1 by averaging over 100 ms non-overlapping windows of the
- Class 2 given time segments. Linear discriminant analysis (LDA)
with probability outputs was selected for classificatior an
trained using the feature vectors from the training set.sThi
classification approach is known to be effective at clagsify
temporal features of the EEG data (Blankertz, Lemm, Treder,
Haufe, & Mulller, 2011). A t-test was conducted on the clas-
sifier outputs to examine whether the mean projections were
significantly different between the two classes.

In order to reduce the noise from the randomness of the
evaluation sets, 1000 random evaluation sets were assessed
T T T T T T for each trial co_unt_f_or each of the three methods. The num-

ms ber of times a significant effect was observedk{ 0.05) out
of the 1000 runs were identified and the ratio of observing a

Figure 1: The ERP templates used to generate the training séignificant effect was computed.
for the simulation analysis. Class 1 is an average of source
correct old trials and class 2 is an average of correctly re- Results

& Curran, 2012). the 1000 random runs conducted on the sensitivity evaluatio
set (different mean condition) is given in Table 1 for eadh se

. . i . of the parametersin the simulations. The results for tHerdif
two conditions in the sensitivity evaluation set were gener

. . . . ept trial counts are given in separate columns. The t-tat an
ated by adding Gaussian noise to the weighted averages 8F 9 b

ine ERP templatcs used 0 genrat h fanng st 0.75 o050 €SS Qe pluesbeldSlor e i
template 1 + 0.25< template 2 for one condition and 0.25 jortty y

« template 1 and 0.75 template 2 for the other condition). 500-800 ms. However, the sensitivity of the t-test decréase

) e . as the analysis window increased. It was found that the t-
The two classes in the specificity evaluation set were genel, only found significant effects 10 to 65 % of the time

ateddzby adding Gaussian noise to the average of templatesf r the 500-1500 ms analysis window. The classifier-based
and <. method found significant effects over 95 % of the time when
Analysis procedure the trial counts per condition were 10 or more for all win-

The evaluation sets were tested for significance in three difdOW sizes and for all trial counts when the ROl was 500-1500

ferent time segments (500-800/500-1200/500-1500 ms). ThE'S: The cluster-based method gave consistent resultssacros
motivation for this was to compare the different methodsaII window sizes, but only gave _rellable resuI'Fs_ for the sase
when the tests were performed within an optimal/sub-optimaWhere there were at least 40 trials per condition. The ratio

region. Note that the best window width/location should notOf 0 dbservmg a s%nlfltczént eft'fhe cp(< OfOSt) acrolss t'ghe 10?0
be determined from the full dataset as that would result irf"n om runs conducted on the Speclicity evaluation et gave

0 N
overfitting and too high a false alarm rate. alse alarm rates close to 5 % for all three methods which is

The following analysis was conducted for multiple num- expected given the common use (_)f that p-value.. .
bers of trials per class (ranging from 5 to 50) on both evalu- In order to check_wh_etr_ler t_he Improvement in sensitivity
ation sets for each of the time segments. In order to evaluaf&sulted from the discriminative nature of the approach or
the performance of the classifier-based method, we comparet®™ dimensionality rgdu_ctlon, we compared thg classifier-
its results to two other statistical tests often used for EE ased appl’O?.Ch to prlpmpal component gna.IyS|s (PCA). To
analysis. The first method involved a t-test conducted on thgonduct a fair comparison, th_e_ PCA projections were _also
average over the segment between the two classes in ea med fr_om the t_ra|n|ng conditions and only the projausio
evaluation set. The second method was a non-parametric raint© the first principal component was used. The results from

domization test based on cluster-based correction (Maris &N€ Previous sensitivity evaluation set gave similar ressiolr

Oostenveld, 2007). Clusters were identified by finding adjaP0th the classifier- and PCA-based approach. However when

cent time points with t-statistic lower than0®. The largest '{)he n(;Jlse ampllrt]ude was |ncre?ssld by 2? %, the Clajs'f'e;
cluster was selected to be the true cluster statistic. Thest 225€d approach gave more retiablie resu ts compared to the

cluster statistic was compared to the permutation digicgbu P CA-Pased approach as given in Table 2.

computed from 1000 random permutations of the class labels. . .
For the classifier-based method, the linear classifierghin Discussion

with the training set described above was used to project th€he proposed method found significant effects in the sensiti

evaluation trials onto a value between 0 and 1. Before trainity evaluation set even when the number of test observations

(1A
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Table 1: The statistical test results for the sensitivitgleation set(different means between the two conditiofisg. values in
the table represent the ratio albservinga significant effect|f < 0.05) out of a total of 1000 random simulations for a given
number of trials per condition. Values abov@®are given in bold.

ms #rials/cond.| 5 10 15 20 25 30 40 50
500-800 | t-test 0849 1 1 1 1 1 1 1
cluster 0.139 0.385 0.611 0.736 0.852 0.918.994 0.998
classifer 0.911 0998 1 1 1 1 1 1
500-1200] t-test 0.441 0.863 0978 0.998 0999 0999 1 1
cluster 0.074 0.327 0.412 0596 0.794 0.8850.977 0.999
classifer 0.934 1 1 1 1 1 1 1
500-1500] t-test 0.101 0.148 0.254 0.298 0.363 0.431 0574 0.642
cluster 0.083 0.252 0.479 0.6 0.791 0.8840.973 0.999
classifer 0961 1 1 1 1 1 1 1

Table 2: The statistical test results for the sensitivitgleation set with higher noise shows that non-discrimigedimension-
ality reduction methods (e.g. PCA) may not be as effectivdissriminative approaches. The values in the table reptese
the ratio ofobservinga significant effect|f < 0.05) out of a total of 1000 random simulations for a given nundjérials per
condition. Values above.95 are given in bold.

ms #irials/cond.| 5 10 15 20 25 30 40 50
500-800 | PCA 0.68 0.935 0983 099% 099%6 1 1 1
classifer 0.782 0.98 0997 1 1 1 1 1
500-1200| PCA 0.639 091 0977 0991 0998 0999 1 T
classifer 0.829 0.99 0997 1 1 1 1 1
500-1500| PCA 0.7 093 0984 099 1 1 1 1
classifer 0.865 0992 1 1 1 1 1 1

per condition was as low as 5 (for the 500-1500 ms window)well the permutation distribution represents the null hpo
The t-test and the classifier-based method gave comparakdsis. However, in a low trial count condition there are only a
results when the evaluation was conducted within the timesmall number of possible permutations to estimate the permu
period where the old/new effect was evident (500-800 ms)tation distribution. For example if there are 5 trials aable

The sensitivity of the t-test decreased as the ROI increasefr each condition, the number of possible permutations of
while the proposed method was not affected by the changehe labels is only 252 (=1Q[5! x 5!)). This may result in

The increase in the analysis window was disadvantageous f@an inaccurate estimation of the significance of a clustee Th
the t-test because the cross-over between the ERPs deatreaskister-based method gave consistent results acrossfthe di
the size of the effect. The reason that the PCA-based agerent evaluation windows. Since the cluster-based method
proach performed relatively well is due to the fact that thechooses the cluster with the maximum effect it is less sus-
time segments with the largest variance were in fact inforceptible to the cross-over between the two conditions. # wa
mative in distinguishing between the two training condito  found that the average end time of the clusters was approxi-
Hence the PCA and classifier weights may have been simimately 800 ms even when analysis was conducted on the 500-
lar. However, PCA can easily be misled if the high variancel500 ms window.

features are uninformative in distinguishing between e t

- In a recent collaborative project (Noh et al., 2014), we
conditions.

utilized this pattern classification method to replicate-pr
The advantage of the classifier-based method appears {gous findings on the subsequent memory effect (Sanquist,
be achieved with the cost of specificity in the feature spacerohrbaugh, Syndulko, & Lindsley, 1980; Paller & Wagner,
However, the relevance of an individual feature to a giverpgo2: Otten, Quayle, Akram, Ditewig, & Rugg, 2006; Otten,
comparison can be identified by examining the activation pPatquayle, & Puvaneswaran, 2010; Park & Rugg, 2010; Gud-
terns corresponding to the projection weights (Haufe et al.grjan, Schott, Richardson-Klavehn, & Duezel, 2009; Fell et
2014). Nevertheless, a direct comparison between the EEg 2011). Moreover, the single-trial analysis revealed i
signals better reveals the characteristics (e.g. latesizg,  teresting findings regarding the neural mechanisms retated
duration, location) of the effect identified by the classifie recollection and familiarity. The classifier was trainedtbe
Hence, a post-hoc analysis using the raw EEG features shoujdcollected vs. unfamiliar trials which projected the high
always be conducted in order to better understand sources gfmensional EEG data onto a discriminative vector which
the effect. represented encoding strength. Note that the subjects were
The cluster-based method only gave comparable results fastructed to give recollect responses only when they had a
the other methods after the trial count per condition was atonscious recollection of learning the item in the studysgha
least 40 per class for the sensitivity evaluation set. The st (i.e., they remembered the context of learning the iteme Th
tistical power of the cluster-based method depends on hownalysis on the classifier score revealed that the trials wit
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Figure 2: A reproduced version of the results from Noh et2014). The average projection values and the standardserror
of the three conditions given by the classifiers trained enalpha (7-12 Hz) power between (a): 400-800 ms after stimulu
presentation and (b): 1000-1400 ms after stimulus pregentaThe classifiers were trained using only the recoligats.
unfamiliar trials.

definitely familiarresponses (which were not involved in the tial hyperplane(s). Hence conditions that divide subtle be
training procedure) were mapped closer tordgeollectedri- havioral differences can be readily compared. The strength
als early in the epoch (400-800 ms) while the same trial®f this method comes from the fact that the information in the
were mapped closer to thaefinitely unfamiliartrials later  observations used to train the classifier can be exploitestto

in the epoch (1000-1400 ms) when classification was constrict the comparisons of the test observations. Anothgr wa
ducted on the spectral information in the alpha band (7-120 look at this method is as a boot-strapping method where we
Hz). Post-hoc analysis showed that the alpha desynchronizatilize conditions which are not currently being compared t
tion between 400-800 ms was weaker for the recollectedtrialestimate the characteristics of the conditions of interéke

in the left central electrodes while the 1000-1400 ms showedpplication of this method is not restricted to EEG data but
stronger desynchronzation for the recollected trialséqbs-  can be applied to other high-dimensional neural data such as
terior electrodes. These results (illustrated in Figuras@3) MEG or single-unit recordings. It should also be noted that
suggest that the brain activity represented by the alphd barcareful cross-validation procedures or partition of treenty
may shift from encoding of the stimulus to also encoding theng and evaluation set is required when directly comparing
contextual information of that trial. the conditions used to train the classifiers. The classifier o

In fMRI studies, pattern classifiers have been used as multPuts may overfit the training data and results should only be
voxel pattern analysis (MVPA) methods for detecting and anlised on held out data.
alyzing cognitive states (Norman, Polyn, Detre, & Haxby,
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Figure 3: A reproduced version of the results from Noh et 2014). Difference in alpha (7-12 Hz) power between the
recollected vs. unfamiliar trials for the different timegseents (loguV?)). The spatial pattern in (b) and (d) are masked by the
most significant cluster resulting from cluster-basedysislp < 0.05).
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