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Genomic surveillance reveals dynamic shifts in the connectivity 
of COVID-19 epidemics

A full list of authors and affiliations appears at the end of the article.

Summary

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence 

and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for 

example, genomic data revealed that local epidemics varied considerably in the frequency of 

SARS-CoV-2 lineage importation and persistence, likely due to a combination of COVID-19 

restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are 

driven by regional transmission, including across international boundaries, but can become 

increasingly connected to distant locations following the relaxation of public health interventions. 

By integrating genomic, mobility, and epidemiological data, we find abundant transmission 

occurring between both adjacent and distant locations, supported by dynamic mobility patterns. 

We find that changing connectivity significantly influences local COVID-19 incidence. Our 

findings demonstrate a complex meaning of ‘local’ when investigating connected epidemics and 

emphasize the importance of collaborative interventions for pandemic prevention and mitigation.

In Brief

Genomic surveillance, paired with mobility and epidemiological data, quantify the impact of local 

and international travel restrictions on SARS-CoV-2 transmission. Both phylogenetic and mobility 

analyses indicate that collaborative interventions are more effective than targeted border closures 

at reducing the transmission of SARS-CoV-2 between highly connected locations.

*Corresponding authors: natem@scripps.edu (NLM), zellerm@scripps.edu (MZ), andersen@scripps.edu (KGA).
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Graphical Abstract
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Introduction

Human contact networks can help elucidate SARS-CoV-2 transmission dynamics. For 

example, it has been shown that the risk of infection for an individual increases with 

the number of contacts they have1, the locations they visit2, and the length of their 

visit3, and that the interactions of individuals between different locations hinders virus 

containment efforts4–7. As a result, we would expect SARS-CoV-2 transmission to be higher 

between geographic locations that have higher human connectivity8,9. Reconstructing the 

interaction networks and temporal dynamics between these “high connectivity” locations 

can illuminate the sources of emerging waves and help inform intervention strategies and at-

risk populations10. Genomic data provides one way to measure these connectivity networks, 

as the geographic spread of rapidly evolving viruses like SARS-CoV-2 can be inferred from 

molecular data11,12.

Genomic surveillance programs, many of which were established during the COVID-19 

pandemic, have generated large amounts of SARS-CoV-2 genomic data that has been 
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used to track the spread and evolution of the virus in near real-time13. While it is clear 

from genomic data that SARS-CoV-2 spreads between locations causing the reach of local 

outbreaks to overlap14–18, we know little about how to quantify this interaction, or the 

factors contributing to spread. In addition, it is unclear if the temporal dynamic of viral 

spread has changed as the pandemic transitions from the introductory and expansion phase 

into endemicity.

The initial spread of SARS-CoV-2 caused the implementation of social distancing 

policies and international travel restrictions. The former have been studied extensively, 

showing marked changes in individual behaviors and movements19,20. International travel 

restrictions, enacted by over 89 countries during the first five months of the pandemic21, 

stand in contrast to recommendations by the World Health Organization, which argued 

against the use of travel restrictions and border closures due to their substantial economic, 

social, and ethical effects, and a lack of evidence on their effectiveness22. Although 

some travel restrictions—including complete border closures, quarantines, and testing 

requirements—have since been shown to reduce imported cases17,23–26, the relative 

contribution of imported cases on local COVID-19 incidence before, during, and after 

restrictions is not fully understood. Additionally, connectivity across heavily-traveled and 

economically important land-borders, like the US-Mexico border, which was crossed 400 

million times a year prior to the pandemic27 and was closed to non-essential travel from 

March 19th, 2020–November 8th, 202128,29, remains unstudied.

In this study, we characterized the connectivity of local COVID-19 epidemics over space 

and time, how travel restrictions affect this connectivity, and the impact of virus imports 

on epidemic growth. To reconstruct the dynamics of virus transmission from the beginning 

of the pandemic to the end of the first Omicron wave (March 2020–December 2022), 

we sequenced more than 82,000 SARS-CoV-2 samples as part of our routine genomic 

surveillance in San Diego, California and Baja California, Mexico, and compared them to 

SARS-CoV-2 genomes from North America and the rest of the world. By studying locations 

along international borders and comparing transmission in border regions to other US 

locations, we were able to investigate the effect of travel restrictions across the country and 

isolate the impact of restrictions on international borders. We found evidence for dynamic 

shifts in transmission of SARS-CoV-2 over the course of the pandemic regardless of 

location or border status. Our findings indicate that connectivity between locations plays an 

increasing role in maintaining local epidemics, which highlights the need for collaboration 

between regional and international governments to enact effective prevention strategies.

Results

North American locations experienced similar changes in connectivity over time

To understand how temporal and geographic changes in the connectivity of North American 

locations influenced SARS-CoV-2 transmission patterns, we investigated SARS-CoV-2 

genomic data during the first five waves of the pandemic, until December 2022. We found 

that locations in North America became more connected over time, likely as a result of the 

easing of COVID-19 mandates.
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We used phylogenetic similarity as a proxy for connectivity, since an increase in 

connectivity between locations would lead to an increased similarity of their viral 

populations due to frequent transmission between the locations30. We calculated 

phylogenetic similarity in the viral populations of epidemics in North American counties, 

states, or provinces, for each month of the pandemic (Figure 1A). To do this, we used 

the PhyloSor similarity31 metric, which quantifies the similarity of viral populations as the 

proportion of branch lengths in a phylogenetic tree that are shared relative to the total branch 

lengths of both populations31 (Supp. Figure 1). We found that in simulations, PhyloSor 

similarity recapitulated the number of contacts between communities (see methods; Supp. 

Figure 2) and was thus an appropriate metric to investigate connectivity.

Prior studies have found that local COVID-19 epidemics were regionally isolated during 

the beginning of the pandemic15–17, when travel restrictions and social-distancing measures 

were the most stringent. Our PhyloSor analysis showed that North America had highly 

similar virus populations at the onset of the pandemic, but we found that virus populations 

grew increasingly divergent, until they started to become more similar again after May 

2020 (Figure 1A). This trend was negatively correlated with the stringency of COVID-19 

mandates as measured by the Oxford COVID-19 Government Response Tracker32, 

suggesting that the relaxation of restrictions was associated with increased connectivity of 

North American locations (Pearson R = −0.68 [95% CI: −0.43 to −0.83]; P < 0.001).

To determine whether this observed trend was consistent across most locations or driven by 

just a few specific locations, we calculated the heterogeneity in each location’s temporal 

pairwise similarity to all other locations using the Gini index, a commonly used statistical 

measure of dispersion (Supp. Figure 3). We found that heterogeneity remained low 

throughout the entire duration of the pandemic, indicating that the trend in connectivity 

was experienced by most North American locations rather than being limited to a few 

influential locations. To better understand factors that explain the trend in connectivity, 

we also performed detailed analyses of SARS-CoV-2 diversity at a local scale, where 

transmission and mobility patterns could be more easily interpreted. We used results from 

our PhyloSor analysis to rank North American counties, states, and provinces by their 

average phylogenetic similarity to all other locations over time (Figure 1B). We found that 

metropolitan counties exhibited comparably high average phylogenetic similarity, without 

any notable outliers, further suggesting that the observed trend of connectivity in North 

America was not driven by a small number of influential locations.

Connectivity of local COVID-19 epidemics became more widespread over time

To assess if travel restrictions and other COVID-19 mandates affected border locations in the 

same way, we examined locations along the US-Mexico border in more depth. We selected 

San Diego County (henceforth San Diego) because it is a popular vacation destination33 

and, along with Tijuana, Baja California, Mexico, contains the busiest international border 

crossing in the Western Hemisphere34. We found that the average phylogenetic similarity 

of San Diego to all other North America locations did not fall in either extreme (18th 

percentile) and was representative of the widespread trend in connectivity, suggesting 

that border locations were not uniquely impacted by travel restrictions (Figure 1B). To 
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investigate widespread trends in the diversity of SARS-CoV-2 at the local level, we 

generated and analyzed 80,323 and 1,950 SARS-CoV-2 genomes from San Diego and Baja 

California, respectively, making San Diego one of the most densely sampled locations in the 

United States (collection dates from March 25th, 2020 to December 13th, 2022; Supp. Figure 

4).

More specifically, we quantified the phylogenetic similarity of SARS-CoV-2 from San 

Diego with other counties in California and North American states throughout the pandemic 

and found that SARS-CoV-2 genomes from San Diego were phylogenetically most similar 

to nearby locations (Figure 1C). The five locations with the highest median phylogenetic 

similarity to San Diego were Los Angeles, Orange, and Alameda counties, as well as 

Arizona and Nevada (Figure 1C). However, we found only a weak correlation between each 

location’s median phylogenetic similarity to San Diego and its geographic proximity to 

San Diego, which is generally a proxy for human mobility35,36 (Supp. Figure 5; Pearson p 

value = 0.003; R2 value = 0.10). We observed a correlation when we considered only US 

states (Pearson p value = 0.006; R2 = 0.14) or only California counties (Pearson p value 

= 0.156; R2 = 0.09), though it was not significant within California. Despite the lack of 

a strong correlation between geographic distance and phylogenetic similarity at any scale, 

high phylogenetic similarity between neighboring locations suggests that proximal locations 

across the US remained consistently connected throughout the entire pandemic regardless of 

COVID-19 restrictions.

We hypothesized that the lack of a strong correlation between geographic distance and 

phylogenetic similarity resulted from an increase in the long range connectivity of locations 

following the relaxation of COVID-19 mandates. To test this using our data from San Diego, 

we calculated how the correlation between phylogenetic similarity and geographic distance 

to San Diego for all locations changed through each of the five waves of the COVID-19 

pandemic and for the intervening troughs (Supp. Figure 6 & Figure 1D). We found that 

phylogenetic similarity was correlated with geographic distance during the first two waves, 

but not during the following three waves (Pearson p value < 0.05 for 1st-2nd waves; R2 > 

0.15 for 1st-2nd waves; Figure 1D). This shows that the connectivity of locations increased in 

geographic reach after the first two waves of the pandemic.

In contrast to the waves of the pandemic, we noticed that a significant correlation 

between phylogenetic similarity and geographic distance persisted during the periods of 

low COVID-19 incidence (Figure 1D). This led us to investigate the association between 

connectivity and COVID-19 incidence. We found that, even after subsampling to correct for 

potential sampling biases (Supp. Figure 7), similarity between San Diego and other locations 

increased during periods of low COVID-19 incidence relative to the adjacent waves (Figure 

1E–F). The effect was most pronounced in the locations with the highest phylogenetic 

similarity to San Diego, suggesting that increased viral diversity during periods of high 

incidence was responsible for the observed reduction in similarity between locations.

SARS-CoV-2 population similarity is driven by transmission frequency

A key component of understanding transmission dynamics is determining if phylogenetic 

similarity between locations is due to transmission between them (“bidirectional 
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transmission”) or shared introduction sources. Prompted by the phylogenetic similarity 

of San Diego to both California (US) and Baja California (Mexico), we also considered 

whether these factors differed between domestic and international locations. To estimate 

the relative amount of SARS-COV-2 transmission between locations, we reconstructed 

the timing and number of geographic transitions (also called Markov jumps37) into and 

out of San Diego across the full posterior of a Bayesian phylogeographic reconstruction 

(Figure 2A). Despite all locations having similar numbers of genomes in the phylogeny 

(see Methods), we observed the most transitions between San Diego and neighboring and 

domestic locations (Figure 2B). Conversely, we found relatively few transitions between 

San Diego and international locations (excluding Baja California, which borders San Diego; 

Figure 2B), indicating that transmission frequency was consistent with viral similarity.

To investigate whether transmission was impacted by COVID-19 mandates, we next 

examined the temporal dynamics of bidirectional transmissions between San Diego and 

other locations. We used geographic transitions to do this rather than phylogenetic similarity, 

because of the risk that phylogenetic similarity might overestimate connectivity due to 

shared introduction sources. In fact, when we compared the percentage of transmission into 

each location that originated from each other location across the posterior distribution of 

trees (I.e. the introduction profile; Supp. Figure 8), we found that Los Angeles and San 

Diego had more similar introduction profiles than Baja California and San Diego (Los 

Angeles vs. San Diego introduction profile root-mean-square error [RMSE]: 6.5 percentage 

points [95% HPD 3.8-9.6 points]; Baja California vs. San Diego introduction profile 

RMSE: 16.8 points [95% HPD 13.9-19.8 points]; Figure 2C). This difference suggests 

that phylogenetic similarity can overstate connectivity due to shared introduction sources. 

Using geographic transitions from the same phylogeographic reconstruction, we found that 

bidirectional transmission involving San Diego was consistently present over time, but 

increased during five periods: (1) April–May 2020, (2) November–December 2020, (3) 

July–September 2021, (4) December 2021–February 2022, and (5) June–July 2022 (Figure 

2D). The earliest period was dominated by transmission with Baja California, whereas 

during later periods transmission across the border was largely replaced by transmission 

with Los Angeles and other farther domestic locations (Figure 2D). This result agrees with 

findings from our PhyloSor analysis, suggesting that the frequency of transmission between 

more distant locations increased during the pandemic.

To examine how bidirectional transmission impacted local COVID-19 incidence, we 

investigated the temporal association of connectivity and local case numbers. We estimated 

the relative amount of incidence that could be attributed to connectivity as the percentage of 

viral lineages circulating in San Diego that could not be traced back to lineages circulating 

in San Diego at least two weeks earlier in our phylogeographic reconstruction. We found 

that, on average, half of all lineages in San Diego could be attributed to other locations, but 

the proportion decreased markedly during the waves of the epidemic relative to the adjacent 

troughs (Supp. Figure 9). This result is supported by contact tracing data, which indicated 

that, on average, 15% of all San Diego cases were directly associated with travel within the 

US or Mexico, including from Los Angeles and Baja California, and that the percentage of 

cases directly associated with travel was inversely correlated to COVID-19 incidence (Supp. 

Figure 10; Pearson R = −0.23 [95% CI: −0.03 to −0.42]; P = 0.03).
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Combined, these results indicate that connectivity between locations played a prominent 

role in maintaining local incidence, particularly during periods between epidemic waves, 

sustaining the COVID-19 pandemic.

Temporal shifts in mobility impacted SARS-CoV-2 transmission risk

Our observation that connectivity to nearby locations impacted local COVID-19 cases 

prompted us to investigate factors driving transmission. Investigations of prior outbreaks 

have shown that a gravity model, which is widely used in economics to predict the flow 

of trade between different locations based on the population size and proximity of the 

locations, can be used to estimate transmission14,15,17. In the case of transmission, the 

spread of a virus from one location to another can be predicted based on the size and 

proximity of their viral populations, as approximated by the number of infections and the 

human mobility between them, respectively. We questioned if the spread of SARS-CoV-2 

could also be explained by this model, and found that mobility was an important driver 

of SARS-CoV-2 transmission. We determined that changes in mobility corresponded to the 

increases in connectivity observed in previous analyses, and that mobility patterns in the 

border city of San Diego mirrored nationwide patterns.

To see if the gravity model explains SARS-CoV-2 spread, we examined whether 

transmission between locations with high connectivity followed mobility patterns estimated 

by travel surveys38 and was correlated with the estimated number of infections at the 

origin. We reconstructed the transmission of SARS-CoV-2 into subcounty regions of San 

Diego using a discrete state phylogeographic analysis, and found that SARS-CoV-2 lineages 

transmitted to San Diego from Baja California were disproportionately more likely to be 

introduced into the South and Central regions of San Diego, which have large population 

centers close to the border (Figure 3A–C). This was the case whether transitions from Baja 

California to San Diego were compared to transitions from all other states into San Diego, 

or from Los Angeles into San Diego (Supp. Figure 11). This finding aligned with travel 

surveys conducted within San Diego prior to the pandemic that reported that visitors from 

Mexico traveled on average less than 30 miles in the US and typically remained within 

the border regions of San Diego38. Additionally, we found that transmission between San 

Diego and Los Angeles, and between San Diego and Baja California, was correlated with 

the estimated number of asymptomatic infections in that location that were able to travel 

from the source location (only infections that are pre-symptomatic or asymptomatic, see 

Methods; R2 > 0.59 for all pairs; Figure 3D–G). Our findings that there is a clear correlation 

between transmission magnitude and infection rate, together with the concordance between 

transmission across the US-Mexico border and known mobility patterns, indicate that the 

gravity model accurately describes SARS-CoV-2 transmission.

Using the gravity model, we next assessed how changes in mobility over time impacted 

SARS-CoV-2 transmission. To examine the relationship between mobility and transmission, 

we analyzed weekly land and air travel data collected by SafeGraph41. We found that 

neighboring California counties (Riverside, Los Angeles, and Orange), states (Arizona), 

and countries (Mexico; of which 99% originates from Baja California38) consistently 

dominated mobility into San Diego (Figure 4A). Further, we found that there was a 
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moderate correlation between the number of travelers arriving from a location and the 

median phylogenetic similarity of that location to San Diego (Pearson r = 0.44 [95% 

CI, 0.24 to 0.60]; P < 0.001; Supp. Figure12). Consistent with our previous findings 

that connectivity to more distant locations increased over the course of the pandemic, 

we found that mobility from more distant locations also increased over time. (Figure 4B–

C). Travelers from Riverside County, Los Angeles County, Orange County, Arizona, and 

Mexico accounted for 75% of travelers into San Diego during early 2020, but less than 

50% of travelers from June 2021 onwards (Figure 4C). This latter amount is similar to the 

proportion of travelers arriving from these locations during 2019, before responses to the 

COVID-19 pandemic affected mobility (Figure 4C).

We then considered the infection rate at the transmission source location, the other 

component of the gravity model42, by estimating the number of COVID-19 infected 

travelers arriving into San Diego from each location (“import risk”). We calculated this 

as the product of the number of travelers arriving in San Diego from each source location 

as determined by SafeGraph data and the estimated COVID-19 infection rate at the source 

location (Figure 4D). We found that the relative import risk from neighboring locations was 

low at the beginning of the pandemic, peaked during the spring of 2020, and decreased 

steadily from then until the end of available data (74.8% in April 2020 to 36.9% in July 

2021; Figure 4E). This trend parallels changes in mobility and transmission estimates 

(Figure 2D & Figure 4C), supporting our findings that the connectivity and major sources 

of imports into local epidemics shifted from neighboring locations to more distant domestic 

locations as a result of the relaxation of COVID-19 mandates, such as stay-at-home orders, 

curfews, and business closures.

Finally, we assessed whether the trend in connectivity we observed in San Diego, wherein 

connectivity to more distant locations reduced sharply at the onset of the pandemic but 

slowly recovered thereafter, occurred nationwide. To investigate changes in connectivity 

across the US, we examined mobility between all US counties, and found reductions in 

the frequency and distance of travel at the beginning of the pandemic, comparable to those 

observed in San Diego. The mean number of travelers between each county in the US 

and the mean distance traveled decreased markedly in early 2020 and slowly recovered to 

pre-pandemic levels over the course of the next two years (Figure 5A–B), suggesting that 

shifts in connectivity were widespread.

To determine whether the reduction and slow recovery in connectivity explained the 

observed variation in phylogenetic similarity between local epidemics during the COVID-19 

pandemic, we determined the correlation between mobility and phylogenetic similarity for 

each pair of locations included in our PhyloSor analysis. We found a positive correlation 

between mobility and phylogenetic similarity for 84.4% of all locations, suggesting that 

changes in connectivity resulted in the observed similarity between viral populations of local 

epidemics (Figure 5C). Likewise, our prior results indicating that bidirectional transmission 

explained only a portion of the phylogenetic similarity between locations, is consistent with 

the presence of the small subset of location pairs lacking a positive correlation (Figure 2B–

C). To determine whether the widespread trend in connectivity was the result of COVID-19 

mandates implemented by the US government (Figure 1A), we calculated the correlation 
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between the stringency of COVID-19 mandates and the frequency and distance of travel 

in the US. We found that trends in mobility were partly explained by the implementation 

and relaxation of COVID-19 mandates (Pearson R2 for mean pairwise trips = 0.36 [95% CI 

0.18–0.53], p < 0.001; R2 for mean distance traveled = 0.57 [95% CI 0.40–0.71], p < 0.001; 

Figure 5D), suggesting that COVID-19 mandates were effective at reducing transmission.

US-Mexico border closure was ineffective in preventing imported cases

While we found that San Diego is representative of widespread trends in connectivity, 

the position of the county along the US-Mexico border uniquely enabled us to directly 

investigate COVID-19 mandates targeting border travel. Our analyses indicate that there was 

significant transmission between San Diego and nearby locations, including Baja California, 

during the entire duration of the pandemic. However, the US-Mexico border was closed 

to non-essential travel from March 19th, 2020 toNovember 8th, 202128,29, prompting us to 

evaluate whether this restriction was effective at preventing cross-border transmission. To do 

so, we measured how changes in mobility resulting from the border closure impacted import 

risk into San Diego.

Using mobility data from SafeGraph, we found that the number of northbound travelers 

across the US-Mexico border was 23.1% less during the partial closure (March 2020 to July 

2021) than in 2019 (Supp. Figure 13). We additionally found that import risk across the 

border was reduced by 22.8% when we compared the observed import risk from Mexico 

to import risk calculated using mobility estimates from 2019 (Supp. Figure 13). However, 

given that most travelers into San Diego arrived from locations other than Mexico (Figure 

4A), this reduction only amounted to a 3.1% reduction in the total import risk into San 

Diego, indicating the impact of the non-essential closure was ineffective (Figure 6A). 

However, we observed a general reduction in the number of travelers visiting San Diego 

from most locations beginning in March 2020, which were affected by stay-at-home orders 

and travel hesitancy rather than official travel restrictions3,24 (Figure 4A). This led us to 

study whether the reduction in mobility from Mexico to San Diego was more or less 

impactful than general reductions in mobility.

To investigate this, we compared the observed import risk to San Diego with import risk 

calculated using mobility estimates from 2019 for each location (Figure 6B). While we 

found that Mexico had the 3rd largest reduction in import risk, behind Los Angeles County 

and Texas, the reduction was only a small fraction of the total import risk from Mexico 

(22.8% reduction). Specifically, we found that the relative reduction in import risk from 

Mexico was less than 80.0% of all other locations and half of the median reduction in 

import risk (40.1%; Figure 6C). This indicates that the closure of the US-Mexico border to 

non-essential travel was significantly less impactful at reducing imports than the reductions 

in travel associated with stay-at-home orders and decreases in mobility resulting from 

hesitancy3,24.

Discussion

In this study, we determined a widespread shift in the connectivity of local 

COVID-19 epidemics during the pandemic, by integrating genomic surveillance data with 
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epidemiological and mobility data. Focusing on the first five waves of the pandemic, we 

found that the implementation of COVID-19 mandates, such as travel restrictions and 

stay-at-home orders, contained the spread of SARS-CoV-2 locally at the beginning of the 

pandemic. However, the lifting of mandates enabled the virus to spread further as travel 

increased. We found that travel-associated infections accounted for half of the incidence 

during some periods of the pandemic, indicating that local outbreaks were largely affected 

by epidemics in other locations. By estimating cross-border transmission of SARS-CoV-2, 

we show that closures to non-essential travel minimally reduced transmission, and were less 

effective at reducing transmission than non-targeted restrictions.

We focused our genomic surveillance on the epidemic in and around San Diego and the 

US-Mexico border. The frequency of both domestic and international travel in the region 

made it an ideal choice to study, and provided a unique opportunity to compare the 

impacts of domestic COVID-19 mandates and international travel restrictions.While caution 

should be taken in applying our conclusions to less-populated or less-connected locations, 

comparisons between San Diego and other North American counties, states, and provinces 

using both phylogenetic (Figure 1) and mobility data (Figure 4–5) provide independent 

lines of evidence that the epidemic in San Diego was representative of most locations. 

Other locations and continents underwent distinct patterns of restriction implementation and 

relaxation43–45, and thus further work can determine whether these patterns differentially 

impacted connectivity.

Our finding that local COVID-19 epidemics are highly interconnected highlight the 

importance of collaborative and inclusive public health measures. The beginning of the 

pandemic led to a substantial reduction in long distance travel, with little to no impact on 

local connections (Figure 4A). This reduction was also observed in the national mobility 

networks of France, Italy, and the UK following their respective lockdowns46. The local 

connections of San Diego extended to neighboring epidemics throughout the pandemic, 

supporting previous evidence that connectivity between adjacent locations precludes virus 

containment. For instance, the dispersal of SARS-CoV-2 from Wuhan progressed mainly to 

adjacent cities47, and B.1.1.7 was seen to spread from Kent and Greater London to other 

locations in the UK at a rate proportional to their mobility with Kent and Greater London48. 

San Diego’s connectivity to Mexico, provides further evidence that state and international 

borders did not act as barriers to the spread of the virus, and indicates that both domestic and 

international collaborations are necessary to control the spread of pathogens.

When we evaluated enacted control measures, we found that the closure of the US-Mexico 

border was ineffective at reducing cross-border transmission. Preventing transmission 

requires completely halting travel whereas the border closure only restricted non-essential 

travel. Correspondingly, even in the month of the pandemic with the fewest travelers, the 

US Department of Transportation found that more than two million people crossed between 

Mexico and San Diego27. While our data provides only limited examples of any other 

official travel restrictions, we found that the US-Mexico border closure (22.8% reduction in 

import risk) was less effective than the total border closure in Jordan17 (65% reduction in 

import risk), the mandatory 14-day quarantine enacted in Hong Kong25 (94% reduction in 

imported cases), and the ban in Wuhan on all outgoing travel24 (74% reduction in exported 
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cases). Additionally, whereas other non-pharmaceutical interventions caused individuals to 

take shorter, less complex trips and reduce person-to-person contacts, our finding that the 

border closure did not result in any changes in the destination of travelers crossing the 

border from Mexico into the US (Figure 3B), suggests that the closure had a limited effect 

on behavior3. As a result, the enacted border closure would have had to be much more 

stringent to be as effective as other travel restrictions in reducing imports of the virus. 

However, our finding that outbreaks are increasingly interconnected adds to a growing body 

of evidence that targeted travel restrictions have limited practical value5,49,50.

Our ability to detect cross-border transmission was due to the pooling of resources and 

collaboration between academic laboratories, public health laboratories, and hospitals on 

both sides of the border. A recently developed framework for identifying transmission 

lineages using limited sequencing resources, indicates that only 0.5% of infections need to 

be sequenced to detect 95% of transmission lineages with a frequency of at least 2% in the 

population51. Current sequencing efforts in Baja California and San Diego, with a sampling 

fraction of 1% and 10%, respectively, appear to surpass this recommendation. However, 

the high lag observed between infections in San Diego and transitions to Baja California 

(Figure 3F), suggests that we detected Baja California transmission lineages later than would 

be expected given our sampling rate. The difference in sampling rates between San Diego 

and Baja California, as well as the absence of estimates for the number of southbound 

travelers crossing the border, prevent any conclusion on the directionality of cross-border 

transmission52. Additionally, other well-traveled border crossings along the US-Mexico 

border have sequenced much less than the recommended 0.5% of cases, limiting the region’s 

ability to monitor disease spread. Considering these locations are large sources of potential 

infections, it is critical that regional surveillance capacity is strengthened in these areas.

As the COVID-19 pandemic progresses to endemicity, durable genomic surveillance 

systems will be critical to provide insights into the continued spread and evolution of 

SARS-CoV-2. We show that the information produced by epidemiological and genomic 

surveillance can be integrated with mobility data to quantifiably provide estimates on 

the sources of introductions and local transmission, and how they change over time. We 

found that for well-connected locations such as San Diego, transmission resulting from 

connectivity blurred the division between seemingly separated local epidemics, particularly 

when cases were low in any of the locations. Consequently, it is a necessity that the 

international community equitably distribute surveillance infrastructure and enact travel 

restrictions collaboratively. It is vital that the effects of such restrictions, particularly when 

they are not equally experienced, be carefully weighed against their quantitative benefit.

Limitations of the Study

In this study, we assess temporal differences in the connectivity of North American locations 

using genomic, epidemiological, and mobility data. While our results are robust across 

data types, each data source comes with its own caveats. First, our analysis used publicly 

available genomes and epidemiological data which our analyses assume are representative of 

local cases and collected uniformly within and between locations. Although this assumption 

would be violated if, for instance, samples were collected primarily as a result of contact 
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tracing, guidelines set out by the WHO, CDC, and ECDC suggest that in most cases 

samples were collected without preference for certain groups of individuals. Additionally, 

mobility data is a reliable estimate of the magnitude of human movement between 

locations2,24,46,53, but does not cover all populations (for example, children under 13, 

adults without cell phones, etc.) and is insensitive to behavioral changes which impact 

SARS-CoV-2 transmission risk, including wearing face-masks, handwashing, quarantining, 

maintaining physical distance, and reducing travel duration3,54,55.

STAR Methods

Resource availability

Lead Contact—Further information and requests for reagents may be directed to the lead 

contact, Mark Zeller (mzeller@scripps.edu)

Materials Availability—This study did not generate new unique reagents, but raw data 

and code generated as part of this research can be found in the supplemental files, as well 

as on public resources as specified in the Data and code availability section below. Any 

additional information required to reanalyse the data reported in this paper is available from 

the lead contact upon request.

Code and Data Availability.—Code for all analyses and figure generation, XMLs and 

log file for BEAST analyses, and configs for simulations are available at: https://github.com/

andersen-lab/project_2023_SARS-CoV-2_Connectivity. All genomes used in this analysis 

can be downloaded from GISAID. Sequencing data, including consensus sequences and 

raw data, is available on NCBI under the BioProject accession ID PRJNA612578. Raw 

sequencing data is also available on our Google Cloud.

Experimental model and subject details

Ethical Statement—Sample collection, RNA extraction, and viral sequencing was 

evaluated by the Institutional Review Board (IRB) at Scripps Health (IRB-21-7739). All 

samples were de-identified before receipt by the study investigators. Aggregated contact 

tracing data was publicly available prior to the initiation of the study.

Method details

SARS-CoV-2 Amplicon Sequencing.—SARS-CoV-2 RNA samples were collected 

from routine diagnostic tests performed by SEARCH in San Diego, and by Salud 

Digna, Centro de Diagnóstico COVID-19, Institute of Epidemiological Diagnosis and 

Reference, Genomica Lab Molecular, and Infectolab in Baja California, Mexico. SARS-

CoV-2 was sequenced using PrimalSeq-Nextera XT. This protocol is based on the ARTIC 

PrimalSeq protocol56, except that amplicon sizes were reduced to enable 2x150 read length 

requirements. The ARTIC network nCoV-2019 V4 primer scheme uses two multiplexed 

primer pools to create overlapping 250 bp amplicon fragments in two PCR reactions. Full 

details of the protocol can be found here: Protocol for HCoV-19 sequencing: PrimalSeq-

LibAmp. Briefly, SARS-CoV-2 RNA (2 mL) was reverse transcribed with LunaScript RT 

(New England Biolabs). The virus cDNA was amplified in two multiplexed PCR reactions 
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(one reaction per primer pool; custom primer scheme can be found here: Primers for 

SARS-CoV-2 PrimalSeq-LibAmp) using Q5 DNA High-fidelity Polymerase (New England 

Biolabs). Following an AMPureXP bead (Beckman Coulter) purification of the combined 

PCR products, sequencing adaptors containing sample specific indexes were added using a 

step-out PCR reaction using Q5 DNA High-fidelity Polymerase. The libraries were purified 

with AMPureXP beads and quantified using the Qubit High Sensitivity DNA assay kit 

(Invitrogen) and Tapestation D5000 tape (Agilent). The individual libraries were normalized 

and pooled in equimolar amounts at 1.5 nM. The 2 nM library pool was sequenced on an 

Illumina NovaSeq 6000 (300 cycles kit). Consensus sequences were deposited on GISAID 

and Raw reads were deposited under BioProject accession ID PRJNA612578.

SARS-CoV-2 Genomic Data.—We queried the GISAID EpiCoV database for all SARS-

CoV-2 genomes collected up to January 4th, 202313. We removed genomes that (1) were less 

than 20,000 nucleotides in length, (2) had greater than 12.5% ambiguous nucleotides, (3) 

had an incomplete or incorrect year-month-day sampling date reported, (4) had a sampling 

country that could not be interpreted, (5) were not collected from a human infection, (6) 

had less than 50% agreement with Hu-1 (GenBank Accession ID: NC_045512.2), or (7) had 

greater than 500 discrete indels. The final dataset contained 13,722,590 genomes.

PhyloSor Analysis.—We used the global SARS-CoV-2 phylogeny provided by GISAID 

as of January 5th, 2023 (also called Audacity). The phylogeny contains all SARS-CoV-2 

genomes available on GISAID that were marked as both ‘complete’ and ‘high-coverage’ 

by GISAID, were longer than 28,000 nucleotides, contained less than 1,000 ambiguous 

nucleotides, were not identified as being on a long branch, were not manually identified 

as questionable, and were included in the genomic dataset described previously. For each 

location pair, the phylogeny was pruned to taxa present in the genomic dataset that were 

collected from either location. Using the pruned tree, for each month in the period of 

January 2020 to December 2022, the PhyloSor metric was calculated using only sequences 

collected in that month31. Briefly, the PhyloSor metric is calculated as the ratio of branch 

lengths (in units of per-site substitution rate) that are shared by two sets of tips (BLBoth 

compared to the total branch length that is unique to each set of tips (Supp. Figure 2).

PℎyloSor = BLBotℎ
BLA + BLB ∗ 0.5

Where BLA and BLB indicate the total branch lengths of either the first set (A) or the second 

set (B).

To limit the impact of low sampling, we only compared locations that sampled at least 

1000 total sequences and collected a sequence in at least 75% of the epidemiological weeks 

between March 2020 and December 2022. Additionally, within these comparisons we only 

considered months where at least 30 sequences were included from each location. Here 

location refers to counties within California, and states in the rest of Canada, Mexico, and 

the US.
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To assess differences in PhyloSor similarity resulting from unequal sampling fractions, 

we compared San Diego’s similarity to all suitably sampled locations under two different 

subsampling schemes. In the first, a constant number of San Diego sequences were sampled 

for each month in the analysis, equal to the number of sequences available for San 

Diego from the month with the least number of sequences greater than 30. This number 

was 149. In the second scheme, a number of San Diego sequences were sampled such 

that they represented a constant fraction of cases. 2.5% was selected as it was the 10th 

percentile of the sampling fraction of all months. Ten replicates of each subsampling scheme 

were performed, and the median PhyloSor similarity of San Diego to all other locations 

was compared between the subsampling schemes and the analysis performed with the 

non-downsampled dataset.

PhyloSor Validation.—To validate the use of PhyloSor in measuring the temporal 

connectivity between locations, we conducted epidemic simulations using FAVITES 

V1.1.3557. First, we generated static contact networks in FAVITES using a modified 

Barabási-Albert algorithm58. We generated two separate 20,000 member communities using 

the Barabási-Albert algorithm with a mean value of 8 contacts per day. For each community, 

we calculated intra-community connectivity as the fraction of all possible contacts that were 

made. Inter-community edges were sampled by randomly deciding for each pair of nodes 

in different communities if they should be connected by an edge or not. The probability of 

connecting two nodes in two communities was calculated as a fraction of the average intra-

community connectivity. We called this term inter-community connectivity. Ten contact 

networks were generated using inter-community connectivity values between 0.5 and 0.001 

were simulated.

We then simulated a transmission network over each contact network using a Susceptible-

Infected-Recovered model. The simulation sampled a single viral lineage from each infected 

individual at a random point during their infectious period to represent viral genome 

sequencing, and a virus phylogeny in units of time (years) was constructed under a 

coalescent model using the VirusTreeSimulator package embedded in FAVITES. Based on 

Tonkin-Hill et al., we assumed that a constant coalescent model was representative of the 

within-host effective virus population size during the infectious period59. All parameters for 

the transmission network simulation and viral lineage sample were identical to parameters 

used in Worobey et al. 20207. Ultimately, the virus phylogeny in units of time was converted 

to units of per-site mutation rate by multiplying the branch length by a constant 1.1 x 10−3 

subs/site/year, consistent with Duchene et al. 202060. PhyloSor similarity between the two 

communities for the first month of the simulation was calculated using the phylogeny. We 

detected a strong correlation between PhyloSor similarity and inter-community connectivity 

(Pearson R = 0.89 [95% CI: 0.82-0.93]; P < 0.001).

Network Analysis.—For each month in the period of January 2020-November 2022, 

we considered a complete weighted undirected graph, where nodes are locations in North 

America and edges weights are the PhyloSor similarity between locations. For this analysis, 

location refers to the county-level in the US, and state-level in Canada and Mexico. 

However, where counties did not meet the inclusion criteria (greater than 1000 sequences 
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and at least one sequence in 75% of the epidemiological weeks between March 2020 and 

December 2022), their sequences were assigned to the state-level. We calculated the average 

pairwise similarity between all locations as the global efficiency of the graph, which takes 

into consideration the multiple pathways between locations in the graph. Global efficiency 

is a network measure that describes how easily information is exchanged over the network 

and can be defined as the average shortest path length between each pair of nodes in the 

network61. Low global efficiency indicates a network has few strong connections, while high 

efficiency indicates that most locations are strongly connected. Given a weighted network G 
with n nodes, global efficiency can be calculated as:

Eglob = 1
n n − 1 i ≠ j ∈ G

1
dij

where dij is the distance of the shortest path length between nodes i and j. The shortest 

path length is the smallest sum of weights throughout all the possible paths in the network 

from i to j. In our case, because our edge weights represent a similarity metric rather than a 

distance metric, we used the reciprocal of edge weights to calculate the shortest path length 

between nodes.

We calculated heterogeneity in each nodes’ contribution to global efficiency using the Gini 

index62. The contribution of each node to global efficiency, also called nodal efficiency, is 

the average PhyloSor similarity between it and all other nodes. In our network, locations 

with high nodal efficiency are phylogenetically similar to a greater portion of North 

American locations. It can be calculated as:

ei = 1
n − 1 j ≠ i

1
dij

To summarize across the networks of all months, the nodal efficiencies of all locations for a 

given month were min-max normalized and the median normalized nodal efficiencies were 

reported.

Stringency of US Response to COVID-19.—To summarize the strictness of the US 

government’s response to COVID-19, we used the Stringency Index as calculated by the 

Oxford Coronavirus Government Response Tracker32. Briefly, the index is a composite 

metric which considers school closures, workplace closures, cancellation of public events, 

restrictions on public gatherings, closures of public transport, stay-at-home requirements, 

public information campaigns, restrictions on internal movements, and international travel 

controls (see citation for full calculation details). The metric was calculated daily for the 

US and returns a value between 0 and 100; a higher score indicating a stricter response. We 

additionally calculated the mean stringency index for each month in the period of January 

2020 to November 2022.

Genomic Dataset Generation.—The massive amount of sequencing data produced 

during the COVID-19 pandemic prevented us from including all data in our phylogenetic 
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analyses. In order to limit the computational burden of the phylogeographic analysis, we 

subsampled 2500 genomes from our SARS-CoV-2 genomic dataset. To focus the analysis on 

the region around San Diego County, we allocated 500 genomes each to San Diego County, 

Los Angeles County, and Baja California.

The remaining 1000 genomes were allocated to all other locations proportionally to their 

distance to San Diego and the total number of flights connecting the location and San Diego 

in 2019. Here, location refers to a state (or first administration level) in the US and Mexico, 

and country everywhere else. Geographic distance was calculated as the centroid-centroid 

distance to San Diego County, rescaled to have unit scale, and inverted, so that nearby 

locations had the greatest value. Total number of flights into San Diego was obtained from 

the OpenSky Network63, and also rescaled to have unit scale (for more details see following 

methods section Travel and Mobility Data). The sum of these two values proportional to all 

other locations was the proportion of the 1000 contextual genomes allocated to that location. 

In order to sample virus diversity in each location equally, sequences were randomly 

sampled proportional to the location-specific incidence data binned by epidemiological 

week.

To estimate a root with a reasonable date and location state in our phylogenetic inference, 

we also included the 50 earliest SARS-CoV-2 genomes in our dataset. To accurately infer 

the timing and geographic state of the lineages responsible for widespread epidemiological 

waves, we included the 10 earliest sequences assigned to Alpha, Delta, BA.1 (Omicron) 

and BA.2 (Omicron). Lastly, to assess the accuracy of the timing of the basal structure 

of our phylogeny, we included genomes from three outbreaks with well-described 

introductions7,14,64. A list of all included sequences, their GISAID accession IDs, and the 

compartment they filled is shown in Supplemental Table 1.

Phylogenetic Analysis.—We aligned the sequence dataset to reference genome Hu-1 

(GISAID ID: EPI_ISL_402125) using minimap2 v2.17 and gofasta v0.0.6(virus-evolution/

gofasta)65. We masked the 3’ and 5’ UTRs as well as sites that may confound phylogenetic 

inference of SARS-CoV-2 genomes66. We constructed a maximum likelihood phylogenetic 

tree for the dataset using IQ-TREE2 and an HKY substitution model67,68. We rooted the 

resulting phylogeny on Hu-1 and time-resolved it using TreeTime v0.7.4 with a strict clock 

rate of 0.00091 substitutions/site/year, pruning taxa that were more than three interquartile 

ranges from the clock-rate regression69. Lastly, we randomly resolved polytomies in the tree 

by adding 0 length branches with gotree70.

We reconstructed the time-resolved phylogeny using BEAST v1.10.571. We used the HKY 

substitution model with gamma distributed rate variation among all sites. We fixed the 

clock rate at 9.1x10−4 substitutions/site/year and used an exponential growth coalescent 

tree prior. We also fixed the root of the tree on November 20th, 201972. We combined 

two independent MCMC chains of 200 million states ran with the BEAGLE computational 

library71. Parameters and trees were sampled every 10,000 and 100,000 steps, respectively, 

with 20-60% of steps discarded as burn-in (depending on the chain). Convergence and 

mixing of the MCMC chains were assessed with Tracer v.1.7.2, and all estimated parameters 

were determined73 to have effective sample sizes of greater than 100.
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Phylogeographic Reconstruction.—We performed two discrete state ancestral 

reconstructions on geographic states using BEAST. This analysis reconstructed location-

transition history across an empirical distribution of 2000 time-calibrated trees sampled 

from the posterior tree distribution estimated above. In the first analysis the discrete 

states used were (1) San Diego County, (2) Los Angeles County, (3) USA (not 

including either California county), (4) Baja California, (5) Mexico (not including Baja 

California), and (6) a final state corresponding to all remaining locations. The second 

analysis assigned San Diego County taxa into the County of San Diego Health and 

Human Services (HHSA) region they were collected in based on the ZIP code they 

were collected from. The ZIP code to HHSA region table we used was retrieved 

from HHSA website (https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/sd/

community_action_partnership/26%20HHSA%20sdcnty_zipcode.pdf). We assumed that 

geographic transitions rates were reversible and used a symmetric substitution model for 

both analyses. We used Bayesian stochastic search variable selection to infer non-zero 

migration rates37. We used the TreeMarkovJumpHistoryAnalyzer from the pre-release 

version of BEAST v1.10.5 to obtain the Markov jump estimates and their timings from the 

posterior tree distribution, and assumed that they are a suitable proxy for the transmission 

between two locations37,74,75. We used TreeAnnotator v1.10 to construct a maximum clade 

credibility (MCC) tree which we visualized with baltic (https://github.com/evogytis/baltic). 

We examined the sensitivity of our results to whether we assumed symmetric or asymmetric 

transition rates and found that our conclusion regarding the proportion of Markov jumps 

between San Diego and the other discrete states was robust between the two discrete state 

models (Supp. Figure 14).

Persistence Analysis.—We used the PersistenceAnalyzer from the pre-release version of 

BEAST v1.10.5 to summarize the relative contribution of independent introductions on local 

circulating lineages in San Diego across the posterior tree distribution labeled with Markov 

jumps. Briefly, for each two week period represented in the phylogeny, we identified the 

number of lineages circulating in San Diego at the end of the period and determined whether 

they resulted from a lineage that was estimated to be circulating in San Diego at the 

beginning of the period or from a unique introduction during the period. Persistent lineages 

are lineages that could be traced back to locally circulating lineages.

Contact Tracing Data.—Contact tracing data was obtained from the Epidemiology and 

Immunization Service Branch of the County of San Diego. Up until March 2022, contact 

tracers in San Diego interviewed between 40-60% of all confirmed cases in the county 

and asked, among other questions, whether there was travel within the US (excluding 

California), Mexico, or internationally during the 2-16 days prior to onset of symptoms (or 

positive test date if asymptomatic). Uncertainty in the proportion of interviewed cases that 

were travel-related was assessed by bootstrapping interviews for each week 100 times.

Travel and Mobility Data.—We followed Zeller et al.14 in calculating travel into San 

Diego County, using the weekly patterns data from SafeGraph, a data company that 

aggregates anonymized data from numerous applications to provide insights about physical 

places, via the Placekey Community (See Zeller at el. citation for full calculation details). 
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SafeGraph estimates human movements using cell phone tracking, which has been shown to 

capture both land and air travel at a variety of distance scales2,76. Briefly, we estimated 

the true number of travelers for a given week (w) between a source and destination 

location (S and D; travelersw,S<D) using the raw number of devices that traveled from 

the source to the destination location (devicesw,S>D), the total number of devices detected 

at the destination(total/Devicesw,D) and the total population of the destination location 

(populationD), according to:

travelersw, S > D = devicesw, S > D
totalDevicesw, D

populationD

We note that because of the EU General Data Protection Regulation, SafeGraph was not 

able to provide mobility data from countries within the European Economic Area (see 

https://www.safegraph.com/privacy-policy). Therefore, EU countries are excluded from our 

mobility analyses. However, the San Diego Tourism Authority reported that international 

travelers (excluding those from Canada and Mexico) accounted for 2.9% of the visitors to 

San Diego in 201933, suggesting that the impact of this exclusion is slight.

We also note that SafeGraph does not provide mobility data finer than the country-level for 

international locations, particularly Mexico. However, independent travel surveys indicate 

that it is reasonable to assume that 99% of travel into San Diego from Mexico originated in 

Baja California38.

We noticed that travel from international locations from 2020 onwards increased uniformly 

relative to data from 2019. This was not consistent with independent sources of mobility. For 

example, we observed no increase in monthly inbound crossings at the US-Mexico border 

into San Diego collected by the Department of Transportation (https://explore.dot.gov/#/

views/BorderCrossingData/Monthly). To correct this artifact, we normalized mobility data 

from January 1st, 2020 onward by multiplying it by the ratio of the mean mobility between 

January 1st and March 1st in 2019 compared to 2020. March 1st was chosen because 

it was generally before any reductions in mobility occurred as a result of the spread of 

SARS-CoV-2 in the US. The impact of this correction should be slight as our conclusions 

rely on the relative, rather than absolute mobility, into San Diego.

We calculated the mean number of travelers traveling between each county in the US using 

a network where nodes were US counties and edges weighted by the estimated number of 

travelers between them. We constructed a network for each week between January 2019 

and July 2021. The mean number of travelers was equivalent to the global efficiency of this 

network, using the inverse of travelers as the distance term.

We also obtained weekly air travel flight data into San Diego International Airport (KSAN) 

from the OpenSky Network63. We filtered data for flights with complete origin and 

destination airport ICAO codes. ICAO codes were matched to country, state, and county 

location using an airport database (https://github.com/mwgg/Airports). Using the dataset, we 

counted the total flight counts from each US state and non-US country in 2019 to use as an 

input for the genomic database generation.
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Epidemiological Data and Estimated import Risk.—We calculate import risk 

according to du Plessis et al.15, with some modifications. Briefly, we estimated the number 

of infected travelers arriving each day into San Diego from each source location as the 

product of the number of asymptomatically infectious individuals in each source location 

on that day and the number of travelers arriving in San Diego from the source location 

as estimated from the SafeGraph mobility data. SafeGraph mobility data utilizes cell 

phone tracking data so both air and land travel are included. Like du Plessis et al., we 

conservatively estimate that only asymptomatic infections contributed to importation risk, 

as symptomatic infections would not travel. Therefore, the asymptomatic infection rate 

is derived only from the number of pre-symptomatic and asymptomatic infections. We 

estimated the asymptomatic infectious rate for each location by back-extrapolating the death 

time series assuming the same estimates for the latent and incubation period, infectious 

duration, symptom-onset-to-death, asymptomatic proportion, and infection fatality rate as du 

Plessis et al.15 (See citation for full details). To back-calculate infections from deaths, we 

specifically assumed the infection fatality rate of COVID-19 was 1%, which is consistent 

with independent studies in China, France and aboard the Diamond Princess during the first 

year of the pandemic77–79. Critically, we assumed that the infection fatality rate remained 

constant over our study period, even though it likely varied between locations and across 

time80. For instance, death ascertainment rates were known to be lower in Baja California81 

than in California82. Consequently, we primarily focused on the temporal dynamics of 

infections, and limited our analysis of absolute infection numbers to the period of the 

pandemic prior to widespread vaccine use, as the impact of vaccinations on the infectional 

fatality rate is most significant. Specifically, we used May 5th, 2021 as the cutoff point, as it 

marked the time when at least 50% of San Diego’s population had received at least one dose 

of a SARS-CoV-2 vaccine39,40.

Because travel surveys indicated that 99% of all Mexican travelers visiting San Diego 

originated in Baja California, we used Baja California’s asymptomatically infectious 

individuals in place of Mexico’s for estimating import risk38. We obtained the time 

series of reported deaths from each California county, US state, and county from the 

outbreak.info R package which provides data from the COVID-19 Data Repository by the 

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University83, 84. We 

additionally obtained the time series of reported deaths from each Mexican state directly 

from the Mexican Department of Health (https://datos.covid-19.conacyt.mx/), as they were 

more complete than other sources.

Counterfactual import risk was calculated as above, except that for dates from March 1st, 

2020 onward the number of travelers arriving in San Diego on a given day were replaced 

with the number of travelers arriving in San Diego for that day in 2019.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Phylogenetic similarity of virus populations suggests connectivity between 

locations.

• COVID-19 mandates contained the spread of SARS-CoV-2 in the US.

• The lifting of mandates enabled SARS-CoV-2 to spread further as travel 

increased.

• Border closures to non-essential travel minimally impacted cross-border 

transmission.
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Figure 1. Regional similarity of SARS-CoV-2 genomes over time.
(A) Primary axis, in blue, indicates temporal trends in the mean pairwise PhyloSor similarity 

of North American locations. Shaded region indicates 95% confidence interval as calculated 

by bootstrapping locations 100 times. Secondary axis, in black shows the mean stringency of 

the US government’s response to COVID-19. Higher values indicate a stricter response. 

Shaded area refers to the range of stringency values observed in a given month. (B) 

Distribution of median min-max normalized average PhyloSor similarity for all locations 

in North America. The median normalized phylogenetic similarity of San Diego to all 
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other locations is indicated by the dashed vertical line. (C) Map showing each location’s 

median min-max normalized PhyloSor similarity to San Diego for the period of March 

2020–August 2022. Here location refers to the county level within California and the state 

level in the rest of the United States, Canada, and Mexico. Each location is colored by 

their median value, and locations which were not included in the analysis are hashed out 

in gray. California is outlined in black and shown in greater detail in the inset on the left. 

San Diego is indicated in red. Some parts of Canada, Mexico, and the United States are 

excluded for clarity. (D) Pearson correlation coefficient between median PhyloSor similarity 

to San Diego and log-normalized centroid-centroid distance to San Diego for each period 

of the pandemic. Waves of cases are indicated by a gray box, while troughs reside between 

successive waves. Wave definitions can be found in Supp. Figure 6. Confidence intervals 

calculated by bootstrapping 1000 times. An asterisk indicates that the p-value of correlation 

is less than 0.05. (E-F) Temporal differences in PhyloSor similarity to San Diego for the 5 

locations with the highest (E) and lowest (F) median normalized PhyloSor similarity to San 

Diego.
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Figure 2. Phylogenetic analysis of SARS-CoV-2 in the Californias.
(A) Maximum clade credibility tree of whole genome SARS-CoV-2 sequences sampled 

from Baja California, Los Angeles County, San Diego, and the rest of the world. 

Black circles at internal nodes indicate posterior support greater than 0.5. (B) Median 

number of transitions between each location and San Diego inferred by phylogeographic 

reconstruction. Black bar indicates the median value. (C) Root-mean-square error between 

the estimated source composition of introductions into each location compared to San 

Diego. (D) Proportion of location transitions between San Diego and all other locations in 

the discrete state analysis. Top facet indicates the temporal density of location transitions 

across the posterior distribution of trees. Arrows are used to show periods of increased 

location transitions.
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Figure 3. Dynamics of cross-border transmission.
(A) Boundary of approximate Health and Human Service Agency (HHSA) regions within 

San Diego. ZIP codes are colored according to the HHSA region they are in and their 

opacity is determined by their population (darker colors indicate a larger population). Scale 

bar indicates a distance of 10 miles. (B) Percentage of location transitions from either Baja 

California (in green) or all other locations (in orange) into San Diego that were inferred 

to land in each of the county’s HHSA regions. Dots indicate the median value while bars 

show the 95% highest posterior density interval. (C) Relative difference in percentage of 

location transitions originating in either Baja California or outside Baja California for each 

of San Diego’s HHSA region indicated in panel B. Probability refers to the percentage of 

trees in the posterior in which the proportion of location transitions from Baja California is 

greater than the proportion from all other locations combined. (D-G) Correlation between 

the magnitude of location transitions and the estimated number of infections at the origin 

for each location pair indicated. R2 was determined using ordinary least squares regression. 

In order to limit the impact of vaccines on our infection calculations, we only show the 

correlation for dates prior to May 5th, 2021 when at least 50% of San Diego’s population 

received at least one dose of a SARS-CoV-2 vaccine39,40.
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Figure 4. SARS-CoV-2 import risk into San Diego.
(A) Weekly estimated number of travelers arriving into San Diego from January 2020-June 

2021. Locations are sorted by the total number of estimated visitors over this period and 

only the top 25 are shown. Location names are styled depending on their administrative 

level: California counties are italicized, countries are bolded, and US states weighted 

normally. The centroid-centroid distance of each location to San Diego is listed to the 

right of the plot. A black dashed box indicates the closure of the US-Mexico border to 

non-essential travel from March 19th, 2020 to November 8th, 2021. (B) Scatter plot of each 

locations’ total estimated travelers into San Diego and the relative standard deviation in 

estimated travelers for the period indicated by panel A. The five locations with the greatest 

total estimated travelers into San Diego are highlighted in blue. (C) Proportion of travelers 

arriving into San Diego from the five locations with the greatest total estimated travelers 

(top-most five locations in panel A). (D) Import risk into San Diego. Import risk was 

estimated based on the number of infectious travelers relative to the population size and the 

total number of travelers at the origin. Only the five locations with the greatest total import 

risk into San Diego are shown. All other locations are colored in gray. (E) Relative import 

risk into San Diego Locations are colored as in panel D, with gray representing all locations 

outside the top five locations.
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Figure 5. Mobility changes in North America.
(A) Mean weekly number of travelers traveling between each county in the US. Scatter 

points, in blue, indicate raw measurements. Temporal trend and 95% confidence intervals, 

indicated by the solid black line and shaded area, were calculated by bootstrapping LOESS 

regression 1000 times. Temporal trend from 2019 is transposed to 2020-2021, dashed line 

and shading, in order to visualize changes independent of season. (B) Mean weekly distance 

traveled by travelers in the US. Scatter points indicate raw measurements, while temporal 

trend and 95% confidence intervals were calculated by bootstrapping LOESS regression 

1000 times. As with A, temporal trend from 2019 is transposed to 2020-2021, dashed 

line and shading, in order to visualize changes independent of season. (C) Distribution 

in Pearson correlation coefficients between mobility and PhyloSor similarity for each US 

location pair included in the PhyloSor analysis (see Methods). Dashed line labels the 

percentage of location pairs with a correlation coefficient greater than 0 (84.4%). (D) 

Primary axis, in blue, shows the weekly correlation between the stringency of the US 

government’s response to COVID-19 and the mean number of pairwise trips between US 

counties. Secondary axis, in green, shows the correlation between stringency and the mean 

distance traveled. For both axes, strength of correlation was determined using Pearson 

correlation coefficient. Because the stringency index aggregates a number of response 

indicators, many of which have little effect on mobility, correlation was only determined 

for dates after the first official stay-at-home order (March 15th, 2020)3.
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Figure 6. Impact of US-Mexico border closure.
(A) Percentage reduction in the total import risk into San Diego when travel from Mexico 

is held at 2019-levels compared to observed travel. (B) Plot of total counterfactual import 

risk (calculated using mobility estimates from 2019) vs. observed import risk. To limit the 

impact of variability resulting from low traveler counts, only locations with an absolute 

import risk greater than 10 infected travelers are shown (accounting for 45% of all locations 

and 99.8% of the total import risk into San Diego). The five locations with the greatest 

difference between the counterfactual and observed import risk are labeled, import risk from 

Mexico is indicated with a green point. (C) Distribution of the relative reduction from the 

counterfactual to the observed import risk for each location in panel B. Mexico’s relative 

reduction of 22.8% is indicated by the dashed vertical bar.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Omega BioTek MagBind Viral DNA/RNA 
Kit

Omega Biotek Cat#M6246-03

LunaScript RT New England Biolabs Cat#76509-480

Q5 DNA High-fidelity Polymerase New England Biolabs Cat#M0492L

AMPureXP beads Beckman Coulter Cat#A63882

Qubit High Sensitivity DNA assay kit Invitrogen Cat#Q32851

Tapestation D5000 tape Agilent Cat#5067-5588

Illumina NextSeq with 500/550 Mid Output 
Kit v2.5

Illumina Cat#20024908

KingFisher Flex Purification System ThermoFisher Scientific Cat#5400630

Deposited Data

SARS-CoV-2 reference genome NCBI NCBI: NC_045512.2

SARS-CoV-2 consensus sequences GISAID Table S1

SARS-CoV-2 raw data NCBI BioProject ID: PRJNA612578

BEAST XML and log files This paper https://github.com/andersen-lab/project_2023_SARS-
CoV-2_Connectivity

Epidemiological data Outbreak.info https://outbreak.info/

Mobility data SafeGraph https://www.safegraph.com/covid-19-data-consortium

Air travel flight data OpenSky 10.5281/zenodo.7923702

COVID-19 policy stringency Oxford Covid-19 Government 
Response Tracker

10.1038/s41562-021-01079-8

Oligonucleotides

ARTIC Network n-CoV-19 V3 primers ARTIC Network https://github.com/artic-network/artic-ncov2019/tree/
master/primer_schemes/nCoV-2019/V3

Software and Algorithms

Pangolin v2.0 Rambaut et al., 2020 https://github.com/cov-lineages/pangolin

FAVITES V1.1.35 Moshiri et al., 2018 https://github.com/niemasd/FAVITES

minimap2 v2.17 Li, 2018 https://github.com/lh3/minimap2

Gofasta v0.0.6 Jackson, 2022 https://github.com/virus-evolution/gofasta

IQ-TREE2 Nguyen et al., 2015 https://github.com/iqtree/iqtree2

TreeTime v.0.7.4 Sagulenko et al., 2018 10.1093/ve/vex042

BEAST v1.10.5 Rambaut et al., 2021 https://github.com/beast-dev/beast-mcmc/tree/
v1.10.5pre_thorney_v0.1.0

BEAGLE Ayres et al., 2019 https://faculty.washington.edu/browning/beagle/
beagle.html#download

Tracer v1.7.2 Rambaut et al., 2028 https://github.com/beast-dev/tracer/releases/tag/v1.7.2

Baltic Github https://github.com/evogytis/baltic

Snakemake Köster and Rahmann, 2012 https://snakemake.readthedocs.io/en/stable/
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