UC San Diego

UC San Diego Electronic Theses and Dissertations

Title

Control and Steering of a Small 3D Printed Rover and its Applications to Engineering
Education

Permalink

https://escholarship.org/uc/item/2bd4m4xn

Author
Bleything, Talesa

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2bd4m4xn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Control and Steering of a Small 3D Printed Rover and its Applications to
Engineering Education

A Thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Engineering Sciences (Mechanical Engineering)

by

Talesa Rene Bleything

Committee in Charge:

Professor Thomas Bewley, Chair
Professor Mauricio de Oliveira

Professor Michael Tolley

2016

The Thesis of Talesa Rene Bleything is approved and it is acceptable in quality
and form for publication on microfiim and electronically:

Chair

University of California, San Diego

2016

Dedication

Thank you Tom. For everything.

Table of Contents

SIGNATUIE PO i iii
DA Ot ON. e iv
TAbIE Of CONTENTS. .. e %
LIS Of FIQUIES. et e Vii
LISt Of TADIES. e e e X
ADSTTACT Of tNE ThESIS. ...t i
Chapter T INtrodUCHON. ..., 1
1.1 Research MotivatioN. ... 1

1.2 RESEAICN SCOPE. .. i e 3

1.3 TheSis OUIINE. . ..ui e e 5
Chapter 2RelTted WOrK. ... e 7
2.1Current Trends in Science and Engineering Education..................... 7

2.1.1 Example One: Flipped Classroom Model...........coooeenenen.n. 7

2.1.2 Example 2: Active Learning in a High School Pre-Calculus

(L@ T 57> N 8

2.1.3 Example 3: MIT Infroduces the Maker Portfolio.................... 9

2.2 EAuCational RODOTICS. ...vvieiiiieee e 10

2.2.1 FIRST RODOTICS. ..t 10

2.2.2LEGO MINDSTORMS. ..., 12

2.2.3 C-STEM and LINKDOTS. ..o 14

2.3 CONCIUSIONS. ...ttt e e e e e e e 16
Chapter 3BeagleRover SteeriNg.....c.ouiiiiiie e, 20
3.1 Active Four Wheel Steering......ccooiiiiiiiicceee e, 21

3.2 Ackermann Steering Geometry.....oooiiiiii i, 23

3.3 DMVE MOGES. ..o i e 27
Chapter 4 Control DeSIGN. ... e 34
4.3LAg CONTTOL e e, 39

4.4 Lead CONMOL e 42

4.5 CloSING The LOOP . .u ettt 43

4.6 Discrete TIMe CONITOIET 44

4.7 Balancing in Normal Drive Orientation.......ccccveeeeieeeicieeeeee e 44
Chapter 5 ImMplementalioN. ... e 46
5.1 Hardware and COdeaASE. ...t 46

5.2 Programming ENVIrONMENTt ..., 49

5.2.1 Multithreaded Programming and Drive.c Program Architec-

L8 TSP SRR PP 50
5.3 StAte ESHMATION ...t 52
5.3.1 ANOte ONEUIEr ANGIES......oviieeeeeeieeeeeeeeee e 53
5.3.2Complementary FIlTEr 54

5.4 Code Optimization AN FEQTUIES......uuvviiieieeeeeeeeeeieeeeeee, 58
5.4.1 Drive to Balance TransSitioN........c.veeeeeieee e 60
Chapter 6 Introduction to BeagleBone RODOTCS........uvveeciiieieciiieecieee e, 61
6.1 BeagleBone Robotics QUIINE.........uvviiiieiieeeeeeeee e 62
6.1.1 BeagleBone Robotics Parts One and TWO.......cooovciiieeieiceeciieeeee, 62
Chapter 7 BeagleBone Robotics PArt TAree.........coovvveeeeciieeeeieeeeeee e 65
7.1 Infroduction to BeagleBone Robotics Part Three.........cccvveeenveeenneee. 65
7.2 UsiNG this CRAPTEN....uiiiiiee e e 66
7.3 Problem STatemMENT. ... 66
7.4 EQUAtIONS Of MOTION.....uiiiiiiiceceee e 67
7.4.1 Free Body Diagrams and Constants.........ccccceeeeeveeeecciveeeennee. 67

7 4.2 KINEMATICS..viiiiiiiieeciiee ettt e e e e erae s 69

7 4.3 DYNAMICS..uttiiieieieeeiieeee et eeeere e e e e eeeaaae e e e e e e eetaaeaeeeas 70

7.4.4 Nonlinear Equations of MoTioN.......cccccciiiiieeiccie e 72

7. 4.5 LINEAMNMZOTON..c.eii ittt e e 73

7.5 CONTIOL ittt et e it e e aee s 74
7.5.1 Approximate 2nd Order Design Guides..........ccccveeeeeciveeeenee. 75

75,2 Gl (S) ettt et et 77

7.5.3 Discrete Equivalent Design.........eeeceeeeciieeeeee e 78

7.5.4 Padé APRroXimatioN.......ccueeeeeciieeeeiiee e 80

7.6 LA CONTIOL..ciiiiiiiiiiiieee ettt e e s 81
7.7 Including MoOtOr DYNAMICS.......viiieeiiiieeciieee et e 83
7.8 LA CONIIOL . ittt et e e e e e e e e e araaeeeeeeennes 86
7.9 Lead Conftrol with Motor DyNQMICS.......cccceeciiiieeeeeeccieeee e 87
7.10 CloSING The LOOP .ttt a e e 89
7.11 Discrete TIme CONTOIEr.......uii it 90
7.12 Balancing in Normal Drive Orientation..........cceevceeviieeniieeieeeeeene 21
Chapter 8 Conclusions and FUTUre WOrK...........eueeeeeeciiiiiieecececeeee e 92

Vi

List of Figures

Figure 1.1: Image of the most current version of BeagleRover..........ccccoovveuneenee. 2
Figure 3.1: Close up of four bar steering mechanism..........cccoeceeeiieennieenieeeneeens 21

Figure 3.2: BeagleRover showing out of phase alignment of the wheels on the
left and in phase alignment on the right. In the left image, the front wheels are
rotated clockwise while the rear wheels are rotated counterclockwise. This is
opposed to the right image where all wheels are rotated clockwise................ 22

Figure 3.3: Ackermann steering geometry showing difference in radii between
the circle traced by the inner wheel and the circle fraced by the outer wheel
IN ATGNTNANA TUM ettt et 24

Figure 3.4: Comparing minimum turn radii of four wheel steering (left) vs. front
wheel steering (right) on the same vehicle. Consider the front inner wheel in
each drawing to be turned the maximum number of degrees as limited by the
MECNANICAl AESIGN...uiiiiieieeeeeee e e e e e e e e e e e e etra e e e e e e e eraaeeaaeeas 25

Figure 3.5: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
with Ackermann geometry implemented.........ccoovevieeeciiieicciieeeeceee e 28

Figure 3.6: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
without Ackermann geometry implemented..........ccooviiieieiiiiiiici e, 28

Figure 3.7: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
with Ackermann geometry implemented........cccoooiiiieiieeciieee e, 29

Figure 3.8: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
without Ackermann geometry implemented.........ccuoveeeiveieeciiii e, 29

Figure 3.9: BeagleRover pictured in its Normal drive mode on the left and Crab

drive mode ONThE MGNT ..o e 31
Figure 3.10: BeagleRover pictured in Lane Change drive mode on the left and
Spin drive mode on the MgNT......ceeiii e 32
Figure 4.1: Free body diagrams of the wheel and rod...........cccceecvveeieiiieeccieeenn, 36
Figure 4.2: Bode (left) and root locus (right) plots of =G1(S)...cccevuveeeevvieeieciiieeennns 40
Figure 4.3: Bode plot of lag controller Dygg(8)....covoveveeveviieieiiiiciieiccc, 43
Figure 4.4: Bode (left) and root locus (right) plots of =Djq4(S)G1(S)..ceiviiinnnne. 42

Vii

Figure 4.5: Final open loop Bode (left) and root locus (right) plots with lead and
lag control where Dyag(s) = (s + 15)/(5 + 86.4)..cuucuiiiiieiiiiiiiiiiiiciiic 43

Figure 4.6: Closed loop step response of system without a loop prefactor on the
left and with a loop prefactor of 1/1.4 on the right. The addition of the loop
prefactor causes the step response to settle at one as desired............ccuune.... 44

Figure 5.1: Visual depiction of the various threads running in the drive.c program
aANd their reSPEeCTVE TASKS.....ciiiiieeeee e 50

Figure 5.2: Software architecture of the balance function. PWM LW stands for
PWM input to the left wheel and PWM RW is PWM input to the right wheel...... 51

Figure 5.3: 2D representation of the axes of an accelerometer as it changes
position in space. On the left hand side the x-axis reads slightly positive and on
the right hand side the x-axis reads slightly negative.......cccccceeveiiiiiiee e, 55

Figure 5.4: The block diagram on the left hand side illustrates integration of the
complementary filter into the complete feedback system. Note disturbances
and NoIse Are NOT SNOWN NETE.........uuiiiiiiiee e 57

Figure 7.1: BeagleRover pictured on the left and 2D model of BeagleRover as
a mobile inverted pendulum on the Mght......ccceiiicieeeee e 67

Figure 7.2: Free body diagrams of the wheel and rod...........cccceevveeieiiieeccineen, 68

Figure 7.3: Graphical depiction of the s-plane showing how the natural
frequency of the system is affected by pole location........ccccvveeeiiiieciiiieeeeeeee, 76

Figure 7.4: Block diagram of the controller/plant system. The bottom diagram
shows the series connection of the conftroller and plant with the delay that arises
from the digital-to-analog conversion of the discrete time controller output.....79

Figure 7.5 Bode (left) and root locus (right) plots of the plant, G1(s), combined
with a second order Padé approximation of the delay introduced to the system
by the BeagleBone BIACK'S DAC ...ttt evraee e 81

Figure 7.6: Bode (left) and root locus (right) plots of the plant, G1(s), and n=2
Padé approximation of the delay function, P(S), with lead control applied..... 83

Figure 7.7: Bode (left) and root locus (right) plots of the plant G1(s)
iNCorporating MOTOr AYNAMICS......coo i 85

Figure 7.8: Bode plot of lag controller D_IAQ (S)..cccveeeeeireeeeiiieeeeiiie e e 87

Figure 7.9: Bode (left) and rooft locus (right) plots of lag control combined with
TNE PIANT G (S) euriieiiiiiie et ettt e e e et e e s aae e e esataeeeerasaeeeeassaeeennns 87

Figure 7.10: Bode (left) and root locus (right) plots of lead and lag confrol
applied to the plant, G1(s), showing high gain at low frequencies for good

viii

tracking of the reference signal and ample phase bump at the crossover
LLCCTe LS 1<) oA 2RSSR 89

Figure 7.11: Step response of closed loop system without a loop prefactor on
the left and with a loop prefactor on the right. Addition of the loop prefactor
causes the response to settle at one as desired..........ooeeeeeeeiiiveeeeiiiecciieeee e, 90

List of Tables

Table 5.1: A subsection of the example programs included in the Robotics Cape
foTe o] oo = TSP UPPRRP 48

Table 5.1: Drive.c key program features and their descriptions.........c.ceeeeveeenes 59

ABSTRACT OF THE THESIS

Control and Steering of a Small 3D Printed Rover and its Applications to
Engineering Education

by

Talesa Rene Bleything

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2016

Professor Thomas Bewley, Chair

This thesis presents both the control design used to stabilize a small rover
on two wheels as a mobile inverted pendulum, as well as the steering design
used to achieve a series of unique stable driving modes. Additionally, the rover
is assessed as an educational platform for use in teaching various STEM topics
at both the high school and undergraduate university levels. The vehicle,
termed BeagleRover, uses four DC motors and four servo motors to
independently steer each wheel and achieve a total of six different driving
modes, four of which are inherently stable four-wheel drive modes while two

are unstable two-wheel drives modes. Two of the four stable drive modes

Xi

implement Ackermann steering geometry to reduce side slip when driving
around a turn. Experimental results using measurements from an onboard
gyroscope suggest that side slip is indeed reduced by this method. Stability in
the two unstable drive modes is achieved through classical control methods
including lead and lag confrol. Complementary filtering of gyroscope and
accelerometer measurements is used to derive accurate body position data
for use in feedback. In support of current STEM education trends, this thesis
provides a detailed solution set to the steering, control and filtering problems

for potential use in STEM course material.

xii

Chapter 1 Introduction

The purpose of this thesis is twofold. First, it is to apply classical and digital
confrol theory to control a four-wheel steerable rover, referred to as
BeagleRover, with the ultimate goal of achieving a unique combination of
various four-wheel drive modes, two-wheel balance modes and the transition
between four-wheel and two-wheel driving and back. BeagleRover is pictured
in Figure 1.1. Second, it is to provide support material and lay groundwork for
the design of Science, Technology, Engineering and Mathematics (STEM)
curricula centered on BeagleRover and two other educational robots termed
BeagleMiP, a miniature Segway-like mobile inverted pendulum, and
BeagleMav, a small hexacopter. These three together comprise the Eduline, a
line of educational robots designed for use in the classroom or as commercial
products. The potential impact of this work lies mainly in furthering advances in
engineering and other STEM fields by contributing to the advancement of
science and engineering education. It will be demonstrated that BeagleRover
is well positioned to further this advancement as an educational robotics

platform.

1.1 Research Motivation

According to a recent study out of the Construction Engineering
Department at the University of Central Florida, the number of students pursuing
STEM disciplines in the United States has decreased by 18% over the last two
decades, while the number of undergraduate students specifically pursuing

engineering degrees continues to follow a decreasing trend [1]. Some

Figure 1.1: Image of the most current version of BeagleRover.

researchers believe the problem lies in atfracting students to the field of
engineering while others believe the bigger issue is retaining students
throughout their studies and engaging them in the learning process, pointing to
the fact that only 40% of students who choose STEM actually end up with a STEM
degree [1]. Whether the root cause of the decline in STEM degrees is initial
atftraction or retention, it has educators motivated and a tfrend in the proposed
solutions to this challenge has emerged. This trend can be quickly summarized
as a transition away from traditional, lecture-based, instructor-focused
classrooms toward more non-traditional, application-based, student-focused
approaches where hands-on lessons are emphasized. Accordingly, this is
creating the need for more educational platforms that can support these
active learning, hands-on approaches.

Traditional approaches are defined by an instructor-focused setting in

which information transmission is the primary goal and students take a largely

passive role. According to a literature review published in the Journal of
Engineering Education in 2015, this results in surface learning approaches to
studying and limited understanding [2]. In contrast, more and more evidence
in the engineering and science education literature suggests a more student-
focused, active environment, in which students engage physically with the
activity in some way, leads to a deeper approach to studying and more
thorough understanding [2]. This can potentially result in the student feeling
more successful and improving retention. Consequently, feachers are being
increasingly encouraged to implement a more hands-on and active curriculum
in various STEM fields at the high school and higher education levels, where
active learning approaches become increasingly rare as courses are
transitioned to traditional lecture based techniques [3]. It is this understanding
of the push toward and the efficacy of active learning approaches that
motivates the application of BeagleRover to STEM education. This paper
presents the technical development of an engaging physical platform and
accompanying support material that together make the building blocks for
compelling hands-on and active learning curricula at both the high school and

undergraduate levels.

1.2 Research Scope

As previously stated, the ultimate goal of this research is to further the
field of engineering by developing an engaging, dynamic, educational
robotics platform that can be used to encourage student involvement in

various areas of science and engineering, ultimately leading to an associated

career. This has resulted in a multidisciplinary project, integrating technical
development and implementation while consistently documenting and
designing from the educational perspective. The technical development of
BeagleRover was accomplished using classical and digital control techniques,
implemented exclusively in a multithreaded c-programming environment.
These techniques were applied to an existing mechanical design, small
changes being suggested along the way as the use case became more and
more clear.

The maijor technical additions to a system previously capable of driving
on four wheels in four simple drive modes include implementation of
Ackermann steering geometry, confrol design to achieve balancing and
driving on two wheels and the transition between driving on four wheels to
driving on two wheels. The peak result being the ability of the vehicle to drive
“up the wall,” with sufficient friction between the tires and ground, in order to
upright itself and drive away from the wall while balancing indefinitely on two
wheels. This work provides the steering solution as well as the balance conftrol
solution for the maneuvers listed above. Additionally, switching from the use of
Euler angles to implementation of a complementary filter for accurate state
estimation is explained.

From the educational perspective, almost no support material written
exclusively for teaching a dispersible course or lesson around the Eduline
existed prior to the formal initiation of this thesis work. A major contribution of

this work is a text we are currently calling BeagleBone Robotics (BBR), designed

to serve as the lab text for MAE 143C, Digital Control Systems, taught at UCSD
and centering on BeagleMiP. BeagleBone Robotics is a three-part text. The first
two parts include instructions for getting started with the hardware, robot
assembly, and recommended homework exercises and solutions that range
from getting started in Linux to PCB design using the free software Eagle. The
third part is dedicated to control design. Currently the control design portion is
written based on BeagleRover, as control design and implementation for the

second robot in the EduLine family is the main technical focus of this paper.

1.3 Thesis Outline

This thesis is split info two parts in order to best illustrate its dual nature.
Chapter two discusses related work while chapters three, four and five are
mostly quantitative, dedicated to the technical development and
implementation of the control and steering solutions. Chapters six and seven
present the support material developed around the Eduline as a result of this
thesis work. Chapters six and seven will be referred to as part two while chapters
three, four and five will be referred to as part one. Chapters three, four and five
also contain additional information and derivations that are not currently
included in the support material but will be useful as such in the future.

Part one begins by explaining the steering mechanism used, although it
should be made clear that the mechanical design existed prior to this work. The
four different stable drive modes currently implemented on BeagleRover are
then explained, demonstrating the highly engaging nature of the vehicle. This

is followed by an explanation of Ackermann steering geometry which is

implemented in order to achieve a more efficient and maneuverable vehicle
as well as to provide material that can be used in high school level coursework.

Following the discussion of the steering mechanism used and the
different stable drive modes is the conftrol solution for balancing BeagleRover
on two wheels in its unstable drive mode. The confrol solution is the main
theoretical focus of this paper. This section is mirrored in chapter six, where the
theoretical portion of BeagleBone Robotics is presented, which is one of the
primary contributions of this thesis work. Chapter six makes up the bulk of part
two of this paper and is written to serve as a detailed solution set for the mobile
inverted pendulum problem as taught in UCSD's Digital Control course,
MAE143C.

The final chapter of part one details implementation of the steering and
control solution in hardware and discusses BeagleRover's most dynamic
maneuver, the transition between driving on four wheels to balancing on two
wheels by driving up a wall. Finally, suggestions for future work and conclusions
are given in chapters eight and nine respectively. The application of
BeagleRover and the Eduline as a whole to high school level curricula is left to

future work and as such is discussed in the future works section.

Chapter 2 Related Work

2.1 Current Trends in Science and Engineering Education

This section is not intended to be a comprehensive literature review of
science and engineering education in itself but rather to highlight some
meaningful examples of recent advancements in non-tfraditional classroom
settings and set the stage for how BeagleRover may fit into these trends.
However, all of the examples cited in section 2.1 have conducted
comprehensive literature reviews and or specific case studies and therefor
provide useful insight info how BeagleRover, and by extension the Eduline as a
whole, may conftribute to the advancement of engineering education. To this

end, three example studies will be highlighted.

2.1.1 Example One: Flipped Classroom Model

There has recently been a surge in the popularity of the flipped, or
inverted, classroom model [2]. The flipped classroom model is one in which
technical knowledge is gained primarily through online videos prepared by the
instructor and class time is used for problem solving through peer interaction,
during which the instructor acts primarily as a guide. As opposed to the
traditional classroom lecture model, the goal of the flipped classroom model is
to free up class time for hands-on work and application of theory to real world
problems.

In a study conducted by Butler, Zappe and Mahoney (2015), data from

a comprehensive literature review on the current use of the flipped classroom

model in engineering education is inconclusive when using exam scores as the
metric by which to measure success. Empirical evidence from a case study
across three semesters of an undergraduate environmental engineering course
(80-90 students per semester), during which the fransition is made from a
traditional lecture based format through two iterations of a flipped classroom
design, similarly reports no significant improvement in cumulative exam scores.
However, the students report a much higher satisfaction with the course via a
student survey and 77% of students who engaged in version two of the flipped
course agree that they would rather take a flipped course with the same
instructor than a fraditional course [2].
2.1.2 Example 2: Active Learning in a High School Pre-Calculus Course

As part of a National Science Foundation STEM grant, entitled Science
and Technology Enhancement Program (Project STEP), graduate engineering
students from the University of Cincinnati joined high school classrooms for 10
hours a week for the duration of a full academic year (Project STEP 2010). Under
Project STEP, the graduate students created interactive, project-based high
school lesson plans, meeting state science and math standards. The goal was
to increase interest in STEM fields, stating that strong academic preparation in
high school is more likely to lead to STEM degree completion [3].

The lesson of focus here, Shaking Up Pre-Calculus, written and led by
Chelsea Sabo, a Robotics Postdoctoral Researcher at the University of Sheffield
in the UK, teaches high school pre-calculus concepts using a miniature shake

table. Students build structures to test using KNEX and analyze data using a Go!

Motion Sensor. The students were given pre and post assessments containing
identical questions in order to assess whether or not the students learned the
material. The results showed roughly 30% to 80% improvement on all questions
from beginning of the class to end of the class, suggesting the material was
successfully delivered.

Additionally, students were given feedback forms in order to get a
clearer picture of the impact of Shaking Up Pre-Calculus. Results of this survey
show that approximately 70% of students responded favorably to the question
of whether or not the lesson made them want to learn more about engineering.
Results were similar for increasing confidence in science and math. All three of
these results were similar to those of the same survey conducted in year two of

the course.

2.1.3 Example 3: MIT Intfroduces the Maker Porifolio

As of 2014, MIT Admissions began accepting a “maker portfolio” as an
equally weighted part of their admissions process. In a white paper prepared
by MIT Admissions for the inaugural White House Maker Fair in 2014 [4, 5], the
maker portfolio is described as “a powerful tool for helping admissions officers
to identify, understand, evaluate and admit exceptionally skiled applicants
whom a conventional selective admissions process might undervalue or
“overlook altogether” [4]. An official decision by one of the leading tech
universities in the country to value conventional assessment methods equally
with “high maker potential” represents a profound paradigm shift toward the

formal acceptance of non-traditional approaches to technical education.

10

Other universities may begin to follow suit, potentially widening the market for
platforms such as BeagleRover that can be used in the high school STEM

classroom, especially in a flipped classroom type of model.

2.2 Educational Robotics

Robotics construction kits designed for education have an
approximately 50-60 year old history, arguably beginning with the Logo
programming language developed by Seymour Papert in 1967 and the
associated programmable Turtle robots [6, 7, 8, 9]. Since this infroductory step,
robotics in education has been ever increasing in popularity. This is especially
true within the past couple decades as computation has continued to become
cheaper and cheaper, enabling programmable robotics platforms to reach a
wide range of classrooms and schools [?, 10]. This has led to what's been
termed a “robotic revolution” [?]. Accordingly, a multitude of robotics platforms
marketed as educational exist today, some more legitimate than others. If the
Eduline is to become a viable educational platform, an understanding of
successful educational robotics platforms is a must. An overview of several of

these platforms is given next.

2.2.1 FIRST Robotics

For Inspiration and Recognition of Science and Technology (FIRST) is a
not-for-profit public charity youth organization specializing in robotics
education. The mission of FIRST is to inspire youth to become science and
technology leaders by engaging kids from kindergarten to high school in

mentor-based robotics programs [11]. Reaching over 400,000 students in 2015-

11

2016, FIRST is widely recognized as the “leading not-for-profit STEM engagement
program for kids worldwide” [11, 12].

The FIRST program is competition based and is most well-known for its
flagship competition, FIRST Robotics. FIRST Robotics Competition (FRC) is for high
school students grades 9-12 and is the FIRST program that is most comparable
to the skill set potentially taught at this level by the Eduline, specifically
BeagleRover. In order to participate in FIRST Robotics, a student must be part of
a team of at least 10 and must be wiling to commit to demanding fime
requirements as the program is designed to operate in an afterschool setting,
similar to a school sports tfeam. The season last between six weeks and four
months depending on how far a team advances in the competition [13]. The
cost perteam is anywhere from 5,000.00% - 6,000.00$ plus travel, food and team
shirts, with costs naturally increasing as teams stay in the competition longer
[14]. Although FIRST offers resources to help teams with funding, the number one
concern of team leaders is affordability, according to a study conducted by
Brandeis University [15].

The competition itself requires a range of skill sets both technical and
non-technical, and students need not have any prior experience to participate
[13]. Teams receive a standard kit of parts that includes the mechanical and
electrical components necessary to build that year’s robots. The robots are
industrial sized requiring access to a large space and a variety of machine shop
power tools [13]. The students are responsible for the mechanical design as well

as the programing of the robots in order successfully perform in a variety of field

12

games. The current hardware used centers around the roboRIO from National
Instruments, a student robotics controller designed specifically with FRC in mind
that combines a Xilinx FPGA and dual-core ARM Cortex-A9 processor. It can be
programmed using LabVIEW graphical programming tools or C text based
language [16]. Both the reconfigurable /O architecture (RIO), LabVIEW
software and C are used in industry for a range of applications and give

students the opportunity to work with professional grade tools.

2.2.2 Lego Mindstorms

Lego Mindstorms Education EV3 is Lego’s most current solution to
teaching STEM concepts in the classroom. Unlike FISRT Robotics, the Lego
Mindstorms EV3 approach is designed to be implemented during the regular
school day and is aligned with Common Core State Standards and Next
Generation Science Standards [17]. Educators can choose between three
different packages which include the EV3 Core Solution, EV3 Curriculum
Solution and EV3 Comprehensive Solution. All packages can teach a range of
classroom sizes and come with the same hardware and software. The
differences lies in the curriculum support that is provided. The Core Solution
includes no curriculum while the Curriculum Solution comes with the EV3 Design
Engineering Projects Curriculum which includes lesson plans and over 30 hours
of instruction [17, 18]. The most in depth option is the EV3 Comprehensive
solution which includes the EV3 Design Engineering Projects Curriculum, EV3
Science Curriculum and EV3 Coding Activities, all of which are supported by C-

STEM curriculum (explained further below) and include lesson plans at varying

13

numbers of total teaching hours [19]. For a classroom of 30 students, the kits cost
5,999.95%, 6,299.95% and 10,499.95% in order of increasing value of the
curriculum as listed above, and are designed to provide one set of hardware
and software per every two students [17, 18, 19].

The hardware provided with all variants of the Lego Mindstorms
Education EV3 kits includes a range of common sensors, motors, battery,
cables, build instructions, Lego Technic building bricks and the EV3 intelligent
brick. The combination of the EV3 brick, which is built around a 32-bit Arm9
processor and a Linux based operating system, with Lego Technic building
bricks allows for many different types of robofts to be built within this one system
[20]. The programming environment is designed to follow a drag and drop
paradigm and is based on LabVIEW. Although a historically limited
programming environment, the Mindstorms EV3 can be programmed using
standard industry and college level tools such as C and Java [21, 22].

The focus of the Mindstorms EV3 program is at the k-12 level, especially
the pre, elementary and middle school levels, as that is the level of study that
the provided EV3 curricula address (FIRST Lego League for elementary school
students uses Lego Mindstorms technology). That being so, there is room for use
of the platform at undergraduate college levels and there are many examples
of this being done [21, 22, 23, 24, 25]. Out of these examples, few exhibit the use
of Lego Mindstorms as a powerful teaching tool for advanced college
coursework, with many more pointing to the utility of the platform for teaching

freshman level infroductory computer science and engineering courses [21, 22,

14

23, 25]. One study out of lowa State University reported great success with using
Lego Mindstorms for an infroductory computer science course for non-maijors,
but declining success even at the programming | level, with failure at the
programming Il level, leading the author to conclude that the Mindstorms
platform is only viable for a few courses [24]. Limitations for use at the college
level are reported elsewhere as well, pointing to technical limitations as well as
student opinion on the effectiveness of the platform at teaching certain

concepts [21, 24].

2.2.3 C-STEM and Linkbots

Computing, Science, Technology, Engineering and Mathematics (C-
STEM) is a program that focuses on STEM education at the K-14 grade levels
through the use of computing and robotics. It comes out of the UC Davis Center
for Integrated Computing and STEM Education started by Dr. Harry H. Cheng,
professor in the Mechanical and Aerospace Engineering Department at UC
Davis. Although lacking the same name recognition as FIRST and Lego
Mindstorms, millions of dollars in grants and funding from the National Science
Foundation (NSF) and California Department of Education has been allocated
to the center to continue their research into how integrated computing and
robotics STEM education in formal and non-formal settings affects student
engagement and learning, especially in underrepresented and at-risk groups
[26]. C-STEM curriculum aligns with Common Core State Standards and Career
and Technical Education Standards and is a UC approved educational

preparation program, a category on all UC college application forms [26, 27].

15

At the high school level, C-STEM holds A-G program status which satisfies
UC/CSU admission requirements [28].

Not all C-STEM curricula require use of the robotics platform, but it is
made optional for all courses. The robotics platform used is Linkbot by Barobo,
an educational robotics company co-founded by Dr. Harry Cheng and one of
his graduate students, and is designed for use with C-STEM curricula [29, 30].
Linkbots are modular robots with two degrees of freedom that can be snapped
together to create different systems. These bots are designed to allow anyone
to begin working with robots out of the box while providing a research grade
platform simultaneously [30, 31]. Each Linkbot is a mobile robot in itself with two
rotating face plates, an on board three-axis accelerometer and rechargeable
lithium-ion battery [32]. Many additional sensors are available, as well as freely
available CAD files for extending the mechanical design, including an
accompanying Computer Aided Design and 3D printing curriculum [32].

The C-STEM curriculum centers on the C-STEM Studio software and Ch, a
C/C++ interpreter created by Dr. Harry Chang [33]. C-STEM Studio is a software
platform that integrates Ch, Linkbot Labs, Ch Linkbot Controller, Ch Mindstorms
Package and Robot Conftroller for Lego Mindstorms NXT/EV3, RoboSim,
RoboBlockly and ChDuino [34]. RoboBlockly and ChDuino are both C-STEM
designed graphical user interfaces for Ch and Arduino respectively. C-STEM
Studiois claimed to be the “only program in existence that can control Linkbofs,
NXT and EV3 in a single program with only a few lines of C/C++ code” [34]. The

primary goal of Ch and C-STEM Studio within the C-STEM curriculum is to feach

16

computing and STEM concepts through introductory C/C++ programming
concepts and robotics. Research into the effectiveness of the C-STEM
educational platform in teaching computing and STEM concepts and or
engaging students in further scientific studies is still underway.

At first glance the C-STEM program seems very accessible in terms of cost
as the C-STEM Studio software and RoboBlockly are both free of charge, while
the Ch software package only costs 300$ [35]. However the complete picture
of the C-STEM model reveals that it is much more of a commitment for a school
to start a C-STEM program. The main reason for this is that a school must
become a "C-STEM school” before classrooms can gain access to the full
curriculum. Becoming a C-STEM school costs an annual subscription of 600.00$-
1,000.00% and requires teacher training that ranges anywhere from 3,000.00$-
15,000.00% [35]. What's more, including the robotics package for 32 students
adds another 5,599.00% plus C-STEM textbooks at 20.00-50.00 each sold in sets
of 25 copies or more [35]. If the primary concern of schools participating in FIRST
robotics is cost, then the cost to initiate a C-STEM program will most certainly be

a concern and a barrier for many schools as well.

2.3 Conclusions

The three programs discussed above, FIRST Robotics, Lego Mindstorms
and C-STEM differ in their approaches to reaching students. FIRST Robotics is
solidified in the after school realm while Lego Mindstorms and C-STEM both align
with Common Core State Standards for integration into the traditional school

day curriculum. While Lego Mindstorms and C-STEM have this in common, C-

17

STEM requires teacher training and a school-wide adoption of the program
rather than the more class by class approach of Lego Mindstorms. Additionally,
C-STEM has a focus on underserved schools and at-risk students. In terms of
group activity, FIRST Robotics is heavily group work focused, providing a single
parts kit per feam, while the Lego Mindstorms program is designed to provide a
robotics kit for every two students. C-STEM programs are designed to provide a
robotics kit to each individual student although group work is encouraged.
Although differing in their approaches to reaching students, all of these
programs have some key things in common. First, they are all fairly expensive to
implement. Second, they are all primarily focused on and marketed toward
absolute beginners to programming and robotics. This is true for the skill level of
the students as well as the teachers and mentors that would be implementing
the programs. Although some work has been done with Mindstorms at the
college level, most of the evidence leans toward it not being effective beyond
the most infroductory courses. All of these platforms attempt to intfroduce
students to professional grade tools (as will the Eduline), however none of them
have a truly clear path from high school level curriculum to more advanced
college level work contained within the platforms themselves. There is potential
for the Eduline to fill this gap. This paper will in part show that the addition of
EduRover to the Eduline family provides the opportunity to teach high school
level STEM concepts while clearly demonstrating the bridge to advanced
college level study that is necessary to fully master the concepts introduced by

EJUMIP. This can potentially inspire students to continue the pursuit of STEM

18

disciplines, especially engineering degrees, into college.

Another similarity of FIRST Robotics, Lego Mindstorms and C-STEM is the
high cost of implementation. As the EduLine is sfill in its nascent stages as far as
development of a formal curriculum is concerned, it remains to be seen how
expensive it will be to implement on a per classroom basis. However, based on
the costs outlined for the above programs, there is opportunity for the EdulLine
to affect a great number of students by offering an economically lower tier
solution at the high school level. As BeagleRover is based on the 35.00%
BeagleBone Black, and in turn supported by the open source Linux community,
while also being almost completely 3D printable, offering a lower cost
educational robotics solution is highly possible. And if achieved will thereby
increase the accessibility to schools. What's more, for the same reasons, it is
promising that each student in a classroom could be provided the opportunity
to work with their own robot through the Eduline while still being more
economically viable than FIRST, Mindstorms or C-STEM. The potential impact of
working on shared robots being lowering the hands-on engineering work done
by each individual student and their sense of accomplishment at the end of a
course.

It should also be noted that BeagleRover is a very unique physical
platform. The author was unable to find anything really comparable,
educational or otherwise, to a vehicle equipped with a similar four-wheel
steering mechanism that can also balance on two wheels as well as transition

between four-wheel and two-wheel driving via remote control. The closest

19

platform found was an MS thesis project out of the MAE department at UC Irvine
that addresses vehicle rollover through control experiments done on an RC car
[36]. The vehicle presented in this study can tfemporarily balance on two wheels
as well as transition between four and two-wheel modes using a prop but does
not possess four-wheel steering capability. The goal of this project was to gain
insight info controlling a vehicle during rollover by balancing it on its two side
wheels in the event that rollover occurs, not to create a vehicle designed to be
intentionally driven on two wheels. And as such the platforms are dynamically
very different. A couple other platforms were discovered that present a four-
wheeled vehicle capable of balancing on two wheels however they do not
have nearly the dynamic range of BeagleRover and do not warrant further
discussion here [37, 38]. The uniqueness of BeagleRover contributes to its innate
appeal, potentially setting it apart from the other educational robotics
platforms discussed in this section in its ability to attract and engage students in

STEM curriculum.

Chapter 3 BeagleRover Steering

The basic goal of steering any vehicle or vessel is to achieve travel in the
desired direction and the types of steering mechanisms and methodologies are
numerous. Four wheeled ground vehicles such as BeagleRover determine the
direction of fravel by proper angling of the wheels, as opposed to tracked
vehicles, for example, that use differential steering to induce change in
direction. In commercial passenger vehicles this is done with a series of gears,
rods, linkages and pivots that make up the steering mechanism [39]. The wheels
are turned using a manually operated steering wheel placed in front of the
driver via the steering column [40]. Remotely controlled four wheeled land
vehicles have become very developed and sophisticated and often mimic
various steering designs of commercial vehicles, in many cases mirroring the
functional and structural capabilities thereof [41]. BeagleRover's steering
mechanism is greatly simplified in comparison.

Rather than the common axle based design, BeagleRover has a
servomotor attached to each wheel via a four-bar linkaoge mechanism,
enabling active four-wheel steering with the ability to turn each wheel
completely independently of the other three. The ability to independently drive
and steer all four wheels is commonly known as “swerve-drive” within the FIRST
Robotics Competition community [42]. The linkage mechanism is visible in Figure
3.1. The chassis is designed to allow each wheel to rotate a total of 120° while
maintaining its contact patch in line with the pivot point of the motor. This

steering design allows for much flexibility and various different modes of driving,

20

21

Figure 3.1: Close up of four bar steering mechanism.

resulting in a very dynamic and engaging platform. The different drive modes
will be illustrated in section 3.3. Additions of this work to a preexisting
mechanical design include implementation of active four wheel steering and
Ackermann steering, both of which will be discussed in the following sections.

Both features are implemented in software.

3.1 Active Four Wheel Steering

Active four wheel steering describes a steering methodology in which all
four wheels turn simultaneously given a single steering input from the driver [43].
In many commercial passenger vehicles with four wheel active steer, the front
two wheels are controlled manually by the driver via the steering wheel while
the rear two wheels are controlled by a computer and actuators [40, 44].
Having two control inputs to steer the front and rear wheels independently
allows for the optimization of both yawing of the vehicle and lateral motion,
resulting in higher maneuverability at low speeds and greater stability at high

speeds [43]. Higher maneuverability is accomplished at low speeds by turning

22

Figure 3.2: BeagleRover showing out of phase alignment of the wheels on the left and
in phase alignment on the right. In the left image, the front wheels are rotated
clockwise while the rear wheels are rotated counterclockwise. This is opposed to the
right image where all wheels are rotated clockwise.

the rear wheels out of phase with the front wheels, thereby decreasing the
turning radius of the vehicle. Conversely, applying in phase rotation at high
speeds decreases yaw rotation and increases lateral stability [43, 44, 45, 46].
Many high performance vehicles today employ active four wheel steering [40].
In phase rotation and out of phase rotation of the wheels is demonstrated by
BeagleRover in Figure 3.2.

Optimizing performance of active four wheel steerable vehicles relies on
advanced dynamics and mathematics and results in the front and rear wheels
being turned at different angles based on a number of factors. These factors
include vehicle speed, steering angle and states of the system among others
[46]. As an educational platform, BeagleRover is not designed for optimum
performance and is not infended to be a high precision vehicle. Therefore
active four wheel steering is demonstrated by toggling between different drive

modes, where each mode either features in phase turning of the front and rear

23

wheels or out of phase turning. It is not speed dependent. This allows the user
to experiment with both methods at low or high speeds, comparing the
performance of each, which is a useful educational skew.

With four conftrol inputs, one servo motor independently controlling each
wheel, BeagleRover is capable of maintaining its simplified design while sfill
achieving high maneuverability and providing an introduction to many of the
advanced techniques and concepts used in commercial and competition
vehicles. One such technique employed on BeagleRover in addition to active
four wheel steering is Ackermann steering geometry, which will be described

next.

3.2 Ackermann Steering Geometry

Ackermann steering geometry was patented in 1818 by Rudolph
Ackermann [47]. It is a very well-known and well used concept with ample
support material available to aid in understanding. Although implementation
can become complex quickly, it is a very simple concept at its core and
presents a great teaching platform for high school level geometry, trigonometry
and related concepts. The goal of Ackermann geometry is to prevent slide slip
of the wheels when going around a turn, preventing loss of energy in the
direction perpendicular to motion as well as unnecessary wear and tear to the
vehicle. The geometric solution to this is to have all four wheels rolling around a
common point during a turn, each maintaining motion in the direction
tangential to the circle created by connecting the center of curvature to the

contact point of that wheel. The different circles tfraced by the inner and outer

24

Wy

T

Figure 3.3: Ackermann steering geometry showing difference in radii between the
circle fraced by the inner wheel and the circle traced by the outer wheel in a right
hand turn.

wheels of a four-wheeled vehicle are shown in Figure 3.3, illustrating the need
for different angles of rotation.

Ackermann geometry is implemented many different ways for different
steering designs. The goal for any vehicle implementing Ackermann steering is
to have all wheels rolling around a common center point as shown in Figure 3.3.
In front wheel steering vehicles, this common point is determined by the rear
wheels as that is the limiting factor. On BeagleRover, all four wheels turn
independently of each other so the common point is aligned with the center
of the wheel base allowing for a much fighter turn radius. The comparison is
shown in Figure 3.4.

Because all four wheels on BeagleRover are confrolled completely
independently, it is possible to map user input from the DSM2 radio directly to
inner or outer wheel furn angle. It seems most intuitive from the user perspective
to have the user turn input be mapped to the turn angle of the inner wheel. It
was determined through experimentation that this gives the "expected"

response from the vehicle. The amount of turn of the outer wheel is then

25

(= S

B -

Figure 3.4: Comparing minimum turn radii of four wheel steering (left) vs. front wheel
steering (right) on the same vehicle. Consider the front inner wheel in each drawing to
be turned the maximum number of degrees as limited by the mechanical design. In
the case of BeagleRover the maximum turn of the inner wheels is 17.5° before contact
is made with the chassis.

calculated based on Ackermann geometry. Referring to Figure 3.3, define the

following constants:

0; = angle of rotation of inner wheel,
8, = angle of rotation of outer wheel,
T,, = track width,

W), = wheelbase,

R = distance from center of curvature to center of vehicle.
The quantities 6;, T, and W}, are known, where 6, is the user input turn value
from the DSM2 radio. Assuming pure rotation about the joint center of
curvature, R and ultimately §,can be calculated based on these values. Using
the triangles depicted in Figure 3.5 and some basic frigonometry, we can
solve for R using equation 3.1, plugging that value into equation 3.2 to

ultimately solve for 6,.

(3.1)

NE=

tan(6;) =

-
g |
Nlc N|§

(3.2)
tan(6,) =

-
+
N

26

Equations 3.1 and 3.2 represent what is known as ideal Ackermann
steering geometry [39]. In theory, this ideal is achievable by BeagleRover due
to its simplified steering mechanism. Because all four wheels are mechanically
independent of each other and controlled in software, there is nothing
mechanically limiting the rotation angle of the outer wheel from complying with
the ideal Ackermann steering criteria based on the rotation angle of the inner
wheel. However, some inaccuracies are expected in practice due mainly to
imperfections of 3D printed parts and by hand assembly. Servo resolution could
also be a factor. Note 9, refers to the angle of rotation of both inner wheels and
accordingly 6, refers to the angle of rotation of both outer wheels. The angles
of the front wheels mirroring those of the rear wheels theoretically allows for the
shortest turn radius possible when implementing ideal Ackermann geometry.
The turn radius would eventually be limited by the four-bar linkage mechanism
that attaches each servomotor to each wheel, however the wheels make
contact with the vehicle chassis before the threshold of the four-bar linkage is

reached.

As stated previously, implementation of four-wheel steering and
Ackermann steering geometry quickly becomes very complex when
attempting to optimize commercial and professional vehicle performance.
However it has been demonstrated that through simplified versions of these
techniques BeagleRover could be used to teach high school level
mathematical concepts. This platform also enables many different hands on

experiments through leveraging the on-board sensors of the Robotics Cape.

27

Such hands on experiments can be powerful in reinforcing theoretical concepts
learned as well as potentially increase student engagement and interest in
STEM [3]. Results of a few such experiments that would be accessible at the high
school level are given in figures 3.5 through 3.8. See the figure captions for
detailed descriptions of the experiments.

When looking at Figure 3.5 and Figure 3.6, nofice the significant
difference in amplitude range. Figure 3.6 displays much more dramatic peaks
as compared to Figure 3.5, suggesting a potential increase in side slip of the
vehicle without the implementation of Ackermann geometry. There also seems
to be a low frequency component that is more pronounced in Figure 3.6 than
in Figure 3.5. This could also suggest the presence of more side slip as the back
tires periodically lose fraction and recover. A more detailed analysis is required
to prove that is the case, however the qualitative analysis shows clearly that
Ackermann geometry changes the behavior of the vehicle. This gives tangible
feedback to any student having previously studied the mathematical concepts
used in implementation of ideal Ackermann steering geometry. These same
results were reproduced with a wider turn radius in Figures 3.7 and 3.8. There are
many, many more similar experiments that could be done with BeagleRover to

compliment high school level curricula.

3.3 Drive Modes
Enabled by the independent four wheel steering design, four different
stable driving modes are currently implemented on BeagleRover: normal four

wheel steer, lane change, crab and spin. Ackermann steering geometry, as

28

Rotation Rate About Gyro Z-Axis with Ackermann
Geometry through a Tight Turn

.21.95
o 1.9
]
» 1.85
3
9 1.8
(%]
c 1.75
.©
© 1.7
&
1.65
1.6
N AT 0T MAOAN NI N<TODDAOANDOINANTAONNNOWLM O O O -
O AN T T EIT NN ONON AN TIOITNMO AdONRNL—EHOUOO WUMNSAN N
MO0 O TN OO AN OO N OOOMNSTHNOIOLL OVOAOaNINNENILANNOMS 0O O
N O ST OSSO0 FTOMOMNANNNOCHOCANdAdAdOTOTOOTONmOM
O N T O MNOTOAN MW OO A NS ULINODOTMUOOMNODOO-E NS O
QHdANMIINOVOANA NN ONQRNO AN GgINGNR NN N
O 0O 0000000 ddddA A ddd-d NNN [a\] NN MmN onomnmm
Seconds

Figure 3.5: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second through one full counterclockwise rotation of the vehicle with Ackermann
geometry implemented. The motors were driven at 30% duty cycle as the vehicle
fraced out a circle of radius =0.318 m on a hard wood floor.

Rotation Rate About Gyro Z-Axis Without Ackermann
Geometry through a Tight Turn

- 1.95
5
81.9
» 1.85
3
2 1.8
2 1.75
©
5 1.7
©
o 1.65
1.6
naN N ITANFT AT NS OO N A NN ONWIMWOAOSOoOT N T A MO m
N < 1 O NONOWLWM MOWOWOSTOOMOOANNNONOSMOMWOOMMmMO
NN AN SN0 M MO AN T OWOO VOUANSN~NTNOIOANSOHNODS O d N MM o
T O T OMOoOO MO MM AN cEdN b Ocd OO N O WO W WnLWwWOo T 0o m 0
QO NMSE YR NMNT OO NS NGO GO N S
O O O OO O o o o ™ AN AN AN AN NN NN MMM [e0]
Seconds

Figure 3.6: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second fthrough one full counterclockwise rotation of the vehicle without
Ackermann geometry implemented. The motors were driven at 30% duty cycle as the
vehicle traced out a circle of radius =0.318 m on a hard wood floor.

29

Rotation Rate About Gyro Z-Axis With Ackermann
Geometry through a Wide Turn

1.45
©
c 14
3
$ 135
wv
—
81.3
E,1.25
o 1.2
©
@ 1.15
[a'4
1.1
O OV ON OO EHAOAOTOODODOMO N OUANWATOMOMNOWL ONONMLL LW
S S NS O AN NS OOV ANS NI T N~NOANSONNDLO O
SO HdHONANOOWOUMONN<TET AV MAOANMEAN OO NOOOM
NN T oo A ANANNddA<S O OO NN MNMININNOONO
Qe N YURXATANTONNTONIINNN QT MINY O © a
O 0O 0O 0000 ddHA ™ d d d N N NN MmN on on om N < < - < <
Seconds

Figure 3.7: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second through one full counterclockwise rotation of the vehicle with Ackermann
geometry implemented. The motors were driven at 30% duty cycle as the vehicle
fraced out a circle of radius =0.481 m on a hard wood floor. This is a 51.2% wider turn
than depicted in figures 3-5 and 3-6.

Rotation Rate About Gyro Z-Axis Without Ackermann
Geometry through a Wide Turn

1.45
©
c 14
S
S 135
213
—
g b
g1.25
o 1.2
8 115
81
1.1
O N<T OO M N TANNANNNCHOO A NGO OWLN HWM O OWOoO O
OoN T N MO O N T dLOANNMOANMN O0DNTETN OO —HO N T O
T MO O TN N UL ANOMNL OANL M ANOONOOMMANODOLWL M« 0N N N
S T OO NN O NOAN dd dd O OO0 OO0 0WOWOWOIMINININNDOOOS
S ;< 9 L AMIN OV —ANI N OQAAANTNMNKO M
O O O O o i T A AN AN AN AN AN AN AN OO OO N S
Seconds

Figure 3.8: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second through one full counterclockwise rotation of the vehicle without
Ackermann geometry implemented. The motors were driven at 30% duty cycle as the
vehicle fraced out a circle of radius =0.481 m on a hard wood floor. This is a 51.2% wider
turn than depicted in Figures 3-5 and 3-6. The comparison of Figures 3-7 and 3-8 shows
similar results as that of Figures 3-5 and 3-6.

30

described in the above section, is implemented in normal and cralb modes. In
addition to these four stable modes of driving, BeagleRover is also capable of
driving on two wheels in an unstable configuration called balance mode,
which is the focus of chapter three. The vehicle is controlled with a DSM2 RC
radio, using the two switches available to select between the four different
drive modes. Other drive modes could be implemented, such as front wheel
steering (two wheel steering) or steering without Ackermann, however another
user input switch on the DSM2 radio would be required. Both of these additional
modes present valuable educational skews, the latter of which is implemented
in a separate example program included in the Robotics Cape codebase
(discussed in detail in chapter four).

In normal four wheel steer mode, all four wheels face forward in a neutral
position and the vehicle drives as would be expected. There is an arrow carved
out of the chassis on the front of the vehicle to mark which direction is forward.
When turning in normal mode, both inside wheels will rotate the same number
of degrees according to user input, but out of phase with each other. In other
words, the front inside wheel on a left hand turn will rotate counterclockwise
from the user perspective and the rear inside wheel will rotate clockwise from
the user perspective. The outer wheels will follow the same pattern, the front
wheel rotating counterclockwise and the rear rotating the same number of
degrees clockwise. The outer wheels will rotate the number of degrees
calculated according to Ackermann steering geometry. The inner wheels can

rotate a maximum of 17.5° before making contact with the body of the vehicle,

31

Figure 3.9: BeagleRover pictured in its Normal drive mode on the left and Crab drive
mode on the right.

making for a minimum turn radius of =0. 28 m. Normal four wheel steer mode
with zero steering input is pictured in Figure 3.9.

Crab mode operates exactly as normal four wheel steering mode, the
inner wheels rotating according to user input and the outer wheels rotating
based on the inner wheels and according to Ackermann steering geometry. In
neutral position, the wheels are rotated either clockwise or counterclockwise
by 90 degrees from normal mode and the "front" of the vehicle is now
considered to be the Ethernet port side of the BeagleBone Black. This is also
pictured in Figure 3.9. The maximum number of degrees the inner wheels can
turn before making contact with the body of the vehicle is =12.5°, resulting in a
wider minimum turn radius of 0.44 m.

One of the most fun drive modes BeagleRover displays is lane change
mode or what is actually referred to as "crab" steering in the automotive industry
(not to be confused with the definition of crab mode in this paper) [40]. As

discussed in section 3.1 on active four wheel steering, many high performance

32

Figure 3.10: BeagleRover pictured in Lane Change drive mode on the left and Spin
drive mode on the right.

vehicles employ this technique when turning or changing lanes at high speeds
(hence why it is called "lane change mode" here) to improve stability of the
vehicle. However this technique is not only used for improved handling. It is also
found on vehicles where angled lateral tfranslation is required such as camera
dollies, and on many farm equipment vehicles to avoid unnecessary soll
compaction [40]. As with normal mode, the maximum rotation angle of the
wheels is 17.5° as limited by contact with the vehicle chassis. Therefore the
maximum angle at which the vehicle can translate is 17.5° from straight. Lane
change mode is pictured in Figure 3.10.

Last of the stable drive modes is spin mode. In spin mode, all wheels turn
54.78° so that the center of curvature of all wheels intersect at exactly the
intersection of the two lines of symmetry of the chassis, aka its central axis.
Therefore, the vehicle should spin in place exactly around this point, allowing
formaneuvering in very tight spaces. Inreality, the vehicle comes close to doing

so but there is a slight amount of franslation. This is likely caused by imperfections

33

due to 3D printed parts and or imprecise servos. Spin mode is pictured in Figure
3.10. Discussion of balance mode is left to the following chapter on control

design.

Chapter 4 Control Design

This chapter will provide a solution to balancing the Beagle Rover on two
wheels from the modeling and confrol design perspective. Originally, this
chapter was written to be a detailed solution set for the mobile inverted
pendulum problem as taught in UCSD’'s MAE143C, complete with all necessary
derivations, and to be included in BeagleBone Robotics as a portion of a
curriculum capable of distribution to other universities. That version of the
conftrol solution is presented in chapter six and is considered by the author to
be one of the major contributions of this work. Here in chapter three however,
the control solution will be presented in a fashion more traditional for a
technical paper. Derivation of the dynamics describing the motion of Beagle
Rover in balance mode is left to chapter six as that derivation is a detailed and
slightly elaborated inclusion of the derivation previously done for BeagleMiP
outside of this thesis work. The confrol solution, as that is unique to Beagle Rover
and this work, is the primary focus of this chapter. Implementation in hardware
and software, although alluded to here, is handled in detail in the following

chapter.

4.1 Problem Statement

The plant is BeagleRover and will be modeled as an inverted pendulum
on two wheels as depicted in Figure 4.1. Beginning with the equations of motion
describing the system, the end goal is to design a discrete time control law to
stabilize the body angle, 6, about its upright, unstable equilibrium position. The

final product will be a difference equation ready for implementation in a

34

35

microcontroller, the BeagleBone Black in this case. In order to achieve this goal,
classical control methods such as lead/lag control and pole placement will be
used to stabilize the body of the Rover on two wheels about its unstable
equilibrium position. Leveraging the discrete equivalent design approach, the
controller is first designed in continuous time and later converted to discrete
time for implementation in digital electronics. The primary tools and techniques
used include the Laplace and Z-transforms, lead and lag control, bode and
root locus plots, the closed loop step response and Tustin's approximation with
prewarping, all of which will be discussed in more detail in the subsequent

sections.

4.2 Equations of Motion

As discussed above, the full derivation of the equations of motion of the
Beagle Rover system is left to chapter six as it is the derivation taught in
MAET143C. In this section, the free body diagrams and equations of motion are
briefly presented in order to provide supporting context for the control design
section. Initially simplifying and considering a 2D representation of one
wheel/motor and a simple rod, the free body diagrams of the wheel and rod
are depicted in Figure 4.1.

By approximating the wheel as a thin, solid disk and the body of the

vehicle as a simple rod the inertia of each can be calculated as

IW = EmeZ, (4.])

Ir = mrLZ (42)

36

Figure 4.1: Free body diagrams of the wheel and rod.

where the constants are defined as follows:

m,, = mass of wheel,

m, = mass of rod,

I, = inertia of wheel,

I. = inertia of rod,

T = torque of motor,

R = radius of wheel,

L = length from end of rod to center of mass of rod,

P, and P, = reaction forces between wheel and rod in the x and y directions,

a; = tangential force,

a, = normal force,

g = gravity (9.81 mz)

s

Whether balancing in crab mode or regular driving mode (short mode
or tall mode respectively), take the center of mass to be at the intersection of
the two axes of symmetry of the entire vehicle. This is an approximation as the

“rod” in this model does not actually include the bottom two wheels.

However, the mass of the wheels is negligible compared to that of the entire

37

vehicle so for simplicity’s sake we will fake the center of mass to be at the
intersection when in redlity it is very slightly higher. A more rigorous calculation
could be done but would likely not result in any performance gain, especially
because some error would still be expected [48].

Using the free body diagrams to first define the kinematic relations
describing the position and acceleration of the center of mass of the rod, and
assuming that both wheels are initially moving together without any slip
between the wheels and ground, the full nonlinear equations of motion are
derived as

(m,RLcosO)¢p + (I, + m,L?>)6 = m,gLsinf — 1, (4.3)

(I, + (m, + m,)R*)$ + (m,RLcos8)6 = m,RLH?sind + (4.4)

where t is total input torque to the system. By the small angle approximation
[49], equations (4.3) and (4.4) can be linearized about the body’s inverted

equilibrium point to yield

(mRL)$ + (I, + mL?)6 = mgle — 1, (4.5)
(I, + (my, + m)R?)¢ = (m,RL)O = 7 (4.6)
where all terms are now linear in theta, allowing for the application of linear
conftrol techniques.
Using the linearized equations of motion of our system, we could
proceed through the control design process and design a stabilizing controller
in simulation. In fact, this exercise is recommended as a first pass at designing a

stabilizing controller and is gone through in detail in chapter six. However, if

38

aftempting to implement this initial control design in hardware, the designer
would find out that although stable in simulation, the robot would more than
likely not balance in reality. This is due to the fact that the motors themselves
have dynamics that must be included in the model. The motors used in
BeagleMiP and BeagleRover have been previously characterized for use in
MAE143C so consider the constants to be known quantities. The motor
dynamics are described by
T=35u+((bh-Quw (4.7)

where the constants are defined as:

§ = stall torque,

b = damping coef ficient,

{ = viscous friction,

I, = inertia of motors,

w = motor speed (¢> - é),

u = motor input (PWM value between — 1 and 1).

As before, the wheels are taken to be solid disks when estimating their

inertia. The total inertia of one wheel and motor is

Ly = Im + %meZ (48]
and the final linearized equations of motion accordingly become
(mRL)$ + (I, + m 1?6 = m,gLe — 2t (4.9)
(Iy + (m; + my,)R*)$ + (mRL)O = 21 (4.10)

where tau is defined above to be the torque from one motor, m,, now includes

39

the mass of both wheels and I,, now includes the inertia of both wheels and
motor gearboxes.
4.3 Lag Control

Before beginning the confrol design process using classical control
techniques, the transfer function describing the input/output relationship
between PWM input to the motors, u, and body angle output, 8, must be
defined. In order to derive the transfer function, the Laplace fransform is
performed on the final linearized equations of motion followed by algebraic
rearrangement to get an equation of the form 8(s)/U(s) = numG1(s)/denG1(s).
First apply the definition of the Laplace transform to equations (4.9) and (4.10),
assuming zero initial conditions. Then making the appropriate substitutions for
and w defined in the previous section and rearranging algebraically, the

tfransfer function is

G1(s) = % = (—c4cz+c12)s3+(2(<+b)(—2;£gi)c1)sz+(c3+c4)s+z(§+b)c3 (4.11)
where:

C1= m.RL, (4.12)

C2= 1.+ m.L? (4.13)

C3 = m.gL, (4.14)

C4= I, + (m, + m,)R? (4.15)

Plugging in the constants yields the final transfer function as shown in equation

4.16.

G1(s) = 29 —226.25 (4.16)

U(s) s3+7.22152-136.75—292.2

40

Magnitude (dB)
; L §
'

Imaginary Asxis (seconds™)
- T O

Phase (deg)
a

o

i P S W T I— bbaabal - T ra
Frequencyn radis) 160 i) 5 |
FEgRenEID) 1= = 10 Real Ais (secondi ™

Figure 4.2: Bode (left) and root locus (right) plots of -G1{s).

The root locus and bode plofts, with negative gain applied, are shown in Figure
4.2.

Looking at the root locus, no amount of gain can stabilize the system. In
order to bring the locus into the stable left half plane using pole placement
techniques, the controller must cancel the zero at the origin and replace it with
a stable zero. Note this is generally done with caution as a pole-zero
cancellation on the imaginary axis can lead to instability due to inaccuracies
in the model [50]. This model has been proven to be accurate so the
cancellation will be performed. Looking at the bode plot, higher magnitude at
low frequencies is needed to achieve acceptable fracking. By applying lag
conftrol over the appropriate frequencies we can bump up the low frequency
gain as well as cancel the zero at the origin, replacing it with a stable zero and
bringing the locus into the LHP. The form of a lag controller is given in equation
4.17.

Dyag(s) = % forz>p (4.17)

41

Magniude (dB)
P

Phase (deg)
L

a0 L i i Il |
" Freguency (radis) o'

Figure 4.3: Bode plot of lag controller Dyq4(s).

The primary use of a lag confroller is to increase the gain at low
frequencies in order to achieve good tracking of the reference signal. The gain
will increase by a factor of z/p. Because the pole is at zero, z can be chosen
such that the lag control takes affect at frequencies well below the desired
crossover frequency of 20 rad/s (which has been determined by choosing a
crossover frequency an order of magnitude below the sample rate of the
BeagleBone Black's ADC, avoiding significant phase loss at this crifical
frequency) [50]. This is necessary due to the phase lag caused by the lag
conftroller as eroding the phase at crossover can potentially lead to closed-loop
instability. After a few iterations, z=3 is chosen. The resultant bode plot of the lag
conftrolleris seen in Figure 4.3, illustrating the phase lag effect of a lag controller
as well as the high gain at low frequencies. The lack of roll off of the gain atf low
frequencies is the result of having a confroller pole at zero, acting as a pure
integrator. Ideally the gain would be rolled off at very low frequencies to avoid
intfegrator wind up, a phenomenon that can lead to instability in the case of

motor saturation, however this is prevented due to the plant zero at the origin

42

Magnitude (d8)

a
a4

Imaginary Axis (seconds’ ‘)

Phase (deg)
%,
i

sl L P T e s | =t
o' Frequency (radis) 10° 10 Real &xis (secondt™)

Figure 4.4: Bode (left) and root locus (right) plots of —D;,,(s)G1(s).

[50]. The Bode and root locus plots of the plant with negative gain and lag
control combined are given in Figure 4.4.
4.4 Lead Control

The bode plot with lag control shows that the low frequency gain has
been increased but at the detriment of dangerously eroding the phase margin.
Also, crossover at the desired frequency is not achieved. The locus is now
brought over into the stable LHP with the appropriate gain applied, however
this design will have an unacceptably high overshoot due to the low phase
margin. In order to achieve crossover at the desired frequency and increase
the phase margin, lead control will be applied using much of the same logic as

is section 4.3. The following second order design guides will be used:

W, = 1%—f,where t, = rise time (4.18)
W, = \/ﬁ,wherepz=p*z (4.19)

As before, placing a zero at -15 to cancel the pole and replacing with a

faster pole will help to achieve the desired rise time without applying too much

43

/

Magnitude (dB)
& kL

o
. Imaginary Axis (seconds")

Phase (deg)
,
.

W P Y S S S Y V1 SO S S VY B SR PRV .25 L L L L
10" o Frehuency (radis)g’ o’ 0t 100 80 5 Real axis ($eonds™y

Figure 4.5: Final open loop Bode (left) and root locus (right) plofs with lead and lag
control where Dy, (s) = (s + 15)/(s + 86.4).

overall gain to the system. Keeping in mind that we would like a rise time of 0.05-
0.1 seconds, and a crossover frequency of =20 rad/s, the above equations can
be leveraged to calculate the location of the pole that should achieve
maximum phase increase at crossover [50]. Using equation (4.18), arise time of
0.05s corresponds to a crossover frequency of 36. This yields a pole at 86.4 by
equation (4.19). Although this is not quite a factor of 10 higher than the zero at
15 to achieve maximum phase increase [50], ample phase margin of about 52
degrees is still achieved. The design guides are approximate and not all will be
met exactly. After adjusting the gain to again achieve crossover at the target
frequency, the final values chosen are w, = 23 Hz, t, = 0.08s, PM = 52°. The final
open loop bode and locus plots with lag and lead control applied are shown

in Figure 4.5.

4.5 Closing the Loop
The final step in continuous time is to check the closed loop step

response to ensure that the design is stable and the design criteria have been

44

&mpltude
Amplituds

0 L 1 | L i s
0 02 04 06 og ! 12

4 12 14 16 18
Time (seconds)

Time (seconds)

Figure 4.6: Closed loop step response of system without a loop prefactor on the left
and with a loop prefactor of 1/1.4 on the right. The addition of the loop prefactor
causes the step response to settle at one as desired.

met. Referring t0 Diegq-1a9(s) Qs D(s), the form of the closed loop transfer

functionis

__ K(s)D(s)G1(s)
H(s) = 14+K(s)D(s)G1(s) (4.20)

Performing a few final adjustments, D, 4(s) And Dieqq(s) become

Digg(s) =22 (4.21)
Dieqaa(s) =~ (4.22)

with a closed loop gain K(s) =-10. Giving a step input to the system results in the
step response plotted on the left hand side of Figure 4.6 with a rise time of 0.06
s, settling time of 0.79 s and an overshoot of 10%. Because the response settles
at a value of =1.41 instead of 1 as desired, a loop prefactor of P=1/1.4 can be
incorporated, yielding the step response pictured on the right hand side of
Figure 4.6.
4.6 Discrete Time Controller

In order to implement the conftroller in hardware, it must be converted

from continuous time to discrete time to obtain the difference equation the

45

conftroller must obey. Tustin's approximation with prewarping is used to convert
to a discrete time transfer function, applying prewarping around the crossover
frequency to insure accurate conversion at this frequency. Applying the inverse
Z transform, the final difference equation to be implemented in the
microcontroller is given by equation 4.23.

wy = 1.652uy_; — 0.6525uy_, — 8.6260 + 16.520,_; — 7.9020,_, (4.23)

4.7 Balancing in Normal Drive Orientation

All of the values presented in the control solution thus far have been for
balancing BeagleRover in its short or “crab” orientation. However, the vehicle
is capable of balancing on all four of its sides. In order to balance BeagleRover
in its tall orientation, the change in the distance from the center of the wheel
to the center of mass of the body, L, and the corresponding change in the body
inertia, I,. could be accounted for. If so, the transfer function from input U(s) to

output 8(s) becomes

GZ(S) — —137.2s (424)

$3+45.9175%2-96.485—206.2

with poles at -12.4, -1.98 and 8.43 which are slightly "slower" than the poles of
Gl1(s) when balancing in crab mode. The control design process would
proceed exactly as stepped through in the preceding sections. In practice
however, it was found desirable to simply increase the gain on the system when
balancing in the taller orientation. This will be further addressed in the following

section on implementation.

Chapter 5 Implementation

Chapter three presented the control solution to balancing BeagleRover
in its two-wheeled unstable configurations while chapter two identified the
stable four-wheeled drive modes and steering solution. Now that both solutions
have been developed in theory and simulation, the next step is to present the
implementation in hardware and software. This chapter will give an overview
of the hardware and general software implementation strategy used in
development of the Eduline as well as developments specific to BeagleRover.
The codebase and programming environment will be discussed as well as the
techniques used in state estimation. Additionally, the technique used to
balance on all four sides as well as transition from driving on four wheels to

balancing on two wheels will be explained.

5.1 Hardware and Codebase

All three robots in the Eduline use the BeagleBone Black (BBB), a "low-
cost, community-supported development board for developers and hobbyists"
[52]. The BeagleBone Black is an open hardware microprocessor development
board that can fit in the palm of a hand. It has enough flash storage and volatile
RAM to support a full-featured operating system and a custom build of the
Debian Linux operating system comes pre-installed. The BBB also features a
wide variety of connectivity options with two 2x23 pin header rows, USB client
and host capabilities, as well as Ethernet and HDMI ports.

The BeagleBone Black benefits from an add-on board, or cape, to

provide easy access to all of the functionality it provides. The solution to this

46

47

used by the Eduline, and therefore BeagleRover, is the Robotics Cape
designed by James Strawson. The Robotics Cape is a $35.00 add-on board that
provides the ability to drive up to four bi-directional DC motors via H-bridges
and up to eight servomotors. BeagleRover uses four bi-directional DC motors
and four servomotors. The cape also supports encoder counting on four
channels for motor position feedback, three of which are broken out in
hardware and a fourth added utilizing the BeagleBone Black's on-board PRU
(orogrammable real-time unit). BeagleRover does not currently use encoders
due to space restrictions of the mechanical design. However, BeagleMiP does
use two encoders for position control. A 9-axis inertial measurement unit (IMU) is
also included on the cape as well as a barometer for use in flight applications.
The IMU is comprised of a 3-axis accelerometer, 3-axis gyroscope and 3-axis
magnetometer. BeagleMip and BeagleRover both use the accelerometer and
gyro for state estimation. The cape also supports DSM2 radio and Bluetooth for
controlling the robots wirelessly. Development of BeagleRover was done using
a DSM2 radio, further work being necessary to incorporate Bluetooth control.
In addition to the hardware, all Eduline robots come with an extensive
codebase written to support the Robotics Cape. The codebase includes
libraries for all of the functions used by BeagleMiP and BeagleRover for
hardware interfacing, plus many functions not currently used by these two
platforms. Additionally, approximately 30 example programs, ranging from
blinking an LED to gyro calibration, are included. A subset of the current

example programs written as part of the Robotics Cape codebase are shown

48

Table 5.1: A subsection of the example programs included in the Robotics Cape

codebase.

Program Name

Program Description

Program Features

drive.c

Most advanced drive code for
BeagleRover

Four stable drive modes, Acker-
mann steering, Balancing on all
four sides, transition from drive to
balance

drive_simple.c

Simplified drive code for Bea-
gleRover

Four stable drive modes

rover_balance.c

Balance code for BeagleRover

Balance on all four sides of vehicle

test_orientation.c

Determine orientation of Robotics
Cape

Example of using Euler angles to
determine orientation

complementary_filter.c

Measure pitch angle of Robotics
Cape

First order complementary filter

battery_monitor.c

Monitor charge level of 25, 3S or
485 Lithium lon or Polymer battery

llluminate four LEDs on cape indi-
cating charge level, under-voltage
protection

center_servos.c

Put servos in their neutral position

MNo additional features

calibrate_gyro.c

Offset factory steady state error of
gyro

Save steady state offsets so do not
need to recalibrate each time pro-
gram starts

in Table 5.1. The first three programs were written by the author as a direct result

of this thesis work. The remaining programs are included as they are integrated

into the drive code or were found useful in developing the drive code,

illustrating the utility of the Robotics Cape codebase in writing more complex

programs. Note this is not an exhaustive list. All code is written in the C

programming language and available on GitHub. All instructions for installing

and getting started with the Robotics Cape libraries on the BeagleBone Black

are detailed in chapter three of BeagleBone Robotics and on the designer’s

website [52].

Notice there are two versions of the drive code, drive.c and drive-

simple.c listed in Table 5.1. The drive-simple.c is a simplified version of the drive

49

code lacking Ackermann steering and balancing that is included for
educational purposes, so that the student may compare the differences,
especially in steering behavior, directly on the robot. The test-orientation
example was also written specifically for drive.c in order to implement
balancing on all four sides of the vehicle. Independently this serves as a great
example of a simple multithreaded program to test operation of the motion

processing unit on the Robotics Cape (MPU-9150).

5.2 Programming Environment

The BBB is capable of functioning as a low power desktop computer by
connecting a USB keyboard, mouse, driving an HDMI display and rendering a
graphical user interface (GUI). However this was not done as the robots are
designed to be mobile and therefore used in a headless configuration (without
a GUI). Instead, because the BeagleBone has an operating system on board
enabling communication with the robot via standard network protocols, all
programming was done on a host computer. Development was done in a
Windows 8 environment, communicating with the BeagleBone via USB and
generating a command line interface using the free software application PuTTy.
All code was written in C using Notepad++ and compiled using standard Linux
commands from the command line, all the while transferring files back and forth
using the free SFTP (Secure File Transfer Protocol) program WIinSCP. Getting
started in this programming environment is explained in detail in the first few
chapters of BeagleBone Robotics. As made apparent in chapter three, control

design was done in MATLAB leveraging the control toolbox.

Mainf |

Battery Thread

soomom ok WOR

=

11, deanup

Start orientation thread
9 Sart drive_stack thread
10, Wait untl Em'tlng/

Tnitialize @pe and LEC=

Set button Functi-:-ns/
Start battery thread

Start print thread

Sart DSME 'I:I'lraad

Initialize IMU interrupt fun tion

Start balanee stad: thread

Slowhy sample battery
for s=ling of cntrol
input bassd on current
woltage. Runs every

3 semnds

Erint Thread

Erint to sresn if

running from tzrminal,

RunsatSHz

hhh"“‘“--._,_‘_

DSKME Thread

Listen for RC control
from DSWE radio and
define user input
switches, Runs at
200 He.

Balane=_stad: Thread

sy

Crive stad: Thread

Crientation Thread

Change controller
setpoint based on
user input from CEMZ
radio, Runs at 200 He,

Control motars in
zable drive modes
based on user input
from CSME radio.
Runs at 50 Hz. 30 He,

on all four sides of
the wehicle. Runs

Ceterming onentatbon
of MU For balandng

t

50

Figure 5.1: Visual depiction of the various threads running in the drive.c program and
their respective tasks.

5.2.1 Multithreaded Programming and Drive.c Program Architecture

An advantage of having an operating system on board is the ability to

execute multithreaded programs potentially increasing the functionality of the

application. In the case of BeagleRover, multithreading is not strictly necessary,

however it illustrates a powerful tool for use in more demanding applications. A

high level view of the drive.c program organization is shown in Figure 5.1.

The main() function is responsible for the setup routine and starting all

threads as well as cleanly shutting down the program if an exit condition is met.

The order in which the threads are listed in Figure 5.1 is the order in which they

appear in the program. Although it is not technically a separate thread, the

balance_core() function deserves mention as it is the IMU interrupt function

51

Pitch
Controller
— State
I Estimation
- Control
- Pitch angle
pOs. X-axis InpUt
] Pl SN PWM LW
Complimenta \ o
— —
Pitch angle
y-gyro neg. y-axis
Turn
Input

Figure 5.2: Software architecture of the balance function. PWM LW stands for PWM input
to the left wheel and PWM RW is PWM input to the right wheel.

responsible for stopping, or interrupting, all programs running in order to retfrieve
sensor data at a rate of 200Hz. Once the raw sensor data is retrieved it is sent
through a complimentary filter to calculate pitch angle in any orientation of the
vehicle. The estimated state variable is then used by the control algorithm
developed in chapter three to provide the necessary input to the motors to
maintain stability in balancing, all within the balance_core() function. This is
depicted graphically in Figure 5.2. Many of the example programs included in
the Robotics Cape codebase are used by the various different threads. For
example, test_orientation.c was directly ported over to drive.c to serve as the
orientation_detector() thread with minor changes made for the application to
drive.c.

Notice there is a block in Figure 5.2 labeled "turn input." This is the input

given to the motors in order to steer the vehicle while in balance mode. This

52

input does not rely on the state variable. It is a simple constant applied via user
input from the DSM2 radio. When turning in balance mode, the turn constant is
applied equally to both motors, increasing PWM to one motor and equally
decreasing PWM to the other motor. Therefore total input torque to the system

is not changed due to turning input and the vehicle maintains stability.

5.3 State Estimation

As discussed at length in chapter three on control, BeagleRover is
modeled as a mobile inverted pendulum with a single input of forque
(ultimately PWM to the motors) and single output of pitch angle, 6. Because it
is a SISO system there is only one state variable to conftrol, pitch angle, or, filt
angle. For the confrol algorithm to be successful in maintaining stability the state
variable must be reliably computed. As depicted in Figure 5.2 this is done
leveraging the on board sensors of the IMU, specifically the accelerometer and
gyroscope. It should be mentioned that state estimation is used for two different
purposes in the drive code. Aside from being used to detect deflection from
upright by the balance_core() function and control algorithm, state estimation
is also used to detect which side of the vehicle is facing upward and which
motors are in contact with the ground (or whatever surface on which the
vehicle is balancing, we'll call it ground) and therefore which motors should
receive the PWM signals. This function is performed by the orientation thread as
depicted in Figure 5.1 and is accomplished using Euler angles as calculated by

the Digital Motion Processor within the IMU. This differs from the complementary

53

filter used to estimate tilt angle for use in the balance controller as will be

discussed further below.

5.3.1 A Note on Euler Angles

The current balance code for BeagleMiP, balance.c, uses Euler angles
to estimate filt angle when upright. For BeagleMiP this is readily achievable as it
only balances in one orientation of the IMU. BeagleRover in contrast balances
in four different orientations and using Euler angles becomes a more advanced
process. An in depth discussion of Euler angles is outside the scope of this work,
but briefly stated, the complication lies in the singularity of Euler rotation
sequences causing inaccuracies in the calculation of theta in certain
orientations of the vehicle [50]. However, Euler angles can more simply be used
to yield a general determination of which side of the vehicle is facing upward
and which side of the vehicle is in contact with the ground. In this case, a
threshold value is detected that is far away from the point at which theta
becomes unreliable. Furthermore, no feedback control is performed in this
scenario therefore there is less need for absolute accuracy. Utilizing Euler angles
to determine general orientation of the vehicle, as opposed to the
complimentary filter approach used to determine theta for use in the balance
controller, was done to illustrate the use of each as BeagleRover is infended to
be an educational platform. Although using Euler angles to estimate theta for
balance control as well is not an impossibility, that approach is more advanced

than what is tfaught in MAE 143C and other typical undergraduate courses.

54

Therefore complimentary filtering was chosen as the primary solution to state

estimation in order to remain consistent with the MAE143C curriculum.

5.3.2 Complementary Filter

The first order complementary filter used to estimate tilt angle is based
on the complementary filter example code in the Robotics Cape codebase
and adapted to be used to estimate theta in all four balance orientations of
BeagleRover. The four balance orientations as named in drive.c are NOSE_UP,
NOSE_DOWN, LEFT_DOWN and RIGHT_DOWN, corresponding to the negative
X-axis, positive x-axis, positive y-axis and negative y-axis of the IMU respectively,
according to the coordinate system depicted on the cape. The filter uses data
from both the accelerometer and gyroscope combined to yield a much more
accurate representation of theta across frequencies than could be achieved
with either sensor alone. The reason lies in the type of noise to which each signall
is most susceptible.

The accelerometer is used to determine angular position by measuring
the position of the gravity vector. As the accelerometer rotates in space, the
magnitude of the gravity vector in the direction of each axis changes, as
depicted in Figure 5.3. Using the standard C math.h library function, atan2().
and two axes of the accelerometer, the angular position about the pitch axis
can be easily calculated. For example, if BeagleRover was balancing perfectly
in its NOSE_UP position, the negative x-axis of the accelerometer would
experience almost exactly -1g of gravitational force while the z-axis would

experience nearly zero. Passing these values to the atan2() function with proper

55

A \
a5 \
xﬁ"“"ﬂ-u_h L,—)

N K
Lo

Figure 5.3: 2D representation of the axes of an accelerometer as it changes position in
space. On the left hand side the x-axis reads slightly positive and on the right hand side
the x-axis reads slightly negative.

attention to order of the arguments would yield an angle of nearly zero as
expected. Note that care must be taken here with the signs of the vector
components passed to the function in order to return the correct quadrant of
the 2D x-z plane.

When used fto measure angle of rotation, accelerometers can
experience high frequency noise [53]. This is due to changes in acceleration
caused by other factors such as horizontal motion. Considering the example
given above of balancing BeagleRover in its NOSE_UP orientation, this would
cause the z-axis to measure changes in acceleration not due to gravity,
causing very significant errors in the estimation of angular position. This can be
addressed by low-pass filtering the accelerometer signal, allowing only the low
frequency signal due to gravity to pass through. It should be noted that low-
pass filtering can cause phase lag [50]. As discussed in section 3.3 regarding lag
conftrol (essentially a low-pass filter), significant phase erosion at the crossover
frequency can lead to instability of the system. If this is of concern, the phase
lag of the low-pass filter should be accounted for during confrol design as

depicted in Figure 5.4. As also discussed in chapter three, ample phase margin

56

was built info the control design for BeagleRover to account for this issue of
phase erosion due to the low pass filter.

The gyroscope presents the opposite challenge, tending to output @
signal corrupted by low frequency noise [55]. The gyro outputs measurement of
angular velocity and is used to determine angular position by infegrating over
time. However, MEMS gyroscopes such as the one used in the IMU of the
Robotics Cape, are subject to constant bias, which when integrated over time,
quickly leads to unreliable measurements [53, 54, 55]. This is addressed by high-
pass filtering the integrated signal from the gyroscope, eliminating the low
frequency drift that occurs as the platform is held near stationary [53, 55].

The complementary filter takes advantage of the low frequency
accuracy of the accelerometer and high frequency accuracy of the gyro,
combining signals to achieve the best of both worlds [56]. In Laplace notation,

the form of a low-pass filter is

Wc

Fip(s) = (5.1)

s+we

where w, is the cutoff frequency above which the signal is attenuated [50].

Similarly, the form of a high-pass filter is

N

Fyp(s) = (5.2)

s+w,
where w, is the cutoff frequency below which the signal is attenuated [50]. In
the case of a complementary filter, the cutoff frequency for the low-pass and
high-pass filters is the same, therefore F,p + Fyp = 1, ensuring that all

frequencies (ideally), minus the noise, are represented in the final

reconstruction of the signal. The block diagram of the complementary filter is

57

rt) 4 _ e(t) u(t) y(t) x

> D(s) G(s) 1-F(s)
& F(1)
+
F(s) L F(s)

y(®)

Figure 5.4: The block diagram on the left hand side illustrates integration of the
complementary filter info the complete feedback system. Note disturbances and noise
are not shown here. On the right hand side the block diagram of the filter itself is shown,
where x and y in this case are the inputs to the low-pass and high-pass filters. Note the
output of the filter is J(t) because no filter is ideal and y(t) will not be reconstructed
exactly.

shown in Figure 5.4, illustrating the combination of the accelerometer signal and
the gyro signal. The end effect is an estimation of theta that favors the
accelerometer measurements at frequencies below w. and favors the gyro
measurements at frequencies above w,.
When implemented in digital electronics, the complementary filter takes the
form
0 = gyroyp(0 + gyroData * dt) + accel;p(accelData) (5.3)
where gyroyp is the high-pass constant chosen for the high-pass filter and
accel;pis the low-pass constant chosen for the low-pass filter. The
accelerometer data represented by accelData has already been processed
by the atan2() function and gyroData*dt accomplishes the integration of the
angular velocity measurement performed at every time step. In the case of the
platform at hand, data is collected at a rate of 200 Hz (dt = 0.005 seconds) as
listed in table 5.1 and the high-pass and low-pass constants are approximately
0.992 and 0.01 respectively. These values are calculated based off the sample

rate and the noise properties of the specific sensors used.

58

Note that in order to conserve resources, the filters are not calculated
until the orientation of the vehicle is detected then the correct filter using the
corresponding axes of the IMU is computed. However, it is important for
accuracy that state estimation is constantly computed, initially relying on raw
accelerometer data alone for immediate usage by the filter when needed. It
was observed that if the filter was not initialized using the raw accelerometer
data until a change in orientation was determined, a significant delay in
reaching the correct value of theta resulted, causing an unacceptable delay
in arming the controller. This resulted in instability when fransitioning from four-

wheel driving to two-wheel driving using a wall.

5.4 Code Optimization and Features

BeagleRover is designed to be an educational platform. Because of this,
the code has been written and optimized for readability and user experience.
It is thoroughly commented and organized in a way that promotes
understanding. There are also multiple blocks of code that are commented out
and currently unused but that provide either a potentially good teaching
example or debugging assistance. Examples include print loops for printing
various different values to the console as well as a mock yaw controller for
future implementation. Aside from readability, the user experience has also
been considered from the point of view of creating a dynamic and engaging
vehicle that is easy and fun to use. This was consistently kept in mind throughout
the development process and many features were implemented to this end.

Table 5.2 shows some of the features of the drive.c code. The last feature

59

Table 5.1: Drive.c key program features and their descriptions.

Feature Description

The drive and turn inputs from the DSM2 radio are
Easy to drive while balancing damped out by a constant factor of 0.5 to allow for
easier driving of the vehicle while balancing

BeagleRover can balance on all four sides of the ve-
Balance in four orientations hicle whether transitioning from cape side up or cape
side down

To streamline the code, the same balance con-
Single balance controller for all | troller is used for balancing in the tall orientation
four orientations (NOSE_UP, NOSE_DOWN) as in the short orienta-
tion with simply a difference in gain K

. . Push the throttle stick up to disable the controller for
Option to disable controller
driving around in four wheel mode and doing flips

Ackerman steering implemented in two of the four
stable drive modes

Minimum and maximum reference angles are scaled
so that the user is less likely to drive the vehicle un-
stable while controlling from a DSMZ2 radion

Ackerman steering

Scaling of min/max reference an-
gles

< s Control input (PWM to the motors) is scaled up by the
Scaling of control input based on

ratio of the nominal battery voltage to actual battery
battery voltage

voltage to compensate for loss of voltage

Transition to balancing from four | BeagleRover can drive up a wall until upright then

wheel drive come away from the wall balancing on two wheels

listed, transition to balancing from four wheel drive, is explained in
greater detail in the following subsection.

As listed in feature three of table 5.2, the same balance controller is used
to balance in all four different orientations of the vehicle with the exception of
the proportional gain value, K. The controller was designed around balancing
in the short, or crab, orientation and used to balance in the tall orientation by
simply increasing the gain to compensate for the higher center of gravity. As
shown at the end of chapter three, the same exercise was gone through to

design a controller specific to balancing in the tall orientation but upon

60

implementation, no significant performance gain was seen. Therefore it was
decided to take the approach described above for the sake of streamlining

the code for accessibility to users.

5.4.1 Drive to Balance Transition

BeagleRover is capable of the unique maneuver of smoothly
transitioning from driving on four wheels to balancing on two wheels by driving
up a wall, provided there is sufficient friction between the wheels and ground.
This is done by initializihg the balance confroller only after the vehicle has
reached a certain angle of incline, or the start angle. In order to achieve a
smooth transition some finesse was required in timing at what start angle and
how long of a delay to implement before arming the balance controller. It was
expected that a delay would be necessary in order to prevent the controller
from outputting too high of a control value upon initialization and causing
instability. However, after experimentation with different combinations of values
it was discovered that choosing the correct start angle alone was sufficient in
achieving stability in the transition. Adding an additional delay is useful in
affecting the overall delay in arming the conftroller without affecting the start
angle as the start angle also affects computation of the complementary filter
and in turn accurate estimation of the state variable. However the additional

delay was found to be superfluous.

Chapter 6 Introduction to BeagleBone Robotics

Chapter one infroduced this thesis by explaining its dual purpose. The first
was to present the control and steering solution of a small ground rover capable
of four wheel steering, balancing on two wheels and transitioning between the
two. This was handled in chapters two, three and four. The second, and primary
motivation of the work, was to confribute to an educational platform through
developing curriculum support. Chapter six marks a change of focus from the
quantitative solutions of the previous chapters to the presentation of the
curriculum support material written as a result of this thesis work. More work is
needed in order to deliver a polished curriculum written around the Eduline,
however the combination of BeagleBone Robotics plus the hardware and CAD
fles for 3D printing the robofts is already a very strong starting point for a
motivated instructor.

As explained in section 1.2 almost no material written exclusively toward
the end goal of developing a dispersible curriculum around the Eduline existed
on paper prior to the initiation of this thesis work. The word dispersible is key here
as material that is designed to be distributed as a model for educators to follow
in tfeaching particular concepts (a curriculum) takes on a different form than
material that is written to provide support material in teaching those concepts
(a textbook). A curriculum not only requires explanations of necessary concepts
and example problems as found in a textbook, but lesson plans and adherence
to standards often mandated by governing parties. In short, a curriculum

teaches educators how to teach the subject at hand. What is presented in this

61

62

chapter and the next is a precursor to a complete curriculum designed around
what is taught in MAET43C. It is hoped that this is a first step toward creating the
written material necessary for the Eduline to make an impact in classrooms
outside of UCSD. BeagleBone Robotics is considered by the author to be the
most significant contribution of this thesis work to furthering the Eduline as an

educational product.

6.1 BeagleBone Robotics Outline

BeagleBone Robotics is co-authored by Talesa Bleything and James
Strawson, the teaching assistant for MAE143C for three iterations of the course
and the designer of the Robotics Cape used on all Eduline robots. The text has
three main parts. Part one is what we are referring to as the lab text and is
primarily authored by James Strawson, with the author of this thesis acting as
editor and first user. Part two is a complete set of build instructions for BeagleMiP
and BeagleRover. Part three is the complete control solution to balancing
BeagleMiP or BeagleRover. We recommend that MAET143C or similar courses
designed around the Eduline be taught in a lab format, where regular classes
are reserved for development of the control theory and supporting concepts
while a special lab section is reserved for hardware related material. The next
section gives brief outlines of parts one and two. Part three is presented in full in

chapter seven.

6.1.1 BeagleBone Robotics Parts One and Two
Part one of BeagleBone Robotics begins by stepping through the getting

started process with the BeagleBone Black as well as a description of the

63

workflow that will be used throughout the text. This includes instruction on how
to use the various communication options such as networking over USB,
Ethernet and Wi-Fi, as well as an infro to the Linux command line and file transfer
protocols. The last of the getting started chapters is focused on installing and
using the Robotics Cape.

The following chapters deal with circuit design and controlling hardware
through GPIO and SPI protocols. These sections use an additional lab kit
containing LEDs, wires, breadboard and a seven segment display. The last few
chapters discuss how to use various features of the Robotics Cape and BBB
including batftery management, on board sensors, H-bridges for driving DC
motors, buttons and LEDs, and counting quadrature encoders, all through the
use of the Robotics Cape library. All of these chapters and topics are
accompanied by exercises designed to ensure success with the hardware and
programming environment. By the fime the student reaches the end of part
one, he or she should be armed with the tools necessary to successfully
implement the conftrol solution to balancing BeagleMiP or BeagleRover that is
the culminating result of MAE143C.

Part two of BeagleBone Robotics contains the complete instructions for
assembling BeagleMiP and BeagleRover. This is largely self-explanatory,
however it should be emphasized that all parts, with the exception of the
electronics, tires and motors, are 3D printed. Although BeagleMiP and
BeagleRover are both designed to be robust and durable, the fact that it is 3D

prinfed makes replacing broken parts fast and cheap, both of which are

64

important to an educational platform. This is not to mention the educational
value of learning 3D printing technology in itself. As 3D printers become more
and more common, prices will drop, making the technology increasingly
available to a range of schools at the high school level as well as college. The
design files for printing both vehicles are publicly available and instructions on

how to access them are included with the build instructions.

Chapter 7 BeagleBone Robotics Part Three

The following sections of chapter seven present part three of
BeagleBone Robotics in its entirety. It is currently written around BeagleRover
and contains the same control solution for balancing on two wheels as was
presented in chapter three, only in much greater detail and including some
material tfaught in MAET143C that is not absolutely needed to balance the
vehicle. It should also be made clear that by no means is everything that's
taught in MAET43C included in this text. The format is written in an exercise,
solution style and the language is less formal to match that of BeagleBone
Robotics parts one and two. The material, including key terms and definitions,

is presented in the order in which the author finds it most comprehensible.

7.1 Introduction to BeagleBone Robotics Part Three

This section is intended to provide a comprehensive solution to
balancing the Beagle Rover on two wheels from the modeling and confrol
design perspective. It is written in semi-chronological order so that users may
obtain a clear and thorough understanding of the workflow required when
using the classical control techniques that will be presented. Implementation in
hardware and software, although alluded to here, is handled in detail in
another section of the text. The workflow required refers to the order in which
necessary concepts build upon each other as well as to the iterative process of
control design. This text is written for MAE 143C, the technical elective
undergraduate/graduate level Digital Confrol course taught at UCSD. In its

entirety, BeagleBone Robotics can be used to varying degrees to support a

65

66

range of curricula, topics including but not limited to, classical control, digital
control, embedded systems, robotics, dynamics, multithreaded programming,
3D printing, ordinary differential equations, digital/analog circuits and board
design among others. The focus of this chapter is the dynamics and control

used to balance the Beagle Rover and supporting concepts.

7.2 Using this Chapter

All control related tools and concepts used in this solution are taught in
UCSD's MAE 143C course, however not everything taught in the course is used
here. Additionally students are expected to have a basic understanding of
ordinary differential equations and exposure to statics/dynamics is a plus.
Included along the way are sample exercises to which this text provides
solutions. We start with the equations of motion governing our system and end
with a discrete time conftrol law ready to be implemented in a microcontroller.
Each subsection is meant to serve as a derivation of the solutions presented in
order to aid the curriculum design and lesson planning process. This is not a
complete curriculum and no section is infended to stand alone in feaching a
particular concept. To this end, the tools necessary to understand each
subsection are listed at the beginning of that section. The supporting textbook

used in MAE 143C is Numerical Renaissance by Dr. Thomas Bewley.

7.3 Problem Statement
Our plant is the Beagle Rover and will be modeled as an inverted
pendulum on two wheels as depicted in Figure 7.1. Beginning with the

equations of motion describing the system, our end goal is to design a discrete

67

Figure 7.1: BeagleRover pictured on the left and 2D model of BeagleRover as a
mobile inverted pendulum on the right.

time conftrol law to stabilize the body angle, 6, about its upright, unstable
equilibrium position. The final product will be a difference equation ready for

implementation in a microconftroller, the BeagleBone Black in our case.

7.4 Equations of Motion

In order to derive the equations of motion for the Rover in balance
mode, the system is modeled as a mobile inverted pendulum, an example of
which is provided in Numerical Renaissance, Ex. 17.10 and followed closely
here. The input to the system is torque from two motors and the output is body
angle, 6. Initially, the equations are simplified by considering a 2D
representation of one wheel/motor and a simple rod. The inertia and torque
from the pair of wheels and motors will be integrated later. First, the free body
diagrams of the wheel and rod are presented followed by the kinematic
relations, dynamics and an integration of the two in order to derive the full

nonlinear equations of motion.

7.4.1 Free Body Diagrams and Constants

Sample exercise: Sketch the 2D free body diagram of the wheel/rod

68

Figure 7.2: Free body diagrams of the wheel and rod.

system. Be sure to clearly mark the coordinate system(s) used. Calculate the
inertia of the rod and wheels, approximating the wheels as solid discs.

Concepts and keywords: free body diagram, force, inertia, torque,
perpendicular axis theorem, stationary vs. body coordinate systems, normal
and tangential forces.

Solution: Where

m,, = mass of wheel,

m,. = mass of rod,

I,, = inertia of wheel,

I. = inertia of rod,

T = torque of motor,

R = radius of wheel,

L = length fromend of rod to center of mass of rod,

P, and P, = reaction forces between wheel and rod in the x and y directions,

a; = tangential force,

a, = normal force,

g = gravity (9.81 sz),

69

calculate the inertia of the wheels by approximating them as thin solid discs.
By the perpendicular axis theorem, the inertia of one wheel is

Iy = 3m,R?. (7.1)
The inertia of the body approximated as a rod is

I, = m,L2. (7.2)

Whether balancing in crab mode or regular driving mode, take the center of

mass to be at the intersection of the two axis of symmetry of the vehicle. This is
an approximation as the "rod" in our model does not actually include the
bottom two wheels. However, the mass of the wheels is negligible compared
to that of the entire vehicle so for simplicity's sake we will fake the center of
mass to be at the intersection when in readlity it is very slightly higher. A more
rigorous calculation could be done but would likely not result in any

performance gain, especially because some error would still be expected.

7.4.2 Kinematics

Sample exercise: Derive an equation describing the position of the
center of mass of the rod in terms of x(t) and 6(t), and another describing the
acceleration.

Concepts and key words: differentiation, vector, unit vector, center of
mass, acceleration, basic trigonometry, basic algebra, stationary vs. body
coordinate system.

Solution: Define r(t) as the position vector from a stationary coordinate
system as defined in Figure 7.2 to the center of mass of the rod, x(t) as the

horizontal position of the center of the wheel also measured from a stationary

70

coordinate system, and 6(t) as tilt angle of the rod measured counter clockwise
from upright. Writing r(t) as a function of x(t) and 6(t) we get the kinematic
relationship
r = xe! — Lsin(6)e! + Lcos(0)e?. (7.3)
Differentiating twice yields the acceleration
i = el — OLcos(0)e' + 6%Lsin(0)e* — OLsin(0)e? — 6%Lcos(6)e>. (7.4)
Define et = el cos(8) + e%sin(@) as the direction perpendicular to the rod and
e' = e?cos(0) — elsin(h) as the direction parallel to the rod and plug into the
above equation to get
= [cos(0) ¥ — L]et — [sin(0) ¥ + LO?]e (7.5)
7.4.3 Dynamics
Sample exercise: Assuming that both wheels are initially moving
together so that there is no turning, and that there is no slip between the wheels
and the ground, derive the nonlinear equations of motion of the wheel/rod
system in terms of body angle, 8, wheel angle, ¢, and input torque from the
motors . For now think of t as a single input value to the system. How does the
torque applied by the motors affect the wheel? The body?
Concepts and key words: Newton's 2nd law of motion/rotation, dot
product, equations of motion.
Solution: Define P, and P, as the forces that the rod exerts on the wheels
in the positive el and e? directions and ¢(t) as the rotation of the wheel
measured counterclockwise from a reference position. As the motor spins it

applies a torque to the wheel that spins the wheel in one direction and causes

71

the rod to rotate in the opposite. In order to write down the dynamics for our
system we will make use of the following common equations:
Newton's Second Law of Motion

2F = ma, (7.6)

Newton's Second Law for Rotation

Xt =la, (7.7)
Arc of a Circle (¢ in radians)
arc length = r¢, (7.8)
Definition of Dot Product
A B = lAllBlicos(6). (7.9)

Using these equations and making two key assumptions, the first being that both
wheels are inifially moving together (no turning) and the second that there is no
slip between the ground and the wheels, we can write down the following
dynamic equations as well as the position of the wheel center:
Position of wheel center
X =R¢, (7.10)
Acceleration of rod in et
m,[# - et] = m,[cos(6) & — LO] = —mrgsin(0) — P, sin(@) — P,cos(6), (7.11)
Acceleration of rod in el
m,[# - el] = m.[% — Lcos(8)8 + Lsin(0)0?] = —P,. (7.12)
Acceleration of wheel center in el where F is friction force between
wheel and ground

my% = P, —F, (7.13)

72

Rotational acceleration of rod
16 =—1— P,Lsin(0) — P,Lcos(6), (7.14)
Rotational acceleration of wheel
I, = 7 — RF. (7.15)
where m,, and [,, are the mass and moment of inertia of both wheels. We will

account for the torque of both motors later when applying control. For now it's

fine to think of T as a single value representing total input torque to the system.

7.4.4 Nonlinear Equations of Motion

Our goal is to derive two equations that together describe the motion of
the rod and the wheel as the torque from the motors is varied. Therefor we
would like these equations to be in terms of 8, ¢ and t. Begin by rearranging

equation 7.14 to get

P, sin(6) — P, cos(6) = 0. (7.16)
Plugging into equation 7.11, multiplying by L and distributing m,. yields
m,L¥ cos(8) —m,.0L> = —m,Lgsin(0) + 1,6 + 1. (7.17)
Rearrange to get Equation of Motion 1
—(m,Lcos(0)%) + (I, + m,L?)8 = m,Lgsin(8) — . (7.18)
Now rearrange equations 7.13 and 7.15 to get
Po=my,X+F (7.19)
and
F = () (7.20)

R

Plugging both 7.19 and 7.20 into equation 7.12 yields

73

m, (—éLcos(H) + éstin(H)) = —-m,x + IW?;_T). (7.21)

Multiplying 7.21 by R and distributing m,. gives Equation of motion 2.
Iy$ — (my,R + mR)# + (m,RLcos(6))8 = m,RO?sin(0) + 7 (7.22)
Finally applying the no slip condition of equation 7.10, we get equations 7.23
and 7.24 which are the final nonlinear equations of motion of our system.
(m;RLcos(0))¢ + (I, + m,L*)6 = m,Lgsin(f) — T (7.23)

(Iy + (my + m,)R?)$ + (m,RLcos(6))8 = m,RLO?sin(0) + t (7.24)

7.4.5 Linearization

Exercise: Linearize the equations of motion about the body's inverted
equilibrium point using small angle approximation.

Concepts and key words: Linearity, linearize, small angle approximation,
Taylor series expansion, perturbation.

Solution: The equations of motion as they stand are nonlinear in 6. In
order to apply linear control techniques, we must linearize the equations.
Because our control algorithm will be designed to continuously correct the
system back to zero error (8 =0) we can use small angle approximation,
considering very small perturbations to theta around its inverted equilibrium
point. Making the substitution 8 = 8 + 68’ where 8 = 0 and extending this to ¢ and
T accordingly, the perturbation equations are:

(myRLcos(0))¢' + (I, + m,L})&' = m,Lgsin(0") — 7, (7.25)
(I, + (m, + m,)R?)$" + (m,RLcos(8))6 = erLé’zsin(H’) + 1. (7.26)

Applying the tfruncated Taylor series expansion resulting from the small angle

74

approximation

/3

sin(8") ~ 0" - 2, (7.27)

cos(0')=1— 92—'!2 (7.28)
and neglecting all primed quantities that are quadratic or higher (since the
square of a small number is an even smaller number), the linearized equations
of motion are

(m,RLcos)¢ + (I, + m,L?)8 = m,Lg6 — 1, (7.29)

and

(I, + (my + m,,)R?)$ + (m,RL)G = 1. (7.30)

7.5 Control

Classical control methods using lead/lag control and pole placement
will be used to stabilize the body of the Rover on two wheels about its unstable
equilibrium position. We will be leveraging the discrete equivalent design
approach, designing a controller in continuous time and later converting to
discrete time for implementation in a microconftroller. The primary tools and
techniques we will use include the Laplace and Z transforms, lead and lag
conftrol, bode and root locus plots, the closed loop step response and Tustin's
approximation with prewarping, all of which will be discussed in more detail
below. The control process that follows is iterative in nature as the designer
applies the aforementioned tools in a deliberate fashion in order to meet the
desired performance specifications such as rise time, settling time and
overshoot of the system. Approximate design guides used during pole

placement are provided for assistance and it is useful fo have them at one's

75

disposal before beginning the control design process. We will briefly list them

next.

7.5.1 Approximate 2nd Order Design Guides

Concepts and key words: order of a system, 2nd order behavior, step
input, s-plane, natural frequency, poles of a transfer function, lead control,
crossover frequency, rise time, sefting fime, percent overshoot, pole
placement.

As the ftitle of this section suggests, the following design guides are most
applicable to second order systems however will also provide helpful guidance
for systems of higher order, especially if the system is characterized by 2nd order
behavior. Some commonly used characteristics of the step response of a
system and the corresponding design guides are below.

1. Percent overshoot of the system is defined as the maximum percent
by which the output of the systemin response to a step input exceeds
its steady state value.

{=205->M,<15% (7.31)
{=07->M,<5% (7.32)
2. Rise time of the system is defined as the time it takes for the output of

the system to a step input to reach 0.9 of the steady state response

tr =18/4, (7.33)

where w,, is the natural frequency.

76

Y

Figure 7.3: Graphical depiction of the s-plane showing how the natural frequency of
the system is affected by pole location.

3. Settling time of the system is defined as the time it takes for the output
of the system to a step input to settle to within £5% of the steady state
value.

ty = +6/; (7.34)

Some other useful guidelines are:

4. Pole Location of the plant transfer function in the s-plane and how it
affects the natural frequency of the system is shown in Figure 7.3.

5. For good phase bump when implementing lead control

Pmax p/Z = 10. (7.35)

6. To achieve crossover frequency at an order of magnitude below the

sample rate of the ADC
we = 1-8/tr, (7.36)

W, = \/ﬁ (7.37)

Note these guidelines are approximate and it is likely that the designer will not

achieve all criteria exactly.

77

7.5.2 G1(s)

Exercise: By first taking the Laplace fransform of the linearized equations
of motion, derive the transfer function of the plant, G1(s), from input z(s) to
output 6(s).

Concepts and key words: fransfer function, Laplace transform.

Solution: For a first pass at designing a stabilizing conftroller, take the input
to the system to be 7 and output 8. Motor dynamics will be included later. To
obtain the transfer function from input 7 to output 8, take the Laplace transform
of the linearized equations of motion and rearrange to get an input/output
relationship of the form 6(s)/t(s) = num G1(s)/denG1(s). Applying the definition
of the Laplace tfransform and assuming zero initial conditions, the transformed
equations are

(m,RLcos)s*¢(s) + (I, + m,.L?)s?0(s) = m,gLO(s) — 1(s), (7.38)
(I, + (m, + m,,)R?)s%¢(s) + (m,RL)s%6(s) = 1(s) (7.39)
Solving equation (7.39) for ¢(s), plugging into equation (7.38) and algebraically

rearranging, we get the transfer function from input 7(s) to output 6(s).

_ myRL+1,,+(my+m,,)R?
G1(s) = (my2R2L2 (I + (My+my)R?)) (I +my L2)s2+(mygL) (I + (my+my,)R?) (7.40)

From here on, assume all modeling and calculations to be done using
MATLAB. For balancing in crab mode, referring to the constants depicted in
and listed below the free body diagrams (Fig. 5.2), take L = 0.06m, which is at
the intersection of the two axis of symmetry of the vehicle, moment of inertia
for the rod and wheels to be I, = m,L? and I, = m,, L? (inertia of both wheels)

withm, = 0.612kg, m,, = 0.054kg (mass of both wheels) and normalizing so that

78

the highest power of s has a coefficient of 1 in the denominator, we get:

-913
s2-146.4

G1(s) = (7.41)
Now that we have the transfer function, we may begin the control design

process using the classical control techniques and design guides highlighted

thus far.

7.5.3 Discrete Equivalent Design

Exercise: What is the Nyquist frequency and how does it affect the
systeme How can the conftrol designer compensate for this effecte

Concepts and key words: block diagram, DAC, ADC, ZOH,
microcontroller, bode plot, frequency domain, phase margin, Tustin's
approximation with prewarping, Padé approximation, crossover frequency,
Nyquist frequency, aliasing, low pass filter, sample time.

Solution: To design our controller, we will use the discrete equivalent
design approach. The controller is designed in continuous time and later
converted to discrete time for implementation in the discrete time electronics.
The continuous time controller, D(s), is represented as a cascade of the analog
to digital conversion of the error signal (obtained by comparing the output of
the sensors to a reference signal), the discrete time controller, D(z), and the
digital to analog conversion necessary to provide analog signals to the motors.
When designing a confroller in continuous time, the designer must be cognizant
of the h/2 time delay that results from the use of a zero-order-hold in the
microcontroller's DAC, where h the sample time of the ADC. The ADC, D(z), DAC

cascade and the Laplace transform of the resulting delay are depicted in the

79

' S apc —> D(z) =] DAC —=3-] G(s5) E
—$ e L1 L |
—>$—> D(s) b s — G(s) ——>~

Figure 7.4: Block diagram of the confroller/plant system. The bottom diagram shows the
series connection of the controller and plant with the delay that arises from the digital-
to-analog conversion of the discrete time controller output. The top diagram shows the
discrete time version of the conftroller including the necessary data conversion for
communicating with the sensors and motors.

block diagrams of Figure 7.4.

The h/2 time delay results in potentially significant phase loss if occurring
within an order of magnitude of the Nyquist frequency = /2, defined as the
frequency above which aliasing occurs and the output of the ADC into the
discrete time conftroller can no longer be frusted as accurate. To compensate
for this, most ADC's incorporate a low pass filter above the Nyquist frequency
which also results in phase loss. The combined phase loss can be problematic if
the phase at the crossover frequency is eroded enough to potentially cause
unacceptably high overshoot and or closed loop instability of the system. To
account for the phase loss, the designer can either represent the time delay
resulting from the DAC's ZOH with a Padé approximation built directly into the
continuous time representation of the plant, G(s), or simply build enough of a
phase margin in at crossover to insure stability even with the h/2 phase loss.
After designing D(s) to meet the design specifications such as the desired rise

time and seftling time, we will use Tustin's approximation with prewarping to

80

obtain the discrete time controller, D(z), that the microcontroller is to obey. We
will first go through the process of incorporating a Padé approximation of a
delay into G1(s) and designing a stabilizing conftroller so that the user of this text

may have it as an example. Later it will be omitted.

7.5.4 Padé Approximation

Exercise: Comment on the phase margin and how this can be affected.
What type of control can be used to stabilize the system?

Concepts and key words: Padé approximation, rational function, IMU,
sample time, root locus, bode ploft, s-plane and stability, "speed" of a system.

Solution: As depicted in the above block diagram, the Laplace
transform of the delay function is e~ which is not a rational function of s.
Implementation of an irrational function in a discrete time microcontroller is
problematic, therefor we will use a Padé approximation in its place given by
e~ % ~ F,(s) where E,(s) increases in accuracy with higher values of n. For our

purposes n = 2 is sufficient and the approximation is

__ 1-=ds/2+(ds)?/12
Fa(s) = 1+ds/2+(ds)?/12° (7.42)

We must now specify exactly the h/2 time delay to be used in MATLAB's Padé
function. The IMU on the Robotics Cape has a sample time of 200Hz which
translates to a time delay of d = 0.005/2 seconds. The resulting Padé

approximation is

52-24005+1.92¢0-06 (7 43)
52+424005+1.92e0-06° :

P(s) =

Combining P(s) with G1(s) and applying a negative gain results in the root locus

81

Bode plot of -G1'F2 w0 Rodt locus of -G1*P2

Magnitude (dE)
="

ol
-
in

Imaginary &xis (secon

Phase (deg)

180 L L L i 2 L ' L I i L L
10“ 10 102 10° 10‘ 105 -2500 -2000 -1500 -1000 -500 a 500 1000 1500

Frecuency [radis) Real Axis (seconds™)

Figure 7.5 Bode (left) and root locus (right) plots of the plant, G1(s), combined with a
second order Padé approximation of the delay intfroduced to the system by the
BeagleBone Black's DAC.

and bode plots of the "new plant," as pictured in Figure 7.5.

The n=2 Padé approximation added two stable, very fast poles which
will decay quickly and not affect the plant dynamics in a significant way. It can
be seen from the root locus that no amount of gain can be applied to stabilize
the system. Also, looking at the bode plot, there is no phase margin which is
defined as the amount of phase the open-loop system is away from 180
degrees at the frequency where the magnitude crosses 1, aka the crossover
frequency. In order to bump up the phase margin and achieve stability, a lead

conftroller will be applied.

7.6 Lead Control

Exercise: Design a lead controller to stabilize the G1(s)P2(s) system.
Clearly explain the reasoning behind your choice of the pole and zero locations
of the controller as well as the overall gain, K, of the system. Provide the root
locus and bode plots. What can you say about tracking of the reference signal2

How can this be affected?

82

Concepts and key words: Gain, lead control, reference signal, fracking,
lag control.
Solution: The form of a lead controller is
Dipaa(s) = K * % where z < p. (7.44)
The primary goals of applying lead control here are to bring the locus into the
stable left half plane while simultaneously speeding up the system and
increasing the phase margin. If we choose z = 12.1 to cancel the stable pole
and replace with a faster pole, we can decrease the rise time and settling time
of the step response without increasing the gain too high and potentially risking
instability. By design guide 4, choosing p=120 should result in an appropriate
phase margin. Then adjust the gain K to achieve crossover at the desired
frequency, increasing it fo bump up the magnitude of the bode plot and vice
versa. We shoot for a crossover frequency of about 20 rad/s as that is an order
of magnitude below the sampling frequency of the ADC, another design guide.
After iterating to achieve close to the desired crossover and an acceptable

phase margin, a potential lead conftroller is

s+12.1
D s) =K+«
lead() $+120

with K = 2.75. (7.45)

After combining the lead confroller and plant (with Padé approximation) in
series, the root locus and bode plots are shown in Figure 7.6.
This is only one potential solution, yielding a phase margin of = 45° at a

crossover of = 17 rad/s with a damping of 0.6. Notice that the magnitude at

83

Bode plot of G1P2 with lead control % 10‘ Foat locus of G1P2 with lead cortrol
T T T T T T

50

oF

i) S

Magnitude (dE)

00

150 2
270 e oy T T . E
>
=
E

140
a0 a4l

ok

Phase (deg)

ank

180
107" 100 10’ 107 107 10t i
Frequency (radis) Real Azis (seconds™)

2 ' ' L ' L I L
-2500 -2000 1500 -1000 -500 a 500 1000 1500

Figure 7.6: Bode (left) and root locus (right) plots of the plant, G1(s), and n=2 Padé
approximation of the delay function, P(S), with lead control applied.

low frequencies is not very high and could result in poor tracking of the
reference signal. This could be affected by adding lag control which will be

exemplified after incorporating the motor dynamics.

7.7 Including Motor Dynamics

Exercise: Recalculate the inertia of the wheels including the inertia of the
motors/gearboxes using I, = 3.6E — 8 Kgm? and the given information below.

Exercise: Given the equation for motor torque, incorporate the motor
dynamics into the original linearized equations of motion of the system, apply
the Laplace fransform and rearrange as before to derive the new transfer
function of the system from input U(s) to output 8(s). Plot the root locus and
bode plots. Comment. What is the format of a possible stabilizing controllere

Solution: Although we have now achieved a stabilizihg conftroller in
simulation, the robot itself would very likely not balance in reality. This is due to
the fact that the motors themselves have dynamics that we have hitherto
neglected. We will include them now and follow a similar control design

approach, utilizing the root locus and bode plotting tools, this time with the

84

addition of the closed loop step response and lag control. The motor dynamics
can be modeled as

T=5u+((Mb-w (7.46)

where:
§ = stall torque,
b = damping coef ficient,
{ = viscous friction,
I, = motor armature inertia,
w = motor speed (¢ — 6) or (9 - cj)) depending on motor polarity,
u = motor input (PWM value between — 1 and 1).

Additionally, when calculating the inertia of the wheels and motors
combined, we must multiply the motor armature inertia by the square of the
gearbox ratio prior to summing with the wheel inertia. As before, the wheels are
taken to be solid disks when estimating their inertia. The total inertia of one
wheel and motor is

hy = I+ m,R? (7.46)

and the final linearized equations of motion accordingly become
(m,RL)$ + (I, + mL?)f = m,gLO — 21 (7.47)
I, + (m, + my,)R¥$ + (m,RL)6 = 21 (7.48)
where 1 is defined above to be the torque from one motor, m,, now includes
the mass of both wheels and I,, now includes the inertia of both wheels and
gearboxes. Making the proper substitutions, taking the Laplace transform, and

rearranging algebraically exactly as before yields the new transfer function

85

Binde plot of -G1 with motor dynamics Roct iocus of -G1 with motor dynamics

1
w
=

=

Magnitude (d8)
5]
]

135

Phase (deg)

80 . . n 5 . L I i
10" w0 Frequencyp(radss) 10’ 107 -2 15 A% Reais (sscondi 5 10 15

Figure 7.7: Bode (left) and root locus (right) plots of the plant G1(s) incorporating
motor dynamics.

G1(s) = % - (—c4cz+c12)s3+(2(z+b)(—2cg4(fgi)c1)sz+(c3+c4)s+z(§+b)c3 (7.49)
where:
C1l=m.RL, (7.50)
C2=1I.+m,L? (7.51)
C3 =m,gL, (7.52)
I, + (m, + m,)R? (7.53)

Plugging in the constants for these particular motors gives the final fransfer

function.

G1(s) = 29 = 2262 (7.54)

U(s) s3+47.22152-136.75—292.2

The root locus and bode plots with negative gain applied are given in
Figure 7.7. Looking at the root locus, no amount of gain can stabilize the system.
In order to bring the locus into the LHP using pole placement techniques, our
controller must cancel the zero at the origin and replace it with a stable zero.
Note this is generally done with caution as a pole-zero cancellation on the
imaginary axis can lead to instability due to inaccuracies in the model. We are

confident in our model and will perform this cancellation. Looking at the bode

86

plot, we do not have a high enough magnitude at low frequencies to achieve
acceptable tfracking. By applying lag control over the appropriate frequencies
we can bump up the low frequency gain as well as cancel the zero at the
origin, replacing it with a stable zero and bringing the locus into the LHP as

desired.

7.8 Lag Control
Exercise: Design a lag controller to stabilize the system and plot the root
locus and bode plots. Comment.

Concepts and key words: Lag confrol, phase lag, integrator windup.

Solution: The form of a lag controller is

Dyag(s) = % forz>p. (7.55)

The primary use of a lag confroller is to increase the gain at low
frequenciesin order to achieve good tracking. The gain willincrease by a factor
of z/p. Because our pole is at zero, we are able to choose z such that our lag
conftrol takes affect at frequencies well below our desired crossover frequency
of 20rad/s. This is necessary due to the phase lag caused by the lag controller.
We do not want to erode the phase at crossover and risk instability. After a few
iterations, we choose z=3 and the resultant bode plot of our lag controller is
given in Figure 7.8, illustrating the phase lag effect of a lag conftroller as well as
the high gain at low frequencies. Notice the lack of roll off of the gain at low

frequencies, which is the effect of having a controller pole at zero, acting as a

pure integrator. Ideally we would roll off this gain at very low frequencies to

87

lagC

Magnitude [dE)
r=

o

o e

Phase (deq)
S
o
T
1

a0 E L | i | i Alle) il L L =
107 qn” Freguency (radis) qp' 10°

Figure 7.8: Bode plot of lag conftroller D_lag (s).

avoid integrator wind up, a phenomenon that can lead to instability in the case
of motor saturation, however in this case we cannot. Combining this lag control
with the plant and a negative gain yields the root locus and bode plots given

in Figure 7.9.

Bode plot of -G1 HagD1 Root locus of -G1*lagD1

tagnitude (dB)

Imaginary Axis (zeconds™
o
T
i

Phase (deg)

8 L L L 1
s 10 15

L .
1” o' Frequency (radis) qo° 10’ -2 15 AL Reaidixis (secondd

Figure 7.9: Bode (left) and root locus (right) plots of lag control combined with the plant
G1{(s).

7.9 Lead Control with Motor Dynamics

Exercise: Add lead control and plot the root locus and bode plots.

88

Identify design specifications. Comment.

Concepts and Key words: Lead confrol, phase margin, crossover
frequency, pole zero cancelation, rise fime.

Solution: The bode plot with lag control shows that we have increased
the low frequency gain but have indeed dangerously eroded our phase
margin. Also, we do not have crossover at the desired frequency. The locus is
now brought over into the stable LHP with the appropriate gain applied,
however this design does not meet the necessary specifications such as
damping, etc. In order to achieve crossover at desired frequency and increase
phase margin, we will add lead control using much of the same logic as we did
previously. In order to design our lead confroller and achieve crossover where

we desire we will use the previously infroduced design guides.

we & 1'8/tr where t, = rise time (7.56)
w. = \/pz where pz = pole * zero (7.57)

As before, placing a zero at -15 to cancel the pole and replacing with a
faster pole will help to achieve the required rise time without applying too much
overall gain to the system. Keeping in mind that we would like a rise time of 0.05-
0.1 seconds, and a crossover frequency of =20 rad/s, we can use the above
equations to calculate the location of the pole that should achieve close to
our desired specifications. A rise time of 0.05 seconds corresponds to a
crossover frequency of 36 which gives us a pole at 86.4. This is not quite a factor
of 10 higher than the zero at 15 to achieve max phase bump, but we still have

a phase margin of about 52 degrees which is sufficient to account for any future

89

K*G YagD1 feadbl K*G1 HagD *leadD

=]
s
=1

T

=
T

Magnitude (dE)

80k

E

At

Mok | L i L 25 I | I |
a0 i Frabusncy (racisyn’ 10 i -100 -0 B0 Real axis (3oonds™) 20 2 =1

=
=8
| Imaginary #xis (zeconds™
s o

=

]

Phase (deg)

-20

Figure 7.10: Bode (left) and root locus (right) plots of lead and lag control applied to
the plant, G1(s), showing high gain at low frequencies for good fracking of the
reference signal and ample phase bump at the crossover frequency.

phase loss associated with implementation in digital electronics. Now adjust the
gain to get crossover at the target frequency. Cannot meet all approximate
design guides exactly so compromise at w, = 23, t, = 0.08, pm = 52. The final
open loop bode and root locus plots with lead control applied are given in

Figure 7.10.

7.10 Closing the Loop

Exercise: Plot the closed loop step response. Comment on whether or
not design specifications were met.

Concepts and Key words: closed loop, step input, step response, rise

time, settling time, overshoot, loop prefactor.

Solution: Referring 10 Diegq-1a9(s) as D(s), the form of the closed loop

transfer function is

K(s)D(s)G1(s)

H(S) - 1+K(s)D(s)G1(s)

(7.58)

Performing a few final tweaks, we end with Dy, = (s +2.5)/s and

Dieaa(s) = (s +15)/(s + 86.4) with a gain of -10. Giving a step input to this system

90

Amplitude

L L ' ' ' L L L L L L ' I L L L
a 0z 04 06 08 1 12 14 16 18 o 02 04 06 o8 1 12 14 16 18
Time (zeconds] Time (seconds)

Figure 7.11: Step response of closed loop system without a loop prefactor on the left
and with a loop prefactor on the right. Addition of the loop prefactor causes the
response to settle at one as desired.

results in the step response plotted on the left hand side of Figure 7.10 showing
arise time of 0.06 s, settling time of 0.79 s and an overshoot of 10%. Notice that
the response settles at a value of =1.41 instead of 1 as desired. This can be fixed
by adding a loop prefactor of P = 1/1.41 as shown in equation (7.59). The step

response now becomes that pictured on the right hand side of Figure 7.11.

K(s)D(s)G1(s)

H(S) = P o pmee

(7.59)

7.11 Discrete Time Controller
Exercise: Convert the continuous time controller to discrete time and
derive the corresponding difference equation to be implemented in hardware.
Concepts and Key Words: discrete time, difference equation, transfer
function, Tustin's approximation, prewarping, Z-transform, inverse Z-transform.
Solution: In order to implement the conftroller in hardware, we need to
convert from continuous time to discrete time and obtain the difference
equation the controller must obey. To convert to a discrete time transfer

function we use Tustin's approximation with prewarping. We apply prewarping

21

around the crossover frequency to insure accurate conversion at this
frequency. Then applying the inverse Z fransform gives us the difference
equation to be implemented in the microcontiroller.

Upers — 1.652Uj11 + 0.6525u; = —8.6260,4, + 16.520,,, — 7.90260;, (7.60)

7.12 Balancing in Normal Drive Orientation

Exercise: Derive the transfer function of the system for BeagleRover in its
tall orientation.

Concepts and Key Words: No new concepts or key words.

Solution: In order to balance BeagleRover in its tall orientation, we must
account for the change in the distance from the center of the wheel to the
center of mass of the body, L, and the corresponding change in the body
inertia, I.. Changing these values and recalculating, the transfer function for

the new orientation becomes

—137.7s
$3+45.9175%2-96.485—206.2

G2(s) =

(7.61)

with poles at -12.4, -1.98 and 8.43 which are slightly "slower" than the poles of

G1(s) when balancing in crab mode.

Chapter 8 Conclusions and Future Work

The purpose of this work is twofold. First, it is dedicated to the technical
development of BeagleRover, a small RC car capable of numerous different
drive modes including balancing and driving on two wheels. Second, it is to lay
groundwork for how BeagleRover, as part of a larger platform currently being
called the Eduline, can be used to affect STEM education. The technical
portion of this paper centers on the control algorithm designed to achieve
balance on two wheels as well as the smooth transition between driving on four
wheels to driving on two using a wall. This is accomplished through classical and
digital control methods, namely lead and lag control fechniques.
Implementation in a microcontroller is considered including the use of a
complementary filter to adjust for sensor noise characteristics. Lastly, four-wheel
steering is augmented by the addition of Ackermann steering geometry.

Successful implementation of the classical control and filtering
techniques mentioned above has resulted in a vehicle capable of balancing
on all four of its sides in two different unstable configurations. These consist of a
“tall” configuration and “short” configuration, referring to a higher and lower
center of mass respectively. The difference in location of the center of mass
was handled by increasing the gain while balancing in tall mode. This proved
to be sufficient in achieving balance however the vehicle does seem to display
better disturbance rejection in its short configuration. While driving in Normal
mode (on all four wheels with the front of the vehicle being what one would

expect) Ackermann steering geometry was implemented to reduce side slip of

92

93

the vehicle while moving through a turn. Some simple tests leveraging the on-
board gyroscope showed side slip does seem to be reduced by Ackermann
geometry when going through a tight as well as a wide turn on a hard wood
floor. The implementation of Ackermann geometry was also shown to provide
a strong educational skew that is accessible at the high school level, leading
into the educational portion of this thesis work.

Throughout the technical developments of this work, applications to
STEM education are considered, with each major section including a discussion
of its particular relevance to that topic. The education centric portion of this
work culminates in a text we are currently calling BeagleBone Robotics (BBR), a
portion of which is given in chapter seven. BeagleBone Robotics currently
consists of a hardware section that is focused on such topics as getting up and
running with the BeagleBone Black and programming in Linux, as well as a
theoretical section on control design. The theoretical portion is written in a
question and answer format designed to be used as a complete solution set for
balancing BeagleRover on two wheels. This section is not currently augmented
to be BeagleMiP specific (Beagle MiP being the first robot in the EduLine that is
currently used to teach MAE 143C, Digital Control Systems at UCSD). Although
not included in this text, BBR does include build instructions for both BeagleMiP
and BeagleRover. As a precursor to a formal curriculum written around the
Eduline, BeagleBone Robotics is considered to be a major conftribution of this
thesis. That being said, there is still ample room for augmentation of this work,

both from the educational perspective as well as the technical.

94

From the educational perspective, some specific ways to augment
BeagleRover as an educational platform are adding a graphical programming
option, incorporating Ackermann steering geometry and complementary
filtering into the theoretical portion of BBR, designing complete lesson plans for
use by instructors, adding more examples of hands on experiments achievable
at the high school level. From a high level view, the Eduline has the potential
to reach a wide audience by offering a low enough barrier to entry to engage
high school aged students while offering a direct path to college level curricula.
A high school level course, or Volume 1 of BeagleBone Robotics, that has a
direct counterpart at a well-respected university such as UCSD, or Volume 2 of
BeagleBone Robotics, is potentially very powerful. In order to impact the largest
number of students possible, BeagleBone Robotics should be brought into the
classroom rather than focusing exclusively on extracurricular programs. What's
more, the most ambitious goal is to adapt Volume 1 for use in public high
schools by appealing to state standards for science and math education. To
adapt the Eduline material to state standards for use in public school systems
is a very in depth project that will take years to complete. But if done
successfully, it could potentially impact the downward trend in students
pursuing STEM degrees that was highlighted in chapter one, especially if it is
kept affordable. Out of the Eduline, BeagleRover is the platform best suited for
adaptation to high school level coursework for a number of reasons that have
been explained throughout this paper.

From the technical perspective, some work could be done to improve

95

balancing of the vehicle as it has the tendency to “run off” when not given any
user input from the DSM2 radio. A sure way to do this would be to add position
conftrol by leveraging frequency separation techniques. Other sensors such as
wheel encoders would be required to accomplish this reliably. However, this
method is implemented by BeagleMiP and it may be desirable from the
educational and commercial product perspective to allow for this difference
between the two robots. More compelling than this however, are the potential
improvements to the vehicle handling while driving in Normal mode. This could
include more advanced versions of Ackermann steering geometry as well as
the addition of torque vectoring which refers to spinning the wheels at different
speeds through a turn to compensate for differences in distance traveled.
Optimizing the handling of BeagleRover through these techniques could be a
separate master’s thesis project in itself.

Although this paper focused on BeagleRover as an educational
product, there are many ways this project can be extended including to
applications outside of education. In fact, the ability to customize and extend
is a key component of the foundation of the project. One example is inspired
by Tactical Electronics’ Under Door Camera [57], a wireless camera designed
to be slid under a door and then operated from a place of cover, there is a
current effort in the Robotics Lab to design a mechanism that can be attached
to the Rover and deploy a camera in a similar fashion. As seen in the second
image, Tactical Electronics’ Under Door Camera is meant to be placed in the

desired location by a human hand, at best by an attached pole. If the same

96

result was to be achieved by a remotely confrolled vehicle that can maneuver
in very tight spaces, leveraging the different drive modes such as spin mode to
turn around without lateral motion in any direction, the operator would benefit
from maintaining a greater distance of cover. The applications to hostage
situations and or exploration of a burning building for example are apparent,
enhanced by the presence of an IR light source and IR camera to illuminate
the inhabitants of a dark room without alerting attention.

A second example of extension beyond educational applications takes
the form of an additional theoretical problem. While working on the steering
code for BeagleRover, it got stuck in a loop while rotating in place on two
wheels, similar to a spinning top. This begs the question, can it spin fast enough
to be open loop stable in this orientation? By drawing parallels o the problem
of a spinning top, one could attempt to calculate the necessary angular
velocity of the vehicle about the vertical axis and therefor the necessary
velocity of the motors. The physical limitations of the Rover were tested by
writing code to disable balance control while driving on two wheels so that
maximum angular velocity could be achieved prior to disabling feedback. The
result was instability at high velocities even with the balance control enabled,
let alone disabled. The tendency of the vehicle to rotate about one wheel
rather than about the vertical axis quickly causes instability at higher speeds,
even if a high enough speed for open loop stability was achievable. It is left to
future study to move forward with this challenge.

Overall BeagleRover works well and the addition of this robot greatly

97

enhances the appeal of the Eduline as an educational robotics platform. The
combination of BeagleRover and BeagleMiP along with BeagleBone Robotics
provides a strong starting point for formal STEM curricula at both the high school
and university levels. With future development, the Eduline stands to impact

STEM education in a very real and meaningful way.

