
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Seeing and Hearing Fluid Subspaces

Permalink
https://escholarship.org/uc/item/2bc714hz

Author
Jones, Aaron Demby

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bc714hz
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Santa Barbara

Seeing and Hearing Fluid Subspaces

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Media Arts and Technology

by

Aaron Demby Jones

Committee in Charge:

Professor Theodore Kim, Chair

Professor JoAnn Kuchera-Morin

Professor Clarence Barlow

December 2017



The dissertation of Aaron Demby Jones is approved.

Professor JoAnn Kuchera-Morin

Professor Clarence Barlow

Professor Theodore Kim, Committee Chair

July 2017



Seeing and Hearing Fluid Subspaces

Copyright © 2017

by

Aaron Demby Jones

iii



Acknowledgements

This work would not be possible without the help and support of many of my col-
leagues, friends, and family.

First, I would like to express the deepest gratitude to my committee chair, Profes-
sor Ted Kim. I was immediately inspired by your pattern formation class. Somehow, I
managed to maneuver into the study of computer graphics despite having little back-
ground experience. You were always very patient with me and managed to guide
me through the various minefields of C++ programming and computer graphics al-
gorithms. There were many moments of difficulty and frustration, but you helped
me persevere in the end.

I am very grateful to Professor JoAnn Kuchera-Morin for serving on my commit-
tee. Your computer music class on Gamma helped inspire me to pursue the degree in
Media Arts and Technology in the first place. We had many interesting and valuable
discussions on the compositional process.

My sincere appreciation goes to Professor Clarence Barlow for serving on my
committee. Every single one of your music courses was a revelation to me, and I
certainly would not be in the Media Arts and Technology department without your
influence.

My research in data compression owes a great debt to my collaborator Professor
Pradeep Sen, who provided many insightful comments and ideas.

My thanks to my fellow classmates in Media Arts and Technology, who were a
source of both technical and creative inspiration: Karl Yerkes, Sahar Sajadieh, Hannah
Wolfe, Pablo Colapinto, Charlie Roberts, Michael Hetrick, Sterling Crispin, Yun Teng,
Qiaodong Cui, Yuxiang Wang, and many others along the way.

My thanks to my friends nearby and far away, who provided much-needed di-
version as well support in difficult times: Sarah Davis, Kyle Stewart, Chris Mendes,
Maritza Fuljencio, Matt Guidry, Jason Garfield, Kyle Miller, Mike Morris, Jason Roth-
schild, Jamie Pommersheim, and Clara Bakker.

Finally, to my mom—thank you for supporting and believing in me, no matter

what. To my partner Lauren, for many years of support, love, and encouragement.

iv



Acknowledgements

And lastly, to my cat, Professor Charles, who has been waiting long enough for the

last member of the family to get a PhD.

v



Vita of Aaron Demby Jones

Contact Information

Media Arts and Technology Program Phone: (610) 334-1064
University of California, Santa Barbara E-mail: ajones@aops.com
Santa Barbara, CA 93106-5080

Education

University of California, Santa Barbara 2011–2017
PhD Candidate, Media Arts and Technology Program Santa Barbara, California

University of Rochester 2009–2011
BA, Mathematics Rochester, New York

Brown University 2005–2009
BA, Music, Mathematics Providence, Rhode Island

Honors and Awards

Chancellor’s Fellowship, University of California, Santa Barbara 2011–2017
Best Paper Award, Symposium on Computer Animation 2016
Muriel Hassenfeld Mann Premium, Brown University 2009
Buxtehude Premium, Brown University 2008
Margery MacColl Award for Musical Excellence, Brown University 2007

vi



Vita of Aaron Demby Jones

Publications

Jones, Aaron Demby, Kuchera-Morin, JoAnn, and Kim, Theodore. Seeing and hear-
ing the eigenvectors of a fluid. In Proceedings of Bridges 2017: Mathematics, Art, Music,
Architecture, Education, Culture. Tessellations Publishing, 2017.

Jones, Aaron Demby, Sen, Pradeep, and Kim, Theodore. Compressing fluid sub-
spaces. In Proceedings of the 2016 ACM SIGGRAPH/Eurographics Symposium on Com-
puterAnimation. Eurographics Association, 2016.

Research Experience

University of California, Santa Barbara 2011–2017
Ph.D. Candidate Santa Barbara, California
Sonification of subspace methods in computational fluid dynamics for computer
graphics.

Advisor: Theodore Kim
Media Arts and Technology Program

Brown University 2008–2009
Senior Honors Thesis Providence, Rhode Island
Percussion Quartet

Advisor: Gerald Shapiro
Department of Music

Teaching Experience

University of California, Santa Barbara Spring 2015
Teaching Assistant, Pattern Formation Santa Barbara, California

University of California, Santa Barbara Fall 2014
Teaching Assistant, Music and Technology Santa Barbara, California

University of California, Santa Barbara 2012–2013
Teaching Assistant, Music Appreciation Santa Barbara, California

vii



Vita of Aaron Demby Jones

Hampshire College Summer 2014
Junior Faculty
Hampshire College Summer Studies in Mathematics Amherst, Massachusetts

Franklin and Marshall College Summer 2012–2013, 2015–2017
Instructor, Number Theory
Johns Hopkins Center for Talented Youth Lancaster, Pennsylvania

University of Rochester 2010–2011
Teaching Assistant, Linear Algebra with Differential Equations Rochester, New York

University of Rochester 2009–2010
Teaching Assistant, Calculus II Rochester, New York

Community Involvement

Peer Review Fall 2016

Reviewer for Eurographics 2017; Computer Graphics Forum

viii



Abstract

Seeing and Hearing Fluid Subspaces

by

Aaron Demby Jones

Fluids have inspired generations of artists and scientists throughout history. Aes-

thetically, the wide variety of abstract shapes they form is both surprising and pleas-

ing. Besides visual art, which until the digital age mostly captured frozen moments

in time, late 19th-century composers such as Debussy and Ravel wrote works of mu-

sic inspired by the movement of fluids over time. With the framework of several

basic conservation laws of physics, earlier 19th-century scientific work discovered a

set of differential equations called the Navier-Stokes equations that described the time

evolution of fluid velocity fields.

In recent years, the advent of higher computing power and the birth of computer

graphics as a discipline has given rise to computational methods for approximating

and visualizing solutions to the Navier-Stokes equations, which had previously re-

mained intractably complex. Many artists and musicians have also embraced digital

technologies, allowing for the development of algorithmically generated music as

well as multimodal representations of large, complex data sets.
ix



Abstract

With this new technology, it is natural to consider the following question: is it

possible to systematically generate sounds from fluid dynamics while retaining an

underlying musicality? In this dissertation, we present a framework for generating

correlated correlated fluid motions and musical sounds using the empirical eigenval-

ues of a subspace fluid simulation. Our method is multimodal in nature, allowing for

the generation of musical sound as well as novel visual forms. The specific mapping

from fluid velocity to sound chosen allows for control and modulation of both the

visuals and the audio in an integrated, unifying fashion.

The method of subspace simulation, which our mapping framework relies on,

has a known drawback of high memory consumption. As a means of overcoming

this technical obstacle, we also present a data compression framework for fluid sub-

spaces. Our proposed algorithm can achieve an order of magnitude data compression

without any noticeable visual artifacts. Using this compression algorithm allows the

potential for simulating greater variety of complex scenes on powerful computers as

well as the ability to run previously too-complex scenes on a laptop.

x



Contents

1 Introduction 1
1.1 Systems of Sonification and Aesthetic Goals . . . . . . . . . . . . . . . . 3
1.2 Data Compression and Memory Obstacles with Subspace Matrices . . . 4
1.3 Thesis Statement and Main Results . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 7
2.1 Sonification and Generative Art . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Model-Based Sonification . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Parameter Mapping Sonification . . . . . . . . . . . . . . . . . . . 13
2.1.4 Synthesis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Background 20
3.1 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Physics-based modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Sound generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 A more general subspace formulation . . . . . . . . . . . . . . . . 32
3.4.4 Cubature schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Transform-based compression of fluid subspaces 40
4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Data Compression Preliminaries . . . . . . . . . . . . . . . . . . . 41
4.2.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 The JPEG Coding Algorithm . . . . . . . . . . . . . . . . . . . . . 48

4.3 A Subspace Compression Scheme . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Compression Basis Selection . . . . . . . . . . . . . . . . . . . . . 55

xi



Contents

4.3.2 DCT-Based Compression . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Subspace Decompression . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Visualizing and sonifying fluid subspaces 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Eigenvector Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Empirical Eigenvectors in Computational Fluid Dynamics . . . . . . . . 77
5.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Sonification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Compositional exploration of fluid subspaces 90
6.1 Mode Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Mode Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Dynamic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Mode Coupling and Envelopes . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Sonification Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.2 Sound Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.3 Real-Time and Non-Real-Time Strategies . . . . . . . . . . . . . . 102
6.5.4 Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusions and future work 106
7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xii



List of Figures

1.1 One of the visual patterns from Hans Jenny’s seminal text. . . . . . . . . . . . 3

4.1 A 2D vector v decomposed into its orthogonal components vx and vy. . . . . . 43
4.2 Left: The original 800× 800 image. Right: An 8× 8 sub-block zoomed in. . 50
4.3 The 64 2D-DCT basis vectors for an 8× 8 domain. Any 8× 8 image can

be expressed as a linear combination of these vectors. For example, the 8× 8
array in 4.15 gives the corresponding weights that would generate the original
sub-block B in 4.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 The zigzag scan from northwest to southeast corner. The goal is to catch long
consecutive strings of zeroes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Left: The original, uncompressed 8× 8 data block. Right: The same 8× 8
block after undergoing JPEG compression at quality 50 percent. Observe the
general smoothing, which is an artifact of the information lost during the
dampening and rounding stage. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Left: A compression ratio of 8 : 1 is achieved using the 50 percent quality
damping array with no visible artifacts. Right: A compression ratio of 100 : 1
is achieved using the 5 percent quality damping array; however, there are
many visible artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 An eigenfunction of the Laplacian operator transforming into a delta function
in frequency space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 An overview of the encoding pipeline. . . . . . . . . . . . . . . . . . . . . . . 60
4.9 The 3D zigzag scan order. We move along slice planes of increasing index

sum c = 1 + u + v + w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10 A comparison of compression results using the 8 possible cosine/sine interleav-

ings through each of the three spatial dimensions. ‘C’ and ‘S’ are abbreviations
for a cosine and sine transform, respectively. We see that the ‘CCC’ transform
yields the most compressed result with the smallest output file size. . . . . . . 63

4.11 Left: An 8× 8× 8 block of one of the velocity fields obtained from the Sin-
gular Value Decomposition. Right: The same 8× 8× 8 velocity field block
in the frequency domain after taking a 3D Discrete Cosine Transform. The
sparsity not only allows for transform compression but also frequency-domain
subspace projection speedups. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



List of Figures

4.12 Sparsity comparison of using different block sizes. Using b = 8 leads to
sparser, and hence more compressible results. . . . . . . . . . . . . . . . . . . 66

4.13 Plume scene: The overall motion and visual quality of the plume is preserved
until the compression ratio is increased to approximately 22 : 1. The 1 : 1
corresponds to using the original U matrix. . . . . . . . . . . . . . . . . . . . 68

4.14 Sphere scene: The motion and visual quality remains high until approxi-
mately 14 : 1 compression. At 30 : 1, the differences are very significant. . . . 69

4.15 Fan scene: The quality is preserved at 6 : 1, but at 11 : 1, the motion begins
to change, and at 29 : 1, artifacts begin to appear. . . . . . . . . . . . . . . . . 70

4.16 Fan Re-Simulation: With vorticity confinement increased by a factor of ten,
the novel turbulent detail that is introduced remains intact, even after basis
compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 Relative L2 error introduced by the compressed matrix C compared to an
uncompressed U over the course of a simulation. The transition between
visually undetectable and visible error corresponds to roughly an order of
magnitude jump in the relative error. . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Left: Chladni patterns realized through a physical experiment. Source: Wiki-
media Commons. Right: Analytic 2D eigenvector of the Navier-Stokes equa-
tions using the method of de Witt et al. [69]. . . . . . . . . . . . . . . . . . . 73

5.2 Left: A 2D velocity field over a regular grid. Right: From top to bottom, the
modes of vibration of a guitar string for N = 1, 2, 3. . . . . . . . . . . . . . . 75

5.3 Left: Assembling the velocity fields column-wise into a matrix X. We use
simulations of a plume moving toward each face of its bounding box. Right:
Obtaining the empirical eigenvectors after the singular value decomposition
is performed on X, yielding U. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 In reading order: An assortment of nine of the 150 empirical eigenvectors,
from lowest singular value to highest, discovered by taking the combined SVD
of six separate Navier-Stokes simulations. . . . . . . . . . . . . . . . . . . . . 81

5.5 A still frame from a random walk over an r-dimensional sphere of constant
radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Singular values and their remapped frequencies. Note the logarithmic scale
on both y-axes. The horizontal red lines on both plots indicate the bounds of
the human audible frequency range. . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 A still frame from moving through the modes in sequential order from princi-
pal singular value to least significant singular value. . . . . . . . . . . . . . . 86

5.8 A still frame from a permutation of the modes, forming a melody. . . . . . . . 87
5.9 A still frame from the reduced equations of motion. . . . . . . . . . . . . . . . 88

6.1 Three individual modes in superposition produce a mixed modal shape. . . . . 92
6.2 A still frame from the accent followed by diminuendo video. . . . . . . . . . . 94
6.3 A still frame from the crescendo-diminuendo swell video. . . . . . . . . . . . . 95

xiv



List of Figures

6.4 Each of the r = 150 modes can be controlled individually, analogous to a set
of equalization faders. Source: Wikimedia Commons. . . . . . . . . . . . . . . 96

6.5 Each modes’s fader knob can be modulated smoothly over time, creating
spectrally-varying envelopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 A single frame from the oscillation video generated by using time-varying
sinusoidal envelopes of a chord. . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 A single frame from the crossfade video generated by modulating both the
amplitude envelopes and spectral content. . . . . . . . . . . . . . . . . . . . . 99

xv



List of Tables

4.1 Timings of naïve projections vs. sparse projections. The sparse projection is
significantly faster, and dramatically reduces the overhead of using the com-
pressed representation of U. These timings represent the average time to per-
form both the projection and reconstruction stages in a single timestep. . . . . 66

4.2 Compression performance for each of the three scenes. The “sweet spot” for
each scene that achieves a good balance between compression and visual qual-
ity is shown in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xvi



Chapter 1

Introduction

The abstract form of fluids in the natural world has inspired artists and scientists for

centuries. For instance, besides studying water from an artistic perspective, Leonardo

da Vinci (1452–1519) also discovered the law of conservation of mass for incompress-

ible one-dimensional flows [1]. A myriad of impressionistic works such as Hokusai’s

The Great Wave off Kanagawa (1829–1833), van Gogh’s The Starry Night (1889), Monet’s

Water Lilies (1897–1926), and many others draw inspiration from the variety of moods

that water and air express, capturing destruction, abstraction, and serenity, all with

their still images. In the sonic arts, composers such as Debussy and Ravel explored

the unfolding undulations of fluids over time in a way that visual artists could not,

composing impressionistic pieces such as and Jeux d’eau (1901), La Mer (1903–1905),

Une barque (1904–1905), Reflets dans l’eau (1905), and Le vent dans la plaine (1909–1910).

Through their harmonic and rhythmic language, these pieces abstractly depict the

variety of moods that fluids can express, from turbulent spray to calm stillness. How-

ever, a formal interplay between a particular time-evolving process of fluid dynamics

and time-evolving sound is not present. Such formal approaches to generating art

were not explored until the twentieth century.

1



Chapter 1. Introduction

The Greek composer and architect, Iannis Xenakis (1922–2001), was an early pi-

oneer of the use of mathematical processes in music composition. Two of his com-

positions, Pithoprakta (1955–56) and N’Shima (1975) relied on mathematical processes

derived from the statistical mechanics of gases on a molecular level. His magnum

opus, Formalized Music: Thought and Mathematics in Music [2], expounds his aesthetic

philosophy as well as his techniques for composing music stochastically through

mathematical processes. Many other composers and researchers followed up in the

direction of algorithmic composition, albeit with their own individual aesthetic goals,

including Karlheinz Stockhausen [3], Max Mathews [4], John Chowning [5], and John

Cage [6].

In the visual arts, more powerful computing and research into computer graphics

eventually led to the area of physics-based fluid animation. Early research in the field

of computational fluid dynamics and mechanical engineering in the 1960s [7, 8, 9] be-

came translated into the domain of computer graphics starting in the 1990s. Work

by O’Brien [10], Fedkiw [11], Bridson [12], Stam [13], and others paved the way for

many different types of fluid animation, ranging from real-time, simplistic effects

suitable for computer games, to photorealistic images for films. A large body of

work has been dedicated to improving the efficiency of these physics-based simula-

tions, including fluid-implicit particle methods (FLIP), spatial coarsening methods,

position-based methods, and vortex-sheet methods [14, 15, 16, 17].

The experiment of Ernst Chladni (1756–1827), involving the patterns of sand ac-

cumulating on the surface of vibrating metal plates, was an early audiovisual link

between visual shape and sonic frequency. Using a violin bow to vibrationally excite

a metal plate covered with sand, Chladni observed a variety of intriguing nodal pat-

terns, depending on the shape of the plate as well as the frequency of the vibration.

The Swiss scientist Hans Jenny (1904–1972) pioneered the general study of this prin-

2



Chapter 1. Introduction

Figure 1.1: One of the visual patterns from Hans Jenny’s seminal text.

ciple of visual patterns (as in Figure 1.1) associated with sonic vibrations, which he

named “Cymatics.” Many composers and artists followed in the footsteps of Jenny,

including Alvin Lucier [18], György Kepes [19], and Alexander Lauterwasser [20].

This dissertation serves as a bridge between generative art and sound, computer

graphics, and cymatics. Using computational fluid dynamics simulations as our

background data, we define a bridge between the visual and sonic results in the

spirit of cymatics, linking resonant visual shapes of vibration to their corresponding

audio frequencies. Along the way, we devise a data compression algorithm as part

of the simulation pipeline to ease the computational load.

1.1 Systems of Sonification and Aesthetic Goals

The term “sonification” has many subtly different interpretations and definitions,

but we use it in this dissertation to refer broadly to the association of data to sound.

3



Chapter 1. Introduction

Scientifically-focused sonifications can reveal underlying qualitative patterns in the

data, while artistic-focused sonifications can serve as a framework for composing

novel musical or even audiovisual works. In this dissertation, we use the phe-

nomenon of fluid dynamics as our data, focusing on a system of sonification that,

while revealing certain qualitative features of the fluid motion, mostly serves to gen-

erate novel audiovisual pieces. More precisely, we use the the subspace method of

simulation [21], based on a stable computational fluid dynamics simulation, as our

data, and a model-based sonification system to associate the data with musical sound.

Such a sonification system is analogous to the resonant modal shapes and frequencies

as discovered by Chladni and Jenny in the field of cymatics.

1.2 Data Compression and Memory Obstacles with

Subspace Matrices

The general technique of data compression began with Claude Shannon [22] and

the field of information theory [23]. It is of practical relevance for many problems

in computing, as reducing memory footprints can make certain simulations more

feasible to run. The general idea of data compression is that by exploiting patterns

or redundancies in data, we can often represent the same data in a more terse form.

A wide variety of research in this area has produced many successful compression

schemes, from lossless compression of arbitrary files (ZIP) to lossy compression of

image (JPEG), audio (MP3), and video (MPEG) [24, 25, 26, 27].

The subspace method of simulation [28], while known to achieve large speedups

over regular full-space simulations, also requires a potentially prohibitive memory

cost, consuming dozens of gigabytes of RAM in high-resolution, three-dimensional

simulations. While other research has been done on compressing blendshape ma-
4



Chapter 1. Introduction

trices for facial animations [29] and eigenmode matrices for modal sound synthesis

[30], to our knowledge, no previous work on compressing fluid subspace matrices

has been done.

1.3 Thesis Statement and Main Results

The thesis statement is as follows:

The method of subspaces in computational fluid dynamics for computer graphics can

be leveraged to systematically produce artistic audiovisual pieces.

In particular, I demonstrate three main results:

• I propose a versatile system of sonification of fluid subspaces.

• I describe a data compression algorithm for fluid subspaces to help ease high

computational costs.

• I demonstrate the sonification system with several audiovisual études.

The first result, the sonification system, achieves a two-way coupling between

sound and visual, allowing the visual to drive the sound, the sound to drive the

visual, or even a third intermediary process to govern both the sound and visual si-

multaneously. The flexibility of the system allows the composer to generate a variety

of sounds and visual forms that are nonetheless intertwined in a common language.

The second result, the data compression algorithm, achieves an order of mag-

nitude compression of fluid subspace matrices needed in memory during runtime

without any perceivable visual artifacts. The main result is the technique behind the

compression scheme, a transform-based algorithm, combined with a novel sparse

frequency-domain projection and reconstruction.

5



Chapter 1. Introduction

The third result, the audiovisual études, serve as proof of concept of the possibility

of the sonification system as a means toward developing an audiovisual language.

Carefully chosen parameters are modulated to demonstrate compositional gestures

that can be achieved in both the audio and visual domain.

1.4 Organization

The dissertation is organized as follows. Chapter 2 provides background and related

work in the domain of generative art and sonification. Chapter 3 gives additional

background in the domain of fluid simulation for computer graphics, focusing in

particular on the method of subspaces. Chapter 4 describes the data compression

algorithm for fluid subspaces and shows its effectiveness on a variety of different

subspace simulations. In Chapter 5 we describe the system of sonification of the fluid

subspaces. Chapter 6 demonstrates the versatility of the sonification system through

a series of systematic audiovisual études. Finally, Chapter 7 presents conclusions and

directions for future work.

6



Chapter 2

Related Work

2.1 Sonification and Generative Art

The question of mapping computational fluid dynamics data into sound belongs

to the intersection of the domains of sonification and generative art. Sources vary in

agreement on the definition of sonification. According to Hermann [31], sonification

is “the technique of rendering sound in response to data and interactions.” Kramer

et al. [32] define it as “the use of nonspeech audio to convey information.” We

shall make a distinction between scientific sonification, which aims primarily toward

conveying information clearly, and musical sonification, which aims primarily toward

aesthetically useful generation of music. There are many possible strategies for soni-

fication, including audification, parameter mapping sonification, and model-based

sonification [31]. We shall expand upon the meaning of these terms in §2.1.1.

Generative art is sometimes thought of in very general terms. For instance, Boden

specifies eleven different categories of generative art: electronic k art, computer art,

computer-assisted art digital art, generative art, computer-generated art, evolutionary

art, robot art, interactive art, computer-interactive art, and virtual reality art [33]. In

7



Chapter 2. Related Work

the text, however, we prefer a more narrow definition of generative art as art which

has been created through the design and use of a computational system.

As Curtis Roads observes in [34], one of the main attractions of this compositional

style is the possibility of novel discoveries that go beyond what the artist may other-

wise have been able to conceive: “The computer can allow a composer to write music

that goes beyond that which she is already capable of.”

2.1.1 Background

The use of natural processes as a technique in music composition has been well

known for centuries, from the Greek’s use of harmonic proportions in tuning to

Mozart’s dice music. The twentieth century saw an increased interest in formalized

mathematical systems as part of musical composition. Composers and theorists such

as Schillinger, Stockhausen, Xenakis, Cage, Lucier, Lewin, and many others explored

different systematic ways of generating sonic art [2, 3, 6, 18, 35, 36]. In the twenty-first

century, with the explosion of the idea of “big data,” music and sound has been gen-

erated from all sorts of data sets such as astronomical measurements, seismographs,

web traffic, and more. Gradually, an important question emerged: is the composer

focused primarily with the listener’s musical experience, or is it the intent that the

music inform the listener of features of the underlying data? Such a question touches

the tip of the iceberg of many challenging philosophical questions, such as whether

music can even have any external meaning, or the distinction between the artist’s in-

tention and the listener’s response. While we shall only explore a few of these ideas

in some detail, the interested reader can find more thorough discussions in [37].

In the earlier forms of sonification, the data itself tended to be the most prominent

feature. Indeed, sonification was viewed as an offshoot of data visualization. Thus,

for example, the technique of audification, in which data values are mapped directly
8



Chapter 2. Related Work

to sound pressure levels, by maintaining a literal connection between the data and

the sound, serves as a direct form of sonification. Audification has been used in

especially for natural phenomenon that generate time series, such as seismology, or

stock market prices. Parameter mapping, by contrast, is more of a second-order

technique in which one parameter of the data is mapped to a parameter of sound,

such as pitch, or volume. For example, a series of data representing temperature

values might be mapped to pitch in such a way that higher temperature sounds as

higher pitch, and vice versa. Although the data is not literally being interpreted as

a waveform, the analogy of human perception still makes the connection between

the data and sound tangible. Finally, more abstract forms of sonification, such as

model-based techniques, in which a time-varying process is devised that connects

the data and sound together, can strain the perceptual limits of the link between the

data and the sound, although formally speaking, it still is present. Kramer proposes

a “semiotic” spectrum from analogic to symbolic sonifications, with audification at

the extreme analogic end as closest to the data, parameter mapping in the middle,

and model-based techniques at the symbolic extreme [31].

2.1.2 Model-Based Sonification

As our particular research strategy resembles the category of model-based sonifica-

tion (MBS) the most closely, we review this technique in some detail. According to

Hermann in [31], “Model-Based Sonification is a sonification technique that takes

a particular look at how acoustic responses are generated in response to the user’s

actions, and offers a framework to govern how these insights can be carried over

to data sonification. As a result, Model-Based Sonification demands the creation of

processes that involve the data in a systematic way, and that are capable of evolv-

ing in time to generate an acoustic signal.” The latter quality of evolving in time
9



Chapter 2. Related Work

to generate an acoustic signal interests us the most, as the time evolution in such

models is often governed systematically according to physical principles, making it

an ideal candidate for a sonification of a physical process such as fluid dynamics.

After exploring some fundamental ideas in human perception and modes of listen-

ing, Hermann concludes that a successful sonification should satisfy five properties,

paraphrased thusly:

• Ubiquity: Each interaction with data should produce a sound.

• Invariance of binding mechanism: The laws producing the sound from the data

should not depend on the data itself, much in the same way that the laws of

physics do not depend on the specific objects that they govern.

• Immediate response: Each interaction with the data should produce an imme-

diate response in order to mirror as closely as possible interactions with objects

in the real world

• Sonic variability: Sonifications should vary according to subtle changes in state

and input.

• Information richness: Sonifications should be nontrivial.

Essentially, these properties guarantee that a sonification mimics interactions in the

real world with data and sound. This ties in with a more analytical mode of

listening—for instance, shaking a wrapped birthday present to try to determine its

contents from the corresponding sound, rather than listening to the sound of the

jostling present as a musical event. By using the technique of MBS, Hermann con-

cludes that these properties will in fact automatically be satisfied. The basic principle,

thus, is to design something analogous to the laws of physics, but as a sonification

system of data. The model then becomes the rules by which the data is mapped to
10



Chapter 2. Related Work

the sound and unfolds over time, much as the laws of physics determine the rules by

which objects interact with one another in space and time.

Hermann also identifies six key components that aid in the design of a MBS

system: setup, model dynamics, excitation, initial state, link-variables, and listener

characteristics. It is also useful to keep as separate abstract concepts the data space

in which the data lives, the model space in which the sonification “laws” live, the

sound space in which the actual sound itself lives, and the listener space in which

the listener’s reaction to the sound lives. The model setup, thus, takes data from

the data space, and maps it to the space of a dynamical model with time-varying

components that create the corresponding sound in the sound space.

As a general example, suppose that the data can be interpreted as a collection of

vectors {xj}, j = 1, . . . , N, living in the d-dimensional vector space Rd. (For instance,

more concretely, the data might comprise the temperature, barometric pressure, and

humidity in Santa Barbara for each day in the year 2017, meaning d = 3 and the

collection has N = 365 elements.) Such a re-interpretation of the data abstractly in a

mathematical space is the primary goal of the model setup. The advantage of such

an approach is the ubiquity of mathematical tools in linear algebra at our disposal if

we view our data through the lens of a vector space.

Given our model setup, we next turn to the model dynamics. Since our goal is to

drive a sound-based model over time, it is natural to consider a time-varying evolu-

tion to our model. In other words, we consider the model not as a static configuration

but as a dynamical system. Mathematically speaking, if we write s(t) to denote the

state of the model at time t, then we would like a differential equation to govern the

time evolution—e.g.,

ds
dt

= f (s(t), t) (2.1)

11



Chapter 2. Related Work

The function f here determines the model dynamics. Already the connection with

physics is tempting. Although the function f in principle is arbitrary, the ideas of

conservation of energy, gravity and buoyancy, friction, dissipation, and other physical

principles provide an attractive palette from which to borrow.

The excitation can be thought of as analogous perturbations to the balance of

forces in a dynamical system. In a general dynamical system, an excitation might be

obtained through interaction, as a user adds external forces to the physics through

a keystroke or mouse click. For example, in a fluid simulation, a user might add a

force to the fluid velocity field by clicking and dragging the mouse through a region.

Other possible fluid examples include altering the fluid’s viscosity or introducing a

buoyant external force.

The model setup is analogous to the initial and boundary conditions of a dy-

namical system. For example, a typical first-order ordinary differential equation

dx
dt = f (x(t), t) defines an entire family of possible solutions x(t). Only by specifying

an initial condition x(0) = x0 do we uniquely determine which trajectory to take.

More general differential equations, in addition to requiring initial conditions, may

also require boundary conditions to determine edge behaviors. For instance, in a

fluid simulation, we frequently use the “no-slip” boundary condition, meaning that

at a solid boundary, the fluid has zero velocity relative to the boundary [38]. These

parameters can greatly influence the resulting simulation, but the designer typically

through experience and experimentation has knowledge of which conditions to use

in order to obtain the desired physical effect.

Link variables form the bridge between the dynamical process of the model and

actual sound. In the physical world, these connections often happen literally. For

instance, if we model the rigid vibrations of a metal plate using a spring-mass sys-

tem, the corresponding air pressure variations it induces lead directly to an audible

12



Chapter 2. Related Work

sound signal. Naturally, this isn’t so much of a sonification as an actual physical

calculation of sound, but the analogy remains useful for more abstract sonifications.

In practice, link variables are often more of a second-order connection, much as in

parameter- mapping sonification. For example, we might map the overall energy of

a system to a musical loudness. A common challenge with MBS rears its head here,

as depending on the complexity of the model, a real-time sound output may not be

feasible. In particular, if the link variables are conceived of at an audio sample rate,

in order to maintain high-quality sound rendering, we require at least 44100 samples

to be computed per second, which may be computationally infeasible. Indeed, the

audiovisual system proposed in this dissertation cannot be run in real-time using

the available computing power as of writing in 2017. The tradeoffs of real-time vs.

non-real-time composition will be discussed further in Chapter 6.

Listener characteristics aim to understand better the desired mode of listening

for which the composer aims. For example, shall the listener perceive herself to

be “inside” the system, or an outside observer? Should the sound be perceived as a

single source, or an entire soundscape? Many of these questions have design answers

in the form of the spatialization of the audio output. For instance, by using careful

panning techniques, the composer can create many different desired perceptions in

the listener.

2.1.3 Parameter Mapping Sonification

Following Grond and Berger in [31], Parameter Mapping Sonification (PMSon) is an-

other important technique for sonification. It is a step removed from the more literal

form of audification, in which the raw data is mapped directly into an audio-rate

signal. Instead, PMSon is characterized by a mapping of abstract information to au-

ditory parameters. For instance, we might map the value of a stock, as a piece of
13



Chapter 2. Related Work

abstract information, to a frequency of a sound, as an auditory parameter. While

more indirect than audification, working more by analogy than by literal mapping,

PMSon can be an especially useful choice for multidimensional data, in which differ-

ent facets of the data can then be mapped to different facets of the audio.

Many challenges arise in PMSon. For instance, without the direct interpretation

offered by audification, there is no one ‘correct’ way to make mapping associations.

Indeed, in most PMSon systems, a wide range of interpretation is possible, even

allowing for multiple different sonifications of the same underlying data. Another

challenge is that of human perception: many data sets will generate output signals

that exceed the limits of human hearing, either through resolution (just-noticeable

differences) or through bandwidth (absolute thresholds). Thus, any practically useful

mapping must take these limitations into effect, generally by adapting or scaling the

data accordingly. The choice of which audio features to use remains an open question

as well, as there are many from which to choose: pitch, timbre, rhythm, texture,

envelope, duration, etc.

Formalization via Transfer Function

As a mathematical formalism for speaking in general terms about PMSon, consider

a d-dimensional data set {x1, . . . , xN}, xj ∈ Rd . Let the sound parameter space have

n dimensions, so it is identified with Rn. (It needn’t be the case that d = n in general,

hence the use of multiple variables.) Next, define g : Rd → Rn to be the parameter

mapping function that maps an element in the data space to an element in the m-

dimensional sound parameter space. Finally, define f : Rn+1 → Rq to be the signal

generation function, which takes as an input an n-dimensional vector a of sound

parameters and a time t, and outputs a q-channel sound signal s(t) = f (a; t). A

PMSon is then computed by

14



Chapter 2. Related Work

s(t) =
N

∑
j=1

f (g(xj); t) (2.2)

The mapping function g is the heart of the system. There are several different

types of mappings: one-to-one, one-to-many, and many-to-one. In a one-to-one map-

ping, a single data point is mapped to a single sound point. For example, a temper-

ature reading could be mapped to a sound frequency. In a many-to-one mapping, a

form of dimension reduction occurs in the data. As a simplified example, an average

of many temperature readings could be mapped to a single sound frequency. Forms

of data reduction such as principle component analysis (PCA) are commonly used,

which forms a nice bridge between sonification design and the computer graphics

subspace approach we use in our physics-based simulations. Finally, one-to-many

mappings can arise when a single data point maps to several different sound param-

eters. For instance, if a data value of temperature is in a certain region, we might map

it to both sound frequency and sound amplitude. The multitude of possibilities again

raises many questions and challenges for the appropriate design of PMSon systems.

2.1.4 Synthesis Methods

In designing any sonification system, the craft of audio synthesis itself is an important

ingredient. Many different techniques exist for generating digital sound. We explore

just a handful of possibilities in this section, following Cook in [31].

The technique of additive synthesis is perhaps the most basic and fundamental.

The general strategy is attributed to the concepts of harmonic analysis. According to

the theory of Fourier series [39], we know that any periodic signal f (t) with period

L can be decomposed into a Fourier series via the equation

15



Chapter 2. Related Work

f (t) = ∑
n∈Z

cnei 2π
L nt (2.3)

If we write ω0 as the frequency 2π
L , then we see that f has been decomposed into

a superposition of differently-weighted complex exponentials whose frequencies are

integer multiples of ω0. We often refer to ω0 as the fundamental frequency.

The technique of additive synthesis is thus to take only pure sinusoidal tones and

mix them together, building up from a fundamental frequency. The higher frequency

tones in the signal, called the partials, may or may not have an integer ratio to the

fundamental, characterizing the perception of the sound as harmonic or inharmonic.

Besides the ratio between the partial and the fundamental, the time-varying ampli-

tude envelope of each partial also determines an important synthesis parameter.

Another important technique of synthesis, modal synthesis, is of particular inter-

est. Modal synthesis is based on the concept of a simple harmonic oscillator with

damping. The solution to this differential equation is known to be a cosine wave,

dampened by a decaying exponential term. More precisely, the system in question,

generated from a simple application of Newton’s second law F = ma, is given by

mÿ = −cẏ− ky (2.4)

or, rearranging,

ÿ +
c
m

ẏ +
k
m

y = 0 (2.5)

Here, the unknown y = y(t) represents displacement from the equilibrium, m is

the mass, c is the damping term, k is the spring constant, and an overdot denotes a

time derivative. The solution is given by

16



Chapter 2. Related Work

y(t) = y0e−
c

2m t cos

(
t

√
k
m
−
( c

2m

)2
)

(2.6)

While these equations are a bit abstract, they apply directly to simple idealized

musical instruments. For example, the vibrational modes of a plucked string can

be determined through such an analysis. The boundary conditions of the string

(assuming it is taut and pinned down at both ends) force the string into a particular

set of modal vibration shapes that correspond to natural frequencies of the string.

In a slightly more sophisticated example, the membrane of a drumhead can also be

excited into forming a set of modal vibration shapes that correspond to its natural

frequencies. These frequencies again will depend on the boundary condition (how

the drum is pinned down) as well as the geometric shape of the drumhead.

Cook presents an interesting interpretation of the dampened harmonic oscillator

as a second order, 2-pole feedback filter. If we interpret Equation 2.5 using finite-

difference approximations for the derivatives, we obtain

y[N]− 2y[N − 1] + y[N − 2]
T2 +

c
m

y[N]− y[N − 1]
T

+
k
m

y[N] = 0 (2.7)

Here, y[N− k] denotes the value of the sample k samples ago. Gathering together

like terms, we obtain

y[N]
m + cT + kT2

m
− y[N − 1]

2m + cT
m

+ y[N − 2] = 0 (2.8)

Solving for y[N] in terms of the previous samples, we get

y[N] = c1y[N − 1] + c2y[N − 2] (2.9)

where c1 = 2m+cT
m+cT+kT2 and c2 = m

m+cT+kT2 . In the Digital Systems Processing (DSP)

17



Chapter 2. Related Work

literature [40], Equation 2.9 can be implemented using a second order 2-pole feedback

filter. Thus, we can interpret modal synthesis as a form of subtractive synthesis, in

which a spectrally rich input source, such as noise, or an impulse, excites modal

filters into resonance.

2.1.5 Aesthetics

A continual dilemma in generative art is the conflict between the level of rigor of the

underlying formal system and the human perception of its output. Some artists (e.g.

Milton Babbitt) take the dogmatic position that the logic of the system trumps the

general perception of the output [41]. However, others such as Křenek have taken

a more careful middle ground, arguing in [42] that the existence of an aesthetically

coherent system of rules is no guarantee that an aesthetically coherent artistic result

will perceptibly emerge: “We cannot take the bare logical coherence of a musical

‘axiomatic’ system as the sole criterion of its soundness! . . . The outstanding charac-

teristic of music [is] its independence from the linguistic limitations of general logic.”

In this dissertation, our attitude aligns more closely to Křenek than to Babbitt. While

the rigor of the underlying system is an important concern, the sonic output still

must be considered carefully and adjusted as necessary. To that end, our freedom of

choice in the sonification strategy allows us to make choices that emphasize musical

qualities such as texture, timbre, and dynamic control while still adhering to the logic

of the system. We view our system as a high-level tool through which novel sounds

and visuals can be generated automatically, evolving together over time. Aestheti-

cally, the visual and sonic impression on the viewer/listener is an important criterion

which cannot be ignored by appealing to the logic of the system. As a basic example

of applying that principle in our work, we selected a visually interesting training set

of fluid motions so that the subspace dynamics retained a variety of pleasing forms
18



Chapter 2. Related Work

and shapes. A more in-depth discussion of our aesthetic principles as applied to our

audiovisual system follows in Chapter 6.

19



Chapter 3

Background

3.1 Fluids

A fluid is a substance that continuously deforms under the application of shear stress

[43]. More intuitively, it is a substance that flows. Although colloquially we may

use the term fluid to refer only to liquids, gases can exhibit flow, and are therefore

considered to be fluids as well. (Indeed, the results demonstrated in this dissertation

focus entirely on the turbulent flow of smoke.) The natural world is full of captivating

fluid motions: ocean waves, ripples in a pond, clouds, the steam of a teakettle, etc.

These flowing patterns, while beautiful, appear difficult to formalize precisely, and

the modeling of fluids continues to be a mathematical and computational challenge

to this day.

3.2 Physics-based modeling

The field of fluid dynamics in physics seeks to model and describe fluid flow sys-

tematically according to equations generated from a set of basic assumptions and

20



Chapter 3. Background

principles. In order for continuous mathematical operators to be used to describe

fluids, one of the basic assumptions is that of the continuum: for mathematical pur-

poses, we assume that fluid velocity varies continuously across space, even though

in reality, fluids are actually composed of discrete molecules. Besides this continuum

assumption, the various conservation laws of mass, energy, and momentum, imply

the famous Navier-Stokes equations [44], which describe the velocity field u of fluid

flow depending on the intrinsic stress of viscosity and pressure. In the case where

we make the additional simplifying assumption that the fluid is incompressible,1 the

equations take the following form:

∇ · u = 0 (3.1)

∂u
∂t

= − (u · ∇) u + ν∇2u−∇p + fe (3.2)

The incompressibility assumption is violated for fluid dynamics such as super-

sonic flows; however, these types of motions are not the dynamics we seek to model

in this dissertation. There are several terms here that must be unpacked:

• The time-varying vector field u = u(x, t) describes the fluid velocity field. It is

the main quantity we are interested in, and solving these differential equations

amounts to describing what u is for all times t.

• The constant ν represents the viscosity of the fluid, which represents its resis-

tance to deform while flowing. (Intuitively, this can be thought of its resistance

to being stirred: molasses, for instance, has higher viscosity than water.)

• The time-varying scalar field p = p(x, t) represents the pressure field of the

fluid.
1i.e., the fluid density does not vary within the flow field

21



Chapter 3. Background

• The time-varying vector field fe = fe(x, t) represents any external forces affect-

ing the fluid, such as gravity.

Equation 3.1 enforces the assumption of incompressibility, while equation 3.2 is a

consequence of the aforementioned conservation laws.

3.3 Simulation

Simulation is the imitation of a natural process, in this case over time. Any simula-

tion must first determine a technique of modeling the process computationally, and

there are often many different possible strategies. We consider here a few typical

approaches in computational fluid dynamics.

As in all numerical techniques of modeling fluids, we first discretize both the

spatial and time domain. In other words, to perform the calculations, we dice up

the region of space into a regular grid of small cubical cells. Each cell then contains

a vector, or arrow, describing the velocity of the fluid at the position in space. In

order to evolve the motion of the flow over time, we also dice up time itself into a

sequence of discrete time steps, computing how the velocity of the fluid in each cell

changes at each time step. This approach is called the Eulerian viewpoint of the flow.

Intuitively, this can be thought of as staying in a fixed location and observing the flow

through that particular location. More precisely, the fluid’s velocity in this viewpoint

is represented as u(x, t), which gives the velocity of the fluid at each spatial location

x and time t.

In contrast, the Lagrangian viewpoint of the flow takes the point of view of each

individual fluid particle as it moves along the flow through space and time. Intu-

itively, this can be thought of drifting along with the flow. If we label each particle

based on its position in space using a vector field r, we then describe the fluid flow
22



Chapter 3. Background

with the position field X(r, t) , which gives the position of each particle labeled by r

at time t.

Following [45], we can connect these two viewpoints with the following equation:

u (X (r, t)) =
∂X
∂t

(r, t) (3.3)

The left-hand side of equation 3.3 describes the velocity of the flow at position r

and time t using the Eulerian-specified velocity field u, while the right-hand side de-

scribes the same velocity by taking the partial derivative of the Lagrangian specified

position field X.

Given an Eulerian-specified fluid velocity field u(x, t) over a domain of space, and

given another Eulerian-specified scalar field ϕ(x, t) (e.g., temperature) over the same

domain, we can consider the total derivative of ϕ. By the chain rule, this expands as

follows:

d
dt

ϕ (x, t) =
∂ϕ

∂t
+ ẋ · ∇ϕ (3.4)

The partial derivative term ∂ϕ
∂t indicates the instantaneous rate at which the tem-

perature is changing with time, holding the spatial position constant. Thus, if we

imagine a fluid flow being comprised of many infinitesimal particles, this term rep-

resents any change in temperature of a particle at a fixed spatial location. The re-

maining term ẋ · ∇ϕ describes a more dynamic rate of change, as it incorporates

changes in temperature caused by moving along the flow through the path ẋ. This

movement is in the Lagrangian spirit of drifting along with the flow. In the case

where ẋ is taken to align with the flow velocity u, we have

d
dt

ϕ (x, t) =
∂ϕ

∂t
+ u · ∇ϕ (3.5)

23



Chapter 3. Background

which is often called the material derivative. The operator u · ∇ is the advection oper-

ator, which we will be prominent later on.

3.3.1 Numerical Simulation

Numerical simulation brings the abstract equations of mathematical simulation to

a concrete, computational implementation. Typically, this involves discretization of

any continuous parameters in the model, such as time and space. As such, idealized

concepts such as spatial and time-dependent derivatives must be approximated. Nu-

merical analysis is a broad and rich field in applied mathematics and engineering,

and many different approaches are available, each with various pluses and minuses.

For the scope of this dissertation, we consider the numerical method of Jos Stam’s

Stable Fluids [46], which is the backbone of our fluid simulation technique.

The first step in Stam’s method, following the technique of Chorin and Mars-

den in [47], is to devise a technique to combine the two equations 3.1 and 3.2 into

one equation. We rely on a result from vector calculus called the Helmholtz-Hodge

decomposition, which states that any arbitrary vector field w can be decomposed

uniquely into the sum of a divergence-free, or solenoidal, vector field and a curl-free,

or irrotational, vector field. More precisely, we can write

w = usolenoidal + uirrotational (3.6)

= usolenoidal +∇q (3.7)

since the curl ∇×∇q must be zero for some scalar field q. Hence, we can define a

projection operator P which maps a vector field to its (unique) solenoidal component.

In other words, Pw = usolenoidal. Indeed, this operator can be discovered explicitly

24



Chapter 3. Background

by taking the divergence of both sides:

∇ ·w = ∇2q (3.8)

which is a Poisson equation for the scalar field q. Given w, we can solve this equation

to obtain q, and then compute usolenoidal via usolenoidal = w−∇q. Thus, we can take

the second equation in the Navier-Stokes equations, 3.2, and apply the projection

operator P to both sides, obtaining

∂u
∂t

= P
(
− (u · ∇) u + ν∇2u + fe

)
(3.9)

This conveniently eliminates the pressure term ∇p and unites the two equations 3.1

and 3.2 into one.

The next important technique that Stam’s method uses involves splitting the op-

erators in the Navier-Stokes equations 3.9 into a sequence of simpler operators. In

other words, because the right- hand-side of 3.9 can be regarded as a combination of

several terms (namely, an advection term, a diffusion term, an external forces term,

and a projection) 3.10, we focus our attention on solving each of these simpler dif-

ferential equations in isolation. Once we have a solution to each individual term, we

can construct an approximation for the solution to the more complex full equation

3.9. Establishing some notation, suppose we begin from an initial state u0 = u(x, 0)

and would like to step forward in time by a timestep ∆t. Beginning from the pre-

vious timestep’s solution w0 = u(x, t), we solve a sequence of equations w0, . . . , w4,

ending with the last velocity field which is equal to the value at the next time step:

w4(x) = u(x, t + ∆t). Iterating this procedure generates a complete numerical solu-

tion, as desired.

25



Chapter 3. Background

w0(x)
add forces−−−−−→ w1(x)

advect−−−→ w2(x)
diffuse−−−→ w3(x)

project−−−→ w4(x) (3.10)

The external forces can be approximated simply using forward Euler or other

explicit schemes. In other words, we can write w1(x) = w0(x) + ∆tfext(x, t). The

advection term, however, is nonlinear and adds considerable complexity to the so-

lution. Stam’s insight was to consider the advection from a Lagrangian viewpoint.

Intuitively speaking, each fluid particle is advected by its own velocity. Hence, to

calculate the velocity at a particular spatial point x at the next time step t + ∆t, we

backtrace from the point x through the previous velocity field over a time step of ∆t.

Letting x vary, following Stam’s notation, this defines a path p(x, s) along a partial

streamline of the velocity field. We assume then that the new velocity at the point x

at time t + ∆t must therefore be the same as the old velocity at the backtraced point

at time ∆t previous. (Although the backtraced point may not lie exactly on a grid

cell, we can use linear interpolation to resolve this problem.) More concretely, we

have w2(x) = Interpolate (w1 (p(x,−∆t))). Because this approach exploit both the

Eulerian and Lagrangian viewpoints, it is known as a semi-Lagrangian strategy.

One of the key advantages to semi-Lagrangian advection technique is that it is

unconditionally stable: in other words, no matter how large a time step ∆t we select,

the velocity will remain bounded. Intuitively, this is straightforward to observe:

each velocity update is the result of an interpolation of previous velocity values, and

therefore cannot be any greater than any of the previous values. From a practical

standpoint, this numerical stability is a big plus, and the heart of Stam’s argument

as to why this method is useful in computer graphics. However, with very large

time steps, the problem of numerical dissipation becomes more of an issue. A more

detailed discussion of these issues can be found in [48].

26



Chapter 3. Background

The remaining terms in the splitting are the diffusion and pressure projection.

The diffusion term is simply the heat equation, relying on the Laplace operator:

∂w2

∂t
= ν∇2w2 (3.11)

Many well-known techniques exist for numerical solutions to this equation, in-

cluding discretization of the Laplace operator as well as implicit methods [49].

Finally, as observed previously, the pressure projection reduces to a Poisson equa-

tion to solve for q from w3.

∇2q = ∇ ·w3 (3.12)

From here, we can recover w4 via the equation w4 = w3−∇q. Hence, the numer-

ical splitting is complete.

Within Stam’s paper is another interesting topic of carrying out the equations of

motion within the Fourier domain, explored further in [50]. Although we do not

implement our solver using this technique, it is a topic of interest based on our

compression technique as well as, our frequency-domain interpretation of the fluid

modes and our corresponding sonification technique later on, so we delve into a

few details here. The key observation is that the Fourier transform diagonalizes

spatial derivatives. In other words, if we denote the Fourier transform of u(x) by

F [u(x)](k) = û(k), then we have F [∇u(x)](k) = ikû(k). The divergence operator

similarly satisfies F [∇ · u(x)](k) = ik · û(k), and the Laplacian, being the divergence

of the gradient, satisfies F [∇2u(x)](k) = −k2û(k), where k = |k|. The upshot of

all this is that we can view some of the fluid operators in the spatial domain in

simple ways in the frequency domain. For example, the diffusion, based on the

Laplacian operator, can be thought of as a low-pass filter with decay governed by the

27



Chapter 3. Background

viscosity. In general, this mode of thinking bears fruit later for our discussions of the

compression algorithm in Chapter 4 and our sonification system in Chapter 5.

3.4 Subspace Methods

Subspace methods, also known as model reduction, or reduced order methods, has a

long history in engineering and applied mathematics, including applications to fluid

simulation [51], and was introduced to the computer graphics literature in 1989 by

Pentland and Williams [28, 52]. The basic principle of these methods, as the name

suggests, is to reduce the computational complexity of a large numerical simulation.

A typical simulation will have many degrees of freedom in principle, generating a

vast state space of possibilities. However, in practice, not all of these degrees of

freedom are of equal importance. By systematically discovering a reduced subspace

of the state space, and carrying out calculations within this subspace, a subspace

simulation can lead to large computational accelerations with minimal degradation

of accuracy.

3.4.1 Modal Analysis

Following Barbič and James [53], to see an example of the subspace method in action,

consider the modeling of small deformations of rigid bodies. Although rigid bodies

in principle have many degrees of freedom over which they can deform, they have

certain characteristic shapes into which they are more likely to deform. These shapes,

also known as modes, are the ones which minimize the strain, and in an intuitive sense

are the “natural” deformations of the rigid body. To compute these, we assume the

rigid body is discretized into a mesh with N vertices. We then compute the system

mass and stiffness matrices M ∈ R3N×3N and K ∈ R3N×3N, respectively. The modes

28



Chapter 3. Background

then satisfy the generalized eigenvalue equation

Kx = λMx (3.13)

Due to the special properties of the matrices M and K, which are both symmetric

positive-definite (SPD), the eigenvalues λi are positive real numbers. Although there

are 3N eigenvalues in total, in practice, we can take a subset of them, λ1, λ2, . . . , λr,

from least to greatest, and their associated eigenvectors ψ1, ψ2, . . . , ψr. (Here, r �

3N represents the number of modes we wish to retain.) The eigenvectors ψi we

choose corresponding to the eigenvalues λi are not unique; for convenience, we select

those that satisfy the mass-orthogonality condition 〈Mψi, ψj〉 = δij, where δij is the

Kronecker delta, equaling 0 for i 6= j and 1 for i = j. The r-dimensional subspace

S ⊂ R3N formed by the linear span of these eigenvectors can be encapsulated in

matrix form by assembling the modal basis matrix U ∈ R3N×r as follows:

UT =


ψ1 ψ2 . . . ψr


(3.14)

Thus, the mass-orthogonality condition we specified for the modes can be cap-

tured in the more succinct matrix form UTMU = Ir, where Ir ∈ Rr×r denotes the

r× r identity matrix.

Now consider the typical equation of motion for undamped small deformations

29



Chapter 3. Background

x ∈ R3N corresponding to external forces f ∈ R3N:

Mẍ + Kx = f (3.15)

Equation 3.15, is a very high-dimensional linear differential equation obtained by

applying the standard equations of elastic deformation to the mesh with 3N nodes

using the finite element method (FEM). For very fine meshes with large values of N,

this equation may present a computational bottleneck. Hence, the approach of model

reduction is welcome. We proceed by approximating x as a linear combination of the

modes ψ1, . . . , ψr:

x ≈ Uq (3.16)

where the vector q ∈ Rr has components qi that are the corresponding weights of

the associated modes ψi, i = 1, . . . , r. This vector q is called the reduced coordinates of

x, and can also be thought of as the projection of x into the subspace S. Rewriting

equation 3.15, we obtain

MUq̈ + KUq = f (3.17)

By the generalized eigenvector condition, we have KU = ΛMU, where Λ =

diag (λ1, . . . , λr). Hence, we simplify as follows:

MU (q̈ + Λq) = f (3.18)

Next, to clear away the factor of MU, we pre-multiply both sides by UT:

UTMU (q̈ + Λq) = UTf (3.19)

30



Chapter 3. Background

By the mass-orthogonality condition, the term UTMU reduces to Ir. On the right-

hand-side, f̃ = UTf ∈ Rr is the reduced form of f. Hence, we have the following

lower-dimensional linear differential equation with unknown q ∈ Rr:

q̈ + Λq = f̃ (3.20)

In this particular case, the system is uncoupled since Λ is diagonal, so we have a

collection of r independent one-dimensional ordinary differential equations. These

can be integrated forward in time very efficiently, obtaining qt+1, the value of q at the

next time step. To finish the computation, we reconstruct into the full-dimensional

space by computing xt+1 = Uqt+1.

3.4.2 Sound generation

Small rigid deformations of a solid body are precisely those that generate sound

waves. Hence, following O’Brien [54], we briefly consider the application to audio of

the previous discussion. Recall that our subspace reduction produces a collection of

r independent one-dimensional equations, which, expanded out, take the form

q̈i + λiqi = ψT
i fi, i = 1, . . . , r (3.21)

Recalling that each λi is a positive real number, let ωi be the positive square root

ωi =
√

λi. Then the general analytical solution to the homogenous portion of each

one-dimensional differential equation in 3.21 is given by qi = c1eiωit + c2eiωit. In other

words, we can think of the i-th mode as resonating at a natural frequency of ωi. This

allows us to perform simple additive synthesis by mixing together a collection of

sinusoids at the corresponding frequencies, generating the audio signal that corre-

sponds to the physical deformation. The spirit of this basic approach motivates our

31



Chapter 3. Background

sonification process in Chapter 5.

3.4.3 A more general subspace formulation

We have seen how subspace methods apply to rigid deformations, which can be

characterized by linear systems. However, more general and complex phenomena,

including fluid flow, require non-linear characterizations. Hence, we consider a more

general framework for applying subspace methods, following Treuille [21].

In the most abstract setting, the subspace technique takes a vector u ∈ RN living

in a high-dimensional space and maps it to a corresponding reduced-space vector q ∈

Rr, with r � N. (We refer to this high-dimensional space as the “full space” and the

reduced space as the “subspace.”) This mapping can be seen as a projection operator

P : RN → Rr, which carries u to q, and its corresponding reconstruction operator

P−1 : Rr → RN, which lifts q back up to u. (Note that since r < N, the projection

map P is not one-to-one, and hence necessarily must lose some information.)

Within physical simulations, we are not concerned just with the projection map-

ping of one vector in the high space down to its corresponding reduced vector, but

also a framework for time evolution. In other words, given a differential equation in

the full space

u̇ = F(u, t) (3.22)

we would like to formulate a corresponding reduced-space differential equation

q̇ = F̂(q, t) (3.23)

so that the equations of motion can be integrated through time within the reduced

space. In particular, we desire a reduced-space differential equation that can be

32



Chapter 3. Background

solved in asymptotic time depending only on the reduced dimension r and not the

full dimension N.

The obvious and standard approach is to compute F̂ via what is known as Galerkin

projection as follows:

F̂ = P ◦ F ◦ P−1 (3.24)

In the situation of linear equations, this projection as described before can be de-

scribed with matrix-vector multiplies. In particular, the matrix corresponding to F̂

can be precomputed, leading to large speedups. However, nonlinear dynamics must

be handled with more sophisticated methods. Furthermore, in the absence of analyt-

ical eigenmodes, as utilized during section §3.4.1, it is unclear how to select a set of

basis vectors to form a reasonable reduced space Rr in the first place.

Treuille’s technique is to form a representative basis using “snapshots” from a

corresponding full-space fluid simulation. Ideally, these snapshots capture the user’s

desired range of motion and dynamics. Upon performing a form of Principal Com-

ponent Analysis (PCA), a set of basis vectors q1, . . . , qr are derived. Following the

basic strategy of splitting the Navier-Stokes equations, it remains then to demonstrate

how to perform reduced-space external forces, advection, diffusion, and projection.

While most of these operations can be viewed as a full-space matrix, and thus pro-

jected and precomputed, the advection term, being nonlinear, requires a more careful

approach. Although in principle, by discretizing the advection operator, a matrix cor-

responding to the advection term could be formulated, this matrix will depend on

the current timestep, and thus cannot be precomputed like the others. To combat

this issue, the original approach of Treuille is to construct a static third order tensor,

which can be precomputed. However, as Kim and Delaney point out, this technique

33



Chapter 3. Background

will not in general be a consistent integration method [55, 56]. The intuition for this

problem is that the finite difference methods in the reduced space are not equivalent

to the semi-Lagrangian methods in the full-space, but further details are beyond the

scope of this dissertation. However, the need for a different strategy for advection

and other nonlinear phenomena motivates the notion of cubature schemes, described

next.

3.4.4 Cubature schemes

The work of An et al. [57] brought the idea of cubature methods to nonlinear solid

mechanics in computer graphics. The term cubature itself is a multidimensional

analogue of the classical one-dimensional problem of quadrature, which seeks to ap-

proximate the definite integral of a function by estimating it as a weighted sum of

point-sampled versions of the function. More concretely, we have an approximation

of the form

∫ b

a
f (x)dx ≈

n

∑
i=1

wi f (xi) (3.25)

where the wi are weights and the xi are the point samples. Careful choice of these

weights and point samples leads to efficient and accurate estimation of the integral.

In the more general setting, following Kim and Delaney [55], we introduce some

standard notation. Suppose our full space is R3N and our subspace is Rr, so that our

subspace projection matrix is U ∈ R3N × r. Furthermore, we denote reduced-space

quantities with an over-tilde, e.g., ũ = UTu ∈ Rr denotes the projection by U of u

in the full space down to ũ in the reduced space. Next, suppose we have a (possibly

nonlinear) function F : R3 → R3 and a vector of N points in R3, x ∈ R3N that

represents a velocity field on a grid. Since F can operate on any point p ∈ R3, we can

34



Chapter 3. Background

transform the entire vector x pointwise by having F operate on each of its points, at

each stage computing fp = Fp(xp) ∈ R3. This yields a corresponding vector f ∈ R3N

that represents x pointwise transformed by F . (Although the discussion here is

generic to what F represents, to give a concrete example, x could be a velocity field

prior to advection, F could be an advection scheme, and f could be the resulting

velocity field after advection.)

In the full space, we have a mapping from x to f via F , so in order for the subspace

technique to work, we need to discover a mapping from x̃ to f̃. The simplest cases are

when F itself is a linear transformation, so that its projection can be precomputed,

but in the nonlinear case, as discussed previously, we need another strategy. Observe

first that if we are willing to calculate with full-space coordinates, we can write

f̃ = UTf = UTFx = UTF (Ux̃) (3.26)

which implies a method from computing f̃ starting from x̃ by reconstructing first into

the full space via U, applying F , and then projecting back down into the subspace.

This method, however, is counter to the spirit of the subspace approach, as it depends

on the dimension of the full space, N. The insight of Kim and Delaney is to regard

Equation 3.26 as a multidimensional integral over the entire simulation domain Ω:

f̃ = UTF (Ux̃) =
∫

Ω
UT

pFp(Upx̃)dΩ (3.27)

Now in integral, we can therefore apply the method of cubature [58] to obtain an

efficient approximation of f̃. In particular, we would like to select a set S of points

p ∈ S and corresponding weights wp ∈ R so that we have

35



Chapter 3. Background

f̃ =
∫

Ω
UT

pF (Upx̃)dΩ ≈ ∑
p∈S

wpUT
pF (Upx̃) (3.28)

Provided that the cardinality |S| is on the order of the reduced space-dimension r

rather than the full-space dimension N, this approach will pay dividends. However,

it remains to see how to select both the cubature set S and the weights wp.

The original approach by An is to select a set of cubature points and correspond-

ing weights that minimize the error of a training set. First, we describe the method

of choosing weights, given a particular set of cubature points. To that end, suppose

we have a collection of T snapshots, f1, . . . , fT, and their associated reduced-space

projections f̃1, . . . , f̃T, where f̃i = UTfi. In addition, suppose we have selected a col-

lection of n cubature points. Then we look to solve the following nonnegative least

squares (NNLS) problem:



f̃1
1 · · · f̃1

i · · · f̃1
n

...
...

...

f̃t
1 · · · f̃t

i · · · f̃t
n

...
...

...

f̃T
1 · · · f̃T

n · · · f̃T
n




w1

...

wn

 =



f̃1

...

f̃t

...

f̃T


(3.29)

with the unknown weight vector w satisfying w ≥ 0. For convenience, we abbreviate

equation 3.29 as Aw = b, with A ∈ RrT×n, w ∈ Rn, and b ∈ RrT. Each column of

the matrix A represents subspace point-sampled versions of the advection operator

of the snapshot t ∈ [1 . . . T] at the corresponding cubature point i ∈ [1 . . . n]. The

vector w represents the unknown nonnegative weights we seek. Finally, the vector

b is a projected full-rank advection computed via equation 3.26. Schemes for solv-

ing the NNLS problem efficiently are well-known, including the standard Lawson-

36



Chapter 3. Background

Hanson method [59], which has O(rTn3) complexity, and the “fast” nonnegative least

squares method (FNNLS) introduced by Bro and de Jong [60], which achieves a con-

stant speedup over Lawson-Hanson. Provided that the number of cubature points n

remains much smaller than the full-space resolution N, these timings are acceptable.

We review two different techniques for selecting the cubature points: greedy selection

and importance sampled selection.

Greedy Cubature Selection

We see from equation 3.29 that given a set S of cubature points, we can calculate

the corresponding weights from the weight vector w. However, the question remains

of how to select the set S in the first place. The technique of greedy selection was

introduced by An et al. in [57]. Suppose for the sake of argument we have already

selected a set of cubature points, giving us a preliminary set S , yet the residual

r = b−Aw has a significant magnitude ‖r‖2 > ε greater than a desired tolerance. To

decrease the error, we must add a new cubature point to S , which extends the matrix

A by appending a new column. This will then update the new residual and decrease

the error. The “greedy” solution is to select a cubature point p whose corresponding

column ap maximally projects onto the residual r; i.e., we wish to maximize the dot

product ap · r. Once such a point p is found, we add it to our set S and update the

residual. We repeat this process until the residual has a magnitude smaller than the

desired tolerance ε. The overall complexity of the greedy approach is O(rTn4).

Importance Sampled Cubature Selection

The technique of importance sampled cubature selection was proposed by Kim and

Delaney in [55]. In the greedy algorithm, because the matrices AS between one iter-

ation and the next differ only by one column, much of the work becomes redundant.

37



Chapter 3. Background

Algorithm 1 Greedy Cubature Selection

1: function GreedyCubature(A, b, ε)
2: S ← ∅
3: r← b
4: while ‖r‖2 > ε do
5: C ← SelectCandidatePoints(S)
6: p← arg maxp∈C ap · r
7: S ← S ∪ {p}
8: w← NNLS(AS , b)
9: r← b−ASw

return (S , w)

Hence, instead of adding only one cubature point at a time, in the importance sam-

pled selection strategy, we add C points at each iteration. The strategy for selecting

the C points is done through importance sampling according to the following prob-

ability mass function:

PMF(p) = R
|ap · r|

r · r (3.30)

Here, R denotes the number of points not yet in the cubature set.

To implement the importance sampling algorithm, we replace lines 5–7 of the

Algorithm 1 with the following:

Algorithm 2 Importance Sampled Cubature Selection

1: function ImportanceSampledCubature(C)
2: while C points have not been added to S do
3: Randomly select a candidate p /∈ S
4: Add p to S with probability PMF(p)

The importance sampling algorithm has the advantage of a superior run-time

complexity: asymptotically, it runs in O(rTn3) time. Other approaches such as non-

negative hard thresholding pursuit (NN-HTP) [61] and alternating direction method

of multipliers (ADMM) [62] have been explored as well, but they are outside the

38



Chapter 3. Background

scope of this dissertation.

39



Chapter 4

Transform-based compression of fluid

subspaces

Note: A large portion of this chapter has previously appeared as [63].

In the previous chapter, we discussed the potential for subspace methods to ac-

celerate the computational cost of physics-based simulations. However, a significant

drawback of the subspace approach is the time/memory tradeoff: the speed increase

comes at a cost of much larger memory requirements. Specifically, subspace simu-

lations can easily consume dozens of gigabytes of memory when dealing with high-

resolution scenes. In this chapter, we discuss a compression method to reduce the

memory footprint of subspace methods by an order of magnitude. Using such a

compression scheme will allow us to compute longer and more complex scenes on

powerful computers, while at the same time giving us the ability to compute scenes

of reasonable complexity on laptop computers.

40



Chapter 4. Transform-based compression of fluid subspaces

4.1 Previous Work

Since memory consumption is a known challenge with subspace techniques, other

research has focused on reducing the memory footprint of these simulations. In

the applications of sound [30] and blendshape matrices [29], compression techniques

have been developed; however, we are unaware of analogous research in subspace

fluid simulation. In the work of Wicke et al. [64], a modular fluid basis is used that

can be tiled throughout the domain. However, our approach is complementary, as the

modular tiles themselves could be further compressed by applying our algorithm.

4.2 Background

4.2.1 Data Compression Preliminaries

The general problem of data compression at first blush seems daunting: how do

we reduce the memory footprint of a set of data without losing information? For-

tunately, the sets of data that we typically work with are not random, but rather

contain many patterns and redundancies. Exploiting these redundancies is the key

to any successful data compression algorithm.

Data compression algorithms can be divided into two distinct families: lossless

and lossy. A lossless compression algorithm is able to take an input signal, compress

it, and reconstruct the exact same input signal. A simple example is run-length

coding. For instance, to represent 100 white pixels, followed by 200 black pixels,

followed by an another 50 white pixels, we can code the sequence (‘w’, 100), (‘b’, 200),

(‘w’, 50), rather than coding the 350 pixels individually. Decoding is straightforward

and retains all information. The ZIP file format is a familiar example of widely-used

41



Chapter 4. Transform-based compression of fluid subspaces

lossless data compression, based on methods pioneered by Lempel and Ziv [24].

Lossless compression can be very powerful when applied to original data with

many redundancies; however, it has strict limitations based on the mathematics of

information theory [22]. Every file, no matter how redundant, contains a certain

amount of information. Thus, for instance, after using run-length coding once on

a file that previously contained many long sequential redundancies, trying to use it

a second time on the newly compressed file will actually increase the file size, since

there will no longer be any runs.

Lossy compression, by contrast, may not be able to reconstruct the exact same

input signal. Its applications tend to focus on perceptual data, such as images, video,

and sound. Although its reconstructions are not perfectly faithful, if the technique is

soundly based on the limits of human perception, the results are virtually indistin-

guishable. The JPEG file format for images is a widely-used lossy data compression

algorithm [25].

Data streams of images oftentimes contain more information than a human can

reasonably resolve. For example, a picture might contain fine details that are indis-

tinguishable from their smoothed counterpoints, or subtle color gradients that are

indistinguishable from coarser ones. The key to most lossy data compression algo-

rithms is finding a way of transforming the original information into a domain that

captures these characteristics more naturally. These techniques are called transform

coding.

4.2.2 Mathematical Preliminaries

In order to describe transform coding formally, we will require several notions from

linear algebra and analysis.

42



Chapter 4. Transform-based compression of fluid subspaces

Vector Spaces

The basic framework of most of our data manipulation can be expressed through

the notion of vector spaces. We are familiar with the physical notion of vectors in

two- or three-dimensional space as quantities with both a magnitude and a direction,

often depicted graphically with an arrow, as in Figure 4.1. For convenience, we often

represent vectors using coordinates. We can view the coordinate representation as a

decomposition into fundamental unit vectors pointing in the x and y direction. These

are called the basis vectors. Any arbitrary vector can be decomposed uniquely into a

combination of these basis vectors.

v

vx

vy

Figure 4.1: A 2D vector v decomposed into its orthogonal components vx and
vy.

Vectors can be added or subtracted, producing another vector. They can also

be multiplied by a scalar (i.e., a number in R or C), yielding another vector. The

formalization of this idea is the concept of a vector space, which allows for a more

abstract treatment of vectors. For example, an image represented on a computer as a

sequence of N pixel values can be regarded as a vector living in the vector space RN.

43



Chapter 4. Transform-based compression of fluid subspaces

This abstraction allows us to bring the tools of linear algebra to bear on a variety of

seemingly different applications.

Inner Products

An inner product, or dot product, is a binary operation 〈·, ·〉 between two vectors that

yields a scalar as an output. The most familiar example is in R2, where, given two

vectors v = (vx, vy) and w = (wx, wy), we have 〈v, w〉 = vxwx + vywy. Inner products

add a notion of geometry to a vector space through angles and length. When an inner

product between two vectors is 0, the vectors are orthogonal, and the inner product

of a vector with itself gives the square of its length. For example, the basis vectors

ex = (1, 0) and ey = (0, 1) are orthogonal, and the vector v = (3, 4) has squared

length 〈v, v〉 = 32 + 42 = 52, which matches with the usual Euclidean notion of

squared length. Inner products also are closely related to the projection of one vector

onto another. For example, if we take an arbitrary vector v = (vx, vy) and take its

inner product with the unit basis vector ey = (0, 1), the result is the component vy

in the y direction. In general, given a set of unit basis vectors which are mutually

orthogonal (known as an orthonormal basis), we can compute the various components

of arbitrary vectors by calculating their inner products with the corresponding basis

vector.

Besides the familiar inner product in R2, more general inner products exist in

other vector spaces. The canonical inner product in Cn is given by 〈v, w〉 =
n

∑
k=1

vkwk,

where the overbar denotes the complex conjugate. The conjugate may seem strange,

but is necessary to preserve the notion that taking an inner product of a vector with

itself should give the squared length of the vector.

44



Chapter 4. Transform-based compression of fluid subspaces

The Discrete Fourier Transform

The Discrete Fourier Transform, or DFT, is a transformation that maps one vector in

CN to another vector CN. Given a vector x = (x0, x1, . . . , xN−1), the DFT maps x to

the output X = (X0, X1, . . . , XN−1), where

Xk =
N−1

∑
n=0

xne−i2πnk/N, k = 0, 1, . . . , N − 1 (4.1)

This definition, as written, appears somewhat unmotivated, so we give a brief

geometrical interpretation of the DFT in terms of inner products and roots of unity.

To begin, we write ω = ei2π/N as the first N-th root of unity1. Then the N powers of

ω comprise the entire set of N-th roots of unity: ω0, ω1, ω2, . . . , ωN−1. If we collect

these into a single vector ω, we have

ω =
(

1, ω1, ω2, . . . , ωN−1
)
∈ CN. (4.2)

We can also consider the N powers of ω:

ωk =
(

1, ωk, ω2k, . . . , ω(N−1)k
)

, k = 0, 1, . . . , N − 1 (4.3)

The collection of N vectors {ω0, ω1, . . . , ωN−1} forms an orthogonal2 basis for

CN, which we shall call the Fourier basis. As such, given an arbitrary vector

x = (x0, x1, . . . , xN−1), we can compute its representation in the Fourier basis by

projecting x against each of the new basis functions using the complex inner prod-

uct. More concretely, the new representation X = (X0, X1, . . . , XN−1) in the Fourier

basis is given by

1That is, ω satisfies ωN = 1.
2Orthogonal, but not orthonormal, since each basis vector has magnitude

√
N 6= 1.

45



Chapter 4. Transform-based compression of fluid subspaces

Xk =
1√
N
〈x, ωk〉, k = 0, 1, . . . , N − 1 (4.4)

Recalling the definition of the complex inner product given in §4.2.2, this can be

expand to agree with the original definition 4.1 up to a constant factor:

Xk =
1√
N

N−1

∑
n=0

xnωnk (4.5)

=
1√
N

N−1

∑
n=0

xn
(
ei2π/N

)nk (4.6)

=
1√
N

N−1

∑
n=0

xne−i2πnk/N, k = 0, 1, . . . , N − 1 (4.7)

This interpretation of projecting against the Fourier basis will prove more useful

than the explicit formula for having an intuition about what the DFT is doing under

the hood. In fact, using this interpretation, we can even write the DFT as the fol-

lowing N × N change-of-basis matrix F , with each of the N columns given by the

corresponding ωk vector:

46



Chapter 4. Transform-based compression of fluid subspaces

F =


ω0 ω1 ω2 . . . ωN−1


(4.8)

=



1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(N−1)

1 ω−2 ω−4 . . . ω−2(N−1)

...
...

... . . . ...

1 ω−(N−1) ω−2(N−1) . . . ω−(N−1)2


(4.9)

Thus, the DFT of a vector x ∈ CN can now simply be defined by the matrix-

vector multiplication Fx = X. In particular, since we already observed that the N

column vectors of this matrix form on orthogonal basis for CN, by normalizing the

DFT matrix to make each column have unit magnitude, we obtain the unitary form

of the DFT:

Funitary =
1√
N
F (4.10)

Being unitary means that Funitary preserves inner products. In other words, for

any vectors v, w ∈ CN, we have

〈Funitaryv,Funitaryw〉 = 〈v, w〉 (4.11)

47



Chapter 4. Transform-based compression of fluid subspaces

We shall exploit this property later on in §4.3.3.

The asymptotic run-time of the DFT of a vector x ∈ CN, if implemented as a

matrix-vector multiply, would be O(N2), as we must compute N multiply-adds for

each of the N columns. However, the well-known fast Fourier transform (FFT) al-

gorithm, by recursively expressing the N-point DFT in terms of smaller N/2-point

DFTs, is able to compute the same result in O(N log N) time, making it much more

practical for large inputs [65].

The multidimensional DFT applies takes multidimensional arrays of inputs rather

than vectors. For example, the two-dimensional DFT of the array x ∈ CM×N is given

by the array X ∈ CM×N whose entries are

Xu,v =
M−1

∑
m=0

N−1

∑
n=0

xm,ne−i2π(um+vn) (4.12)

In the most general case, given a d-dimensional array x ∈ CN1×N2×···×Nd , its d-

dimensional DFT is given by the array X ∈ CN1×N2×···×Nd whose entries are

Xu1,u2,...,ud =
N1−1

∑
n1=0

N2−1

∑
n2=0
· · ·

Nd−1

∑
nd=0

xn1,n2,...,nd e−i2π(u1n1+u2n2+···+udnd) (4.13)

In practice, however, we will stick to using d = 2 or d = 3.

4.2.3 The JPEG Coding Algorithm

The JPEG coding scheme is a form of lossy, transform compression for digital images.

Because our subspace fluid compression scheme is based on many of the techniques

used in JPEG, we shall explore the implementation of JPEG in some detail to better

motivate our own coding algorithm.

The point of departure in JPEG is a digital image file, which comprises a two-

48



Chapter 4. Transform-based compression of fluid subspaces

dimensional array of pixel values. (For simplicity, we will assume a grayscale image.)

The basic redundancy that JPEG exploits is that for most images, the majority of

the “energy” is packed into lower spatial frequencies. In other words, generally

speaking, there are not many extremely sharp changes between hues in a typical

image. (Notable exceptions include medical imaging, for which JPEG is typically not

applied.)

So, to begin, suppose we have a two-dimensional grayscale image of resolution

800× 800, as in Figure 4.2. While over the space of the entire image, there may be

sharp changes between hues, if we subdivide the image into smaller regions, within

each individual region, there are sharp changes much more rarely. Hence, the first

step of JPEG is to subdivide the image into many smaller regions. The typical “sweet

spot” chosen is 8 × 8 blocks, so in this case, there will be 100 · 100 = 10000 such

blocks. Figure 4.2 shows one such block in the center of the whole image. The

grayscale values (as unsigned 8-bit integers between 0 and 255) for this block B are

as follows:

B =



56 42 46 43 46 48 43 48

45 47 59 47 57 50 50 65

48 59 37 41 45 52 67 74

51 39 47 50 55 70 54 36

39 66 59 72 88 49 26 20

66 69 76 75 50 24 25 25

70 78 79 38 20 23 22 20

75 56 27 23 23 23 26 56



(4.14)

To exploit the redundancy of the image in the frequency domain, we now trans-

49



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.2: Left: The original 800× 800 image. Right: An 8× 8 sub-block
zoomed in.

form each block according to a two-dimensional discrete cosine transform (2D-DCT).

The discrete cosine transform, with some massaging, can actually be regarded as a

particular case of the discrete Fourier transform, so conceptually, we can regard it in

the same spirit. The resulting data transforms B into DCT (B) = B̂ as follows:

B̂ =



388.13 48.51 3.43 −5.62 3.63 −10.51 1.42 2.12

21.90 −65.26 −10.63 10.88 −0.39 1.66 2.68 2.75

−27.13 5.92 53.83 −8.29 5.35 1.02 11.21 0.80

6.26 45.24 −45.46 −13.37 1.97 3.12 0.07 6.32

−12.63 −15.30 −11.94 28.36 11.38 −4.05 1.56 −3.43

−8.00 9.89 14.93 5.72 −20.23 16.34 9.22 −2.35

0.82 −8.88 17.96 −0.44 13.89 4.13 −10.33 −7.66

0.16 3.34 −1.24 −2.58 −5.01 −15.33 −11.65 −0.71



(4.15)

50



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.3: The 64 2D-DCT basis vectors for an 8× 8 domain. Any 8× 8 image
can be expressed as a linear combination of these vectors. For example, the 8× 8
array in 4.15 gives the corresponding weights that would generate the original
sub-block B in 4.14.

Next, we dampen the frequencies by point-wise dividing the resulting set of values

by a pre-determined damping array, Q2D, given by Equation 4.16. This array was

determined empirically through perceptual limits and is given in [25].

Q2D =



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99



(4.16)

51



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.4: The zigzag scan from northwest to southeast corner. The goal is to
catch long consecutive strings of zeroes.

The goal of this procedure is to dampen enough of the frequencies to values small

enough that, upon integer rounding, they become zero. This allows for compression

gains, albeit at the cost of information loss. Equation 4.17 shows the result.

Round

(
B̂

Q2D

)
=



24 4 0 0 0 0 0 0

2 −5 −1 1 0 0 0 0

−2 0 3 0 0 0 0 0

0 3 −2 0 0 0 0 0

−1 −1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(4.17)

Note how many of the entires have been dampened to zero, as desired. Next, we

scan through this array in a zigzag fashion, as demonstrated by Figure 4.4.

52



Chapter 4. Transform-based compression of fluid subspaces

This allows us to catch long strings of zeroes. In this case, the final 31 entries are

all zeroes, so run-length coding will prove to be highly effective. Although the full

JPEG standard includes several additional wrinkles, these are beyond the scope of

the current discussion.

The decoding procedure is a straightforward reversal of each of the coding steps:

for each block, we first decode the run-length code, we unzigzag the data into the

correct shape, we undampen it by multiplying by Q2D, and finally, we compute

the inverse two-dimensional discrete cosine transform (inverse 2D DCT). Figure 4.5

shows the JPEG-decoded block side-by-side with its original counterpart. The over-

all average error in this block comes out to approximately 7 values per pixel (on a

256-value grayscale). Figure 4.6 shows the whole image compressed. The average

error across the whole image comes out to about 2 bits per pixel, with an overall

compression ratio of around 8 : 1. Despite artifacts being noticeable at the block level

when zoomed in, as in Figure 4.5, the overall image has no visible artifacts.

Lossy compression typically has a “sweet spot”—that is, a level of compression

that achieves a significant data reduction without introducing noticeable artifacts.

We also see in Figure 4.6 the effect of going beyond this sweet spot and destroying

the image quality: here, despite the attractive 100 : 1 compression ratio, the image is

unacceptably distorted.

53



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.5: Left: The original, uncompressed 8× 8 data block. Right: The same
8× 8 block after undergoing JPEG compression at quality 50 percent. Observe
the general smoothing, which is an artifact of the information lost during the
dampening and rounding stage.

Figure 4.6: Left: A compression ratio of 8 : 1 is achieved using the 50 percent
quality damping array with no visible artifacts. Right: A compression ratio of
100 : 1 is achieved using the 5 percent quality damping array; however, there are
many visible artifacts.

4.3 A Subspace Compression Scheme

Recall from Chapter 3 the subspace projection matrix U that creates a heavy memory

footprint. A compression method to reduce its size would alleviate this potential

54



Chapter 4. Transform-based compression of fluid subspaces

computational bottleneck. However, in order for the subspace simulations to run

smoothly, we also must ensure that the compression method efficiently supports the

following three operations:

• Projection: The time needed to compute the full UTu = q matrix-vector prod-

uct should not prohibitively increase due to the presence of a decompressor.

• Dense reconstruction: Conversely, Uq = u must also be fast.

• Batched random access: In order to support sparse reconstruction, it should be

possible to query the velocity field at a set of random points on the simulation

grid. In addition to efficient sparse reconstruction, this feature is also needed to

support certain types of time integration, e.g. cubature-based semi-Lagrangian

schemes [55].

With these requirements in mind, we can design our codec.

4.3.1 Compression Basis Selection

In order to design a compression scheme for the velocity fields that comprise the

columns of the subspace projection matrix U , we must first select a transform basis

that would ideally result in extremely sparse fields. Both discrete cosine transform

(DCT) [66] and wavelet [67, 68] bases have been successfully used in the past to com-

press scalar volumes, so they are promising candidates for velocity fields. We choose

to use DCT because we observe that in the special case of Laplacian Eigenfunctions

[69], they actually yield ideal compression. The eigenfunctions inside a closed 3D

55



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.7: An eigenfunction of the Laplacian operator transforming into a delta
function in frequency space.

box take the general form:

ux(k1, k2, k3) = κx sin(k1x) cos(k2y) cos(k3z)

uy(k1, k2, k3) = κy cos(k1x) sin(k2y) cos(k3z)

uz(k1, k2, k3) = κz cos(k1x) cos(k2y) sin(k3z),

(4.18)

where ux, uy, and uz respectively represent the x, y, and z components of a velocity

field. The ki coefficients determine the frequency content of the field, and the three κ

terms are scaling coefficients that are derived from ki.

We make the straightforward observation that the spatially varying components

of each of these functions are purely trigonometric functions, so by applying appro-

priately interleaved DCTs and discrete sine transforms (DSTs) to these fields, they can

be reduced to delta functions, regardless of their spatial frequency. In the notation of

Long and Reinhard [70], if we use FSCC to denote a DST in the x direction and DCTs

56



Chapter 4. Transform-based compression of fluid subspaces

in the y and z directions, we obtain,

FSCC [κx sin(k1x) cos(k2y) cos(k3z)] = κxδ(k1, k2, k3), (4.19)

where δ(k1, k2, k3) is a delta function in SCC frequency space located at the (k1, k2, k3)

grid cell. Similar transforms, e.g. FCSC and FCCS can be used to generate delta

functions for uy and uz. Thus, any eigenfunction can be compressed down to three

integers (the kis) and three floats (the κ terms).

Asymptotically, this mixed DCT/DST losslessly transforms an O(N) eigenfunc-

tion down to O(1); no sparser representation is possible. This result only applies to

the ideal case of analytic divergence-free velocity fields defined on the interior of a

box. However, the high compression it achieves is encouraging, and motivates our

further use of DCT to compress more general divergence-free fields.

4.3.2 DCT-Based Compression

Following from the previous discussion, we design a DCT-based, JPEG-like compres-

sion scheme. Each column of U represents a vector field, and the columns are usually

constructed using an SVD. Since this SVD has already minimized the amount of re-

dundant information between columns, we compress them separately. Each column

contain x, y and z velocity components, and we extract each of these components and

compress them separately. Thus, if we describe the encoding procedure for a single

scalar field, it can be applied to each velocity component of each column of U.

Analogously to JPEG, given a 3D scalar field, we decompose it into small blocks of

size b× b× b, adding continuous extra padding in the case that one or more resolu-

tions are not evenly divisible by b. We then perform a 3D-DCT on each block. In an-

ticipation of quantization, the result is then normalized so that the largest frequency-

57



Chapter 4. Transform-based compression of fluid subspaces

domain value maps to the largest signed value for a 32-bit integer.

Adaptive Quantization: After transforming the signal to the frequency domain and

normalizing the coefficients, as discussed in §4.2.3, the JPEG coding scheme then per-

forms an element-wise division of the coefficients using a 2D quantization matrix in

order to increase the likelihood that they will quantize to zero. In the JPEG standard,

this matrix is adjusted depending on the quality setting; higher quality settings will

have lower values to preserve more detail after dividing by the matrix, while lower

quality settings will have higher values in the matrix to suppress more coefficients.

For example, we previously saw in Equation 4.16 the JPEG matrix corresponding to

50% quality.

We index the matrix entries Q2D(u, v) such that the upper-left corner, Q2D(0, 0) =

16, corresponds to the DC (i.e., direct current, or zero frequency) component. The

entries of Q2D were obtained from perceptual data [71], and in general, higher fre-

quency components have larger entries in order to suppress these coefficients which

tend to carry less information than those in the lower frequencies.

Since we are not working with 2D color data but rather with 3D velocity fields, we

need to construct a 3D version of this matrix, Qγ
3D ∈ Rb×b×b. A close inspection of all

of the complete matrix corresponding to Eqn. 4.16 suggests that Q2D(u, v) ∝ u + v,

so a straightforward first attempt is:

Qγ
3D(u, v, w) = 1 + u + v + w. (4.20)

Other applications [66] have used similar reasoning to arrive at similar matrices.

However, while the 2D case has a suite of Q2D matrices at its disposal that correspond

to different levels of perceived visual quality, this data does not generalize to non-

chromatic, 3D velocity data.

58



Chapter 4. Transform-based compression of fluid subspaces

We instead propose to automatically generate a variety of different Qγ
3D matrices

during the compression stage. For different b× b× b blocks, the energy is likely to

reside in different frequencies, so we generate a one-parameter family of matrices,

Qγ
3D(u, v, w) = (1 + u + v + w)γ, (4.21)

where γ is a parameter that is adjusted per block. Analogous to the 2D case, the

user specifies a quality parameter p. In 3D, we interpret p as the percentage of

the original energy3 that should be preserved. Each block then performs a bisection

search over the range γ ∈ [0, n], where n = 32 is the number of bits that were used for

normalization prior to quantization. Higher values of n are essentially meaningless,

as they damp everything except the DC component to zero. In practice, we found that

this bisection search terminates within a very small tolerance of the desired energy

preservation after at most 8 iterations.

This approach provides a custom quantization matrix for each block while main-

taining an approximately constant energy loss per block. Important high-frequency

components are preserved when they are present, while smoother, low-frequency

blocks are still aggressively compressed. This block-varying value γ must then be

computed by the encoder and provided to the decoder in the encoded bytestream.

For an 8× 8× 8 block, the memory footprint of a single additional scalar γ per block

is negligible. We compare this strategy to a uniform non-adaptive quantization ap-

proach in §4.4.

Flattening and Encoding: After quantization, we convert the 3D array into a 1D array

and perform run-length encoding [66, 71]. No novel strategy needs to be devised for

this component. The 3D to 1D conversion is performed in a zigzag pattern that is

3That is, L2 norm.

59



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.8: An overview of the encoding pipeline.

a straightforward 3D extension of the usual 2D JPEG ordering, which tries to group

coefficients with similar sizes together in the bytestream. In our case, the entries of

Qγ
3D(u, v, w) are arranged in increasing order of their sum u+ v+w, which effectively

clusters components with approximately the same frequency. The results are then

run-length encoded in order to discover long runs of zeros.

4.3.3 Subspace Decompression

Batched Random Access: The block-wise compression scheme we have described

supports the batched random access requirements described in the beginning of §4.3

at runtime. For a single random access, the block containing the cell of interest is

decompressed, which means the other b× b× b− 1 entries are potentially decoded

needlessly. However, the coherency of the underlying incompressible flow tends to

cluster cells of interest in the same blocks, so we did not find that this extra overhead

created a major bottleneck.

The decompression proceeds in two stages, where an initial pass assembles the

60



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.9: The 3D zigzag scan order. We move along slice planes of increasing
index sum c = 1 + u + v + w.

batch of requested cells and determines which blocks need to be decompressed. A

second pass then decompresses the actual blocks. By consolidating the cell requests,

it is guaranteed that no block is ever redundantly decompressed twice.

Projection and Reconstruction: The fast projection and reconstruction requirements

from §4.3 are not as straightforward. A naïve strategy is to decompress the entire

matrix U for each projection and reconstruction. For a given block size B = b ×

b × b, this results in 3N×r
B DCTs and IDCTs at every timestep. These transforms

dominate the running time (Table 4.1), and largely negate the performance gains

of the subspace approach. While memory savings are achieved, the speed-memory

tradeoff is unacceptable.

However, we observe that both of the matrix-vector products Uq = u and UTu =

q can be performed sparsely in the frequency domain. The projection operator then only

performs a DCT on u, not all r columns of U. This operation is permissible because

the DCT is a unitary transform, and therefore preserves inner products, as seen in

§4.2.2. Specifically, if x and y are vectors in the spatial domain and x̂ and ŷ are their

counterparts in the frequency domain, 〈x, y〉 = 〈x̂, ŷ〉.

61



Chapter 4. Transform-based compression of fluid subspaces

We define the following notation to describe the advantages of this approach. The

frequency domain version of a quantity is denoted with a hat, e.g., U with DCT

applied to each column is Û. The lossy, compressed version of Û, where near-zero

values have been quantized to zero, is denoted Ĉ. The spatial domain version of

Ĉ is correspondingly C. In essence, our compression scheme has introduced the

approximations U ≈ C and Û ≈ Ĉ.

Using the unitary property discussed in §4.2.2, we can see that if we use DCT to

transform u to û, then UTu = q is equivalent to ÛTû = q. Using the compressed

versions will yield a result slightly different from q, but the same relation holds:

CTu = ĈTû ≈ q. The naïve approach spends most of its time transforming Ĉ to

C, but by constructing û, we can avoid this stage altogether. Replacing the IDCT

over all r columns of Ĉ with a single DCT of u is significant, because even for a

modest r = 10, the number of transforms is reduced by an order of magnitude.

Additionally, the ĈTû product can now exploit the sparsity of Ĉ that was discovered

by the compression stage. Since Ĉ is static over the lifetime of a simulation, the

location of all the zero entries can be cached, and these multiplies can be skipped.

A fast reconstruction strategy then follows due to the linearity of the DCT: Ĉq ≈

û. The sparsity of Ĉ can again be exploited here, as each column Ĉ is scaled by an

entry of q, and all the multiplies with respect to zeroes can again be skipped. Once

û is known, an IDCT can be performed on it once, and IDCTs over all r columns of

Ĉ is again avoided.

For a C matrix containing 3N × r non-zero entries, after taking the complexity of

the DCTs and IDCTs from §4.2.2 into account, naïve projection and reconstruction

each take O
(
3N × r + 3N×r

B B log B
)
= O ((3N × r) log B) time. Using our approach,

a Ĉ containing S non-zero entries instead takes O
(
S + 3N

B B log B
)
= O (S + 3N log B)

time. The r factor has been removed as a multiplier of log B, and replaced with the

62



Chapter 4. Transform-based compression of fluid subspaces

CCC CCS CSC CSS SCC SCS SSC SSS
0

20

40

60

80

100

120

140

Type of transform

S
iz

e
 o

f 
c
o
m

p
re

s
s
e
d
 f
ile

 (
M

B
)

Comparison of sine/cosine transforms

Figure 4.10: A comparison of compression results using the 8 possible cosine/sine
interleavings through each of the three spatial dimensions. ‘C’ and ‘S’ are abbre-
viations for a cosine and sine transform, respectively. We see that the ‘CCC’
transform yields the most compressed result with the smallest output file size.

additive S term. As seen in Table 4.1, this results in speedups that approach an order

of magnitude.

4.3.4 Discussion

We have described one possible scheme for compressing subspace fluid basis ma-

trices. Several initially promising possibilities were also investigated, but ultimately

discarded.

The motivating example from §4.3.1 uses mixed DST and DCT to achieve ideal

compression, whereas we only use DCT. The use of DST was investigated as well,

but was not found to give superior results. Unless the velocity values along a block

border are all exactly zero, i.e. the block has Dirichlet boundaries along all its walls,

the DCT consistently yields superior results, as shown in Figure 4.10.

63



Chapter 4. Transform-based compression of fluid subspaces

The U matrix is usually constructed using an SVD [21, 55] or an eigenanalysis

[69, 72]. Therefore, corresponding singular values or eigenvalues are usually avail-

able for each column of U. These values could be used to guide the compressor,

e.g., by allowing columns with unimportant singular values σi to be compressed

more aggressively. However, we found that the relationship between σi and visual

quality is not straightforward. Especially during re-simulation, columns that had

unimportant σi during the initial analysis can obtain large coefficients in q. In such

cases, the aggressive compression can become visible.

Prior to compression, an additional SVD could be run on each b× b× b block in U

to determine if there is a superior coordinate system for compression other than the

canonical x, y, and z axes. However, the per-block rotation that this introduces breaks

the fast matrix-vector multiply described in §4.3.3. Thus, we put this aside in favor

of the fast multiplies, but a method that supports both operations is an interesting

direction for future work.

4.4 Results

We tested our compression scheme on several subspace fluid re-simulation scenarios

generated by the open-source package Zephyr [55]. The fluid simulation data were

generated using a Preconditioned Conjugate Gradient (PCG) solver with a Modified

Incomplete Cholesky preconditioner [73]. The codebase was implemented in C++

and tests were run on a 12-core, 2.66 GHz Mac Pro with 96 GB RAM. For the DCT

and IDCT, we used FFTW [74], and Eigen [75] was used for other linear algebra

operations.

In all of our simulations, we set b = 8, so 8× 8× 8 blocks were used. Block sizes

of b = 4 and b = 16 were also tested, but we found that smaller blocks redundantly

64



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.11: Left: An 8× 8× 8 block of one of the velocity fields obtained from
the Singular Value Decomposition. Right: The same 8 × 8 × 8 velocity field
block in the frequency domain after taking a 3D Discrete Cosine Transform. The
sparsity not only allows for transform compression but also frequency-domain
subspace projection speedups.

captured the same low frequency information, while larger blocks lessened the like-

lihood of finding smooth regions that could be compressed aggressively. Figure 4.12

summarizes these results.

In all of our subspace simulations, we used the matrix-vector product strategy

from §4.3.3, which accelerated the computation significantly (Table 4.1). Without this

acceleration, the subspace simulations ran almost at parity with the original full-

space simulations, invalidating any speed advantages of the subspace approach. On

average, our sparse product ran roughly 3–4 times as slow as the uncompressed ma-

trix vector product. Asymptotically, our sparse product can have a superior running

time, as it does not need to touch all 3N × r entries in the matrix. Our scenes did

not achieve sufficient sparsity to demonstrate this superiority, but we expect that as

compression methods improve, multiplying against Ĉ will eventually become faster

65



Chapter 4. Transform-based compression of fluid subspaces

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SVD column number

A
v
e
ra

g
e
 s

p
a
rs

it
y
 a

c
ro

s
s
 a

ll 
b
lo

c
k
s

High−resolution preadvect X
nBits = 32

percent = 0.999
block sizes 4, 8, and 16

 

 

4

8

16

Figure 4.12: Sparsity comparison of using different block sizes. Using b = 8
leads to sparser, and hence more compressible results.

Naïve, e.g., Cq Sparse, e.g., Ĉû Speedup
Plume 72.0s 8.7s 8.3X
Sphere 74.9s 7.6s 9.9X

Fan 72.6s 12.9s 5.6X

Table 4.1: Timings of naïve projections vs. sparse projections. The sparse pro-
jection is significantly faster, and dramatically reduces the overhead of using the
compressed representation of U. These timings represent the average time to per-
form both the projection and reconstruction stages in a single timestep.

66



Chapter 4. Transform-based compression of fluid subspaces

Plume Uncompressed 6 : 1 8 : 1 11 : 1 13 : 1 22 : 1
Time per frame 4.5s 19.9s 17.9s 16 1s 15.2s 12.8s

Compression preprocess N/A 02h 07m 55s 01h 53m 48s 02h07m55s 02h 12m 17s 02h 15m 59s
Sphere Uncompressed 10 : 1 14 : 1 16 : 1 23 : 1 30 : 1

Time per frame 5.4s 17.1 15 1s 14.4s 13.0s 12.2s
Compression preprocess N/A 02h 01m 38s 02h20m14s 02h 07m 59s 02h 34m 30s 02h 27m 59s

Fan Uncompressed 5 : 1 6 : 1 8 : 1 11 : 1 29 : 1
Time per frame 5.7s 24.4s 23 2s 19.8s 18.3s 14.8s

Compression preprocess N/A 01h 09m 37s 01h08m25s 01h 26m 57s 02h 18m 45s 02h 11m 51s

Table 4.2: Compression performance for each of the three scenes. The “sweet
spot” for each scene that achieves a good balance between compression and visual
quality is shown in gray.

than multiplying with C.

Plume scene: We simulated the buoyant flow of a plume in a scene containing no

obstacles, as shown in Figure 4.13. The original simulation resolution is 200× 266×

200, was run for 150 frames, and took 09h 48m 49s (3.92 minutes per frame).

The SVD to construct the subspace from this data took 07h 05m 40s, and the

compressing the subspace took at most 02h 15m 59s (Table 4.2). Constructing and

compressing the subspace is therefore roughly at parity with running the entire sim-

ulation a second time. However, once the subspace has been constructed once, we

can run new simulations very quickly.

We found that the subspace could be compressed by roughly an order of magni-

tude (11 : 1) before the visual quality began to degrade. However, we also noted that

the compression scheme appears to degrade relatively gracefully. For higher com-

pression rates, the motion gradually deviates from the uncompressed motion, and

JPEG-like block artifacts begin to appear (cf. the actual JPEG artifacts exhibited in

§4.2.3).

Sphere scene: Next, we simulated the same plume in the presence of a sphere ob-

stacle. The original simulation resolution is 200× 266× 200, was run for 150 frames,

and took 10h 37m 50s (4.25 minutes per frame). The time to construct and compress

67



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.13: Plume scene: The overall motion and visual quality of the plume
is preserved until the compression ratio is increased to approximately 22 : 1. The
1 : 1 corresponds to using the original U matrix.

the subspace, respectively 09h 17m 19s and a maximum of 02h 34m 30s, was again

found to be roughly at parity with running the simulation a second time.

Surprisingly, we found that this subspace compressed slightly better than the

plume scene (14 : 1) before the visual quality began to degrade. The expectation

was that the sphere boundary would create a discontinuity in the velocity field that

the compressor would have trouble capturing. Instead, the interior of the static ob-

stacle created a region of constant (zero) velocity, and also induced the formation

of smooth, near-zero regions in its vicinity. Rather than create a discontinuity con-

taining many high frequencies, these constant and smooth regions mostly contained

low-frequencies that the compressor could easily leverage. No-slip boundaries were

used along the surface of the obstacle; if free-slip were used instead, the anticipated

discontinuities may still appear.

68



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.14: Sphere scene: The motion and visual quality remains high until
approximately 14 : 1 compression. At 30 : 1, the differences are very significant.

For this scene, we also compared our adaptive quantization strategy to a uniform,

non-adaptive approach. There is no canonical 3D version of Eqn. 4.16, so we instead

selected a uniform γ that produced an equivalent energy loss in the highest frequency

component, i.e., we set γ such that it matched the 32-bit equivalent of the lower-right

hand entry of Eqn. 4.16. This strategy still produced a 7 : 1 compression, but our

adaptive strategy was able to achieve a higher compression of 14 : 1.

Out-of-core Comparison: We compared our performance to an uncompressed sim-

ulation that does not fit in core by running the 14 : 1 version of the sphere scene

on a 2-core, 1.8 GHz Macbook Air with 8 GB RAM. On this system, the full space

simulation ran at 286.5s per frame, while our compressed subspace simulation ran at

71.7s, yielding a speedup of roughly 4.0×.

The uncompressed subspace simulation requires over 70 GB of memory, and im-

mediately started to swap on the 8 GB system. It ran for over 17 hours without

69



Chapter 4. Transform-based compression of fluid subspaces

Figure 4.15: Fan scene: The quality is preserved at 6 : 1, but at 11 : 1, the
motion begins to change, and at 29 : 1, artifacts begin to appear.

completing a single frame, at which time it had more than doubled the running time

of the original full space simulation, and was terminated.

Fan scene: Finally, we simulated smoke being stirred by a fan. The original simula-

tion resolution is 266× 200× 200, was run for 150 frames, and took 12h 18m 05s (4.92

minutes per frame). The subspace construction and compression times were 08h 13m

22s and at most 02h 18m 45s.

The moving obstacle scene achieved a compression ratio of 6 : 1 before the qual-

ity began to degrade. Here, the reduced compression we expected to see in the

sphere scene appeared. Instead of having a smoothing effect on the velocity field,

the obstacle creates new, high-frequency velocities that are more difficult to com-

press. However, we did not choose to leverage any knowledge of the obstacle motion

during compression, which could be a promising avenue for finding sparser repre-

sentations.

4.5 Discussion and Conclusions

In order to determine whether the compression compromised the generality of the

subspace, we also ran re-simulations [55] on each of our scenes using a variety of

different simulation settings. In the plume scene, we both reduced the vorticity con-

finement constant to zero and doubled the number of total timesteps (see video), for

70



Chapter 4. Transform-based compression of fluid subspaces

the sphere scene we halved the buoyancy constant (see video) and in the fan scene,

we increased the vorticity confinement constant by a factor of ten (Fig. 4.16). The

re-simulations were all run on the “sweet-spot” compression ratios that are high-

lighted in Table 4.2. In all cases, the overall motion was preserved, and we did not

observe any significant visual artifacts compared to the uncompressed subspace re-

simulation.

Figure 4.16: Fan Re-Simulation: With vorticity confinement increased by a
factor of ten, the novel turbulent detail that is introduced remains intact, even
after basis compression.

In order to better understand the error introduced by the compression, we plotted

the relative L2 error between the q vectors obtained by the uncompressed and com-

pressed simulations. While it is difficult to tell whether a given compressed U is too

aggressive a priori, an overaggressively-compressed U quantitatively corresponds to

a 10−1 relative error appearing early in the simulation. In this case, the compression

error exceeds that of the cubature integration scheme [55], and begins to visually

dominate.

71



Chapter 4. Transform-based compression of fluid subspaces

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

Relative L
2
 Error of Compressed Plume Simulations

Simulation Timestep

R
e
la

ti
v
e
 L

2
 E

rr
o
r

 

 

6 : 1

11 : 1

22 : 1

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative L
2
 Error of Compressed Sphere Simulations

Simulation Timestep

R
e
la

ti
v
e
 L

2
 E

rr
o
r

 

 

10 : 1

14 : 1

30 : 1

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

Relative L
2
 Error of Compressed Fan Simulations

Simulation Timestep

R
e
la

ti
v
e
 L

2
 E

rr
o
r

 

 

7 : 1

11 : 1

29 : 1

Figure 4.17: Relative L2 error introduced by the compressed matrix C compared
to an uncompressed U over the course of a simulation. The transition between vi-
sually undetectable and visible error corresponds to roughly an order of magnitude
jump in the relative error.

Conclusions and Future Work: We have presented a compression method for sub-

space fluid simulations that is able to reduce the size of the U matrix by up to an

order of magnitude. The most immediate direction for future work is the develop-

ment of algorithms that are able to reduce this matrix size even further. As seen in

Table 4.2, as the sparsity of the compressed representation increases, the speed of

the matrix-vector product improves. According to our asymptotic analysis, it should

eventually surpass the performance of the direct Uq product. Therefore, finding new

bases that possess the same unitary property as the DCT while increasing sparsity

should yield algorithms that are efficient in both memory and time.

Lossless compression schemes such as Huffman coding could also be investigated,

but these would not directly increase the sparsity of the representation, so the trade-

off between memory savings and decompression speed would need to be balanced.

Finally, the method we have presented assumes that the velocity field is defined on

a regular grid. An approach that can be applied to unstructured, tetrahedral meshes

[72, 76] would also be welcome.

72



Chapter 5

Visualizing and sonifying fluid

subspaces

Note: A large portion of this chapter has previously appeared as [77].

Figure 5.1: Left: Chladni patterns realized through a physical experiment.
Source: Wikimedia Commons. Right: Analytic 2D eigenvector of the Navier-
Stokes equations using the method of de Witt et al. [69].

73



Chapter 5. Visualizing and sonifying fluid subspaces

5.1 Introduction

As discussed briefly in Chapter 1 during the discussion of cymatics, Chladni plates

reveal beautiful patterns when vibrated at specific frequencies (Figure 5.1). Both the

spatial patterns and sonic frequencies that arise have long been known to have inti-

mate connections to the eigenvectors and eigenvalues of an idealized rigid plate. For

this idealized case, closed form expressions can be obtained, and the eigenvalues are

known to correspond to the audio spectrum emitted by the plate. In this chapter,

we seek to explore a generalization of this phenomenon by applying a similar proce-

dure to a more complex scenario: a turbulent computational fluid dynamics (CFD)

simulation.

Unlike the Chladni plate case, closed form expressions are not available for the

eigenvectors of an arbitrary CFD simulation, so we instead discover a set of “em-

pirical” eigenvectors, as described in Chapter 3 during the discussion of subspace

methods. The natural connection between eigenvalues and audio frequencies in the

Chladni plate case is also no longer present, so we instead construct a sonification,

as discussed more thoroughly in 2, to produce a mapping between fluid trajectories

and sound. Using this approach, we obtain a variety of organic forms that have a

unique visual character and generate associated sounds that unfold over rich spectral

envelopes. Our ability to directly control the spatial and audio frequency spectrum

allows the potential for a mathematically-principled artistic exploration of the au-

diovisual space through the medium of short film. We demonstrate the potential

of this system for artistic expression with several brief preliminary results. Further

exploration of the audiovisual system follows in Chapter 6.

74



Chapter 5. Visualizing and sonifying fluid subspaces

Figure 5.2: Left: A 2D velocity field over a regular grid. Right: From top to
bottom, the modes of vibration of a guitar string for N = 1, 2, 3.

5.2 Eigenvector Preliminaries

In order to better understand the role they play in this work, we start with a review

of eigenvectors and values. The eigendecomposition of a square matrix A is usually

written as A = QΛQT. The matrix Λ is zero except along its diagonal, and each indi-

vidual entry along the diagonal is an “eigenvalue,” where the German eigen roughly

translates to “characteristic.” The matrix Q is generally not diagonal, and contains

columns that are each considered an “eigenvector” of A. The essential character of

the matrix is captured by these vectors and values because they satisfy a specific re-

lationship. If we place the ith column of Q into a vector q, and the ith diagonal entry

of Λ into a scalar λ, the relation Aq = λq will always hold. The vector q will be

scaled by the value λ, but will otherwise remain unchanged.

There are many different ways to understand this relationship, but the scenario

of a vibrating string offers a clean physical interpretation. One way to describe the

phenomenon of vibration is as one of a fixed shape that is repeatedly scaled. When

a guitar string is plucked, it visibly forms the shape of a sine wave over (0, π). Over

time, the amplitude of this shape scales up to some positive value, attenuates back

75



Chapter 5. Visualizing and sonifying fluid subspaces

to zero, and then scales down to some negative value that is symmetric with the

positive one. This cyclical sequence of amplitudes in time encapsulates the visual

phenomenon of vibration.

The Aq = λq relation can be understood to model exactly this behavior. If the

entries of q are set to be a sine wave over (0, π), and the entries of the matrix A

are set according to the correct physical principles1, then multiplying by A will pro-

duced a scaled version of q. Repeated multiplications will produce a sequence of

scaled vectors, mimicking vibration. The eigenvectors thus describe a set of charac-

teristic vibrational shapes that a string is capable of producing. The other columns

of the matrix Q describe other shapes (“vibration modes”) that a string is capable of

producing. For example, sine waves defined over (0, 2π), (0, 3π) and up to (0, Nπ)

will all make an appearance (Figure 5.2). (Note the boundary conditions force nodal

points into the shape of vibration, thus precluding the possibility of sine waves at

frequencies that would otherwise vibrate at those points.) They are less dominant

from a physical perspective, which is why the (0, π) version is the one we most visu-

ally associate with a vibrating string. This dominance is reflected in the eigenvalue

analysis—the (0, π) sine wave appears as the first vector in Q, and each successive

column yields progressively less visually and sonically prominent shapes.

This understanding can be extended to both 2D and 3D, but some effort is needed

to rearrange these higher-dimensional phenomena so that they can be packed into

a 1D vector q. For example, we can cut a 2D square plate into a regular grid, and

rearrange the 2D values defined over this grid into a 1D vector q. A matrix A can

again be assembled according to physical principles so that its eigenvectors corre-

spond to the characteristic vibrations of a square plate. When these eigenvectors are

1In this case, A would correspond to the wave equation: a Laplacian with Dirichlet boundary
conditions.

76



Chapter 5. Visualizing and sonifying fluid subspaces

rearranged into a 2D grid, their visual character is in close agreement with those

found by laboratory experiments (Figure 5.1).

Figure 5.3: Left: Assembling the velocity fields column-wise into a matrix X.
We use simulations of a plume moving toward each face of its bounding box.
Right: Obtaining the empirical eigenvectors after the singular value decomposi-
tion is performed on X, yielding U.

5.3 Empirical Eigenvectors in Computational Fluid Dy-

namics

The eigenvector analysis that automatically discovers Chladni patterns does not ex-

tend directly to more complex phenomena. Nevertheless, we are interested in discov-

ering analogous patterns that arise in turbulent fluid flows, as they may have artistic

value. The equations for these flows are inherently non-linear, while the eigenvector

approach is linear, so we will instead use the method of “empirical” eigenvectors.

In order to motivate these techniques, we will review some concepts from computa-

tional fluid dynamics discussed in Chapter 3.

Recall that a fluid is usually defined using a velocity field, where a velocity vector
77



Chapter 5. Visualizing and sonifying fluid subspaces

is associated with each point in space. While there are many different ways to repre-

sent these fields, we take the perspective from the previous section where a bounded

region of space has been diced into a set of regular squares (or, in 3D, cubes). Each

cube is then assigned a corresponding velocity vector (Figure 5.2), and in order to

generate an animation, the vectors must then be evolved over time. There are many

different equations that can be used to specify this evolution in time, but, following

§3.2, we use the well-known incompressible Navier-Stokes equations for fluid flow.

Hence, we assume that we have divided time into a discrete number of steps, and

that at each step, the vector inside each cube in our computational grid has been

assigned an appropriate value.

Unlike the classic Chladni pattern case, CFD simulations do not yield a single

matrix A on which an eigenvalue analysis can be performed. If the pressure, ad-

vection, diffusion, and external forces are composed together into a single matrix

A, then this matrix A is time-dependent and must be updated at every timestep.

Hence, instead of one canonical A that can be said to characterize the behavior of

the entire system, there are instead infinitely many As, none of which inherently

take precedence over the others, as discussed in §3.4.3. Fortunately, if some sort of

precedence is imposed, a process akin to an eigenvalue analysis can still be applied.

The method of “empirical” eigenvectors [78], also known as the Proper Orthogonal

Decomposition, Karhunen-Love expansion, or Hotelling transform, establishes one

such criterion. Informally, given an existing simulation, we can analyze the series of

matrices that arose during that simulation and give those matrices precedence over

all others. The space of infinite As is thus reduced to a tractable, finite size.

Returning to Figure 5.2, reviewing the method of selecting a subspace from train-

ing data in §3.4 we first perform a simulation over a regular N × N grid for T

timesteps. While the simulations in our actual experiments were run in 3D (Figure

78



Chapter 5. Visualizing and sonifying fluid subspaces

5.4), we will limit our discussion to 2D for simplicity. Each grid cell then contains a

2D velocity vector which possesses an x and y component, so the entire grid contains

N×N = N2 such vectors. We can rearrange these values so that they are packed into

a 1D vector x, which then has 2N2 entries. We can perform this repacking for each

of the T velocity fields from the simulation and concatenate all of the vectors into a

matrix X with 2N2 rows and T columns (Figure 5.3, left).

Generally, 2N2 6= T, so the matrix X will be rectangular, and an eigenvalue analy-

sis can only be performed on square matrices. However, the singular value decompo-

sition (SVD) can always be performed regardless of dimension, and the results pos-

sess many eigenvalue-like qualities. Instead of the eigendecomposition A = QΛQT,

the SVD instead yields X = UΣVT. Similar to the eigendecomposition, the middle

matrix Σ is diagonal, and its entries correspond to the “singular” values of the matrix

X. Again, similar to the eigenvalue case, the columns of the left matrix U form an

ordered set of the most important shapes, or quasi-vibration modes, that appeared

during the simulation (Figure 5.3, right). The matrix V is a T-dimensional rotation

matrix that was applied to X in order to arrive at U and Σ; for our purposes, it can

be discarded.

We are interested in the representation formed by U and Σ for two reasons. First,

these two quantities comprise a quasi-frequency spectrum. The shapes that are en-

coded in each column of U are roughly analogous to the sine waves from the string

case. If we take a single step from the original fluid simulation, xt, and apply the

matrix-vector multiply UTxt = qt, then we have performed a quasi-Fourier transform

that translates xt into a quasi-frequency domain. It then becomes straightforward to

start interpreting the entries of qt as the amplitudes in some auditory representa-

tion. Second, an inverse-quasi-Fourier transform has also been defined. Given some

arbitrary audio signal q∗, we can convert back to a spatial shape by performing the

79



Chapter 5. Visualizing and sonifying fluid subspaces

operation Uq∗ = x∗. Given some sound unfolding over time, we can then generate a

sequence of velocity fields to drive a fluid’s motion.

Finally, empirical eigenvectors are a topic of interest in engineering because run-

ning simulations in this quasi-frequency-domain can have certain computational ad-

vantages. These “subspace” simulations were explored in greater detail in Chapters

3 and 4.

5.4 Visualization

One of the challenges when using empirical eigenvectors is the construction of an

interesting set of eigenvectors. For example, if a set of smooth, featureless laminar

flows are input into the SVD, there is no reason to believe that the shapes (a.k.a

modes) corresponding to the resulting eigenvectors will be visually interesting. In

order to ensure that a rich set of eigenvectors are produced, we ran six separate CFD

simulations using a standard fluid simulator [46], where a turbulent plume of smoke

was aimed at each face of a rectangular simulation domain. All of the simulation data

was then concatenated into a matrix X. To reveal the shape of the modes, we then

ran a series of simulations with each of the modes sequentially isolated. A “delta”

vector qd, similar to an impulse response, was generated at each timestep where the

dth entry is set to 1 and the rest of the vector was set to zero. A selection of these

results can be seen in Figure 5.4. More detailed discussion of this choice of training

data follows in Chapter 6.

Other excitation strategies are also possible, including ones that are more closely

guided by the physics that generated the original input data. We can gradually ac-

tivate each eigenvector in sequence and then push the resulting vector q through a

subspace simulation that approximates the Navier-Stokes equations [55]. Less phys-

80



Chapter 5. Visualizing and sonifying fluid subspaces

Figure 5.4: In reading order: An assortment of nine of the 150 empirical eigen-
vectors, from lowest singular value to highest, discovered by taking the combined
SVD of six separate Navier-Stokes simulations.

81



Chapter 5. Visualizing and sonifying fluid subspaces

Figure 5.5: A still frame from a random walk over an r-dimensional sphere of
constant radius.

ical approaches are also possible by treating q as a set of mixing weights. We can

then construct arbitrary paths ϕ, sampled at T time steps ϕ1, . . . , ϕT, that determine

the corresponding T time steps of a full-coordinate velocity field. In this vein, we

show the fluid simulation that results from a random walk over a higher-dimensional

sphere of constant radius in the following video.2 (Figure 5.5 shows a still frame from

the video for reference.)

5.5 Sonification

We will now devise a strategy for converting the motion of a fluid into a sound.

As mentioned previously, one of the main advantages of the empirical eigenvec-

tors approach is that it already yields a quasi-frequency spectrum. However, some

additional choices need to be made before these vectors can be made audible. As
2Sphere: https://youtu.be/y6zraBpH5PA

82

https://youtu.be/y6zraBpH5PA


Chapter 5. Visualizing and sonifying fluid subspaces

0 50 100 150
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Singular values from SVD

Singular value entry

S
in

g
u

la
r 

v
a

lu
e

(a) Singular values: T = 150

0 50 100 150
10

1

10
2

10
3

10
4

10
5

Remapping singular values to audible frequencies

Frequency index

F
re

q
u

e
n

c
y
 v

a
lu

e

(b) Remapped frequencies: f = 64 Hz, s = 1.75

Figure 5.6: Singular values and their remapped frequencies. Note the logarithmic
scale on both y-axes. The horizontal red lines on both plots indicate the bounds of
the human audible frequency range.

reviewed in Chapter 2, this sequence of subjective but judicious choices is known as

sonification. Our system resembles a hybrid strategy between Parameter Sonifica-

tion (PMSon), discussed in §2.1.3, and Model-Based Sonification (MBS), discussed in

§2.1.2.

We begin by interpreting the T singular values σ1, . . . , σT from the singular value

decomposition as characteristic frequencies. There are two immediate concerns about

this raw data. First, we can see in Figure 5.6a that the values range over approxi-

mately 4 orders of magnitude, which is approximately 13 octaves, and decrease to

numbers less than 1. However, the human audible frequency range begins at 20 Hz

and spans approximately 10 octaves, up to 20000 Hz [79]. Thus, we must somehow

normalize the data to this audible range. Secondly, the singular value spectrum be-

gins with a maximum value and then decreases, whereas an audio spectrum starts

at fundamental frequency and then increases. Hence, we invert the singular values.

One way to construct a practical mapping is to specify a fundamental frequency f

83



Chapter 5. Visualizing and sonifying fluid subspaces

and an octave scaling s. Writing our audible frequencies as f1, . . . , fT, we can define

our mapping from singular values to audible frequencies as follows:

fi = f ·
(

σ−1
i

σ−1
max

) 1
s

= f ·
(

σmax

σi

) 1
s

, i = 1, . . . , T.

(5.1)

The effect of this remapping can be seen in Figure 5.6b, where we have used

a fundamental frequency of f = 64 Hz and an octave scaling of s = 1.75. The

spectrum now begins at the fundamental, f = 64 Hz, and ranges up to a maximum

of approximately 15000 Hz, which is an acoustically acceptable spread.

With an audible spectrum established, we now choose amplitudes for each in-

dividual frequency. These can be mapped from a corresponding subspace vector

q ∈ RT, as each of its T components, q1, . . . , qT can be thought of as an amplitude for

the T corresponding frequencies f1, . . . , fT. Care must be taken here to ensure that

sum of all the amplitudes does not exceed unity gain, as this would lead to clipping.

More concretely, we constrain the L1 norm of q, |q|1 = ∑T
i=1|qi|, to be at most 1.

A typical subspace vector q may also contain negative components. However, these

can simply be thought of as encoding a positive amplitude and a reversal of phase.

The phase reversal can be discarded, as its perceivable effect is typically undesirable

clicking artifacts.

With these considerations in hand, we design a mapping from a subspace vector

q to an amplitude vector a of unit L1 norm as follows:

ai =
|qi|
|q|1

, i = 1, . . . , T. (5.2)

Given a sequence (qt) of vectors that describe a sampled trajectory q1, . . . , qT through

84



Chapter 5. Visualizing and sonifying fluid subspaces

the subspace RT, we can normalize each at vector individually. Alternatively, we

can determine which qt has the maximum L1 norm, which we denote qmax, and

normalize based on |qmax|1. The effect of the former is a relatively uniform volume

level, while the latter yields a more variable volume envelope. Each approach has its

own musical merit depending on the compositional situation. Further analysis and

justification of our sonification choices is given in Chapter 6.

5.6 Synthesis

With our mappings carried out, we can now produce an audible sound. To illustrate

the basic mapping between the visual forms of the eigenvectors and their correspond-

ing remapped frequencies, we move sequentially through the eigenvectors and their

corresponding frequencies in the following video.3 (Figure 5.7 shows a single frame

from this video for reference.) This mapping generates a musical scale, and composi-

tional operations can be carried out at the note level. For example, by scrambling the

order of the frequencies and adding some rhythmic variety, we can produce a short

melody, as demonstrated in the next video.4 (Figure 5.8 shows a single frame from

this video for reference.)

The previous example essentially captures freeze frames of each individual mode.

However, a smoother, more sophisticated auditory mapping is needed if we want to

capture the flow of the smoke through mixtures of the modes. As a point of de-

parture, following the synthesis model in §2.1.4, we use subtractive synthesis, which

passes a spectrally rich input signal through various filters in order to alter its timbre.

In our case, we construct a filter bank that attenuates the input signal everywhere ex-

cept at the resonant frequencies that correspond to the active modes. A particular

3Sequential: https://youtu.be/cB79S4NwCHc
4Melody: https://youtu.be/N6fzJXbn2ts

85

https://youtu.be/cB79S4NwCHc
https://youtu.be/N6fzJXbn2ts


Chapter 5. Visualizing and sonifying fluid subspaces

Figure 5.7: A still frame from moving through the modes in sequential order from
principal singular value to least significant singular value.

86



Chapter 5. Visualizing and sonifying fluid subspaces

Figure 5.8: A still frame from a permutation of the modes, forming a melody.

amplitude vector a with component ai then tells us the strength with which each cor-

responding frequency fi will resonate. The nature of the input sound also strongly

influences the resulting timbre: noise creates a more atmospheric effect, while im-

pulses can create driving rhythmic textures. To match the fluid feel of the smoke

propagation, we use broadband noise for the primary sound examples in this paper.

5.7 Time Evolution

Static sound, while interesting as a new timbre for a few seconds, eventually grows

stale. Thus, we would like to capture the time evolution of the subspace trajectory

as a dynamic sonic event. This can be achieved by cycling through the the sequence

of amplitude vectors a1, . . . , aT corresponding to the subspace trajectory q1, . . . , qT.

Using subtractive synthesis, as described above, we can generate a corresponding

sound signal that changes subtly at each time step t. As previously discussed, dif-

87



Chapter 5. Visualizing and sonifying fluid subspaces

Figure 5.9: A still frame from the reduced equations of motion.

ferent trajectories through the subspace generate different sequences of amplitude

vectors. Musically, the unfolding of these trajectories over time occurs on a micro-

scale, but the overall effect is perceived smoothly, much as the individual frames of a

video fuse together into a continuous motion.

Experimentally, we have explored several different categories of subspace trajec-

tories. In the third supplemental video5, we gradually activate each eigenvector in

sequence and push the resulting subspace vector through the reduced-space Navier-

Stokes equations. (Figure 5.9 shows a single frame from this video for reference.) In

the final supplemental video6, referenced earlier in §5.4, we put aside the equations

of fluid flow and walk the subspace vector q across the surface of a sphere in RT.

(See Figure 5.5.)

5Reduced: https://youtu.be/_DXRQZYLcdE
6Sphere: https://youtu.be/y6zraBpH5PA

88

https://youtu.be/_DXRQZYLcdE
https://youtu.be/y6zraBpH5PA


Chapter 5. Visualizing and sonifying fluid subspaces

5.8 Conclusion

In this chapter, have performed a preliminary aesthetic exploration of the visual and

sonic patterns that arise from a generalized form of the Chladni plate experiment, in

the spirit of computer-generated cymatics. Instead of studying the eigenvectors of a

rigid vibration, we computed the empirical eigenvectors associated with fluid flow.

The resulting forms are visually striking, and the corresponding spectrum can be

sonified to produce a promising compositional palette. Suspending the underlying

physics and performing an abstract subspace traversal produces intriguing results,

which suggest many possible avenues for future artistic work. The interplay between

the audio and the visual shapes seems to form a compositional palette that is worthy

of further exploration, as pursued in Chapter 6.

89



Chapter 6

Compositional explorations of fluid

subspaces

With our sonification system from Chapter 5 in hand, we now delve into its impli-

cations for composition. The process of musical composition, at its core, focuses on

different organizations of time. Commonly, we organize our thoughts and experi-

ments on different timescales: the sound object level, which governs very short du-

rations such as individual notes, the mesolevel, which is an intermediate scale which

governs larger groups such as phrases or themes, and the macrolevel, which governs

the overall form and structure of a piece of music. The idea of conceptualizing the

organization of music into three hierarchical time levels is especially emphasized in

the works of Heinrich Schenker, whose theory of Schenkerian analysis works to unite

the structure of musical pieces on the scales of foreground, middleground, and back-

ground [80]. Further subdivision of time scales have been noted by Curtis Roads,

who articulates a total of nine time scales, ranging from the infinite down to the in-

finitesimal [81]. While this more broad taxonomy is conceptually useful, in practice,

composing a piece whose duration is only several minutes does not typically require

90



Chapter 6. Compositional exploration of fluid subspaces

working at time scales broader than our stated macro level. Additionally, unless

the compositional process includes the use of “microsound,” or sounds that “extend

down to the threshold of auditory perception," we will also not need to work at time

scales shorter than the sound object level. Hence, for our purposes, conceptualizing

music in terms of three different time scales shall suffice.

6.1 Mode Isolation

The simplest compositional parameter of interest is the activation or deactivation

of individual modes. While a physically accurate subspace re-simulation will, in

general, at each time step, require a linear combination of each of the r = 150 modes,

it is also possible to evolve the velocity fields over time according to algorithmic rules

rather than physics-based rules. We imagine the r modes as a sort of configuration

space, so that the corresponding r weights map to a particular spatial and aural

phenomenon. As such, the most elementary experiment is the sequential activation

of one mode at a time, creating a corresponding fluid shape of “vibration” which is

mapped to its related “frequency” according to the system explained in Chapter 5. A

low-1 medium-2 and high-frequency mode3 are each shown isolated in the referenced

videos.

Because each mode in isolation can be regarded as a musical note, this strat-

egy allows us to carry out musical composition on the note level, producing simple

melodies. Without a principled way to choose a rhythm, however, we are left only

to general aesthetic considerations. An example of such a mode-based melody4 is

demonstrated in the referenced video. (Figure 5.8 shows a single frame from the

1Low: https://www.youtube.com/watch?v=CAoQLYr8doE
2Medium: https://www.youtube.com/watch?v=Vwpi6U7AD5A
3High: https://www.youtube.com/watch?v=o0UtONgtpFo
4Melody: https://www.youtube.com/watch?v=N6fzJXbn2ts

91

https://www.youtube.com/watch?v=CAoQLYr8doE
https://www.youtube.com/watch?v=Vwpi6U7AD5A
https://www.youtube.com/watch?v=o0UtONgtpFo
https://www.youtube.com/watch?v=N6fzJXbn2ts


Chapter 6. Compositional exploration of fluid subspaces

video for reference.)

6.2 Mode Superposition

The next experiment to try is the superposition of modes, creating mixtures of the

modal vibration shapes in the spatial domain and harmonies in the audio domain.

Again, the physics-based time evolution governs a complex coupling of the modal

weights that resists simple exploration, so we turn to simple algorithmic rules to

better understand the system. We can see the result of mixing a low-, medium-, and

high-frequency mode with equal proportions.

Figure 6.1: Three individual modes in superposition produce a mixed modal
shape.

92



Chapter 6. Compositional exploration of fluid subspaces

6.3 Dynamic Control

If we define the energy of a fluid snapshot in time as the L2 norm of the vector of

modal weights, then we see that as time unfolds, the energy waxes and wanes accord-

ing to the strength of the various modal weights. Accordingly, the sound increases

or decreases in overall spectral density and loudness based on the same principle.

However, by forgoing the physics-based time-evolution, we can harness direct spec-

tral control over the visuals and sound, producing simple and pleasing audiovisual

gestures such as crescendo, diminuendi, and swells. An accent followed by diminu-

endo5, and a crescendo-diminuendo swell6 are each shown in the referenced videos,

accompanied by still frames in Figures 6.2 and 6.3, respectively.

5Accent: https://www.youtube.com/watch?v=0An95mF3Yk0
6Swell: https://www.youtube.com/watch?v=zUkpNKpkwP4

93

https://www.youtube.com/watch?v=0An95mF3Yk0
https://www.youtube.com/watch?v=zUkpNKpkwP4


Chapter 6. Compositional exploration of fluid subspaces

Figure 6.2: A still frame from the accent followed by diminuendo video.

94



Chapter 6. Compositional exploration of fluid subspaces

Figure 6.3: A still frame from the crescendo-diminuendo swell video.

95



Chapter 6. Compositional exploration of fluid subspaces

Figure 6.4: Each of the r = 150 modes can be controlled individually, analogous
to a set of equalization faders. Source: Wikimedia Commons.

6.4 Mode Coupling and Envelopes

The simultaneous activation of all modes produces a spectrally rich sound quality,

or timbre7, not dissimilar from noise. However, more refined filtering leads to a

sparser spectrum, yielding a sound quality similar to musical chords. This filtering

can be achieved simply by activating only a small subset of the r = 150 modes at

once, much as in the mode superposition study. However, such a chord is static

over time, creating a dull musical effect for any prolonged duration. We can inject

extra life into these chords by modulating their envelopes—i.e., creating time-varying

amplitude envelopes around each mode. This strategy is akin to slowly adjusting the

different fader knobs from high to low at different speeds. A simple mathematical

collection of envelopes are sinusoids at different frequencies,8 as the referenced video

example illustrates. (Figure 6.6 shows a single frame from this video for additional

7According to ANSI 1960, "Timbre is that attribute of auditory sensation in terms of which a listener
can judge that two sounds similarly presented and having the same loudness and pitch are dissimilar.
[. . .] Timbre depends primarily upon the spectrum of the stimulus."

8Oscillation: https://www.youtube.com/watch?v=6nEVXFkWSZ4

96

https://www.youtube.com/watch?v=6nEVXFkWSZ4


Chapter 6. Compositional exploration of fluid subspaces

reference.) Visually, the shapes morph in and out of a slow cycle of superpositions,

while the sound fades in and out of subtle frequencies of an overall chord.

Figure 6.5: Each modes’s fader knob can be modulated smoothly over time, creat-
ing spectrally-varying envelopes.

97



Chapter 6. Compositional exploration of fluid subspaces

Figure 6.6: A single frame from the oscillation video generated by using time-
varying sinusoidal envelopes of a chord.

We can also couple different modes together, or transfer from one collection of

modes smoothly into another, in analogy to a musical chord progression. (Coupling

the modes is also inspired by the complex nonlinear coupling induced by the real

physical phenomenon of advection that we are simulating.) As time evolves, both

98



Chapter 6. Compositional exploration of fluid subspaces

the amplitude envelopes and the spectral content itself shifts, producing a complex

visual and audio effect9 as seen in the referenced video example. (Figure 6.7 shows

a single frame from this video for additional reference.)

Figure 6.7: A single frame from the crossfade video generated by modulating both
the amplitude envelopes and spectral content.

9Crossfade: https://www.youtube.com/watch?v=RCIuZaWqvds

99

https://www.youtube.com/watch?v=RCIuZaWqvds


Chapter 6. Compositional exploration of fluid subspaces

6.5 Sonification Choices

Now that we have seen the potential of our sonification system in action, we return

to the justification of the many aesthetic choices made in designing it. We have an

overwhelming freedom of choice here. In particular, there is the choice of the physical

training set, the choice of mapping between the dynamical system and the audio, and

the choice of aesthetic stance. In the following sections, we will consider these issues

in detail.

6.5.1 Training Data

Because our system relies on the empirical eigenvectors of a set of training data, the

first choice we make in designing our system is the selection of the training data.

An insufficiently rich training set will generate a series of results that are limited in

dynamic variety due to the nature of the subspace algorithm. Early experiments in

this direction were unsuccessful, as the collection of eigenvectors formed results that

almost exactly mimicked the full-space simulation from which they were generated.

Thus, the idea of using a sequence of full-space simulations was a natural attempt to

mitigate this issue. However, since the eigenvectors are agnostic to time, it is useful

to construct a sequence of simulations that are very distinct from one another. Hence,

our strategy of modifying the direction of buoyancy was appealing. This technique

results in six different outward-facing plumes, each of which having its own unique

dynamics. The inherent symmetry to this strategy is also appealing from an aesthetic

standpoint, as by privileging no one direction over another, the eigenvectors acquire

a more abstract quality, detaching them from the more scientifically-grounded full-

space simulation. As a result, the empirical eigenvectors take on a series of aes-

100



Chapter 6. Compositional exploration of fluid subspaces

thetically pleasing turbulent forms, ideally suited for generating novel audiovisual

compositions.

6.5.2 Sound Synthesis

As discussed in Chapter 2, the details in implementing a system of sonification allow

for a wide freedom of choice. Hence, it is important to justify our choices by per-

ceptual or aesthetic concerns. We identify and discuss several of our choices in this

section.

Perhaps the choice that influences most the character of our auditory results is

our choice for sound synthesis. No matter what mapping we choose from physics

to sound, the engine which produces actual audible sound influences the output

tremendously. Thus, our choice of using subtractive synthesis of spectrally rich noise

deserves further investigation. Indeed, our initial concept utilized a simpler system

of additive synthesis. However, we found the subtractive synthesis more suitable to

our aesthetic needs for several reasons.

Firstly, our system produces not just sound, but sound and visuals. Aesthetically

speaking, we desired a reasonable congruence between the character of both the au-

dio and the visual domain. In particular, although the dynamics of the visuals varied

substantially, the overall look and feel did not—the simulations were all fluid dynam-

ics of smoke billowing about smoothly. Thus, we immediately discarded many audio

results that were choppy and robotic, as the resulting incongruence was displeasing

aesthetically. We also discarded a quantized scale such as 12-tone equal temper-

ament, feeling that its rigidity would belie the abstract amorphous quality of our

visuals. Therefore, what remained to explore were ambient, textural sounds. Both

additive and subtractive synthesis seemed promising, as we had in hand a collection

of frequencies from our mapping scheme. While additive synthesis is simple and
101



Chapter 6. Compositional exploration of fluid subspaces

effective, its results tend to be too sterile for our taste. The individual sinusoids are

too digitally clean, and their superpositions result in a computer-like purity that also

belies the messy, turbulent swirls of our visuals. Hence, we turned our attention to

subtractive synthesis. As discussed in Chapter 2, in some sense, subtractive synthesis

is a logical choice, as the entire concept of modes of vibration that our sonification

system depends on is built on the foundation of subtractive synthesis. Moreover, by

varying the input signal to the filter, a variety of different timbres can be generated.

In contrast, additive synthesis produces one single result, which must then be addi-

tionally filtered and adjusted to produce pleasing outputs. We settled on using gray

noise, which emphasizes the lower frequencies in its spectral output, to bring out the

principal singular values more prominently [82]. It must be mentioned that the choice

itself to map the principal singular values to lower frequencies—that is, a choice of

polarization, as discussed in Chapter 2, is itself somewhat arbitrary. However, this

choice rests on perceptual considerations, not aesthetic ones. The prominent sonic

tones in any timbre are the fundamental frequencies, which are the lowest frequen-

cies; hence, inverting the singular values to match this prominence is a natural and

justifiable step to take.

6.5.3 Real-Time and Non-Real-Time Strategies

One of the potential drawbacks of our audiovisual system is its heavy computation

cost. As a result, the capacity for real-time interaction is infeasible as of time of

writing in 2017. However, the dynamics of non-real-time composition allow for a

different type of compositional process than a real-time system would afford. In this

section, we discuss a few pros and cons of each of these types of systems, illustrat-

ing our non-real-time approach while suggesting a roadmap to eventual real-time

strategies.
102



Chapter 6. Compositional exploration of fluid subspaces

By its nature, a non-real time system lends itself better toward careful structural

planning. Pieces must be planned and executed ahead of time rather than as a flash

of inspiration. Hence, formal structures flourish, and strategies for unifying a piece

on different time scales become very attractive. The possibility of unifying the mate-

rial of a piece in the micro-, meso-, and macro-time scales is aesthetically powerful,

and only possible through non-real-time composition. As a result, pieces that are de-

signed with a non-real-time process tend to be structurally sound and aesthetically

coherent.

However, the high degree of structure of non-real-time strategies can also be a

weakness. The capacity for free improvisation and interaction through real-time of-

ten produces unexpected and daring results. Feedback through interaction with the

system and having the system “interact back” can be extremely rewarding, lead-

ing to new insights and promising directions that would otherwise be impossible to

discover. Additionally, the ability of the audience to participate in a piece through

interaction changes the very nature of the piece. A viewer/listener no longer must

let the experience wash over them; instead, they participate actively in the creation

of the piece themselves, defining their own new experience which is distinct from all

other viewers’ experiences.

Ultimately, the non-real-time strategies employed in this dissertation proved effec-

tive, as the audiovisual studies were only possible from designing a careful strategy

of moving through the subspace according to either mathematical or physical rules.

However, the capacity for a real-time interaction to generate unexpected new insights

and results from this system remains to be seen, and is a promising direction for fu-

ture work. Interaction could happen on many levels. For example, the interaction

could adjust physical parameters, by introducing new obstacles to the simulation or

adjusting the buoyancy or vorticity of the flow. Alternatively, the interaction could

103



Chapter 6. Compositional exploration of fluid subspaces

be more gestural, allowing the user to control the energy of the system, creating dy-

namical swells and frequency sweeps as demonstrated by the earlier studies in this

section.

6.5.4 Aesthetics

In our creation of these studies, we imposed our own aesthetic values to some de-

gree on the sonification system to produce musical results. While some sonifications

remain purely scientific, created only for the purpose of identifying patterns in data,

our own system was always born out of a desire to create musical outputs. The

tension between adhering to fixed scientific principles and generating aesthetically

interesting musical output is a constant challenge in composing generative music of

this kind. Our aesthetic take, as discussed in Chapter 2, is a middleground between

these two extremes. While a system itself can be aesthetically pleasing in the math-

ematical sense, this is no guarantee of the quality of its musical output. Conversely,

a total abandonment of the systematic approach simply for the reasons of adjusting

the musical output largely negates the point of composing using such a system in

the first place. To that end, our musical adjustments remained of a minor quality,

not abandoning the logic of the system, but merely adjusting it in certain cases to

compensate for the quality of the musical output. For example, when we take our

amplitude mapping from the numerical data of the simulation, all sign information

is neglected, as a positive and negative amplitude in sound merely represents an un-

pleasant phase distortion. While this approach arguably throws away a dimension of

the physical data, it does not fundamentally detach the result from the system, and

is thus considered acceptable from our aesthetic point of view.

One of our principal aesthetic goals toward future work is the idea of simulating

smoke under more fanciful systems of time-evolution than standard physics. Hence,
104



Chapter 6. Compositional exploration of fluid subspaces

many of our examples play with the idea of controlling the time evolution in dif-

ferent mathematical procedures rather than sticking with the correct physics. While

this again is pushing the boundaries of our original system, we nonetheless retain the

same link between the visual and audio results. Thus, we view this form of modula-

tion as a robust way to explore new compositional forms. Changing the underlying

rules which govern the time-to-time behavior of the audiovisual system is not the

same as abandoning the system; in fact, it has proved fruitful in generating novel

results. These strategies move us more in the direction of simulating fluids “as they

might be” vs. fluids “as they actually are.”

105



Chapter 7

Conclusions and future work

In this dissertation, we strove to develop a generative audiovisual compositional lan-

guage. Toward this end, we presented a sonification system for computational fluid

dynamics based on the method of subspaces. Additionally, we devised a data com-

pression algorithm that alleviates the memory costs of subspace algorithms by an

order of magnitude. Through systematic experimentation and exploration, our soni-

fication system was tested and explored, producing a series of audiovisual etudes.

The data compression algorithm was tested on a variety of different types of scenes,

perturbations, and compression levels, demonstrating its general robustness and ef-

fectiveness. Continuing research in the direction of the sonification system is an

important step in the development of new audiovisual grammars in media art, while

further work in the area of data compression represents an important step toward

making subspace simulations more computationally practical.

106



Chapter 7. Conclusions and future work

7.1 Summary of Results

We have devised a system of sonification of computational fluid dynamics by con-

sidering the empirical eigenvectors and eigenvalues of a subspace simulation. Based

loosely on the ideas of Chladni plates and the general conception of cymatics, we

map the characteristic resonant modal shapes of the fluid velocity field bases to their

corresponding audio frequencies, producing a sound signal. The choice of a model-

based sonification strategy allows us to unfold our visuals and sounds over time

within the framework of the system. Hence, the natural sequence of fluid veloc-

ity fields as governed by the subspace Navier-Stokes equations determines a natural

time progression of dynamic visual forms and sonic content.

Several sound synthesis strategies and transformations had to be considered. We

carefully mapped the raw singular values into frequencies, choosing an intuitive

polarization as well as a ratio-preserving transformation and offset to keep the values

within the limits of human hearing. Following the spirit of physical modal vibrations,

we selected a subtractive synthesis technique, in which a filterbank of resonant filters

at the corresponding modal frequencies were excited in various strengths and decay

times. Although many possible input signals could be used with the filter bank, we

chose to use noise, as it was both spectrally rich and matched the aesthetic feel of

fluid flow.

Our audiovisual etudes each explored different combinations of modal excita-

tions. By isolating individual modes, superimposing them, and cross-fading between

them, we demonstrated the versatility and compositional usefulness of having spec-

tral control in both the spatial and audio domain. The gestures of crescendo and

diminuendo were also performed by controlling the overall energy of the system,

demonstrating the potential for different musical articulations. Finally, the general

107



Chapter 7. Conclusions and future work

principle of constructing time-evolving paths ungoverned by physics illustrated an

important compositional possibility of working with fluids and sounds more fan-

cifully, leading to the idea of smoke “as it might be” as opposed to smoke “as it

is.”

The data compression technique developed in Chapter 4 serves to address the

memory pressure of subspace simulations. In an analogy to the JPEG compression

scheme, we use a DCT-based transform compression algorithm to represent the sub-

space basis vectors in the Fourier domain, with the intuition that the energy at the

higher frequencies can be dampened or discarded without distorting the original

data greatly. Our algorithm, while intuitively based on JPEG, made several impor-

tant alterations that were necessary for fluid data, including adapting the process

to three dimensions, systematically generating damping quality matrices, perform-

ing an energy-based per-block quality selection, and devising a new zigzag scan. In

addition, since naïve reconstruction during the decompression stage incurred heavy

computational costs, it largely negated the advantage of the subspace approach to

begin with. We circumvented this problem by devising a novel fast sparse frequency-

domain reconstruction that enabled the algorithm to reduce memory costs without

severely increasing time costs.

7.2 Limitations

There are several drawbacks to our current sonification and audiovisual system. The

most challenging is that of computational speed. While such a system would ideally

run in real time, allowing not only for simple compositional feedback and iteration

but also for user interaction, both the simulation and rendering times as of 2017

are extremely far away from these speeds. This means that even short compositions

108



Chapter 7. Conclusions and future work

can take hours or days to generate at high visual quality. However, the restriction

of working in non-real time does force the composer to make careful compositional

choices ahead of time, producing aesthetically very different works from real-time,

experimental, interactive systems.

Another basic drawback of the sonification system is inherent in the subspace

method itself. Once a training set is chosen and the subspace basis is computed,

simulations are locked into reproducing only dynamics that are reasonably similar

to the original training set. Hence, if the user desires any significantly different set of

motions or dynamics, a fresh simulation must be precomputed. While in principle

this can be done repeatedly, the time costs are quite prohibitive. A more analytical

approach such as using a particular mathematical basis such as Laplacian eigenfunc-

tions is possible, but the fluid modes would then be more regular, undermining the

visual variety of the training-based approach. However, the constraint of a particular

space of dynamics can also be viewed as fruitful from a compositional standpoint.

Indeed, limitations often drive artistic creativity. The main challenge is choosing a

reasonable set of constraints in the first place.

The data compression scheme, while obtaining an order of magnitude compres-

sion, still leads to a slight increase in time costs, which may be unacceptable to a

user who already has sufficient memory to compute the uncompressed subspaces.

Furthermore, the system assumes a fluid simulation technique using a regular grid.

Many of the techniques might generalize, but extending the technique to applications

with tetrahedral meshes is still a direction for future work.

109



Chapter 7. Conclusions and future work

7.3 Future Work

We have explored several basic parameter modulations in our sonification system,

producing a series of audiovisual etudes. However, further work in this direction

could be considered. Other parameters such as fluid viscosity or buoyant forces

could be modulated, leading to new insights into the interplay between form and

sound. The sonifications presented in this dissertation all derived from one particular

subspace training. However, we could retrain the subspace in a variety of ways,

leading to the potential for new artistic expression. The introduction of obstacles

would also perturb the basis functions, leading to a novel spectrum. The present

rendering system remains static, presenting the smoke in each simulation with the

same lighting and coloring; however, a mapping between the rendering system and

sound could also be explored, yielding more variety in the visuals. Finally, more

complete audiovisual works, deeper in macrostructure and musical form, remain to

be seen.

In the data compression scheme, no matter what the simulation, the approach

relies on using the discrete cosine basis, not leveraging the potential for more sparse

representations depending on the simulation at hand. More general techniques,

such as dictionary-based methods using orthogonal matching pursuit, could lead

to sparser representations, and therefore both better memory compression as well as

time reduction, due to the reliance of the algorithm on the sparse frequency-domain

reconstruction during the decompression phase. Additionally, besides the run-length

encoding step, no further lossless compression is applied to the data stream during

the compressor. However, preliminary tests show that the data stream typically con-

tains informational redundancies, implying that an additional step through entropy

encoding such as Huffman or arithmetic coding could increase the compression effi-

110



Chapter 7. Conclusions and future work

ciency.

7.3.1 Outlook

The general strategy of using dynamical systems from mathematics and physics as an

engine for generating sound and visuals shows much promise for generating novel

audiovisual art. Outside of fluid dynamics, many other processes from physics such

as Brownian motion, the heat equation, the wave equation, have potential for interest

results. Chaotic systems such as the logistic map are fertile ground for art, as they

are very sensitive to initial conditions and parameter modulation. This sensitivity

means that they would generate contrasting results from slightly perturbed inputs,

suggesting an interesting compositional direction of parameter perturbation. Entirely

families of audiovisual pieces could be composed simply by setting up a baseline set

of initial conditions and slowly modulating them.

As computing power and algorithms become more robust in the future, real-time

interaction with physics-based audiovisual systems will become feasible. Interaction

adds an extra layer of richness into the system. The user can modulate parameters in

real-time and immediately see and hear the results, setting up a powerful feedback

loop. Instead of composing using pre-planned compositional gestures, the system

can be a fertile playground for improvisation and experimentation. It will also be

possible to simulate both “realistic” results using the correct physics as well as more

fanciful results. Users can explore even further into dynamical systems “as they

might be” and the resulting audiovisual art.

The system has been described so far in essence takes a physics-based “engine”

and generates sound and visuals from it. However, the reverse possibility is also

feasible. That is, we can start with a sequence of sounds and use them to drive

the physics. Not only does this create the possibility of generating interest novel
111



Chapter 7. Conclusions and future work

dynamics, it also opens up the idea of feedback. A sequence of sounds generated

from one physics engine can be fed into another, or even back into itself, creating

unexpected results. Even a simple dynamical system is likely to create interesting

patterns when fed back into itself in such a manner.

Scientifically, the strategy of representing complex data with audiovisual streams

multimodally has the potential for new intuitive insight. Hence, the mapping of com-

plex dynamical systems into sound and visuals may give scientists a more intuitive

and clearer way to grasp their logic. With rigorously defined systems of sonifica-

tion, it is possible that input/output pairs can easily be identified. That is, given

the audiovisual result, the user intuitively understands the underlying process that

must have generated that result. If a sonification system can be understood on this

level, then the representation of data through multiple modes can be highly desir-

able, as it allows scientists to think and perceive the data from several different levels

of understanding.

Ultimately, a systematic mapping of dynamical systems into multimodal art has

many positive implications in both art and science. We hope that these disciplines

can move closer together along their commonly shared ideas. Both artists and scien-

tists have much to learn from one another. The work in this dissertation is just one

stepping stone toward a unified language of art and science, but we believe that the

future is bright for this hybridized field.

112



Bibliography

[1] M. Gad-el Hak, “Fluid mechanics from the beginning to the third millennium,”
International Journal of Engineering Education, vol. 14, no. 3, pp. 177–185, 1998.

[2] I. Xenakis, Formalized music: thought and mathematics in composition. No. 6, Pen-
dragon Press, 1992.

[3] K. Stockhausen and E. Barkin, “The concept of unity in electronic music,” Per-
spectives of New Music, pp. 39–48, 1962.

[4] M. V. Mathews, “The digital computer as a musical instrument,” Science, vol. 142,
no. 3592, pp. 553–557, 1963.

[5] J. M. Chowning, “The synthesis of complex audio spectra by means of frequency
modulation,” Journal of the audio engineering society, vol. 21, no. 7, pp. 526–534,
1973.

[6] J. Cage, Silence: lectures and writings. Wesleyan University Press, 2011.

[7] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface,” The physics of fluids, vol. 8, no. 12,
pp. 2182–2189, 1965.

[8] R. A. Gentry, R. E. Martin, and B. J. Daly, “An eulerian differencing method for
unsteady compressible flow problems,” Journal of Computational Physics, vol. 1,
no. 1, pp. 87–118, 1966.

[9] J. L. Hess and A. O. Smith, “Calculation of potential flow about arbitrary bod-
ies,” Progress in Aerospace Sciences, vol. 8, pp. 1–138, 1967.

[10] J. F. O’brien and J. K. Hodgins, “Dynamic simulation of splashing fluids,” in
Computer Animation’95., Proceedings., pp. 198–205, IEEE, 1995.

[11] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A non-oscillatory eulerian
approach to interfaces in multimaterial flows (the ghost fluid method),” Journal
of computational physics, vol. 152, no. 2, pp. 457–492, 1999.

113



Bibliography

[12] R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for procedural fluid
flow,” ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 46, 2007.

[13] J. Stam, “Real-time fluid dynamics for games,”

[14] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel, “Flip: a low-dissipation, particle-
in-cell method for fluid flow,” Computer Physics Communications, vol. 48, no. 1,
pp. 25–38, 1988.

[15] R. Ando, N. Thürey, and C. Wojtan, “Highly adaptive liquid simulations on
tetrahedral meshes,” ACM Trans. Graph., vol. 32, pp. 103:1–103:10, July 2013.

[16] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified particle physics
for real-time applications,” ACM Transactions on Graphics (TOG), vol. 33, no. 4,
p. 104, 2014.

[17] T. Pfaff, N. Thuerey, and M. Gross, “Lagrangian vortex sheets for animating
fluids,” ACM Trans. Graph. – SIGGAPH 2012 Papers, vol. 31, pp. 112:1–112:8, July
2012.

[18] A. Lucier, “Origins of a form: Acoustical exploration, science and incessancy,”
Leonardo Music Journal, pp. 5–11, 1998.

[19] G. Kepes and A. Feininger, “The new landscape in art and science,” 1958.

[20] A. Lauterwasser, Wasser-Klang-Bilder:" die schöpferische Musik des Weltalls". AT
Verlag, 2003.

[21] A. Treuille, A. Lewis, and Z. Popović, “Model reduction for real-time fluids,”
ACM Transactions on Graphics, vol. 25, pp. 826–834, July 2006.

[22] C. E. Shannon and W. Weaver, The mathematical theory of communication. Univer-
sity of Illinois press, 1998.

[23] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
2012.

[24] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.

[25] G. K. Wallace, “The jpeg still picture compression standard,” IEEE transactions
on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[26] M. I. S. ISO, “Iec 11172: Information technology-coding of moving pictures and
associated audio for digital storage media at up to about 1, 5 mbit/s,” Part1:
Systems, Part2: Video, Part3: Audio, 1993.

114



Bibliography

[27] D. Le Gall, “Mpeg: A video compression standard for multimedia applications,”
Communications of the ACM, vol. 34, no. 4, pp. 46–58, 1991.

[28] A. Pentland and J. Williams, “Good vibrations: Modal dynamics for graphics
and animation,” in Computer Graphics (Proceedings of SIGGRAPH 89), pp. 215–
222, July 1989.

[29] J. Seo, G. Irving, J. P. Lewis, and J. Noh, “Compression and direct manipulation
of complex blendshape models,” ACM Trans. Graph., vol. 30, pp. 164:1–164:10,
Dec. 2011.

[30] T. R. Langlois, S. S. An, K. K. Jin, and D. L. James, “Eigenmode compression for
modal sound models,” ACM Trans. Graph., vol. 33, pp. 40:1–40:9, July 2014.

[31] T. Hermann, A. Hunt, and J. G. Neuhoff, The sonification handbook. Logos Verlag
Berlin, 2011.

[32] G. Kramer, B. Walker, T. Bonebright, P. Cook, J. H. Flowers, N. Miner, and
J. Neuhoff, “Sonification report: Status of the field and research agenda,” 2010.

[33] M. A. Boden and E. A. Edmonds, “What is generative art?,” Digital Creativity,
vol. 20, no. 1-2, pp. 21–46, 2009.

[34] C. Roads, Composing electronic music: a new aesthetic. Oxford University Press,
USA, 2015.

[35] J. Schillinger, “The schillinger system of musical composition,” 1949.

[36] D. Lewin, Generalized musical intervals and transformations. Oxford University
Press, USA, 2010.

[37] J. Demers, Listening through the noise: the aesthetics of experimental electronic music.
Oxford University Press, 2010.

[38] M. A. Day, “The no-slip condition of fluid dynamics,” Erkenntnis, vol. 33, no. 3,
pp. 285–296, 1990.

[39] Y. Katznelson, An introduction to harmonic analysis. Cambridge University Press,
2004.

[40] S. W. Smith et al., “The scientist and engineer’s guide to digital signal process-
ing,” 1997.

[41] M. Babbitt, “Who cares if you listen?,” High Fidelity, vol. 8, no. 2, pp. 38–40, 1958.

[42] E. Křenek, Music here and now. WW Norton, 1939.

115



Bibliography

[43] G. K. Batchelor, An introduction to fluid dynamics. Cambridge university press,
2000.

[44] I. G. Currie, Fundamental mechanics of fluids. CRC Press, 2012.

[45] H. Lamb, Hydrodynamics. Cambridge university press, 1932.

[46] J. Stam, “Stable fluids,” in SIGGRAPH 1999, pp. 121–128, 1999.

[47] A. J. Chorin, J. E. Marsden, and J. E. Marsden, A mathematical introduction to fluid
mechanics, vol. 3. Springer, 1990.

[48] R. Bridson, Fluid simulation for computer graphics. CRC Press, 2015.

[49] D. W. Peaceman and H. H. Rachford, Jr, “The numerical solution of parabolic
and elliptic differential equations,” Journal of the Society for industrial and Applied
Mathematics, vol. 3, no. 1, pp. 28–41, 1955.

[50] J. Stam, “A simple fluid solver based on the fft,” Journal of graphics tools, vol. 6,
no. 2, pp. 43–52, 2001.

[51] J. Lumley, “The structure of inhomogeneous turbulent flows,” Atmospheric tur-
bulence and radio wave propagation, pp. 166–178, 1967.

[52] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition
in the analysis of turbulent flows,” Annual Rev. Fluid Mech, pp. 539–575, 1993.

[53] J. Barbič and D. L. James, “Real-time subspace integration for st. venant-
kirchhoff deformable models,” in ACM transactions on graphics (TOG), vol. 24,
pp. 982–990, ACM, 2005.

[54] “Synthesizing sounds from physically based motion,” in ACM SIGGRAPH 2001
Video Review on Animation Theater Program, SVR ’01, (New York, NY, USA),
pp. 59–, ACM, 2001. Director-O’Brien, James F.

[55] T. Kim and J. Delaney, “Subspace fluid re-simulation,” ACM Trans. Graph.,
vol. 32, pp. 62:1–62:9, July 2013.

[56] K. Carlberg, C. Bou-Mosleh, and C. Farhat, “Efficient non-linear model reduction
via a least-squares petrov-galerkin projection and compressive tensor approxi-
mations,” International Journal for Numerical Methods in Engineering, vol. 86, no. 2,
pp. 155–181, 2011.

[57] S. S. An, T. Kim, and D. L. James, “Optimizing cubature for efficient integration
of subspace deformations,” ACM Trans. on Graphics, vol. 27, p. 165, Dec. 2008.

116



Bibliography

[58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing. New York, NY, USA: Cambridge
University Press, 1992.

[59] C. L. Lawson and R. J. Hanson, Solving least squares problems. SIAM, 1995.

[60] R. Bro and S. De Jong, “A fast non-negativity-constrained least squares algo-
rithm,” Journal of chemometrics, vol. 11, no. 5, pp. 393–401, 1997.

[61] C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt, “An efficient con-
struction of reduced deformable objects,” ACM Transactions on Graphics (TOG),
vol. 32, no. 6, p. 213, 2013.

[62] Z. Pan, H. Bao, and J. Huang, “Subspace dynamic simulation using rotation-
strain coordinates,” ACM Transactions on Graphics (TOG), vol. 34, no. 6, p. 242,
2015.

[63] A. D. Jones, P. Sen, and T. Kim, “Compressing fluid subspaces,” in Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’16,
(Aire-la-Ville, Switzerland, Switzerland), pp. 77–84, Eurographics Association,
2016.

[64] M. Wicke, M. Stanton, and A. Treuille, “Modular bases for fluid dynamics,”
ACM Trans. on Graphics, vol. 28, p. 39, Aug. 2009.

[65] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, 1965.
URL: http://cr.yp.to/bib/entries.html#1965/cooley.

[66] B.-L. Yeo and B. Liu, “Volume rendering of DCT-based compressed 3D scalar
data,” IEEE Transactions on Visualization and Computer Graphics, vol. 1, pp. 29–43,
Mar. 1995.

[67] S. Guthe, M. Wand, J. Gonser, and W. Straßer, “Interactive rendering of large
volume data sets,” in IEEE Visualization, pp. 53–60, 2002.

[68] M. Treib, K. Bürger, F. Reichl, C. Meneveau, A. Szalay, and R. Westermann,
“Turbulence visualization at the terascale on desktop PCs,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, pp. 2169–2177, December 2012.

[69] T. de Witt, C. Lessig, and E. Fiume, “Fluid simulation using Laplacian eigen-
functions,” ACM Trans. Graph., vol. 31, no. 1, pp. 10:1–10:11, 2012.

[70] B. Long and E. Reinhard, “Real-time fluid simulation using discrete sine/cosine
transforms,” in Symposium on Interactive 3D graphics and games, pp. 99–106, ACM,
2009.

117



Bibliography

[71] K. Sayood, Introduction to Data Compression. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 4 ed., 2012.

[72] B. Liu, G. Mason, J. Hodgson, Y. Tong, and M. Desbrun, “Model-reduced varia-
tional fluid simulation,” ACM Trans. Graph., vol. 34, pp. 244:1–244:12, Oct. 2015.

[73] R. Bridson, Fluid Simulation for Computer Graphics. CRC Press, 2015.

[74] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Pro-
ceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[75] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.

[76] M. Stanton, Y. Sheng, M. Wicke, F. Perazzi, A. Yuen, S. Narasimhan, and
A. Treuille, “Non-polynomial Galerkin projection on deforming meshes,” ACM
Trans. Graph., vol. 32, pp. 86:1–86:14, July 2013.

[77] J. K.-M. Aaron Demby Jones and T. Kim, “Seeing and hearing the eigenvec-
tors of a fluid,” in Proceedings of Bridges 2017: Mathematics, Art, Music, Ar-
chitecture, Education, Culture (C. H. S. David Swart and K. Fenyvesi, eds.),
(Phoenix, Arizona), pp. 305–312, Tessellations Publishing, 2017. Available on-
line at http://archive.bridgesmathart.org/2017/bridges2017-305.pdf.

[78] D. Ryckelynck, “A priori hyperreduction method: an adaptive approach,” Jour-
nal of Computational Physics, vol. 202, no. 1, pp. 346–366, 2005.

[79] S. Rosen and P. Howell, Signals and systems for speech and hearing, vol. 29. Brill,
2011.

[80] A. C. G. Cadwallader, D. A. Cadwallader, and D. Gagné, Analysis of tonal music:
a Schenkerian approach. No. Sirsi) i9780195301762, 2007.

[81] C. Roads, Microsound. MIT press, 2004.

[82] S. Wilson, D. Cottle, and N. Collins, The SuperCollider Book. The MIT Press, 2011.

118

http://archive.bridgesmathart.org/2017/bridges2017-305.pdf

	Introduction
	Systems of Sonification and Aesthetic Goals
	Data Compression and Memory Obstacles with Subspace Matrices
	Thesis Statement and Main Results
	Organization

	Related Work
	Sonification and Generative Art
	Background
	Model-Based Sonification
	Parameter Mapping Sonification
	Synthesis Methods
	Aesthetics


	Background
	Fluids
	Physics-based modeling
	Simulation
	Numerical Simulation

	Subspace Methods
	Modal Analysis
	Sound generation
	A more general subspace formulation
	Cubature schemes


	Transform-based compression of fluid subspaces
	Previous Work
	Background
	Data Compression Preliminaries
	Mathematical Preliminaries
	The JPEG Coding Algorithm

	A Subspace Compression Scheme
	Compression Basis Selection
	DCT-Based Compression
	Subspace Decompression
	Discussion

	Results
	Discussion and Conclusions

	Visualizing and sonifying fluid subspaces
	Introduction
	Eigenvector Preliminaries
	Empirical Eigenvectors in Computational Fluid Dynamics
	Visualization
	Sonification
	Synthesis
	Time Evolution
	Conclusion

	Compositional exploration of fluid subspaces
	Mode Isolation
	Mode Superposition
	Dynamic Control
	Mode Coupling and Envelopes
	Sonification Choices
	Training Data
	Sound Synthesis
	Real-Time and Non-Real-Time Strategies
	Aesthetics


	Conclusions and future work
	Summary of Results
	Limitations
	Future Work
	Outlook





