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Abstract 

A Study of Short Wave Instability on Vortex Filaments 

by 

Hong Yun Wang 

Doctor of Philosophy in Mathematics 

University of California at Berkeley 

Professor Alexandre J. Chorin, Chair 

The numerical stability and accuracy of the vortex method are studied. The effect 

of the ordinary differential equations (ODE) solver and of the time step on the numerical 

stability is analyzed. Various ODE solvers are compared and a best performer is chosen. 

A new constraint on the time step based on numerical stability is proposed and verified 

in numerical simulations. It is-shown through numerical examples that empirical rules for 

selecting the spatial discretization obtained in simple test problems may not be extended 

to more general problems. 

The thin tube vortex filament method is applied to the problem of Widnall's insta­

bility on vortex rings. Numerical results different from previous calculations are presented 

and the source of the discrepancies is explained. The long time behavior of the unstable 

mode on thin vortex rings is simulated and analyzed. 

The short wave instability on vortex filaments is investigated both theoretically 

and numerically. It is shown that the short wave instability always occurs on co-rotating 

vortex filaments of fixed core structure. Furthermore when they are close to each other, 

vortex filaments produce short wave unstable modes which lead to wild stretching and 

folding. However, when the inter-filament distance is large in comparison with the core size 

of the filaments, unstable modes are bounded by a small fraction of the core size and the 

vortex filaments do not create hairpins nor wild stretching. These findings may explain the 

smooth behavior of the superfluid vortices. 

The formation of hairpin structures on numerical vortex filaments is investigated. 

It is shown that the formation of hairpin structures is independent of the ODE solver, of the 



2 

time step and of other numerical parameters. The hairpin structures are primarily caused 

by short wave instability on co-rotating vortex filaments. 
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Chapter 1 

Introduction 

Tube-like vortex structures occur in many types of flow and are also predominant 

in turbulence [15], [21], [24], [25], [50], [51], [52], [64], [65]. The main work of this dissertation 

is to study the vortex methods and the short wave instability on vortex filaments of fixed 

core structure. 

In a three-dimensional, inviscid, incompressible flow, vorticity remains confined to 

a small fraction of the total volume of the field and a complete simulation scheme for the 

flow can be built on the tracking of the vorticity field in Lagrangian coordinates. These 

facts make vortex methods particularly attractive [3], [10], [18], [29], [75] [87]. We study 

vortex methods by considering numerical stability, accuracy, ordinary differential equations 

(ODE) solver, time step and space step. The evolution of perturbed vortex rings in an 

inviscid flow is selected as a model problem for the validation study of the vortex methods. 

The choice of this problem was motivated by several reasons. First, vortex rings are very 

important building blocks for complicated vorticity configurations and they also arise in a 

variety of jet flows of practical interest; second, the same problem has been numerically 

simulated by Knio and Ghoniem [57]; third, Widnall et al [96], [95], [97], did a theoretical 

stability analysis for vortex rings. The numerical results obtained in the previous study [57] 

contain an artifact of the numerics due to an underresolved numerical mesh. The correct 

numerical solutions are obtained with a sufficiently refined mesh. We demonstrate that 

the choice of spatial step size is problem dependent and thus cannot be determined by an 

empirical criterion obtained in a simple test problem. For the thin tube vortex filament 

method, various numerical ODE solvers are analyzed and compared. Among these ODE 

solvers, the classical fourth order Runge-Kutta method comes out as the best perfor_mer. A 
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new criterion for selecting the time step is proposed based on, a study of numerical stability, 

and is verified in numerical simulations. 

After the validation study of vortex methods, we investigate short wave instabilities 

on co-rotating vortex filaments of fixed core structure. Several cases are examined including 

a co-rotating vortex pair, a vortex filament surrounded by many other co-rotating vortex 

filaments and a vortex filament in a straining flow induced by a co-rotating vorticity field. 

Short wave instability is found to always occur on co-rotating vortex filaments of fixed core 

structure. When these vortex filaments are far apart from each other, i.e. the inter-filament 

distance is large compared to the core size, the amplitudes of unstable modes are bounded 

by a small fraction of core size and, more important, the vortex filaments do not develop 

hairpin structures nor wild stretching. When the vortex filaments are close to each other, i.e. 

the inter-filament distance is comparable to or smaller than the core size, unstable modes 

grow without bound and the vortex filaments stretch and fold violently. These results of 

short wave instability on vortex filaments are derived from a theoretical analysis and are 

verified in numerical simulations. In particular, phenomena which are observed in numerical 

simulations but are not predicted in the analysis are explained by doing further analysis 

with refined models. 

Superfluid vortices offer an interesting example where our analysis applies. Super­

fluid vortex filaments behave differently from the classical vortex filaments [31], [37], [38], 

[90]. In particular, classical vortex filaments stretch and fold wildly , and form small scale 

structures while superfluid vortex filaments remain smooth. It is well known that superfluid 

vortex filaments have a very small core size ( ......, O(A) ) and have fixed core structures [37], 

[38], [90]. Thus the superfluid vortex filaments are far apart from each other in the sense 

that the inter-filament distance is much larger than the core size. Our study of the short 

wave instability reveals that when vortex filaments are far apart, the unstable modes are 

bounded by a small fraction of the core size and more importantly the unstable modes do 

not cause the catastrophic stretching and folding. Therefore the short wave instability is 

insignificant for superfluid vortex filaments. This may imply that the tiny core size of the 

superfluid vortex filaments is more important in accounting for their non-classical dynamics 

than the quantization of circulation. The different behavior of the superfluid vortices and 

classical vortices has been explained by Chorin [23], [27], [31], [30], with the use of statistical 

theories. Our study of the short wave instability reinforces Chorin's analysis from a very 

different point of view. 
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We continue on to study the formation of hairpin structures. In computations with 

vortex methods, vorticity blows up and small scale hairpin structures appear [11], [22], [26], 

[28]. The coupling of small scales with large scales makes simulations of long time behavior 

impractical since the complexity of the flow outstrips the available computer capacity in a 

short time. Chorin [26], [28] proposed a hairpin removal algorithm to resolve this problem, 

based on a renormalization group procedure. However, the origin of the hairpin structures 

had not been shown. We show that the formation of hairpin structures is independent 

of the numerical ODE solver, of the time step, of the spatial step and of other numerical 

parameters. The formation of hairpin structures is not caused by numerical instability. 

Instead it is caused by short wave instability on co-rotating vortex filaments. 

The outline of this dissertation is as follows. Chapter 2 gives some mathematical 

background on fluid mechanics and introduces vortex methods. In Chapter 3 we review 

Widnall's stability analysis of a vortex ring, which serves as a theoretical foundation for 

our analysis of short wave instability. Numerical results obtained by the thin tube vortex 

filament method are presented in Chapter 4. The differences between our results and those 

in the previous study are pointed out and explained. In Chapter 5, we focus on numerical 

considerations of the thin tube vortex filament method. The selection of the numerical 

ODE solver, the time step, and the spatial step is addressed in detail. Chapter 6 is devoted 

to the study of short wave instability on vortex filaments of fixed core structure surrounded 

by a co-rotating vorticity field. The different behavior of the unstable modes on vortex 

filaments which are close to each other and the unstable modes on vortex filaments far 

apart is analyzed and numerically simulated. The origin of hairpin structures and of the 

wild stretching of numerical vortex filaments is revealed. Finally, in Chapter 7 we summarize 

the conclusions of the dissertation. 

These conclusions are: neighboring co-rotating vortices induce short wave unsta-

' ble modes which lead to stretching and folding; an isolated vortex filament will not create 

hairpins or wild stretching; the formation of hairpins on numerical vortex filaments i!) not 

caused by numerical instability, rather, it is caused by the short wave instability on neigh­

boring co-rotating vortex filaments. These results may explain the different behavior of 

superfluid vortices and of classical fluid vortices. 



4 

Chapter 2 

Mathematical Background of Fluid 

Mechanics and Vortex Methods 

This chapter introduces some mathematical background of fluid mechanics and 

gives a short review of vortex methods which are one of the building blocks of this thesis. 

We divide this chapter into two parts. In the first section, we introduce Euler's equations, 

the Biot-Savart law and the motion of vortex ring. In the second section, we briefly review 

vortex methods [29], [86], [87]. 

2.1 Euler's Equations and the Biot-Savart Law 

This section summarizes some of the important facts about vortex dynamics. 

Following Chorin & Marsden [34], we consider three dimensional, unbounded, 

incompressible, inviscid flows. The dynamics of this class of flows is governed by Euler's 

equations, which may be written as 

au 
at + ( u · \7 )u = - \7 P, 

\7. u = 0, 

(2.1) 

(2.2) 

where u(x, t) = ( u, v, w) is the velocity field, x = (x, y, z) is the position vector, t is time, 

\7 = (ax,ay,az) is the gradient operator, Pis pressure and we have assumed the unit 

density (p = 1). Equation (2.1) expresses the conservation of momentum while equation 

(2.2) is a consequence of incompressibility and the conservation of mass. 
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The vorticity w of a flow field is defined as the curl of the velocity u, i.e., 

W = '\J XU. (2.3) 

Taking the curl of Euler's equation (2.1) and using the incompressibility condition (2.2), we 

readily obtain Euler's equations in terms of vorticity in three space dimensions, which read 

8w · 
at+ (u · '\J)w = (w · '\J)u, (2.4) 

or equivalently, 
Dw 
Dt = (w. '\J)w, (2.5) 

where gt denotes the material derivative. Equation (2.5) is also called the vorticity trans­

port equation. In this equation, the term ( u · \7 )w is responsible for the convection of the 

vorticity w, and the term (w · '\J)u corresponds to the rotation and stretching of w. 

Now we introduce vortex lines, vortex tubes and vortex filaments. By definition, 

a vortex line is a line that is tangent to the vorticity vector w at each of its points. It 

follows from the vorticity transport equation (2.5) that vortex lines move with the fluid 

(see Chorin & Marsden [34] for a proof). A vortex tube consists of all vortex lines drawn 

through a two-dimensional surfaceS which is nowhere tangent to the vorticity w. A sketch 

of a. vortex line and a vortex tube are shown in Figure 2.1 and Figure 2.2 respectively. A 

vortex filament represents a vorticity field which is nonzero inside a tube-shaped region and 

zero outside the region. Usually on any cross-section of a vortex filament, the vorticity field 

points in roughly the same direction. The concept of two or more vortex filaments refers 

to the vorticity field obtained by superposing the vorticity field represented by each vortex 

filament. Thus it makes sense to talk about overlapping vortex filaments. 

The circulation of a vortex tube is defined as 

r = £ u·dl, (2.6) 

where C is a curve encircling the vortex tube. The circulation r defined by (2.6) is a 

constant independent of the shape and location of the contour C (Helmholtz's theorem) 

and is also independent of time (Kelvin's theorem). A related observation is that vortex 

tubes cannot terminate in a fluid. Vortex tubes either form loops entirely within a fluid, 

extend to infinity, or end at a solid boundary. 

Since the vorticity transportation equation (2.5) involves the fluid velocity u, it is 

essential that we determine the velocity u from the vorticity w. To do this, we first find a 
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particular divergence free velocity field u satisfying \J x u = w. Boundary conditions may 

be satisfied by adding a potential flow to u. 

vortex line 

Figure 2.1: A vortex line. 

t 
vortex tube 

Figure 2.2: A vortex tube. 

The vanishing of \J · u in three dimensional space implies the existence of a vector 

potential function cp such that 

U = \J X cp, 

and 

{2.7) 

{2.8) 

\ 
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Consequently 

W = \J XU= -~t/J + \1(\J· t/J) = -~t/J, (2.9) 
82 82 82 

where ~ = ( 
8

x 2, 
8

y2, 
8

z2) is the Laplacian operator. 

Equation (2.9) is a Poisson's equation for t/J. A particular solution of equation 

(2.9) is given by the convol~tion of the vorticity w with G(x) = 411'ixl, the Green's function 

for the Laplace equation ~¢ = 0. So 

tjJ = G * w = f G(x- x
1

)w(x
1

)dx
1

• . }R3 

Taking the curl of equation (2.10) yields a particular solution for u: 

u = \J x tjJ = K(x- x ) x w(x )dx , J I I I 

where the convolution kernel K(x) is 

' 1 X 
K(x) = \jG(x) = ---

1 
l3 . 

471" X 

(2.10) 

(2.11) 

(2.12) 

Equation (2.11) is called the Biot-Savart law. One can verify that the velocity u given 

by equation (2.11) satisfies the equation \7 x u = w and the incompressibility condition 

\7 · u = 0. Furthermore, in the case where the vorticity field w has compact support, the 

velocity u given by equation (2.11) vanishes at infinity. The significance of the Biot-Savart 

law lies in the fact that once the vorticity field w has been found, the velocity field u may 

be readily obtained. This result is particularly useful for numerical computations of flow 

fields using vortex methods which will be introduced in the next section. 

Finally, one can use the Biot-Savart law to evaluate the propagating velocity of a 

thin vortex ring. The term "vortex ring" refers to a torus-shaped region of vorticity in a 

fluid in which vortex lines form closed loops (see Figure 2.3). The torus-shaped region is 

usually called the core of the vortex ring. 

We call a vortex ring a thin vortex ring if its core radius is small in comparison 

with its ring radius. In the absence of viscosity, a thin vortex ring of ring radius R and core 

radius 8 will move at a constant rate along its axis of symmetry with no change of shape. 

The velocity of translation is [60] 

r [ sR ] UT= 41rR In(-y)+C+0(8/R), (2.13) 

where r is the circulation and the constant C depends on the distribution of vorticity within 

the ring. For a constant vorticity distribution, C = -0.25. For a second order Gaussian 

vorticity distribution, C = ,-0.558. 
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Figure 2.3: A front-on view of a vortex ring with ring radius R and core radius 8 . 

2.2 Vortex methods 

Vortex methods [7], [13], [17], [40], [47], [62], [77], [80], [81], [93] are a type of 

numerical method for approximating the solution of the incompressible Euler or Navier­

Stokes equations. In vortex methods, the underlying discretization is of the vorticity field 

rather than the velocity field. This discretization is Lagrangian in nature and usually 

consists of a collection of particles which carry concentrations of vorticity with them. The 

velocity field is approximately recovered by first evaluating the Biot-Savart law based on the 

discretized vorticity field and then imposing a potential flow field to satisfy the boundary 

condition. The vorticity field is then evolved in time according to the vorticity transport 

equation using the recovered velocity field. 

Many incompressible flows at high Reynolds numbers are characterized by regions 

of concentrated vorticity embedded in irrotational fluid. If finite difference or finite element 

methods are applied to solve the Navier-Stokes equation in velocity-pressure forin, the 

whole domain of the flow has to be covered by numerical grids since the velocity field is not 

localized. In the case where the flow is inviscid or has high Reynolds number, the grid size 

has to be very small at least in the region where the vorticity field is concentrated so that 

the numerically induced grid scale dissipation and dispersion will not change the physical 
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properties of the flow. To overcome these numerical difficulties, Chorin [18], [19], [20], [22] 

proposed the vortex methods which discretize the equation of fluid motion in vorticity form 

rather than in the usual velocity-pressure form. The inviscid motion of the vorticity is 

given by the local fluid velocity which in turn is determined from the vorticity field by the 

Biot-Savart law and the superposition of a potential velocity field to satisfy the boundary 

conditions. This technique has the advantage that the pressure is eliminated from the 

number of dependent variables to be computed and the velocity field recovered by the Biot­

Savart law is automatically divergence free. In addition, the vorticity field is represented 

in terms of particles of vorticity, usually referred to as vortex blobs in the two dimensional 

case or as vortex segments in the three dimensional case. These particles are generally 

called vortex elements, which induce motion on each other. Thus the vortex methods are 

adaptive methods in the sense that numerical particles are automatically distributed in the 

regions where the vorticity is concentrated. Furthermore, the vortex methods are grid­

free. Thus they have no numericaL grid scale dissipation which is often associated with 

· the finite difference methods and caused by repeatedly mapping the solution back onto 

a fixed numerical mesh. The representation of the vorticity field as particles of identical 

vorticity distribution at various locations is both mathematically appealing and relatively 

straightforward to implement. As a consequence of the Biot-Savart law, the velocity field 

is a linear combination of basic velocity functions which are the convolutions of an integral 

kernel with the vorticity distribution of particles and hence are identical to each other up 

to a shift. 

We will restrict ourselves to the study of inviscid flows in three space dimensions. 

In the following we first give an introduction to the mathematical formulation of vortex 

methods. Then we describe two special kinds of vortex methods: the so-called thin tube 

vortex filament method and the standard vortex filament method. The main difference 

between them is that the thin tube vortex filament method uses one numerical filament 

to approximate the vorticity field and the core of the vortex filament is fixed, whereas 

the standard vortex filament method uses many numerical filaments of fixed core structure 

which can simulate the evolution of the core structure of the physical vortex filament. 
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2.2.1 Mathematical Formulation of Vortex Methods 

In this section, we discuss the formulation of vortex methods for three-dimensional 

unbounded inviscid flow. Our approach follows the discussion by Chorin [29]. 

Suppose we approximate the vorticity field w by a collection of vortex lines and. 

concentrate the vorticity on these lines. The divergence-free property of w implys that the 

flux of vorticity alqng a vortex line is a constant. Let ri denote vorticity flux along the i-th 

line, then the Biot-Savart law (2.11) becomes 

u(x) = I:ri f . . K(x-x'(s)) x ds. 
i lalong z-th line 

(2.14) 

This expression is difficult to approximate numerically because the kernel K typically be-

comes singular near the vortex filaments. Thus, if vortex filaments come close together, 

they can induce extremely large velocities on one another. 

The basic idea behind vortex methods is to replace the singular kernel K by a 

smoother object K6 to limit this singular interaction: 

u(x) = L ri f . . K6(X- x' (s)) X ds. 
i 1 along z-th line 

(2.15) 

The smooth kernel K6 is a smooth function which approximates the singular kernel Kin the 

distribution sense. A large number of smoothed kernels have been constructed, providing 

vortex methods of various orders of accuracy. In general, the smoothed kernel K6 can be 

constructed as follows. 

Let g(x) be a radially symmetric function such that 

1. J 9(x)dx = 1 , 

where pis an integer. Define a narrowly peaked function 96 as: 

1 X 
96(x) = 83 9( 6 ). (2.16) 

As 8 goes to zero, function 96 converges to the Dirac delta function in the sense of distribu­

tion·. Thus, one can define the smooth kernel K6 as the convolution of the original kernel 

K with function 96. 

K6(xj = K * 96(x) = j K(x- x')96(x')dx'. (2.17) 
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Clearly, as 6 goes to zero K6 converges to K in the sense of distributions. In the theory 

of vortex methods, 96 is called the vorticity core cutoff function or the core function, and 

the subscript 6 refers to the cutoff radius or numerical core size. Using the fact that g(x) 

is radially symmetric, equation (2.17) can be written as 

K6 = j K(x- x')g6(x')dx' 

= K(x)f(~), 
6 

(2.18) 

where f(r) is called the velocity smoothing function and is related to the vorticity core cutoff 

function g( r) as 

(2.19) 

A standard example of an appropriate velocity smoothing function f ( r) is the 

fourth-order Beale-Majda smoothing function [10]: 

(2.20) 

The accuracy of the vortex method depends on several factors: (1). the size of 

the mesh h used in the discretization of the initial vorticity distribution; (2). the cutoff 

radius 6; (3). the choice of smoothing function f; and (4). the ODE solver and the time 
I 

step used to solve the ordinary differential equations for the particle trajectories. Since the 

introduction of smoothed vortex methods, considerable theory has been developed studying· 

accuracy and convergence as a function of these parameters. 

The first proof of the convergence of vortex methods in two space dimensions was 

constructed by Hald and del Prete [45]. In their work, several types of smoothed kernels 

were considered and short-time convergence was established. In 1979 Hald [43] gave the 

proof .of long-time convergence of the vortex methods. He analyzed the relation between h, 

6 and the rate of convergence. He found that if h = 62 , then for a certain class of smoothing 

functions, the difference between the computed particle trajectories and the exact particle 

trajectories is of order O(h2). In other words, as one uses more vortex elements to resolve 

an initial vorticity approximation (that is, as h --+ 0), linking the cutoff radius 6 to the 

number of vortices yields convergence of the position of the vortices to their exact trajecto­

ries. On the basis of Hald's work, Beale and Majda [8], [9] showed that carefully designed 

vortex methods for smooth inviscid flow could provide results of any desired degree of ac­

curacy in both two and three space dimensions. Their three-dimensional vortex method 
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updates three-dimensional vortex stretching by computing derivatives along the particle 

paths. Their proofs were technical, and much of work that followed was aimed at simply­

ing the arguments. For example, Anderson and Greengard [3] gave a simpler consistency 

argument and a convergence proof which takes into account the time step error associated 

with the integration along particle trajectories. Hald [44] then showed convergence for 

an extremely wide class of two-dimensional methods, requiring only Holder continuity in 

the vorticity field, as well as fourth-order convergence for the classical Runge-Kutta tech­

niques for the integration of ordinary differential equations. Proofs of the three-dimensional 

method with explicit differentiation were also provided by Beale and Majda [8], [9]. 

In tandem with these theoretical investigations, many numerical convergence stud­

ies have examined the actual accuracy obtained in practice (for example, see Sethian and 

Ghoniem [88]). Later in this thesis, we will present a careful, detailed study of the choice 

of time step f::::.t and mesh size h for the thin tube vortex filament method. 

2.2.2 Standard Vortex Filament Method and Thin tube Vortex Filament 

Method 

For computational purposes, the standard vortex filament method algorithm starts 

with approximating the vorticity field w(x, t) by a finite collection of overlapping numerical 

vortex filaments Li ( i = 1, .. .', N). Each of the filament Li is approximated by ni segments, 

i.e., short, thin, circular cylinders whose axis is tangent at a point to the vorticity vector. 

The (i,j)-th segment (the j-th element on the i-th filament, 1 :::; j :::; ni, 1 :::; i :::; N ) is 

represented by a c~culation ri and by two Lagrangian variables Xi,j, Xi,j+l which describe 

the centers of the base and top of the segment respectively. 

A sketch of a vortex segment is drawn in Figure 2.4 . No segment is allowed to 

be longer than a predetermined bound h, in other words, lxi,j+l- Xi,ii :::; h for 1:::; j :::; ni, 

1 :::; i :::; N. If the length of a segment exceeds h, the segment is cut into two new segments. 

The coordinates of the new segments can be obtained by linear interpolation. 

Denote the center of the (i,j)-th vortex segment by 

xi,j = ~(xi,j + Xi,j+l)· 

The velocity at a point x can be approximated by 

u(x, t) = _ ...!._ t t ri (xf,j - x) : (xi,j~1 - Xi,j) j( ixi,j -xi), 
411" ·-1 ·-1 ixi J. -xi 8 

t- J- ' 

(2.21) 

(2.22) 
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which is a discrete version of (2.15). 
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~ 

I 
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Figure 2.4: A vortex segment. 
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Once the velocity u(xi,j) is calculated from the numerical filament configuration, 

one can advance Xi,j by solving an initial value problem : 

dx 
dt = u(x). (2.23) 

If only one numerical filament is used instead of a collection of overlapping numer­

ical filaments to approximate the vorticity field, the resulting method is called the thin tube 

vortex filament method. Later we will· employ both the standard vortex filament method 

and the thin tube vortex filament method to study short wave instability. 
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Chapter 3 

Instability of A Vortex Ring 

In this chapter, we review some of Widnall's analysis of vortex ring instability. 

This review is important for our study of short wave instability on vortex filaments and our 

study of time and spatial discretization of vortex methods, which will be presented in the 

following chapters. 

The behavior and inherent beauty of vortex rings have fascinated researchers for 

a long time (e.g. [48], [63], [69]). In nature, vortex rings are found to occur in various 

sizes. Perhaps the most familiar example is the smoke-ring which is produced when smoke 

is ejected suddenly through the lips of a smoker. Vortex rings have also been observed in the 

wakes of aircrafts. In a laboratory, the usual method of generating vortex rings is to eject 

fluid impulsively through some type of orifice into a quiescent fluid. In superfluid helium, 

experiments by Rayfield and Reif [78] found that accelerating ions can create quantized 

vortex rings. 

Part of the fascination of vortex rings stems from their compact and persistent 

nature. It was this persistence and their apparent stability that prompted Lord Kelvin to 

propose the theory of vortex ring atoms, which explained spectral lines in terms of differ­

ent modes of oscillation of vortex rings. Even though this theory was later superseded, it 

inspired much of the early analysis of vortex rings that is still 'relevant today. The com­

pactness of vortex rings simplifies analytical, numerical and experimental studies. However, 

their nature is still complex enough to have provided ample material for research for well 

over one hundred years. 

While many studies of vortex rings have been prompted by scientific curiosity, 

some studies have been made of technological applications. For example, vortex rings have 
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been suggested as a means for extinguishing gas and oil well fires [1] and cavitating vortex 

rings, produced by exciting cavitating jets, have been used for underwater cleaning and rock 

cutting [14]. 

The simple and robust nature of vortex rings also makes them ideal as simpler 

building blocks in the modeling of more complex flows, including the generation of sound, 

mixing in shear layers, and turbulence. Among many interesting arena of vortex rings, we 

are concerned with the stability of vortex rings. In this chapter we discuss some of the 

features of vortex ring instabilities. First we give a historical review of the study of vortex 

ring instabilities. Then we describe the theoretical study of vortex ring instabilities, which 

plays a guiding role in the later chapters of this thesis. 

3.1 Historical Review of the Study of Vortex Ring Instabili­

ties 

Theoretical studies in the late 1800s suggested that wave-like perturbations on vor­

tex rings were stable. Analyses of vortex rings, carried up through terms of 0( 6 j R), showed 

no instability. However, about half a century later, the experimental work of Krutzsch [59] 

showing the formation of unstable azimuthal waves on vortex rings brought these findings 

into questions. The significance of his observations was not fully appreciated at the time and 

it was not until Maxworthy [68] observed a similar azimuthal instability that researchers 

began to examine this phenomenon closely. 

Maxworthy's experiments [68] revealed that a stable laminar vortex ring forms 

when the Reynolds number (based on the velocity and the diameter of the ring) is less 

than 600. Once formed, the rip.g does not translate with a constant velocity, as might 

be expected from inviscid theory, instead the velocity decays (Maxworthy [68], Sallet and 

Widmayer [83], and Glezer and Coles [39]). At moderate Reynolds number, experimental 

data indicate that a laminar vortex ring may subsequently become "turbulent". 

Since Maxworthy's observation on vortex ring instabilities, a number of experi­

mental studies have been made of this phenomenon (Widnall and Sullivan [96]; Leiss and 

Didden [61]; and Auerbach [5]). A detailed explanation of this phenomenon has gradually 

developed as the result of several studies. 

In 1973 Widnall and Sullivan [96] investigated the stability of vortex rings both 
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theoretically and experimentally. They attempted to explain the instability by considering 

the behavior of an inviscid circular vortex filament with a thin core (as h / R -t 0). They 

examined the behavior of a small perturbation in the induced velocity field of the ring. A 

perturbation may grow, die out, or remain unchanged with time. Perturbations of different 

wavelengths will have different growth rates. In their analysis Widnall and Sullivan assumed 

that the wavelength of the perturbation wave was large in comparison with the core radius 

(i.e. kh < < 1, where k is the wave number defined as 27r /wave length), since for long waves, 

the self-induced rotation frequency of the sinusoidal wave on a straight vortex filament has 

a simple asymptotic formula. Their analysis suggested that a thin vortex ring in an ideal 

fluid is almost always unstable to a small wave-like perturbation. 

The approach of Widnall and Sullivan [96] had some success in predicting the 

amplification rates and mode shape of the instability. Their results were in agreement with 

their experimental measurements. They also showed that the number of waves around the 

perimeter in the unstable mode depends on the size of vortex core. For a given vortex 

core, only one mode is unstable and the wave number of the unstable mode increases with 

decreasing core size. Nevertheless, their prediction of the wave number was not accurate. 

As Widnall and Sullivan pointed out, the wavelength of the predicted unstable mode is of 

the order of the core size and, as a result, contradicts the assumption of long waves used in 

the analysis. 

In order to address this shortcoming in the model of Widnall and Sullivan, Widnall -

et al. [95] proposed a new model in which it is possible for the wavelength of the unstable 

mode to be comparable with the size of the vortex core. In this modified model, they still 

examine the asymptotic limit of a thin core ( h / R -t 0); however, here the wavelength of 

the perturbation is such that kh is of order one, whereas in the previous case k8 < < 1 (as 

8/R -t 0). 

The improved model relies on the important observation that the induced velocity 

on a displaced portion of the vortex ring due to the rest of the vortex ring is locally like a 

stagnation point flow (in the case of a perturbed vortex pair it is an exact stagnation point 

flow, however, in the case of a curved filament or ring the flow is only approximately like a 

stagnation point flow). This means that the perturbed filament is subject to a local plane 

straining. Widnall argued that if the perturbation is aligned with the strain, it will grow. 

However, a sinusoidal perturbation on a vortex filament is also subject to rotation due to 

its self-induced velocity field. Thus the problem is to find cases where the combination of 
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these two effects results in a perturbation which remains aligned with the strain. In their 

model, Widnall et al [95] considered one case in which this is automatically true, that is 

perturbations for which the self-induced rotation frequency is zero. They found that the 

first radial mode can not have a zero rotation frequency, and that it is the higher radial 

mode (second or higher) that is responsible for the instability. In thejr previous work, a 

spurious non-rotating first radial mode was predicted by the asymptotic formula for long 

waves outside its valid region. 

In two subsequent papers Tsai and Widnall [92] and Widnall and Tsai [97] refined 

the ideas presented in Widnall et al. [95]. 

In particular, Tsai and Widnall [92] addressed the effect of the distortion of the 

core by the imposed strain. In addition to the modes with zero rotation frequency, two 

helical modes of opposite rotation frequency were included in their model. These two 

helical waves, when superposed, form a standing wave (the existence of these modes for 

a straight filament was pointed out by Moore and Saffman [74]). They also attempted to 

justify the assumption that it is the second radial mode that dominates over the higher 

radial modes. In this they were unsuccessful - they found that the second and third radial 

modes have similar amplification rates. 

Widnall and Tsai [97] examined the effect of curvature using matched asymptotic 

expansions to order 82 for the frequencies of oscillations. They showed that the effects of 

curvature are much smaller than that of strain and therefore the mechanism of Widnall et 

al. [95] is basically correct. 

The mechanism WidnaU: and her co-workers used to study short wave instabilities 

on a vortex ring is very technical and illustrative. We will use a similar mechanism to study 

short wave instabilities on a co-rotating vortex pair and short wave instabilities on vortex 

filaments of fixed core structure in a straining flow in Chapter 6. In the following section 

we restrict our attention to the study of vortex ring instabilities. 

3.2 Vortex Ring Instabilities 

In this section we briefly introduce the model for the experimentally observed 

instability of the vortex ring, which is subject to perturbations of azimuthal bending waves 

whose wavelength is comparable with the core size of the vortex ring. We shall closely follow 

the approach presented in Widnall et al. [95] where the short wave instability is studied for 



Chapter 3. Instability of A Vortex Ring 18 

both the vortex ring and the vortex pair. Instability for both the vortex ring and the vortex 

pair is predicted to occur when the waves on the filament have zero self-induced rotation 

frequency. This zero rotation frequency does not occur for the first radial bending mode 

of a vortex filament. However, it does occur for higher radial bending modes which have 

more complex radial structures with at least one node at some radius within the core of the 

filament. Here the word "node" represents a radius ro such that the disturbance velocity 

vanishes on the circle of radius r = ro. 

3.2.1 Vortex Pair Instability 

To motivate the more complete stability analysis for the vortex ring, we first 

investigate the instability of a thin vortex pair. A thin vortex pair consists of two parallel 

vortex filaments of opposite circulation where the core size of each filament is small compared 

with the distance between the filaments. As shown in Figure 3.1, axes are taken with x 

span-wise, y horizontally outwards and z parallel to the undisturbed straight filament. The 

undisturbed pair moves inwards with velocity r j21rb, where b is the separation between two 

unperturbed filaments, and ±r is their circulation. 

The instability of the vortex pair to bending wave perturbation was first consid­

ered by Crow [35]. Since the flow outside the vortex filament is potential, the stability 

calculation can be done by considering the motion of the filaments that results from the 

perturbation. To do this, we shift the coordinate system such that the origin coincides with 

one of the unperturbed filaments. Figure 3.2 shows a cross section of the vortex pair with 

the coordinate system. The vortex filaments move with a velocity that is a combination of 

the velocity induced by the other filament and the self-induced rotation n of the sinusoidally 

perturbed filament. For short waves, it is the presence of the neighboring filament rather 

than the perturbation on that filament that plays the dominant role in the instability. The 

presence of the other filament produces a stagnation-point flow in the neighborhood of the 

vortex, whereas the velocity induced at the vortex due to short wave perturbation of the 

other filament can be ignored. 

The velocity at a point ( x, y) induced by the other filament is 

r 1 [ y ] 
u(x,y)=27r(b+x)2+y2 -(b+x) . (3.1) 
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b 

z 

Figure 3.1: A perturbed vortex pair of opposite circulation. 

Expanding u around (0, 0) yields 

r [o] r [Y] 2 2 u(x, y) = 27rb2 -b + 27rb2 x + O(x + y ). (3.2) 

The second term on the right hand side of expressiol! (3.2) is a stagnation point flow. It 

represents the velocity of the perturbed vortex at (x, y) relative to the unperturbed vortex 

position (0, 0), which is induced by the other :filament. The stagnation point flow is sketched 

in Figure 3.2 

In the local cylindrical ( r, 0) coordinate system centered at the unperturbed posi­

tion of the vortex :filament, this stagnation-point (SP) flow has the following form: 

r . 
ur(SP) = 

2
1rb2 r sm 20, 

r 
ue(SP) = -b2rcos20, 

27r 

(3.3) 

(3.4) 

where ur(SP) is the radial velocity and ue(SP) is the tangential velocity. Therefore, for 

the vortex cross-section which is at the position (ro, Oo), the velocity due to the stagnation 
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Figure 3.2: A cross-section of the vortex pair. 

flow is 

- 2~b2 ro sin 28o, 

r 
- 21rb2 ro cos 280 • 

X 

20 

(3.5) 

(3.6) 

In addition to these components of velocity induced by the other filament, the displaced por-

" tion of the filament is also subject to its self-induced rotation (SR) around the unperturbed 

position (0, 0). The self-induced tangential velocity is 

(3.7) 

where n is the rotation frequency of the perturbation wave. For long waves (i.e. the 

wavelength is much larger than the core size kb < < 1) on a straight vortex filament with 

constant vorticity distribution, the frequency n has an asymptotic formula given by Lord 

Kelvin [49] 
r 2 1 1 n = --k [In(-)+- +ln2- rl 
4tr kb 4 ' 

(3.8) 

where 1 is Euler's constant 0.5772 .... For short waves, n has to be solved numerically from 

a transcendental equation (dispersion relation) and will be discussed later. 
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The combination of the stagnation point flow field and the self-induced rotation 

gives the total velocity of the vortex cross-section relative to the unperturbed position. We 

expect instability to occur when 

mjnu9(SP) ~ -u90 (SR) ~ m;xu9(SP), (3.9) 

that is, when the velocity field of the stag:Q.ation point flow is sufficient to overcome the self­

induced rotation. The argument goes as follows. When the self-induced rotation velocity 

falls between the minimum and maximum tangential velocity of the stagnation point flow, 

the total tangential velocity will carry the vortex cross-section to a new angle 8', where the 

total tangential velocity satisfies u9• ( SP) + u9, ( S R) = 0. The new angle 8' should also have 

the property that if the vortex is moved away from 8' by a small angle, the total tangential 

velocity will force it back to e'. This is equivalent to 

8(u9(SP) + u9(SR)) I , 
0 . 88 9=9 < ' (3.10) 

from which it follows that 

sin20' > 0. (3.11) 

Thus we only need to consider the situation where u90 (SP) = -u90 (SR) and sin20o > 0. 

When u90 (SP) = -u90 (SR), the perturbation will diverge along the direction of 

() = Oo with velocity ur0 (SP) and the position of the vortex is governed by the ordinary 

differential equation 
dro r . 
dt = Uro(SP) = 21rb2 ro sm 20o > 0. (3.12) 

Integrating equation (3.12) with respect to time, we get 

ro(t) = ro(O)ea..,t = ro(O)e2;&2 sin29ot, (3.13) 

where aw = 2,!'b2 sin 20o. Thus the perturbation diverges along the direction Oo with a 

non-dimensional amplification rate 

aw = r ~~~b2 = sin 28o > 0. (3.14) 

For the vortex pair, Widnall et al. [95] noted that aw ~ 0.8 and Oo is somewhat greater than 

45° for the most unstable long waves, whereas aw = 1 and Oo = 45° for the most unstable 

short waves (n = 0). Here it should be pointed out that for long waves, the velocity at the 

vortex filament due to long-wave perturbations of the other filament is not negligible and 
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has to be taken into account. For short waves, the condition for the most unstable mode ( 

0 = 0 ) requires that cos 20o = 0. Thus Oo = 45° and it follows that aw = 1. 

From the discussion above, one can see that the self-induced rotation frequency n 
of the sinusoidal waves on a straight vortex filament determines whether or not a mode is 

stable, what the growth rate is, and which mode is most unstable. In the next subsection 

we shall focus our attention on the dispersion relation which relates n to wave number and 

core size. 

3.2.2 Dispersion Relations 

We now discuss the dispersion relation of the infinitesimal perturbations of a uni­

form rectilinear vortex filament. 

To proceed, consider a straight circular vortex filament of radius 8 parallel to the z­

axis. In the cylindrical polar coordinate system ( r, 0, z), the components of the unperturbed 

velocity field are (0, V(r), W(r )). We consider infinitesimal perturbations (ur, u9, uz), which 

satisfy the Euler equations linearized about the unperturbed flow and the incompressibility 

constraint. We search for solutions of the form 

Ur = 
U9 = 
Uz = 
p = 

u(r )ei(kz+m9-f2t), . 

v(r)ei(kz+m9-f2t), 

w( r )ei(kz+m9-f2t), 

p(r )ei(kz+m9-f2t), 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where P is the pressure. The axial wave number is k. m is the azimuthal wave number, 

which must be an integer. The solutions for n are the eigenvalues and the corresponding 

solutions for ( u, v, w, P) are the eigenfunctions. 

For a filament of uniform vorticity distribution with zero axial flow, the unper­

turbed velocity field (0, V(r), W(r)) is 

where 

W(r) = 0, 

- { 
Oor, r:::; 8 

V(r) 
Oo82 jr, r > 8 

(3.19) 

(3.20) 

(3.21) 
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is the angular velocity of the solid body rotation of the unperturbed vortex core. The 

dispersion relation which relates 0 to k, m and b is the following transcendental equation 

(see Moore and Saffman [73]): 

where 

9 = -O+mOo, 

!32 = k 2 
( 405 - 92

) I 92
, 

(3.22) 

(3.23) 

(3.24) 

Jlml is the lml-th order Bessel function of the first kind, and Klml is the lml-th order modified. 

Bessel function of the second kind. 

The nature of the disturbance depends dramatically on the value of azimuthal 

wave number m. The deformed core is given by 

r = 8 + Dei(kz+m8-0t). (3.25) 

If m = 0, the disturbance is axisymmetric and is called bulge wave. For lml ~ 2, the 

boundary of the vortex core is perturbed, but the core as an entity is not shifted. These 

modes are called shape-change waves. For example, when m = 2, by taking the real part 

of (3.25), one can see that the core cross-section is deformed into an ellipse which rotates 

around z axis. In the case of m = 0 or lml 2: 2, we have u = v = 0 at r = 0, and the axis 

of the vortex is undisturbed. The modes with lml = 1 are very special. They are called 

the bending modes and are the perturbations we will be concerned with. When lml = 1, 

the axis of the vortex is deformed and the velocity perturbation does not vanish at r = 0. 

Again, taking the real part of (3.25) with m = 1 and assuming that D is real, one obtains 

a circle with center at r = D in the direction()= -(kz- Ot). This is a left-handed spiral 

(helical wave). Figure 3.3 shows the core cross-sections before and after the disturbance for 

the azimuthal wave number m = 0, 1, 2, 3, 4, 5, respectively. 

Now we study the dispersion relation (3.22) for the bending waves, i.e. lml =~1. 

From the symmetry of the equation (3.22), we know that 

O(k;m = 1) = 0(-k;m = 1) = -O(k;m = -1). (3.26) 
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Figure 3.3: The core cross-sections before and after the perturbation for various azimuthal 
wave numbers. The solid curves denote the unperturbed core, the dashed curves denote the 
perturbed core. 
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Thus there is no loss of generality in taking k positive and m = 1. Solving g from equation 

(3.24), one has 

g= 
4n~k2 _ 2n0k8s 

(32 + k2 - J(f38)2 + (k8)2' 
(3.27) 

where s = ±1. When s = 1, as a result of equations (3.27) and (3.23), we have n < n0 , 

i.e. the rotation n of the disturbance is slower than or even in the opposite direction of 

the solid body rotation no of the unperturbed vortex core. In this case, the disturbance is 

called retrograde. If s = -1, it also follows from (3.27) and (3.23) that the disturbance n 
rotates faster than the solid body rotation of the core no and is called co-grade. For the 

co-grade modes, the rotation frequency n is of the same order as n0 , which is much larger 

than the maximum angular velocity of the stagnation point flow: 

r maxu9(SP) 
nco-grade "' no = -- > > ___;;_9 ___ _ 

21r82 r 

The inequality (3.28) holds because 

maxu9(SP) 
9 r 

r = 21rb2 

(3.28)' 

(3.29) 

from equation (3.4) and we have assumed that 8 < < b. Since the unstable modes are those 

with zero or small rotation frequency (when the self-induced rotation can be overcome by 

the stagnation point flow), the co-grade modes are not candidates for unstable modes and 
·, 

will not be discussed here. 

Taking s = 1, m = 1, and substituting (3.27) into equation (3.22) gives a tran­

scendental equation for (3: 

1 J~ ((38) y'((38)2 + (k8)2 K~ (k8) 
(38 J 1 ((38) + ( k8) ((38)2 = - k8 K 1 ( k8) . (3.30) 

The left hand side and the right hand side are sketched as functions of (38 in Figure 3.4, which 

shows that for any k8, equation (3.30) has infinite number of roots {((38)n, n = 1, 2, 3, ... }. 

Combining equation (3.27) and equation (3.23), one can see immediately that for 

any k8, the dispersion relation (3.22) also has infinite number of roots {nn, n = 1, 2, 3, ... }, 

given by 
- n - - - 2nok8 

nn- 0 9n- no y'((38); + (k8)2. (3.31) 

These roots nn are the eigenvalues of the linearized Euler equations. They are the rotation 

frequencies of the corresponding eigenfunctions (disturbances) which are called the first 

radial mode (n = 1), the second radial mode (n = 2) and so on. 
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Figure 3.4: The left hand side (solid curve) and the right hand side (dashed curve) of 
equation (3.30) as functions of (38. 

In the long wave limit k8 - 0, the right hand side of equation (3.30) - k:k~~!~) 
is asymptotically (k~) 2 , which implies that the n-th root ((38)n of equation (3.30) converges 

to the n-th root in of J1(x) = 0. Therefore, as k8 goes to zero, the n-th root On of the 

dispersion relation given by (3.31) approaches 0 0 , except for the first root 0 1 which has a 

different behavior because the first root j 1 of J1(x) is zero. When k8 is small (long waves), 

the first root ((38)1 of equation (3.30) is also small and the rotation frequency 01 of the first 

radial mode has a simple asymptotic formula which is given below. 

For both k8 and (38 small, the two terms in equation (3.30) which involve the 

Bessel functions J1 and K1 can be expanded into the power series: 

(3.32) 

(3.33) 

where 1 is Euler's constant as before. Substituting (3.32) and (3.33) into equation (3.30), 
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assuming (38 is of the form c1 ( k8) + c2 ( k8)3 and solving for c1 and c2, we obtain 

(38 = J3 { k8- ~[log(:8 ) + ~- 1](k8)3
} + O(k585

). (3.34) 

Combining (3.34) and (3.27) yields 

n-n -n 2f!o(k8) 
/~ 0 - g- 0- y'((38)2 + (k8)2 

= _!nok282 [log( ~) +!- rl· 
2 k8 4 

(3.35) 

Equation (3.35) is the asymptotic formula for the rotation frequency of long waves of the 

first radial mode [49]. 
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Figure 3.5: Oscillation frequencies of the first four radial modes on a filament with constant 
vorticity. 

The rotation frequencies n of the first four radial modes on a vortex filament 

with constant vorticity are calculated numerically from the dispersion relation (3.22) and 

plotted as functions of ( k8) in Figure 3.5. It is important to notice that there are non-zero 

wave numbers for which the rotation frequency is zero. The zero rotation frequency is not 

possible for the lowest radial mode (the wave with wave number equal to zero is not . an 
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interesting case here), however it does occur for the more complicated higher radial modes. 

If the rotation frequency n is zero, then equation (3.27), together with equation (3.23), 

yields 

(3.36) 

and the value of (k6) can be obtained by solving the equation 

1 J~ ( .J3k8) 2 1 K~ (k8) 
-v'3-3k-8 J

1 
( v'3ko) + -3k-2 o-2 = - -ko --K~1 ('-ko-::-)" (3.37) 

The values of ( k8) corresponding to non-rotating second, third and fourth radial modes are 

2.5, 4.4 and 6.2, which can also be seen from Figure 3.5. 

In Figure 3.6 we compare the exact and the asymptotic dispersion relations for 

waves on a vortex filament with constant vorticity. It is clear that the asymptotic formula 

should not be used for k8 not small (short waves). In particular, the zero rotation frequency 
1 

predicted by the asymptotic formula (3.35) at k8 = 2e4-"Y = 1.44 is spurious. This is not 

surprising, since the predicted k6 is· far away from the valid region of the asymptotic formula 

(k8 << 1.) 
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Figure 3.6: Comparison of the exact (solid line) and asymptotic (dashed line) dispersion 
relations for waves on a vortex filament with .constant vorticity. 
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Higher radial modes have more complicated radial structure in the sense that they 

have at least one node at some radius within the core of the filament. In the first mode, 

the inner and outer crests of the disturbance translate in the same direction and thus there 

are no nodes within the core. In the second radial mode, the outer and inner crests of the 

disturbance translate in opposite directions and thus there is one node in the core. 

Figure 3. 7 shows the radial velocities at various locations for the first and the 

second radial modes. Note that the radial velocity also depends on the angle () through 

ur = u( r) cos(). So the radial velocity at () + 1r is exactly the opposite of that at (). 

(a) (b) 

Figure 3.7: Radial velocities at various locations for the first (a) and the second (b) radial 
modes. 

For the vortex pair of constant vorticity distribution, we conclude that the most 

unstable waves are those with zero rotation frequency. Short waves of the first radial modes 

are always stable. For the second radial mode, the most unstable wave satisfies k6 = 2.5 

while for the third radial mode, it occurs at k6 = 4.4. 

3.2.3 Vortex Ring Instability 

The purpose of this subsection is to examine the stability of the vortex ring to 

azimuthal. bending waves of wavelength comparable to the core size. 
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In the limits c / R -+ 0 and kR -+ oo, to the lowest order, sinusoidal waves on 

a slender bent filament will rotate around the filament at the same frequency as if they 

were on a straight filament. Here R denotes a typical radius of curvature of the filament 

curve. For short waves on a thin vortex ring, we have kc"" 0(1) and kR = M(f)-+ oo 

as -! -+ 0. Hence the self-induced rotation frequencies of short waves on a thin vortex 

ring are approximately the roots of the dispersion relation (3.22), which have been shown 

as functions of kC in Figure 3.5. Here the self-induced rotation is due to the velocity 

induced by a part of perturbed ring, the length of which is small in comparison with the 

circumference of the vortex ring but large in comparison with the wavelength. One can. 

analyze the vortex-ring instability in the same manner as the vortex-pair instability. That 

is to examine whether or not the self-induced rotation can be balanced by the stagnation 

point flow at the vortex due to the presence of and the perturbations on the remainder of 

the ring. The part of the vortex ring which is responsible for the self-induced rotation and 

the remainder of the ring are sketched in Figure 3.8. 

< 

Figure 3.8: Thick curve: the part of the filament curve responsible for the self-induced 
rotation of the waves around the ring; thin curve: the remainder of the ring. 

We expect that ~or short waves, such as those unstable waves observed on vortex 

rings, the velocities induced at the core boundary due to perturbations on the remainder of 
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the ring are negligible. Bliss [12] expanded the velocity field near a vortex filament ring. As 

in the vortex-pair instability previously discussed, the terms that are relevant to the vortex 

ring instability are the stagnation point :How induced in the neighborhood of the vortex 

core by the presence of the ring. From Bliss's analysis, the radial and tangential velocity 

components of this :How are given by 

r 3 . 8R 4 
Ur = 41rR2 4r sm 20[ln--;:--- 3], (3.38) 

r 3 8R s 
ue = 41!" R 2 4r cos 20[1n --;:-- - 6]. (3.39) 

The velocity field (3.38) and (3.39) for the vortex ring is analogous to the field (3.3) and 

(3.4) for the vortex pair. Strictly speaking, due to the presence of the term ln r and the 

) different constants inside the brackets for Ur and ue, the velocity field (3.38) and (3.39) is 

not exactly a stagnation point :How. 

To illustrate the essential mechanism in the vortex-ring instability, we consider the 

net translational motion of a cylinder of radius 6, representing the vortex core boundary, 

displaced in this field. Because of the presence of the logarithm in the velocity field, to 

evaluate the net translational velocity, we require that the displacement of the vortex core 

boundarybe small in comparison with the core radius (this is true for infinitesimal per­

turbations). In the appendix of [95], Widnall et al. showed that the net translation of the 

cylinder of radius fJ perturbed hi the "stagnation point" :How (3.38) and (3.39) is given by 

r 3 . 8R 25 
Uro = 41!" R 2 4ro sm 20o [In 8 - 12 ], 

r 3 8R 25 
ue0 = 41rR2 4ro cos 20o[ln 8- 12 ]. 

(3.40) 

(3.41) 

These expansions are of the same form as the expressions in (3.5) and (3.6) which are used 

in the discussion of the vortex-pair instability. 

We now suppose that instability of the vortex ring to short-wave perturbations 

around the azimuth occurs whenever the self-induced rotation n of the waves can be over­

come by the net translational velocity (3.40) and (3.41). If the self-induced rotation n is 

zero, the rotation will stop at Oo = 45°, where ue0 = 0, and the vortex will diverge at a 

velocity Ur0 given by (3.40). The growth rate ur0 is maximized at the angle Oo = 45°. 

We take as the condition for instability that n = 0 for some k8. From Figure 

3.5 it can be seen that zero rotation frequency n = 0 is possible only for the second and 

higher radial modes. Assuming that the lowest of these modes (i.e. the second mode) is the 
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most likely to occur, one can draw the conclusion that the wave number k of the instability 

satisfies k6 = 2.5 for a uniform distribution of vorticity in the core. This theoretical result 

agrees well with the experimental results of Widnall and Sullivan [96]. 

In summary, we have reviewed Widnall's study of vortex ring instabilities. In the 

next chapter we will carry out a numerical study of the problem. 
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Chapter 4 

Numerical Results Obtained with 

the Thin Tube Vortex Filament 

Method 

In this chapter numerical simulations are carried out for the problem of vortex 

ring instability. The numerical method used here is the vortex method with one numerical 

vortex filament, which is called the thin tube vortex filament method. In this method, 

the cross section of the physical vortex filament, with core radius (j' is represented by one 

. numerical vortex filament with core radius 8 = (j. In effect, the core structure of the physical 

vortex filament is fixed. The thin filament approximation of vorticity structures has been 

employed before in many numerical simulations. For example, Chorin [22] has used this 

method to follow the evolution of a turbulent vortex; Siggia [89] has applied it to simulate 

the collapse and amplification of a vortex filament; Pumir and Siggia [76] have used it to 

study the existence of solutions to the Navier-Stokes equations. Several years ago, Knio 

and Ghoniem [57] investigated the accuracy and convergence of this method by comparing 

numerical solutions to analytical results on the propagation and stability of vortex rings. 

I~ this chapter we will modify some of their results. 

In the first section we present a static simulation of the velocity of a vortex ring. 

The goal of this section is to demonstrate that for a reasonable approximation of the vortex 

ring velocity, a certain condition should be satisfied by the spatial discretization. 

In the second section, we further show that the criterion discussed in the first sec-
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tion cannot be simply extended to other numerical simulations. We compare our numerical 

results with those obtained by Knio and Ghoniem [57] who used a similar method. The 

significant differences in the behaviors of the numerical results are evident. In particular, 

the neutrally stable (i.e. non-rotating and stable) wave found by Knio and Ghoniem is in­

consistent with Widnall's stability theory which has been reviewed in the previous chapter. 

According to Widnall's theory, a wave is unstable when the self-induced rotation is balanced 

by the stagnation point flow induced by the ring ( i.e. when it is not rotating ). We find 

that the neutrally stable wave is actually caused by the underresolved spatial mesh size. 

With refined meshes, the wave is rotating and stable. Furthermore, contrary to Knio and 

Ghoniem's results, for thin vortex rings the unstable mode does not grow without bound, 

instead it exhibits a periodic behavior in time. 

The mechanism of the instability and the periodic behavior in time of the unstable 

mode is explained in detail in the third section with the help of the dispersion relation for 

sinusoidal waves on a vortex filament with fixed core structure. Our analysis supports our 

numerical results. 

At the end of this chapter, we summarize our work and draw some conclusions. 

4.1 Static Simulation of the Velocity of A Vortex Ring 

In this section, we use the thin tube vortex filament method to calculate the 

translational velocity of an unperturbed vortex ring. 

The vortex ring, of radius R, is divided along its circumference into N vortex 

segments, each of length h = (6x)i = 21rRjN, i = 1, 2, ... , N. The core radius u of the 

vortex ring is used as the numerical core size 6 and the velocity smoothing function is taken 

as 

(4.1) 

which has been shown to yield a second order discretization by Beale and Majda [8]. 

In the absence of viscosity, a thin vortex ring (the inner radius u is small in com­

parison with the outer radius R) propagates at a constant rate along its axis of symmetry. 

The velocity of translation is asymptotically [82] 

r [ 8R ] V = 47r R log(-;-) + C , (4.2) 
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where r is the circulation of the ring, and the constant C depends on the distribution of 

vorticity within the ring. For the velocity smoothing function given in equation (4.1), in 

the limit h-+ 0, the numerical vorticity distribution is given by 

r 1 lx-x(s)l I w(x)=·.c3 . g( 
0 

)x(s)ds, 
u nng 

(4.3) 

where g(r) = j' (r) = .!.e-r3 
, 47rr2 47r 

(4.4) 

represents the vorticity distribution of a vortex element with unit cut-off radius and unit 

vorticity. For this vorticity distribution, the constant C in equation( 4.2) is -0.50074. For 

a second order Gaussian vorticity distribution, C = -0.558 . 
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Figure 4;1: Comparison of the numerical velocity and the asymptotic velocity of a vortex 
ring. Here the"+" denotes the numerical velocity while the solid line denotes the asymptotic 
velocity. 

The numerical velocity, obtained by summing the velocities induced by all vortex 

elements around the ring, is 

(4.5) 
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where xi+1 = ~(xi+Xi+l) is the center of the i-th vortex element and r8xi+1 is the vorticity 
2 2 

carried by the i-th vortex element. 

In Figure 4.1, we compare the asymptotic velocity of the vortex ring V with 

the numerical velocity Vnumerical for different values of h/8. The calculation is done 

with R = 1, r = 1 and cr = 0.1. Figure 4.1 shows that when h/8 < 0.5, the numerical 

velocity agrees well with the asymptotic velocity; when h/ 8 > 0.5, the numerical velocity is 

inaccurate. 

This numerical experiment of calculating the velocity of a vortex ring indicates that 

overlapping between neighboring vortex elements (i.e. h "' ~) is necessary for the accurate 

evaluation of V. However, it should be emphasized that h "' ~ may not be sufficient to yield 

correct results for other problems. As we will see in the following sections, such an empirical 

criterion is obviously insufficient for the numerical simulations of vortex ring instability. 

4.2 Numerical Simulations of the Instability of Vortex Rings 

Subject to Perturbations of Azimuthal Waves. 

The purpose of this section is to simulate the growth of small sinusoidal pertur­

bations on a vortex ring using the thin tube vortex filament method. 

We choose the same initial conditions as in [57]. At time t = 0, a cosine wave 

perturbation with amplitude e and wave number n is imposed on the circumference of 

a vortex ring with :radius R. The ring lies on the. x-y plane, the z-direction being the 

streamwise direction. Let p denote the radial direction in the plane of the ring and (} be the 

azimuthal angle as shown in Figure 4.2. The size of the perturbation varies in the azimuthal 

direction as D..p = e cos(n9). In other words, initially the perturbed ring can be described 

by the parametric equations: 

where 0 ~ (} ~ 21r. 

{ 

x = (R+ecos(n8))cos(8), 

y = (R + e cos( nO)) sin( B), 

z = 0, 

We discretize the perturbed ring by dividing it into N pieces according to azimuthal 

angle. Each piece corresponds to an angle b.9 = 21r j N in the azimuthal direction. The 

length of vortex element h is approximately b.B · R (it is exactly f:.(} · R if the ring is 



Chapter 4. Numerical Results By the Thin Tube Vortex Filament Method 37 

unperturbed). This yields a ratio h/8 = ~ ~· In our numerical simulations, the initial 

discretization is specified by the ratio hj8. Given a ratio h/8, the number of vortex elements 

N is taken as the integer which is closest to 21r( ~) / ( ~) and the increment in the azimuthal 

angle f:.() is ~ . The numerical discretization of the initial condition is give~ by 

for j = 1, 2, ... , N. 

{ 

Xj = (R + c cos(njf:.())) cos(jf:.()), 

Yi = ( R + c cos( nj f:.())) sin{j f:.()), 

Zj = 0, 

Figure 4.2: The perturbed vortex ring and the coordinate system 

Besides the parameter hj 8, there is another parameter hcu.t which affects the nu­

merical representation of the filament during its evolution. When the length of the j-th 

vortex element I xi+ I - Xj I is larger than hcu.t, to keep a uniform numerical resolution, we 

cut the j-th element into two halves of equal length by adding a new point between the 
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nodes Xj and Xj+l· The coordinates of the new point are obtained by linear interpolation. 

This process is repeated after each time step. 

For time integration, a four stage fourth order Runge Kutta method is employed 

to advance the filament according to the velocity obtained by summing the contributions 

of all vortex elements. The time step is determined by 6t = 4.082 ;r. The issue of ODE 

solver, time step and numerical stability is the major subject of next chapter. 

In the following calculations, the radius of the ring is R = 1 and the selected value 

of circulation is r = 1. We start with the core size 8 = 0.1R and the amplitude of the cosine 

wave perturbation c = 0.02R. The evolution of the perturbation is analyzed in terms of its 

components in the radial and the streamwise directions. 

For n < n*, where n* is the wave number of the unstable mode, the perturbation 

wave rotates around the unperturbed ring at a frequency n which depends on the wave 

number n. The trajectory of any point on the perturbed ring, observed relative to the 

unperturbed axis of the ring, is an ellipse whose major axis is in the radial direction and 

whose minor axis is in the streamwise direction. The rotation frequency n, starts low at 

small n, increases with n to a maximum, and then decreases as n approaches n*. The sense 

of rotation of the perturbation wave is opposite to that of the vortex core rotation. The 

amplitudes in the p-direction and z-direction are shown in Figure 4.3 for wave numbers 

n = 2, 5, 8, 10, 12, and 13. The calculations are performed with h/ 8 = 0.05, which is 

much smaller than the criterion h/8 < 0.5 discussed in the first section of this chapter. 

We will come back to this issue later on. Figure 4.3 shows that as the wave rotates, the 

amplitudes in the p-direction and z-direction fluctuate periodically between a maximum 

and a minimum values. The maximum amplitude in the p-direction is the half length of 

the major axis of the ellipse traced out by the crest of the perturbation wave, while the 

maximum amplitude in the z-direction corresponds to the half length of the minor axis. 

These modes (n < n*) are characterized as being stable. We will give a clear definition of 

"stable" and "unstable" modes at the end of this section. 

At n = n* (for 8/ R = 0.1, the unstable wavenumber n* = 14), the perturbation 

wave first rotates in the same direction as the vortex core rotation. After a while it reverses 

its rotation direction, then it reverses the rotation direction the second time and the per­

turbation wave goes back to its original position and starts to repeat the cycle. The net 

rotation around the unperturbed ring is not observed. The wave grows initially in both the 

radial and streamwise directions. After a while it continues growing in the radial direction 
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but decreases in the streamwise direction, then reverses the pattern and starts the cycle 

again. This mode is characterized as being unstable. Figure 4.4 illustrates the time evolu­

tion of the amplitudes in the p-direction and z-direction for the unstable mode n = n* = 14 

using hj o = 0.05. 

For the higher values of n, n > n*, the perturbation wave again rotates around 

the unperturbed ring at a frequency n. However, they behave quite differently from the 

case where n < n* in that the sense of rotation is now the same as that of the vortex 'core 

rotation and that the rotation frequency n grows monotonically with the wave number n. 

Another difference is that for n > n* the ellipse traced out by the rotating wave has its 

major axis in the streamwise direction and its minor axis in the radial direction. Figure 

4.5 depicts the time histories of the amplitudes in the p-direction and z-direction for wave 

numbers n = 15, 16, 17, and 19. In the calculations, the discretization parameter h/8 is 

chosen as 0.05. These modes (n > n*) are also characterized as being stable. 

In their numerical experiments [57] Knio and Ghoniem obtained a neutrally stable 

mode. For 8/R = 0.1 and n = 13, their results show that the perturbation wave neither 

rotates nor grows and the perturbation ring remains its original shape (see Fig. 3 in [57]). 

This conclusion contradicts Widnall's analysis which predicts that a mode becomes unstable 

when the rotation induced by the presence of the ring balances the self-induced rotation of 

the wave. Our calculations as plotted in Figure 4.3 show that for 8 j R = 0.1 and n = 13, 

the perturbation wave rotates in the opposite direction of the vortex core rotation and is 

stable, which matches Widnall's prediction. 

For the unstable mode (n = 14 for ojR = 0.1), Knio and Ghoniem observed that 

the wave grows in the streamwise direction and then in the radial direction so that the 

total amplitude grows exponentially in time (see Fig. 4 in [57]). Our results in Figure 4.4 

show that the wave grows first in both the streamwise and the radial directions, but the 

total amplitude does not grow without bound, rather it increases to a maximum and then 

decreases to its original value in a periodic fashion. 

In order to determine the origin of these discrepancies between Knio and G honiem 's 

. results and ours, we ran the calculations with the discretization parameter h/8 = 0.35, 0.2, 

0.1, and 0.05. The amplitudes in the p-direction and the z-direction obtained with various 

discretization parameter hjo's are drawn in Figure 4.6 and Figure 4.7 respectively for wave 

number n = 13 and n = 14. It can be seen that the results based on the coarse grid 

h/8 = 0.35 are almost the same as those obtained by Knio and Ghoniem (Fig. 3 and Fig. 



Chapter 4. Numerical Results By the Thin Thbe Vortex Filament Method 40 

4 in [57]). However, Figure 4.6 and Figure 4.7 also show that when the grid is refined, the 

numerical solution changes dramatically. The mode of n = 13 is in fact rotating and stable, 

consistent with Widnall's analysis. The mode of n = 14 grows and decays periodically 

in time. It is clear that any conclusions drawn from Figure 4.6(a) and Figure 4.7(a) are 

artifacts of the numerics since a sufficient refinement of the mesh invalidates them. 

To conclude this section, we want to clarify the definitions of "stable" and "un­

stable" modes mentioned in this section. Note from Figure 4.3, Figure 4.4, and Figure 4.5 

that the amplitudes of all modes are bounded. In fact, the absolute boundedness of the 

amplitude of a mode is not used here as a rule to judge the stability of a mode. Instead, we 

examine whether or not the amplitude of a mode can be bounded by its initial amplitude 

multiplied by a constant coefficient. If this is true, we say that the mode is stable; other­

wise the mode is unstable. Numerical simulations were carried out for initial perturbation 
' 

amplitudes c = 0.02R, 0.01R, and 0.005R with wave numbers n = 10, 13, 14, and 15, 

respectively. The amplitudes vs time for wave numbers n = 10 and n = 13 are plotted in 

Figure 4.8 , and those for wave numbers n = 14 and n = 15 are shown in Figure 4.9. The 

results indicate that for both n < 14 and n > 14, the total amplitude of the mode is always 

bounded by its initial amplitude multiplied by a constant. For n = 14, the total amplitude 

of the mode grows to a maximum of about 0.58, regardless of the amplitude of the initial 

perturbation. Thus, the modes of n < 14 or n > 14 are classified as stable, whereas the 

mode of n = 14 is classified as unstable. 

To fully understand why a mode is stable or unstable, and why the unstable mode 

(n = 14, for 8 = 0.1R) has a periodic behavior rather than growing without bound, we 

continue our discussions in the next section. 
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Figure 4.3: Evolution of the amplitude of the perturbation for the ring perturbed at 
wavenumber n = 2, 5, 8, 10, 12, 13, respectively. The solid line denotes the amplitude 
b.p in the radial direction and the dashed line denotes the amplitude b.z in the streamwise 
direction. 
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Figure 4.4: Evolution of the amplitude of the perturbation for the ring perturbed at n = 14. 
Notice the periodic behavior of the evolution, which is in contrast with Knio and Ghenoiem's 
result. 
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Figure 4.8: Evolution of the perturbation corresponding to different values of the initial 
amplitude. Notice that the amplitudes for n = 10 and n = 13 are bounded by their initial 
values son= 10 and n = 13 are both stable modes. 
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Figure 4.9: Evolution of the perturbation for various initial values. Notice that the ampli­
tudes for n = 15 are bounded by their initial values, whereas the amplitudes for n = 14 
always grow to the same maximum values regardless of the initial values. Hence n = 14 is 
an unstable mode while n = 15 is a stable mode. 



Chapter 4. Numerical Results By the Thin Tube Vortex Filament Method 48 

4.3 Dispersion Relation and Stability Analysis for Thin Tube 

Vortex Filaments 

In this section we try to analyze the evolution of a perturbation wave on a vortex 

ring. In particular, we will find out which is the unstable mode, what causes it to grow, 

and why the amplitude of the unstable mode goes up and down in a periodic fashion where 

the maximum amplitude is bounded by the core size instead of by the initial amplitude. 

The analysis is based on the assumptions that (1). the core size 8 is small compared 

with the ring radius; (2). the perturbation wave is a short wave, i.e. k8 ,....., 0(1), where k 

is the wave number; (3). the amplitude of the perturbation wave is small in comparison 

with the ring radius. The motion of the perturbation wave is the superposition of the 

self-induced rotation of the wave and the flow caused by the presence of the ring. Under 

the above assumptions, the self-induced rotation of a sinusoidal wave on a vortex ring is 

approximately that of a sinusoidal wave on a straight vortex filament, and the flow caused 

by the presence of the ring is approximately a stagnation point flow. 

First, we study numerically the dispersion relation of a sinusoidal wave on a 

straight thin tube vortex filament, which relates the rotation frequency to the wavenumber 

and the core radius. A sinusoidal wave of wavenumber k on vortex filaments of core size 8 is 

discretized and the rotation velocity is calculated. The rotation frequency n is normalized 

with respect to r /2tr82 which is the solid body rotation frequency of a vortex filament of 

radius 8 and circulation r with uniform vorticity distribution. The normalized rotation 

frequency is plotted as a function of wavenumber times core size (k8). Figure 4.10 shows 

the results for sinusoidal waves of small amplitude (i.e. the amplitude is much smaller 

than the wavelength). The interesting region is k8,....., 0(1), since for a vortex ring the long 

waves k8 ,...., o(1) are outside the valid region of the approach of self-induced rotation plus 

stagnation point flow. 

The behavior of the perturbation wave can be understood by investigating the 

motion of the perturbed filament relative to its unperturbed position. A cross-section of 

the perturbed vortex ring with a local coordinate system is shown in Figure 4.11. In the 

new local coordinate system, the origin is the position of the unperturbed filament, the 

x-axis is the radial direction and the y-axis is along the axis of symmetry of the ring. 
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A stagnation point :flow of the form 

u9(SP) = -cf cos(20), 

ur(SP) = -cf sin(20), 

is also sketched in Figlire 4.11, where the constant c depends on R, 8, and r. 

2 

49 

(4.6) 

(4.7) 

When the self-induced rotation velocity Of of the perturbation wave is small 

enough such that it can be overcome by the tangential velocity u9(SP) of the stagna­

tion point :flow, the stagnation point :flow will bring the filament to an angle 0 where the 

total rotation velocity is zero and the perturbation wave grows in the radial direction f with 

velocity ur(SP). This causes instability. For 8 = 0.1R, the wavenumber corresponding to 

the smallest self-induced rotation frequency is k = 14/ R, keeping in mind that for a vortex 

ring, the wave number must satisfy the condition that an integer number of these waves 

can be fit around the ring, i.e. k = nj R. When the self-induced rotation velocity Of of the 

perturbation wave cannot be balanced by the tangential velocity u9(SP) of the stagnation 

point :flow, the filament will rotate around its unperturbed position. In this case, the am-
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plitude of the perturbation wave fluctuates and is bounded by a constant multiple of the 

initial amplitude. Thus the wave is stable. 

z 

y 

X 

Figure 4.11: A cross-section of the perturbed vortex ring (left) with a local coordinate 
system (right). · 

The motion of the filament is the sum of a circular rotation and a stagnation point 

flow. The total velocity is given by 

Ue = -cf cos(20) + f!f, 
u; = -cr sin(20). 

This leads to a system of ODEs for x and jj: 

X
1 

= -(n + c)y, 

y' = en - c)x. 

Solving equations ( 4.10) and ( 4.11) with the initial conditions 

we find that 

x(o) = c:, 

y(O) = 0, 

-2 -2 
X y 1 
c;2 + c;2(n-c) = ' 

fl+c 

(4.8) 

(4.9) 

( 4.10) 

(4.11) 

( 4.12) 

( 4.13) 

( 4.14) 
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·where cis the initial amplitude. In the case of 101 > c, equation (4.14) represents a family 

of ellipses corresponding to different initial amplitude c. For n > c, the perturbation 

wave rotates anti-clockwise (opposite to the vortex core rotation) around the unperturbed 

filament. Its trajectory is an ellipse whose major axis is the x-axis and whose minor axis is 

the y-axis. For n < -c, the perturbation wave rotates clockwise (the same as the vortex 

core rotation) on an ellipse with the y-axis as the major axis and the x-axis as the minor 

axis. This result has also been verified by our numerical simulations. The motions of the 

perturbation waves with respect to the unperturbed axis of the ring, obtained from the 

numerical solutions, are shown in Figure 4.12 for n = 13 and n = 15. 

Wavenumber n = 13 Wavenumber n = 15 
1.5,--------~----'----, 1.5,----------,-----------, 

y y 

0· 0· 

-1J.5 0 1.5 
-~r-~5--------~o~--------~1.5 

X X 

Figure 4.12: Trajectories of the waves (n = 13 and n = 15) with respect to the unperturbed 
position. All coordinates have been normalized by the initial amplitude. 

In the case of 101 < c, equation (4.14) represents a family of hyperbolas with 

the initial amplitude c as the independent parameter. The perturbation wave grows on a 

hyperbola as long as its amplitude is still small in comparison with the vortex core size. It 

is clear that the amplitude of the wave is not bounded by a constant multiple of the initial 

amplitude. This can be best seen by considering an initial perturbation of infinitesimal 

amplitude. It remains to be explained why the amplitude of the unstable mode grows 

to a maximum and then decreases. In Figure 4.10 we showed the dispersion relation of 

sinusoidal waves with infinitesimal amplitude. However, the self-induced rotation frequency 
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may also depend on the amplitude. For 6 = 0.1R, the unstable mode has wave number 

k = 14/ R. For the combinations of k6 == 1.35, 1.375, and 1.4, we studied numerically 

the relationship between the self-induced rotation frequency and the amplitude. Figure 

4.13 shows the normalized rotation frequencies vs the normalized amplitude, where the 

normalized amplitude is defined as amplitudef6. Figure 4.13 indicates that as the amplitude 

grows, the rotation frequency also increases. This result can be used to explain the periodic 

behavior of the unstable mode. 
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Figure 4.13: Frequency vs perturbation amplitude. -: k6 = 1.4, -o-: k6 = 1.375, 
k6 = 1.35, where k is wave number and 6 is the core size 

The perturbation wave first follows a hyperbola. As its amplitude grows, its self­

induced rotation frequency starts to increase. Hence the total motion of the wave is the 

motion along a hyperbola plus an anti-clockwise rotation due to the increased rotation 

frequency. When the amplitude becomes comparable to the core size, the added rotation 

dominates the motion along hyperbolas. This extra rotation carries the wave above the 

x-axis where the motion along hyperbolas causes a decrease in the amplitude. The family 

of hyperbolas and the motions on them are sketched in Figure 4.14(a). The decrease in 
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the amplitudes reduces the self-induced rotation of the wave, which in turn slows down the 

added rotation. Eventually, the filament goes back to the position where it started with 

and begins a new cycle. 

Now we check this analysis with numerical simulations. Figure 4.14 {b) shows 

the motion of perturbation waves of various initial amplitudes relative to the unperturbed 

filament. The trajectories are obtained from the numerical solutions of the unstable mode 

n = 14. We see that the wave first follows a hyperbola, then rotates counter clockwise due 

to the increase in amplitude and finally follows a hyperbola back to where it started. This is 

in good agreement with the analysis. In particular, Figure 4.14(b) shows that the amplitude 

goes up to a maximum, then decreases to its original velue. The maximum amplitude is 

bounded by a fraction of the core size. 
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Figure 4.14: (a). A family of hyperbolas and the direction of the motion on them, predicted 
by the stagnation point flow plus the dispersion relation of sinusoidal waves with small am­
plitude. (b). The motion of perturbation waves, with respect to the unperturbed filament, 
obtained in the numerical simulations. -.-: initial amplitude c = 0.2b, -: c = 0.1b, --: 
c = O.OM. All coordinates have been normalized by the core size. 

More simulations were carried out for various core sizes between b = 0.03R and 

b = 0.20R. The amplitudes in the p-direction and z-direction of the corresponding unstable 

mode for each core size are shown in Figure 4.15, Figure 4.16, and Figure 4.17. The 
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results presented in these Figures confirm that the maximum amplitude of the unstable 

mode is always bounded by a fraction of the core size. Actually the maximum amplitude 

is bounded by a smaller fraction of the core size as core size gets smaller. This again 

can be explained by the relation between frequency and amplitude shown in Figl.lre 4.13. 

The perturbation wave grows initially because the stagnation point flow prevails over the 

self-induced rotation. The increase of the amplitude causes an increase in the rotation 

frequency. The wave eventually stops growing when the self-induced rotation is strong 

enough to counter the stagnation point flow. Recall that the normalized rotation frequency 

is 2tr62 ;r times the actual rotation frequency. Hence, for smaller core size, the normalized 

rotation frequency only needs to increase by a smaller amount to stop the growing of the 

perturbation wave. Translating the increase in the normalized rotation frequency to the 

increase in the normalized amplitude (see Figure 4.13), we see that for smaller core size, the 

amplitude can only i~crease to a smaller fraction of the core size before it stops growing. 

We also ran simulations with 8 = 0.25R. In this case, the unstable mode n = 6 

grows without bound and the periodic behavior in time is not observed. This should not be 

viewed as an evidence against the prediction of the periodic behavior in time of the unstable 

mode, which is based on the analysis of stagnation point flow plus self-induced rotation and 

confirmed by numerical simulations for 8 ::; 0.2R. The analysis in this chapter and in the 

previous chapter is for thin vortex rings. They are valid only for small 8/ R. 

In the numerical simulations up to this point, the initial perturbation wave had 

a small amplitude, i.e. the amplitude is small in comparison with the core size (c = 0.28, 

0.18, or 0.056). To find out the behavior of the large initial perturbation, we also carried 

out simulations with 8 = 0.1R, c = 8, n = 14. Figure 4.18 shows the amplitudes in 

the p-direction and z-direction. The perturbation wave grows without bound. Again we 

emphasize that this finding does not invalidate the theoretical prediction or the numerical 

simulations of perturbation waves with small amplitude. The approximation of the flow field 

around the unperturbed ring filament by a stagnation point flow (an asymptotic expansion) 

depends on the assumption that the perturbation is small in comparison with the core size. 

Also for large amplitude perturbations, the rotation frequency of a sinusoidal wave is not 

well defined because the wave will not keep its shape as it rotates. 
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Figure 4.15: Comparison of the evolution of the corresponding unstable mode on a vortex 
ring for different core sizes. The solid line represents the amplitude in the radial direction 
and the dashed line represents the amplitude in the streamwise direc~ion. 
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Figure 4.16: Comparison of the evolution of the corresponding unstable mode on a vortex 
ring for different core sizes. The solid line represents the amplitude in the radial direction 
and the dashed line represents the amplitude in the streamwise direction. 
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Figure 4.17: Comparison of the evolution of the corresponding unstable mode on a vortex 
ring for different core sizes. The solid line represents the amplitude in the radial direction 
and the dashed line represents the amplitude in the streamwise direction. 
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4.4 Concluding Remarks 

In this chapter we have performed numerical experiments on vortex rings using 

the thin tube vortex filament method. Our numerical results were successfully explained by 

a theoretical stability analysis similar to that given by Widnall et al [95]. We first obtained 

numerically the dispersion relation for sinusoidal waves on a thin tube filament and then 

used this in the theoretical analysis to determine the unstable wave number and to explain 

the behavior of the unstable mode. In contrast to Knio and Ghoniem's results, we found 

that the amplitude of the unstable mode is bounded by a fraction of the core size and that 

stable modes always rotates around the unperturbed axis of the vortex ring. The differences 

between their results and ours are due to their under-resolved spatial mesh. 

The main conclusions of this chapter can be summarized as follows: 

1. For small perturbation amplitudes and small core sizes (8 :S 0.20R), the amplitude of 

the unstable mode grows to a maximum and then decreases, demonstrating a periodic 

behavior in time. The perturbed vortex ring returns to the shape it started with after 

a while and then starts a new cycle. 

2. For small perturbation amplitudes and small core sizes (8 :::; 0.20R), there exists 

only one unstable mode corresponding to each core size. The unstable wave number 

satisfies that an integer number of waves can be fit on the vortex ring and that the 

mode has the smallest self-induced rotation frequency. 

3. For small perturbation amplitudes and a fixed small core size (8 :::; 0.20R), the max­

imum amplitude of the unstable wave is independent of the initial amplitude. More 

specifically, no matter how small the initial amplitude is, the perturbation wave even­

tually reaches the same maximum value and then decreases. That is why we label it 

"unstable". 

4. For small perturbation amplitudes and small core sizes (8 :::; 0.20R), the maximum 

amplitude of the unstable wave is bounded by a fraction of the filament core size. 

Furthermore, the ratio of the maximum amplitude to the core size decreases as the 

normalized core size 8/ R decreases. 

5. For large core sizes (e.g. 8 = 0.25R), the amplitude of the unstable mode grows 

without bound and the perturbed vortex ring never recovers its initial configuration. 
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6. For large perturbation amplitudes and small core size, the unstable mode grows with­

out bound and the periodic behavior in time is not observed. 

In the next chapter we will discuss the effects of the ODE solver and the time step 

size on the numerical stability of the vortex method. 
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Chapter 5 

Numerical Stability, ODE Solver, 

Time Step, Spatial Step and 

Accuracy 

In this chapter we present a careful study of the numerical stability and accuracy 

of the thin tube vortex filament method. The goal is to analyze the effect of the choice of 

ODE solver, time step, and spatial step on the computed solution. The criteria for selecting 

the time integrator and the time step size is obtained. It is based on a theoretical analysis 

and then verified by numerical simulations. 
~-

In the Fourier analysis of stability of linear numerical methods, the maximum 

amplification rate is usually attained by the discrete mode with the highest wave number 

on the numerical grid. In most cases, the numerical stability of a method can be predicted 

by the behavior of the highest numerical mode. Motivated by this observation, we analyze 

the behavior of the highest discrete mode on a straight vortex filament and arrive at a model 

equation for this numerical mode. Various Runge-Kutta methods with different time steps 

are tested on this model equation and the criteria for the selection of ODE solver and time 

step is established. The goal is to control the growth of the highest numerical mode. From 

the methods we tested, the classical four stage fourth order Runger-Kutta method turns 

out to be the best performer. We find that the restriction on the time step is 
82 

6t:::.:: cr, (5.1) 

where 6t is the time step, r is the circulation, 8 is the core size of the vortex filament and C is 



Chapter 5. Numerical Stability, ODE Solver, Time Step, Spatial Step and Accuracy 62 

a constant depending on the ODE solver and the cut-off function used in the discretization of 

the vortex method. This restriction on the time step works well in the numerical simulations 

we have done. If the time step is above the critical value, the numerical solution blows up 

very quickly. If the time step is less than the critical value, the numerical solution behaves 

well. In addition, we find that it is unnecessary to take the time step much smaller than 

the critical value. This approach of suppressing the growth of the highest numerical mode 

by selecting a suitable ODE solver and time step size is justified and shown numerically to 

have no artificial effect on the physical solution we are simulating. 

The selection of spatial step size is problem-dependent. In practice, one needs to 

compare the numerical results of coarse and fine grids to determine whether a step size is 

small enough. This is the general approach in the numerical simulations of complicated 

nonlinear problems. 

The outline of this chapter is as follows. In the first section, we start by relating 

the stability of a numerical method to the behavior of the highest discrete mode through 

examples of Fourier analysis of stability. We then go on to investigate the behavior of the 

highest discrete mode on a numerical grid on a straight vortex filament. This is followed 

by the derivation of the evolution equation for this numerical mode. In the second section, 

various Runge-Kutta type methods are applied to solve this evolution equation and judged 

in terms of their ability to control the growth of the highest numerical mode. The restriction 

on the time step is obtained and tested in numerical simulations. In the third section, we 

consider the effect of spatial step size on numerical solutions. 

5.1 Fourier Analysis of Stability and the Highest Discrete 

Mode on a Numerical Grid 

In this section we first review the Fourier series technique for the stability analy­

sis of linear numerical methods and point out the connection between the behavior of the 

highest numerical mode and the stability of a numerical method. Applying this heuristic 

principle to the vortex method, we then investigate the evolution of the highest discrete 

mode on a numerical grid on a straight vortex filament. An approximate equation is ob­

tained for the highest numerical mode. 
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As a starting point, we consider the heat equation in one space dimension 

(5.2) 

A simple straightforward finite difference scheme for solving equation (5.2) can be con-

structed as 
n+l n n 2 n + n ui - ui _ ui+l - uj uj-l 

l:.t - ( l:.x )2 (5.3) 

Solving for uj+l from equation (5.3) gives the equation 

(5.4) 

Here uj is the approximate value for u(jt:.x, nl:.t), t:.x is the spatial step size, t:.t is the 

time step size, and A= t:.tj(t:.x)2 • 

The numerical stability of the difference scheme (5.3) can be analyzed by examining 

a family of particular solutions of the form 

(5.5) 

where i = Ff and the function p(~, A) is called the amplification factor (for details, 

see lecture notes by Chorin [16], see also the lecture notes by Sethian [85] and Hald [42]). 

Equation (5.5) represents a discrete sinusoidal mode on the numerical grid with wave number 

(mod(~ + 1r, 271") - 1r) / (27r l:.x) (5.6) 

since 
. "t i( mod ((+,.,2,.)-11" )( "C::.:x) 

e'J" = e 2 .. -c... J • (5.7) 

On a fixed spatial grid, the highest possible wave number of discrete modes is 1/{2l:.x). 

Substituting (5.5) into (5.4), one obtains immediately 

(5.8) 

The requirement for stability is that the amplification factor p(~, A) be bounded by 1 for 

any value of~ (i.e. IP(~, A)l < 1). This requirement results in the stability condition A ::S: !· 
When this condition is violated, the numerical scheme (5.4) is unstable. In this case, it is 

interesting to look at the amplification factor p(~, A) and find out which numerical mode 

has the maximum amplification rate. In Figure 5.1 (a) we plot the absolute value of the 
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amplification factor IP(~, ..\)I as a function of~ for ,\ = 3/4. Figure 5.1 (a) shows that the 

maximum amplification rate occurs at ~ = ~o = 1r. The corresponding unstable mode is 

(5.9) 

Equation (5.9) represents the discrete mode with the highest wave number on the numerical 

grid, whose value is alternately positive and negative. The amplification factor IP(~, ..\)I as 

a function of,\ is shown in Figure 5.1 (b) for the highest numerical mode (5.9). Figure 5.1 

(b) illustrates how the stability condition ,\ ::::; 1/2 can be derived from the amplification 

rate of the highest discrete mode. This is not surprising. As we will see shortly, this is a 

common property of many numerical methods. 

(a) (b) 

Figure 5.1: (a). The amplification factor IP(~,..\)1 vs ~for,\= 3/4. (b). The amplification 
factor IP(~, ..\)I vs ,\ for the most unstable mode~= 1r. 

In a similar way, we can examine the numerical stability .of the methods for solving 

the linear hyperbolic conservation law in one space dimension: 

au au -0 
8t +ax- . (5.10) 

We take two methods as examples, namely, the upwind scheme and the Lax-Wendroff 

scheme: 

upwind: uj+l = uj- ..\(uj- uj_1), (5.11) 

Lax-Wendroff: uj+l = uj- ~(uj+1 - uj_1 ) + ~
2 

(uj+l- 2uj + uj_1), (5.12) 
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where, for hyperbolic conservation laws, A= b.tj b.x. 

2· 

1 . 

0~------------~~------------~~ %~------~0.~5-----A--~--------~1.5 

(a) (b) 

Figure 5.2: Upwind scheme: (a). The amplification factor IP(e,-X)I vs e for A= 3/2; (b). 
The amplification factor IP(e, .\)I VS A for the most unstable mode e = 71'. 

tively: 

Substituting (5.5) into (5.11) and (5.12) yields their amplification factors respec-

upwind: p(e, .\) = (1- .\) + .xe-i( 

Lax-Wendroff: p(e,.x) = 1-2.\2 sin2(e/2)- i.\sin(e). 

(5.13) 

(5.14) 

When.\ > 1, both methods are unstable. For A= 3/2, we plot their amplification factors 

IP(e, A)l vs e in Figure 5.2 (a) and 5.3 (a) respectively. 

For both the upwind scheme and the Lax-Wendroff scheme, the maximum ampli­

fication rate occurs ate= eo = 7r. The amplification factors IP(e, .\)I of the highest discrete 

mode (5.9) vs .\are shown in Figure 5.2 (b) and Figure 5.3 (b). Again the stability condition 

.\ ::; 1 is accurately predicted by the amplification rate of the highest discrete mode. 

The above examples suggest that the amplification 'rate of the discrete mode with 

the highest wave number on the numerical grid can provide useful insights into the numer­

ical stability. For the linear equations and the linear numerical methods we just considered 

above, the stability condition is actually determined by the behavior of the highest numer­

ical mode. Of course, for these numerical methods, the stability condition can be precisely 

obtained by rigorous analysis. The important point is that the idea of analyzing the numer-
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4r-------------~--------------, 

3· 

(a) (b) 

Figure 5.3: Lax-Wendroff scheme: (a). The amplification factor IP({, .A}I vs ~ for .A = 3/2; 
(b). The amplification factor IP({, .A}I vs .A for the most unstable mode { = 1r. 

ical stability by examining the highest numerical mode goes beyond these linear problems. 

It can be applied to complicated nonlinear problems. Strictly speaking, it has not been 

proved that the numerical stability is totally determined by the behavior of the highest 

numerical mode. Nevertheless, the stability condition of the highest numerical mode can 

be taken, at least, as a necessary condition for the stability of the numerical method. The 

situation here is very similar to the approach of judging the numerical stability by the CFL 

condition, which theoretically is only a necessary condition but often turns out to be the 

precise condition for the stability of the numerical methods. 

We now try to use this approach to analyze the numerical stability of the vortex 

method. We consider the discrete mode with the highest wave number for the numerical 

grid on a straight thin tube vortex filament. As sketched in Figure 5.4, a straight vortex 

filament of core radius 8 is divided into elements of length h. To ensure the overlapping of 

the neighboring elements, we require h < 8/2. At time t = 0, the highest discrete mode 

with small amplitude is imposed on the filament in the x-y plane. More specifically, the 

initial position of the j-th point is 

Xj(O} = (xj(O),yj(O),zj(O)) = (jh,(-l)ic,O}, (5.15} 

where c is the amplitude. 

By the symmetry of the initial configuration, we know that the perturbation wave 
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y 

X 

Figure 5.4: A sketch of the highest discrete mode. 

will remain on a plane rotating around the x-axis. From the Biot-Savart integral, it can be 

seen that the velocity induced by the entire filament at Xj is always perpendicular to the 

wave plane. Thus if the ODE system is solved exactly in time, the perturbation wave will 

rotate around the x-axis without any growth in its amplitude: Furthermore, the rotating 

. angular velocity n is time independent, since the perturbation wave keeps its original shape. 

These arguments give rise to the following evolution equation for Xj(t) = (xj(t), Yi(t), Zj(t)) 

with the initial conditions 

= 0, 

= -nzi(t), 

- !lyj(t), 

{ 

Xj(O) = jh, 

Yi(O) = (-1)ic:, 

Zj(O) = 0. 

(5.16) 

(5.17) 

The angular velocity n is determined by the amplitude c:, the length of vortex element h, 

the core size 6, the circulation r, and the cut-off function/, i.e. n = !l(c:, h, 6, r; !). Since 

the dimension of n is 1/time, a rescaling of length will not change n. After the rescaling 

of length L = L/6, which makes the new core size equal to 1, the new amplitude, the new 

length of vortex element and the new circulation are 

(5.18) 
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Consequently, the angular velocity n can be expressed as 

n = n(e,ii,f';f). (5.19) 

On the other hand, the angular velocity n is proportional to the velocity induced by the 

vortex filament, which in turn is proportional to the circulation. Hence 

- - r c h 
O=r·F(l,h;f)= 82 F(b'b;f), (5.20) 

where F is some function which may depend on l, hand the cut-off function f. 
To find out the actual dependence ofF on parameters l, and h, we calculate 

F(l, h; f) = n;r for 0 ::::; l ::::; 0.2 and 0 < h ::::; 0.4. This region of (l, h) is a suitable one 

for the study of numerical stability, since the unstable mode usually starts with a small 

amplitude and the overlapping condition requires that h < 8/2. 

In Table 5.1 we display the values of F(€, h) for different combinations of € and 

h. The cut-off function used in the calculation is f(r) = 1- e-r
3

• Table 5.1 demonstrates 

that F( l, ii) is approximately a constant function of l and h in the region of interest. 

From the above arguments and numerical calculations~ we conclude that, for c /8 ::::; 
0.2 and h/ 8 ::::; 0.4, the angular velocity is given approximately by 

r 
O=F· 82' (5.21) 

where F is a constant determined by the cut-off function f. Table 5.2 lists the values ofF 

for several cut-off functions. 

Substituting (5.21) into (5.16), we get the governing equation for the crest of the 

highest discrete mode (y(t), z(t)): 

{ 
y: (t) 
z (t) 

r 
- -F 82 z(t), y(O) = c, 

r 
= F 82 y(t), z(O) = 0. 

(5.22) 

- 82 - - -
Rescaling the time by t = t ·F. r and letting ((t) = y(t) + iz(t), we obtain 

( (t) = i((t). (5.23) 

This is the equation that the highest discrete mode satisfies up to a rescaling of time. In 

the next section we will compare the performance of various Runge-Kutta type methods on 

this model equation. 
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Table 5.1: The values ofF as a function of e and h. 

h F(e, h) 

0.400 0.2096 0.2122 0.2128 0.2130 0.2130 0.2130 0.2130 0.2130 

0.360 0.2098 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.320 0.2100 0.2126 0.2132 0.2134 0.2134 0.2134 0.2134 0.2134 

0.280 0.2100 0.2125 0.2131 0.2133 0.2133 0.2134 0.2134 0.2134 

0.240 0.2099 0.2124 0.2131 0.2132 0.2133 0.2133 0.2133 0.2133 

0.200 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.160 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.120 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.080 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.040 0.2099 0.2124 '0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.020 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.010 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.005 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.002 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 

0.001 0.2099 0.2124 0.2130 0.2132 0.2132 0.2132 0.2132 0.2132 
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Table 5.2: The values ofF corresponding to different cut-off functions. 

II 
cut-off function f ( r) value of constant F 

II 

f(r) = 1- e-r3 F = 0.213 

3 3 3 
f(r) = 1 + (2r - 1)e-r F = 0.426 

f(r) = tanh(r3 ) F = 0.228 

3 r3 

f(r) = tanh(r3
) +- 2( 3 ) 

2 cosh r 
F = 0.456 

5.2 Comparison of Various Runge-Kutta Methods on the 

Model Equation ( (t) = i((t) 

We have just established that the highest discrete mode satisfies ( (t) = i((t). 

Caused primarily by numerical noises, the highest discrete mode starts with very small 

amplitude. It contributes little to the accuracy of the numerical method as long as its 

amplitude remains small. As shown in the previous section, if the time integration is 

carried out exactly, the highest discrete mode will rotate around the vortex filament without 

growing. The accurate resolution of the highest discrete mode, which usually requires a very 

small time step size, is irrelevant to the improvement of the overall accuracy. Thus it is 

not worth the computational effort. However, the highest discrete mode plays a vital role 

in the numerical stability. If it grows catastrophically under an ODE solver, it will totally 

ruin the numerical accuracy. Therefore, when selecting a numerical ODE solver and a time 

step size, our first concern is to control the growth of the highest discrete mode. 

We are now ready to test several Runge-Kutta type methods on the model equation 

_(5.23), whose exact solution describes a point rotating around the origin on the complex 

plane. These methods will be judged not only by their ability to resolve the solution 

accurately with a small time step, but also by ·their ability to yield a bounded numerical 

solution when the time step is fairly large. We consider the following Runge-Kutta methods. 
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• Forward Euler method (one stage, first order): 

Ko = i(nf::::.t, 

(n+l = (n + Ko. 

• Prediction-correction method (two stages, second order): 

K1 = i((n + Ko)f::::.t, 

C+l = (n + ~(Ko + K1). 

• Heun method (three stages, third order) 

Ko = i(nf::::.t, 

K1 = i(C + ~Ko)f::::.t, 

K2 = i((n + ~Ko)f::::.t, 

(n+l = C + ~(Ko + 3K2)· 

• Classical Runge-Kutta method (four stages, fourth order) 

Ko = iC!::::.t, 

K1 = i(C + ~Ko)f::::.t, 

K2 = i((n + ~KI)!::::.t, 
K3 = i((n + K2)!::::.t, 

1 
C+l = (n + 6(Ko + 2Kl + 2K2 + K3). 

• Prince-Dormand fifth order method used in Dopri 5(4) (six stages): 

Ko = i(nf::::.t, 

K1 = i(C + ~Ko)f::::.t, 

K 2 = i((n + 
4
3
0

Ko + :
0

KI)!::::.t, 

. n 44 56 32 
K3 = z(( + -Ko- -K1 + -K2)f::::.t 

45 15 9 ' 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 
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Note that the fourth order method used in Dopri 5(4) has seven stages. Thus 

the full Dopri 5(4) is a seven-stage method. It has been argued that, for Dopri 5(4), the 

last stage (i.e. the seventh stage) of the current time step coincides with the first stage of 

the next time step and consequently the Dopri 5(4) is essentially a six-stage method. This 

is true if the input of the next time step is exactly the output of the current time step. 

However, for the vortex method, a lot of things may happen between the end of the current 

time step and the beginning of the next time step. For example, new numerical points are 

added where the vortex line has been stretched, in order to maintain a reasonable resolution 

in spatial dimensions. Also if the hairpin removal technique is combined with the vortex 

method, numerical points are deleted where hairpins have formed. So in practice, Dopri 

5(4) is a seven-stage method. 

Now define p(b.t) = (n+l j(n as the amplification factor. For the above Runge­

Kutta methods, the amplification factors against time step b.t are plotted in Figures 5.5, 

5.6, 5.7, 5.8, and 5.9 respectively. 

1 2 3 4 
Time Step Size 

Figure 5.5: Amplification factor of the forward Euler method. 
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2 3 4 
Time Step Siz_e 

Figure 5.6: Amplification factor of the prediction-correction method. 

4r-------r-------.-------~----~ 

2 3 4 
Time Step Size 

Figure 5. 7: Amplification factor of the Heun third order method. 
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2 3 4 
Time Step Size 

Figure 5.8: Amplification factor of the classical Runge-Kutta method. 

%~------1~--------2~--------3------~4 

Time Step Size 

Figure 5.9: Amplification factor of the Prince-Dormand 5( 4) method. 
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The amplification factor p(b,.t) is the multiplier by which the numerical solution is 

amplified at each time step. For lp(b,.t)l < 1, the numerical solution is actually diminished. 

If lp(b,.t)l is well above 1, the numerical solution blows up in a few time steps. This is clearly 

unacceptable in numerical simulations and should be avoided by any means necessary. 

When lp(b,.t)l is above but very close to 1, the numerical solution will grow exponentially 

but at a slow pace. In this case, the numerical solution is theoretically without bound 

and will eventually become very large. However, whether this kind of amplification factor 

(i.e. lp(b,.t)l is slightly above 1) is acceptable in applications depends on the scale of the 

interesting time period of the underlying physical problem. For the simulations of long time 

behaviors, it is best to have an amplification factor not larger than 1. In this way, we can 

be sure that at least a particular form of numerical noise - the highest discrete mode -

will riot grow exponentially. 

Let I be the interval of time step !:::.t, where the amplification factor p(b,.t) is 

bounded by 1. Mathematically the interval I can be expressed as 

I= { b,.t llp(!:::.t)l ~ 1} . (5.45) 

The size of the interval I gives roughly the largest time step size which could be used if we 

do not want the numerical solution to increase. Keep in mind that the numerical solution 

here corresponds to the amplitude of the highest discrete mode. We have argued that it 

is unnecessary to resolve the highest discrete mode accurately but it is crucial to keep the 

amplitude of this mode small. Table 5.3 shows the interval I for various Runge-Kutta 

methods. Note that the classical Runge-Kutta method has the largest interval I. 

In order to speed up numerical methods, it is desirable to have a time step as large 

as the accuracy allows. The time step is generally restricted by 

(a) the local truncation error in the time direction, which is the new error associated with 

the time discretization in one time step ; 

(b) the amplification factor of the previous error, which determines how the error propa­

gates in time. 

Often (b) is more restrictive on the time step size than (a). This can be explained by 

the following argument. If the local truncation error is large, the total error will grow 

linearly at a large rate. When the amplification factor is well above 1, the total error grows 
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exponentially and very soon gets out of control. We have already shown that it is the 

highest numerical mode that most likely has the maximum amplification factor. So the 

interval I plays a central role in determining the time step size. To be able to use a large 

time step, we first need to make the interval I as large as possible. Hence we choose the 

classical four stage fourth order Runge-Kutta method as our ODE solver. 

Table 5.3: The interval I for different ODE solvers. 

Numerical ODE solver The interval I 

Euler method I= {0} 

Prediction-correction method I= {0} 

Heun third order method I= [0, 1.73] 

Classical Runge-Kutta method I= [0,2.83] 

Prince-Dormand 5(4) method I = [0, 0.997] 

When an ODE solver is applied to solve the equation ( (t) = i((t), in order to 

have a non-increasing numerical solution, the time step b.t has to fall in the interval I, that 

is, 

b.t:::; III. (5.46) 

Taking the rescaling of the time t = t · F8~ r into consideration, we obtain that the time step 

b.t for solving the governing equation of the highest numerical mode (5.22) should satisfy 

b.t < lfl82 
- F r' (5.47) 

where F is the constant determined by the cut-off function (see Table 5.2), I is the interval 

related to the ODE solver (see Table 5.3), r is the circulation, and 8 is the core size of 

the vortex filament. Expression (5.47) is the constraint on the time step b.t of the vortex 

method, if we want to keep the highest discrete mode under control. It has to be emphasized 
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that this approach of suppressing the highest discrete mode by a careful selection of ODE 

solver and time step will not affect the real growth of the physical modes. In a valid 

numerical simulation, the wavelength of the physical mode should be large in comparison 

with the spatial step size, which is comparable to the wavelength of the highest discrete 

mode. In other words, to achieve a reasonable accuracy in spatial dimension, we need to 

distribute many numerical points in regions of the characteristic length scale of the problem. 

As a result, the physical mode is far away from the highest numerical mode. 

5.3 Numerical Verifications 

In this section we carry out numerical simUlations to verify the restriction on the 

time step b.t obtained in last section 

,1182 . 
b.t < -- = b.t - F r c, (5.48) 

where F is a constant determined by the cut-off function (Table 5.2), I is the A-stable 

interval of the ODE solver,for the model equation(' (t) = i((t),r is the circulation and 8 is 

the core size of the vortex filament. We find that the constraint (5.48) agrees very well with 

the numerical results. For time step b.t larger than the c:i:itical value b.tc, the numerical 

solution blows up very quickly. For time step b.t smaller than the critical value b.tc, the 

numerical solution behaves well. A comparison of the result obtained using a time step 

slight below the critical value b.tc with the result obtained using a very small time step 

suggests that it is unnecessary to take the time step much smaller than the critical value 

b.tc. At the end of this section, we discuss the issue of the spatial step size. 

We use the Widnall's vortex ring instability as a test problem. As in Chapter 4, 

we take the initial condition as 

{ 

Xj = (R + e cos(njb.O)) cos(jb.O), 

Yi = (R+ecos(njb.O))sin(jb.O), 

Zj = 0, 

for j = 1, 2, ... , N, where 68 = 21rjN. The circulation is chosen to be r = 1, the core 

size 8 = 0.1, the perturbation wave number n = 14 and the initial amplitude e = 0.18. 

Initially, the ratio of the distance between two adjacent numerical nodes to the core size 

is h/8 = 0.05. As we will see later in this section, this seemingly very small h is needed 
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to achieve the numerical convergence in spatial dimensions for this problem. The cut-off 

function is the second order one: f(r) = 1.0- e-r
3

• The constant F associated with this 

cut-off function is 0.213, as seen from Table 5.2. 

We test two numerical ODE solvers, namely Heun third order method and the 

classical fourth order Runge-Kutta method. For Heun method, the interval I = [0, 1. 73] 

(see Table 5.3). The critical time step .6.tc is given by equation (5.48) as 

(5.49) 

We run the simulations with four different time steps. The first choice of time step .6.t = 0.09 

is above the critical time step .6.tc, the second choice of time step .6.t = 0.08 is very close 

to .6.tc, the third choice of time step .6.t = 0.07 is below .6.tc, and the fourth choice of time 

step .6.t = 0.01 is much smaller than .6.tc. The numerical results obtained by Heun method 

using these four time steps are shown in Figure 5.10. 

For the classical Runge-Kutta method, the interval I = [0, 2.83] (see Table 5.3). 

The critical time step .6.tc as predicted by equation (5.48) becomes 

III82 

.6.tc = F r = o.13. (5.50) 

The four choices of time step are taken as .6.t = 0.14, .6.t = 0.13, .6.t = 0.12, and .6.t = 0.01. 

Figure 5.11 presents the numerical results obtained by the classical Runge-Kutta method 

with these time steps. From Figure 5.10 and Figure 5.11, we see that for time steps larger 

than or very close to the critical time step .6.tc, the numerical noise grows very quickly 

and soon ruins the numerical solution. For time steps below the critical time step .6.tc, the 

numerical noise is under control and the numerical solution converges. 

Equation (5.48) is a very important guideline for selecting a suitable time step 

size. The fact that the spatial step size h does not appear in equation (5.48) implies that a 

smaller time step is not necessarily required for a smaller spatial step. This is in complete 

contrast with the traditional constraint on time step size that .6.t :::; C · hju. However, the 

core size has a fundamental influence on the numerical stability and thus limits the time 

step size. As seen in equation (5.48), the time step size is proportional to the square of the 

core size. It follows that the time step has to be very small when the vortex filament is 

thin. This could be too restrictive and lead to extremely expensive computations. Other 

methods are needed to circumvent this obstacle for very thin vortex filaments. 
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Now we examine the effect of the spatial step size on the accuracy. We do not have 

a general guide for selecting a suitable spatial step size. As a matter of fact, the empirical 

rule obtained by studying a simple model problem cannot be simply extended to other 

problems. For example, the choice of h/6 ::; 0.5 is adequate for calculating the propagation 

velocity of a vortex ring, whereas to simulate the Widnall's vortex ring instability, we have 

to use h/ 6 ::; 0.05. To pick a suitable spatial step size, we compare numerical results 

obtained with different spatial step sizes to determine whether the numerical solution has 

converged. Through numerical experiments, we find that different problems require different 

step sizes to catch the main features of the physical process. We again use the Widnall's 

vortex ring instability problem to test the spatial step sizes. First we take the perturbation 

wavenumber n = 2 (a stable mode) and run simulations with the ratio of space step 'to core 

size h/6 = 0.40, 0.20, 0.10 and 0.05. Figure 5.12 shows the numerical results. Clearly, for 

wavenumber n = 2, the numerical solution has already converged for hjo = 0.40. Then we 

take the perturbation wavenumber n = 14 (the unstable mode) and run simulations with 

h/6 = 0.20, 0.10, 0.05 and 0.025. As shown in Figure 5.13, for the unstable mode n = 14, 

the numerical solution does not converge until h/ 6 is reduced to 0.05. 
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Figure 5.10: Heun third order method: Comparison of numerical results for different time 
steps. 
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Figure 5.11: Classical fourth order Runge-Kutta method: Comparison of numerical results 
for different time steps. 
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Chapter 6 

Short Wave Instability On Vortex 

Filaments Of Fixed Core Structure 

In A Co-rotating Vorticity Field 

In this chapter we investigate the short wave instability on vortex filaments of 

fixed core structure in a co-rotating vorticity field. The main conclusion is that neighboring 

vortices induce short wave unstable modes which lead to stretching and folding and that 

an isolated vortex filament will not create hairpins or wild stretching. 

We start with a pair of co-rotating vortex filaments. In the previous chapters we 

reviewed Widnall's analysis of the short wave instability on a vortex ring or on an anti­

parallel vortex pair. In this chapter, using an approach similar to Widnall's, we construct a 

theoretical analysis for the short wave instability on a co-rotating vortex pair. The motion 

of a short wave perturbation on a co-rotating vortex pair is governed by the rotation induced 

by the vortex filament which carries the wave, and by the velocity field induced by the other 

vortex filament. In the stability analysis of waves with small amplitude, only the linear part 

of velocity field induced by other filaments is needed. For a co-rotating vortex pair, the 

streamlines of the linearized flow are ellipses. If the vortex filament is in a continuous 

vorticity field or surrounded by many vortex filaments, the linearized flow is a straining 

flow. In the analysis, we find that the short wave instability occurs when the self-induced 

rotation is balanced by the linearized flow in the circumferential direction and the radial 

component of the linearized flow causes the wave to grow exponentially. The unstable wave 
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numbers form an interval which is determined by the ratio of the distance between the two 

vortex filaments to the core radius of the filaments. These theoretical predictions are verified 

in the numerical simulations. Furthermore, the numerical simulations reveal the long time 

behavior of the unstable wave for different separations of the vortex pair. When the ratio of 

the separation to the core radius is above 4.0, the amplitude of the unstable mode grows to 

a maximum, falls back, then starts growing and repeats the pattern. The vortex filaments 

alternately stretch and contract. No wild stretching is observed. In the case where the ratio 

of the separation to the core radius is below 4.0, the unstable mode grows without bound. 

The vortex filaments do not return to their original positions. Instead they stretch violently 

and develop hairpin-shaped small scale structures. 

After the discussion of the co-rotating vortex pair, we extend our analysis to the 

case of a single vortex filament in a co-rotating vorticity field. We can show theoretically 

that the velocity field induced by a second order Gaussian vorticity distribution, if linearized . 

around a point and viewed in the reference system attached to that point (moving and 

rotating with that point), is a straining flow. Marcus studied the two dimensional evolution 

of vortices in a shearing zonal flow [67] and showed that Jupiter's Great Red Spot is an 

example of two dimensional vortex equilibria in nature [66]. Here we study the evolution 

of the three dimensional evolution of vortex filaments with fixed core structure. When 

the surrounding vorticity field is discretized and represented by a set of numerical vortex 

filaments, numerical results indicate that the streamlines of the linearized flow are ellipses. 

As the vorticity field is approximated by more numerical vortex filaments, these ellipses 

become flatter, and the linearized flow is approximately a straining flow. Again for a vortex 

filament surrounded by a co-rotating vorticity field, the instability is driven by the radial 

component of the linearized flow while the circumferential component of the linearized flow 

is balanced by the self-induced rotation of the wave. 

In numerical simulations using vortex methods, the wild stretching of the vortex 

filaments and the subsequent formation of the hairpin-shaped fine structures have been 

observed by many authors [26], [28], [75]. At the end of this chapter, we show that these 

small scale vortex structures are not caused by numerical instability, rather they are related 

to the short wave instability described above. The appearance of the hairpin structures 

drastically increases the total number of numerical vortex segments, thereby making it 

virtually impossible to simulate the long time physical behavior. Currently, the only way 

around this obstacle is Chorin's hairpin removal method [26], [28]. The hairpin removal 
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technique keeps the total number of numerical vortex segments at a reasonable level by 

removing small hairpins from the numerical solution. The hairpin removal procedure is 

justified by renormalization theory [28]. 

6.1 Short wave instability on a co-rotating vortex pair 

The instability of a vortex pair has been investigated by many authors. Crow [35] 

studied the long wave and short wave instability for an antiparallel vortex pair. With a 

slightly different model and a more accurate calculation of the rotation frequency of the 

short wave modes, Widnall, Bliss and Tsai [95] investigated the instability of antiparallel 

vortex pairs and vortex rings. Recently Klein, Majda and Damodaran [56] studied the 

instability of long wave modes on both antiparallel vortex pairs and co-rotating vortex 

pairs. They found that certain long wave modes are unstable on an antiparallel vortex pair 

and long wave modes are always stable on a co-rotating vortex pair. However, their study is 

based on a simplified model equation which excludes the short wave modes from the study. 

In other words, their model equation is valid only for long waves. 

In this section we analyze the stability of short wave modes on a co-rotating vortex 

pair with constant core structure. We will show that a co-rotating vortex pair always has 

short wave instability. Here "short wave" ,means the wavelength is comparable to the 

core radius of the vortex filaments. A perturbation wave is called "unstable" if it grows 

exponentially with time. A rigorous definition of stable and unstable modes will be given 

in the next section. 

A co-rotating vortex pair consists of two parallel vortex filaments of the same 

circulation. As sketched in Figure 6.1 and Figure 6.2, at timet= 0, the two undisturbed 

straight vortex filaments are on the z-x plane and are parallel to the z-axis. The undisturbed 

pair rotates around the z-axis with angular velocity r /trb2 , where b is the separation between 

the two unperturbed vortex filaments and r is their circulation. 

To better illustrate the evolution of the perturbation wave on the vortex pair, we 

let the x-y plane rotate along with the vortex pair such that the vortex pair is stationary 

in the reference system defined by the xyz-axes. The stability calculation can be done by 
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b 

z 

Figure 6.1: An unperturbed co-rotating vortex pair. 

considering the motion of the vortex filaments that results from a sinusoidal perturbation 

(Figure 6.3 and Figure 6.4). The vortex filaments move with a velocity that is a combination 

of the self-induced rotation n of the sinusoidally perturbed filament and the velocity induced 

by the other filament. For short waves, when we calculate the velocity induced at the vortex 

·by the neighboring filament, it is the presence of the neighboring filament rather than the 

perturbation on the filament that plays the dominant role. The induced velocity can be well 

approximated by treating the neighboring filament as unperturbed, and the contr,ibution 

due to the short wave perturbation on that filament can be ignored. For simplicity, we 

shift the origin of the x-y plane to the unperturbed position of the vortex on the right. 

In Figure 6.4 the perturbed position of the vortex on the right represents the amplitude 

and the orientation of the sinusoidal wave on the right filament, and the vortex on the left 

represents the left filament which is treated as a straight unperturbed filament when we 

investigate the evolution of the perturbation on the right filament. 



Chapter 6. Short wave instability on fixed-core vortex filaments 88 

y 

Figure 6.2: A cross-section of the unperturbed vortex pair. 

The velocity at a point ( x, y) induced by the left vortex is 

r 1 
u(x, y) = 271" (b + x)2 + y2 [ 

-y l r [ -y l 
b + X - 1rb2 ! + X • 

(6.1) 

Expanding u around (0, 0) gives 

r [ Y ] 2 2 u(x, y) = 27rb2 -3x + O(x + y ). (6.2) 

The first term on the right hand side of equation (6.2) is a linearized flow whose streamlines 

form a family of ellipses given by 

(6.3) 

with a being the free parameter. The linearized flow and its streams are sketched in Figure 

6.4. In the cylindrical (r, 8) coordinate system which is centered on the unperturbed position 

of the right filament, this linearized flow can be written as 

-r 
ur(LF) = -b2 (rsin28), 

271" 
(6.4) 
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Figure 6.3: A perturbed vortex pair of the same circulation. 

-r 
ue(LF) = -b2 (2r + r cos 20), 

27r 

89 

(6.5) 

where ur(LF) is the velocity component in the radial direction and ue(LF) is the velocity 

component in the tangential direction. Therefore, for the right vortex whose position is at 

(r0 , Oo), the velocity induced by the left vortex is 

-r 
= 21rb2 ( ro sin 20o), 

-r 
= -b2 (2ro + ro cos 20o). 

27r 

(6.6) 

(6.7) 

In addition to the linearized flow, the displaced portion of the filament is also subject to 

its self-induced rotation (SR) around the unperturbed position (0, 0). The self-induced 

tangential velocity is 

ue(SR) = -r n, (6.8) 

where n is the rotation frequency of the perturbation wave. 
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y 

Figure 6.4: A cross-section of the perturbed vortex pair. 

The total velocity of the vortex is the sum of the linearized flow and the self­

induced rotation. Since the tangential velocity of the linearized flow is between -3rr /27rb2 

and - rr /27rb2, instability is expected to occur when 

rr 3rr 
211'b2 < u8(SR) < 211'b2. (6.9) 

In other words, instability happens when the tangential velocity of the linearized flow is 

neutralized by the self-induced rotation while the radial velocity of the linearized flow causes 

the perturbation wave to grow exponentially (see Figure 6.5). The process takes place in 

the following manner. When the self-induced rotation velocity is between rrj21rb2 and 

3rr /27rb2 , the total tangential velocity turns the vortex to a new angle e', where the total 

tangential velocity vanishes. At the new angle e', one has 

(u9(LF) + u9(SR))I8=8' = 0, 

and 8(u9(LF) + u9(SR)) I , 
0 ae 8=8 < . 

(6.10) 

(6.11) 
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Substituting (6.5) and (6.8) into the above two expressions, we get 

-r I 

2
1rb2 (2 +cos 2e ) - n = o, 

and 
r . I 

21rb2 sm 2(} < 0, 

from which it follows immediately that 

-r I 

ur(LF)I 9=91 = 
2

7rb2 rsin2(} > 0. 

91 

(6.12) 

(6.13) 

(6.14) 

So at (} = (}
1

; the perturbation wave stops rotating but it diverges along the radial direction 

(} = (}I with velocity Ur(LF) > 0. 

L--

U 8 (SR) ,. 
' / ' / ' I y 

I \ 

I \ 

I \ 

I \ 

I 

t X 
\ 

' ' 
I 

' ' 

Figure 6.5: A s_ketch of the motion of the right filament in Fig. 6.4. 

( 

Combining equations (6.8) and (6.9), and introducing the dimensionless normal-
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ized rotation frequency 
- r 
n = n;c27rc2 ), (6.15) 

one finds that the instability condition is 

(6.16) 

The normalized rotation frequency of a sinusoidal wave on a vortex filament with fixed core 

structure is a function of the normalized wavenumber k = k 8, where k is the wavenumber 

and 8 is the core radius. 

~ 
c: 
Q) 
::J 
C'" 
~ u. 
c: 
0 

~ 
0 a: 
-o-1 
Q) 

.!:::! 
ctl 
E .... 
0 z 

2 4 6 8 
Normalized Wavenumber 

Figure 6.6: Normalized rotation frequency 0 as a function of normalized wavenumber k for 
the core vorticity distribution derived from the cut-off function (6.17) . 

Figure 6.6 depicts 0 as a function of k for sinusoidal waves of small amplitude on 

a vortex filament whose core vorticity distribution is derived from the second order cut-off 

function 

f(r) = 1- exp(-r3). (6.17) 

This particular dispersion relation is obtained numerically by running simulations using 

the vortex method. From Figure 6.6, one can see that for each fixed b/8 > 1, there is 

always an interval of normalized wavenumbers k in which the normalized frequency O(k) 

satisfies the instability condition (6.16). Such an interval contains the unstable modes for 
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the corresponding ratio of separation to core size b/8. For example, when b/8 = 5.0, the 

interval of the normalized unstable wavenumbers is [1.454, 1.606J. 

We also calculated numerically the dispersion relations for the core vorticity dis­

tributions derived from the following four cut-off functions: 

f(r) = 
{ 

1, 

r3 
' 

r>l 

r ~ 1 

f(r) = tanh(r3
) 

3 
f(r) = 1 + (2r3 -1)exp(-r3

) 

3 1 
f(r) = tanh(r3

) + -
2 

r3 
2 ( 3 ) 

cosh r 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

The cut-off functions (6.17) and (6.19) have been shown by Beale and Majda [10J to· give 

second-order convergence of the standard vortex method. The cut-off function (6.18) was 

used by Anderson and Greengard [4J, and Almgren, Buttke and Colella [2J for the numerical 

simulations of the vortex ring merger problem. (6.20) and (6._21) are fourth order cut-off 

functions based on the corresponding second order ones (6.17) and (6.19) (see Beale and 

Majda [10]). Figure 6.7 displays the dispersion relations for the core vorticity distributions 

derived from these cut-off functions. Qualitatively these plots are very similar to the one 

shown in Figure 6.6. In particular, for all these dispersion functions, the range of normalized 

rotation frequency fi contains the interval [-1, OJ. If b/6 > 1, the intersection of the interval 

[ -1, OJ and the interval [ -362 jb2
, -62 jb2J is not empty and the instability condition ( see 

equation (6.16) ) 
-3~ - - -82 

~ <f!(k) < b2 

is certainly satisfied for some wave modes k. In other words, for b j 6 > 1, there always exist 

unstable wave modes for a co-rotating vortex pair. 

What happens if b/6 is small?. When b/6 ~ 1, the separation is smaller than the 

_core radius. In this case, when we calculate the velocity at the right vortex induced by the 

left one, we cannot simply treat the left vortex as a point vortex. Consequently the angular 

velocity of the unperturbed vortex pair, which is also the rotation velocity of our reference 

system, is no longer r /trb2• In the calculation of the linearized flow induced by the left 

vortex, the core vorticity distribution needs to be taken into consideration. We. did not do 
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Figure 6.7: Normalized rotation frequency 0 as a function of normalized wavenumber k for 
the core vorticity distributions determined by various cut-off functions: (a) cut-off function 
(6.18), (b) cut-off function(6.19), (c) cut-off function (6.20), (d) cut-off function (6.21). 
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this in equation (6.1) because doing so would have made the calculation complicated, and 

it would have been difficult to see the basic mechanism of instability. 

To complete the analysis, we now derive the general formula for the linearized 

flow, which holds for any b /6. 

In the static (non-rotating) reference system, the velocity induced at the right 

vortex ( x, y) by the left vortex is given by 

r 1 [ -y ] y'(b + x )2 + y2 
ul(x,y)=27r(b+x)2+y2 b+x ·f2D( 6 ), (6.22) 

where the function hn ( r) is the two-dimensional cut-off function corresponding to the 

two-dimensional core vorticity distribution. For a straight unperturbed vortex filament, . 

the two-dimensional core vorticity distribution can be determined by the three-dimensional 

cut-off function f ( r). Given a three-dimensional cut-off function f ( r), the effective two­

dimensional core vorticity distribution is 

_1+oo j' ( .Jr2 + z2) 
g(r)- ( 2 2 ) dz. 

-oo 471" r + z . . 
(6.23) 

Consequently, the effective two-dimensional cut-off function is 

f2D(r) = for g(p) 27rpdp 

lo
r ~+oo j' ( J p2 + z2) 

- dp dz 2( 2 2) p. 
0 -oo p + Z 

(6.24) 

On the other hand, the angular velocity of the unperturbed vortex pair is 

(6.25) 

Equation (6.25) also gives the angular velocity of our reference system since the reference 

system is rotating with the same angular velocity as the unperturbed vortex pair. 

Putting the above facts together, one finds that viewed in the rotating reference 

system, the velocity induced at (x, y) by the left vortex is 

u(x,y) = UI(x,y)- f2pair .[ b-y l 
-+x 
2 
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As before, expanding u(x, y) around (0, 0), we arrive at the linearized flow 

(6.27) 

b . b b I b 
He:re c1 = hD(-g) and c2 = 3hD(-g)- 8 f 2D(-g)· For b/8 >> 1, we have hD = 1 and 

~ f~D(~) = 0, therefore q = 1, c2 = 3 and equation (6.27) reduces to equation (6.2). 

In the cylindrical (r, 8) coordinate system, the radial component ur(LF) and the 

tangential component ue(LF) of the linearized flow are 

r C2- C1 . 
ur(LF) = -

2
7rb2 r 

2 
sm 28, (6.28) 

r C1 + C2 C2 - C1 
ue(LF) = -

2
1rb2 r ( 

2 
+ 

2 
cos 28). (6.29) 

The maximum and minimum of the tangential velocity of the linearized flow ue(LF) are 

respectively - 2~b2 r c1 and - 2~b2 r c2. So instability is expected to occur when the self-

induced tangential velocity ue(SR) is between 2~b2 r c1 and 2~b2 r c2. In terms of the 

normalized rotation frequency n defined in (6.15) and the normalized wavenumber k (de­

fined as k = k 8), the instability condition reads 

82 - - 82 
-c2 b2 < O(k) < -c1 b2 • (6.30) 

Here we should point out that c1 and c 2 are independent of (r, 8), but they depend on the 

cut-off function and the ratio b /8. 

As an example, we examine the case where the two-dimensional cut-off function 

is chosen as hD ( r) = 1 - exp( -r2). This cut-off function is the two-dimensional analogue 

of the three-dimensional cut-off function (6.17) ( see Beale and Majda [10] ). In this case, 

the left-hand side of the inequality (6.30) becomes 

-c2 :: = - { 3 [ 1 - exp(- :: ) ]- 2 :: exp(- :: ) } :: , (6.31) 

whereas the right-hand side of (6.30) is 

-c1 :: = - [ 1 - exp(- ::) ] ::. (6.32) 
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Figure 6.8: The unstable region in the (bjc, k) plane for a -co-rotating vortex pair. 
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For each ratio b j 6, the interval of unstable normalized wavenumber k can be solved numer­

ically from the dispersion relation and the inequality (6.30). The shaded area of Figure 6.8 

marks the region of instability in the (bjc, k) plane. Figure 6.8 indicates that for any value 

of bjc, there are always unstable wave modes for the co-rotating vortex pair. 

6.2 Numerical simulations of short wave instability on a co­

rotating vortex pair 

Now we simulate numerically the evolution of small sinusoidal perturbations on a 

co-rotating vortex pair using the thin tube vortex filament method. The purpose here is 

to verify the theoretical predictions we made in the last section and to study the long time 

behavior of the unstable modes. 

We choose the initial conditions a~. follows: A pair of parallel co-rotating vortex 

filaments with separation b is placed in the z-x plane with the z-axis as its line of symmetry. 

At timet= 0, a cosine wave perturbation with amplitude € and wave number n is imposed 
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on each filament in the span-wise d4'ection. The vortex pair is perturbed in such a way that 

the perturbed pair remains symmetric. The size of the perturbation varies in the z-direction 

as l::,.x = ± € cos(nz). In other words, initially the perturbed vortex pair has the form 

{ 

x(L) = -~- € cos(nz) { x(R) = ~ + € cos(nz) 
2 and 2 

y(L) ~ 0 y(R) = 0 
(6.33) 

where the superscript "L" refers to the vortex on the left in the x-y plane at time t = 0, 

and the superscript "R" refers to the vortex on the right. 

The vortex pair is periodic in the z-direction with a period equal to 21r fn or 

any integral multiple of 21rjn. For numerical calculations, the period needs to be at least 

six times as large as the core radius 8. The reason for this will become clear later when 

we present the method for calculating the discrete Biot-Savart summation over a periodic 

vortex filament. So in our simulations we use the period 

r 68 l 27r p- ---
- 21rjn n · 

(6.34) 

We discretize the perturbed vortex pair by dividing a period of each filament into N pieces 

according to z coordinate. Each piece corresponds to an increment f:::,z = p / N in the z 

direction. The length of each vortex element is approximately l::,.z. More specifically, the 

numerical discretization of the initial condition is 

(R) b . 
xi = 2 + € cos(nJ f:::,z) 

YJR) = 0 (6.35) 

z]R) = j f:::,z 

for j = 1, 2, ... , N. 

The total velocity at x)R) = (x)R), YJR), z]R)) is the sum of the contributions from 

all vortex elements: 

def 
= Uright + U!eft, (6.36) 
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h r . h . ul t• l: • h d. . A (R) (R) (R) (R) 1 ( (R) (R)) w ere IS t e crrc a Ion, u IS t e core ra ms, uxk+l = xk+l-xk , xk 1 = - xk+l +xk , 
. 2 +2 2 

and 6x~~1 and x~~1 are defined in the same way for the left filament. In the simulations, 
2 2 

we use the second order cut-off function f(r) = 1- exp( -r3 ). 

In equation (6.36), Uright is the velocity induced by the right filament and uleft is 

the velocity induced by the left one, both of which can be evaluated as follows. We rewrite 

Uright as 

(6.37) 

where ez is the unit vector in z-direction, w1(x~~1 ) is the velocity contribution from the 
2 . 

vortex element x~1 which lies within half period to the point x)R), w2(x~~1 ) is the sum 
2 2 

of contributions from all images of x~~1 . In [53] Klein and Knio introduced a method to· 
2 

reduce the infinite summation in w2(x~~1 ) to an evaluation of two functions. Here we use 
2 

a technique similar to that of Klein and Knio but with a more efficient and more accurate 

way of calculating the two functions F and G which are defined below .. For the sake of 

simplicity, we will write x~~1 as x, 6x~~1 as 6x, and x)R) as xo. Then we get 
2 2 

= _!:_ ~ 6x x (xo - x) + (6x x ez) l p 

471" l=±l Jxo - x + l pezJ3 

r [ 1 ±oo 1 
- 471" ..6.x x (xo - x) p3 L I~ + l e J3 

l=±l p z 

±oo z J 
+(6xxez)p12 L l~+le J3 

l=±l p z 

r [ 1 · 1 J = 
4

71" 6x x (xo- x) p3 F(ab a2) + (..6.x x ez) p2 G(ab a2) , 

where xo = (xo,yo,zo), x = (x,y,z), and 

zo- z 
a1=--, 

p 

(6.38) 

(6.39) 



Chapter 6. Short wave instability on fixed-core vortex filaments 100 

(xo- x)2 +(yo- y)2 

a2 = 2 ' p 
(6.40) 

±oo 1 

F(al, a2) = l~l [(l + a1)2 + a2]3/2' (6.41) 

±oo l 
G(a1, a2) = L [(l )2 ]3/2 · 

l=±l + a1 + a2 
(6.42) 

The functions F(ab a2) and G(ab a2) can be evaluated accurately up to the machine error. 

In the following we give an efficient algorithm for calculating F and G. 

Let 

We can write F as 
00 1 1 

- ~( [(k + d1)2 + d2]3/2 + [( -k + d1)2 + d2]3/2) 

(6.43) 

(6.44) 

~ _!_[(1 + ~ + ~ )-3/2 + (1- ~ + ~ )-3/2] (6.45) 
LJ k 3 k k 2 k- k2 
k=l 

The power series expansion reads 

where 

Hence 

a1 = -3/2, 
-(2k + 1) 

ak+l = ak 
2

k , k = 1, 2, ... 

(6.46) 

(6.47) 

(6.48) 

( a b )-3/2 ( a b )-3/2 _ [{3 {3 k-2 {3 -4 {3 -2n J 1 + k + k 2 + 1 - k + k 2 - 2 0 + 1 + 2k + ... + nk + ... (6.49) 

where 

f3o - 1 (6.50) 

f31 - a1b + a2a2 (6.51) 

f32 - a2b2 + 3a3ba2 + a4a
4 '(6.52) 

(6.53) 

{3 C lbn n + c2 bn-1 2 + c4 bn-2 4 + + c2nb0 2n (6 54) n - an n a an+l n+l a an+2 n+2 a ... a2n 2n a . 
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It follows that 

N 1 1 

= [;< [(k + d1)2 + d2j3/2 + [( -k + d1)2 + d2]3/2) 

L oo 1 1 
+ 2 L /3j( L k2i+3) + O( N2L+4) 

j=O k=N+1 

Introducing the notation 

and using the expansions 

we have 

1 . 
(1-2k)-P 

(1 + _.!_ )-P 
2k 

00 1 
I(N,p) = L kP 

k=N+1 

= ~p(p+1) ... (~+i-1)(~)i 
1 + L..J ., 2t k 

i=1 z. 

1 ~p(p+1) ... ~+i-1)(-~)i 
- + L..J ., 2t k 

i=1 z. 
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(6.55) 

(6.56) 

(6.57) 

(6.58) 

(1- _.!_ )-P- (1 _.!_ )-p = !!_ ~ p(p + 1) ... (p + 21 ) ( ~ )21+1 (6.59) 
2k + 2k k + 6 (21 + 1)! 221 k 

Combining the identity 

with equation (6.59), we obtain 

(k _ ~)-P _ (k ~)-P = _.!!_ ~ p(p + 1) ... (p + 21) (~)21+1+p 
2 + 2 kP+l + 6 (21 + 1)! 221 k ' 

which leads to 

i.e. 
_.!_- _1_[ 1 - 1 ]-~ p ... (p + 21- 1) (~ 21+p 
kP-p-1 (k-!)p-1 (k+!)p-1 ~ (21+1)!221 k) . 

As an immediate consequence, we have 

~ 1 1 1 ~p ... (p+21-1) ( 
I(N,p) = L..J kP = p- 1 (N + l)p-1 - L..J (21 + 1)! 221 I N,p + 21 ) 

k=N+1 2 1=1 

(6.61) 

(6.62) 

(6.63) 

1 1 p+21:9L+3 p ... (p + 21- 1) 1 
= p -1 (N + !)P~1- t; (21 + 1)! 221 I(N,p + 21) + O(N2L+4) (6.64) 
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Therefore, the function F(d1, d2) can be evaluated using equations (6.55) and (6.64). For 

ld1l ~ 0.5 and ld2l ~ 0.5, the choice of N = 14 and L = 5 is sufficient to keep the maximum 

relative error bounded by 10-15 • 

The evaluation of the function G(d1, d2) is similar. 

The term Uright is obtained numerically by summing up w1(xk;1 ) and w2(xk;1 ). 
2 2 

The term u 1e/t can be calculated in a similar way. The filaments are advected in time using 

the classical fourth order Runge-Kutta method. 

We start by setting the separation b = 1.0, the core size 6 = 0.1, and the per­

turbation amplitude € = 0.01. Figure 6.9 shows the time evolution of the amplitudes of 

perturbations for different wavenumbers; k = 13.70 and k = 14.70 are stable modes whereas 

k = 14.10 and k = 14.30 are unstable modes. Fork= 13.70, in the reference system which 

is rotating along with the vortex pair the linearized flow prevails over the self-induced rota­

tion. The perturbation wave rotates clockwise following the linearized flow. The amplitude 

of the perturbation fluctuates due to the fact that the linearized flow is not a perfectly cir­

cular rotation. For k = 14.70, the self-induced rotation dominates the linearized flow. The 

perturbation wave rotates counter-clockwise and is driven by the self-induced rotation. For 

k = 14.10 and k = 14.30, and actually for any wavenumber k in the interval [13.89, 14.31] 

of unstable wave numbers for the ratio b/b = 10.0, the self-induced rotation velocity is 

between the minimum and maximum tangential velocity of the linearized flow. Initially, 

the amplitude of the perturbation grows exponentially. After reaching a maximum, the 

amplitude falls back to where it started, then it rises again and repeats the pattern. 

In the above description of the behavior of the stable and unstable modes, several 

issues need to be clarified. The first is how to draw a clear distinction between the stable 

and unstable modes. From Figure 6.9 one sees that none of the perturbation waves grows 

without limit. One may argue that all these perturbation modes should be called stable 

modes. The method we use to distinguish instabilities from fluctuations is to compare the 

maximum amplitude that the perturbation wave reaches with its initial amplitude. If the 

maximum amplitude of the perturbation wave is bounded by a constant multiple of its 

initial amplitude, we call it stable. If this is not true, that is, if the perturbation wave 

always grows over a certain value no matter how small the initial amplitude is, then we call 

it unstable. This is exactly the same criterion that we used in Chapter 4 when we simulated 

Widnall's instability on vortex rings. 

Figure 6.10 shows the time evolution of the perturbation wave with wavenumber 
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k = 13.70 for the initial perturbation amplitudes e = 0.02, e = 0.01, e = 0.005 and 

e = 0.0025. It is clear from Figure 6.10 that as the initial amplitude gets smaller, so 

does the maximum amplitude of the perturbation. The perturbation wave is bounded by a 

constant multiple of the initial amplitude, where, more precisely, the constant is 2. Hence, 

according to the criterion we discussed above, the mode k = 13.70 is stable. In Figure 6.11, 

we display the time evolution of the perturbation wave with wavenumber k = 14.30 for 

the initial perturbation amplitudes e = 0.02, e· = 0.01, e = 0.005, and e = 0.0025. Figure 

·6.11 illlistrates the typical behavior of an unstable mode. Unlike what we see in the case of 

·k = 13. 70, the maximum amplitude of the perturbation wave always reaches a certain value 

no matter how small the initial amplitude is. As can be seen in Figure 6.11, the maximum 

amplitude is roughly 0.48. Thus the mode k = 14.30 is unstable. 

The second issue about the perturbation wave is the repeating pattern of the 

unstable mode; As shown in Figure 6.11, after reaching a maximum, the perturbation 

amplitude decreases until it reaches the initial value and then starts rising again. To explain 

this up-and-down behavior of the unstable mode, we need to consider the effect of the 

amplitude on the dispersion relation. The dispersion relations .displayed in Figure 6.6 and 

Figure 6. 7 are for perturbation waves of small amplitude (i.e. the amplitude is small in 

comparison with the wavelength). Recall that in Chapter 4, when numerically simulating 

the Widnall's instability of a vortex ring, we studied the normalized rotation frequency as 

a function of the amplitude for several wavenumbers. Figure 6.12 shows the plots of the 

normalized rotation frequency vs the normalized amplitude for k 8 = 1.4, 1.45 and 1.5. 

The general conclusion is that for a fixed wavenumber, the normalized rotation frequency 

increases as the amplitude increases. In the coordinate system which is rotating with the 

vortex pair, the self-induced tangential velocity is ue(SR) = -r 2; 82 0, where 0 is the 

normalized rotation frequency (see equation (6.8) and (6.15)). Therefore in the coordinate 

system shown in Figure 6.2, the self-induced rotation velocity u9(SR) decreases as the 

amplitude increases. With this principle in mind, we can qualitatively sketch the motion 

of the peak of the unstable modes. As illustrated in Figure 6.13, the unstable perturbation 

wave starts from its initial position (point A). At point A, () = 1r, the tangential velocity 

of the linearized flow ue(LF) = - 2;b2 (2 r + r cos 28) attains its minimum (the tangential 

velocity is negative and its absolute value attains the maximum). The self-induced rotation 

is not strong enough to counter the linearized flow. Hence the perturbation wave rotates 

clockwise and grow slowly in its magnitude due to the radial component of the linearized flow 



Chapter 6. Short wave instability on fixed-core vortex filaments 104 

ur(LF) = - 2;b2 (r sin 28). As the perturbation wave approaches point B, the tangential 

velocity of the linearized flow becomes weaker. When it reaches point B, the linearized flow 

is balanced in the tangential direction by the self-induced rotation. So, from point B to point 

C, the perturbation wave grows exponentially in the radial direction while it is not moving 

much in the tangential direction. It would have grown without bound in the radial direction 

if the self-induced angular velocity n did not depend on the amplitude. However, as the 

amplitude increases the self-induced angular velocity decreases. Thus the linearized flow 

once again overcomes the self-induced rotation and turns the perturbation wave from point 

0 to point D. At point D, (J = 1r /2, the radial velocity of the linearized flow is zero. Beyond 

point D, the perturbation wave continues to rotate clockwise while its amplitude decreases 

because the radial velocity of the linearized flow is negative. Eventually it arrives at point 

G. At point G, the perturbation wave has rotated an angle of 1r around the unperturbed 

vortex filament and its amplitude is back to its initial value. After another half cycle from 

point G to point A, the perturbation wave arrives back at its original position. 

Now we continue to examine the evolution of the unstable modes for different 

ratios of separation to core radius bjo. We ran simulations _with bjo =. 10, 9, 8, 7, 6, 

5, 4, 3 and 2. The numerical results are shown in Figure 6.14, Figure 6.15 and Figure 

6.16. For bjo > 4, the time evolutions of the unstable modes are similar to those shown in 

Figure 6.14 (a) where b/8 = 10. The amplitude of the perturbation grows to a maximum, 

decreases to its original value and then repeats the pattern. One thing to note is that for 

a fixed core radius, as the separation becomes smaller, the perturbation wave can grow to 

a larger amplitude. This phenomenon can be seen by comparing the amplitude plots of 

the perturbation waves for various separations in Figure 6.14 and Figure 6.15. In the plots 

the vertical axis represents the dimensionless quantity: the ratio of amplitude to core size. 

Figure 6.14 and Figure 6.15 indicate that the maximum amplitude that the perturbation 

wave can reach is given by the product of the core radius and a decreasing function of 

bjo. Thus for a co-rotating vortex pair of very thin filaments (i.e. bjo is large), the short 

wave instability is not prominent, and the unstable modes are negligible compared with the 

scale of the separation. For bjo < 4, the unstable modes behave differently from the case 

where bjo > 4. Although the perturbation wave may not increase monotonically due to its 

rotation around the unperturbed position of the filament, it does not return to its original 

position. In our numerical simulations, we observed that the perturbation wave grows, 

bends and becomes non-planar. After that, the thin hairpin structures appear and wrap 
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around the filament. Figure 6.16 shows the plot of .amplitude vs time with the separation 

b = 0.2 and the core size 8 = 0.1. The amplitude of the perturbation wave grows until it 

becomes greater than half of the separation: at this point, the two perturbed filaments get 

very close to each other and become tangled together. After that, it is impossible for the 

filaments to separate from each other and to return to their original position. Figure 6.17 

shows the configuration of the two filaments after they are tangled together. Recall that in 

Figure 6.13, we sketched the theoretical explanation for the repeating pattern behaviors of 

the unstable modes. One may wonder: Does that analysis contradicts the wild behaviors of 

the unstable modes observed here for b/8 < 4? The answer is no. The analysis shown in 

Figure 6.13 is based on an extended linear analysis. In that analysis, the amplitude of the 

unstable mode is allowed to be comparable to the core raqius. However, in that analysis 

we also assumed that the amplitude of the perturbation mode is much smaller than the 

separation between the filaments so that the motion of the perturbed filament due to the 

other filament relative to its unperturbed position is well approximated by a linearized flow. 

As the separation decreases, this approximation becomes more and more inaccurate. Thus 

the analysis sketched in Figure 6.13 is only good for large ratios of separation to core radius. 

In particular, when the separation is comparable to the core size and the amplitude of the 

perturbation wave grows to a value comparable to the core size, the two filaments become 

tangled together and the linear theory fails in this case. That is why the unstable modes 

grow without bound when the two filaments are close to each other. When the two filaments 

are far apart, as we already shown in Figures 6.14 and 6.15 the behaviors of the unstable 

modes are indeed repeating patterns. 
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Figure 6.9: Time evolution of the perturbations of different wavenumbers on a pair of co­
rotating vortex filaments. Dashed line : amplitude in the x-direction (spanwise direction); 
Solid line : amplitude in the y-direction. The coordinate system is rotating with the vortex 
pair. 
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Figure 6.10: Time evolution of the perturbations with different initial amplitudes on a 
pair of co-rotating vortex filaments. Dashed line : amplitude in the x-direction (spanwise 
direction); Solid line : amplitude in they-direction. The coordinate system is rotating with 
the vortex pair. 
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Figure 6.16: Time evolution of the perturbation on a pair of co-rotating vortex filaments. 
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6.3 Short wave instability on a vortex filament immersed in 

a co-rotating vorticity field 

We now wish to study the short wave instability on a single vortex filament with 

fixed core structure immersed in a co-rotating vorticity field. We proceed in the same way 

as we approached the co-rotating vortex pair in the preceding sections of this chapter. 

We shall consider two cases. In case one, a vortex filament is surrounded by a 

continuous vorticity field whose vorticity is of the same sign as that of the filament. Here 

the surrounding vorticity field is taken as axisymmetric. The choice of an axisymmetric 

vorticity field was motivated by two things. First, an axisymmetric vorticity field simplifies 

the analysis significantly. Second, the two dimensional vorticity equilibrium distribution is 

locally approximately axisymmetric [31]. In case two, a vortex filament is surrounded by 

a discrete vorticity field represented by many co-rotating vortex filaments. In both cases, 

the motion of the filament is the combination of the self-induced rotation and the velocity 

induced by the surrounding vorticity field. The self-induced rotation frequency is solely 

determined by the fixed core structure of the vortex filamen~ and is independent of the 

surrounding vorticity field. Hence the only variable which affects the stability or instability 

is the property of the velocity field induced by the surrounding vorticity. Near the filament, 

the velocity field can be well approximated by its linear part. 

6.3.1 A vortex filament embedded in a continuous vorticity field 

We proceed to consider the first case where a vortex filament is surrounded by a 

continuous vorticity field. Suppose that the vortex filament under consideration is initially 

located at r 0 = (x0 , 0) and the surrounding vorticity field is given by w(r) (Figure 6.18). 

The velocity field induced by the vorticity field w( r) is 

(6.65) 

where the function f(r) is defined as 

f(r) =for 27rpw(p) dp. (6.66) 
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Figure 6.18: A vortex filament surrounded by a continuous vorticity field. 

The vortex filament rotates around the origin with an angular velocity 2=3"1 f(x 0 ). 
- 1TXo 

In the reference system (x, ii) which is attached to the unperturbed filament as 

shown in Figure 6.19, the induced velocity field is 

u(x,y) = 2 [( +1_)2 + -2] f (J(xo + x)2 + jj2) [ -ii -]- -2 1 2 f(xo) [ -ii -] 
7r Xo X Y Xo + X 7rXo Xo + X 

(6.67) 

Near the vortex filament (when x and ii are small), the induced velocity field is well ap­

proximated by the linear term on right-hand side of equation (6.67), which represents a 

straining flow. In the cylindrical (r, 8) coordinate system, this linearized flow is 

ur(LF) = -~ c
2
1 (rsin28), 

2trx0 

1 C1 
ue(LF) = ---2 - (r + r cos 28). 

2trx0 2 

(6.68) 

(6.69) 
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Figure 6.19: The vortex filament and the coordinate system attached to it. 

As we have already discussed in the first section of this chapter, when the tan­

gential velocity of the linearized flow is neutralized by the self""induced rotation, the radial 

component of the linearized flow causes the perturbation wave to grow exponentially in a 

certain radial direction (Figure 6.20). The maximum of ur(LF) is ~c1r. The minimum 
21rx0 

of ur(LF) is zero. Instability occurs when the self-induced rotation is between the minimum 

and maximum of tangential velocity of the linearized flow, i.e. when 

Substituting U9(SR) = - r~2 O(k)r, we find that the instability condition is 
21l"u 

82c1 - -
- x2r < O(k) < 0 

0 

(6.70) 

(6.71) 

where 8 is the core size and r is the circulation of the vortex filament in consideration. From 

the dispersion relations shown in Figure 6.6 and Figure 6.7, it is clear that one can always 

find wavenumbers which satisfy the instability condition (6.71) since the range of normalized 

rotation frequency in the dispersion relations always contains the interval [ -1, 0 ]. Therefore 

unstable modes always exist on a vortex filament surrounded by a continuous vorticity field. 
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Figure 6.20: A sketch of the motion of a filament surrounded by a continuous vorticity field. 

6.3.2 A vortex filament immersed in a discrete vorticity field 

In this subsection we discuss the second situation in which a vortex filament is 

surrounded by a discrete vorticity field. Here we consider a special case where the vorticity 

field to be discretized is a uniform vorticity distribution in a unit circle, that is, 

w(r) = 
{ 

1, 

0, 

r ~ R 

r > R 
where R == 1. (6.72) 

The vorticity field is discretized as follows: first, Nlayer locations equally spaced 

in the radial direction are placed within the circle. A numerical filament is placed at the 

center of the circle. The radial location at r = n b. r ( n = 1, ... , Nlayer) has 6n numerical 

filaments equally spaced at fJ = j b.fJn (j = 1, ... , 6n). Here b.r = R/(Nlayer + 0.5) and 

b.fJn = 2rr / ( 6n). The layouts of the numerical filaments on a cross-section are illustrated 

in Figure 6.21 for Nlayer = 1, 2, 3, 4, 6 and 8. In Figure 6.21 each solid circle represents a 

numerical filament. The center line of the corresponding filament passes through the center 

of the solid circle. However, the solid circle is for illustration only. It does not describe the 

real size of the cross-section of the filament. In fact, the ove:dapping condition requires that 
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the core radius of the filament be large in comparison with the distance between neighboring 

filaments. In the discretization, we use the numerical core radius 

C = RfjNzayer' (6.73) 

which, as Nzayer increases, goes to zero, but at a slower pace than the inter-filament distance 

6.r = Rj(Nzayer + 0.5). Anderson and Greengard [4], and Almgren, Buttke and Colella [2] 

used a similar numerical_ core radius in their simulations of the vortex ring merger problem. 

For this discrete vorticity field, we consider the short wave instability of a vortex 

filament at the outermost radial layer. As before, we first attach a coordinate system to the 

unperturbed filament. The crucial step in this stability analysis is to calculate the velocity 

field around the unperturbed position of the filament, which is caused by the presence of 

other vortex filaments. Since the surrounding vorticity field is a discrete one represented by 

a set of numerical filaments, an exact expression for the induced velocity field is difficult, if 

not impossible, to derive. In this case, the numerical approach is certainly more desirable. 

In Figure 6.22 and Figure 6.23, we show the velocity field and streamlines for various values 

of the parameter Nzayer. In the plots each_ arrow represents _the velocity vector at that 

location and the thin solid lines are streamlines. Figure 6.22 and Figure 6.23 indicate 

that the streamlines are a family of ellipses. This phenomenon is qualitatively the same 

as in the case of a co-rotating vortex pair which we have studied in previous sections ( 

. see equation (6.3) ). However, as Nzayer (the number of radial layers in the discretization) 

increases, so does the ratio ofthe major axis to the minor axis oft he ellipses. In the limit of 

Nzayer --+- oo, the streamlines become a family of parallel straight lines and the velocity field 

tends to a straining flow. The convergence to a straining flow of the velocity field is best 

seen in Figure 6.23 where Nzayer = 16. Recall that the straining flow is exactly what we 

observed when the surrounding vorticity field is continuous (see equation (6.67) ). It is clear 

that the two extreme cases are (a) a co-rotating vortex pair where the vortex filament in 

consideration is companied by just one filament, and (b) the case where the vortex filament 

is surrounded by a continuous vorticity field. No matter whether the surrounding vorticity 

field is continuous or discrete, the flow near the filament, if observed relative to the filament, 

is rotating clockwise (see Figure 6.4, Figure 6.22 and Figure 6.23). This rotation is in a 

direction opposite to the core rotation of the filament. For short wave modes on a filament 

with fixed core structure, the self-induced rotation is in the same sense as the core rotation 

of the filament. So the rotation part of the velocity field near the filament acts against 
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Figure 6.21: Layouts of numerical filaments. Here the solid circles are for illustration only. 
They do not describe the real size of the cross-section of numerical filaments. In fact, the 
overlapping condition requires that the core radius of the numerical filaments be larger than 
the inter-filament distance. 
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the self-induced rotation. Because of the fact that the minimum tangential velocity of a 

straining flow is zero and the fact that the range of normalized frequency of the self-induced 

rotation contains the interval [ -1, OJ, there are always short wave modes whose self-induced 

rotation can balance the tangential component of the flow near the filament. When these 

two rotations cancel each other out, the short wave perturbation mode stops rotating and 

diverges along the radial direction, driven by the radial component of the flow. Thus the 

short wave instability always occurs on a vortex filament immersed in a co-rotati.llg vorticity 

field. 
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Figure 6.22: Velocity field and streamlines near the filament. 
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6.4 Short wave instability and the proliferation of vortex 

hairpins in three dimensional vortex methods 

In the remainder of this chapter we study the wild stretching of the numerical vor­

tex filaments and the subsequent formation of small-scale hairpin structures typically ob­

served in numerical simulations using the vortex method. We will relate this phenomenon to 

the short wave instability on a vortex filament surrounded by one or more co-rotating vortex 

filaments which we have studied theoretically and numerically in the previous sections. 

The complexity of small-scale vortex structure in three dimensional vortex methods 

has been observed by many authors [26], [28], [75]. In numerical calculations using the vortex 

method, after some time the numerical vortex filaments start stretching and folding, first 

gradually, and then violently. The total number of vortex segments increases exponentially 

(or even faster than that), so it very quickly exceeds the capacity of our computing facilities 

and forces us to stop the simulation [28]. The stretching and folding occur even if the 

initial configurations of the numerical filaments are parallel rings or parallel straight lines, 

for which the stretching and folding are not supposed to appear in exact arithmetics. It 

has been pointed out [32] that the spatial chaos (stretching and folding) is generated by 

the evolution of some unstable modes. However in [32] the cause and the mechanism of the 

instability were not explained. In the following we apply the vortex method to a vortex ring 

and try to analyze the small-scale structures of the flow produced by the vortex method. 

We first show that the stretching and folding of the numerical filaments are indeed caused 

by the exponential growth of unstable modes. Then we go on to show that the instability of 

these modes is due neither to the numerical instability of the ODE solver we use nor to the 

spatial discretization resolution. These unstable modes, initially generated by the numerical 

round-off errors, grow exponentially, driven by the combination of the self-induced rotation 

velocity and the velocity induced by the surrounding co-rotating vorticity field. Whether 

the surrounding vorticity field is discrete or continuous does not affect the instability. 

At time t = 0, the vorticity field to be discretized is represented by a vortex ring 

with uniform vorticity distribution inside the core. The radius of the ring is R = 1.0 and the 

core radius is r = 0.15. The physical vortex ring is replaced by a set of Nfilament numerical 

ring-shaped filaments with numerical cut-off core size 8. The layouts of the numerical 

filaments on a cross-section of the vortex ring are shown in Figure 6.21 for various numbers 

of filament layers in the radial direction. The circulation carried by each numerical filament 
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is equal to r /Ntilament, where r is the circulation of the vortex ring and for simplicity we 

take r = 1. The numerical filaments are then cut into segments in the azimuthal direction 

around the central axis of the ring. To satisfy the overlapping condition [3], [8], [9], [41], we 

require that the maximum length h of these segments be smaller than the numerical cut-off 

core size ·6. In the calculation we use the second order cut-off function f(r) = 1 - e-r
3 

and the classic fourth order Runge-Kutta method to do numerical integration in the time 

dimension. To maintain a uniform resolution, if the length of a segment becomes larger 

than 2 h during the calculation, we cut it into two segments of equal length. It is important 

to note that the i-th node in the azimuthal direction on a numerical filament is theoretically 

equivalent to the j-th node on that same filament under a rotation transformation. Hence, 

when exact arithmetics is used (i.e. there is no round-off error), the numerical filaments 

should remain as rings. Thus if stretching and folding occurs in the numerical calculation, 

it must be due to the accumulation and the magnification of the round-off errors associated 

with finite precision arithmetics. 

We start with the discretization which has one layer of numerical filaments in the 

radial direction as shown in Figure 6.21 with Nzayer = 1. The total number of numeri­

cal filaments is Nfilament = 7 and initially there are 168 segments on each filament. The· 

numerical core size is taken as 6 = 0.15. The maximum length of the segments is approxi-

. mately h = 6 j 4. The numerical calculations are carried out using both single precision and 

double precision. The stopping criterion is the following: when the number of segments 

on any filament is ten times larger than the original number of segments per filament, the 

computation is terminated. 

Figure 6.24 gives a perspective view of the numerical filaments near the stopping 

time. This calculation was done with single precision and with a time step of dt = 0.04. 

Figure 6.24 displays the typical configuration of the numerical filaments after the number 

of segments has increased drastically. The filaments stretch and fold and the thin hairpin 

structures wrap around the filaments. The configuration of the numerical filaments seen 

here is very similar to that of a co-rotating vortex pair at the late stage of instability 

shown in Figure 6.17. The difference is that we now have seven numerical filaments tangled 

together instead of just two. In Figure 6.25 we exhibit two two-dimensional views of the 

numerical filaments in the single precision calculation. At timet= 20.0, the unstable modes 

have small amplitudes and are still invisible in the plot. Computations were also carried 

out using double precision. Figure 6.26 shows two-dimensional views of the numerical 
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filaments at time t = 40.0 and t = 64.0. Comparing Figure 6.25 and Figure 6.26, we 

find that the unstable modes grow at least exponentially. If the growth were less than 

exponential, we would be able to run the calculation for much longer time before we hit 

the stopping criterion in the double precision calculation where the round-off error is of the 

order 10-15 "' 10-16• Note that the round-off error in double precision calculation is much 

smaller than the round-off error in single precision calculation which is of the order of 10-7• 

We raise three questions: (1). Is the exponential growth of the unstable modes 

due to the instability of the ODE solver we use ? (2). Is the exponential growth of the 

unstable modes due to the coarse discretization in the spatial dimensions since there are 

only seven numerical filaments representing a deformable core ? or (3). Is the exponential 

growth of the unstable modes caused by the short-wave instability on a vortex filament 

which is surrounded by a co-rotating vorticity field (continuous or discrete) ? The answer 

to the first two questions is no and the answer to the third one is yes. We will examine 

these questions one by one. 

Recall that the ODE solver we use is the classical fourth order Runge-Kutta 

method. As we pointed out in Chapter 6 (see Figure 5.8 and the discussion associated 

with it), this ODE solver is stable for small time steps, and when it is unstable for large 

time steps, its instability gets weaker as the time step is decreased. To answer the first 

question, we run the single precision calculations of seven numerical filaments using various 

time steps dt = 0.1, 0.04, 0.01 and 0.004. The two-dimensional views of the numerical 

filaments obtained in these calculations are presented in Figure 6.27. Not surprisingly, the 

four plots in Figure 6.27 obtained with different time steps exhibit very s~milar structures. 

This simply implys that the growth rate of the unstable modes is not affected by the time 

step as long as the time step is not too large. Actually, if we select the time step according 

to the criterion we established in Chapter 6, then dt = 0.1 is a reasonable time step. Rel­

atively speaking, dt = 0.004 is a fairly small time step. The fourth order accuracy of the 

ODE solver generally means that the error behaves like O((dt)4 ) as dt goes to zero. Thus 

for the numerical solution obtained with dt = 0.004, one can say that the error associated 

with the discretization in the time direction is negligible. Hence the exponential growth of 

the unstable modes is not caused by the discretization in the time direction. 

To answer the second question, we repeat the single precision calculations with 

more numerical vortex filaments. With two layers of filaments in the radial direction 

Nzayer = 2, the total number of the numerical filaments is Nfilament = 19 (see Figure 
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6.21 for the distribution of the numerical filaments on the cross-section of the ring). For 

Ntayer = 2, we chose the numerical core size 8 = 0.12. At timet= 0, there are 209 segments 

on each filament. The maximum length of the segments satisfies approximately h = 8 j 4. 

The top plot of Figure 6.28 shows the two-dimensional view of the numerical filaments at 

the stopping time, obtained using 19 numerical filaments. The bottom plot of Figure 6.28 

represents a portion of the top plot, giving the detailed structures of the top plot. In the 

calculations leading to Figure 6.29, we use even more numerical filaments. The number of 

radial layers Ntayer is 3. The total number of the numerical filaments goes up to 37. At time 

t = 0, each filament is represented by 235 segments. The total number of vortex segments 

in the initial discretization already amounts to 8695 ! Again, the top plot of Figure 6.29 

. is a two-dimensional view of the numerical filaments at the stopping time and the bottom 

plot is a portion of the top plot shown in detail. Figure 6.29, together with Figure 6.28, 

indicates that the exponential growth of the unstable modes is not eliminated or reduced 

by using a better spatial discretization. The stopping time is actually getting smaller as we 

use more numerical filaments. The stopping criterion is that we terminate the calculation 

whenever the number of segments on any filament grows by 10 times. The unstable modes 

originate from the round-off errors. At least this is true for vortex rings where the sym­

metry of the initial configuration excludes the possibility of stretching and folding if exact 

arithmetics is used. The ro~nd-off errors at each numerical point are affected by thousands 

if not millions of operations. Thus it is virtually impossible to know the exact values of 

these round-off errors or to know the relation between the round-off errors at two numerical 

points. People often treat the round-off errors as being produced randomly. If we believe 

that there is randomness associated with the starting times and starting amplitudes of the 

unstable modes, it is reasonable to expect that the stopping criterion can be reached earlier 

for more filaments since only one of those filaments needs to grow by 10 times. This may 

account for the smaller stopping time in the case of more numerical filaments. 

Now we move on to the third question. The short-wave instability discussed in the 

previous sections provides a plausible explanation for the exponential growth of the unstable 

modes. This short-wave instability occurs on a vortex filament surrounded by a co-rotating 

vorticity field. If the surrounding vorticity field is discrete, the coarsest discretization is just 

one point. In that case, we have a co-rotating vortex pair. In sections 1 and 2 of this chapter, 

it was predicted theoretically and confirmed numerically that there are always unstable 

short-wave modes for a co-rotating vortex pair. In section 3, we showed that this is also true 
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for other discrete vorticity distributions and continuous vorticity distributions. The general 

process of stretching and folding is the following. At the early stage of the calculation, 

the round-off errors generate unstable seeds, i.e., unstable modes with starting amplitudes 

comparable to the magnitude of the round-off errors. Then the short-wave instability starts 

to manifest itself and the amplitudes of unstable modes increase exponentially. Although 

the round-off errors continue to contribute to the unstable modes as the calculation goes 

on, this contribution becomes less and less significant compared to the exponential growth 

of the unstable modes. At the late stage of the calculation, the hairpin structures appear 

and get longer and longer. 

Supporting evidence for the above argument comes from the similarity between 

the filament configuration of a co-rotating vortex pair shown in Figure 6.30 and the filament 

configuration of a vortex ring in Figure 6.31, Figure 6.32 and Figure 6.33. For a co-rotating 

vortex pair, two perspective views of one filament at the late stage of instability are given in 

Figure 6.30. As for a vortex ring, Figure 6.31 exhibits two perspective views of one numerical 

filament at the stopping time, where the vortex ring is represented by 7 numerical filaments. 

Figure 6.32 and Figure 6.33 display the configurations of one numerical filament obtained 

in calculations using respectively 19 numerical filaments and 37 numerical filaments. It is 

clear from these graphs that they all share the similar structure of long and thin hairpins 

wrapping around, which suggests that vortex stretching and folding in the vortex method 

is due to the short-wave instability. 

The regular pattern as seen in Figure 6.30 for the co-rotating vortex pair and the 

irregularity associated with the numer~cal filament configuration for the vortex ring (Figure 

6.31, Figure 6.32, and Figure 6.33) are due to the difference in the initial amplitudes of 

unstable modes. For the vortex pair, the initial perturbation is an unstable mode with a 

moderately small amplitude (10-2 ). Since the round-off error of double precision calculation 

is of the order of 10-15 ""' 10-16 , the finite initial amplitude of the perturbation mode makes 

it dominate over other unstable modes. So there is only one mode visible in Figure 6.30. In 

contrast to the vortex pair, for the vortex ring, the initial perturbation is zero. The unstable 

modes grow from the noise generated by the round-off errors. Due to the randomness of the 

noise and the fact that the unstable spectrum is a continuous region instead of a discrete set, 

the filament configuration consists of many unstable modes. Also, as the unstable modes 

grow, the evolution of these unstable modes is no longer simply the linear superposition of 

each mode's isolated evolution. Thus the irregularity of the filament configurations shown 
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in Figure 6.31, Figure 6.32, and Figure 6.33 is fully expected. 

Finally, we conclude this section with a summary. In this section we studied the 

occurrence of hairpin structures in three dimensional vortex methods and its relation to the 

short-wave instability. We have reached the following conclusions: 

• The wild stretching and folding of the numerical vortex filaments is primarily caused 

by the short-wave instability which occurs on a vortex filament surrounded by a co­

rotating vorticity field. 

• The ~ild stretching and folding occurs even if the initial configuration of the numerical 

vortex filaments is perfectly symmetric (such as vortex rings, straight lines, etc.) where 

it should not appear if we were using exact arithmetics. It is the round-off errors that 
c 

provide the starting amplitude for the unstable_ modes. 

• The wild stretching and folding is not caused by the ODE solver we use. It cannot be 

suppressed or reduced by using a smaller time step. 

• Due to the universal presence of the round-off errors, it_ is very difficult to prevent 

the unstable modes from starting. The exponential growth of the unstable modes 

cannot be suppressed or reduced by the refinement in spatial dimensions because the 

underlying short-wave instability is independent of the spatial discretization. 

• Currently Chorin's hairpin removal method [26], [28] is the only method which reg­

ulates the numerical filaments and enables us to continue the calculation after the 

appearance of hairpin structures. 
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Figure 6.24: Configuration of the numerical filaments obtained with single precision and 
dt = 0.04. 
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Figure 6.25: Two-dimensional views of the numerical filaments obtained in the single pre­
cision calculation. 
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Figure 6.26: Two-dimensional views of the numerical filaments obtained in the double 
precision calculation. 
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Figure 6.27: Numerical results obtained in single precision calculations using different time 
steps. 
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Figure 6.28: Numerical results obtained in the single precision calculation where Nzayer = 2, 
Nfilament = 19, 8 = 0.12 and dt = 0.04. 
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Figure 6.29: Numerical results obtained in the single precision calculation where Nzayer = 3, 
Ntilament = 37, 6 = 0.10 and dt = 0.04. 
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Figure 6.30: Two perspective views of one filament in a co-rotating vortex pair. 

Figure 6.31: Two perspective views of one filament in 7 numerical filaments which are used 
to represent the vortex ring. 

( 
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Figure 6.32: Two perspective views of one filament in 19 numerical filaments which are used 
to represent the vortex ring. 

Figure 6.33: Two perspective views of one filament in 37 numerical filaments which are used 
to represent the vortex ring. 
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Chapt.er 7 

Conclusions 

In this dissertation we have studied vortex methods and short wave instability on 

vortex filaments both analytically and numerically. 

With the thin tube vortex filament method we carried out simulations of the 

instability of vortex rings. We found that the results previously obtained by Knio and 

Ghoniem contain an artifact of the numerics; a sufficient refin~ment of the mesh generates 

different results. In particular, the neutrally stable (i.e. non-rotating and stable) wave found 

, in the previous study is inconsistent with Widnall's stability theory [96], [95], [97], according 

to which a wave is unstable when the self-induced rotation is balanced by the stagnation 

point flow induced by the ring. We found that the neutrally stable wave in the previous 

study is actually caused by the underresolved spatial mesh. With refined meshes, the wave is 

stable and rotates around the unperturbed axis of the vortex ring. Furthermore, contrary to 

the previous numerical study, on thin vortex rings the unstable mode does not grow without 

bound. Instead the unstable mode exhibits a periodic behavior in time and its maximum 

amplitude is bounded by a fraction of the core size. These numerical observations have 

been successfully explained using the dispersion relation for sinusoidal waves on a vortex 

filament with fixed core structure. Our theoretical analysis supports our numerical results. 

To fully understand vortex methods [3], [10], [18], [29], [75] [87], we performed a 

careful study of the numerical stability and accuracy of the vortex filament method. In this 

study, we analyzed the effect of ODE solver, time step, and spatial step on the numerical 

solution. On the basis of a theoretical analysis, we found that the classical four stage fourth 

order Runge-Kutta method is the best performer among the ODE solvers we studied and 

that the constraint on the time step size imposed by the numerical stability is given by 
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b.t ::; C ~ , where b.t is the time step, r is the circulation, 6 is the core size of the vortex 

filament and Cis a constant depending on the ODE solver and the cut-off function used in 

the vortex method discretization. This criterion for selecting the time step was confirmed 

in numerical simulations. 

We investigated the short wave instability on vortex filaments of fixed core struc­

ture. To do so, we first discussed the case of a co-rotating vortex pair and found that 

there are always unstable wave modes for a co-rotating vortex pair. We then studied the 

short wave instability on a single vortex filament with fixed core structure immersed in a 

co-rotating vorticity field, which is either continuous or discrete. Again, we found that short 

wave instability always occurs for a vortex filament surrounded by a co-rotating vorticity 

field. For a co-rotating vortex pair, when the separation between two filaments is compa­

rable with or smaller than the core size, the unstable modes grow without bound and the 

vortex filaments stretch violently. When the separation between two filaments is large in 

comparison with the core size, the unstable modes grow to a maximum amplitude, go back 

to where they started and repeat the cycle; the maximum amplitudes of the unstable modes 

are bounded by a small fraction of the core size and therefore are insignificant compared to 

the separation. Furthermore, the maximum growth rate of the unstable modes is propor­

tional to the circulation and inversely proportional to the square of the separation. Thus 

for a very thin and isolated vortex filament, the unstable modes grow slowly, and even if 

the unstable modes grow to their maximum amplitudes, it may be difficult to observe the 

unstable modes in experiments since their maximum amplitudes are bounded by a small 

fraction of the core size. 

As a direct application, our study of the short wave instability can be used to 

explain the smooth behavior of superfluid vortices. It is well-known that superfluid vortex 

filaments behave quite differently from the classical vortex filaments [31], [37], [38], [90]. In 

particular, classical vortex filaments stretch and fold wildly and form small scale structures, 

whereas superfluid vortex filaments evolve smoothly. It has been found experimentally that 

superfluid vortex filaments have a very small core size ( "' O(A) ) and have fixed core 

structures [37], [38], [90]. Thus the superfluid vortex filaments are far apart from each other 

in the sense that the inter-filament distance is much larger than the core size. Our study of 

the short wave instability revealed that when vortex filaments are far apart, the unstable 

modes are bounded by a small fraction of the core size and more importantly the unstable 
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modes do not cause the catastrophic stretching and folding. Therefore, the short wave 

instability is negligible for superfluid vortices. This may imply that the tiny core size of the 

superfluid vortex filaments is more important in accounting for their non-classical dynamics 

than the quantization of circulation. The different behavior of the superfluid vortices and 

classical vortices has been explained by Chorin [23], [27], [31], [30], with the use of statistical 

theories. Our study of the short wave instability supports Chorin's analysis from another 

point of view. 

The similarity between the filament configuration of a co-rotating vortex pair and 

the configuration of numerical vortex filaments leaded us to relate the phenomenon of 

wild stretching and folding of numerical vortex filaments to the short wave instability on 

a vortex filament surrounded by co-rotating vortex filaments. Our numerical simulations 

reveal that the wild stretching and folding of the numerical vortex filaments is primarily 

caused by the short wave instability which occurs on a vortex filament immersed in a co­

rotating vorticity field. The wild stretching and folding of the numerical vortex filaments 

is not due to numerical instability. It cannot be suppressed by reducing the time step 

size, using a more accurate ODE solver, or refining the spatial discretization. In numerical 

simulations, the wild stretching and folding causes the total number of vortex elements 

to grow exponentially, which makes simulations of long time behavior virtually impossible 

[11], [22]. Chorin's hairpin removal method [26], [28] is the only method which can keep 

the total number of vortex elements at a reasonable level by constantly removing the small 

scale structures from the calculation. 
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