
Lawrence Berkeley National Laboratory
LBL Publications

Title
Broadband Superabsorber Operating at 1500 °C Using Dielectric Bilayers.

Permalink
https://escholarship.org/uc/item/2bc452kq

Journal
ACS Applied Optical Materials, 1(9)

Authors
Gong, Tao
Duncan, Margaret
Karahadian, Micah
et al.

Publication Date
2023-09-22

DOI
10.1021/acsaom.3c00229

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bc452kq
https://escholarship.org/uc/item/2bc452kq#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Broadband Superabsorber Operating at 1500 °C Using Dielectric
Bilayers
Tao Gong, Margaret A. Duncan, Micah Karahadian, Marina S. Leite, and Jeremy N. Munday*

Cite This: ACS Appl. Opt. Mater. 2023, 1, 1615−1619 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Many technological applications in photonics
require devices to function reliably under extreme conditions,
including high temperatures. To this end, materials and structures
with thermally stable optical properties are indispensable. State-of-
the-art thermal photonic devices based on nanostructures suffer
from severe surface diffusion-induced degradation, and the
operational temperatures are often restricted. Here, we report on
a thermo-optically stable superabsorber composed of bilayer
refractory dielectric materials. The device features an average
absorptivity ∼95% over >500 nm bandwidth in the near-infrared
regime, with minimal temperature dependence up to 1500 °C. Our
results demonstrate an alternative pathway to achieve high-
temperature thermo-optically stable photonic devices.
KEYWORDS: extreme environments, photonics, FTIR, superabsorption, high temperature, thermophotovoltaic

■ INTRODUCTION
While there have been tremendous advances in photonic
technologies over the last decade, their operation under
extreme conditions and environments, including high temper-
atures, is still in its infancy. For instance, as the size of photonic
devices shrinks with increasing chip-scale integration and
compactness, plasmonic or photonic resonances in these
devices are often accompanied by substantial local heating at
the “hot spots” due to strong electromagnetic field confine-
ment.1,2 In addition, a wealth of thermal photonic applications
by their nature call for reliable high-temperature performances,
such as thermophotovoltaics (TPVs), radiative cooling,
photothermal tumor ablation, heat-assisted magnetic record-
ing, and optical devices with high input intensities.3−8 These
applications generally require the device architecture and the
constituent materials to possess thermally stable optical,
mechanical, and chemical properties. In actuality, state-of-
the-art thermal photonic devices (e.g., thermal emitters in TPV
systems) are typically constructed using refractory metals (e.g.,
W, Ta, and Mo) and dielectrics (e.g., certain nitrides, carbides,
and oxides) with high melting points, which are highly resistant
to degradation at high temperatures.5,9−11

From the perspective of device structures, two primary
categories have been explored extensively for thermal photonic
applications: bulk refractory materials (for broadband gray-
body emitters such as SiC, graphite, and W)12−18 and
nanostructured materials for selective emitters.19−28 The
former usually exhibits broadband emissivity (or equivalently

broadband absorptivity, according to Kirchhoff’s law)29 over
the wavelength range of interest for most TPVs, which helps
improve the output power density for the cell due to the large
radiated power from the emitter. The latter often features a
resonant emissivity/absorptivity spectra and results in a better
power conversion efficiency, provided the emission spectrum is
tailored to match the band gap of the PV cell such that out-of-
band photon emission is considerably suppressed.30,31

However, they both have respective technological constraints:
the broadband emitter is structurally simple, yet possible
materials are limited and are not necessarily well-suited for
device integration. The selective emitters often entail time-
consuming nanopatterning processes owing to their structural
complexity (e.g., in photonic crystals, metamaterials, nano-
antenna, and gratings). Moreover, the thermal stability of
nanostructures is usually worse than their bulk counterparts
due to accelerated surface diffusion at the curvature edges, and
henceforth, the operating temperature is often restricted
(typically below 1000 °C).32
In this work, we report a near-infrared (NIR) superabsorber

consisting of bilayer refractory dielectric materials: B4C/AlN.
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The device features a broadband absorption with an average
absorptivity of ∼95% over a 500 nm wavelength span in the
NIR wavelength regime (1.10−1.65 μm), which we term
superabsorption. In addition, this dielectric bilayer is stable
during an 8 h thermal treatment in a low-oxygen environment,
with negligible change of its optical characteristics for
temperatures up to 1500 °C, demonstrated by in situ thermal
emission spectra measurements. The experimental results are
corroborated by optical simulations. Our work creates new
opportunities for realizing thermal photonic devices using
alternative refractory materials. While most reports thus far
have focused on postmortem analysis of the sample after
heating treatments, we present a unique setup for in situ
optical measurements at extreme temperature conditions. This
setup can be modified to probe the effects of distinct
surroundings (e.g., inert environment, vacuum, and oxygen-
rich ambient) on the optical behavior of materials during
heating and cooling processes. Overall, these measurements are
critical for selecting materials for photonic devices that will
operate at high temperatures and/or be exposed to these
conditions.

■ RESULTS AND DISCUSSION
The superabsorber considered here is a bilayer structure: B4C
thin film coated on an AlN substrate. Both dielectric materials
have a melting temperature >2000 °C with outstanding
thermal stability. The AlN substrate is 0.5 mm thick (single-
side polished), and a 135 nm thick B4C layer is sputtered on
top conformally covering the substrate. Besides the material
stability, structural robustness of such a bilayer device has been
predicted because of the minimal thermal expansion mismatch
of the two materials and the mild interlayer diffusion at their
interface.33

The room-temperature refractive indices (n + ik) of the
layers are determined by spectroscopic ellipsometry. As shown
in Figure 1a, the real part of the refractive index n of B4C
(∼1.54) falls between that of air (∼1) and AlN (∼2.01), which
tends to suppress reflection at the top surface. This anti-
reflection effect in combination with the small but nontrivial
loss of AlN (imaginary index k ∼ 0.02) can theoretically result
in a large absorptivity in the structure (with calculated
transmission ≪0.01%), as will be confirmed in optical
measurements discussed below. The absorptivity of the device
at varying incident angles is measured using Fourier-transform
infrared spectroscopy (FTIR) for unpolarized light (see inset
of Figure 1b for a photograph showing the optical path of the
FTIR). As shown in Figure 1b, the measured absorptivity is
consistently over 95% across the NIR wavelengths with

negligible dependence on the incidence angle. Our calculations
using the transfer-matrix-method (TMM) are in excellent
agreement with the measurements (Figure 1c), confirming the
angular insensitivity of such bi-layer optical devices.
After performing room-temperature optical measurement,

we implemented a controlled heating treatment to determine
the high-temperature optical behavior of the structure in an
inert (argon) environment. Figure 2 shows the heating stage as

well as the temperature profile for the heating treatment. In
situ emission and reflectivity measurements are performed
through a sapphire chamber window, allowing us to analyze
the high-temperature performance of the samples in real time.
The inset of Figure 2b shows real-color photographs of the
sample before and after high-temperature treatment. Slight
changes in the coloration are noticeable, as a direct result of a
chemical change at the surface of the sample, as discussed in
Figure 3.
The color change observed on the sample upon heating

treatment (see inset in Figure 2b) results from a modification
of the B4C surface. We determine these chemical changes by
comparing pristine and temperature-cycled samples using X-
ray photoelectron spectroscopy (XPS). Figure 3a−f displays
the changes in the chemical composition for the surfaces of
135 nm B4C/AlN and the pure AlN substrate, respectively,
before (black) and after (red) identical heating/cooling. Here,
measured data are shown with dots, and fitted curves and their
constituent peaks are presented as solid lines. Before the high-
temperature experiments, both samples show evidence of an
ultra-thin native oxide layer, confirmed by the presence of
expected oxide peaks in Figure 3. However, due to the
presence of characteristic peaks for B4C (Figure 3a,b) and AlN
(Figure 3d,e), the surface oxide layer for both samples must be
less than 10 nm thick prior to high-temperature treatment,
given the limited surface penetration depth of XPS.34 Both

Figure 1. (a) Refractive indices (solid lines for the real part and dashed lines for the imaginary part) for AlN (red) and B4C (blue). (b) Measured
and (c) calculated absorptivity of the device at different illumination angles. Inset of (b) shows photograph of optical path in the FTIR setup. Inset
of (c) displays schematic of superabsorber structure: the B4C thin film (135 nm thick) is sputtered onto the AlN substrate.

Figure 2. (a) Photograph of the optical setup for high-temperature in
situ optical measurements. (b) Temperature profile used during high-
temperature experiments. Inset: photograph of the B4C/AlN optical
device before and after the treatment.
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samples undergo further surface oxidation as a result of high-
temperature operation, with a final top oxide layer of at least 10
nm, confirmed by the disappearance of the C−B peaks for the
B4C-coated sample (Figure 3c,d)35,36 and by the shift of the Al
peak for the pure AlN substrate (Figure 3f).37 These data
reveal the high preference of the samples for oxidation. Even in
a low O2 environment (<0.1% oxygen pressure), they
preferentially oxidize to form a thin oxide layer at the surface.
Despite the small surface chemical changes, the optical

absorptivity of the B4C/AlN device exhibits impressive stability
at high temperatures. Figure 4a shows the absorptivity (A)
derived from the measured reflectivity (R) at varying
temperatures from 1000 to 1500 °C in the heating phase (A
= 1 − R because the sample is opaque). The average
absorptivity in the wavelength range 1.1−1.65 μm is >90% for
all temperatures measured, which results in an excellent
broadband superabsorber. Additionally, despite a slight
decrease of the absorptivity with increased temperature, the
variation of absorptivity within the explored range is small
(<5%), which indicates the remarkable thermal stability
despite the surface changes during the thermal treatment.
Furthermore, the absorptivity is also measured at the same
temperatures (1000−1500 °C) during the cooling process.
Very minimal change is observed at the same temperature
during heating and cooling. For example, the inset of Figure 4 a
shows the respective absorptivity profiles at 1000 °C in the

heating and cooling phase overlap. All above results also
indicate that while the surface of the device oxidizes after the
thermal treatment (as shown through the changing peak
heights and locations in Figure 3), the optical properties in the
NIR regime are not significantly affected. Concomitantly, the
structure can also act as an excellent high-temperature
graybody emitter. According to Kirchhoff’s law, the emissivity
of a device is equal to the absorptivity; thus, the broadband
absorptivity of our device should yield a high-temperature
graybody emitter. Figure 4b displays the measured in situ
emission spectra at temperatures from 1000 to 1500 °C, which
agree quite well with theoretical calculations of emission
shown in Figure 4c.

■ CONCLUSIONS
In summary, we demonstrate excellent thermo-optical stability
of a B4C/AlN bilayer when acting as an NIR superabsorber or
super-emitter, based on a scalable design. The device features
broadband, angle-insensitive super-absorption in the NIR
wavelength range, with an average absorptivity of greater
than 90%. We present both experimental and calculated results
verifying the optical stability of the device at high temper-
atures, including in situ absorptivity and emission at temper-
atures up to 1500 °C. The measured thermal emission spectra
at high temperatures are in good agreement with our
theoretical predictions. Though we note the presence of

Figure 3. XPS measurements for (a−c) 135 nm B4C/AlN and (d−f) pure AlN substrate, before (black) and after (red) high-temperature
treatment. Experimental data and peak fits are represented by dotted curves and solid lines, respectively.

Figure 4. (a) Measured (solid lines) and calculated (dashed line) absorptivity of the B4C/AlN optical device at varying temperatures, as color
coded. Inset: the absorptivity at 1000 °C during heating and cooling, respectively. (b) Measured and (c) calculated emission spectra of the sample
at varying temperatures.
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surface oxidation during high-temperature treatment, the
sample still presents broadband absorption at high temper-
atures. Our results show great promise for achieving optically
stable photonic devices under high-temperature environments
using alternative refractory materials. The pressing need for
materials under extreme temperature conditions is exposing
the need for detailed in situ characterization of the optical
behavior of materials, which is frequently limited to
postmortem analyses, after samples’ exposure to heating
treatments. Here, we implement in situ, high-temperature
optical measurements that could be expanded to different
photonic systems, ranging from optical emitters for TPVs (in
air or vacuum conditions) to barrier coatings for aerospace
applications, where identifying the effects of distinct surround-
ings on materials’ absorptivity during heating and cooling is
critical.

■ EXPERIMENTAL METHODS

Sample Fabrication
A 135 nm thick B4C layer was sputtered on top of a 0.5 mm thick,
single-side polished AlN dielectric substrate (MTI Corporation) using
a Lesker LabLine RF sputter system and a B4C sputter target,
conformally covering the substrate. Sample uniformity was confirmed
using spectroscopic ellipsometry at different points across the sample,
as well as optical microscopy.
Room-Temperature Optical Characterization
Room-temperature optical properties were taken using a J. A.
Woollam M-2000 spectroscopic ellipsometer. Refractive indices
were determined by fitting the measured ellipsometric parameters
Ψ and Δ. General oscillator models were used to fit both the AlN
substrate and the B4C coating. The room-temperature angle-
dependent absorptivity of the samples was determined using a Bruker
Invenio FTIR system. The absorptivity was calculated using measured
reflectivity, as A = 1 − R (because transmission is approximately 0
through these samples).
Room-Temperature Chemical Characterization
XPS measurements were taken with a Kratos SUPRA Axis XPS, using
a monochromated Al Kα source (1486.6 eV). During all measure-
ments, the chamber’s base pressure was 2.1 × 10−8 Torr, with a 450 ×
900 μm scan size and an emission current of 7 mA.
High-Temperature Optical Characterization
High-temperature thermal treatment and the in situ optical
measurement during the treatment were performed using a Linkam
heating stage (TS1500) in conjunction with a Nikon microscope. The
device was placed inside the ceramic sample cup on the heating stage
(with programmed temperature control up to 1500 °C) so that it
could be heated from underneath as well as from the sides to ensure
uniform heating. The device surface was brought to the focal point of
the objective attached to the microscope. Light reflected off and
radiated from the device was collected through the objective (5×
magnification, N.A. = 0.15) and subsequently fed into an optical fiber,
which connected to an NIR spectrometer (Ocean Insight Flame-NIR
+). During the thermal treatment, the temperature was increased to
1500 °C at the rate of 10 °C/min in the heating phase and then
decreased to the room temperature at the same rate in the cooling
phase. Above 500 °C in both the heating and cooling phases, the
sample is held at several temperatures to allow the sample to
thermalize before continuing heating/cooling. The spectral data were
recorded during the heating and cooling processes while holding at
specific temperatures to ensure stable spectral data. The measured
emission and absorption data were averaged every three points to
minimize noise. The entire thermal treatment lasted for just over 8 h.
Argon was supplied to the sample chamber on the heating stage to
ensure a low-oxygen atmosphere (<0.1% oxygen pressure) throughout
the experiment.
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