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ABSTRACT OF THE THESIS 

 

Control and Steering of a Small 3D Printed Rover and its Applications to 
Engineering Education 

 

by 

 

Talesa Rene Bleything 

Master of Science in Engineering Sciences (Mechanical Engineering) 

University of California, San Diego, 2016 

Professor Thomas Bewley, Chair 

 

 This thesis presents both the control design used to stabilize a small rover 

on two wheels as a mobile inverted pendulum, as well as the steering design 

used to achieve a series of unique stable driving modes. Additionally, the rover 

is assessed as an educational platform for use in teaching various STEM topics 

at both the high school and undergraduate university levels. The vehicle, 

termed BeagleRover, uses four DC motors and four servo motors to 

independently steer each wheel and achieve a total of six different driving 

modes, four of which are inherently stable four-wheel drive modes while two 

are unstable two-wheel drives modes. Two of the four stable drive modes 
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implement Ackermann steering geometry to reduce side slip when driving 

around a turn. Experimental results using measurements from an onboard 

gyroscope suggest that side slip is indeed reduced by this method. Stability in 

the two unstable drive modes is achieved through classical control methods 

including lead and lag control. Complementary filtering of gyroscope and 

accelerometer measurements is used to derive accurate body position data 

for use in feedback. In support of current STEM education trends, this thesis 

provides a detailed solution set to the steering, control and filtering problems 

for potential use in STEM course material. 
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Chapter 1 Introduction 

 The purpose of this thesis is twofold. First, it is to apply classical and digital 

control theory to control a four-wheel steerable rover, referred to as 

BeagleRover, with the ultimate goal of achieving a unique combination of 

various four-wheel drive modes, two-wheel balance modes and the transition 

between four-wheel and two-wheel driving and back. BeagleRover is pictured 

in Figure 1.1. Second, it is to provide support material and lay groundwork for 

the design of Science, Technology, Engineering and Mathematics (STEM) 

curricula centered on BeagleRover and two other educational robots termed 

BeagleMiP, a miniature Segway-like mobile inverted pendulum, and 

BeagleMav, a small hexacopter. These three together comprise the EduLine, a 

line of educational robots designed for use in the classroom or as commercial 

products. The potential impact of this work lies mainly in furthering advances in 

engineering and other STEM fields by contributing to the advancement of 

science and engineering education. It will be demonstrated that BeagleRover 

is well positioned to further this advancement as an educational robotics 

platform. 

1.1 Research Motivation  

According to a recent study out of the Construction Engineering 

Department at the University of Central Florida, the number of students pursuing 

STEM disciplines in the United States has decreased by 18% over the last two 

decades, while the number of undergraduate students specifically pursuing 

engineering degrees continues to follow a decreasing trend [1]. Some 
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researchers believe the problem lies in attracting students to the field of 

engineering while others believe the bigger issue is retaining students 

throughout their studies and engaging them in the learning process, pointing to 

the fact that only 40% of students who choose STEM actually end up with a STEM 

degree [1]. Whether the root cause of the decline in STEM degrees is initial 

attraction or retention, it has educators motivated and a trend in the proposed 

solutions to this challenge has emerged. This trend can be quickly summarized 

as a transition away from traditional, lecture-based, instructor-focused 

classrooms toward more non-traditional, application-based, student-focused 

approaches where hands-on lessons are emphasized. Accordingly, this is 

creating the need for more educational platforms that can support these 

active learning, hands-on approaches.  

Traditional approaches are defined by an instructor-focused setting in 

which information transmission is the primary goal and students take a largely 

Figure 1.1: Image of the most current version of BeagleRover. 
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passive role. According to a literature review published in the Journal of 

Engineering Education in 2015, this results in surface learning approaches to 

studying and limited understanding [2]. In contrast, more and more evidence 

in the engineering and science education literature suggests a more student-

focused, active environment, in which students engage physically with the 

activity in some way, leads to a deeper approach to studying and more 

thorough understanding [2]. This can potentially result in the student feeling 

more successful and improving retention. Consequently, teachers are being 

increasingly encouraged to implement a more hands-on and active curriculum 

in various STEM fields at the high school and higher education levels, where 

active learning approaches become increasingly rare as courses are 

transitioned to traditional lecture based techniques [3]. It is this understanding 

of the push toward and the efficacy of active learning approaches that 

motivates the application of BeagleRover to STEM education. This paper 

presents the technical development of an engaging physical platform and 

accompanying support material that together make the building blocks for 

compelling hands-on and active learning curricula at both the high school and 

undergraduate levels.  

1.2 Research Scope 

As previously stated, the ultimate goal of this research is to further the 

field of engineering by developing an engaging, dynamic, educational 

robotics platform that can be used to encourage student involvement in 

various areas of science and engineering, ultimately leading to an associated 
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career. This has resulted in a multidisciplinary project, integrating technical 

development and implementation while consistently documenting and 

designing from the educational perspective. The technical development of 

BeagleRover was accomplished using classical and digital control techniques, 

implemented exclusively in a multithreaded c-programming environment. 

These techniques were applied to an existing mechanical design, small 

changes being suggested along the way as the use case became more and 

more clear.  

The major technical additions to a system previously capable of driving 

on four wheels in four simple drive modes include implementation of 

Ackermann steering geometry, control design to achieve balancing and 

driving on two wheels and the transition between driving on four wheels to 

driving on two wheels. The peak result being the ability of the vehicle to drive 

“up the wall,” with sufficient friction between the tires and ground, in order to 

upright itself and drive away from the wall while balancing indefinitely on two 

wheels. This work provides the steering solution as well as the balance control 

solution for the maneuvers listed above. Additionally, switching from the use of 

Euler angles to implementation of a complementary filter for accurate state 

estimation is explained. 

 From the educational perspective, almost no support material written 

exclusively for teaching a dispersible course or lesson around the EduLine 

existed prior to the formal initiation of this thesis work. A major contribution of 

this work is a text we are currently calling BeagleBone Robotics (BBR), designed 
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to serve as the lab text for MAE 143C, Digital Control Systems, taught at UCSD 

and centering on BeagleMiP. BeagleBone Robotics is a three-part text. The first 

two parts include instructions for getting started with the hardware, robot 

assembly, and recommended homework exercises and solutions that range 

from getting started in Linux to PCB design using the free software Eagle. The 

third part is dedicated to control design. Currently the control design portion is 

written based on BeagleRover, as control design and implementation for the 

second robot in the EduLine family is the main technical focus of this paper.  

1.3 Thesis Outline  

 This thesis is split into two parts in order to best illustrate its dual nature. 

Chapter two discusses related work while chapters three, four and five are 

mostly quantitative, dedicated to the technical development and 

implementation of the control and steering solutions. Chapters six and seven 

present the support material developed around the EduLine as a result of this 

thesis work. Chapters six and seven will be referred to as part two while chapters 

three, four and five will be referred to as part one. Chapters three, four and five 

also contain additional information and derivations that are not currently 

included in the support material but will be useful as such in the future.  

 Part one begins by explaining the steering mechanism used, although it 

should be made clear that the mechanical design existed prior to this work. The 

four different stable drive modes currently implemented on BeagleRover are 

then explained, demonstrating the highly engaging nature of the vehicle. This 

is followed by an explanation of Ackermann steering geometry which is 
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implemented in order to achieve a more efficient and maneuverable vehicle 

as well as to provide material that can be used in high school level coursework. 

 Following the discussion of the steering mechanism used and the 

different stable drive modes is the control solution for balancing BeagleRover 

on two wheels in its unstable drive mode. The control solution is the main 

theoretical focus of this paper. This section is mirrored in chapter six, where the 

theoretical portion of BeagleBone Robotics is presented, which is one of the 

primary contributions of this thesis work. Chapter six makes up the bulk of part 

two of this paper and is written to serve as a detailed solution set for the mobile 

inverted pendulum problem as taught in UCSD's Digital Control course, 

MAE143C.  

 The final chapter of part one details implementation of the steering and 

control solution in hardware and discusses BeagleRover's most dynamic 

maneuver, the transition between driving on four wheels to balancing on two 

wheels by driving up a wall. Finally, suggestions for future work and conclusions 

are given in chapters eight and nine respectively. The application of 

BeagleRover and the EduLine as a whole to high school level curricula is left to 

future work and as such is discussed in the future works section.
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Chapter 2 Related Work 

2.1 Current Trends in Science and Engineering Education 

 This section is not intended to be a comprehensive literature review of 

science and engineering education in itself but rather to highlight some 

meaningful examples of recent advancements in non-traditional classroom 

settings and set the stage for how BeagleRover may fit into these trends. 

However, all of the examples cited in section 2.1 have conducted 

comprehensive literature reviews and or specific case studies and therefor 

provide useful insight into how BeagleRover, and by extension the EduLine as a 

whole, may contribute to the advancement of engineering education. To this 

end, three example studies will be highlighted. 

2.1.1 Example One: Flipped Classroom Model 

There has recently been a surge in the popularity of the flipped, or 

inverted, classroom model [2]. The flipped classroom model is one in which 

technical knowledge is gained primarily through online videos prepared by the 

instructor and class time is used for problem solving through peer interaction, 

during which the instructor acts primarily as a guide. As opposed to the 

traditional classroom lecture model, the goal of the flipped classroom model is 

to free up class time for hands-on work and application of theory to real world 

problems.  

In a study conducted by Butler, Zappe and Mahoney (2015), data from 

a comprehensive literature review on the current use of the flipped classroom 
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model in engineering education is inconclusive when using exam scores as the 

metric by which to measure success. Empirical evidence from a case study 

across three semesters of an undergraduate environmental engineering course 

(80-90 students per semester), during which the transition is made from a 

traditional lecture based format through two iterations of a flipped classroom 

design, similarly reports no significant improvement in cumulative exam scores. 

However, the students report a much higher satisfaction with the course via a 

student survey and 77% of students who engaged in version two of the flipped 

course agree that they would rather take a flipped course with the same 

instructor than a traditional course [2]. 

2.1.2 Example 2: Active Learning in a High School Pre-Calculus Course 

As part of a National Science Foundation STEM grant, entitled Science 

and Technology Enhancement Program (Project STEP), graduate engineering 

students from the University of Cincinnati joined high school classrooms for 10 

hours a week for the duration of a full academic year (Project STEP 2010). Under 

Project STEP, the graduate students created interactive, project-based high 

school lesson plans, meeting state science and math standards. The goal was 

to increase interest in STEM fields, stating that strong academic preparation in 

high school is more likely to lead to STEM degree completion [3].  

The lesson of focus here, Shaking Up Pre-Calculus, written and led by 

Chelsea Sabo, a Robotics Postdoctoral Researcher at the University of Sheffield 

in the UK, teaches high school pre-calculus concepts using a miniature shake 

table. Students build structures to test using KNEX and analyze data using a Go! 
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Motion Sensor. The students were given pre and post assessments containing 

identical questions in order to assess whether or not the students learned the 

material. The results showed roughly 30% to 80% improvement on all questions 

from beginning of the class to end of the class, suggesting the material was 

successfully delivered. 

Additionally, students were given feedback forms in order to get a 

clearer picture of the impact of Shaking Up Pre-Calculus. Results of this survey 

show that approximately 70% of students responded favorably to the question 

of whether or not the lesson made them want to learn more about engineering. 

Results were similar for increasing confidence in science and math. All three of 

these results were similar to those of the same survey conducted in year two of 

the course. 

2.1.3 Example 3: MIT Introduces the Maker Portfolio 

As of 2014, MIT Admissions began accepting a “maker portfolio” as an 

equally weighted part of their admissions process. In a white paper prepared 

by MIT Admissions for the inaugural White House Maker Fair in 2014 [4, 5], the 

maker portfolio is described as “a powerful tool for helping admissions officers 

to identify, understand, evaluate and admit exceptionally skilled applicants 

whom a conventional selective admissions process might undervalue or 

“overlook altogether” [4]. An official decision by one of the leading tech 

universities in the country to value conventional assessment methods equally 

with “high maker potential” represents a profound paradigm shift toward the 

formal acceptance of non-traditional approaches to technical education. 
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Other universities may begin to follow suit, potentially widening the market for 

platforms such as BeagleRover that can be used in the high school STEM 

classroom, especially in a flipped classroom type of model.  

2.2 Educational Robotics    

Robotics construction kits designed for education have an 

approximately 50-60 year old history, arguably beginning with the Logo 

programming language developed by Seymour Papert in 1967 and the 

associated programmable Turtle robots [6, 7, 8, 9]. Since this introductory step, 

robotics in education has been ever increasing in popularity. This is especially 

true within the past couple decades as computation has continued to become 

cheaper and cheaper, enabling programmable robotics platforms to reach a 

wide range of classrooms and schools [9, 10]. This has led to what’s been 

termed a “robotic revolution” [9]. Accordingly, a multitude of robotics platforms 

marketed as educational exist today, some more legitimate than others. If the 

EduLine is to become a viable educational platform, an understanding of 

successful educational robotics platforms is a must. An overview of several of 

these platforms is given next.  

2.2.1 FIRST Robotics 

For Inspiration and Recognition of Science and Technology (FIRST) is a 

not-for-profit public charity youth organization specializing in robotics 

education. The mission of FIRST is to inspire youth to become science and 

technology leaders by engaging kids from kindergarten to high school in 

mentor-based robotics programs [11]. Reaching over 400,000 students in 2015-
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2016, FIRST is widely recognized as the “leading not-for-profit STEM engagement 

program for kids worldwide” [11, 12].  

 The FIRST program is competition based and is most well-known for its 

flagship competition, FIRST Robotics. FIRST Robotics Competition (FRC) is for high 

school students grades 9-12 and is the FIRST program that is most comparable 

to the skill set potentially taught at this level by the EduLine, specifically 

BeagleRover. In order to participate in FIRST Robotics, a student must be part of 

a team of at least 10 and must be willing to commit to demanding time 

requirements as the program is designed to operate in an afterschool setting, 

similar to a school sports team. The season last between six weeks and four 

months depending on how far a team advances in the competition [13]. The 

cost per team is anywhere from 5,000.00$ - 6,000.00$ plus travel, food and team 

shirts, with costs naturally increasing as teams stay in the competition longer 

[14]. Although FIRST offers resources to help teams with funding, the number one 

concern of team leaders is affordability, according to a study conducted by 

Brandeis University [15]. 

 The competition itself requires a range of skill sets both technical and 

non-technical, and students need not have any prior experience to participate 

[13]. Teams receive a standard kit of parts that includes the mechanical and 

electrical components necessary to build that year’s robots. The robots are 

industrial sized requiring access to a large space and a variety of machine shop 

power tools [13]. The students are responsible for the mechanical design as well 

as the programing of the robots in order successfully perform in a variety of field 
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games. The current hardware used centers around the roboRIO from National 

Instruments, a student robotics controller designed specifically with FRC in mind 

that combines a Xilinx FPGA and dual-core ARM Cortex-A9 processor. It can be 

programmed using LabVIEW graphical programming tools or C text based 

language [16]. Both the reconfigurable I/O architecture (RIO), LabVIEW 

software and C are used in industry for a range of applications and give 

students the opportunity to work with professional grade tools.  

2.2.2 Lego Mindstorms 

Lego Mindstorms Education EV3 is Lego’s most current solution to 

teaching STEM concepts in the classroom. Unlike FISRT Robotics, the Lego 

Mindstorms EV3 approach is designed to be implemented during the regular 

school day and is aligned with Common Core State Standards and Next 

Generation Science Standards [17]. Educators can choose between three 

different packages which include the EV3 Core Solution, EV3 Curriculum 

Solution and EV3 Comprehensive Solution. All packages can teach a range of 

classroom sizes and come with the same hardware and software. The 

differences lies in the curriculum support that is provided. The Core Solution 

includes no curriculum while the Curriculum Solution comes with the EV3 Design 

Engineering Projects Curriculum which includes lesson plans and over 30 hours 

of instruction [17, 18]. The most in depth option is the EV3 Comprehensive 

solution which includes the EV3 Design Engineering Projects Curriculum, EV3 

Science Curriculum and EV3 Coding Activities, all of which are supported by C-

STEM curriculum (explained further below) and include lesson plans at varying 
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numbers of total teaching hours [19]. For a classroom of 30 students, the kits cost 

5,999.95$, 6,299.95$ and 10,499.95$ in order of increasing value of the 

curriculum as listed above, and are designed to provide one set of hardware 

and software per every two students [17, 18, 19].  

 The hardware provided with all variants of the Lego Mindstorms 

Education EV3 kits includes a range of common sensors, motors, battery, 

cables, build instructions, Lego Technic building bricks and the EV3 intelligent 

brick. The combination of the EV3 brick, which is built around a 32-bit Arm9 

processor and a Linux based operating system, with Lego Technic building 

bricks allows for many different types of robots to be built within this one system 

[20]. The programming environment is designed to follow a drag and drop 

paradigm and is based on LabVIEW. Although a historically limited 

programming environment, the Mindstorms EV3 can be programmed using 

standard industry and college level tools such as C and Java [21, 22].  

 The focus of the Mindstorms EV3 program is at the k-12 level, especially 

the pre, elementary and middle school levels, as that is the level of study that 

the provided EV3 curricula address (FIRST Lego League for elementary school 

students uses Lego Mindstorms technology). That being so, there is room for use 

of the platform at undergraduate college levels and there are many examples 

of this being done [21, 22, 23, 24, 25]. Out of these examples, few exhibit the use 

of Lego Mindstorms as a powerful teaching tool for advanced college 

coursework, with many more pointing to the utility of the platform for teaching 

freshman level introductory computer science and engineering courses [21, 22, 
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23, 25]. One study out of Iowa State University reported great success with using 

Lego Mindstorms for an introductory computer science course for non-majors, 

but declining success even at the programming I level, with failure at the 

programming II level, leading the author to conclude that the Mindstorms 

platform is only viable for a few courses [24]. Limitations for use at the college 

level are reported elsewhere as well, pointing to technical limitations as well as 

student opinion on the effectiveness of the platform at teaching certain 

concepts [21, 24].  

2.2.3 C-STEM and Linkbots 

 Computing, Science, Technology, Engineering and Mathematics (C-

STEM) is a program that focuses on STEM education at the K-14 grade levels 

through the use of computing and robotics. It comes out of the UC Davis Center 

for Integrated Computing and STEM Education started by Dr. Harry H. Cheng, 

professor in the Mechanical and Aerospace Engineering Department at UC 

Davis. Although lacking the same name recognition as FIRST and Lego 

Mindstorms, millions of dollars in grants and funding from the National Science 

Foundation (NSF) and California Department of Education has been allocated 

to the center to continue their research into how integrated computing and 

robotics STEM education in formal and non-formal settings affects student 

engagement and learning, especially in underrepresented and at-risk groups 

[26]. C-STEM curriculum aligns with Common Core State Standards and Career 

and Technical Education Standards and is a UC approved educational 

preparation program, a category on all UC college application forms [26, 27]. 
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At the high school level, C-STEM holds A-G program status which satisfies 

UC/CSU admission requirements [28]. 

 Not all C-STEM curricula require use of the robotics platform, but it is 

made optional for all courses. The robotics platform used is Linkbot by Barobo, 

an educational robotics company co-founded by Dr. Harry Cheng and one of 

his graduate students, and is designed for use with C-STEM curricula [29, 30]. 

Linkbots are modular robots with two degrees of freedom that can be snapped 

together to create different systems. These bots are designed to allow anyone 

to begin working with robots out of the box while providing a research grade 

platform simultaneously [30, 31]. Each Linkbot is a mobile robot in itself with two 

rotating face plates, an on board three-axis accelerometer and rechargeable 

lithium-ion battery [32]. Many additional sensors are available, as well as freely 

available CAD files for extending the mechanical design, including an 

accompanying Computer Aided Design and 3D printing curriculum [32].  

 The C-STEM curriculum centers on the C-STEM Studio software and Ch, a 

C/C++ interpreter created by Dr. Harry Chang [33]. C-STEM Studio is a software 

platform that integrates Ch, Linkbot Labs, Ch Linkbot Controller, Ch Mindstorms 

Package and Robot Controller for Lego Mindstorms NXT/EV3, RoboSim, 

RoboBlockly and ChDuino [34]. RoboBlockly and ChDuino are both C-STEM 

designed graphical user interfaces for Ch and Arduino respectively. C-STEM 

Studio is claimed to be the “only program in existence that can control Linkbots, 

NXT and EV3 in a single program with only a few lines of C/C++ code” [34]. The 

primary goal of Ch and C-STEM Studio within the C-STEM curriculum is to teach 
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computing and STEM concepts through introductory C/C++ programming 

concepts and robotics. Research into the effectiveness of the C-STEM 

educational platform in teaching computing and STEM concepts and or 

engaging students in further scientific studies is still underway.   

 At first glance the C-STEM program seems very accessible in terms of cost 

as the C-STEM Studio software and RoboBlockly are both free of charge, while 

the Ch software package only costs 300$ [35]. However the complete picture 

of the C-STEM model reveals that it is much more of a commitment for a school 

to start a C-STEM program. The main reason for this is that a school must 

become a “C-STEM school” before classrooms can gain access to the full 

curriculum. Becoming a C-STEM school costs an annual subscription of 600.00$-

1,000.00$ and requires teacher training that ranges anywhere from 3,000.00$-

15,000.00$ [35]. What’s more, including the robotics package for 32 students 

adds another 5,599.00$ plus C-STEM textbooks at 20.00$-50.00$ each sold in sets 

of 25 copies or more [35]. If the primary concern of schools participating in FIRST 

robotics is cost, then the cost to initiate a C-STEM program will most certainly be 

a concern and a barrier for many schools as well.  

2.3 Conclusions 

 The three programs discussed above, FIRST Robotics, Lego Mindstorms 

and C-STEM differ in their approaches to reaching students. FIRST Robotics is 

solidified in the after school realm while Lego Mindstorms and C-STEM both align 

with Common Core State Standards for integration into the traditional school 

day curriculum. While Lego Mindstorms and C-STEM have this in common, C-
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STEM requires teacher training and a school-wide adoption of the program 

rather than the more class by class approach of Lego Mindstorms. Additionally, 

C-STEM has a focus on underserved schools and at-risk students. In terms of 

group activity, FIRST Robotics is heavily group work focused, providing a single 

parts kit per team, while the Lego Mindstorms program is designed to provide a 

robotics kit for every two students. C-STEM programs are designed to provide a 

robotics kit to each individual student although group work is encouraged.  

Although differing in their approaches to reaching students, all of these 

programs have some key things in common. First, they are all fairly expensive to 

implement. Second, they are all primarily focused on and marketed toward 

absolute beginners to programming and robotics. This is true for the skill level of 

the students as well as the teachers and mentors that would be implementing 

the programs. Although some work has been done with Mindstorms at the 

college level, most of the evidence leans toward it not being effective beyond 

the most introductory courses. All of these platforms attempt to introduce 

students to professional grade tools (as will the EduLine), however none of them 

have a truly clear path from high school level curriculum to more advanced 

college level work contained within the platforms themselves. There is potential 

for the EduLine to fill this gap. This paper will in part show that the addition of 

EduRover to the EduLine family provides the opportunity to teach high school 

level STEM concepts while clearly demonstrating the bridge to advanced 

college level study that is necessary to fully master the concepts introduced by 

EduMiP. This can potentially inspire students to continue the pursuit of STEM 
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disciplines, especially engineering degrees, into college.  

 Another similarity of FIRST Robotics, Lego Mindstorms and C-STEM is the 

high cost of implementation. As the EduLine is still in its nascent stages as far as 

development of a formal curriculum is concerned, it remains to be seen how 

expensive it will be to implement on a per classroom basis. However, based on 

the costs outlined for the above programs, there is opportunity for the EduLine 

to affect a great number of students by offering an economically lower tier 

solution at the high school level. As BeagleRover is based on the 35.00$ 

BeagleBone Black, and in turn supported by the open source Linux community, 

while also being almost completely 3D printable, offering a lower cost 

educational robotics solution is highly possible. And if achieved will thereby 

increase the accessibility to schools. What’s more, for the same reasons, it is 

promising that each student in a classroom could be provided the opportunity 

to work with their own robot through the EduLine while still being more 

economically viable than FIRST, Mindstorms or C-STEM. The potential impact of 

working on shared robots being lowering the hands-on engineering work done 

by each individual student and their sense of accomplishment at the end of a 

course. 

 It should also be noted that BeagleRover is a very unique physical 

platform. The author was unable to find anything really comparable, 

educational or otherwise, to a vehicle equipped with a similar four-wheel 

steering mechanism that can also balance on two wheels as well as transition 

between four-wheel and two-wheel driving via remote control. The closest 
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platform found was an MS thesis project out of the MAE department at UC Irvine 

that addresses vehicle rollover through control experiments done on an RC car 

[36]. The vehicle presented in this study can temporarily balance on two wheels 

as well as transition between four and two-wheel modes using a prop but does 

not possess four-wheel steering capability. The goal of this project was to gain 

insight into controlling a vehicle during rollover by balancing it on its two side 

wheels in the event that rollover occurs, not to create a vehicle designed to be 

intentionally driven on two wheels. And as such the platforms are dynamically 

very different. A couple other platforms were discovered that present a four-

wheeled vehicle capable of balancing on two wheels however they do not 

have nearly the dynamic range of BeagleRover and do not warrant further 

discussion here [37, 38]. The uniqueness of BeagleRover contributes to its innate 

appeal, potentially setting it apart from the other educational robotics 

platforms discussed in this section in its ability to attract and engage students in 

STEM curriculum. 
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Chapter 3 BeagleRover Steering 

 The basic goal of steering any vehicle or vessel is to achieve travel in the 

desired direction and the types of steering mechanisms and methodologies are 

numerous. Four wheeled ground vehicles such as BeagleRover determine the 

direction of travel by proper angling of the wheels, as opposed to tracked 

vehicles, for example, that use differential steering to induce change in 

direction. In commercial passenger vehicles this is done with a series of gears, 

rods, linkages and pivots that make up the steering mechanism [39]. The wheels 

are turned using a manually operated steering wheel placed in front of the 

driver via the steering column [40]. Remotely controlled four wheeled land 

vehicles have become very developed and sophisticated and often mimic 

various steering designs of commercial vehicles, in many cases mirroring the 

functional and structural capabilities thereof [41]. BeagleRover's steering 

mechanism is greatly simplified in comparison. 

 Rather than the common axle based design, BeagleRover has a 

servomotor attached to each wheel via a four-bar linkage mechanism, 

enabling active four-wheel steering with the ability to turn each wheel 

completely independently of the other three. The ability to independently drive 

and steer all four wheels is commonly known as “swerve-drive” within the FIRST 

Robotics Competition community [42]. The linkage mechanism is visible in Figure 

3.1. The chassis is designed to allow each wheel to rotate a total of 120° while 

maintaining its contact patch in line with the pivot point of the motor. This 

steering design allows for much flexibility and various different modes of driving, 



21 

 

resulting in a very dynamic and engaging platform. The different drive modes 

will be illustrated in section 3.3. Additions of this work to a preexisting 

mechanical design include implementation of active four wheel steering and 

Ackermann steering, both of which will be discussed in the following sections. 

Both features are implemented in software.  

3.1 Active Four Wheel Steering 

 Active four wheel steering describes a steering methodology in which all 

four wheels turn simultaneously given a single steering input from the driver [43]. 

In many commercial passenger vehicles with four wheel active steer, the front 

two wheels are controlled manually by the driver via the steering wheel while 

the rear two wheels are controlled by a computer and actuators [40, 44]. 

Having two control inputs to steer the front and rear wheels independently 

allows for the optimization of both yawing of the vehicle and lateral motion, 

resulting in higher maneuverability at low speeds and greater stability at high 

speeds [43]. Higher maneuverability is accomplished at low speeds by turning 

Figure 3.1: Close up of four bar steering mechanism. 
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the rear wheels out of phase with the front wheels, thereby decreasing the 

turning radius of the vehicle. Conversely, applying in phase rotation at high 

speeds decreases yaw rotation and increases lateral stability [43, 44, 45, 46]. 

Many high performance vehicles today employ active four wheel steering [40]. 

In phase rotation and out of phase rotation of the wheels is demonstrated by 

BeagleRover in Figure 3.2. 

Optimizing performance of active four wheel steerable vehicles relies on 

advanced dynamics and mathematics and results in the front and rear wheels 

being turned at different angles based on a number of factors. These factors 

include vehicle speed, steering angle and states of the system among others 

[46]. As an educational platform, BeagleRover is not designed for optimum 

performance and is not intended to be a high precision vehicle. Therefore 

active four wheel steering is demonstrated by toggling between different drive 

modes, where each mode either features in phase turning of the front and rear 

Figure 3.2: BeagleRover showing out of phase alignment of the wheels on the left and 
in phase alignment on the right. In the left image, the front wheels are rotated 
clockwise while the rear wheels are rotated counterclockwise. This is opposed to the 
right image where all wheels are rotated clockwise. 
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wheels or out of phase turning. It is not speed dependent. This allows the user 

to experiment with both methods at low or high speeds, comparing the 

performance of each, which is a useful educational skew.  

With four control inputs, one servo motor independently controlling each 

wheel, BeagleRover is capable of maintaining its simplified design while still 

achieving high maneuverability and providing an introduction to many of the 

advanced techniques and concepts used in commercial and competition 

vehicles. One such technique employed on BeagleRover in addition to active 

four wheel steering is Ackermann steering geometry, which will be described 

next. 

3.2 Ackermann Steering Geometry 

 Ackermann steering geometry was patented in 1818 by Rudolph 

Ackermann [47]. It is a very well-known and well used concept with ample 

support material available to aid in understanding. Although implementation 

can become complex quickly, it is a very simple concept at its core and 

presents a great teaching platform for high school level geometry, trigonometry 

and related concepts. The goal of Ackermann geometry is to prevent slide slip 

of the wheels when going around a turn, preventing loss of energy in the 

direction perpendicular to motion as well as unnecessary wear and tear to the 

vehicle. The geometric solution to this is to have all four wheels rolling around a 

common point during a turn, each maintaining motion in the direction 

tangential to the circle created by connecting the center of curvature to the 

contact point of that wheel. The different circles traced by the inner and outer 
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wheels of a four-wheeled vehicle are shown in Figure 3.3, illustrating the need 

for different angles of rotation. 

 Ackermann geometry is implemented many different ways for different 

steering designs. The goal for any vehicle implementing Ackermann steering is 

to have all wheels rolling around a common center point as shown in Figure 3.3. 

In front wheel steering vehicles, this common point is determined by the rear 

wheels as that is the limiting factor. On BeagleRover, all four wheels turn 

independently of each other so the common point is aligned with the center 

of the wheel base allowing for a much tighter turn radius. The comparison is 

shown in Figure 3.4. 

 Because all four wheels on BeagleRover are controlled completely 

independently, it is possible to map user input from the DSM2 radio directly to 

inner or outer wheel turn angle. It seems most intuitive from the user perspective 

to have the user turn input be mapped to the turn angle of the inner wheel. It 

was determined through experimentation that this gives the "expected" 

response from the vehicle. The amount of turn of the outer wheel is then 

Figure 3.3: Ackermann steering geometry showing difference in radii between the 
circle traced by the inner wheel and the circle traced by the outer wheel in a right 
hand turn. 
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calculated based on Ackermann geometry. Referring to Figure 3.3, define the 

following constants: 

�� = ����� �� �������� �� �����  ℎ���, 

�# = ����� �� �������� �� �$���  ℎ���, 

%& = ���'(  �)�ℎ, 

*+ =  ℎ���,���, 

- = )�����'� ���. '����� �� '$�/��$�� �� '����� �� /�ℎ�'��. 

The quantities ��, %& and *+ are known, where �� is the user input turn value 

from the DSM2 radio. Assuming pure rotation about the joint center of 

curvature, R and ultimately �#can be calculated based on these values. Using 

the triangles depicted in Figure 3.5 and some basic trigonometry, we can 

solve for R using equation 3.1, plugging that value into equation 3.2 to 

ultimately solve for �#. 

 

tan(θ4) =  
W6
2

R − T:
2

 

(3.1) 

 

tan(θ;) =  
W6
2

R + T:
2

 

(3.2) 

Figure 3.4: Comparing minimum turn radii of four wheel steering (left) vs. front wheel 
steering (right) on the same vehicle. Consider the front inner wheel in each drawing to 
be turned the maximum number of degrees as limited by the mechanical design. In 
the case of BeagleRover the maximum turn of the inner wheels is 17.5° before contact 
is made with the chassis.  
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Equations 3.1 and 3.2 represent what is known as ideal Ackermann 

steering geometry [39]. In theory, this ideal is achievable by BeagleRover due 

to its simplified steering mechanism. Because all four wheels are mechanically 

independent of each other and controlled in software, there is nothing 

mechanically limiting the rotation angle of the outer wheel from complying with 

the ideal Ackermann steering criteria based on the rotation angle of the inner 

wheel. However, some inaccuracies are expected in practice due mainly to 

imperfections of 3D printed parts and by hand assembly. Servo resolution could 

also be a factor. Note �� refers to the angle of rotation of both inner wheels and 

accordingly �# refers to the angle of rotation of both outer wheels. The angles 

of the front wheels mirroring those of the rear wheels theoretically allows for the 

shortest turn radius possible when implementing ideal Ackermann geometry. 

The turn radius would eventually be limited by the four-bar linkage mechanism 

that attaches each servomotor to each wheel, however the wheels make 

contact with the vehicle chassis before the threshold of the four-bar linkage is 

reached.  

As stated previously, implementation of four-wheel steering and 

Ackermann steering geometry quickly becomes very complex when 

attempting to optimize commercial and professional vehicle performance. 

However it has been demonstrated that through simplified versions of these 

techniques BeagleRover could be used to teach high school level 

mathematical concepts. This platform also enables many different hands on 

experiments through leveraging the on-board sensors of the Robotics Cape. 
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Such hands on experiments can be powerful in reinforcing theoretical concepts 

learned as well as potentially increase student engagement and interest in 

STEM [3]. Results of a few such experiments that would be accessible at the high 

school level are given in figures 3.5 through 3.8. See the figure captions for 

detailed descriptions of the experiments. 

When looking at Figure 3.5 and Figure 3.6, notice the significant 

difference in amplitude range. Figure 3.6 displays much more dramatic peaks 

as compared to Figure 3.5, suggesting a potential increase in side slip of the 

vehicle without the implementation of Ackermann geometry. There also seems 

to be a low frequency component that is more pronounced in Figure 3.6 than 

in Figure 3.5. This could also suggest the presence of more side slip as the back 

tires periodically lose traction and recover. A more detailed analysis is required 

to prove that is the case, however the qualitative analysis shows clearly that 

Ackermann geometry changes the behavior of the vehicle. This gives tangible 

feedback to any student having previously studied the mathematical concepts 

used in implementation of ideal Ackermann steering geometry. These same 

results were reproduced with a wider turn radius in Figures 3.7 and 3.8. There are 

many, many more similar experiments that could be done with BeagleRover to 

compliment high school level curricula. 

3.3 Drive Modes 

Enabled by the independent four wheel steering design, four different 

stable driving modes are currently implemented on BeagleRover: normal four 

wheel steer, lane change, crab and spin. Ackermann steering geometry, as  
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Figure 3.5: This plot shows the rotation rate about the z-axis of the gyroscope in radians 
per second through one full counterclockwise rotation of the vehicle with Ackermann 
geometry implemented. The motors were driven at 30% duty cycle as the vehicle 
traced out a circle of radius ≈0.318 m on a hard wood floor.  
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Figure 3.6: This plot shows the rotation rate about the z-axis of the gyroscope in radians 
per second through one full counterclockwise rotation of the vehicle without 

Ackermann geometry implemented. The motors were driven at 30% duty cycle as the 
vehicle traced out a circle of radius ≈0.318 m on a hard wood floor.  
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Figure 3.7: This plot shows the rotation rate about the z-axis of the gyroscope in radians 

per second through one full counterclockwise rotation of the vehicle with Ackermann 
geometry implemented. The motors were driven at 30% duty cycle as the vehicle 
traced out a circle of radius ≈0.481 m on a hard wood floor. This is a 51.2% wider turn 
than depicted in figures 3-5 and 3-6.  
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Figure 3.8: This plot shows the rotation rate about the z-axis of the gyroscope in radians 
per second through one full counterclockwise rotation of the vehicle without 
Ackermann geometry implemented. The motors were driven at 30% duty cycle as the 
vehicle traced out a circle of radius ≈0.481 m on a hard wood floor. This is a 51.2% wider 

turn than depicted in Figures 3-5 and 3-6. The comparison of Figures 3-7 and 3-8 shows 
similar results as that of Figures 3-5 and 3-6.  
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described in the above section, is implemented in normal and crab modes. In 

addition to these four stable modes of driving, BeagleRover is also capable of 

driving on two wheels in an unstable configuration called balance mode, 

which is the focus of chapter three. The vehicle is controlled with a DSM2 RC 

radio, using the two switches available to select between the four different 

drive modes. Other drive modes could be implemented, such as front wheel 

steering (two wheel steering) or steering without Ackermann, however another 

user input switch on the DSM2 radio would be required. Both of these additional 

modes present valuable educational skews, the latter of which is implemented 

in a separate example program included in the Robotics Cape codebase 

(discussed in detail in chapter four). 

 In normal four wheel steer mode, all four wheels face forward in a neutral 

position and the vehicle drives as would be expected. There is an arrow carved 

out of the chassis on the front of the vehicle to mark which direction is forward. 

When turning in normal mode, both inside wheels will rotate the same number 

of degrees according to user input, but out of phase with each other. In other 

words, the front inside wheel on a left hand turn will rotate counterclockwise 

from the user perspective and the rear inside wheel will rotate clockwise from 

the user perspective. The outer wheels will follow the same pattern, the front 

wheel rotating counterclockwise and the rear rotating the same number of 

degrees clockwise. The outer wheels will rotate the number of degrees 

calculated according to Ackermann steering geometry. The inner wheels can 

rotate a maximum of 17.5° before making contact with the body of the vehicle, 
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making for a minimum turn radius of ≈0. 28 m. Normal four wheel steer mode 

with zero steering input is pictured in Figure 3.9. 

Crab mode operates exactly as normal four wheel steering mode, the 

inner wheels rotating according to user input and the outer wheels rotating 

based on the inner wheels and according to Ackermann steering geometry. In 

neutral position, the wheels are rotated either clockwise or counterclockwise 

by 90 degrees from normal mode and the "front" of the vehicle is now 

considered to be the Ethernet port side of the BeagleBone Black. This is also 

pictured in Figure 3.9. The maximum number of degrees the inner wheels can 

turn before making contact with the body of the vehicle is ≈12.5°, resulting in a 

wider minimum turn radius of 0.44 m.  

One of the most fun drive modes BeagleRover displays is lane change 

mode or what is actually referred to as "crab" steering in the automotive industry 

(not to be confused with the definition of crab mode in this paper) [40]. As 

discussed in section 3.1 on active four wheel steering, many high performance 

Figure 3.9: BeagleRover pictured in its Normal drive mode on the left and Crab drive 
mode on the right. 
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vehicles employ this technique when turning or changing lanes at high speeds 

(hence why it is called "lane change mode" here) to improve stability of the 

vehicle. However this technique is not only used for improved handling. It is also 

found on vehicles where angled lateral translation is required such as camera 

dollies, and on many farm equipment vehicles to avoid unnecessary soil 

compaction [40]. As with normal mode, the maximum rotation angle of the 

wheels is 17.5° as limited by contact with the vehicle chassis. Therefore the 

maximum angle at which the vehicle can translate is 17.5° from straight. Lane 

change mode is pictured in Figure 3.10. 

 Last of the stable drive modes is spin mode. In spin mode, all wheels turn 

54.78° so that the center of curvature of all wheels intersect at exactly the 

intersection of the two lines of symmetry of the chassis, aka its central axis. 

Therefore, the vehicle should spin in place exactly around this point, allowing 

for maneuvering in very tight spaces. In reality, the vehicle comes close to doing 

so but there is a slight amount of translation. This is likely caused by imperfections 

Figure 3.10: BeagleRover pictured in Lane Change drive mode on the left and Spin 
drive mode on the right. 
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due to 3D printed parts and or imprecise servos. Spin mode is pictured in Figure 

3.10. Discussion of balance mode is left to the following chapter on control 

design.
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Chapter 4 Control Design 

This chapter will provide a solution to balancing the Beagle Rover on two 

wheels from the modeling and control design perspective. Originally, this 

chapter was written to be a detailed solution set for the mobile inverted 

pendulum problem as taught in UCSD’s MAE143C, complete with all necessary 

derivations, and to be included in BeagleBone Robotics as a portion of a 

curriculum capable of distribution to other universities. That version of the 

control solution is presented in chapter six and is considered by the author to 

be one of the major contributions of this work. Here in chapter three however, 

the control solution will be presented in a fashion more traditional for a 

technical paper. Derivation of the dynamics describing the motion of Beagle 

Rover in balance mode is left to chapter six as that derivation is a detailed and 

slightly elaborated inclusion of the derivation previously done for BeagleMiP 

outside of this thesis work. The control solution, as that is unique to Beagle Rover 

and this work, is the primary focus of this chapter. Implementation in hardware 

and software, although alluded to here, is handled in detail in the following 

chapter. 

4.1 Problem Statement 

 The plant is BeagleRover and will be modeled as an inverted pendulum 

on two wheels as depicted in Figure 4.1. Beginning with the equations of motion 

describing the system, the end goal is to design a discrete time control law to 

stabilize the body angle, �, about its upright, unstable equilibrium position. The 

final product will be a difference equation ready for implementation in a 
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microcontroller, the BeagleBone Black in this case. In order to achieve this goal, 

classical control methods such as lead/lag control and pole placement will be 

used to stabilize the body of the Rover on two wheels about its unstable 

equilibrium position. Leveraging the discrete equivalent design approach, the 

controller is first designed in continuous time and later converted to discrete 

time for implementation in digital electronics. The primary tools and techniques 

used include the Laplace and Z-transforms, lead and lag control, bode and 

root locus plots, the closed loop step response and Tustin’s approximation with 

prewarping, all of which will be discussed in more detail in the subsequent 

sections. 

4.2 Equations of Motion 

 As discussed above, the full derivation of the equations of motion of the 

Beagle Rover system is left to chapter six as it is the derivation taught in 

MAE143C. In this section, the free body diagrams and equations of motion are 

briefly presented in order to provide supporting context for the control design 

section. Initially simplifying and considering a 2D representation of one 

wheel/motor and a simple rod, the free body diagrams of the wheel and rod 

are depicted in Figure 4.1. 

 By approximating the wheel as a thin, solid disk and the body of the 

vehicle as a simple rod the inertia of each can be calculated as 

 <& =  1
2 .&-=, (4.1) 

 I? =  m?L= (4.2) 
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where the constants are defined as follows: 

.& = .��� ��  ℎ���, 

.B = .��� �� ��), 

<& = ������� ��  ℎ���, 

<B = ������� �� ��), 

C = ���D$� �� .����, 

- = ��)�$� ��  ℎ���, 

E = �����ℎ ���. ��) �� ��) �� '����� �� .��� �� ��), 

FG  ��) FH = ���'���� ���'�� ,�� ���  ℎ��� ��) ��) �� �ℎ� I ��) J )���'�����, 

�K = ���������� ���'�, 

�L = ���.�� ���'�, 

� = ���/��J M9.81 .
�=O. 

Whether balancing in crab mode or regular driving mode (short mode 

or tall mode respectively), take the center of mass to be at the intersection of 

the two axes of symmetry of the entire vehicle. This is an approximation as the 

“rod” in this model does not actually include the bottom two wheels. 

However, the mass of the wheels is negligible compared to that of the entire 

Figure 4.1: Free body diagrams of the wheel and rod. 



37 

 

vehicle so for simplicity’s sake we will take the center of mass to be at the 

intersection when in reality it is very slightly higher. A more rigorous calculation 

could be done but would likely not result in any performance gain, especially 

because some error would still be expected [48].  

 Using the free body diagrams to first define the kinematic relations 

describing the position and acceleration of the center of mass of the rod, and 

assuming that both wheels are initially moving together without any slip 

between the wheels and ground, the full nonlinear equations of motion are 

derived as 

 (.B-E'���)PQ + (<B +  .BE=)�Q =  .B�E���� −  C,  (4.3) 

 (<& + (.B + .&)-=)PQ  + (.B-E'���)�Q =  .B-E�Q =���� +  C (4.4) 

where τ  is total input torque to the system. By the small angle approximation 

[49], equations (4.3) and (4.4) can be linearized about the body’s inverted 

equilibrium point to yield 

 (m?RL)ϕQ  + (I? +  m?L=)θQ =  m?gLθ −  τ, (4.5) 

   
 (<& + (.& +  .B)-=)PQ = (.B-E)�Q =  C (4.6) 

   
where all terms are now linear in theta, allowing for the application of linear 

control techniques. 

 Using the linearized equations of motion of our system, we could 

proceed through the control design process and design a stabilizing controller 

in simulation. In fact, this exercise is recommended as a first pass at designing a 

stabilizing controller and is gone through in detail in chapter six. However, if 
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attempting to implement this initial control design in hardware, the designer 

would find out that although stable in simulation, the robot would more than 

likely not balance in reality. This is due to the fact that the motors themselves 

have dynamics that must be included in the model. The motors used in 

BeagleMiP and BeagleRover have been previously characterized for use in 

MAE143C so consider the constants to be known quantities. The motor 

dynamics are described by  

 C =  �̅$ + (, − V)W (4.7) 

where the constants are defined as: 

�̅ = ����� ���D$�, 

, = )�.X��� '�����'����, 

V = /��'�$� ���'����, 

<Y = ������� �� .�����, 

W = .���� �X��) ZP[ − �[\,  

$ = .���� ��X$� (F*] /��$� ,�� ��� − 1 ��) 1). 

As before, the wheels are taken to be solid disks when estimating their 

inertia. The total inertia of one wheel and motor is 

 <& =  <Y +  1
2 .&-= 

(4.8) 

and the final linearized equations of motion accordingly become 

                                    (m?RL)ϕQ + (I? + m?L=)θQ =  m?gLθ − 2τ                               (4.9) 

                                              (I: + (m? +  m:)R=)ϕQ + (m?RL)θQ = 2τ                      (4.10) 

where tau is defined above to be the torque from one motor, .& now includes 
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the mass of both wheels and <& now includes the inertia of both wheels and 

motor gearboxes.  

4.3 Lag Control 

Before beginning the control design process using classical control 

techniques, the transfer function describing the input/output relationship 

between PWM input to the motors, u, and body angle output, �, must be 

defined. In order to derive the transfer function, the Laplace transform is 

performed on the final linearized equations of motion followed by algebraic 

rearrangement to get an equation of the form �(�) ^(�)⁄ = �$.	1(�)/)��	1(�). 

First apply the definition of the Laplace transform to equations (4.9) and (4.10), 

assuming zero initial conditions. Then making the appropriate substitutions for C 

and W defined in the previous section and rearranging algebraically, the 

transfer function is 

	1(�) =  `(a)
b(a) =  =a(cdecf)

(gcdc=ecfh)aie(=(je+)(gcdgc=g=cf)ahe(ckecd)ae=(je+)ck (4.11) 

where: 

l1 =  .B-E, (4.12) 

l2 =  <B +  .BE=, (4.13) 

l3 =  .B�E, (4.14) 

l4 =  <& + (.B + .&)-=. (4.15) 

Plugging in the constants yields the final transfer function as shown in equation 

4.16. 

     	1(�) = `(a)
b(a) =  g==n.=a

aieo.==fahgfkn.oag=p=.=                             (4.16) 
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The root locus and bode plots, with negative gain applied, are shown in Figure 

4.2.  

 Looking at the root locus, no amount of gain can stabilize the system. In 

order to bring the locus into the stable left half plane using pole placement 

techniques, the controller must cancel the zero at the origin and replace it with 

a stable zero. Note this is generally done with caution as a pole-zero 

cancellation on the imaginary axis can lead to instability due to inaccuracies 

in the model [50]. This model has been proven to be accurate so the 

cancellation will be performed. Looking at the bode plot, higher magnitude at 

low frequencies is needed to achieve acceptable tracking. By applying lag 

control over the appropriate frequencies we can bump up the low frequency 

gain as well as cancel the zero at the origin, replacing it with a stable zero and 

bringing the locus into the LHP. The form of a lag controller is given in equation 

4.17. 

       ����(�) = aeq
aer  ��� s > X                                    (4.17) 

Figure 4.2: Bode (left) and root locus (right) plots of –G1(s). 
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The primary use of a lag controller is to increase the gain at low 

frequencies in order to achieve good tracking of the reference signal. The gain 

will increase by a factor of z/p. Because the pole is at zero, z can be chosen 

such that the lag control takes affect at frequencies well below the desired 

crossover frequency of 20 rad/s (which has been determined by choosing a 

crossover frequency an order of magnitude below the sample rate of the 

BeagleBone Black’s ADC, avoiding significant phase loss at this critical 

frequency) [50]. This is necessary due to the phase lag caused by the lag 

controller as eroding the phase at crossover can potentially lead to closed-loop 

instability. After a few iterations, z=3 is chosen. The resultant bode plot of the lag 

controller is seen in Figure 4.3, illustrating the phase lag effect of a lag controller 

as well as the high gain at low frequencies. The lack of roll off of the gain at low 

frequencies is the result of having a controller pole at zero, acting as a pure 

integrator. Ideally the gain would be rolled off at very low frequencies to avoid 

integrator wind up, a phenomenon that can lead to instability in the case of 

motor saturation, however this is prevented due to the plant zero at the origin 

                       Figure 4.3: Bode plot of lag controller ����(�). 
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[50]. The Bode and root locus plots of the plant with negative gain and lag 

control combined are given in Figure 4.4.  

4.4 Lead Control 

The bode plot with lag control shows that the low frequency gain has 

been increased but at the detriment of dangerously eroding the phase margin. 

Also, crossover at the desired frequency is not achieved. The locus is now 

brought over into the stable LHP with the appropriate gain applied, however 

this design will have an unacceptably high overshoot due to the low phase 

margin. In order to achieve crossover at the desired frequency and increase 

the phase margin, lead control will be applied using much of the same logic as 

is section 4.3. The following second order design guides will be used: 

Wu =  f.v
Kw

,  ℎ��� �B = ���� ��.� (4.18) 

Wu =  xXs,  ℎ��� Xs = X ∗ s (4.19) 

As before, placing a zero at -15 to cancel the pole and replacing with a 

faster pole will help to achieve the desired rise time without applying too much 

Figure 4.4: Bode (left) and root locus (right) plots of −����(�)	1(�). 
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overall gain to the system. Keeping in mind that we would like a rise time of 0.05-

0.1 seconds, and a crossover frequency of ≈20 rad/s, the above equations can 

be leveraged to calculate the location of the pole that should achieve 

maximum phase increase at crossover [50]. Using equation (4.18), a rise time of 

0.05s corresponds to a crossover frequency of 36. This yields a pole at 86.4 by 

equation (4.19). Although this is not quite a factor of 10 higher than the zero at 

15 to achieve maximum phase increase [50], ample phase margin of about 52 

degrees is still achieved. The design guides are approximate and not all will be 

met exactly. After adjusting the gain to again achieve crossover at the target 

frequency, the final values chosen are Wu = 23 zs, �B ≈ 0.08�, F] = 52°. The final 

open loop bode and locus plots with lag and lead control applied are shown 

in Figure 4.5. 

4.5 Closing the Loop 

The final step in continuous time is to check the closed loop step 

response to ensure that the design is stable and the design criteria have been 

Figure 4.5: Final open loop Bode (left) and root locus (right) plots with lead and lag 
control where ����(�) = (� + 15)/(� + 86.4). 
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met. Referring to ��~��g���(�) as �(�), the form of the closed loop transfer 

function is 

   z(�) = �(a)�(a)�f(a)
fe�(a)�(a)�f(a) (4.20) 

Performing a few final adjustments, ����(�) and ��~��(�) become 

                                           ����(�)  = ae=.�
a  (4.21) 

��~��(�) = aef�
aevn.d (4.22) 

with a closed loop gain K(s) = -10. Giving a step input to the system results in the 

step response plotted on the left hand side of Figure 4.6 with a rise time of 0.06 

s, settling time of 0.79 s and an overshoot of 10%. Because the response settles 

at a value of ≈1.41 instead of 1 as desired, a loop prefactor of P = 1/1.4 can be 

incorporated, yielding the step response pictured on the right hand side of 

Figure 4.6. 

4.6 Discrete Time Controller 

 In order to implement the controller in hardware, it must be converted 

from continuous time to discrete time to obtain the difference equation the 

Figure 4.6: Closed loop step response of system without a loop prefactor on the left 

and with a loop prefactor of 1/1.4 on the right. The addition of the loop prefactor 
causes the step response to settle at one as desired. 
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controller must obey. Tustin's approximation with prewarping is used to convert 

to a discrete time transfer function, applying prewarping around the crossover 

frequency to insure accurate conversion at this frequency. Applying the inverse 

Z transform, the final difference equation to be implemented in the 

microcontroller is given by equation 4.23. 

   $� = 1.652$�gf − 0.6525$�g= − 8.626�� + 16.52��gf − 7.902��g= (4.23) 

4.7 Balancing in Normal Drive Orientation 

All of the values presented in the control solution thus far have been for 

balancing BeagleRover in its short or “crab” orientation. However, the vehicle 

is capable of balancing on all four of its sides. In order to balance BeagleRover 

in its tall orientation, the change in the distance from the center of the wheel 

to the center of mass of the body, L, and the corresponding change in the body 

inertia, <B could be accounted for. If so, the transfer function from input U(s) to 

output �(�) becomes 

        	2(�) = gfko.=a
aie�.pfoahgpn.dvag=�n.= (4.24) 

with poles at -12.4, -1.98 and 8.43 which are slightly "slower" than the poles of 

G1(s) when balancing in crab mode. The control design process would 

proceed exactly as stepped through in the preceding sections. In practice 

however, it was found desirable to simply increase the gain on the system when 

balancing in the taller orientation. This will be further addressed in the following 

section on implementation.
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Chapter 5 Implementation 

Chapter three presented the control solution to balancing BeagleRover 

in its two-wheeled unstable configurations while chapter two identified the 

stable four-wheeled drive modes and steering solution. Now that both solutions 

have been developed in theory and simulation, the next step is to present the 

implementation in hardware and software. This chapter will give an overview 

of the hardware and general software implementation strategy used in 

development of the EduLine as well as developments specific to BeagleRover. 

The codebase and programming environment will be discussed as well as the 

techniques used in state estimation. Additionally, the technique used to 

balance on all four sides as well as transition from driving on four wheels to 

balancing on two wheels will be explained. 

5.1 Hardware and Codebase 

All three robots in the EduLine use the BeagleBone Black (BBB), a "low-

cost, community-supported development board for developers and hobbyists" 

[52]. The BeagleBone Black is an open hardware microprocessor development 

board that can fit in the palm of a hand. It has enough flash storage and volatile 

RAM to support a full-featured operating system and a custom build of the 

Debian Linux operating system comes pre-installed. The BBB also features a 

wide variety of connectivity options with two 2×23 pin header rows, USB client 

and host capabilities, as well as Ethernet and HDMI ports. 

The BeagleBone Black benefits from an add-on board, or cape, to 

provide easy access to all of the functionality it provides. The solution to this 
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used by the EduLine, and therefore BeagleRover, is the Robotics Cape 

designed by James Strawson. The Robotics Cape is a $35.00 add-on board that 

provides the ability to drive up to four bi-directional DC motors via H-bridges 

and up to eight servomotors. BeagleRover uses four bi-directional DC motors 

and four servomotors. The cape also supports encoder counting on four 

channels for motor position feedback, three of which are broken out in 

hardware and a fourth added utilizing the BeagleBone Black's on-board PRU 

(programmable real-time unit). BeagleRover does not currently use encoders 

due to space restrictions of the mechanical design. However, BeagleMiP does 

use two encoders for position control. A 9-axis inertial measurement unit (IMU) is 

also included on the cape as well as a barometer for use in flight applications. 

The IMU is comprised of a 3-axis accelerometer, 3-axis gyroscope and 3-axis 

magnetometer. BeagleMip and BeagleRover both use the accelerometer and 

gyro for state estimation. The cape also supports DSM2 radio and Bluetooth for 

controlling the robots wirelessly. Development of BeagleRover was done using 

a DSM2 radio, further work being necessary to incorporate Bluetooth control.  

In addition to the hardware, all EduLine robots come with an extensive 

codebase written to support the Robotics Cape. The codebase includes 

libraries for all of the functions used by BeagleMiP and BeagleRover for 

hardware interfacing, plus many functions not currently used by these two 

platforms. Additionally, approximately 30 example programs, ranging from 

blinking an LED to gyro calibration, are included. A subset of the current 

example programs written as part of the Robotics Cape codebase are shown 
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in Table 5.1. The first three programs were written by the author as a direct result 

of this thesis work. The remaining programs are included as they are integrated 

into the drive code or were found useful in developing the drive code, 

illustrating the utility of the Robotics Cape codebase in writing more complex 

programs. Note this is not an exhaustive list. All code is written in the C 

programming language and available on GitHub. All instructions for installing 

and getting started with the Robotics Cape libraries on the BeagleBone Black 

are detailed in chapter three of BeagleBone Robotics and on the designer’s 

website [52]. 

Notice there are two versions of the drive code, drive.c and drive-

simple.c listed in Table 5.1. The drive-simple.c is a simplified version of the drive 

Table 5.1: A subsection of the example programs included in the Robotics Cape 
codebase. 
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code lacking Ackermann steering and balancing that is included for 

educational purposes, so that the student may compare the differences, 

especially in steering behavior, directly on the robot. The test-orientation 

example was also written specifically for drive.c in order to implement 

balancing on all four sides of the vehicle. Independently this serves as a great 

example of a simple multithreaded program to test operation of the motion 

processing unit on the Robotics Cape (MPU-9150). 

5.2 Programming Environment 

The BBB is capable of functioning as a low power desktop computer by 

connecting a USB keyboard, mouse, driving an HDMI display and rendering a 

graphical user interface (GUI). However this was not done as the robots are 

designed to be mobile and therefore used in a headless configuration (without 

a GUI). Instead, because the BeagleBone has an operating system on board 

enabling communication with the robot via standard network protocols, all 

programming was done on a host computer. Development was done in a 

Windows 8 environment, communicating with the BeagleBone via USB and 

generating a command line interface using the free software application PuTTy. 

All code was written in C using Notepad++ and compiled using standard Linux 

commands from the command line, all the while transferring files back and forth 

using the free SFTP (Secure File Transfer Protocol) program WinSCP. Getting 

started in this programming environment is explained in detail in the first few 

chapters of BeagleBone Robotics. As made apparent in chapter three, control 

design was done in MATLAB leveraging the control toolbox. 
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5.2.1 Multithreaded Programming and Drive.c Program Architecture 

An advantage of having an operating system on board is the ability to 

execute multithreaded programs potentially increasing the functionality of the 

application. In the case of BeagleRover, multithreading is not strictly necessary, 

however it illustrates a powerful tool for use in more demanding applications. A 

high level view of the drive.c program organization is shown in Figure 5.1. 

The main() function is responsible for the setup routine and starting all 

threads as well as cleanly shutting down the program if an exit condition is met. 

The order in which the threads are listed in Figure 5.1 is the order in which they 

appear in the program. Although it is not technically a separate thread, the 

balance_core() function deserves mention as it is the IMU interrupt function 

Figure 5.1: Visual depiction of the various threads running in the drive.c program and 

their respective tasks. 
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responsible for stopping, or interrupting, all programs running in order to retrieve 

sensor data at a rate of 200Hz. Once the raw sensor data is retrieved it is sent 

through a complimentary filter to calculate pitch angle in any orientation of the 

vehicle. The estimated state variable is then used by the control algorithm 

developed in chapter three to provide the necessary input to the motors to 

maintain stability in balancing, all within the balance_core() function. This is 

depicted graphically in Figure 5.2. Many of the example programs included in 

the Robotics Cape codebase are used by the various different threads. For 

example, test_orientation.c was directly ported over to drive.c to serve as the 

orientation_detector() thread with minor changes made for the application to 

drive.c. 

Notice there is a block in Figure 5.2 labeled "turn input." This is the input 

given to the motors in order to steer the vehicle while in balance mode. This 

Figure 5.2: Software architecture of the balance function. PWM LW stands for PWM input 
to the left wheel and PWM RW is PWM input to the right wheel. 
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input does not rely on the state variable. It is a simple constant applied via user 

input from the DSM2 radio. When turning in balance mode, the turn constant is 

applied equally to both motors, increasing PWM to one motor and equally 

decreasing PWM to the other motor. Therefore total input torque to the system 

is not changed due to turning input and the vehicle maintains stability. 

5.3 State Estimation 

 As discussed at length in chapter three on control, BeagleRover is 

modeled as a mobile inverted pendulum with a single input of torque 

(ultimately PWM to the motors) and single output of pitch angle, �. Because it 

is a SISO system there is only one state variable to control, pitch angle, or, tilt 

angle. For the control algorithm to be successful in maintaining stability the state 

variable must be reliably computed. As depicted in Figure 5.2 this is done 

leveraging the on board sensors of the IMU, specifically the accelerometer and 

gyroscope. It should be mentioned that state estimation is used for two different 

purposes in the drive code. Aside from being used to detect deflection from 

upright by the balance_core() function and control algorithm, state estimation 

is also used to detect which side of the vehicle is facing upward and which 

motors are in contact with the ground (or whatever surface on which the 

vehicle is balancing, we'll call it ground) and therefore which motors should 

receive the PWM signals. This function is performed by the orientation thread as 

depicted in Figure 5.1 and is accomplished using Euler angles as calculated by 

the Digital Motion Processor within the IMU. This differs from the complementary 
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filter used to estimate tilt angle for use in the balance controller as will be 

discussed further below. 

5.3.1 A Note on Euler Angles 

The current balance code for BeagleMiP, balance.c, uses Euler angles 

to estimate tilt angle when upright. For BeagleMiP this is readily achievable as it 

only balances in one orientation of the IMU. BeagleRover in contrast balances 

in four different orientations and using Euler angles becomes a more advanced 

process. An in depth discussion of Euler angles is outside the scope of this work, 

but briefly stated, the complication lies in the singularity of Euler rotation 

sequences causing inaccuracies in the calculation of theta in certain 

orientations of the vehicle [50]. However, Euler angles can more simply be used 

to yield a general determination of which side of the vehicle is facing upward 

and which side of the vehicle is in contact with the ground. In this case, a 

threshold value is detected that is far away from the point at which theta 

becomes unreliable. Furthermore, no feedback control is performed in this 

scenario therefore there is less need for absolute accuracy. Utilizing Euler angles 

to determine general orientation of the vehicle, as opposed to the 

complimentary filter approach used to determine theta for use in the balance 

controller, was done to illustrate the use of each as BeagleRover is intended to 

be an educational platform. Although using Euler angles to estimate theta for 

balance control as well is not an impossibility, that approach is more advanced 

than what is taught in MAE 143C and other typical undergraduate courses. 
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Therefore complimentary filtering was chosen as the primary solution to state 

estimation in order to remain consistent with the MAE143C curriculum. 

5.3.2 Complementary Filter 

The first order complementary filter used to estimate tilt angle is based 

on the complementary filter example code in the Robotics Cape codebase 

and adapted to be used to estimate theta in all four balance orientations of 

BeagleRover. The four balance orientations as named in drive.c are NOSE_UP, 

NOSE_DOWN, LEFT_DOWN and RIGHT_DOWN, corresponding to the negative 

x-axis, positive x-axis, positive y-axis and negative y-axis of the IMU respectively, 

according to the coordinate system depicted on the cape. The filter uses data 

from both the accelerometer and gyroscope combined to yield a much more 

accurate representation of theta across frequencies than could be achieved 

with either sensor alone. The reason lies in the type of noise to which each signal 

is most susceptible.  

The accelerometer is used to determine angular position by measuring 

the position of the gravity vector. As the accelerometer rotates in space, the 

magnitude of the gravity vector in the direction of each axis changes, as 

depicted in Figure 5.3. Using the standard C math.h library function, atan2(), 

and two axes of the accelerometer, the angular position about the pitch axis 

can be easily calculated. For example, if BeagleRover was balancing perfectly 

in its NOSE_UP position, the negative x-axis of the accelerometer would 

experience almost exactly -1g of gravitational force while the z-axis would 

experience nearly zero. Passing these values to the atan2() function with proper 
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attention to order of the arguments would yield an angle of nearly zero as 

expected. Note that care must be taken here with the signs of the vector 

components passed to the function in order to return the correct quadrant of 

the 2D x-z plane. 

When used to measure angle of rotation, accelerometers can 

experience high frequency noise [53]. This is due to changes in acceleration 

caused by other factors such as horizontal motion. Considering the example 

given above of balancing BeagleRover in its NOSE_UP orientation, this would 

cause the z-axis to measure changes in acceleration not due to gravity, 

causing very significant errors in the estimation of angular position. This can be 

addressed by low-pass filtering the accelerometer signal, allowing only the low 

frequency signal due to gravity to pass through. It should be noted that low-

pass filtering can cause phase lag [50]. As discussed in section 3.3 regarding lag 

control (essentially a low-pass filter), significant phase erosion at the crossover 

frequency can lead to instability of the system. If this is of concern, the phase 

lag of the low-pass filter should be accounted for during control design as 

depicted in Figure 5.4. As also discussed in chapter three, ample phase margin 

Figure 5.3: 2D representation of the axes of an accelerometer as it changes position in 

space. On the left hand side the x-axis reads slightly positive and on the right hand side 
the x-axis reads slightly negative. 
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was built into the control design for BeagleRover to account for this issue of 

phase erosion due to the low pass filter. 

The gyroscope presents the opposite challenge, tending to output a 

signal corrupted by low frequency noise [55]. The gyro outputs measurement of 

angular velocity and is used to determine angular position by integrating over 

time. However, MEMS gyroscopes such as the one used in the IMU of the 

Robotics Cape, are subject to constant bias, which when integrated over time, 

quickly leads to unreliable measurements [53, 54, 55]. This is addressed by high-

pass filtering the integrated signal from the gyroscope, eliminating the low 

frequency drift that occurs as the platform is held near stationary [53, 55]. 

The complementary filter takes advantage of the low frequency 

accuracy of the accelerometer and high frequency accuracy of the gyro, 

combining signals to achieve the best of both worlds [56]. In Laplace notation, 

the form of a low-pass filter is 

���(�) = ��
ae��

 (5.1) 

where Wu is the cutoff frequency above which the signal is attenuated [50]. 

Similarly, the form of a high-pass filter is 

  ���(�) = a
ae��

 (5.2) 

where Wu is the cutoff frequency below which the signal is attenuated [50]. In 

the case of a complementary filter, the cutoff frequency for the low-pass and 

high-pass filters is the same, therefore ���  + ���  =  1, ensuring that all 

frequencies (ideally), minus the noise, are represented in the final 

reconstruction of the signal. The block diagram of the complementary filter is 
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shown in Figure 5.4, illustrating the combination of the accelerometer signal and 

the gyro signal. The end effect is an estimation of theta that favors the 

accelerometer measurements at frequencies below Wu and favors the gyro 

measurements at frequencies above Wu. 

When implemented in digital electronics, the complementary filter takes the 

form 

                         � = �J����(� + �J������ ∗ )�) + �''����(�''������) (5.3) 

where �J���� is the high-pass constant chosen for the high-pass filter and 

�''���� is the low-pass constant chosen for the low-pass filter. The 

accelerometer data represented by accelData has already been processed 

by the atan2() function and gyroData*dt accomplishes the integration of the 

angular velocity measurement performed at every time step. In the case of the 

platform at hand, data is collected at a rate of 200 Hz (dt = 0.005 seconds) as 

listed in table 5.1 and the high-pass and low-pass constants are approximately 

0.99 and 0.01 respectively. These values are calculated based off the sample 

rate and the noise properties of the specific sensors used. 

Figure 5.4: The block diagram on the left hand side illustrates integration of the 

complementary filter into the complete feedback system. Note disturbances and noise 
are not shown here. On the right hand side the block diagram of the filter itself is shown, 
where x and y in this case are the inputs to the low-pass and high-pass filters. Note the 
output of the filter is J�(�) because no filter is ideal and J(�) will not be reconstructed 

exactly. 
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 Note that in order to conserve resources, the filters are not calculated 

until the orientation of the vehicle is detected then the correct filter using the 

corresponding axes of the IMU is computed. However, it is important for 

accuracy that state estimation is constantly computed, initially relying on raw 

accelerometer data alone for immediate usage by the filter when needed. It 

was observed that if the filter was not initialized using the raw accelerometer 

data until a change in orientation was determined, a significant delay in 

reaching the correct value of theta resulted, causing an unacceptable delay 

in arming the controller. This resulted in instability when transitioning from four-

wheel driving to two-wheel driving using a wall. 

5.4 Code Optimization and Features 

 BeagleRover is designed to be an educational platform. Because of this, 

the code has been written and optimized for readability and user experience. 

It is thoroughly commented and organized in a way that promotes 

understanding. There are also multiple blocks of code that are commented out 

and currently unused but that provide either a potentially good teaching 

example or debugging assistance. Examples include print loops for printing 

various different values to the console as well as a mock yaw controller for 

future implementation. Aside from readability, the user experience has also 

been considered from the point of view of creating a dynamic and engaging 

vehicle that is easy and fun to use. This was consistently kept in mind throughout 

the development process and many features were implemented to this end. 

Table 5.2 shows some of the features of the drive.c code. The last feature  
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listed, transition to balancing from four wheel drive, is explained in 

greater detail in the following subsection. 

As listed in feature three of table 5.2, the same balance controller is used 

to balance in all four different orientations of the vehicle with the exception of 

the proportional gain value, K. The controller was designed around balancing 

in the short, or crab, orientation and used to balance in the tall orientation by 

simply increasing the gain to compensate for the higher center of gravity. As 

shown at the end of chapter three, the same exercise was gone through to 

design a controller specific to balancing in the tall orientation but upon 

Table 5.1: Drive.c key program features and their descriptions. 
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implementation, no significant performance gain was seen. Therefore it was 

decided to take the approach described above for the sake of streamlining 

the code for accessibility to users. 

5.4.1 Drive to Balance Transition 

 BeagleRover is capable of the unique maneuver of smoothly 

transitioning from driving on four wheels to balancing on two wheels by driving 

up a wall, provided there is sufficient friction between the wheels and ground. 

This is done by initializing the balance controller only after the vehicle has 

reached a certain angle of incline, or the start angle. In order to achieve a 

smooth transition some finesse was required in timing at what start angle and 

how long of a delay to implement before arming the balance controller. It was 

expected that a delay would be necessary in order to prevent the controller 

from outputting too high of a control value upon initialization and causing 

instability. However, after experimentation with different combinations of values 

it was discovered that choosing the correct start angle alone was sufficient in 

achieving stability in the transition. Adding an additional delay is useful in 

affecting the overall delay in arming the controller without affecting the start 

angle as the start angle also affects computation of the complementary filter 

and in turn accurate estimation of the state variable. However the additional 

delay was found to be superfluous.
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Chapter 6 Introduction to BeagleBone Robotics 

Chapter one introduced this thesis by explaining its dual purpose. The first 

was to present the control and steering solution of a small ground rover capable 

of four wheel steering, balancing on two wheels and transitioning between the 

two. This was handled in chapters two, three and four. The second, and primary 

motivation of the work, was to contribute to an educational platform through 

developing curriculum support. Chapter six marks a change of focus from the 

quantitative solutions of the previous chapters to the presentation of the 

curriculum support material written as a result of this thesis work. More work is 

needed in order to deliver a polished curriculum written around the EduLine, 

however the combination of BeagleBone Robotics plus the hardware and CAD 

files for 3D printing the robots is already a very strong starting point for a 

motivated instructor.  

As explained in section 1.2 almost no material written exclusively toward 

the end goal of developing a dispersible curriculum around the EduLine existed 

on paper prior to the initiation of this thesis work. The word dispersible is key here 

as material that is designed to be distributed as a model for educators to follow 

in teaching particular concepts (a curriculum) takes on a different form than 

material that is written to provide support material in teaching those concepts 

(a textbook). A curriculum not only requires explanations of necessary concepts 

and example problems as found in a textbook, but lesson plans and adherence 

to standards often mandated by governing parties. In short, a curriculum 

teaches educators how to teach the subject at hand. What is presented in this 
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chapter and the next is a precursor to a complete curriculum designed around 

what is taught in MAE143C. It is hoped that this is a first step toward creating the 

written material necessary for the EduLine to make an impact in classrooms 

outside of UCSD. BeagleBone Robotics is considered by the author to be the 

most significant contribution of this thesis work to furthering the EduLine as an 

educational product. 

6.1 BeagleBone Robotics Outline 

 BeagleBone Robotics is co-authored by Talesa Bleything and James 

Strawson, the teaching assistant for MAE143C for three iterations of the course 

and the designer of the Robotics Cape used on all EduLine robots. The text has 

three main parts. Part one is what we are referring to as the lab text and is 

primarily authored by James Strawson, with the author of this thesis acting as 

editor and first user. Part two is a complete set of build instructions for BeagleMiP 

and BeagleRover. Part three is the complete control solution to balancing 

BeagleMiP or BeagleRover. We recommend that MAE143C or similar courses 

designed around the EduLine be taught in a lab format, where regular classes 

are reserved for development of the control theory and supporting concepts 

while a special lab section is reserved for hardware related material.  The next 

section gives brief outlines of parts one and two. Part three is presented in full in 

chapter seven. 

6.1.1 BeagleBone Robotics Parts One and Two 

Part one of BeagleBone Robotics begins by stepping through the getting 

started process with the BeagleBone Black as well as a description of the 
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workflow that will be used throughout the text. This includes instruction on how 

to use the various communication options such as networking over USB, 

Ethernet and Wi-Fi, as well as an intro to the Linux command line and file transfer 

protocols. The last of the getting started chapters is focused on installing and 

using the Robotics Cape. 

 The following chapters deal with circuit design and controlling hardware 

through GPIO and SPI protocols. These sections use an additional lab kit 

containing LEDs, wires, breadboard and a seven segment display. The last few 

chapters discuss how to use various features of the Robotics Cape and BBB 

including battery management, on board sensors, H-bridges for driving DC 

motors, buttons and LEDs, and counting quadrature encoders, all through the 

use of the Robotics Cape library. All of these chapters and topics are 

accompanied by exercises designed to ensure success with the hardware and 

programming environment. By the time the student reaches the end of part 

one, he or she should be armed with the tools necessary to successfully 

implement the control solution to balancing BeagleMiP or BeagleRover that is 

the culminating result of MAE143C.  

 Part two of BeagleBone Robotics contains the complete instructions for 

assembling BeagleMiP and BeagleRover. This is largely self-explanatory, 

however it should be emphasized that all parts, with the exception of the 

electronics, tires and motors, are 3D printed. Although BeagleMiP and 

BeagleRover are both designed to be robust and durable, the fact that it is 3D 

printed makes replacing broken parts fast and cheap, both of which are 
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important to an educational platform. This is not to mention the educational 

value of learning 3D printing technology in itself. As 3D printers become more 

and more common, prices will drop, making the technology increasingly 

available to a range of schools at the high school level as well as college.  The 

design files for printing both vehicles are publicly available and instructions on 

how to access them are included with the build instructions.  
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Chapter 7 BeagleBone Robotics Part Three 

The following sections of chapter seven present part three of 

BeagleBone Robotics in its entirety. It is currently written around BeagleRover 

and contains the same control solution for balancing on two wheels as was 

presented in chapter three, only in much greater detail and including some 

material taught in MAE143C that is not absolutely needed to balance the 

vehicle. It should also be made clear that by no means is everything that’s 

taught in MAE143C included in this text. The format is written in an exercise, 

solution style and the language is less formal to match that of BeagleBone 

Robotics parts one and two. The material, including key terms and definitions, 

is presented in the order in which the author finds it most comprehensible.  

7.1 Introduction to BeagleBone Robotics Part Three 

This section is intended to provide a comprehensive solution to 

balancing the Beagle Rover on two wheels from the modeling and control 

design perspective. It is written in semi-chronological order so that users may 

obtain a clear and thorough understanding of the workflow required when 

using the classical control techniques that will be presented. Implementation in 

hardware and software, although alluded to here, is handled in detail in 

another section of the text. The workflow required refers to the order in which 

necessary concepts build upon each other as well as to the iterative process of 

control design. This text is written for MAE 143C, the technical elective 

undergraduate/graduate level Digital Control course taught at UCSD. In its 

entirety, BeagleBone Robotics can be used to varying degrees to support a 
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range of curricula, topics including but not limited to, classical control, digital 

control, embedded systems, robotics, dynamics, multithreaded programming, 

3D printing, ordinary differential equations, digital/analog circuits and board 

design among others. The focus of this chapter is the dynamics and control 

used to balance the Beagle Rover and supporting concepts. 

7.2 Using this Chapter 

 All control related tools and concepts used in this solution are taught in 

UCSD's MAE 143C course, however not everything taught in the course is used 

here. Additionally students are expected to have a basic understanding of 

ordinary differential equations and exposure to statics/dynamics is a plus. 

Included along the way are sample exercises to which this text provides 

solutions. We start with the equations of motion governing our system and end 

with a discrete time control law ready to be implemented in a microcontroller. 

Each subsection is meant to serve as a derivation of the solutions presented in 

order to aid the curriculum design and lesson planning process. This is not a 

complete curriculum and no section is intended to stand alone in teaching a 

particular concept. To this end, the tools necessary to understand each 

subsection are listed at the beginning of that section. The supporting textbook 

used in MAE 143C is Numerical Renaissance by Dr. Thomas Bewley. 

7.3 Problem Statement 

 Our plant is the Beagle Rover and will be modeled as an inverted 

pendulum on two wheels as depicted in Figure 7.1. Beginning with the 

equations of motion describing the system, our end goal is to design a discrete 
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time control law to stabilize the body angle, �, about its upright, unstable 

equilibrium position. The final product will be a difference equation ready for 

implementation in a microcontroller, the BeagleBone Black in our case. 

7.4 Equations of Motion 

 In order to derive the equations of motion for the Rover in balance 

mode, the system is modeled as a mobile inverted pendulum, an example of 

which is provided in Numerical Renaissance, Ex. 17.10 and followed closely 

here. The input to the system is torque from two motors and the output is body 

angle, �. Initially, the equations are simplified by considering a 2D 

representation of one wheel/motor and a simple rod. The inertia and torque 

from the pair of wheels and motors will be integrated later. First, the free body 

diagrams of the wheel and rod are presented followed by the kinematic 

relations, dynamics and an integration of the two in order to derive the full 

nonlinear equations of motion. 

7.4.1 Free Body Diagrams and Constants 

 Sample exercise: Sketch the 2D free body diagram of the wheel/rod   

Figure 7.1: BeagleRover pictured on the left and 2D model of BeagleRover as a 

mobile inverted pendulum on the right.  
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system. Be sure to clearly mark the coordinate system(s) used. Calculate the 

inertia of the rod and wheels, approximating the wheels as solid discs. 

Concepts and keywords: free body diagram, force, inertia, torque, 

perpendicular axis theorem, stationary vs. body coordinate systems, normal 

and tangential forces. 

Solution: Where 

.& = .��� ��  ℎ���, 

.B = .��� �� ��), 

<& = ������� ��  ℎ���, 

<B = ������� �� ��), 

C = ���D$� �� .����, 

- = ��)�$� ��  ℎ���, 

E = �����ℎ ���. ��) �� ��) �� '����� �� .��� �� ��), 

FG  ��) FH = ���'���� ���'�� ,�� ���  ℎ��� ��) ��) �� �ℎ� I ��) J )���'�����, 

�K = ���������� ���'�, 

�L = ���.�� ���'�, 

� = ���/��J M9.81 .
�=O, 

Figure 7.2: Free body diagrams of the wheel and rod. 
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calculate the inertia of the wheels by approximating them as thin solid discs. 

By the perpendicular axis theorem, the inertia of one wheel is 

                                                <& = f
= .&-=. (7.1) 

The inertia of the body approximated as a rod is 

<B = .BE=. (7.2) 

Whether balancing in crab mode or regular driving mode, take the center of  

mass to be at the intersection of the two axis of symmetry of the vehicle. This is 

an approximation as the "rod" in our model does not actually include the 

bottom two wheels. However, the mass of the wheels is negligible compared 

to that of the entire vehicle so for simplicity's sake we will take the center of 

mass to be at the intersection when in reality it is very slightly higher. A more 

rigorous calculation could be done but would likely not result in any 

performance gain, especially because some error would still be expected. 

7.4.2 Kinematics 

Sample exercise: Derive an equation describing the position of the 

center of mass of the rod in terms of x(t) and �(�), and another describing the 

acceleration. 

Concepts and key words: differentiation, vector, unit vector, center of 

mass, acceleration, basic trigonometry, basic algebra, stationary vs. body 

coordinate system. 

Solution: Define r(t) as the position vector from a stationary coordinate 

system as defined in Figure 7.2 to the center of mass of the rod, x(t) as the 

horizontal position of the center of the wheel also measured from a stationary 
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coordinate system, and �(�) as tilt angle of the rod measured counter clockwise 

from upright. Writing r(t) as a function of x(t) and �(�) we get the kinematic 

relationship 

                                � = I�� − E���(�)�� + E'��(�)��. (7.3) 

Differentiating twice yields the acceleration 

�Q = IQ�� − �QE'��(�)�f + �[ =E���(�)�f − �QE���(�)�� − �[ =E'��(�)��. (7.4) 

Define �� = �� '��(�) + ����� (�) as the direction perpendicular to the rod and 

�ǁ = �� '��(�) − ����� (�) as the direction parallel to the rod and plug into the 

above equation to get 

                     �Q = �'��(�) IQ − E�Q ��� − [���(�) IQ + E�[ =]�ǁ
 (7.5) 

7.4.3 Dynamics 

Sample exercise: Assuming that both wheels are initially moving 

together so that there is no turning, and that there is no slip between the wheels 

and the ground, derive the nonlinear equations of motion of the wheel/rod 

system in terms of body angle, �, wheel angle, P, and input torque from the 

motors C. For now think of C as a single input value to the system. How does the 

torque applied by the motors affect the wheel? The body?  

Concepts and key words: Newton's 2nd law of motion/rotation, dot 

product, equations of motion.  

Solution: Define FG and FH as the forces that the rod exerts on the wheels 

in the positive �f and �= directions and P(�) as the rotation of the wheel 

measured counterclockwise from a reference position. As the motor spins it 

applies a torque to the wheel that spins the wheel in one direction and causes 
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the rod to rotate in the opposite. In order to write down the dynamics for our 

system we will make use of the following common equations: 

 Newton’s Second Law of Motion 

                                                  �� = .�, (7.6) 

Newton’s Second Law for Rotation 

  �C = <�, (7.7) 

Arc of a Circle (P in radians) 

       ��' �����ℎ = �P, (7.8) 

Definition of Dot Product 

� ∙ � = ǁ�ǁǁ�ǁ'�� (�). (7.9) 

Using these equations and making two key assumptions, the first being that both 

wheels are initially moving together (no turning) and the second that there is no 

slip between the ground and the wheels, we can write down the following 

dynamic equations as well as the position of the wheel center: 

 Position of wheel center 

I = -P, (7.10) 

Acceleration of rod in �� 

                .B[�Q ∙ ��] = .B�'��(�) IQ − E�Q � = −.�����(�) − FH ���(�) − FG'� �(�), (7.11) 

Acceleration of rod in �� 

                .B��Q ∙ ��� = .B�IQ − E'��(�)�Q + E���(�)�[ =� = −FG, (7.12) 

Acceleration of wheel center in  �� where F is friction force between 

wheel and ground 

                                              m:xQ = P¡ − F,                                                (7.13) 
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Rotational acceleration of rod 

   <B�Q = −C − FHE���(�) − FGE'��(�), (7.14) 

Rotational acceleration of wheel 

<&PQ = C − -�. (7.15) 

where .& and <& are the mass and moment of inertia of both wheels. We will 

account for the torque of both motors later when applying control. For now it’s 

fine to think of C as a single value representing total input torque to the system.  

7.4.4 Nonlinear Equations of Motion 

Our goal is to derive two equations that together describe the motion of 

the rod and the wheel as the torque from the motors is varied. Therefor we 

would like these equations to be in terms of �, P and C. Begin by rearranging 

equation 7.14 to get 

                                  FH ���(�) − FG '��(�) = £w Q̀ g¤
� . (7.16) 

Plugging into equation 7.11, multiplying by L and distributing .B yields 

                    .BEIQ '��(�) − .B�QE= = −.BE����(�) + <B�Q + C. (7.17) 

Rearrange to get Equation of Motion 1 

                    −(.BE'��(�)IQ) + (<B + .BE=)�Q = .BE����(�) − C. (7.18) 

Now rearrange equations 7.13 and 7.15 to get 

                                             FG = .&IQ + � (7.19) 

and 

� = −(£¥¦Q g¤
§ ). (7.20) 

Plugging both 7.19 and 7.20 into equation 7.12 yields 
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                     .B M−�QE'��(�) + �[ =E���(�)O = −.&IQ + (£¥¦Q g¤
§ ). (7.21) 

Multiplying 7.21 by R and distributing .B gives Equation of motion 2. 

                        <&PQ − (.&- + .B-)IQ + Z.B-E'��(�)\�Q = .B-�[ = ���(�) + C (7.22) 

Finally applying the no slip condition of equation 7.10, we get equations 7.23 

and 7.24 which are the final nonlinear equations of motion of our system.  

                    Z.B-E'��(�)\PQ + (<B + .BE=)�Q = .BE����(�) − C (7.23) 

         (<& + (.B + .&)-=)PQ + Z.B-E'��(�)\�Q = .B-E�[ =��� (�) + C (7.24) 

7.4.5 Linearization 

Exercise: Linearize the equations of motion about the body's inverted 

equilibrium point using small angle approximation. 

Concepts and key words: Linearity, linearize, small angle approximation, 

Taylor series expansion, perturbation. 

Solution: The equations of motion as they stand are nonlinear in �. In 

order to apply linear control techniques, we must linearize the equations. 

Because our control algorithm will be designed to continuously correct the 

system back to zero error (� = 0) we can use small angle approximation, 

considering very small perturbations to theta around its inverted equilibrium 

point. Making the substitution � = �̅ + �′ where �̅ = 0 and extending this to P and 

C accordingly, the perturbation equations are: 

Z.B-E'��(�′)\P′Q + (<B + .BE=)�′Q = .BE����(�′) − C ′, (7.25) 

                    (<& + (.B + .&)-=)P ′Q + Z.B-E'��(� ′)\� ′Q = .B-E�[ ′=��� (�′) + C. (7.26) 

Applying the truncated Taylor series expansion resulting from the small angle 
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 approximation 

                                          ���(�©) ≈ �© − `©i

k! , (7.27) 

                                          '��(�©) ≈ 1 − `©h

=!  (7.28) 

and neglecting all primed quantities that are quadratic or higher (since the 

square of a small number is an even smaller number), the linearized equations 

of motion are 

                        (.B-E'��)PQ + (<B + .BE=)�Q = .BE�� − C, (7.29) 

and 

                                      (<& + (.B + .&)-=)PQ + (.B-E)�Q = C.                      (7.30) 

7.5 Control 

Classical control methods using lead/lag control and pole placement 

will be used to stabilize the body of the Rover on two wheels about its unstable 

equilibrium position. We will be leveraging the discrete equivalent design 

approach, designing a controller in continuous time and later converting to 

discrete time for implementation in a microcontroller. The primary tools and 

techniques we will use include the Laplace and Z transforms, lead and lag 

control, bode and root locus plots, the closed loop step response and Tustin's 

approximation with prewarping, all of which will be discussed in more detail 

below. The control process that follows is iterative in nature as the designer 

applies the aforementioned tools in a deliberate fashion in order to meet the 

desired performance specifications such as rise time, settling time and 

overshoot of the system. Approximate design guides used during pole 

placement are provided for assistance and it is useful to have them at one's 
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disposal before beginning the control design process. We will briefly list them 

next. 

7.5.1 Approximate 2nd Order Design Guides 

Concepts and key words: order of a system, 2nd order behavior, step 

input, s-plane, natural frequency, poles of a transfer function, lead control, 

crossover frequency, rise time, settling time, percent overshoot, pole 

placement. 

As the title of this section suggests, the following design guides are most 

applicable to second order systems however will also provide helpful guidance 

for systems of higher order, especially if the system is characterized by 2nd order 

behavior. Some commonly used characteristics of the step response of a 

system and the corresponding design guides are below. 

1. Percent overshoot of the system is defined as the maximum percent 

by which the output of the system in response to a step input exceeds 

its steady state value. 

                                       V ≥ 0.5 → ]r ≤ 15% (7.31) 

                                        V ≥ 0.7 → ]r ≤ 5% (7.32) 

2. Rise time of the system is defined as the time it takes for the output of 

the system to a step input to reach 0.9 of the steady state response 

                                                �B = 1.8 WL¯  (7.33) 

      where WL is the natural frequency. 
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3. Settling time of the system is defined as the time it takes for the output 

of the system to a step input to settle to within ±5% of the steady state 

value. 

                                                �a = 4.6 ±¯  (7.34) 

Some other useful guidelines are: 

4. Pole Location of the plant transfer function in the s-plane and how it 

affects the natural frequency of the system is shown in Figure 7.3. 

5. For good phase bump when implementing lead control 

                                          ²Y�G → X s̄ = 10. (7.35) 

6. To achieve crossover frequency at an order of magnitude below the 

sample rate of the ADC 

                                               Wu = 1.8 �B¯ , (7.36) 

                                                Wu = xXs. (7.37) 

Note these guidelines are approximate and it is likely that the designer will not 

achieve all criteria exactly. 

Figure 7.3: Graphical depiction of the s-plane showing how the natural frequency of 
the system is affected by pole location. 
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7.5.2 G1(s) 

Exercise: By first taking the Laplace transform of the linearized equations 

of motion, derive the transfer function of the plant, 	1(�), from input C(�) to 

output �(�). 

Concepts and key words: transfer function, Laplace transform.  

Solution: For a first pass at designing a stabilizing controller, take the input 

to the system to be C and output �. Motor dynamics will be included later. To 

obtain the transfer function from input C to output �, take the Laplace transform 

of the linearized equations of motion and rearrange to get an input/output 

relationship of the form �(�) C(�)⁄ = �$. 	1(�) )��	1(�)⁄ . Applying the definition 

of the Laplace transform and assuming zero initial conditions, the transformed 

equations are 

                           (.B-E'��)�=P(�) + (<B + .BE=)�=�(�) = .B�E�(�) − C(�), (7.38) 

                     (<& + (.B + .&)-=)�=P(�) + (.B-E)�=�(�) = C(�) (7.39) 

Solving equation (7.39) for P(�), plugging into equation (7.38) and algebraically 

rearranging, we get the transfer function from input C(�) to output �(�). 

          	1(�) = Yw§�e£¥e(YweY¥)§h

ZYwh§h�hg(£¥e(YweY¥)§h)\(£weYw�h)ahe(Yw��)(£¥e(YweY¥)§h) (7.40) 

From here on, assume all modeling and calculations to be done using 

MATLAB. For balancing in crab mode, referring to the constants depicted in 

and listed below the free body diagrams (Fig. 5.2), take E =  0.06., which is at 

the intersection of the two axis of symmetry of the vehicle, moment of inertia 

for the rod and wheels to be <B = .BE= and <& = .&E= (inertia of both wheels) 

with .B  =  0.612(�, .& =  0.054(� (mass of both wheels) and normalizing so that 



78 

 

the highest power of s has a coefficient of 1 in the denominator, we get: 

	1(�) = gpfk
ahgfdn.d (7.41) 

Now that we have the transfer function, we may begin the control design 

process using the classical control techniques and design guides highlighted 

thus far. 

7.5.3 Discrete Equivalent Design 

Exercise: What is the Nyquist frequency and how does it affect the 

system? How can the control designer compensate for this effect? 

Concepts and key words: block diagram, DAC, ADC, ZOH, 

microcontroller, bode plot, frequency domain, phase margin, Tustin's 

approximation with prewarping, Padé approximation, crossover frequency, 

Nyquist frequency, aliasing, low pass filter, sample time. 

Solution: To design our controller, we will use the discrete equivalent 

design approach. The controller is designed in continuous time and later 

converted to discrete time for implementation in the discrete time electronics. 

The continuous time controller, D(s), is represented as a cascade of the analog 

to digital conversion of the error signal (obtained by comparing the output of 

the sensors to a reference signal), the discrete time controller, D(z), and the 

digital to analog conversion necessary to provide analog signals to the motors. 

When designing a controller in continuous time, the designer must be cognizant 

of the h/2 time delay that results from the use of a zero-order-hold in the 

microcontroller's DAC, where h the sample time of the ADC. The ADC, D(z), DAC 

cascade and the Laplace transform of the resulting delay are depicted in the 
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block diagrams of Figure 7.4. 

The h/2 time delay results in potentially significant phase loss if occurring 

within an order of magnitude of the ³´µ¶·¸¹ º��µ¶�»¼´ = ½/2, defined as the 

frequency above which aliasing occurs and the output of the ADC into the 

discrete time controller can no longer be trusted as accurate. To compensate 

for this, most ADC's incorporate a low pass filter above the Nyquist frequency 

which also results in phase loss. The combined phase loss can be problematic if 

the phase at the crossover frequency is eroded enough to potentially cause 

unacceptably high overshoot and or closed loop instability of the system. To 

account for the phase loss, the designer can either represent the time delay 

resulting from the DAC's ZOH with a Padé approximation built directly into the 

continuous time representation of the plant, G(s), or simply build enough of a 

phase margin in at crossover to insure stability even with the h/2 phase loss. 

After designing D(s) to meet the design specifications such as the desired rise 

time and settling time, we will use Tustin's approximation with prewarping to 

Figure 7.4: Block diagram of the controller/plant system. The bottom diagram shows the 
series connection of the controller and plant with the delay that arises from the digital-
to-analog conversion of the discrete time controller output. The top diagram shows the 
discrete time version of the controller including the necessary data conversion for 
communicating with the sensors and motors. 
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obtain the discrete time controller, D(z), that the microcontroller is to obey. We 

will first go through the process of incorporating a Padé approximation of a 

delay into G1(s) and designing a stabilizing controller so that the user of this text 

may have it as an example. Later it will be omitted. 

7.5.4 Padé Approximation 

Exercise: Comment on the phase margin and how this can be affected. 

What type of control can be used to stabilize the system? 

Concepts and key words: Padé approximation, rational function, IMU, 

sample time, root locus, bode plot, s-plane and stability, "speed" of a system. 

Solution: As depicted in the above block diagram, the Laplace 

transform of the delay function is �g�a which is not a rational function of s. 

Implementation of an irrational function in a discrete time microcontroller is 

problematic, therefor we will use a Padé approximation in its place given by 

�g�a ≈ �L(�) where �L(�) increases in accuracy with higher values of n. For our 

purposes � = 2 is sufficient and the approximation is 

        �=(�) ≈ fg�a =⁄ e(�a)h f=⁄
fe�a =⁄ e(�a)h f=⁄ . (7.42) 

We must now specify exactly the h/2 time delay to be used in MATLAB's Padé 

function. The IMU on the Robotics Cape has a sample time of 200Hz which 

translates to a time delay of ) =  0.005/2 seconds. The resulting Padé 

approximation is 

              F(�) = ahg=d��aef.p=~¾.¾¿

ahe=d��aef.p=~¾.¾¿.  (7.43) 

Combining P(s) with G1(s) and applying a negative gain results in the root locus 
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and bode plots of the "new plant," as pictured in Figure 7.5. 

The n=2 Padé approximation added two stable, very fast poles which 

will decay quickly and not affect the plant dynamics in a significant way. It can 

be seen from the root locus that no amount of gain can be applied to stabilize 

the system. Also, looking at the bode plot, there is no phase margin which is 

defined as the amount of phase the open-loop system is away from 180 

degrees at the frequency where the magnitude crosses 1, aka the crossover 

frequency. In order to bump up the phase margin and achieve stability, a lead 

controller will be applied. 

7.6 Lead Control 

Exercise: Design a lead controller to stabilize the G1(s)P2(s) system. 

Clearly explain the reasoning behind your choice of the pole and zero locations 

of the controller as well as the overall gain, K, of the system. Provide the root 

locus and bode plots. What can you say about tracking of the reference signal? 

How can this be affected? 

Figure 7.5 Bode (left) and root locus (right) plots of the plant, G1(s), combined with a 
second order Padé approximation of the delay introduced to the system by the 
BeagleBone Black’s DAC. 
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Concepts and key words: Gain, lead control, reference signal, tracking, 

lag control. 

Solution: The form of a lead controller is 

     ��~��(�) = Â ∗ aeq
aer   ℎ��� s < X. (7.44) 

The primary goals of applying lead control here are to bring the locus into the 

stable left half plane while simultaneously speeding up the system and 

increasing the phase margin. If we choose z = 12.1 to cancel the stable pole 

and replace with a faster pole, we can decrease the rise time and settling time 

of the step response without increasing the gain too high and potentially risking 

instability. By design guide 4, choosing p=120 should result in an appropriate 

phase margin. Then adjust the gain K to achieve crossover at the desired 

frequency, increasing it to bump up the magnitude of the bode plot and vice 

versa. We shoot for a crossover frequency of about 20 rad/s as that is an order 

of magnitude below the sampling frequency of the ADC, another design guide. 

After iterating to achieve close to the desired crossover and an acceptable 

phase margin, a potential lead controller is  

       ��~��(�) = Â ∗ aef=.f
aef=�   ��ℎ Â = 2.75. (7.45) 

 

 

After combining the lead controller and plant (with Padé approximation) in 

series, the root locus and bode plots are shown in Figure 7.6. 

 This is only one potential solution, yielding a phase margin of ≈ 45° at a 

crossover of ≈ 17 rad/s with a damping of 0.6. Notice that the magnitude at 
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low frequencies is not very high and could result in poor tracking of the 

reference signal. This could be affected by adding lag control which will be 

exemplified after incorporating the motor dynamics. 

7.7 Including Motor Dynamics 

Exercise: Recalculate the inertia of the wheels including the inertia of the 

motors/gearboxes using <~ = 3.6Ä − 8 Â�.= and the given information below. 

Exercise: Given the equation for motor torque, incorporate the motor 

dynamics into the original linearized equations of motion of the system, apply 

the Laplace transform and rearrange as before to derive the new transfer 

function of the system from input U(s) to output �(�). Plot the root locus and 

bode plots. Comment. What is the format of a possible stabilizing controller?  

Solution: Although we have now achieved a stabilizing controller in 

simulation, the robot itself would very likely not balance in reality. This is due to 

the fact that the motors themselves have dynamics that we have hitherto 

neglected. We will include them now and follow a similar control design 

approach, utilizing the root locus and bode plotting tools, this time with the 

Figure 7.6: Bode (left) and root locus (right) plots of the plant, G1(s), and n=2 Padé 

approximation of the delay function, P(S), with lead control applied. 
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addition of the closed loop step response and lag control. The motor dynamics 

can be modeled as 

C =  �̅$ + (, − V)W (7.46) 

where: 

�̅ = ����� ���D$�, 

, = )�.X��� '�����'����, 

V = /��'�$� ���'����, 

<~ = .���� ��.��$�� �������, 

W = .���� �X��) (P[ − �)[  �� Z�[ − P[ \ )�X��)��� �� .���� X������J, 

    $ = .���� ��X$� (F*] /��$� ,�� ��� − 1 ��) 1). 

Additionally, when calculating the inertia of the wheels and motors 

combined, we must multiply the motor armature inertia by the square of the 

gearbox ratio prior to summing with the wheel inertia. As before, the wheels are 

taken to be solid disks when estimating their inertia. The total inertia of one 

wheel and motor is 

                                          <& =  <~ + f
= .&-= (7.46) 

and the final linearized equations of motion accordingly become 

                          (.B-E)PQ + (<B + .BE=)�Q =  .B�E� − 2C  (7.47) 

                                (<& + (.B +  .&)-=)PQ + (.B-E)�Q = 2C (7.48) 

where C is defined above to be the torque from one motor, .& now includes 

the mass of both wheels and <& now includes the inertia of both wheels and 

gearboxes. Making the proper substitutions, taking the Laplace transform, and 

rearranging algebraically exactly as before yields the new transfer function 
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               	1(�) = `(a)
b(a) = =a̅(cdecf)

(gcdc=ecfh)aie(=(je+)(gcdgc=g=cf)ahe(ckecd)ae=(je+)ck (7.49) 

where: 

l1 = .B-E, (7.50) 

                                            l2 = <B + .BE=, (7.51) 

l3 = .B�E, (7.52) 

                                          <& + (.B +  .&)-=. (7.53) 

Plugging in the constants for these particular motors gives the final transfer 

function. 

             	1(�) = `(a)
b(a) = g==n.=a

aieo.==fahgfkn.oag=p=.= (7.54) 

The root locus and bode plots with negative gain applied are given in 

Figure 7.7. Looking at the root locus, no amount of gain can stabilize the system. 

In order to bring the locus into the LHP using pole placement techniques, our 

controller must cancel the zero at the origin and replace it with a stable zero. 

Note this is generally done with caution as a pole-zero cancellation on the 

imaginary axis can lead to instability due to inaccuracies in the model. We are 

confident in our model and will perform this cancellation. Looking at the bode 

Figure 7.7: Bode (left) and root locus (right) plots of the plant G1(s) incorporating 

motor dynamics. 
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plot, we do not have a high enough magnitude at low frequencies to achieve 

acceptable tracking. By applying lag control over the appropriate frequencies 

we can bump up the low frequency gain as well as cancel the zero at the 

origin, replacing it with a stable zero and bringing the locus into the LHP as 

desired. 

7.8 Lag Control 

Exercise: Design a lag controller to stabilize the system and plot the root 

locus and bode plots. Comment. 

Concepts and key words: Lag control, phase lag, integrator windup. 

Solution: The form of a lag controller is 

       ����(�) = aeq
aer  ��� s > X. (7.55) 

The primary use of a lag controller is to increase the gain at low 

frequencies in order to achieve good tracking. The gain will increase by a factor 

of z/p. Because our pole is at zero, we are able to choose z such that our lag 

control takes affect at frequencies well below our desired crossover frequency 

of 20rad/s. This is necessary due to the phase lag caused by the lag controller. 

We do not want to erode the phase at crossover and risk instability. After a few 

iterations, we choose z=3 and the resultant bode plot of our lag controller is 

given in Figure 7.8, illustrating the phase lag effect of a lag controller as well as 

the high gain at low frequencies. Notice the lack of roll off of the gain at low 

frequencies, which is the effect of having a controller pole at zero, acting as a 

pure integrator. Ideally we would roll off this gain at very low frequencies to 
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avoid integrator wind up, a phenomenon that can lead to instability in the case 

of motor saturation, however in this case we cannot. Combining this lag control 

with the plant and a negative gain yields the root locus and bode plots given 

in Figure 7.9. 

7.9 Lead Control with Motor Dynamics 

Exercise: Add lead control and plot the root locus and bode plots. 

Figure 7.8: Bode plot of lag controller D_lag (s). 

Figure 7.9: Bode (left) and root locus (right) plots of lag control combined with the plant 
G1(s). 
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Identify design specifications. Comment. 

Concepts and Key words: Lead control, phase margin, crossover 

frequency, pole zero cancelation, rise time.  

Solution: The bode plot with lag control shows that we have increased 

the low frequency gain but have indeed dangerously eroded our phase 

margin. Also, we do not have crossover at the desired frequency. The locus is 

now brought over into the stable LHP with the appropriate gain applied, 

however this design does not meet the necessary specifications such as 

damping, etc. In order to achieve crossover at desired frequency and increase 

phase margin, we will add lead control using much of the same logic as we did 

previously. In order to design our lead controller and achieve crossover where 

we desire we will use the previously introduced design guides. 

                              Wu ≈ 1.8 �B¯   ℎ��� �B = ���� ��.� (7.56) 

                             Wu = xXs  ℎ��� Xs = X��� ∗ s��� (7.57) 

As before, placing a zero at -15 to cancel the pole and replacing with a 

faster pole will help to achieve the required rise time without applying too much 

overall gain to the system. Keeping in mind that we would like a rise time of 0.05-

0.1 seconds, and a crossover frequency of ≈20 rad/s, we can use the above 

equations to calculate the location of the pole that should achieve close to 

our desired specifications. A rise time of 0.05 seconds corresponds to a 

crossover frequency of 36 which gives us a pole at 86.4. This is not quite a factor 

of 10 higher than the zero at 15 to achieve max phase bump, but we still have 

a phase margin of about 52 degrees which is sufficient to account for any future 
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phase loss associated with implementation in digital electronics. Now adjust the 

gain to get crossover at the target frequency. Cannot meet all approximate 

design guides exactly so compromise at Wu = 23, �B ≈ 0.08, X. = 52. The final 

open loop bode and root locus plots with lead control applied are given in 

Figure 7.10. 

7.10 Closing the Loop 

Exercise: Plot the closed loop step response. Comment on whether or 

not design specifications were met. 

Concepts and Key words: closed loop, step input, step response, rise 

time, settling time, overshoot, loop prefactor. 

Solution: Referring to ��~��g���(�) as �(�), the form of the closed loop 

transfer function is 

   z(�) = �(a)�(a)�f(a)
fe�(a)�(a)�f(a)  (7.58) 

Performing a few final tweaks, we end with ���� = (� + 2.5) �⁄  and 

��~��(�) = (� + 15) (� + 86.4)⁄  with a gain of -10. Giving a step input to this system 

Figure 7.10: Bode (left) and root locus (right) plots of lead and lag control applied to 
the plant, G1(s), showing high gain at low frequencies for good tracking of the 
reference signal and ample phase bump at the crossover frequency. 



90 

 

results in the step response plotted on the left hand side of Figure 7.10 showing 

a rise time of 0.06 s, settling time of 0.79 s and an overshoot of 10%. Notice that 

the response settles at a value of ≈1.41 instead of 1 as desired. This can be fixed 

by adding a loop prefactor of P = 1/1.41 as shown in equation (7.59). The step 

response now becomes that pictured on the right hand side of Figure 7.11. 

                                      z(�) = F ∗ Â(�)�(�)	1(�)
1+Â(�)�(�)	1(�) (7.59) 

7.11 Discrete Time Controller 

Exercise: Convert the continuous time controller to discrete time and 

derive the corresponding difference equation to be implemented in hardware. 

Concepts and Key Words: discrete time, difference equation, transfer 

function, Tustin’s approximation, prewarping, Z-transform, inverse Z-transform. 

Solution: In order to implement the controller in hardware, we need to 

convert from continuous time to discrete time and obtain the difference 

equation the controller must obey. To convert to a discrete time transfer 

function we use Tustin's approximation with prewarping. We apply prewarping 

Figure 7.11: Step response of closed loop system without a loop prefactor on the left 
and with a loop prefactor on the right. Addition of the loop prefactor causes the 
response to settle at one as desired. 
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around the crossover frequency to insure accurate conversion at this 

frequency. Then applying the inverse Z transform gives us the difference 

equation to be implemented in the microcontroller. 

              $�e= − 1.652$�ef + 0.6525$� = −8.626��e= + 16.52��ef − 7.902�� (7.60) 
 

7.12 Balancing in Normal Drive Orientation 

Exercise: Derive the transfer function of the system for BeagleRover in its 

tall orientation. 

Concepts and Key Words: No new concepts or key words. 

Solution: In order to balance BeagleRover in its tall orientation, we must 

account for the change in the distance from the center of the wheel to the 

center of mass of the body, L, and the corresponding change in the body 

inertia, <B. Changing these values and recalculating, the transfer function for 

the new orientation becomes 

                                  	2(�) = gfko.oa
aie�.pfoahgpn.dvag=�n.= (7.61) 

with poles at -12.4, -1.98 and 8.43 which are slightly "slower" than the poles of 

G1(s) when balancing in crab mode. 
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Chapter 8 Conclusions and Future Work 

The purpose of this work is twofold. First, it is dedicated to the technical 

development of BeagleRover, a small RC car capable of numerous different 

drive modes including balancing and driving on two wheels. Second, it is to lay 

groundwork for how BeagleRover, as part of a larger platform currently being 

called the EduLine, can be used to affect STEM education. The technical 

portion of this paper centers on the control algorithm designed to achieve 

balance on two wheels as well as the smooth transition between driving on four 

wheels to driving on two using a wall. This is accomplished through classical and 

digital control methods, namely lead and lag control techniques. 

Implementation in a microcontroller is considered including the use of a 

complementary filter to adjust for sensor noise characteristics. Lastly, four-wheel 

steering is augmented by the addition of Ackermann steering geometry.  

Successful implementation of the classical control and filtering 

techniques mentioned above has resulted in a vehicle capable of balancing 

on all four of its sides in two different unstable configurations. These consist of a 

“tall” configuration and “short” configuration, referring to a higher and lower 

center of mass respectively. The difference in location of the center of mass 

was handled by increasing the gain while balancing in tall mode. This proved 

to be sufficient in achieving balance however the vehicle does seem to display 

better disturbance rejection in its short configuration. While driving in Normal 

mode (on all four wheels with the front of the vehicle being what one would 

expect) Ackermann steering geometry was implemented to reduce side slip of 
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the vehicle while moving through a turn. Some simple tests leveraging the on-

board gyroscope showed side slip does seem to be reduced by Ackermann 

geometry when going through a tight as well as a wide turn on a hard wood 

floor. The implementation of Ackermann geometry was also shown to provide 

a strong educational skew that is accessible at the high school level, leading 

into the educational portion of this thesis work.       

Throughout the technical developments of this work, applications to 

STEM education are considered, with each major section including a discussion 

of its particular relevance to that topic. The education centric portion of this 

work culminates in a text we are currently calling BeagleBone Robotics (BBR), a 

portion of which is given in chapter seven. BeagleBone Robotics currently 

consists of a hardware section that is focused on such topics as getting up and 

running with the BeagleBone Black and programming in Linux, as well as a 

theoretical section on control design. The theoretical portion is written in a 

question and answer format designed to be used as a complete solution set for 

balancing BeagleRover on two wheels. This section is not currently augmented 

to be BeagleMiP specific (Beagle MiP being the first robot in the EduLine that is 

currently used to teach MAE 143C, Digital Control Systems at UCSD). Although 

not included in this text, BBR does include build instructions for both BeagleMiP 

and BeagleRover. As a precursor to a formal curriculum written around the 

EduLine, BeagleBone Robotics is considered to be a major contribution of this 

thesis. That being said, there is still ample room for augmentation of this work, 

both from the educational perspective as well as the technical. 
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From the educational perspective, some specific ways to augment 

BeagleRover as an educational platform are adding a graphical programming 

option, incorporating Ackermann steering geometry and complementary 

filtering into the theoretical portion of BBR, designing complete lesson plans for 

use by instructors, adding more examples of hands on experiments achievable 

at the high school level. From a high level view, the EduLine has the potential 

to reach a wide audience by offering a low enough barrier to entry to engage 

high school aged students while offering a direct path to college level curricula. 

A high school level course, or Volume 1 of BeagleBone Robotics, that has a 

direct counterpart at a well-respected university such as UCSD, or Volume 2 of 

BeagleBone Robotics, is potentially very powerful. In order to impact the largest 

number of students possible, BeagleBone Robotics should be brought into the 

classroom rather than focusing exclusively on extracurricular programs. What’s 

more, the most ambitious goal is to adapt Volume 1 for use in public high 

schools by appealing to state standards for science and math education. To 

adapt the EduLine material to state standards for use in public school systems 

is a very in depth project that will take years to complete. But if done 

successfully, it could potentially impact the downward trend in students 

pursuing STEM degrees that was highlighted in chapter one, especially if it is 

kept affordable. Out of the EduLine, BeagleRover is the platform best suited for 

adaptation to high school level coursework for a number of reasons that have 

been explained throughout this paper.  

From the technical perspective, some work could be done to improve 
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balancing of the vehicle as it has the tendency to “run off” when not given any 

user input from the DSM2 radio. A sure way to do this would be to add position 

control by leveraging frequency separation techniques. Other sensors such as 

wheel encoders would be required to accomplish this reliably. However, this 

method is implemented by BeagleMiP and it may be desirable from the 

educational and commercial product perspective to allow for this difference 

between the two robots. More compelling than this however, are the potential 

improvements to the vehicle handling while driving in Normal mode. This could 

include more advanced versions of Ackermann steering geometry as well as 

the addition of torque vectoring which refers to spinning the wheels at different 

speeds through a turn to compensate for differences in distance traveled. 

Optimizing the handling of BeagleRover through these techniques could be a 

separate master’s thesis project in itself.     

 Although this paper focused on BeagleRover as an educational 

product, there are many ways this project can be extended including to 

applications outside of education. In fact, the ability to customize and extend 

is a key component of the foundation of the project. One example is inspired 

by Tactical Electronics’ Under Door Camera [57], a wireless camera designed 

to be slid under a door and then operated from a place of cover, there is a 

current effort in the Robotics Lab to design a mechanism that can be attached 

to the Rover and deploy a camera in a similar fashion. As seen in the second 

image, Tactical Electronics’ Under Door Camera is meant to be placed in the 

desired location by a human hand, at best by an attached pole. If the same 
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result was to be achieved by a remotely controlled vehicle that can maneuver 

in very tight spaces, leveraging the different drive modes such as spin mode to 

turn around without lateral motion in any direction, the operator would benefit 

from maintaining a greater distance of cover. The applications to hostage 

situations and or exploration of a burning building for example are apparent, 

enhanced by the presence of an IR light source and IR camera to illuminate 

the inhabitants of a dark room without alerting attention. 

A second example of extension beyond educational applications takes 

the form of an additional theoretical problem. While working on the steering 

code for BeagleRover, it got stuck in a loop while rotating in place on two 

wheels, similar to a spinning top. This begs the question, can it spin fast enough 

to be open loop stable in this orientation? By drawing parallels to the problem 

of a spinning top, one could attempt to calculate the necessary angular 

velocity of the vehicle about the vertical axis and therefor the necessary 

velocity of the motors. The physical limitations of the Rover were tested by 

writing code to disable balance control while driving on two wheels so that 

maximum angular velocity could be achieved prior to disabling feedback. The 

result was instability at high velocities even with the balance control enabled, 

let alone disabled. The tendency of the vehicle to rotate about one wheel 

rather than about the vertical axis quickly causes instability at higher speeds, 

even if a high enough speed for open loop stability was achievable. It is left to 

future study to move forward with this challenge. 

Overall BeagleRover works well and the addition of this robot greatly 
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enhances the appeal of the EduLine as an educational robotics platform. The 

combination of BeagleRover and BeagleMiP along with BeagleBone Robotics 

provides a strong starting point for formal STEM curricula at both the high school 

and university levels. With future development, the EduLine stands to impact 

STEM education in a very real and meaningful way.   




