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Abstract

Variable-length Functional Output Prediction and Boundary Detection for an

Adaptive Flight Control Simulator

by

Yuning He

The general problem addressed in this work concerns the analysis of a function of mul-

tiple real variables in which the output is itself a function of a real variable as well

as categorical information. We are interested in the prediction of the output and the

analysis of the boundaries separating regions during classification. Efficient and accu-

rate prediction of the output curves is important for safety analysis and validation of a

complex system, like an adaptive flight control system. An understanding of the bound-

aries between regions, where the aircraft can maintain stable flight or will break up is

essential for safety certification. As a motivating application we are using the NASA

IFCS (Intelligent Flight Control System) flight simulator.

For output prediction, we developed a new statistical method for emulation

of computer models with multiple outputs. An emulator is a computationally efficient

statistical model that is used to approximate a computationally expensive simulation

by treating the simulator as a black box and learning a mapping from inputs to outputs.

Our approach for emulating the curves is to represent them in an orthogonal basis (e.g.,

PCA, Fourier, or Wavelet), which captures curve characteristics, and then to predict

the coefficients. We allow for the possibility of output curves whose length varies with

ix



input, which may occur when a simulator fails to run to completion for some inputs

and the failures occur at different output time steps. To the best of our knowledge,

the variable-length output problem has not yet been addressed. We have developed

a hierarchical model, which first uses classification into a few groups and then fitting

distinct models for different classes of output curves.

For the analysis of boundaries, we developed a new sequential approach based

upon design of computer experiments. A dictionary of suitable linear or non-linear pa-

rameterized boundary shapes, which capture underlying physical and design knowledge

can be provided by the domain expert. We incorporate this knowledge into our modeling

and determine the most likely shapes and its parameters. Since each iteration requires

a costly run of the system simulator, we developed a candidate selection mechanism,

which is specifically tailored toward boundary detection and which can take priors into

account in order to reduce the number of required simulation runs. We present results

of experiments with artificial and IFCS simulation data sets.
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Chapter 1

Introduction

The general problem addressed in this work is the prediction of the output of a

function of multiple real variables in which the output is itself a function over time. We

propose a new statistical method for the emulation of computer models with multiple

dynamic outputs. An emulator is a computationally efficient statistical model that is

used to approximate a computationally expensive simulation by treating the simulator

as a black box and learning a mapping from inputs to outputs.

Emulation Our approach for emulating the curves for a single output variable is

to represent the curves in an orthogonal basis, which captures curve characteristics,

and then to predict the output curve for a new input by predicting the coefficients for

the desired output curve’s basis representation. We allow for the possibility of output

curves whose length varies with input, which may occur when a simulator fails to run

to completion for some inputs and failures occur at different output time steps. To the
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best of our knowledge, the variable-length output problem has not yet been addressed.

In many applications, output curves can typically be represented accurately with only

a small number of curves from the full basis. The use of a reduced basis representation

allows for a fixed length representation of output curves so that existing methods can

be applied, with a large reduction in data down to the correct degrees of freedom so

that our solution is practical even when the output curve lengths are in the hundreds

or thousands of time samples. In this work, we compare different types of bases, like

PCA, wavelet, and Fourier Transform.

When output curves can be grouped into a small set of clusters of similar curve

length, shape, and frequency content, we hypothesize that fitting distinct models for

different classes of output curves will improve the prediction. Therefore, we add a class

parameter to our statistical model. Our complete model is built on top of statistical

models for the single output functions from input to class, input to output curve length,

and input to each of the coefficients in a reduced basis curve representation. The class

function has a categorical output, while the length and coefficient functions have real-

valued outputs. We propose modeling the real-valued single output functions using

non-stationary Treed Gaussian Process (TGP) models or regression Support Vector

Machines (SVMs). For modeling the function from input to class, we propose using an

extension of TGP for categorical outputs called CTGP or a classification SVM.

Case Study The motivating application for our prediction method is the statistical

emulation of the NASA Intelligent Flight Control System (IFCS). The IFCS is a neuro-

2



adaptive flight control system, which is capable of accommodating toward damage of

the aircraft during the flight. This technology was developed at NASA and successfully

flown on a manned F-15 jet aircraft. For our experiment, we use a Matlab/Simulink

flight simulator with many input output variables, where each output variable is a

function over time indicating some aircraft configuration measurement such as a pose

angle. This is a very difficult prediction problem with a relatively high-dimensional

input space and a very high-dimensional, variable size output space with curve lengths

in the hundreds for failure runs and curve lengths of 1901 for successful runs. Many of

the output curves have high frequency oscillations caused by the neural network part

of the simulator used in adaptive flight control whose goal is to stabilize the aircraft by

removing differences between measured configuration parameters and expected values

under a reference model.

Experiments and Results We present the results of our curve prediction method

for the NASA flight simulator assuming for now that the output length and, therefore,

correct curve classification are known. Several possible orthogonal bases have been

explored, including Principal Components Analysis (PCA), Wavelet, and Fourier bases,

as well as three different class structures, including 2 classes for simulator runs which

complete successfully and fail to run to completion, 4 classes to indicate successful runs

and 3 failure classes based on failure time (which equals output length), and fitting

just one model for all successful and failure runs. The current prediction results are

very promising, and clearly demonstrate the potential of the basis approach in which

3



coefficients are predicted using a statistical model such as TGP or SVM for modeling

scalar-valued functions. The lowest prediction errors are obtained using the PCA basis

with 4 classes for output curves.

Boundary Detection The IFCS flight control system can, like any other complex

system only operate safely within a given operational envelope. Such an envelope is

spanned by multiple parameters, which can be design parameters, environmental pa-

rameters, or operational parameters. Of most importance for the analyst is the identi-

fication of areas, in which the aircraft can operate safely and the boundaries between

those safety regions and unsafe areas. Many well-known analysis techniques in aircraft

design are based upon linear analysis. In many practical applications, boundaries of

regions are simply approximated by ranges of individual parameters. Advanced aircraft

design and control techniques like the IFCS damage adaptive aircraft control exhibit

strong non-linear effects that require novel analysis techniques. In this work, we develop

a methodology for finding and characterizing safety boundaries. We use techniques of

computer experiments and active learning in order to find the necessary data points

with as few runs of the system simulator as possible. The shape of the boundaries are

estimated using a small library of possible shape classes, which can be provided by the

domain expert. The availability of boundaries described by parameterized shapes is

helpful for manual system analysis by the domain expert and can be used for aircraft

monitoring and vehicle health management.
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Chapter 2

Case Study: Intelligent Flight Control

The Generation 2 (Gen 2) NASA Intelligent Flight Control System (IFCS)

uses machine learning techniques to stabilize the aircraft under new and unexpected

failure conditions (e.g., stuck rudder or damage to a wing), with the ultimate goal

of providing increased safety for the aircraft. This is accomplished through the use

of an online-adaptive neural network in the inner loop of the flight control system.

The IFCS adaptive flight control system utilizes online neural networks (OLNNs), one

for each of the axes roll, pitch and yaw, in real time, to try to adapt the control

signals in order to retain good flight characteristics in the presence of sudden damage,

slow degradation, or new environmental situations. Figure 2.1 shows the basic IFCS

architecture. A traditional flight control system receives stick inputs from the pilot

and uses an aircraft reference model to create desired commands for the actuators

(ailerons, elevators, rudder). The deviation between the desired commands and the

aircraft’s sensor signals are used by a PI (proportional integral) controller to calculate

5



Figure 2.1: Gen 2 IFCS architecture

desired rates in pitch, roll, and yaw axes. A dynamic inverse and actuator model then

converts the rates into actual deflection commands for the surfaces. Our simulation

model uses a linearized model of the F-15 ACTIVE aircraft, a highly customized NASA

jet plane. This basic controller has been augmented by a neural network, which provides

control augmentation, i.e., the neural network’s output is added to the control command.

The aircraft’s sensor signals and outputs of the standard proportional-integral (PI)

controller is sent to the OLNNs. The OLNNs compare the PI controller output with the

output from the linearized plane reference model, which is the desired output response,

and attempt to drive the errors between the two outputs to zero, by augmenting the

command from the PI controller before it is fed into the nonlinear dynamic inverse.
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The IFCS has been implemented in a manned F-15 aircraft and extensive

piloted evaluations have been performed [Burken et al., 2006; Smith et al., 2010]. Each

online adaptive control system is provided with a learning algorithm that dynamically

adjusts the weights of the neural network as data are coming in. This version of the

IFCS architecture uses a Sigma-Pi (ΣΠ) neural network [Rumelhart et al., 1986], where

the inputs are x subjected to arbitrary basis functions (e.g., square, scaling, logistic

function). The output of the network o is a weighted sum (Σ) of the Cartesian product

of the basis function values (Figure 2.2):

o =
∑
i

wibi where bi =
∏
j

β(xj)

with weights wi and basis functions β(xj). Online adaptation (learning) is taking place

while the adaptive controller is operating using a simple, yet effective weight adaptation

rule governed by a learning rate γ (for details see [Calise and Rysdyk, 1998; Rysdyk

and Calise, 1998]). For this controller, asymptotic stability can be proven using a

Lyapunov method [Rysdyk and Calise, 1998]; however, large damages, low convergence

speed or overtraining can prevent stabilization [Schumann and Liu, 2007]. However, the

overall behavior of the adaptive control system is hard to predict. [Jacklin et al., 2004;

Liu et al., 2004; Broderick, 2004; Jacklin et al., 2005; Menon et al., 2006; Menon et

al., 2007] The adaptation learning gain has a large effect on algorithm stability and

learning convergence. The analysis of the parameters, which can yield a potentially

unstable system is of particular importance. The IFCS online adaptive system is highly

nonlinear and therefore it is difficult to model. This is where Statistical Emulation
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techniques are coming to play, to develop an algorithm that would provide efficient

learning of the system one step further. That is, to build a Statistical Emulator that

describes the system in a simpler and more revealing manner, and provides similar

outputs as IFCS simulator when the same set of inputs are provided.

Basis fct

xn

x2 o

...

... ...

Σ

Π

x1

w1

wm

Figure 2.2: Architecture of ΣΠ network

For this work, we did not obtain data from live airplanes and actual control

software. Rather, we work instead with a computer simulation of the entire process (the

airplane and the control system). Our simulator is an early prototype implemented in

Mathworks’ Simulink [Mathworks, 2012], and has MATLAB wrappers to control the

values of simulation. A given set of experimental conditions (altitude, pilot input, speed)

were provided and kept constant in our experiments. Other parameters (Table 2.1) were

modified in a systematic way (3-factor combinatorial exploration, see Section 5.3.2.1) to

obtain a total of 967 test runs. Each simulation run was covering 20 seconds simulation

time with a basic time step of 0.01s. Each step within the simulation is deterministic—

a set of the same inputs will always lead to the same time series outputs. In order to

avoid start-up effects, the first second of simulation time was ignored, yielding simulator
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outputs of 12 variables over time for a length of up to Tmax = 1901 time steps. However,

the current version of the control system is not always able to stabilize the aircraft for

the entire time. In such cases, the simulator fails at T < Tmax time steps. This time-

to-failure is an important characteristic, which we attempt to predict in this work.

Table 2.1 shows the name and description of the 11 input variables, the 12 output

variables, and the time to failure, which can be considered to be a derived output.

Figure 2.3 shows the outputs obtained with two different sets of input x1 and

x2 which correspond to two examples of successful and failure runs respectively. For

input configuration x1 (top), all outputs stabilize after initial excitation caused by pi-

lot input (pilot input happens around T=0) and online adaptation. After some initial

oscillations, the curves dampen and finally reach another stable state. The simulation

ends successfully with T = 1901 time steps. For input configuration x2 (bottom), on the

other hand, signal excitation does not decrease over time. Rather, some high-frequency

oscillation (caused by a bad adaptation of the network) can be detected, leading to

instability at around T = 380 time steps. All the 12 outputs failed at the same time

with different oscillations. This example of an aborted or failure run, typically manifests

itself as numerical calculation problems caused by one or more program variables be-

coming very large or going out of expected bounds in the currently implemented control

algorithms. The flight simulator represents a complex, non-linear mapping from the 11

input variables to the 12 output variables. The names of the input and output variables

are given below. The input variables are aircraft characteristics such as mass (with

a fixed set of pilot inputs) and the outputs are various measurements of the aircraft

9



configuration such as attitude angles.
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Figure 2.3: Typical output time series for successful (top) and failure (bottom) runs.
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Name Description

Input parameters

Klat lateral stick gain
Klon longitudinal stick gain
Kpedal rudder gain
ζ damping coefficient
wp,q,r proportional gain (three axes)
K3 controller gain (yaw axis)
λp,q,r NN learning rates (three axes)

Outputs

~err1p,q,r proportional error wrt. reference model, three axes [degrees]

~err2p,q,r integral error wrt. reference model, three axes [degrees*sec]
~h altitude [feet]
~p, ~q, ~r roll, pitch, and yaw rates [degrees/sec]
~α angle of attack [degrees]
~β sideslip angle [degrees]
F a Boolean variable: TRUE for cases which fail and FALSE otherwise
T time to failure [number of time steps]

Table 2.1: Input parameters and output variables. Note that the pilot inputs are kept
constant in this experiment and are not considered to be a input.
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Chapter 3

Emulation

It is obvious that one of the main goals is to keep the aircraft stable in the

nominal case and in the presence of damage. Many parameters of the IFCS, like gain

parameters for the PI controller, govern the behavior of the entire system. The adap-

tation learning gain has a large effect on algorithm stability and learning convergence.

The analysis of the parameters, which can yield a potentially unstable system is of par-

ticular importance. The IFCS online adaptive system is highly nonlinear and therefore

it is difficult to model. This is where Statistical Emulation techniques are coming to

play, to develop an algorithm that would provide efficient learning of the system one

step further. That is, to build a Statistical Emulator that describes the system in a

simpler and more revealing manner, and provides similar outputs as the IFCS flight

simulator when the same set of inputs are provided.

In this chapter, we explore the possibility that we can use statistical emulation

to overcome the limitations of traditional validation techniques. Statistical emulation
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has a key benefit in that it allows for uncertainty quantification—a necessity for the vali-

dation of safety-critical systems. Statistical emulation, particularly statistical emulation

based on Classification Treed Gaussian Processes, has been used to reliably predict the

behavior of complex, non-linear, high-dimensional systems that are locally smooth. We

have demonstrated that statistical emulation can be used to reliably predict time-to-

failure for an adaptive flight control simulator. We have also shown that, given an input,

we can predict the time series curve outputs of the simulator with high accuracy. As

a byproduct of this prediction, the behavior of the simulator becomes quantified, and

can be compared against experimental data for validation. We have extended statistical

emulation to explicitly handle time series outputs of varying lengths. With some work,

we will be able to explicitly handle time series inputs, as well.

3.1 Hierarchical Approach

Time series, in general, are not guaranteed to have the same length, since the

time duration to events or failures is likely to be different for each given set of inputs.

For our application, each output variable is a time series, in other words a vector that

is a function of time (with discrete time steps). In our experiments, we executed the

simulator for a maximum of Tmax = 1901 time steps. As we described above, for many

inputs ~x the system successfully controls the aircraft. For successful cases we record

Tmax = 1901 as the time to ‘failure’. But there are other situations, when the software is

unable to adapt the control successfully to maintain aircraft stability. In these cases the
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Figure 3.1: Curve classes

simulator terminates prematurely, having recorded fewer than the maximum number of

timesteps as the case for a successfully controlled flight.

We observe that the output curves can be grouped into sets of clusters of

similar curve length, shape, and frequency content. General appearance and frequency

content of success and failure curves are typically quite different (see Figure 2.3). The

output curve clusters tend to correlate well with failure curve length (i.e., the time to

failure). Some examples of the failure curves for the same output variable are shown in

Figure 3.1 below. As we can see, when the time to failure is about 250 time steps, the

curves for one output variable but different runs look similar to each other as shown in

the first column of Figure 3.1. When time to failure is between 350 to 500 time steps,

the curves look similar to each other as shown in the second column of Figure 3.1.

Therefore, we have examined classification strategies not using two classes

(success and failure) but also four classes with classes defined by the ranges of the
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output length. A histogram for time to failure presented in Figure 3.1(right) nicely

supports our four-class model. Two clusters are shown quite clearly in the histogram,

the third class picks up the remaining failure runs. Finally, class four (not shown) is

comprised of the successful runs. This histogram is the basis for setting our thresholds

to (180, 280, 1900) time steps as discussed in Section 3.8, Table 3.1.

We have implemented a toolkit for prediction by proposing a two-stage hier-

archical statistical model (Figure 3.2(left)). Our architecture consists of a statistical

model for the mapping from input to class, and within each given class, a distinct sta-

tistical model for the relationship between input and output. And we hypothesize that,

by fitting distinct models for each of the distinct classes, the overall results of predic-

tion accuracy will be improved. This hypothesis is proven to be true supported by our

experiment results in the later Section 3.8. Our hierarchical model can capture the

possibility of model parameters variation across groups. The hierarchy arises because

the model for the parameters sits above the model for the data.

In order to train our model, we use a set of time series data as obtained from

our simulation model with different input parameters x (Figure 3.2(right)). According

to the actual obtained time to failure, we split this data set into successful runs and

two or four classes for the failure runs (as discussed above). As we are using supervised

learning methods, each of the data sets will be in turn split into a training set and

test set, respectively. Details will be discussed below. In order to learn the mapping

from input to class, we use a supervised classification method. Classification means

assigning a given piece of input data into one of a given number of categories or classes.
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Figure 3.2: Our methodology: 2-stage prediction of time to failure (left) and supervised
learning (right).

Classification normally refers to a supervised procedure, i.e., a procedure that learns to

classify new instances based on learning from a training set of instances, which have

been properly labeled with the correct classes. The classification problem can be stated

as follows: given training data, establish a rule which can be evaluated for any possible

value of input (not just those included in the training data) and such that the group

attributed to any new observation.

For modeling the real-valued function, i.e., learning the relationship between

inputs to Time to failure values, we propose using the Treed Gaussian Process (TGP)

model, a statistical modeling method, which is an extension of the popular Gaussian

Process (GP) described in Section 3.3. In Section 3.8 we discuss results obtained with

TGP and compare results with other learning methods in the literature, for example

Support Vector Machines (SVMs).
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3.2 Statistical Emulation

The traditional emulation problem starts by considering modeling a scalar-

valued function y = f(x) with x ∈ Rp. A widely used statistical model for such

a regression problem is a Gaussian process (GP) [Sacks et al., 1989; Kennedy and

O’Hagan, 2001; Santner et al., 2003]. For inputs x ∈ Rp, a GP is formally a distribution

on the space of functions y : Rp → R such that the function values {y(x1), . . . , y(xn)}

at any finite set of input points x1, . . . ,xn have a multivariate Gaussian distribution. A

particular GP is defined by its mean function m(·) and its correlation function c(·, ·):

y = f(·)|β, σ2, r ∼ N(m(·), c(·, ·)σ2). Here we use a linear mean function, m(x) = xTβ

and the Gaussian correlation function c(x,x′) = exp{−(x−x′)TR(x−x′)}, where R =

diag(r) is a diagonal matrix of p positive roughness parameters r = (r1, . . . , rp). The

smoothness of the Gaussian correlation function is typically appropriate for computer

simulators, but other classes of correlation functions are possible, such as the Matérn

family.

The stationarity of the GP model can limit its applicability. The Treed Gaus-

sian Process (TGP) model [Gramacy and Lee, 2008] is more flexible and overcomes

this limitation by subdividing the input space and modeling each region rν of the input

space using a different GP, thus leading to a non-stationary model. The TGP model
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includes a hierarchical model for the GP in region rν given in [Gramacy and Lee, 2008]:

yν |βν , σ2ν ,Kν ∼ Nnν (Fνβν , σ
2
νKν), σ2ν ∼ IG(ασ/2, qσ/2),

βν |σ2ν , τ2ν ,W, β0 ∼ Np+1(β0, σ
2
ντ

2
νW ), τ2ν ∼ IG(ασ/2, qσ/2),

β0 ∼ Np+1(µ,B), W−1 ∼ W ((ρV )−1, ρ),

(3.1)

where Nd, IG, and W indicate d-dimensional Normal, Inverse-Gamma, and Wishart

distributions, respectively. Here yν is a vector of response values for the nν training

inputs Xν ∈ rν and Fν = (1,Xν). The correlation matrix Kν for region rν contains the

values of the correlation function c for pairs of training inputs: Kν(i, j) = c(Xi,Xj).

The TGP subdivision process is hierarchical and done by recursively partition-

ing the input space via a binary tree. The parameters defining the subdivision process

are part of the TGP statistical model and ultimately determine the number of regions in

the subdivision. A prior on the size of the subdivision tree T is specified through a tree

generating process that splits a leaf node ν with probability pSPLIT(ν, T ) = a(1 + qν)−b,

where qν is the depth of ν in T and a and b are model parameters. See [Gramacy

and Lee, 2008] for the complete prior specification for the subdivision tree T and the

TGP model fitting algorithm. The tree itself can be fit simultaneously with the GP

parameters in the leaves using Reversible Jump Markov chain Monte Carlo.

As noted in the previous section, we can improve our predictive performance

by first separating the curves into four classes. To predict class membership we use an

extension of TGP called Classification TGP (CTGP) [Broderick and Gramacy, 2011].

For predicting M classes, the CTGP model introduces M latent variables Zm, m =
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1, . . . ,M , to define class probabilities via the softmax function:

p(C(x) = m) =
exp(−Zm(x))∑M

m′=1 exp(−Zm′(x))
(3.2)

Each class function Zm(x) is modeled using TGP.

Within each class, we actually want to predict an output curve, not just a

scalar response. One approach for predicting output curves is to extend the GP model

to functions y : Rp → Rq, where the vector output y represents samples of a curve

at q = T time points. In the context of statistical emulation of a computer simulator,

[Conti and O’Hagan, 2010] call this the Multi-output (MO) emulator and provide the

statistical model for q-dimensional Gaussian Processes, which is analogous to the stan-

dard model. In addition to the MO emulator, [Conti and O’Hagan, 2010] outline two

other possible approaches for multi-output emulation: Ensemble of single-output (MS)

emulators and the Time Input (TI) emulator. In the MS approach, each of the T curve

values are predicted independently using T single-output emulators. On the other hand,

the TI approach adds the time parameter t to the input x and builds one, single-output

emulator for y(x, t) : (Rp × R) → R. The MO emulator is the simplest from the com-

putational perspective with a computational load that is comparable to a single-output

GP emulator in which the bottleneck is n × n matrix inversion for n training inputs

S. The MS method uses T single-output GP emulators and thus has a computational

burden T times more than that of the MO method. A naive implementation of the TI

emulator would require nT times the computation of the MO emulator as the training

samples are now S × {1, . . . ,M}, but the structure of the problem allows the required
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nT ×nT matrix inversions to be done via n×n and T ×T matrix inversions. Of course,

this is still more computation than required by the MO emulator. Using a linear mean

specification, the mean functions for the MO and MS methods are the same, but the

mean function for the TI method is more restrictive because it assumes a mean function

m(x, t) = β0 + βTx x + βtt that is linear in t, where the coefficient vector is decomposed

as β = (β0, βx, βt)
T , although a different mean function can be used for the TI emu-

lator that results in an equivalent mean function as the linear mean for the other two

methods. More differences arise in the correlation structure of predictions. The MS

method estimates different roughness parameters r for each output time, which allows

the most flexibility, but is unrealistic for computer model emulation because of the lack

of correlation over time. The MO and TI methods estimate a single r for all times. The

MO method allows more generality in the covariance between different outputs ft1(x1)

and ft2(x2) at different locations x1 and x2, with the TI method constraining it to an

exponentially decreasing squared time difference.

In practice, we find that the stationary modeling assumption can often be

overly restrictive. Instead of using GPs, we use TGPs. However, the above methods

are not as easily adapted to TGP models, so we consider a different approach. The size

and multivariate nature of the data lead to computational challenges in implementing

the framework.

To overcome these challenges, [Higdon et al., 2008] makes use of basis repre-

sentations (e.g., principal components) to reduce the dimensionality of the problem and

speed up the computations required for exploring the posterior distribution. However,
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the success of their approach largely depends on whether or not the simulator can be

efficiently represented with the GP model on the basis weights. This is apparent in

the principal component decomposition, which partitions nearly all of the variance in

the first few components. These systems also tend to exhibit smooth dependence on

the input settings. In contrast, more chaotic systems seem to be far less amenable to

a low-dimensional description such as the PC-basis representations used here. Also,

system sensitivity to even small input perturbations can look almost random, making

it difficult to construct a statistical model to predict at untried input settings. This

approach also has the issue of extrapolating outside the range of experimental data.

The quality of such extrapolative predictions depends largely on the trust one has for

the discrepancy term at tried experimental conditions applicable to a new, possibly far

away, condition. Because of our variable length outputs, we can end up in somewhat

of an extrapolation situation when predicting curves that are longer than the related

training samples.

In our approach to predicting one output variable curve, we represent the

output curve y ∈ RT in terms of a linearly independent set of D orthogonal curves B ∈

RT×D: y
.
= Bc. We use orthogonal curves which measure different curve characteristics

so that the basis coefficients in c = (ci) ∈ RD are uncorrelated. Then we model

the coefficients ci, i = 1, . . . , D, independently using D TGP models. By changing

the curve representation, we can use an MS approach without being subject to the

criticism of not modeling correlations between the outputs. Now the multiple output

values being modeled are not values of the curve at distinct time points but rather the
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coefficients in a basis representation of the curve. In addition to the MS advantages of

simplicity and flexibility of modeling correlations of the same coefficient output value

over different inputs x, the MS implementation can be parallelized by running each single

output emulator, both fitting and prediction, in parallel. In many applications, using

D � T orthogonal curves will suffice to accurately represent output curves and the use

of a good basis provides a substantial data reduction. Another advantage of our basis

representation approach is that it allows us to have a fixed size output representation

D for applications which have output curves whose lengths T vary with input x. The

problem of functional data prediction has received some attention in recent years. In

her thesis work, [Liu, 2007] also uses a basis approach (with a wavelet basis). There are,

however, a few significant differences between the prediction problem considered in our

work and in her work. First, we seek to predict multiple, correlated output functions

instead of a single output function. The second, and most fundamental difference, is

that we consider the case of variable-length output functions which naturally arise in

the application of emulating the NASA flight simulator. Third, our application is for

emulation of a computer model in which the simulator is deterministic, always returning

the same output for a fixed input.

In the case of variable length output curves, modeling the output curve y(x)

requires modeling both the length T (x) as well as the T (x) curve values at different

times. In the NASA flight simulator application, we found that the output curves for

a single output variable could be grouped into a small set of clusters of similar curve

length, shape, and frequency content (see Section 3.1). Fitting distinct models for
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different classes of output curves improves the predictive performance. Therefore, we

add a class parameter C to our statistical model. We allow for different bases to be

used for different classes and so the basis matrix BC is now indexed by the class C.

Our model must now be able to predict the class C from the input x and the prediction

of the output curve y is now conditioned on the determined class C(x). The details of

the class criteria for the NASA application are given in Section 3.4. We found that a

CTGP model for C(x) gave the best classifier accuracy.

3.3 Our Statistical Models

We have so far kept the modeling description somewhat generic. Now we fill

in the model details. Once the model is fully specified, we then need to fit the model.

We may separate our data into a training set used to fit the model, and a hold-out test

set used to verify the accuracy. To fit our full model, we use the training data to first

fit a CTGP classifier C(x). Next we train a TGP model to fit the curve length T (x),

conditional on the class (Figure 3.2). Finally, we fit additional TGP models for the

coefficients of a basis representation of y(x)
.
=
∑D

i=1 cibi:

1. Fitting. Find coefficients { ci }Di=1 to approximate the training output curves y for

one variable in some basis {bi }Di=1:

y
.
=

D∑
i=1

cibi (3.3)

2. Learning Coefficient Mappings. Learn the D mappings from inputs x to coeffi-

cients ci for i = 1, . . . , D.
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3. Coefficient Prediction. Predict the coefficients cnewi,pred for a new input xnew for

i = 1, . . . , D.

4. Output Curve Prediction. Predict the output curve ynew corresponding to input

xnew using the predicted coefficients cnewi,pred:

ynew
pred :=

D∑
i=1

cnewi,predbi (3.4)

The above strategy can be carried out on subsets of the data, allowing for

different bases for different classes of output curves. Successful runs produce output

curves of length T (x) = 1901. For runs on inputs x that cause simulator failures, the

output curves y(x) have lengths T (x) ≤ 600. Furthermore, the general appearance and

frequency content are typically quite different for the success and failure curves. We

therefore hypothesize that using different bases for the two classes of success and failure

will improve the prediction of output curves. Even the failure curves seem to cluster

in terms of appearance and the clusters tend to correlate well with failure curve length

(i.e. the time to failure). Thus we consider running the above emulation strategy in two

class and four class settings with classes defined by the following ranges of the output

(flight) length.

3.4 Classification

Learning models for different classes offers the possibility of high quality pre-

diction in a given class, because the learning method can focus just on the variance

24



within that class. In contrast, if we apply our method to all data as one class, then the

variance among a larger group needs to be captured and the prediction may not be as

good. However, the disadvantage of the multi-class strategy is that classification errors

may lead to errors in curve prediction.

We hypothesized that there was structure in the data that we could exploit

in order to improve our predictions. In particular we observed that the output curves

could be grouped into sets of clusters of similar curve length, shape, and frequency

content. We examined several classification strategies, including classifying into just

two classes of success and failure runs. We found that a four-class solution which breaks

out three different groups of failures offers the best balance between improved prediction

within classes and tolerable error in predicting the class. As discussed previously, the

histogram in Figure 3.1 is the basis for setting our thresholds to 180, 280, and 1900 time

steps. Our data set consists of a total of 967 runs obtained from the simulator. We

randomly split the 967 runs into 637 training examples and 300 test examples, using

the training data to fit the models and the test data to evaluate classifier performance.

Table 3.1 shows the total number of simulation runs in each of the four classes. Table 3.1

summarizes the results for our two different classification strategies: dividing the data

into two classes (Two Class Problem) and into four classes (Four Class Problem). The

Two Class Problem strategy separates the data into failure and success categories, where

runs in success complete at 1901 time steps (the length of the simulation) and runs in

the failure category end earlier. The Four Class Problem strategy separates the data

into four different classes: three different failure classes (failure1, failure2, and failure3
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respectively), and one class for all of the successes. Each of the three failure classes has

a characteristic time series output shape, and we correctly hypothesized that using a

different mathematical model for each of these shapes would improve performance.

Two Class Problem Four Class Problem

failure 0 < T ≤ 1900 569 runs failure1 0 < T ≤ 180 257 runs
failure2 180 < T ≤ 280 241 runs
failure3 280 < T ≤ 1900 71 runs

success T = 1901 398 runs success T = 1901 398 runs

total 967 runs total 967 runs

Table 3.1: A summary of the data classification strategies we used in our experiments.

The results for several classifiers for the two class problem are shown in Ta-

ble 3.2. As a benchmark, we implemented a simple nearest neighbor classifier (first

row) that finds the closest training input xtrain to a given x and classifies x as the

same class as xtrain. This gave the highest error rate, 43.9%, of all the classification

methods tested, probably in part because the density of the training inputs is not very

high. The generalized linear model (GLM) is a flexible generalization of ordinary linear

regression that allows for response variables that have other than a normal distribution.

Method Classification Error Training Time

Nearest Neighbor 43.9%

GLM with binomial link 39.7% few minutes

TGP Flight Length 27.3% 3 hours

R-Tree 26.9% few minutes

TGP binary 26.7% 3 hours

CTGP 11.8% 10+ hours

SVM 19.4% < 1 second

Table 3.2: Two Class { failure,success } Classification Results. See the text for details.
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The GLM generalizes linear regression by allowing the linear model to be related to the

response variable via a link function and by allowing the magnitude of the variance of

each measurement to be a function of its predicted value. Its results are labeled “GLM

with binomial link” in Figure 3.2.

As a whole, the TGP-based classification methods gave the lowest classifica-

tion error rates. First we used TGP to learn the mapping x → T (x) from input to

flight length, and then we classified x into success if the predicted T (x) ≥ τ and failure

otherwise. Here we used the threshold τ = 1500. This method is identified in Figure 3.2

as “TGP Flight Length”, and resulted in an error rate of 27.3%. R-trees are tree data

structures used for spatial access methods, i.e., for indexing multi-dimensional informa-

tion such as geographical coordinates, rectangles or polygons. The key idea of this data

structure is to group nearby objects and represent them by their minimum bounding

rectangle in the next higher level of the tree. Thus the ”R” in R-tree is for rectangle. At

the leaf level, each rectangle describes a single object; at higher levels the aggregation

of an increasing number of objects. This can also be seen as an increasingly coarse ap-

proximation of the data set. This method (“R-tree”) classified the data set within a few

minutes with an error rate of 26.9% similar to the TGP method. A slight improvement

in error rate to 26.7% was obtained by using TGP to learn the mapping x→ P (success)

from inputs to the probability of success and then thresholding the resulting real-valued

TGP predictions at 0.5 to make the final classification into success and failure. This

method is named “TGP binary” in Figure 3.2. It is similar to “TGP Flight Length”

except that the known class of training inputs is used to input 0 or 1 for the mapping
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range instead of the flight length T (x). The original TGP [Gramacy, 2007] does not

do classification and subsequent predictions are real-valued even though all the train-

ing examples were binary-valued. Thus the real-valued predictions are thresholded to

obtain the final classification (“TGP binary”).

Recently an extension of TGP called CTGP [Broderick and Gramacy, 2009b;

Broderick and Gramacy, 2009a] was developed to use Treed Gaussian Processes for

classification. The training data for CTGP is the same as for TGP binary, but for

CTGP the mapping range is categorical data representing the success and failure classes

and the CTGP predictions are exactly these two output classes. CTGP gave by far the

lowest error rate, 11.8%, of all the classification methods tested. The disadvantage

of the TGP methods is that they require large training times in comparison to other

methods, with CTGP taking more than 10 hours to train. The increased training

time for CTGP over the 3 hours required for TGP Flight Length and TGP binary did,

however, provide a greatly reduced error rate. Using Support Vector Machines (SVMs)

for classification provided the second lowest error rate, 19.4%, after CTGP, but with

almost instantaneous training on our small training data set. The critical factor for our

application, however, is classifier accuracy. We can train offline for a long time if the

result is a low classification error rate.
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3.5 Handling Variable-length Output Curves

In this work, we face a fundamental challenge of output curves with different

lengths. Consider the fitting step of our emulation strategy for a particular class. Sup-

pose that the upper limit in flight length that defines a given class is Tmax. For example,

for the failure 2 class Tmax = 280. The basis B ∈ RTmax×D for a class will have vectors

of length Tmax to accommodate the longest curves in the class. However, some curves

in a class will have lengths less than Tmax. So how should we determine the coefficients

c ∈ RD for a training curve y of length T < Tmax? The linear system Bc = y has too

many rows on the left hand side or too few entries on the right hand side depending on

how you look at it.

One option is to remove the bottom Tmax − T rows from the bottom of B

to match the length T of training output y. Learning the D functions from inputs

x to coefficients ci computed in this way from the training data resulted in terrible

predictions. At first we thought this was due to the destruction of orthogonality when

cropping the basis vectors. We had carefully chosen B to have orthogonal columns in

an effort to make independent learning and prediction of the coefficients ci a plausible

strategy. The new columns in the truncatedB will not be orthogonal. But the prediction

results did not improve when we repeated the experiment after re-orthogonalizing the

truncated basis vectors. Truncating the basis vectors seems flawed in that we are using

different Bs for training outputs of different lengths and then trying to learn x → c =

B−1y. Shorter curves will lead to different coefficients than longer curves, because they
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are not needing to fit the missing end segment. This discrepancy can lead to unstable

behavior in the coefficients, resulting in poor predictive performance.

A second option is to extend the training output curve y by padding it with

an extra Tmax − T elements to bring its length up to Tmax. This is not ideal since

it requires making up data at the end of y. By breaking the prediction problem into

classes, the amount of padding needed is reduced in comparison to solving with a single

class (which requires Tmax = 1901 to accommodate the success curves). We increase the

length of training vectors y to Tmax by repeating the last element in y. Once we have

predicted the coefficient vector cnewpred for a new input xnew, the predicted output curve

ynew
pred = Bcnewpred has length Tmax. In our testing phase, we know the true length T for the

test case and we truncate ynew
pred to length T for comparison with the true output curve

ynew.

A third option for determining the coefficients when the basis vectors are longer

than the curve being fit is to truncate the basis vectors but then place a zero-mean Nor-

mal prior on the basis coefficients to shrink the coefficients toward zero. This strategy

avoids the need to extend curves to have the same length as the basis vectors. As men-

tioned earlier (option one), simply truncating the basis vectors to the curve length and

then doing an unconstrained least squares fit gave terrible results. Instead, we put a

zero-mean Normal prior (with variance 10) on the coefficients in the truncated problem

to bias the fitted coefficients toward zero and keep them from becoming too large. This

shrinkage induces enough stability to enable good predictions.
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3.6 Bases

We considered several different bases with which to represent output curves, of

which we present two in this section. The length N of each basis vector corresponds to

the length of the curves being represented. A true basis would require N basis vectors.

This representation would be too large for our output curves, for example requiring

600 basis vectors for failure and failure 3 classes and 1901 basis vectors for the success

class. Thus we keep only the most important D � N basis vectors for representing the

training data, where the reduced basis dimension D is a parameter chosen to balance the

size and accuracy of our representation. For ease of discussion, we refer to reduced bases

as simply bases. In the bases we consider, we can obtain very good fits for relatively

small dimensions such as D = 15 or D = 25; we use D = 25 in the rest of this chapter.

3.6.1 Principal Components Basis

The Principal Components Analysis (PCA) basis for a given dimension D is

an orthonormal, training data-dependent basis that identifies the D basis vectors that

capture the most variance in the data using a PCA decomposition. Suppose the ntrain

training data output curves are placed into the columns of a matrix Y ∈ RN×ntrain . Then

subtract off the mean output curve µ ∈ RN×1 from each of the columns of Y to obtain

the centered data Yc ∈ RN×ntrain . If Yc = UΣV T is a Singular Value Decomposition

(SVD) of Yc, then the columns of U ∈ RN×N form an orthonormal basis for the centered

output curve data. Assuming the singular values are ordered from largest to smallest as
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usual, the reduced PCA basis is B = U(:, 1:D) and explains
∑D

i=1 σ
2
i /
∑min(N,ntrain)

i=1 σ2i

of the variance in the output curves Y . The first five PCA basis vectors for output

variable 8 success class is shown in Figure 3.3. The number for each basis curve in the

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.15

-0.1

-0.05

0

0.05

0.1
PCA basis for output8 success class

 

 
1: 0.461679
2: 0.195029
3: 0.121289
4: 0.072491
5: 0.034855

Figure 3.3: PCA basis (first five basis vectors) for output variable 8, success class; the
legend shows the fraction of variance explained by each of the bases.

legend refers to the additional fraction of the variance in the data that is explained by

using that basis curve.
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Figure 3.4: Fourier basis for K = 3, D = 2K + 1. Constant function b0(t) not shown.

3.6.2 Fourier Basis

The Fourier basis for a given dimension D = 2K + 1 is an orthonormal basis

over the interval [0, 1] containing sines and cosines with frequencies 1, . . . ,K as well as

a constant function. That is, the continuous Fourier basis contains the 2K + 1 basis

functions:

b0(t) = 1 t ∈ [0, 1]

b2f−1(t) = sin(2πft) f = 1, . . . ,K, t ∈ [0, 1]

b2f (t) = cos(2πft) f = 1, . . . ,K, t ∈ [0, 1].

A picture of the sines and cosines in the Fourier basis for K = 3 is shown in Figure 3.4.

Because we have discrete data in our application, for a class defined by a maximum flight

length Tmax, the continuous Fourier functions are sampled at times ti = (i−1)/(Tmax−1)
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where i = 1, . . . , Tmax, to form the discrete Fourier basis used for that class. The more

basis functions D that are used, the higher the frequencies in the data that can be

accurately represented. In our particular application, D = 25 is sufficient to capture

the observed frequencies.

3.6.3 Wavelet Basis

The Daubechies wavelets [Jensen, 2001] are a family of orthogonal wavelets

characterized by a maximal number of vanishing moments for given support. Each

wavelet has a number of zero moments or vanishing moments equal to half the number

of coefficients. A vanishing moment limits the wavelet’s ability to represent polynomial

behavior or information in a signal. Daubechies wavelets are widely used in solving a

broad range of problems, e.g. self-similarity properties of a signal or fractal problems,

signal discontinuities, etc. Unlike the Fourier basis functions, wavelet basis functions

are localized in space.

Of course, we want to reduce the number of basis functions down to a man-

ageable level. As for our PCA basis, our choice of the best D basis vectors to use is

dependent on the training data. We first fit every training example xi in a given class

to compute the wavelet coefficients cijk. Then we compute the importance ηjk of the

wavelet basis function ψjk by accumulating the squared coefficient values over all the

training examples: ηj,k =
∑

i(c
i
jk)

2. The more a basis functions ψjk is needed to ac-

curately represent the training data, the larger the value of ηjk. Thus we select the D

basis functions with the largest importance score ηjk to be the (reduced) wavelet basis
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for the given class of output curves.

3.7 Multiple Outputs

Thus far we have discussed predicting the curves for a single output variable.

But computer models may have multiple outputs, and, in fact, the NASA flight simulator

has 12 output variables. The complete NASA flight simulator data set y(v,x, t) is

indexed by output variable v, simulator input parameters x ∈ R11, and output time t.

There may be correlations over the output variables v which can be used to improve

prediction results over all variables.

As for the single curve case y(x, t), we could view the problem as modeling a

single scalar-valued function by appending time t and output variable v to the input

parameters x and design a correlation structure that accounts for correlations over v.

Another possibility is to jointly model the 12 output functions R11 → RT , where once

again a non-diagonal covariance structure that captures correlations among the output

variables could be used to improve prediction. As in the single output curve case, we

suggest a simpler possible solution that allows independent prediction. The idea is to

use PCA to transform the output variables so that correlations among the curves for

the transformed variables is minimized, then predict independently on the decorrelated

variables using our proposed single output variable model, and finally transform back to

the original variables to obtain the final predicted curves. In this approach we essentially

split the modeling task into two pieces: data decorrelation and independent prediction
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instead of a single joint prediction model that accounts for correlation among the output

variables. The proposed approach for effective handling of multiple output variables has

the practical advantages of being simpler and allowing prediction to be done in parallel

for different output variables.

3.8 Results

In this section, we report results of our method for output curve prediction

using perfect (known) classification. In order to relax this assumption, we are using the

hierarchial model shown in Figure 3.2 using CTGP classification prior to determination

of time-to-failure or curve prediction. Since both questions are highly interrelated, we

present those results after discussing our approach to detect time-to-failure in the next

chapter, Section 4.2.

Let xi denote the test inputs with true output curves yi ∈ RT (xi) and predicted

output curves ypred
i ∈ RT (xi). We use the standard deviation σi for the true output curve

yi to standardize errors across different output curves and different output variables.

The error ev,c for output variable v and class c with the set of test output curves Sv,c is

given by

ev,c =

∑
i∈Sv,c

||ypred
i −yi||1
σi∑

i∈Sv,c T (xi)
. (3.5)

The true and predicted output curves yi and ypred
i are for the given output variable v,

but we leave out the dependence on v to simplify the error formula 3.5. The sums of 3.5

are over the total number of output curve values predicted, thus making the reported
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pad truncate + prior

outvar failure 1 failure 2 failure 3 success

1 0.480 0.513 1.280 0.404
2 0.687 0.458 0.907 0.449
3 0.280 0.342 0.649 0.514
4 0.516 0.369 1.036 0.480
5 0.709 0.610 1.268 0.530
6 1.235 1.080 0.493 0.446
7 0.135 0.102 0.150 0.687
8 0.246 0.153 0.719 0.167
9 0.387 0.578 1.023 0.169

10 0.368 0.510 0.909 0.320

failure 1 failure 2 failure 3 success

0.525 0.536 1.117 0.403
0.737 0.428 0.758 0.439
0.277 0.297 0.686 0.498
0.548 0.396 0.990 0.469
0.604 0.562 1.033 0.517
1.037 0.886 0.506 0.440

256.411 49.443 43.411 23.513
0.617 0.204 0.761 0.192
0.475 0.551 1.009 0.185
0.439 0.527 0.764 0.316

Table 3.3: Output curve prediction errors using curve padding versus a combination of
basis truncation with a zero-mean Normal prior on the coefficients. The PCA basis of
dimension D = 25 is used. The shrinkage parameter σ2c = 10 is used. See the text for
details of the error measure.

error an average over all predicted points.

To test the effectiveness of the shrinkage idea as a way to avoid padding the

curve data (the third option described in Section 3.5), we did an experiment using each

of the bases with dimension D = 25 with all the coefficients ci having the same prior

ci ∼ N(0, σ2c ) for all the output variables. We predicted the output curves from the

first ten output variables using 4 classes. The results for the PCA basis for σ2c = 10 are

shown in Figure 3.3. Results for the other bases were comparable.

Except for output variable 7 (with function values near 20000) where the

shrinkage approach fails, the resulting prediction errors are quite similar between the

padding and shrinkage cases. Because of the difficulties with variable 7 (shared by all

the bases), we use the padding approach for the rest of this chapter.

Table 3.4 shows that for our 4-class model, all three types of bases are suitable
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to represent the curves. This comparison assumes that the actual (perfect) classification

of each run into one of the three failure classes or success is known. Figure 3.5 shows

how the prediction error differs between the different output variables and different

bases. The predictors’ performance is worst for failure class 3, because failure class 3

contains by far the fewest number of training data. The PCA basis gives the best overall

performance, and this result was consistent across other divisions of training and test

datasets. Thus we focus on PCA going forward. Some representative predictions using

the PCA basis with dimension D = 25 for output variable 8 can be seen for the 3 failure

classes and the success class in Figure 3.6.

failure1 failure2 failure3 success

Daubechies wavelets

mean 0.5402 0.5132 0.8498 0.3389
std 0.4019 0.3501 0.3289 0.1455

Fourier

mean 0.5613 0.5052 0.8244 0.4066
std 0.3577 0.3113 0.3357 0.1527

PCA

mean 0.4647 0.4508 0.7839 0.3184
std 0.3290 0.2927 0.3379 0.1497

Table 3.4: Prediction error (mean and std) for 4 class model and different bases with
perfect classification.
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Figure 3.5: Output curve prediction errors for different bases, output variables, and
classes in the 4 class strategy. The basis dimension is D = 25 for all bases (PCA: solid
line, wavelet: dotted line, Fourier: dashed line)
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Figure 3.6: D = 25 PCA-based predictions: Output variable 8: (upper left) class failure
1, (upper right) class failure 2, (lower left) class failure 3, (lower right) class success.
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Chapter 4

Predicting Flight Length

In the last chapter, we discussed how statistical methods can be used to predict

the output curves of a complex system, in our case, the IFCS adaptive flight control

system. One important question, which always must be asked within the realm of a

safety-critical system, is, how long the aircraft, given a specific set of input parameters,

is able to fly. In the IFCS simulation, such a failure is characterized by a failure to

complete the full simulation time of 20 seconds. The question is therefore: can the

time-to-failure Tfail be predicted in a reliable way, given a set of input parameters. In

this chapter, we present our Bayesian approach for the prediction of flight length, again

using techniques of Gaussian processes and Treed Gaussian processes, which have been

discussed in detail in the previous chapter. We will also discuss the implications of

a wrongly predicted failure case (“false alarm”) or the case, where a failure was not

predicted. These metrics are commonly used in the area of system safety. For this task,

we will again use our hierarchical model, which first learns a classification using CTGP
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as discussed in the previous chapter. Since curve prediction and prediction of flight

length use the same classification results, we will present results for curve prediction

using CTGP classification in this chapter as well.

4.1 Methodology

We implemented a Bayesian approach for the prediction of Flight Length, i.e.,

output variable length T, by sampling T |x, then y|T,x under a statistical model with

appropriate priors, for example using TGP. So we can obtain a posterior distribution

for output curve y using

p(y|x) =

∫
T
p(y, T |x)dT =

∫
T
p(y|T,x)p(T |x)dT.

The strategy for sampling y|T,x would use the basis representation framework

described in the sections above, using TGP or a Bayesian SVM model to learn the

mappings from x to basis coefficients ci, given that we know the output curve length

T , then draw samples ci|T,x from which we obtain samples y|T,x. In this section we

will discuss the prediction model for T. The samples for T |x are obtained by using an

appropriate model, to learn the mapping x→ T (x). The models we have implemented

include TGP and SVM models which we will discuss in details as follows. We first

used 867 output flight lengths as training data, and 100 as test data. The first model

we tried uses Treed Gaussian Process to model the relationship between the 11 inputs

and the flight length variable as output. The second model we tried uses a Support

Vector Machine to learn the mapping between inputs and the flight length. SVMs use
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an implicit mapping of the input data into a high-dimensional feature space defined by

a kernel function, i.e., a function returning the inner product between the images of two

data points in the feature space. The learning then takes place in the feature space, and

the data points only appear inside dot products with other points. In all the models

above, we have examined both strategies of predicting flight length without clustering,

and prediction of T within each cluster. Results will be discussed below.

4.2 Results

4.2.1 Flight Time Prediction Using CTGP Classification

We have examined classification strategies using not just two classes (success

and failure) but also four classes, with classes defined by the ranges of the output length.

Our experimental data set consists of a total of 967 runs obtained from the simulation.

Table 3.1 on page 26 summarizes the results for our two different classification strategies.

For curve prediction, we randomly split the 967 runs into 867 training examples and 100

test examples. The CTGP 2-class and 4-class classification results for the prediction

training and test sets are shown in Table 4.1 (a) and (b), respectively.

In addition to choosing the number of classes, we also performed experiments

to determine the best classifier for the data. We split the 967 runs into 637 training

examples and 300 test examples to evaluate classifier performance. We implemented

five different classification methods, as a whole, the TGP-based classification methods

gave the lowest classification error rates of 11.8%. For the 2-class case, the 867 training
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failure success total

training 507 360 867

test 62 38 100

# errors 3 8 11

error rate 4.5% 21.1% 11.8%

(a)

failure 1 failure 2 failure 3 success total

training 228 213 66 360 867

test 29 28 5 38 100

# errors 5 9 5 8 27

error rate 17.2% 32.1% 100% 21.1% 27%

(b)

Table 4.1: CTGP classification performance on the curve prediction training and test
sets. (a) 2-class. (b) 4-class. See the text for details.

examples have 507 examples in the failure class and 360 in the success class. The CTGP

overall 2-class error rate is very low at 11%, making 11 incorrect classifications out of

100 tests.

In Table 4.2 we have a further breakdown for the types of errors made by the

CTGP classification algorithm. For the 2-class problem, the error rate was just 4.5%

for classifying failure cases, incorrectly classifying only 3 of the 62 true failure tests.

CTGP incorrectly classified 8 of the 38 test success runs as failure, for a success error

rate of 21.1% — this type of error would correspond to a ‘false alarm’ if the algorithm

was used in real time to try to predict failures. We have plans for how to bring down

the overall false alarm rate.

The number of examples in the training and test sets for the 4-class case, as

well as the classification error rates per class and overall are reported in Figure 4.1 (b).
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The overall CTGP classification error rate is 21%, making 21 incorrect classifications

out of the 100 tests. Although the overall error rate is higher for the 4-class problem

than the 2-class problem, the error rate for the success class is lower. In the 4-class case,

CTGP misclassified only 2 of the 38 success tests, for a success error rate of just 5.3%.

The success class had more training examples than the other 3 classes. The failure 1

and failure 2 error rates were 17.3% and 32.1%, respectively. All 5 test cases in class

failure 3 were classified incorrectly. Because the number of training data for this class

is substantially lower than the other classes, this result is not surprising and should be

disregarded. It is expected that the error rate will improve with more training samples.

Two Class Problem Four Class Problem

false alarm rate 21.1% 21.1%

missed failure rate 4.5% 30.6%

Table 4.2: False Positives and False Negatives Percentage

We computed the mean absolute prediction error from both TGP and Support

Vector Machine (SVM) models. SVM is a commonly used technique for the prediction

of nonlinear systems. We measured the average of the absolute difference Ē of the

predicted time to failure Test and the corresponding ground truth T over the 100 test

runs as Ē = 1
N

∑N
i=1 |T − Test|.

The first row of Table 4.3 gives the mean absolute prediction error from TGP

and SVM without classification. Even TGP’s prediction error of 368.7 is large given the

range of time to failure. All of the other methods that we tried gave even worse results.

For example, the average absolute prediction error for the next-best model after TGP
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and SVM is 706.47. Since none of the methods give a good result when we fit a single

model to the data globally, we clearly need another approach.

TGP SVM

all 368.7 481.8

failure only 33.9 42.5

Table 4.3: Mean absolute prediction error for time to failure using TGP and SVM

Our new method utilizes the classification strategy we described in the above

sections. And we have concluded that the two class strategy is our preferred strategy,

using CTGP we can accurately predict whether an input will result in a failure or

success, which also provides useful information for improving the flight control system.

We would like to go further to predict the actual time to failure. If CTGP predicts

success for a given input x, then we predict T as 1901 since all successful runs have

1901 time steps. If CTGP predicts failure for a given input x, then we use another

method to predict T . Our strategy in this case is to learn the mapping from x to T (x)

for failure runs only. In other words, we fit a model using only training runs that result

in simulator failure. Among the 867 training inputs that we selected, there are 505 on

which the simulator failed. We fit TGP and SVM models on these 505 failure training

runs. Of the 100 test inputs, 62 failed. We tested the prediction of TGP and SVM

trained on the failure runs to predict the time to failure for these 62 tests. In the second

row of Table 4.3, we present the mean absolute prediction error for both TGP and

SVM over the 62 failure test cases. For both models, the prediction error improved

an order of magnitude using our classification strategy over training and predicting
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without classification (first row). Once again TGP outperformed SVM. Furthermore,

now we have a good prediction method using classification strategy and TGP model.

The average absolute prediction error of TGP on the failure test runs is small compared

to the range of time to failure.

Figure 4.1 and Figure 4.2 give a summary of the 100 test results. The results

for TGP are shown in Figure 4.1 and the results for SVM are shown in Figure 4.2.

The 62 tests which failed are on the left of each plot; the independent axis is the test

number and test numbers 1-62 are failure cases. Similarly, the 38 cases which succeed

are on the right of each plot. Each data point in the plot is a prediction of the time to

failure. Means for the failure and success times are given as dashed lines. TGP results

in predictions that are much closer to the true mean failure times. What’s more: TGP

has an overall lower misclassification rate, and only misclassifies one true failure.

4.2.2 Output Curve Prediction Results Using CTGP Classification

In this section we work with the more realistic setting of not knowing the

classification in advance, and we give curve prediction results using CTGP to determine

which output class model is applied (Table 4.1). Examples of predicted curves for output

variable 8 are shown in Figure 4.3. In these figures, the black curve is the ground truth

curve and is plotted for the correct number of time steps T (x) for test input x. The

red (lighter) curve is the predicted curve using the model for the correct class C(x),

and it is plotted for the maximum length T
C(x)
max that defines the class C(x). If CTGP

incorrectly predicted the class, then the blue (darker) curve is the predicted curve using
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missed failures

false alarms

Figure 4.1: Prediction of time to failure with TGP.

the model for the incorrectly predicted class Cpred(x) and it is plotted for the maximum

length T
Cpred(x)
max of that class. In the title for each test plot there is an indication of

whether the CTGP classifier predicted the correct class or not, and the incorrect class

prediction is given for classification errors.

The red (lighter) prediction curve for the correct class is always at least as

long as the black ground truth curve because the true length T (x) must be less than
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missed failures

false alarms

Figure 4.2: Prediction of time to failure with SVM.

or equal to T
C(x)
max in order for x to be in the class C(x). (Note that this is different

from the plots in Figure 4.3, in which we truncated the predicted curve to the known

correct length T (x).) For tests in which CTGP predicts the wrong class Cpred(x),

the predicted blue curve may be shorter or longer than the black ground truth curve.

In the third example in the upper left of Figure 4.3, the correct class is failure 1 with

T
failure1
max = 180, but the input was incorrectly classified as success with T success

max = 1901
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(a) Output Variable 8, Class failure 1 (b) (Output Variable 8, Class: success
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Figure 4.3: Predicted Output variable 8 curves using CTGP classification. D = 25
PCA-based predictions: (left) class failure 1 and (right) class success.
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so that the predicted curve is much longer. In the last example in the lower right of

Figure 4.3, the correct class is success with T success
max = 1901 but the predicted class was

failure 3 with T
failure3
max = 600 so that the predicted curve is shorter.

In Figure 4.3, we see more examples of excellent curve predictions using the

correct output class predicted by CTGP. We also see something quite interesting in the

examples with incorrect classification: the predicted output curve using the model from

an incorrect class is typically quite good near the beginning of the flight run and often

does reasonably well over a significant fraction of the true output curve. As expected,

the predicted curve using the correct class is usually better than the one using the

incorrect class. For some examples, see Figure 4.3(b1),(b3),(d4). There are some tests

for which the predictions are very similar using the correct and incorrect classes, for

example in Figure 4.3(a4). Finally, there are even a few tests in which the predicted

output curve is slightly better using the incorrect class. Table 4.4 shows the prediction

error when the class is considered unknown and predicted with CTGP. Error rates are

quite similar to those in Table 3.4, showing that little is lost when estimating the class

with CTGP.

failure1 failure2 failure3 success

PCA with CTGP classification

mean 0.4613 0.4875 0.7488 0.3350
std dev 0.2917 0.2784 0.2869 0.1436

Table 4.4: Prediction error (mean and standard deviation) for PCA and 4 class CTGP
classification.

Finally, we turn to the full multivariate output problem from Section 3.7. Let
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(a) Output Variable 8 (b) Output Variable 2

(1)
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(3)

(4)

Figure 4.4: Predicted Output Curves for correlated multiple output curves

y(i, v, t) denote the value of output curve v at time t for run i (for input xi). Let Yt

be a matrix of size 12×Nt, where Nt is the number of output curves that have length

greater than t. Row number k of Yt contains the row vector [y(i1, k, t)...y(iNt , k, t)] where

i1, ..., iNt are indices of the run numbers. So Yt contains output curve values at time t,

and each row contains data from different output variables. Form Y = [Y1|Y2|...|Y1901]

of size 12 × N , where N is the sum of all the Nts. Each row contains all the curve

values for output variable k. We performed PCA on Y to obtain a transformed matrix

Ŷ , which gives a transformed set of curves ŷ(i, v, t). Thus we generated a transformed

set of curves for all output variables that are uncorrelated and for which the strategy of

predicting each output variable independently makes more sense. Then we predict the

transformed output variable curves independently and transform back to the original

output curve space to get the final curve predictions for the original output variables.

The results are presented in Figure 4.4. While our fits do not match exactly, they get

quite close in shape and structure, and provide a sufficient fit for understanding the

behavior of the controller.
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Chapter 5

Boundary Detection

5.1 The Problem

All complex mechanical, electrical, or software systems can only operate safely

within a given operational envelope. Such an envelope is spanned by multiple parame-

ters, which can be design parameters, environmental parameters, or operational param-

eters. For example, a stable flight of an aircraft is limited by a minimal and maximal

airspeed, depends on the altitude the aircraft is flying, and aircraft design parameters

(e.g., drag-over-lift). In many disciplines, a wealth of knowledge and methods exist to

determine such limits in an analytical manner or by selected experiments. Typically,

such limits are provided as project requirements or are prescribed by applicable stan-

dards. However, there are limits to such analytical approaches: some systems can be

of such a high complexity and governed by nonlinear and interacting physical laws that

an analytical analysis of the system is not possible.
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In particular, systems which are controlled by software often exhibit such be-

havior, because the multitude of possible execution paths through the software (e.g.,

different controller modes) and transients arising from discrete mode switches prohibit

proper mathematical treatment. A third class of systems, which cannot be fully analyzed

analytically are adaptive systems, like the IFCS adaptive flight controller (Chapter 2).

Here, only generic and often rather weak and unsatisfying boundaries for proper and safe

operation can be calculated analytically [Rysdyk and Calise, 1998]. For such cases, the

boundaries for the appropriate envelopes must be estimated from actual measurements

or by system simulation. The high-dimensional and noisy data, which are obtained from

measurements or simulation are usually categorical data, which denote if a given safety

property has been met or not (success or fail). Typical properties include: stability of

the system (“Does the aircraft remain stable in the air?”), performance criteria (“Does

the aircraft follow the pilot’s stick movements smoothly?”), or a system failure (“Is the

wing ripped off or does the engine explode?”).

Obtaining new data points is slow and expensive, because for each specific

parameter setting, a system simulation of experiment must be carried out. All or most

components have to be considered as “black boxes”, i.e., there’s no information about

their internal structure or their underlying design or operational principles. In many

cases, the geometrical shape of the safety envelope is known to the design expert, because

it is based upon certain physical laws and design principles. Some of the typical examples

include: variable ranges, linear boundaries, boundaries of a quadratic shape, polygons,

circles (or spheres), and ellipses. In most cases, the defining parameters for boundary
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shapes must be estimated.

Typical examples include location and shape of the landing ellipse upon a

spacecraft re-entry [Gundy-Burlet et al., 2008]. Only if the spacecraft is landing close

to the desired landing spot, this landing is considered a success. Due to orbital me-

chanics, the desired landing area, which is governed by a multitude of parameters

is an ellipse. Another example directly concerns the IFCS adaptive flight control.

The analytical proof of stability for the adaptive controller [Calise and Rysdyk, 1998;

Rysdyk and Calise, 1998] guarantees eventual stability of the entire system as long as

the errors remain within a ε boundary. Again this boundary depends of a number of

gain and design parameters. Yet another set of safety boundaries are found in safe op-

erational enveloped of aircraft. Standards like MIL-1797 [Department of Defense, 1997]

define several levels of handling quality. If the handling quality of an aircraft is good,

it is easy to fly and forgives many small errors. Aircraft with less handling quality are

difficult to handle and can cause a security risk. Such boundaries can be physics-based:

for example, the operational envelope of an aircraft depends on altitude, speed, design

of the aircraft and available power. Figure 5.1(left) shows the safety boundaries for

a commercial transport (taken from the final report of the ill-fated Air France flight

AF447 [BEA, 2012]). The non-linearity of the boundaries are due to physical laws. Fig-

ure 5.1(right) shows areas of different handling qualities over a given set of parameters.

In this standard, the boundaries are polygons.

Obviously, the analysis of the safety regions and envelopes must cover the en-

tire state and parameter space according to a given coverage metric. “Holes” in an
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Figure 5.1: Safety and quality boundaries in Aeronautics

operational envelope can have disastrous consequences and must therefore be recog-

nized properly. In particular, errors in a software system can lead to such dangerous

situations. For example, when a group of six F-22 Raptors were flying to Okinawa,

Japan, they experienced multiple computer crashes coincident with their crossing of

the 180th meridian of longitude (the international date line) [F-22, 1992]. A software

problem caused these issues. In this work, we will address the problem of identifying

shapes of boundaries as an experimental design problem and will use powerful statistical

algorithms to determine location and shape of the boundaries using active learning in

order to minimize the number of required simulation runs.

56



5.2 Goals

When analyzing a high-dimensional parameter space of a complex system with

respect to a given property (e.g., succeeds or fail to stabilize the aircraft), the analyst

will be interested in getting answers to a number of questions. Most basically, the

question arises if the entire parameter space has areas belonging to different classes in

the first place. Failure to identify such regions could mean that the system performs

uniformly well or poorly over the entire parameter space, or there are failure regions,

which are too small to be detected. In many practical applications, boundaries of

regions are approximated by ranges of individual parameters or sets of parameters.

Most traditional engineering analyses work on individual variables only, not taking into

account any correlations between different variables. The Margins tool, developed at

NASA Ames uses treatment learning [Menzies and Sinsel, 2000; Menzies and Hu, 2003]

to identify sets of parameter ranges, which comprise an approximation of boundaries as

axis-aligned hyperboxes. A representation of boundaries in the form of hyper planes is

more difficult to interpret by the analyst but can be achieved using, for example, SVM

based techniques.

In the literature, learning about regions where the surface changes rapidly is

called Wombling [Banerjee and Gelfand, 2006]. Curves with gradients orthogonal to the

curve track a path through regions, where the surface is changing rapidly, thus marking

curvilinear boundaries. [Banerjee and Gelfand, 2006] develops a statistical framework

for curvilinear boundary analysis, which is based on spatial process models. This non-
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parametric approach is well suited to spatial response surfaces and spatial residual

surfaces. A curvilinear representation of boundaries is of particular use, if the exact

boundary is very rugged and contains sharp edges, as typically found in boundaries on

geographical maps. However, our intended appplications feature smooth boundaries,

suggesting a different form of representation.

A numerical approximation of a boundary using a piecewise linear function,

splines, or other universal function approximators has only limited usability, because

the overall shape and location cannot be represented in closed form and thus is very

hard to interpret manually. Potential applications of such a boundary representation

might be found in the area of monitoring, vehicle health management, or prognostics,

where an algorithm has to decide (based upon parameter and sensor readings) if the

current point of operation is inside a certain region or not. The analysis tasks discussed

above are generic and do not use any knowledge available from the domain expert or

analyst. During safety- or performance analysis, the actual shape of the boundary is

known, as it is based upon some physical laws or design decisions. However, such an

analytical shape can often be obtained only under strong simplifying assumptions, or

only taking a single component of a system into account. So an important analysis

task is to determine if the actual boundary is located in the same area and location

as expected from the original requirements. For example, an analysis might require to

determine, how the boundary of the minimal stable airspeed of an aircraft (a boundary

as shown in Figure 5.1) moves, when a part of the wing is damaged; something that

can be established through simulation. In such cases is to estimate the parameters for
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a given boundary shape that best describe the boundary.

Finally, the shape of a boundary itself can change. For example, in a simplified

model might have a linear boundary. However, due to unmodeled effects or implemen-

tation details, the boundary might be linear only in a small area of the parameter space

and deviates into a shape similar to a logistic function in the other regions as certain

saturation effects take place. Operational points in the “wedges” between the linear

(theoretical) boundary and the actual boundary can cause severe problems. For the

analyst it is therefore important to determine which shape the boundary has (selected

from a small number of shape candidates), and which the most likely parameters are.

Many well-known analysis techniques in aircraft design are based upon linear analysis.

Advanced aircraft design and control techniques like the IFCS damage adaptive aircraft

control exhibit strong non-linear effects that require novel analysis techniques. In this

work, we therefore will focus on addressing the latter two analysis questions, namely

the determination of most likely boundary shapes from a dictionary of shapes and to

determine parameters that best fit the boundary.

5.3 Methodology

The given task clearly belongs to a class of classification problems. In the fol-

lowing, we formulate our methodology using classification nomenclature. In particular,

we note that points with a high entropy correspond to points near a boundary. For

the active learning, however, it turned out that a consideration of the problem as a
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regression problem provides a better handle on the problem. We represent our task as

using regression to learn and represent the response surface for the function f , where

f(x) = 1 + ε if the experiment succeeds and f(x) = 0 + ε otherwise. In this representa-

tion a boundary is determined by points x with f̂(x) = 0.5. This representation allows

us to formulate a powerful method to select the next data point.

5.3.1 Algorithm Overview

We are developing a sequential method for the estimation of parameterized

boundary shapes in high dimensional spaces. A dictionary ofm shape classesM1, . . . ,Mm

with m ≥ 1, which are parameterized by Θ1, . . . ,Θm is provided by the domain expert.

Additional constraints on the parameters, e.g., parameter ranges and other prior infor-

mation can be given. Typical examples for such shape classes include (hyper-)surfaces,

polygons, spheres, or ellipses. For our algorithm, we assume that the different shapes

to be considered are behaving sufficiently different in the parameter space. Such a con-

straint can easily given in the form of a prior, e.g., by providing an upper bound on the

radius of a curve to be able to distinguish it from a straight line. Given an initial set

of labeled data D0, the algorithm iteratively determines the most likely shape and its

parameters and confidence intervals. The overall process is depicted in Figure 5.2. The

active learning algorithm builds an initial classifier based upon D0. Then, candidate

points (i.e., sets of input parameters) are selected by the algorithm and handed over

to the computer experiment, in our case a Matlab/Simulink simulation system. This

system runs a version of the flight control simulator using the given parameters and
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returns a categorical result (success or failure). In our implementation, the coordina-

tion between the boundary detection algorithm implemented in R and Matlab/Simulink

is accomplished using the R.Matlab package [Bengtsson and Riedy, 2012]. Since each

run of the simulator requires a substantial amount of computational resources (several

seconds), the overall number of new data points should be kept as small as possible.

Matlab/Simulink
result

x
point

new

θ

Detection

Shape Estimation

Xn

Experimental Design

Computer

0
D

Active Learning

DynaTree

Boundary

Figure 5.2: Overview of active learning procedure

More specifically, the algorithm is based upon the sequential classification and

regression framework as given by the DynaTree [Taddy et al., 2011; Gramacy, 2007]

package. It features dynamic regression trees and a sequential tree model. Particle

learning for posterior simulation makes Dynatrees a good candidate for applications,

where new data points are processed sequentially. We will discuss Dyntrees in Sec-
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theta?

with y_hat close to 1/2   

Figure 5.3: Overview of active learning procedure

tion 5.4.1. At any given point in time, the classifier is represented by a Dynatree.

Figure 5.3 shows the individual steps of the algorithm. In the initial phase, a classifier

using the data set D0 is constructed. It provides an initial partitioning of the space

and provides the information to estimate posteriors over given sets of data points. The

main body is an iterative loop where, by adding new data points, the classifier will be

extended and improved with the main goal of identifying and characterizing the bound-

aries. This is accomplished by the tree steps in the algorithm shown in Figure 5.3. In

the first step, the current classifier is used to estimate a set of data points, which are

close to current prediction of the boundary. These are a subset of data points from a

regular grid or a Latin hyper square, for which their entropy measure is high (classifi-
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cation representation) or the estimated response value is close to 0.5. The location of

these points do not only depend on the actual boundary, but also on the shape of the

dynamic tree and the size of the partitions, because points in the same partition have

the same values. This set of data points is then used to estimate the currently best

parameters Θ for each of the the boundary shapes, together with a confidence interval

for each of the parameters.

The candidate point selection in this active learning algorithm can use as much

information as is available at the current stage, for example, prior information given by

the domain expert. It then selects a new point (i.e., set of input parameters), for which

the label is obtained by running the Simulink simulator. Since running the simulator is

usually slow and computational costly, a main goal of this selection process is to reduce

the number of necessary new data points. For selection of the new data points we use a

regression representation of our problem. In the following, we will present and discuss

the individual steps in detail.

5.3.2 The Initial Classification

5.3.2.1 Sparse n-factor Combinatorial Exploration

The full combinatorial exploration of all possible values of the input parameters

soon reaches infeasible numbers. We are therefore experimenting with two alternative

methods of generation for the initial data setD0: Monte Carlo testcase generation and n-

factor combinatorial exploration. The Monte Carlo (MC) testcase generation treats each

input variable as a statistical variable with a given probability density function, from
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which values for the test cases are randomly drawn. In most applications, a uniform

random distribution (within the given variable ranges) or a Gaussian distribution is

assumed for all continuous inputs. Here, the mean usually is the nominal value. For

discrete or discretized variables, a uniform probability distribution is assumed. Monte

Carlo (MC) test cases can be generated very easily. However, they provide no guarantee

whatsoever regarding uniqueness and coverage of the input space. This means that for

a reasonable coverage of the input space, a very large number of MC cases have to

be executed, again quickly reaching the limits on what can be done practically. Even

with optimizations like discretization or binning of variables, pre-filtering of test cases,

or exploitation of domain-specific features, like symmetry, only an overall probabilistic

measure on the coverage of the input space can be given. In practice, MC testcase

generation is usually used to quickly get an a reasonably dense coverage in the vicinity

of nominal conditions.

Methods for systematic coverage of a high-dimensional state space originate

from observations about software errors in Software Engineering: in real software pro-

grams, most errors are caused by a specific, single value of one input variable. A typical

example (see above) is that the input “longitude” reaches the value of 180◦ causing

problems in the navigation computer. The case that a fault is triggered by a specific

combination of two variables is much less likely. Even more unlikely is the case that 3

input variables must have specific values in order to trigger the failure; the involvement

of 4 or more variables can be, for most purposes, ignored. This observation (e.g., [Cohen

et al., Sep 1996; Dunietz et al., 1997; Wallace and Kuhn, 2001]) can be used to specif-
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ically tailor the generation of test cases, resulting in a substantially smaller number of

test cases. Nevertheless, these cases completely cover all combination of variables up to

a given bound n, hence the method is called n-factor combinatorial exploration.

A number of efficient algorithms for the n-factor combinatorial testcase gener-

ation can be found in the literature (e.g., [Grindal et al., 2005]). For testcase generation

with continuous variables as in our case, the input space for each dimension is split

up into a number of discrete ranges (bins), from which values are uniformly drawn in

a Monte Carlo fashion. For details see [Schumann et al., 2009]. [Giannakopoulou et

al., 2011] compares full combinatorial exploration with n-factor for testing of a NASA

air traffic control software (TSAFE). The full test set consists of 81 million test cases;

a 3-factor set has approximately 6,100 elements. Code coverage, however, only was

reduced minimally, demonstrating the advantage of n-factor test coverage. For our ex-

periments, we used a tool developed at JPL [Schumann et al., 2009] which extends the

IPO algorithm [Tai and Lie, 2002]. Although the tool features a number of extensions,

we only use the core algorithm to generate 3-factor combinatorial permutations for the

discretized (binned) input variables of the IFCS system. Table 5.1 illustrates the results

for various number of input parameters and values of n. A repetition factor of 2 was

used for all runs. All IFCS parameters have been discretized into k = 5 bins. Thus, a

full combinatorial exploration would require kN = 511 = 4.9× 106 simulation runs.
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24 input parameters
n= 2 3 4 5 24

Runs 125 967 6731 > 10000 5.96× 1016

T[s] 0.07 5.4 35.6 –

11 input parameters
n= 2 3 4 5 11

Runs 98 654 4064 23044 4.88× 106

T[s] 0.03 0.34 24.8 1383 –

Table 5.1: Number of generated runs and execution time for n-factor

5.3.2.2 Minimal Coverage metric for initial data set

A certain minimal coverage of the space must be provided by the initial data

set D0. Due to the greedy nature of entropy-based candidate selection, boundaries

in sparsely populated areas might be missed. In our approach, we are using n-factor

combinatorial exploration to obtain a small D0, which nevertheless provides coverage

as D0 contains all possible combinations of values, value pairs, value triples, up to n-

tupels. When a boundary shape is defined as constraining k dimensions (e.g., a sphere

in dimensions 1,3,4 of an 11-dimensional space), that boundary can be located if an

n-factor combinatorial exploration is used with n ≥ k, and the boundary shape spans

at least two of the n-factor bins. In that case, we are sure that D0 contains at least one

data point belonging to class 1 and one to class 2, giving rise to partitions with elevated

entropy.
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Figure 5.4: A good shape set S (black lines) for the input point set Xn (red squares).

5.3.3 Modeling Classifier Boundaries with Simple Shapes

Given a classifier Pn, we want to fit simple, parameterized shapes (from a dic-

tionary provided by experts) to areas of high entropy that approximate the boundaries

between two classes. We assume that a set of classifier boundary points Xn at step n of

our adaptive boundary modeling is given. Figure 5.4 shows a good shape set S for an

input point set Xn. The red points are the input point set Xn. The black lines are two

shapes fit to the point set. This figure illustrates the goal of our shape fitting problem.

5.3.3.1 Notation

Suppose there are m shape classes M1, . . . ,Mm with m ≥ 1 which are pa-

rameterized by Θ1, . . . ,Θm. The task is to fit l shapes S1, . . . , Sl, l ≥ 1, where S1 =
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(i1,Θ1), . . . , Sl = (il,Θl) and ij denotes the shape class for the jth shape with ij ∈

M = {M1, . . . ,Mm}. Several of the ij can be the same to accommodate more than one

shape belonging to the same class. The Θi should be different since we do not want

to represent the same boundary shape twice. We also seek to determine the correct

number of shapes l that represents the input point set Xn.

For example, we may consider the m = 2 shape classes M1 = hyperplane and

M2 = sphere in Rd. Hyperplanes are represented as a1x1 + · · ·+ adxd + ad+1 = 0 with

parameter vector Θ1 = (a1, . . . , ad, ad+1) ∈ Rd+1. In the same d-dimensional space, a

sphere of radius r with center c = (c1, . . . , cd) is described by (x1−c1)2+· · ·+(xd−cd)2 =

r2 with parameter vector Θ2 = (c, r) ∈ Rd+1. Now suppose we are in the plane (d = 2)

and that the true class boundaries are described by the line 5x+y−0.1 = 0 (a hyperplane

in R2), the circle (x − 0.3)2 + (y − 0.4)2 = 0.22 (a sphere in R2), and the vertical line

x + 0y − 0.7 = 0. This is represented in our model as l = 3 with the specific shapes

S1 = (i1 = hyperplane,Θ1 = (5, 1,−0.1)), S2 = (i2 = sphere,Θ2 = (0.3, 0.4, 0.2)), and

S3 = (i3 = hyperplane,Θ3 = (1, 0,−0.7)).

5.3.3.2 What is a Good Shape Set S for an Input Point Set Xn?

There are three conditions that specify when a shape set S provides a good fit

to the data Xn:

(i) Summary: each point on a shape S ∈ S is close to some classifier boundary point

in Xn,
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(ii) Completeness: each classifier boundary point in Xn is close to some shape point

on one of the shapes S ∈ S, and

(iii) Minimality: the shapes in S are as different from one another as possible.

Let us now explain why the above properties are desirable in a fitted shape set. These

properties are illustrated in Figure 5.5

Condition (i) encourages each shape S ∈ S to be a good summary of one of

the parts of the boundary of classifier Pn. That is, the points of a shape should lie

along high entropy areas of Pn. The shape in the top-left of Figure 5.5 is not a good

summary of any part of the input point set. The shape in the top-right of Figure 5.5

is a good summary of the points on the left side. Condition (ii) encourages S to be

a complete summary of the boundary input points. In a complete summary S, each

classifier boundary point is ”covered” by S in the sense that it is close to a point in

S. The shape set in the top-right of Figure 5.5 is not a complete summary because it

does not cover the points on the right side. On the other hand, the shape set in the

bottom-left of Figure 5.5 is a complete summary. Condition (iii) encourages that shape

set S to be minimal; i.e., S will not use any extra shapes to form a complete summary

of the boundaries of classifier Pn. A complete summary S (i.e. one satisfying (i) and

(ii)) remains a complete summary if one of its shapes S ∈ S is added to S either exactly

or after a small perturbation. In fact, adding a small perturbation Ŝ of S may actually

improve completeness slightly since Ŝ can be even closer to some high entropy points

than S. And if S were a good summary, then so too would Ŝ since it is close to S and
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Figure 5.5: (top-left) The shape is a poor summary of any part of the input point set.
(top-right) The shape is a good summary of the points on the left. But this shape set
with one shape is not a complete summary of the point set. (bottom-left) This shape
set is a complete, minimal summary of the point set. (bottom-right) This shape set is
a complete summary, but it is not minimal.
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points on S are close to high entropy points. We need the minimality condition (iii) to

be able to obtain the simplest (i.e. smallest) shape set that is a complete summary of

the classifier boundaries. The shape set in the bottom-left of Figure 5.5 is minimal, but

the shape set in the bottom-right is not minimal.

5.3.3.3 Statistical Modeling

The shape set posterior is given by

P (S|Xn) =
P (Xn|S)P (S)

P (Xn)
∝ P (Xn|S)P (S).

We build the posterior model P (S|Xn) by modeling the likelihood P (Xn|S) and the

shape set prior P (S). In the posterior P (S|Xn) ∝ P (Xn|S)P (S), we will model the

likelihood P (Xn|S) to encourage completeness and the prior P (S) to encourage distance

between shapes and therefore minimality. It makes sense that the data likelihood ac-

counts for completeness because completeness requires observed points to be close to a

shape and the observed points arise from the ground truth shapes with the addition of

noise.

We will encourage good summary using a Bayesian loss function that increases

with increasing distance of the shapes to the point set. We will determine the number

of shapes l by minimizing the expected posterior loss.

Likelihood Our likelihood will encourage completeness. For the completeness condi-

tion (ii), we are interested in making the average squared distance D
2
Xn,S of boundary
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Figure 5.6: Likelihood P (Xn|S) concepts and notation.

points in Xn = {x1, . . . , xn} to shapes in S small:

D
2
Xn,S =

∑
x∈Xn d

2
Xn,S(x)

|Xn|
=

∑n
j=1 d

2
Xn,S(xj)

|Xn|
, (5.1)

where

d2Xn,S(x) = min
s∈S
||x− s||22 (5.2)

is the minimum squared distance of a high entropy point x to a point on any shape in

the collection S = (S1, . . . , Sl).

We now describe our likelihood model Xn|S to encourage completeness. Fig-

ure 5.6 shows our notation. An observed point xj ∈ Xn is assumed to have been

generated from a shape Szj , where zj gives the shape number that explains xj . Given

zj , we model the likelihood of xj as a decreasing function of the minimum distance from

xj to Szj . The closer xj is to shape Szj , the higher the likelihood of xj . The observations
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xj are assumed to be independent and modeled as

xj = sj + εj , independent

εj = rjnj ,

rj ∼ N(0, σ2r ),

where

sj = arg min
s∈Szj

||xj − s||22,

nj = a unit normal to Szj at sj ,

rj = (xj − sj) · nj .

Here the noise vector εj = rjnj is along a unit normal nj to the shape Szj at the closest

shape point sj to xj . The scalar residual rj is the signed distance along nj from the

shape Szj to xj . We model the observation error εj by modeling the signed residual as

a N(0, σ2r ) random variable. In Figure 5.6, the observed point xj is explained by shape

S1 and thus zj = 1. Since the error vector εj is opposite the chosen normal direction,

the residual rj is negative in this case.

Note that the squared residual r2j is just the minimum distance squared from

xj to the closest point sj on shape Szj :

r2j = min
s∈Szj

||xj − s||22,

where the minimum occurs at s = sj . Let Z = (z1, . . . , zn). Then we derive the
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likelihood as follows:

P (Xn|Z,S) = P (x1, . . . , xn|z1, . . . , zn, S1, . . . , Sl)

=
n∏
j=1

P (xj |z1, . . . , zn, S1, . . . , Sl) independence

=
n∏
j=1

P (xj |zj , Szj ) xj depends only on shape Szj

=
n∏
j=1

N((xj − sj) · nj |0, σ2r )

=

n∏
j=1

N(rj |0, σ2r )

=

n∏
j=1

1√
2πσr

exp

(
−
r2j

2σ2r

)

= Kσ−nr exp

− 1

2σ2r

n∑
j=1

r2j


P (Xn|Z,S) = Kσ−nr exp

− 1

2σ2r

n∑
j=1

min
sj∈Szj

||xj − sj ||22

 , (5.3)

for a constant K. Note that if the observed point set Xn is close to the shapes in S,

then P (Xn|Z,S) is high. This statement assumes, of course, that the correct shape Szj

explaining each point xj has also been identified.

We can obtain the likelihood P (Xn|S) by modeling Z|S and integrating out

Z as in P (Xn|S) =
∫
Z P (Xn|Z,S)P (Z|S)dZ. We could, for example, model Z|S by

modeling a count vector C = (c1, . . . , cl) which holds the number of observations ci

explained by shape Si. Here ci =
∑n

j=1 1zj=i. We can encourage good summary by

modeling C ∼ multinomial(n, (1/l, 1/l, . . . , 1/l)) where each of the l shapes in S has the

same probability 1/l of generating an observed point. This would make shape sets with
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any shapes that are from the data quite unlikely because we would expect to see points

around each shape according to the given multinomial distribution.

It is difficult, however, to optimize over shape sets with the hidden random

variables Z in our models. Instead, we make a simple but accurate and effective ap-

proximation in our models and assume that the shape Szj that explains observation xj

is the shape in S which is closest to xj . Thus we replace the minimization in equa-

tion (5.3) over sj ∈ Szj with a minimization sj ∈ S over the entire shape set to obtain

the approximation

P (Xn|S) = Kσ−nr exp

− 1

2σ2r

n∑
j=1

min
sj∈S
||xj − sj ||22

 . (5.4)

From equations (5.1),(5.2), we can see that the inner sum in equation (5.4) is just a

scaled version |Xn|D
2
Xn,S of our completeness measure. (We will still incorporate the

summary measure in our Bayesian loss function.) We can easily write our likelihood in

terms of the completeness measure D
2
Xn,S . To do so cleanly, define σ2complete = σ2r/|Xn|.

Then

P (Xn|S) = Kσ−ncomplete exp

(
− 1

2σ2complete

D
2
Xn,S

)
, (5.5)

where another constant factor has been absorbed into K.

Shape Set Prior We build the shape set prior P (S) based on the distances of points

on each shape Si to the rest of the shape set S−i = S\{Si}. To keep shapes apart from

one another, we want a large average squared distance from points on each shape to the

rest of the shapes. Let d2Si,Sj (si) be the minimum squared distance of a point si ∈ Si to
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another shape Sj :

d2Si,Sj (si) = min
sj∈Sj

||si − sj ||22.

Then the squared distance of si ∈ Si to the shape set S−i is

d2Si,S−i(si) = min
Sj∈S−i

d2Si,Sj (si),

which finds the closest point in the rest of the shapes S−i to si ∈ Si. Finally we average

the inter-shape squared distances over all points on all shapes to get

D
2
S =

∑
Si∈S

∑
si∈Si d

2
Si,S−i(si)∑

Si∈S |Si|
(5.6)

To keep the shapes apart a priori, we want D
2
S to be large, indicating that on average

the inter-shape distance is large. Equivalently, 1/DS should be small. Therefore we

model the prior for S using the normal distribution

S ∼ N(D
−1
S ; 0, σ2shapesim). (5.7)

Bayesian Loss Next we define a Bayesian loss function that encourages good sum-

mary. We can think of the summary condition (i) as requiring a small distance from

each shape S ∈ S to the set of classifier boundary points Xn. Let d2S,Xn(s) denote the

squared distance from a shape point s ∈ S to the point set Xn:

d2S,Xn(s) = min
x∈Xn

||s− x||22.

We capture the average squared distance D
2
S,Xn from the shape set S to the input points

Xn by averaging over all points on all shapes in S = (S1, . . . , Sl):

D
2
S,Xn =

∑l
a=1

∑
s∈Sa d

2
Sa,Xn

(s)∑l
a=1 |Sa|

. (5.8)
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We define our Bayesian loss function as

loss(S, Xn) = λsummaryD
2
S,Xn

The smaller the distance from each shape in S to the point set Xn, the smaller the loss.

Thus minimizing the loss will encourage good summary.

5.3.3.4 Shape Fitting Method

Our shape fitting method has two main steps:

Step 1 Minimize the expected posterior loss

g(l) = E[loss(S, Xn)], |S| = l

over the shape set size l to obtain the number of shapes l∗

Step 2 Compute the MAP shape set S∗,l∗ for shape sets of size l∗

As we shall see, our method in Step 1 for choosing the number of shapes l∗ to fit requires

sampling from the shape set posterior. While drawing shape set samples, we can keep

track of the maximum posterior probability shape set for each l to obtain the MAP

shape set output in Step 2. Another option in Step 2 is to return an entire posterior

shape set summary with confidence intervals around posterior mean shape sets of size

l∗. During Step 1 processing, we can save all the posterior shape set samples for an l

that gives a new minimum expected loss. Then we will have the shape set samples for

the chosen number of shapes l∗ and we simply compute a summary of those samples to

output.
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Determining the Number of Shapes We assume that we can apriori limit the

number of shapes l to some set L. For example, if we know that there will not be more

than five boundaries then we can set L = {1, 2, 3, 4, 5}.

For each l in L, we compute the expected loss over the posterior

g(l) = E[loss(S, X)] =

∫
{S:|S|=l}

loss(S, Xn)P̂ (S|Xn)dS. (5.9)

Here we denote the shape set posterior probability distribution for shape sets with a

fixed number of shapes as P̂ (S|Xn). Then we choose the number of shapes to minimize

the expected posterior loss:

l∗ = arg min
l∈L

g(l).

The integral in equation (5.9) is difficult to compute analytically. Therefore we ap-

proximate the integral for g(l) by drawing K shape set samples S(k) of size l from the

posterior S|Xn:

g(l) = E[loss(S, X)] ≈
K∑
k=1

loss(S(k), Xn)P̂ (S(k), Xn).

Thus our method for determining the number of shapes to fit requires the ability to

draw posterior shape set samples of a fixed number of shapes l. The technique to do so

is the subject of the next section.

5.3.3.5 Our Shape Set Posterior Sampling Method

For a fixed shape set size |S| = l, we will draw samples from the posterior

P (S|Xn) ∝ P (Xn|S)P (S) using an iterative procedure. Shape set samples S with a
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small value for

− log(P (Xn|S)P (S)) = − log(P (Xn|S))− log(P (S))

should be more likely to occur. Suppose we have an initial shape set S0, and let S[a] = Sa

denote the ath shape in the collection S. Then we generate N shape set samples from

the posterior S|Xn as follows:

for j = 1..N

Sj := Sj−1

for a = 1..l

(*) draw a sample S∗a from Sa|Sj−a, Xn

Sj [a] := S∗a

end for a

end for j

In order to implement the sampling step (∗), we developed an algorithm, which

is inspired by RANSAC (RANdom Sample And Consensus), which was first introduced

by [Fischler and Bolles, 1981], as a method to estimate the parameters of a certain

model starting from a set of data contaminated by large amounts of outliers. In a

first hypothesis step, minimal sample sets (MSSs) are randomly selected from the input

dataset and the model parameters are computed using only the elements of the MSS.

This in contrast to other approaches, such as least squares, where the parameters are

estimated using all the data available, possibly with appropriate weights. In finding
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lines in 2D, for example, our algorithm chooses samples of size two from the point set

since two points determine a line. In finding circles in 2D, each iteration chooses three

points to define a circle.

In the test step, our algorithm checks which elements of the entire dataset

are consistent with the model instantiated with the parameters estimated in the first

step. The set of such elements is called consensus set (CS). Our algorithm terminates

when the probability of finding a better ranked CS drops below a given threshold or a

maximum number of iterations is reached.

Our algorithm essentially discovers the correct model when one of its iterations

chooses a minimal sample of points that contains only inliers of the true model. Let us

define this as success of the algorithm because a model close to the true model will be

returned. Given an assumed fraction of inliers w, it is therefore possible to compute the

number of iterations needed such that the probability of success is greater than some

threshold psuccess (although fewer iterations may be run to tradeoff quality for speed).

If the minimal sample size is k (e.g. k = 2 for lines in 2D) and we assume random

point selection with replacement, then the probability of selecting at least one outlier

in an iteration is 1−wk. The probability of selecting at least one outlier in all N trials

is (1 − wk)N . We want this failure probability to be less than or equal to 1 − psuccess.

Solving 1−psuccess ≥ (1−wk)N leads to requiring N ≥ log(1−psuccess)/ log(1−wk) trials

to have probability of success greater or equal to psuccess. For example, to find a line in

2D with only w = 0.25 inliers and with probability of success at least psuccess = 0.999,

we would need to run only N = 108 iterations.
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In order to implement the sampling step (∗), we fit each of the potential shape

classes M1, . . . ,Mm and pick the shape out of all iterations that maximizes the con-

ditional posterior Sa|S−a, Xn. To do so, we maximize P (S|Xn) as a function of Sa

with the rest of the shapes S−a held constant. Equivalently, we actually minimize

− log(P (Xn|S)P (S)) as a function of Sa.

To draw a sample S∗a from a particular shape class with S−a fixed, we run a

small number of iterations and pick the shape with the smallest cost:

cost = − log(P (Xn|S)P (S))

= − log(P (Xn|S))− log(P (S))

= costcomplete + costshapesim,

where

costcomplete = λcompleteD
2
Xn,S ,

costshapesim = λshapesimD
−2
S ,

with the distance terms defined in equations (5.8),(5.1),(5.6) and the weights given in

terms of the model variances as

λcomplete = 1/(2σ2complete),

λshapesim = 1/(2σ2shapesim).

This evaluation criterion gives sample shape sets S that are complete and minimal for

the classifier boundaries of Pn.

This procedure is summarized below.
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(*) draw a sample S∗a from Sa|Sj−a, Xn as follows:

mincost :=∞; S∗a := NONE

for shapetype = M1, . . . ,Mm

for iter = 1..num Iters

k := min sample size(shapetype)

pick k points xj1 , . . . , xjk from Xn with p(x) = 1− exp(−γd2Xn,S−a(x))

Sc := fitshape(shapetype, xj1 , . . . , xjk)

Sc := S−a ∪ {Sc}

costcomplete := λcompleteD
2
Xn,Sc

costshapesim := λshapesimD
−2
Sc

cost := costcomplete + costshapesim

if (cost < mincost)

mincost := cost; S∗a := Sc

end if

end for iter

end for shapetype

Figure 5.7 shows a few iterations to draw a sample S∗1 with S−1 = {S2, S3}

fixed. Each iteration does the following: a random line candidate Sc1 is determined by

choosing two points, shown as filled red squares, at random from Xn. The random

shape Sc1 completes a potential shape set, and then the posterior P ({Sc1, S2, S3}|Xn) is
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Figure 5.7: A few iterations to draw a sample S∗1 with S−1 = {S2, S3} fixed. One
random shape is considered in each iteration. The random shape candidate Sc1 chosen
in iteration #1 results in a shape set with low posterior probability. The same is true
for iteration #2. The random shape candidate Sc1 chosen in iteration #3 results in a
shape set with high posterior probability.
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evaluated to see if a new maximum posterior probability has been achieved. The first

two iterations in this example fail to yield a high posterior shape set. The third iteration

does produce a high posterior shape set. Subsequent iterations are unlikely to find a

substantially better candidate shape Sc1. Once we have reached the maximum number

of iterations or we have found a shape set with sufficiently high posterior probability,

we return the best candidate shape as the sample S∗1 |S−1, Xn.

In the sampling step (*), we are trying to find a high posterior probability

shape S∗a within the set of high entropy points given the rest of the shapes S−a. The

boundary points explained by the rest of shapes S−a are essentially outliers in the

computation of S∗a. This is because we want to find a shape S∗a that covers a part of

the classifier boundary that is not already covered by S−a.

In our procedure we choose samples based on the squared distance

d2Xn,S−a(x) = min
S∈S−a

d2Xn,S(x)

of points x ∈ Xn to the rest of the shapes S−a. When updating Sa, we want a shape that

is far from the other shapes S−a being held constant. Thus we choose a point sample x ∼

p, where p(x) = 1− exp(−γd2Xn,S−a(x)). This heuristic encourages samples farther from

S−a to chosen. In turn, this leads to shape sets that have higher posterior probability

than uniformly sampling from Xn during an iteration. Furthermore, we evaluate the

shape implied by a minimal point set using the posterior shape set probability rather

than the number of model inliers. Our iterative sampling procedure is a probabilistic

version of multiple shape detection algorithms that repeatedly find a model and then
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remove all the inlier points for the model before searching for the next model.

5.3.3.6 Results: Shape Set Posterior Sampling

We now show shape set posterior sampling results for fixed shape set size l.

Our first test example is shown in Figure 5.8. The examples in this section consist of

randomly generated data with ground truth shape sets in 2D consisting of lines and

circles in the domain Ω = [0, 1]× [0, 1]. Once a random ground truth shape set has been

chosen, we project a Latin Hypercube Sampling (LHS) of Ω of size 200 points onto the

ground truth shapes to get a point set representation of the ground truth shapes. We

then add noise n ∼ N(0, σ2nI) to the point set to produce the input point set Xn for

our shape fitting procedure. For all examples in this section, we use a noise standard

deviation of σn = 0.05, which represents a moderate amount of noise.

Unless otherwise noted, the computed results in this section use the parameter

settings λsummary = 1000, λcomplete = 1000, and λshapesim = 0.007. Recall that the

summary and completeness statistical models are based on average squared distance

between points, while the shape similarity term is based on inverse average squared

distance. This accounts for the difference in magnitudes of the three weights. These λ-

weights correspond to model standard deviations in distance and inverse distance units

of σsummary
.
= 0.02, σcomplete

.
= 0.02, and σshapesim

.
= 8.45.

The example in Figure 5.8 has ltrue = 2 shapes, one line and one circle. The

ground truth shapes are shown as dotted blue lines. The input point set after adding

noise to the ground truth is shown as red squares. Recall that the input point sets
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Figure 5.8: Example. 2D hyperplanes and spheres input with ltrue = 2 shapes.
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represent high entropy points of a classifier whose class boundaries we are trying to

summarize. Although in our main NASA application we are not expecting close or

overlapping classifier boundaries, we have designed our shape fitting procedure to be

robust to these difficult inputs.

Next we show several examples for shape set posterior sampling assuming the

correct l = ltrue number of shapes. We use the first example in Figure 5.8 to explain

the details of our posterior shape set plots. The results of our posterior shape set

sampling procedure are shown in Figure 5.9. The black solid lines show the posterior

mean shapes computed. As one can see, our statistical models and sampling procedure

discovers the correct shape types and provides shape estimates close to the ground truth.

The dotted black lines illustrate shape ”confidence intervals” around the mean shapes.

It is a bit tricky to show confidence intervals for the shapes, even in 2D, because there is

uncertainty in more than one parameter defining the shapes. We could simply overlay

plots of the posterior shape samples to give an idea of density, but it quickly becomes

difficult to see what is happening in the plot with even a handful of posterior samples

and the input point set and ground truth shapes. Instead let us explain what we are

showing for the shape confidence intervals.

First consider confidence intervals for lines in 2D. There is uncertainty in both

the slope of the line and its intercept. In the results of this section, we are showing

only the uncertainty in the intercept around an average slope defined by the posterior

shape samples. Recall our line representation θ1x + θ2y + θ3 = 0. Denote the set of

posterior line samples as {(θ(n)1 , θ
(n)
2 , θ

(n)
3 )}n. For non-vertical lines, our representation
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Figure 5.9: Shape Set Posterior. 2D hyperplanes and spheres input with ltrue = 2 shapes.
Sampling Parameters: l = 2, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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is equivalent to y = mx + b, with slope m = −θ1/θ2 and intercept b = −θ3/θ2. For

a (1 − α)% confidence interval we compute the α/2 and 1 − α/2 quantiles blow and

bhigh, respectively, of the set {b(n) = −θ(n)3 /θ
(n)
2 }n. Let bmid = 0.5 ∗ (blow + bhigh) be the

midpoint between blow and bhigh. We also compute the mean slope m as the mean of the

set {m(n) = −θ(n)1 /θ
(n)
2 }n. This then defines a mean solid line y = m+ bmid surrounded

by (1− α)% confidence dotted lines y = m+ blow and y = m+ bhigh.

In order to handle vertical lines, the above procedure for generating the confi-

dence interval is modified slightly. First, we rotate all sample lines so that the line with

parameters equal to the mean of the parameter samples is horizontal. Then we apply

the procedure in the rotated space to obtain the low, mid, and high confidence lines.

Finally, we rotate these lines back to the original space to get the final shape mean and

(1− α)% confidence lines.

Since the variation in angle is not represented in the plotted confidence interval,

it is not unusual to see the ground truth line go slightly outside of the plotted confidence

interval near the edges of the domain. In the line result in Figure 5.8, the ground truth

line is almost entirely within the plotted 95% confidence interval except near the top of

plot where it is approaching the confidence boundary.

Next consider confidence intervals for circles in 2D. There is uncertainty in

both the radius and the center. The results in this section show confidence intervals for

the radius around the mean circle center and for the center as well. Recall our circle

representation (x− θ1)2 + (y− θ2)2 = θ23 with center c = (θ1, θ2) and radius r = θ3. We

compute the mean circle center c = (θ1, θ2) as the mean of the center posterior samples
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{(θ(n)1 , θ
(n)
2 )}. This center point c is shown with a blue little circle in Figure 5.9 and in

the rest of the results of this section. The mean radius circle is shown as a solid black

curve centered at c with radius that is r = θ3, the mean of the radius posterior samples

{θ(n)3 }n. We also show (1 − α)% confidence circles around the mean circle as dashed

black curves. These confidences bands are defined by the circles with center c and radii

rlow and rhigh, where rlow and rhigh are the α/2 and 1 − α/2 quantiles of the radius

posterior samples {θ(n)3 }n.

We also show a (1− α)% confidence rectangle for the center itself as a dashed

black rectangle. This confidence rectangle has corners (cxlow, c
y
low), (cxlow, c

y
high), (cxhigh,

cyhigh), and (cxhigh, c
y
low), where cxlow and cxhigh are the α/2 and 1 − α/2 quantiles of the

center x-coordinate posterior samples {θ(n)1 }n and cylow and cyhigh are the α/2 and 1−α/2

quantiles of the center y-coordinate posterior samples {θ(n)2 }n. Again, this is not a

perfect confidence interval display for circles since it does not show the uncertainty of

all circle parameters in just one set of boundaries. A ground truth circle may slightly

escape the mean circle confidence band along certain parts of its boundary since that

band does not account for uncertainty in the center. In the result in Figure 5.9, the

ground truth circle does stay inside the 95% mean circle confidence band all the way

around its perimeter, although it does approach the confidence boundary quite closely

in some parts. The mean circle center also lies inside the 95% confidence rectangle,

although it not at the center of this confidence rectangle.

We can also give some intuition here about high posterior probability posterior

shape sets. High posterior probability posterior shape sets will generally go through the
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means of the input points that arise from each shape. The shape similarity term can

push the shapes away from the means to separate the shapes more, but should do so in

moderate amounts as long as shape similarity is weaker than the completeness term in

our model. In the result in Figure 5.9, the mean posterior line and circle indeed basically

pass through the means of the regions of noisy points generated from the ground truth

shapes. This is evidenced by the close proximity (relative to the added noise amount) of

the mean posterior shapes to the ground truth shapes, as the noise was added equally in

all directions. Our default parameter settings give a lower relative weight to the shape

similarity term because we first want to ensure that the shape set is complete and then

we bias complete shape sets to be minimal. Our modeling assumptions keep almost all

of the posterior probability mass in a narrow band around the true shapes.

The example in Figure 5.10 contains just one shape boundary, namely a line.

Our posterior shape set sampling procedure correctly discovers the shape and provides

a tight 95% confidence region that almost entirely contains the ground truth line. Here,

we specified l = 1 and restricted the set of potential shape types toM = {hyperplane}.

Another example with just a single shape boundary is shown in Figure 5.11,

except here the ground truth shape is a circle. Here we set the sampling parameters

according to the ground truth: l = 1 and M = {sphere}. The computed 95% radius

confidence region contains most of the circle and the 95% center confidence rectangle

indeed contains the ground truth circle center.

Our posterior sampling algorithm handles shape sets with more than a single

shape. The examples in Figures 5.12 and 5.13 each consist of two hyperplanes, the

91



−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

shapeset posterior
input pointset (squares), ground truth shapes (dotted)
mean shapes (solid), 95% confidence band (dashed)

Figure 5.10: Shape Set Posterior. 2D hyperplanes input with ltrue = 1 shape. Sampling
Parameters: l = 1, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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Figure 5.11: Shape Set Posterior. 2D spheres input with ltrue = 1 shape. Sampling
Parameters: l = 1, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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former without overlapping shapes in the domain Ω and the latter with overlapping

shapes. For both inputs, our posterior shape set sampling accurately computes the

correct shape set output based on the input l = 2 and M = {sphere}. Note how the

95% confidence intervals contain the ground truth shapes.

Our shape set posterior sampling method can also handle two circles, as shown

in the result in Figure 5.14. Both the circle center and the perimeter of the mean circle

are within the 95% confidence interval computed by our shape set sampling procedure.

The inputs to our shape set posterior sampling method are l = 2 and M = {sphere}.

We made the problem even harder in Figure 5.15 where we have three hyper-

planes that come close to another near the boundary of the input domain Ω. Nonetheless,

the posterior means and confidence intervals capture the three ground truth lines quite

well. Here we input l = 3 and M = {hyperplane} to the sampling procedure.

Figure 5.16 shows the results of our posterior shape set sampling method on

another example with three shapes, but containing both lines and a circle. The shapes do

not overlap in this example. Again, the shape set confidence intervals contain the entire

ground truth shapes in Ω. For this example we input l = 3 andM = {hyperplane, circle}

to the sampling procedure.

Our last example in Figure 5.17 is a difficult one with four overlapping hyper-

planes. The posterior shape set results are quite good for three of the four lines. The

95% confidence interval for the nearly horizontal line at the top does contain the ground

truth line, but the posterior mean is not very close to the ground truth line and the

95% confidence interval is very wide. The problem here for this overlapping shapes case
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Figure 5.12: Shape Set Posterior. 2D hyperplanes input with ltrue = 2 shapes. Sampling
Parameters: l = 2, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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Figure 5.13: Shape Set Posterior. 2D hyperplanes input with ltrue = 2 shapes. Sampling
Parameters: l = 2, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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Figure 5.14: Shape Set Posterior. 2D spheres input with ltrue = 2 shapes. Sampling
Parameters: l = 2, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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Figure 5.15: Shape Set Posterior. 2D hyperplanes input with ltrue = 3 shapes. Sampling
Parameters: l = 3, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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Figure 5.16: Shape Set Posterior. 2D hyperplanes and spheres input with ltrue = 3
shapes. Sampling Parameters: l = 3, λsummary = 1000, λcomplete = 1000, λshapesim =
0.007.
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Figure 5.17: Shape Set Posterior. 2D hyperplanes input with ltrue = 4 shapes. Sampling
Parameters: l = 4, λsummary = 1000, λcomplete = 1000, λshapesim = 0.007.
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with many shapes is that the similarity cost is weighted too high. Indeed if we decrease

the weight on the similarity cost, our statistical models are willing to keep the shapes

a little bit closer together as shown in Figure 5.18. For these parameter settings, the

posterior mean becomes much closer to the ground truth near horizontal line and the

95% confidence interval is narrower than the result in Figure 5.17 with a larger weight

on the shape similarity term.

5.3.3.7 Results: Number of Shapes

Thus far we have shown posterior shape set sampling results for shape sets of a

fixed, specified number of shapes l. In this section we show results for determining the

number of shapes by minimizing the expected posterior loss. Equivalently, we actually

maximize the expected posterior gain, where

gain(S, Xn) = exp(−loss(S, Xn)) = exp(−λsummaryD
2
S,Xn)

So the location of the maximum in the graphs in this section (y-axis: expected gain,

x-axis: l) indicates the predicted number of shapes. The graphs of l versus the expected

posterior gain g(l) = E[gain(S, Xn)] where |S| = l are shown in Figures 5.19–5.23. Note

that the number of shapes in all of these examples is correctly identified.

Now let us take a closer look at a few of these examples. By examining the

MAP shape set estimate for each number of shapes l, we will gain further intuition

for our shape set statistical model. Once we have selected the number of shapes l∗ by

maximizing the expected posterior gain, we also output the MAP shape set over sets

with size S = l∗.
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Figure 5.18: Shape Set Posterior. 2D hyperplanes input with ltrue = 4 shapes. Sampling
Parameters: l = 4, λsummary = 1000, λcomplete = 1000, λshapesim = 0.003. Here we have
lowered the shape similarity weight compared to the result in Figure 5.17, thus allowing
shapes to be a little bit closer together (i.e. more similar). Here the posterior mean
becomes much closer to the ground truth near horizontal line and the 95% confidence
interval is narrower than the result in Figure 5.17.
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Figure 5.19: Number of Shapes – Result Set 1. (left) Inputs. (right) Expected posterior
gain versus number of shapes l. (row 1) ltrue = 1. (row 2) ltrue = 1.
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Figure 5.20: Number of Shapes – Result Set 2. (left) Inputs. (right) Expected posterior
gain versus number of shapes l. (row 1) ltrue = 2. (row 2) ltrue = 2.
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Figure 5.21: Number of Shapes – Result Set 3. (left) Inputs. (right) Expected posterior
gain versus number of shapes l. (row 1) ltrue = 2. (row 2) ltrue = 2.
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Figure 5.22: Number of Shapes – Result Set 4. (left) Inputs. (right) Expected posterior
gain versus number of shapes l. (row 1) ltrue = 3. (row 2) ltrue = 3.
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Figure 5.23: Number of Shapes – Result Set 5. (left) Inputs. (right) Expected posterior
gain versus number of shapes l. (row 1) ltrue = 4.

The MAP shape set with a high gain for each l contributes a relatively large

value to the approximation of the expected gain:

g(l) = E[gain(S, X)] =

∫
{S:|S|=l}

gain(S, Xn)P̂ (S|Xn)dS

≈
K∑
k=1

gain(S(k), Xn)P̂ (S(k), Xn).

If S∗,l is the map shape set for size l, then it is instructive in understanding our posterior

gain to look at the contribution gain(S∗,l, Xn)P̂ (S∗,l, Xn) to the integral broken down

by summary (loss), completeness, and shape similarity costs. Here we use the term cost

because we will actually give the quantities

total cost = − log(gain(S∗,l, Xn)P̂ (S∗,l, Xn))

= loss(S∗,l, Xn) + costcomplete(S∗,l, Xn) + costshapesim(S∗,l, Xn),
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num shapes summary cost completeness cost shape similarity cost total cost

1 0.28 2.34 0.00 2.62

2 0.53 1.37 1.93 3.83

3 1.61 1.66 6.17 9.44

4 5.82 1.80 9.74 17.35

5 7.19 1.55 20.08 28.82

Table 5.2: Decomposition of MAP costs in Figure 5.24 into the summary, completeness,
and shape similarity costs.

where

loss(S∗,l, Xn) = λsummaryD
2
S∗,l,Xn ,

costcomplete(S∗,l, Xn) = λcompleteD
2
Xn,S∗,l ,

costshapesim(S∗,l, Xn) = λshapesimD
−2
S∗,l .

First consider the example shown in the top row of Figure 5.19. For each num-

ber of shapes l ∈ L, the MAP shape set is shown in Figure 5.24 and the decomposition

of the total cost into the summary (loss), completeness, and shape similarity costs is

shown in Table 5.2.

The true number of shapes in this example is ltrue = 1. The MAP shape set

for l = 1 gives a low cost. Note that when l = 1 the shape similarity cost is zero (for all

examples, not just this one). This is because this term measures the similarity between

shapes in the set. For l = 2, the MAP shape set essentially adds another line near

the input points and the shape similarity term keeps the two lines slightly separated.

The addition of a second line actually decreases the summary plus completeness cost

compared to l = 1, but the shape similarity cost increases more and the total cost is

still smaller for l = 1. To add lines near the input points to keep the summary and
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Figure 5.24: MAP shape set estimates over number of shapes l for the top row of
Figure 5.19. From top-to-bottom, left-to-right: l = 1, l = 2, l = 3, l = 4, and l = 5.
The bottom right plot shows the expected gain versus l.

109



num shapes summary cost completeness cost shape similarity cost total cost

1 3.70 65.85 0.00 69.55

2 0.27 2.67 0.09 3.03

3 0.42 2.22 2.56 5.20

4 0.59 1.81 6.25 8.65

5 2.24 2.01 10.47 14.72

Table 5.3: Decomposition of MAP costs in Figure 5.25 into the summary, completeness,
and shape similarity costs.

completeness costs low, the lines must be close to one another and the shape similarity

cost rises with increasing l (the last column of Table 5.2). The best configurations for

l ≥ 3 try to cover the input points while keeping a little distance between lines, but no

configuration yields a smaller cost than the MAP shape set for l = ltrue = 1.

Next consider the example shown in the top row of Figure 5.20. For each

number of shapes l ∈ L, the MAP shape set is shown in Figure 5.25 and the decom-

position of the total cost into the summary (loss), completeness, and shape similarity

costs is shown in Table 5.3.

In this example there are ltrue = 2 lines. If only one line is allowed (l = 1),

then the minimum cost is a line that crosses the ground truth lines in an attempt to be

close to both lines. But the summary and completeness costs (first row of Table 5.3)

are still high. When l = 2 lines are allowed, the MAP shape set is close to the ground

truth lines and the summary and completeness costs are decreased significantly. Since

the lines are well separated, the shape similarity cost increases only slightly and the

total cost is decreased significantly for l = 2 compared to l = 1. When a third line is

allowed, the MAP shape set essentially double covers one of the lines. The extra line

allows the sum of the summary and completeness costs to be lower for l = 3 than for
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Figure 5.25: MAP shape set estimates over number of shapes l for the top row of
Figure 5.20. From top-to-bottom, left-to-right: l = 1, l = 2, l = 3, l = 4, and l = 5.
The bottom right plot shows the expected gain versus l.
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num shapes summary cost completeness cost shape similarity cost total cost

1 0.65 11.92 0.00 12.57

2 0.33 2.27 0.41 3.02

3 0.53 1.81 4.24 6.58

4 1.34 1.83 6.39 9.56

5 3.03 1.64 10.11 14.77

Table 5.4: Decomposition of MAP costs in Figure 5.26 into the summary, completeness,
and shape similarity costs.

l = 2, but the shape similarity cost rises more and l = 2 still gives the minimum cost.

It is a similar story for l = 4, but now both ground truth lines are double covered. The

best placement of a fifth line stays away from both double covered ground truth lines

because of the shape similarity cost, but this model is clearly wrong and the cost is

maximum for l = 5. The minimum cost occurs for the MAP shape set for l = ltrue = 2.

Our third example is the one in the top row of Figure 5.21. For each number

of shapes l ∈ L, the MAP shape set is shown in Figure 5.26 and the decomposition

of the total cost into the summary (loss), completeness, and shape similarity costs is

shown in Table 5.4.

In this example there are ltrue = 2 shapes, one circle and one line. When l = 1,

the MAP shape set is a circle larger than the ground truth circle in order to cover some

of the nearby points on the line. Some of the input points at the extremes of the line

segment are not covered, so the completeness cost is still relatively high. Using a single

line would not have been able to get close to as many of the input points as the single

circle, and therefore the MAP shape set for l = 1 is the circle. The completeness cost is

reduced significantly when l = 2 and a second shape can be used as a line to cover the

entire ground truth line. When l = 3, the best model uses two circles to try to cover
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Figure 5.26: MAP shape set estimates over number of shapes l for the top row of
Figure 5.21. From top-to-bottom, left-to-right: l = 1, l = 2, l = 3, l = 4, and l = 5.
The bottom right plot shows the expected gain versus l.
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the noisy point set from the one ground truth circle. The summary plus completeness

cost decreases from l = 2, but the shape similarity cost keeps l = 2 as the better model.

For l = 4, the best model double covers the line and the circle but the total cost still

increases. For l = 5, the model is clearly wrong and the MAP shape set does not make

much intuitive sense beyond trying to cover all the input points while keeping some

distance between the shapes (thus driving the lines a little bit away from the ground

truth line and the three circles). The minimum cost occurs for the MAP shape set for

l = ltrue = 2.

5.3.4 Selecting Candidate Points

The goal of the selection of a candidate point in sequential design is to find

a point x at its most informative input location. Such active learning procedures are

intended to provide efficient automatic exploration of the covariate space, thus guiding

an on-line minimization of prediction error. During each active learning iteration will

draw candidate locations X̃ = {x̃i}Mi=1, and select the next design point to be x? ∈ X̃,

which maximizes a heuristic statistic. For each selected point, we start a run of the

system simulation, which in our cases executes the IFCS Simulink model. The result of

this simulation (success of fail) is the true label ỹ for X̃.

In the literature, a number of selection heuristics have been developed (see Sec-

tion 5.4.4.1 for a detailed discussion of related work). In a classification-based setting,

a popular heuristics selects the point with the maximum entropy, where the entropy Y

is defined by Y = −
∑

c∈c1,..,cn pc log pc, given the posterior probability surface pc for n
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classes. Entropy is used in classification settings to assess response variability and to

illustrate change in expected value of information over the input space. However, the en-

tropy heuristics behaves very greedily [Gramacy and Polson, 2011] and is thus not useful

for our purposes. For regression problems, two common heuristics are active learning

MacKay (ALM, [MacKay, 1992]) and active learning Cohn (ALC, [Cohn, 1996]). An

ALM scheme selects the x? that leads to maximum variance for y(x?), whereas ALC

chooses x? to maximize the expected reduction in predictive variance averaged over the

input space. Again, these heuristics are in general not suited for the boundary-finding

task, because they do not take the specifics of the boundaries into account and tend to

also explore sparsely populated regions far away from current boundaries.

Finding a boundary between two classes can be considered as finding a contour

with a = 0.5 in the response surface of the system response. Inspired by (Jones1998) and

work on contour finding algorithms, we loosely follow [Ranjan et al., 2008], and define

our heuristics by using an improvement function. In order to use the available resources

as efficient as possible for our contour/boundary finding task, one would ideally selects

candidate points, which lie directly on the boundary, but that is unknown. Therefore,

new trial points are selected, which belong to an ε-environment around the current

estimated boundary. This means, that 0.5− ε ≤ ŷ(x) ≤ 0.5+ ε. New data points should

maximize the the information in the vicinity of the boundary. Follwing [Jones et al.,

1998; Ranjan et al., 2008], we define an improvement function fo x as

I(X) = ε2(x)−min{(y(x)− 0.5)2, ε2(x)} (5.10)
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here, y(x) ∼ N(ŷ(x), σ2(x)), and ε(x) = ασ(x) for a constant α ≥ 0. This term defines

an ε-neighborhood around the boundary as a function of σ(x). This formulation [Ranjan

et al., 2008] makes it possible to have a zero-width neighborhood around existing data

points. For boundary sample points, I(X) will be large, when the predicted σ(x) is

largest.

The expected improvement E[I(x)] can be calculated easily, again following

[Ranjan et al., 2008]. From Eq 5.10 we directly obtain

I(X) =


ε2(x)− (y(x)− 0.5)2 for 0.5− ε ≤ ŷ(x) ≤ 0.5 + ε

0 otherwise

(5.11)

Using the fact that y(x) ∼ N(ŷ(x), σ2(x))

E[I(x)] = ε2(x)
[
Φ(0.5+ε(x)−ŷ(x)σx )− Φ(0.5−ε(x)−ŷ(x)σx )

]
−

0.5+ε(x)∫
0.5−ε(x)

(y − 0.5)2φ
(
y−ŷ(x)
σ(x)

)
dy

(5.12)

Replacing ε(x) and some minor calculations ([Ranjan et al., 2008], eq (14)) on the

integral.

0.5+ε(x)∫
0.5−ε(x)

(y − 0.5)2φ
(
y−ŷ(x)
σ(x)

)
dy

=
0.5+ε(x)∫
0.5−ε(x)

(y − ŷ(x))2φ
(
y−ŷ(x)
σ(x)

)
dy+

(ŷ(x)− 0.5)2
[
Φ
(
0.5+ε(x)−ŷ(x)

σ(x) + α
)
− Φ

(
0.5−ε(x)−ŷ(x)

σ(x) − α
)]

2(0.5− ŷ(x))σ2(x)
[
φ
(
0.5+ε(x)−ŷ(x)

σ(x) + α
)
− φ

(
0.5−ε(x)−ŷ(x)

σ(x) − α
)]

(5.13)

Finally
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E[I(x)] = −
0.5+αs(x)∫
0.5−αs(x)

(y − ŷ(x))2φ
(
y−ŷ(x)
σ(x)

)
dy

+2(ŷ − 0.5)σ2(x)
[
φ
(
0.5−ŷ(x)
σ(x) + α

)
− φ

(
0.5−ŷ(x)
σ(x) − α

)]
+(α2σ(x)− (ŷ(x)− 0.5)2)

[
Φ
(
0.5−ŷ(x)
σ(x) + α

)
− Φ

(
0.5−ŷ(x)
σ(x) − α

)]
(5.14)

Each of these three terms are instrumental in different areas of the space.

The first term summarized information from regions of high variability within the ε-

band. The integration is performed over the ε-band as ε(x) = ασ(x). The second term

is concerned with areas of high variance farther away from the estimated boundary.

Finally, the third term is active close to the estimated boundary. After the expected

improvement has been calculated, the candidate point is selected as the point, which

maximizes the expected improvement: m = argmaxxE[I(x)].

Using this heuristic yielded promising results for one or more boundaries that

are located close together. Most of the newly selected data points are located close to

the boundary and they nicely are located along the boundary line.

For two boundaries located farther apart, this heuristic usually explores one

boundary preferably, or sometimes even fails to detect and explore the second boundary.

In particular in cases where the sizes of the boundaries strongly differ, this can subse-

quently lead to problems in shape estimation. The reason for this behavior is that the

current ε-band is too small to reach out to the other boundaries. Although increasing

α helps, it will result in a much larger number of data points necessary to characterize

the boundary. Experiments with dynamically decreasing α during active learning will
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be future work.

For our experiments, a simple switch of the heuristics addressed that problem:

in approximatly 10% of all candidate selections, ALM or ALC is used instead of the

above selection heuristic. This switch forces the active learning to ”on and off” explore

some new areas with high variance that can be away from known boundaries.

5.3.5 Improvements

The dynatree algorithm is partitioning the space according to a splitting rule

psplit, which gives an indication if a leaf node should be splitted up or not. For any

given leaf node η in tree T , the split probability is psplit(T , η) = α(1 + Dη)
−β for

0 ≤ α ≤ 1 and β > 0 (defaults set to α = 0.95, β = 2). In [Taddy et al., 2011], the

location of the split and its coordinate 〈i, x〉eta for 1 ≤ i ≤ p is a discrete uniform

distribution over all split points. It also restricts that partitions with too few points are

not subject to further splits. This uniform distribution is oblivious to the fact that we

are searching for boundaries. We propose the use of a depth-dependent split probability

psplit(T , η), which takes into account if a current leaf contains a boundary (or is close

to a boundary). Informally, such leaf nodes should have a higher prior probability to

be split, resulting in a much finer partition grid close to the boundary.
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5.4 Background and Related Work

5.4.1 DynaTree

5.4.1.1 Dynamic Trees

In order to properly carry out our task for finding boundaries in a high dimen-

sional setting, dynamic trees [Taddy et al., 2011] are used. Compared to standard basis

function models for nonparametric regression, the dynamic trees have some striking

advantages (e.g., flexible response surface, nonstationarity, heteroskedasiticity), which

are important to solve our task. Dynamic trees are easy to specify and allow for condi-

tional inference, given the global partition tree-state, to be marginalized over all model

parameters. Prediction is very fast, requiring only a search for the rectangle containing

a new x, and individual realizations yield an easily interpretable decision tree for regres-

sion and classification problems. Most importantly, dynamic trees models are suitable

for sequential particle algorithms, which are necessary for boundary detection using

computer experimental design.

The use of partition trees to represent input-output relationships is a classic

nonparametric modeling technique. A decision tree is imposed with switching on input

variables and terminal node predictions for the relevant output. Although other schemes

are available (e.g., based on Voronoi tessellations), the standard approach relies on a

binary recursive partitioning of input variables, as in the classification and regression

tree (CART) algorithms of [Breiman et al., 1984]. This forces axis-aligned partitions,

although pre-processing data transformations can be used to alter the partition space.
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In general, the computational and conceptual simplicity of rectangular partitions will

favor them over alternative schemes. Figure 5.27 shows how the paritioning is encoded

in the tree. Each inner node shown contains the split value and the dimension for which

the partition value is applicable. For example, the root node splits dimension 1 into

values less than 2 by going into the left subtree (see the top left leaf). By going to the

right, values of greater or equal than 2 are selected and the partition is further refined

in that subtree. Figure 5.28 shows such a partition tree in practice.

x(1) = 2

{x: x(1) <2} x(2) = 3

{x: x(1)>=2 & x(2) < 3} {x: x(1)>=2 & x(2) >= 3}

Figure 5.27: Dynamic tree with split values and dimensions

5.4.1.2 Definition of the tree

Consider covariates xt = {xs}ts=1. A corresponding tree T consists of a hierar-

chy of nodes associated with different subsets of xt. The subsets are determined through

a series of splitting rules, and these rules also dictate the terminal node associated with

any new x. Every tree has a root node, RT , which includes all of xt, and every node is

itself a root for a sub-tree containing nodes (and associated subsets of xt) below in the
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hierarchical structure defined by T . A node is positioned in this structure by its depth,

D, defined as the number of sub-trees of T other than T which contain. The tree is

completed with a decision rule (i.e., a simple regression or classification model) at each

leaf. Suppose that every covariate vector xs is accompanied by response ys, such that

the complete data is [x, y]t = {xs, ys}ts=1. Then, with regression models parameterized

by for each leaf η ∈ LT independence across tree partitions leads to likelihood

p(yt|xt, T, θ) =
∏
η∈LT

p(yη|xη, θη)

where [x, y]η = {xi, yi : xy ∈ η} is the data subset in leaf η. A novel approach to

regression trees was first described by Chipman, George, and McCulloch [Chipman et

al., 1998; Chipman et al., 2002], who designed a prior distribution, π(T ), over possible

partition structures. This allows for coherent inference via the posterior, p(T |[x, y]t) ∝

p(yt|T, xt)π(T ), including the assessment of partition uncertainty and the calculation of

predictive bands.

5.4.1.3 Split Rules

Any given leaf node may be split with depth-dependent probability psplit(T, η) =

α(1 +Dη)
−β, where α, β > 0. The coordinate (i.e. dimension of x) and location of the

split, (i, x)η, have independent prior prule(T, η), which is typically a discrete uniform

distribution over all potential split points in xη = xt ∩ η. Implicit in the prior is the

restriction that a partition may not be created if it would contain too few data points
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to fit the leaf model. Ignoring invalid partitions, the joint prior is thus

π(T ) ∝
∏
η∈IT

psplit(T, η)π(T ) ∝
∏
η∈LT

(1− psplit(T, η))

That is, the tree prior is the probability that internal nodes have a split and leaves

nodes have not.

x1 @ 0.807712
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Figure 5.28: Graphical tree representation for a dynamic tree for larger 2D data set

5.4.1.4 Dynamic Trees

We now redefine partition trees as a dynamic model for predictive uncertainty.

We introduce a model state Tt, which includes the recursive partitioning rules associ-

ated with xt, the set of covariates observed up-to time t − 1 defines the mechanisms

of state transition Tt−1 → Tt, as a function of xt, the newly observed covariates, such

that Tt is only allowed to evolve from Tt−1 through a small set of operations on par-

tition structure in the neighborhood of xt. That is, we specify a prior distribution for

the evolution, p(Tt|Tt−1, xt). The tree likelihood p(yt|Tt, xt) as a product of leaf node
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marginal likelihoods, and hence allows us to assign posterior weight over the discrete set

of potential trees generated through the evolution prior. details the conditional predic-

tive distribution and describes model particulars for three regression leaves: constant,

linear, and multinomial. A particle learning algorithm for on-line posterior simulation is

outlined below. In this, each particle consists of a tree (partitioning rules) and sufficient

statistics for leaf node predictive models, and our filtering update at time t combines

small tree changes around xt with a particle resampling step that accounts for global

uncertainty. Finally, we describe marginal likelihood estimation.

Given these three possible moves, we can now define an evolution prior as the

product of two parts: a probability on each type of tree move and a distribution over

the resultant tree structure. In the former case, we assume that possible moves among

stay, prune, and grow are each a priori equally likely. For the latter distribution, we

build on the inferential framework and assume a CGM prior for tree structure such that

(Tt) is as in (2) based on psplit(Tt, η) = α(1 + Dη)
−β We then have p(Tt|Tt−1, xt) ∝∑

m∈M(xt) pmπ(Tm), where Tm is the tree that results from applying move m to Tt−1

and M(xt) is the set of possible moves. Hence, one may view p(Tt|Tt+1, x
t) as a covariate

dependent prior for the next tree,

Our dynamic tree model is such that posterior inference is driven by two main

quantities: the marginal likelihood for a given tree and the posterior predictive distri-

bution for new data. This section establishes these functions for dynamic trees, and

quickly details exact forms for our three simple leaf regression models. First, with each

leaf η ∈ LTt , the likelihood function is available after marginalizing over regression
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model parameters as

p(yt|Tt, xt) =
∏
η∈LTt

p(yη|xη) =
∏
η∈LTt

∫
p(yη|xη, θη)dπ(θη)

Figure 5.29: Posterior representation of partitions for data set with linear boundary

5.4.2 Finding boundaries

Each data point, describing one simulation run (experiment) is defined as

x = 〈P1, . . . , Pp〉, where Pi are the input parameter settings and the outcome o(x) ∈

{success, failure}. Thus these data define a classification problem with C = 2 classes.

Informally, a boundary can be found between regions, where all experiments yield suc-

cess p(x = success) = 1 and those, where the experiments do not meet the success
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criterion p(x = failure) = 1. Therefore, we can define a point x to be on the boundary

if p(x = success) = p(x = failure) = 0.5. Although this condition can easily be gener-

alized to more than 2 classes, in this work, we will focus on C = 2. Figure 5.30 shows a

simple example. The surface denotes p(x = success) over two parameters P1, P2. The

actual boundary is shown as a red line.
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Figure 5.30: Probability surface and boundary line

A common metric to characterize points on the boundary is based upon the

entropy, The entropy entr = −
∑

c∈c1,..,cC p(x = c) log p(x = c) becomes maximal at

the boundary. In cases of more than two classes, [Gramacy and Polson, 2011] use a

BVSB (Best vs. Second Best) strategy. [Wickham, 2008] defines a metric advantage
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Figure 5.31: Advantage (red) and entropy (blue) metrics

as essentially adv(x) = |p(x = success) − p(x = failure)|. Then [Wickham, 2008]

considers points with minimal advantage to be close to the boundary. In the general

case with more than two dimensions, [Wickham, 2008] proposed to use the difference

between the two most likely classes. Figure 5.31 shows that both metrics are expressing

essentially the same, as their extreme values are reached with p(x = success) = 0.5.

There are two basic methods: explicitly from knowledge of the classification function,

or by treating the classifier as a black box and finding the boundaries numerically. For

some classifiers it is possible to find a simple parametric formula that describes the

boundaries between groups, for example, LDA or SVM. Most classification functions
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can output the posterior probability of an observation belonging to a group. Much of

the time we do not look at these, and just classify the point to the group with the highest

probability. Points that are uncertain, i.e. have similar classification probabilities for

two or more groups, suggest that the points are near the boundary between the two

groups. For example, if point A is in group 1 with probability 0.45, and group 2 in

probability 0.55, then that point will be close to the boundary between the two groups.

We can use this idea to find the boundaries. If we sample points throughout the design

space we can then select only those uncertain points near boundaries. The thickness of

the boundary can be controlled by changing the value which determines whether two

probabilities are similar or not. Ideally, we would like this to be as small as possible

so that our boundaries are accurate. Some classification functions do not generate

posterior probabilities. In this case, we can use a k-nearest neighbors approach. Here

we look at each point, and if all its neighbors are of the same class, then the point is

not on the boundary and can be discarded. The advantage of this method is that it is

completely general and can be applied to any classification function. The disadvantage

is that it is slow (O(n2)), because it computes distances between all pairs of points to

find the nearest neighbors. In general, finding of the boundaries faces the “curse of

dimensionality”: As the dimensionality of the design space increases, the number of

points required to make a perceivable boundary (for fitting or visualization purposes)

increases. This problem can be attacked in two ways, by increasing the number of

points used to fill the design space (uniform grid or random sample), or by increasing

the thickness of the boundary.
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5.4.3 Visualizing boundaries

In general, the input to a classification algorithm is high dimensional, and the

resulting boundaries will thus be high dimensional and perhaps curvilinear or multi-

faceted. [Wickham, 2008] discusses methods for understanding the division of space

between the groups, and provides an implementation in an R package classifly [Wick-

ham, 2012], which links R to the GGobi data visualization system [GGobi, 2008]. It

provides a graphical environment for experimenting with classification algorithms and

their parameters and then viewing the results in the original high dimensional design

space. Since the approach of [Wickham, 2008] aims at visualization of the boundary,

they took advantage of the fact that a line is indistinguishable from a dense series of

points. It is easier to describe the position of a discrete number of points instead of

all the twists and turns a line might make. The challenge then becomes generating a

sufficient number of points that an illusion of a boundary is created. [Wickham, 2008]

generates a perturbed grid of high-dimensional data points and calculates the advantage

metric for the posterior. The 15% quantile is used for visualizing the boundary. The

tool also draws two boundary lines, one for each group on the boundary. In contrast

to our approach, [Wickham, 2008] uses a large number of data points to visualize the

boundaries in higher dimensions. The high cost of new data points in our setting makes

this visualization approach less suitable.
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Figure 5.32: GGobi representation of DT boundary for data set with linear boundary

5.4.4 Computer Experiment Design

Computer simulation of a complex system like those discussed above, is fre-

quently used as a cost-effective means to study complex physical and engineering pro-

cesses. It typically replaces a traditional mathematical model in cases where such models

do not exist or cannot be solved analytically. While a computer simulator can only find

an approximate solution, simulation is often be viewed as an inexpensive way to gain

insight into a system. However, it can still be computationally costly. Therefore it is

important to perform only a small number of simulation trials and the runs must be

selected carefully. computer experiment. A computer experiment frequently involves

the modeling of complex systems using a deterministic computer code, which means

replicate runs of the same inputs will yield identical responses. To deal with the lack

of randomness in the response, [Sacks et al., 1989] proposed modeling the response as a

129



Figure 5.33: GGobi representation of DT boundary for data set with quadratic boundary

realization from a Gaussian stochastic process (GASP). Most recent work on the design

of computer experiments has focused on experiments where the goal is to fit a response

surface or to optimize a process. It is important to note that the IFCS controller, despite

being “adaptive” is, in this sense a purely deterministic system.

Active learning, or sequential design of experiments (DOE), in the context

of estimating response surfaces (in our case boundaries), is called adaptive sampling.

Adaptive sampling starts with a relatively small space-filling input data, and then pro-

ceeds by fitting a model, estimating predictive uncertainty, and then choosing future

samples with the aim of minimizing some measure of uncertainty, or to try to maximize

information. The process repeats until some threshold in predictive uncertainty or in-

formation is met, or a maximum number of samples have been taken. In this iterative

fashion the model adapts to the data, and the new data either reinforces or suggests a
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modification to the old model.

Active learning is defined by contrast to the passive model of supervised learn-

ing where all the labels for learning are obtained without reference to the learning

algorithm, while in active learning the learner interactively chooses which data points

to label. The hope of active learning is that interaction can substantially reduce the

number of labels required, making solving problems via machine learning more prac-

tical. This hope is known to be valid in certain special cases, both empirically and

theoretically.

5.4.4.1 Active Learning

We now outline our general approach to active learning. The key step in our

approach is to define a notion of a model M and its model quality (or equivalently,

model loss, Loss(M)) . The definition of a model and the associated model loss can be

tailored to suit the particular task at hand. Now, given this notion of the loss of a model,

we choose the next query that will result in the future model with the lowest model loss.

Note that this approach is myopic in the sense that we are attempting to greedily ask the

single next best query. In statistics, a standard alternative to minimizing the expected

loss is to minimize the maximum loss [Wald, 1950]. In other words, we assume the

worst case scenario: for us, this means that the response x will always be the response

that gives the highest model loss. Loss(q) = maxx Loss(M): If we use this alternative

definition of the loss of a query in our active learning algorithm we would be choosing

the query that results in the minimax model loss. our general approach for active
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learning is as follows. We first choose a model and model loss function appropriate for

our learning task. We also choose a method for computing the potential model loss

given a potential query. For each potential query we then evaluate the potential loss

incurred and we then chose to ask the query which gives the lowest potential model loss.

We will perform active learning with new data until the boundary is characterized with

sufficient accuracy and confidence. Also the whole space has been sufficiently explored,

to not miss any boundary areas in the space.

5.4.4.2 ALM and ALC

One key part of the active learning algorithm is the specialized function fs.

The ALM/ALC algorithms are suitable for classification but not primarily for boundary

detection [Gramacy, 2005]. Both ALM and ALC algorithms are based on the posterior

predictive distribution P (z|x). For example, consider an approach which maximizes the

information gained about model parameters by selecting the location x which has the

greatest standard deviation in predicted output. This approach has been called ALM

for Active Learning-Mackay, and has been shown to approximate maximum expected

information designs [MacKay, 1992]. MCMC posterior predictive samples provide a con-

venient estimate of location-specific variance, namely the width of predictive quantiles.

An alternative algorithm is to select Σ2 minimizing the expected reduction in squared

error averaged over the input space [Cohn, 1996], called ALC for Active Learning-Cohn.

Rather than focusing on design points which have large predictive variance, ALC selects

configurations that would lead to a global reduction in predictive variance.
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An ALM scheme selects the x? that leads to maximum variance for y(x?),

whereas ALC chooses x? to maximize the expected reduction in predictive variance

averaged over the input space. A comparison between approaches depends upon the

model and the application, however it may be shown that both approximate a maximum

expected information design and that ALC improves upon ALM under heteroskedastic

noise. Both heuristics have computational demands that grow with |X̃|: ALC requires

time in O(|X̃|2), wheres ALM is in O(|X̃|). [Taddy et al., 2011] shows that ALM and

ALC methods compare favorably to existing MCMC-based alternatives. Constant and

linear leaf models lead to closed-form calculations of heuristic functionals conditional on

a given tree and can be easily integrated into the particle filter framework: the necessary

statistics are evaluated across candidates, for each particle, to obtaine the optimal x?.

The trees are then updated for y(x?), and the process is repeated.

More specifically ALM sekes to maximize V ar(y(x)). For a given tree T such

that x is allocated to leaf node η ∈ LTt , let µη(x) = E[y(x)|η] and vη = V ar(y(x)|η)

denote the conditional predictive mean and variance respectively for y(x). According

to [Taddy et al., 2011] the unconditional predictive variance for a given particle set

{T (
t i)}Ni=1 can be calculated as

V ar(y(x)) = E[V ar(y(x)|T ) + V ar(E[y(x)|T ])

≈ 1
N [
∑N

i=2 v
(i)
η (x) + µ

(i)
η (x)2]− [ 1

N

∑N
i=1 µ

(i)
η (x)]2

which is evaluated for all x ∈ X̃.

The ALC metric can be calculated for regression models by maximizing the

sum of ∆σ2x?(x
′|Tt) over both x ∈ X̃ and the trees in the particle set Tt ∈ {T (

t i)}Ni=1
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[Taddy et al., 2011].

Another heuristic for selection of the next point can be based upon the expected

improvement (EI) statistic [Jones et al., 1998]. The improvement of point x is defined

as I(x) = max(fmin − Z(x), 0), where fmin is the current minimum and Z(x) is the

posterior predictive distribution. Then, the new point x? is selected as

x? = arg max
x∈X̃

E{I(x)}

. [Gramacy and Lee, 2010] use this statistic in the framework of GP. In order to handle

constraints, the EI statistic has been extended to the integrated expected conditional

improvement (IECI) [Gramacy and Lee, 2010]. Here a conditional improvement at a

reference point y is defined as I(y|x) = max(fmin − Z(y|x), 0). Given a density g(y),

the ICEI is the defined as

Eg{I(x)} = −
∫
X̃
E{I(y, x)}g(y)dy.

5.4.4.3 Entropy-based Selection

Traditionally, ALM, and ALC selection is very powerful, but candidate points

are not concentrated along the boundaries [Gramacy, 2005] (pg. 86). [Gramacy and

Polson, 2011] uses entropy e (and BVSB ”Best vs Second Best”) to guide the sequential

algorithm. The entropy is defined as e = −
∑

c∈c1,..,cn pc log pc for n classes. Performance

is improved, if the calculation is restricted to include only the two classes with highest

posterior p, thus only taking into account the best and second best class only. In our

case (n = 2) the standard definition of entropy and BVSB coincide. Although selection
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methods based upon the entropy (or advantage) tend to select points near the boundary

as boundary points are the most “chaotic”. However, those selection methods tend to

be too greedy when using off-grid data [Gramacy and Polson, 2011], i.e., new points are

selected in areas, which are already explored. [Gramacy and Polson, 2011] proposed to

use kernels, but according to the authors, no substantial improvement could be obtained.

5.4.5 Sensitivity Analysis

In a high-dimensional space, a possible reduction of the dimensionality is of

high importance, because it can dramatically reduce the number of simulation runs

necessary to find the boundary. Typical techniques for sensitivity analysis include PCA.

[Taddy et al., 2011] describes how a sensitivity analysis can be carried out on the

framework of dynamic trees. In all cases, the aim is to find a transformation T such

that the data, after undergoing the transformation are of much lower dimensionality and

no important information has been lost. Most modern data mining and classification

approaches use these techniques. It should be noted that, obviously, when we want to

fit the boundary shapes, these shapes must be transformed as well.

For sequential and active learning algorithms, however, the situation is quite

different. If a sensitivity analysis is carried out on the initial data set D0, a trans-

formation T0 is established, which then is used for further processing all data. If we

assume a sparse set of initial data, a sensitivity analysis on these data might produce

unfavorable results. Due to lack of data points in a certain area, boundaries will not

be found, because the initial sensitivity analysis removed that area. For example, if D0
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only contains few data points with the same label in variable 10, sensitivity analysis will

most likely remove that dimension, because it does not contribute. A data set, which is

more dense would contain data points with success and failure labels for this variable.

Obviously, a large and dense D0 will overcome this issue, however, this is not

in alignment with our sequential approach, where one wants to start with a small D0

and successively add new data points. If the initial data set has a certain guaranteed

structure rather than based upon a Latin hyper square, sensitivity analysis on the

initial D0 can be helpful. In our algorithm, we use n-factor combinatorial exploration

(Section 5.3.2.1) to obtain the initial data set. This algorithm guarantees that D0

contains all possible values for each variable, pairs of variables, triples, until n-tuples.

Only few combinations of n+1 tuples are present in D0. For the continuous parameters

used in our work, a uniform random number is drawn from one of the k (here: 5)

bins covering the entire range for each variable. We can use these properties about the

coverage and density for the sensitivity analysis of the initial data set. If a boundary

is constrained to 1, . . . , n dimensions and the size of the boundary spans at least 1/k of

the variable range, then that boundary can be detected in D0 and remains detectable

after dimension reduction. Because n-factor combinatorial exploration has been used to

generate D0, we know that values from each of the k bins for up to n-tuples are present

in D0. So if a boundary manifests itself in d ≤ n dimensions and it is at least of a

minimal size, then we know that there are at least two data points with different labels,

marking a boundary. If dimension reduction is limited to less or equal n dimensions,

this boundary remains detectable after dimension reduction.
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Sensitivity analysis can answer a number of questions, which are important to

the analyst. Even in the case, the domain expert has a very good knowledge of the shapes

and parameters of the boundaries, results of any sensitivity analysis should be considered

carefully, because it may indicate unknown additional parameter dependencies (not

considered in the design), which can pose a safety risk. On the other hand, missing

sensitivity of a parameter might point to an error in the simulation or the system.

5.5 Experiments and Results

5.5.1 Artificial Data Set

For selected experiments, we use artificial data, where the (known) boundary

shapes are hyperplanes and/or spheres. We limit all data to a 0...1 cube in each di-

mension. For illustration purposes, we use a 2D data set; the other experiments are

carried out using a 5D data set. For all experiments we start with Ninit = 126 data

points, which are the result of an 3-factor, 10-bin combinatorial experiment, or a latin

hyper square with the same number of data points. After that, active learning with the

selected update rule(s) for additional N points. Shape selection and fitting was carried

out in selected intervals (e.g., each 100 new data points) or at the end of the run. Where

applicable, results were averaged over 10 runs with identical true shape parameters, but

newly drawn latin hyper squares.
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5.5.1.1 Active Learning

In order to measure and compare the different candidate point selection meth-

ods, we use a simple metric: the difference in parameters between the estimated bound-

ary and the true boundary, using a subset of data points. Da = {x ∈ X|0.5 − δ <

ŷ(x) < 0.5 + δ} and estimate the parameters θ̂ for those points. For a single hyperplane

boundary, our metric is calculated as C = || |θ̂|−|θ| ||1. The abolute values are taken to

accomodate for the fact that for a hyperplane, θ and −θ describe the same hyperplane.

Figure 5.34 shows C, averaged over 10 runs over the same initial for random selection,

ALC, and our method.

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Active learning−2D (random (red), ALC (black), our method(green))

Index

B
ou

nd
ar

y 
E

rr
or

Figure 5.34: Metric C = || |θ̂| − |θ| ||1 for different selection strategies (random=red,
ALC=black, our method=green) over active learning iterations (2D case)

Figure 5.35 illustrates this behavior. With the data points of D0 shown in

green and blue (according to their class), new points are shown in cyan and magenta.
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The different selection methods obviously select the new data points in different regions.

In the 5 dimensional case, a similar behavior can be observed as shown in Figure 5.36.

Surprisingly, the results for the LHS initialization is much better than for the 3-factor

initialization.
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Figure 5.35: Locations of new data points during active learning: random update (top
left), ALC (top right), Dynatree EI (bottom left), our boundary-oriented EI (bottom
right)

In the case of more than one shape, things are more difficult. Selection methods

that are greedy and stick to one boundary might fail to explore the other boundaries
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Figure 5.36: Metric C = || |θ̂| − |θ| ||1 for different selection strategies (random=red,
ALC=black, our method=green) over active learning iterations (5D case, LHS initial
data set)

in enough detail. As a result, the density of data points near each boundary can be

substantially different, which can pose problem for the subsequent shape estimation. In

general, the α parameter of our point selection governs how far the new points ”stray

away” from a boundary. However, values of α, which are too large produce poor overall

results. We therefore propose a randomized combination of point selection rules. In the

results below, we used our update method in most of the cases, in 10% of the iterations,
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Figure 5.37: Metric C = || |θ̂| − |θ| ||1 for different selection strategies (random=red,
ALC=black, our method=green) over active learning iterations (5D case, 3-factor initial
data set)

however, an ALM or ALC update was carried out. The aim of this combination is to

sometimes pick points, which are far away, thus increasing the chance to find and explore

other boundaries as well. Figure 5.38 and Figure 5.39 show such a typical behavior for

a situation in 5D with two hyperplane boundaries. The relative number of data points

near each of each boundary (which are of the same size in the explored range) are shown.

In the ideal case, 50% of the data points would go to each boundary. Different values
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are shown for different strategies and values of α. Table 5.5 shows the behavior averaged

over 10 runs. Small values of α tend to prefer one boundary over the other.
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Figure 5.38: Typical convergence behavior for 2 shapes over various α (black/red: α = 1,
blue-green: α = 0.2

5.5.1.2 Shape Selection

The selection and fitting of shapes using our algorithm stongly depends on

the density of points near the boundary. The algorithm is particularly sensitive in the

case of hyperplanes. We carried out experiments with an artifical data set in 2 and 5
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Figure 5.39: Typical convergence behavior for 2 shapes over various α (black/red: α =
0.2, no switching; red-gree: α = 1 and 20% of updates are ALM

dimensions, which contains two hyperspherical boundaries. Table 5.6 shows the results

in the two-dimensional case. Given the true parameters of x0 = y0 = 0.3, r = 0.2 and

x0 = y0 = 0.7, r = 0.2, the algorithm was started with 126 initial data points and active

learning was carried out to add 700 points using α = 1 and a 10% fallback rate to ALC.

Then our algorithm for shape and parameter estimation was executed on data points

in an ε = 0.3 band, yielding 74 usable data points. With parameters of λSS = 0.1

and λbd = 1.5 the algorithm was started n = 25 times. Table 5.6 shows mean values
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update rule combination/ALM
α = 0.1 α = 0.2 α = 1 α = 0.2 α = 1

0.35(0.12) 0.28(0.08) 0.53(0.28) 0.55(0.30) 0.50(0.24)
0.65(0.41) 0.72(0.5) 0.47(0.22) 0.45(0.2) 0.50(0.24)

Table 5.5: Mean relative number of new data points near boundary. 2 boundaries
(hyperplanes, 5D). Variance shown in parentheses as obtained over 5 runs (126+200
points)

and variance for the cases the actual global minimum was reached (n in the table).

In the other cases, the numerical optimization algorithm returned values at the upper

and lower limits for the parameters, indicating issues with optimization. If the global

minimum was reached, the estimated parameters are close to the true values.

sphere1 sphere2

x0 0.295(1.4e-5) 0.715(8.5e-5)
y0 0.289(3e-5) 0.72(8.6e-5)
r 0.20(6.6e-6) 0.20(5.2e-5)

n 25/25 5/25

Table 5.6: Estimated parameters for 2D spheres. Variance shown in parentheses.

Table 5.7 shows the situation in a 5D space. The two spheres are located at

~c1 = (0.3, 0.3, 0.3, 0.3, 0.3)T , and ~c1 = (0.7, 0.7, 0.7, 0.7, 0.7)T , respectively; their radius

is in both cases r = 0.3. With a total of 126+1000 data points, the algorithm selects 155

points, 77 of which are closer to the second hypersphere. In this case, the algorithm

is only able to reasonably estimate parameters for sphere 1. Even then, the algorithm

terminates in a local minimum (reaching a hard boundary on the parameters) in 2 cases

out of 10. This experiment also revealed that the number of new data points must be
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substantially larger for higher dimensions. The relative size of the success and failure

regions, which determines the size of the boundaries strongly influences results. For

example, simply carrying over the previous shape with r = 0.2 into the 5-dimensional

case did not work, because in 5 dimensions, less than 2% of the data points are failures

inside the spheres. For such small boundaries it turned out that parameters cannot be

estimated reasonably.

sphere1

c1 0.29(7e-3)
c2 0.26(5e-3)
c3 0.32(8e-3)
c4 0.31(7e-3)
c5 0.27(9e-3)
r 0.29(8e-4)

n 8/10

Table 5.7: Estimated parameters for 5D spheres. Variance shown in parentheses.

5.5.2 IFCS Data Set

For experiments with the IFCS adaptive aircraft controller, we used two dif-

ferent data sets. The full data set contains 11 input parameters, which are defined in

Table 2.1 on page 11. A 3-factor initial data set with 967 records was provided. This

data set 398 successful runs and 578 failures. In this data set, locations and shapes

of actual boundaries are not known. In order to be able to assess our algorithm, we

produced another data set of 5 dimensions. This data set has 7992 successful runs

and 24,776 failed runs with Tfail < 20s. The input parameters for this data set are
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wp, wq, wr,Klat, ζ. This selection of a subspace enabled us to produce a full combina-

torial exploration of the space with up to 8 values per dimension, yielding a total of

32,768 data points. Figure 5.40 shows a projection into 3D, which exhibits some bound-

aries. We show projections for low and high values of ζ, and low and high values of

Klat into the dimensions of the main gain parameters wp, wq, and wr. Obviously, the

boundaries (visualized using Matlab’s iso-surface functions) depend on Klat and one of

the boundaries is non-linear.

In a different projection into the dimensions of wp, wq, and Klat, the shape

of the “outer” boundary can be seen even more clearly as shown in Figure 5.41. This

spherical shape is a consequence of the IFCS design, and the shape can be given as

(
wp−x0
φ1

)2 + (
wq−φ2−y0

φ3
)2 = 0.6−Klat Here, the stability boundary concerning the input

parameters wp and wq, and Klat is parameterized by unknown φi and x0, y0 are design-

time constants.

Figure 5.42 shows results of finding and detecting this boundary using our

approach. The blue surface corresponds, as a reference, to this boundary as visualized

in Matlab based upon the combinatorial 5D IFCS data set. For our experiment, we used

an initial 5D LHS data set D0 with |D0| = 1000 and ran our active learning procedure

to obtain 5000 new data points. Based upon 485 points, which were selected near the

boundary within an ε-band with ε = 0.2, shape selection and fitting was performed.

The green dots in Figure 5.42 show a part of the sphere as determined by the estimated

parameters.
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Figure 5.40: Boundaries low klat top, high bottom, low zeta left
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Figure 5.41: Shape of boundary in parameters wp, wq,Klat.

Figure 5.42: Boundary (blue) and estimated boundary (green) for IFCS data in param-
eters wp, wq,Klat.
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Chapter 6

Conclusions and Future Work

In this work, we developed methods for the analysis of a function of multiple

real variables in which the output is itself a function of a real variable as well as cat-

egorical information. For safety-critical systems, like the NASA IFCS aircraft control

system, the ability to predict the system behavior (seen as a function over many pa-

rameters and with time-series as outputs) is necessary for ensuring reliable operation

and aircraft safety. Classical control theory can provide an answer for simple systems

(fixed-gain, non-adaptive control systems), but modern control systems are typically of

such a high complexity that they cannot be studied analytically. Hence, mechanisms to

learn the behavior of such a system treated as a black box are needed for safety assur-

ance. We can see from our analysis that learning the behavior of this complex system

is possible within a certain accuracy. Once trained, prediction can be generated much

more efficiently compared to system simulation. Statistical methods for prediction of

the aircraft’s behavior as, for example, represented by output curves and time-to-failure,
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as well as the identification of unsafe regions and their boundaries are important steps in

a framework for the statistical validation of complex, nonlinear aerospace systems. We

have made an argument [He et al., 2012c] that traditional methods for validation really

only work well when the quantities of interest are dependent on only a few variables,

and that the relationships between the variables and the quantities of interest should

be more-or-less linear. We have argued that the National Airspace has already reached

a point in which the assumptions traditional validation is based on no longer hold.

We have explored the possibility that we can use statistical emulation to over-

come the limitations of traditional validation techniques. Statistical emulation has a key

benefit in that it allows for uncertainty quantification—a necessity for the validation of

safety-critical systems. Statistical emulation, particularly statistical emulation based

on Classification Treed Gaussian Processes (CTGP), has been used to reliably predict

the behavior of complex, non-linear, high-dimensional systems that are locally smooth.

We employ a hierarchical, two-stage approach where data are first classified based on

their inputs. We then use TGP to predict the output time-series curves using a se-

quence of orthogonal decompositions. We have demonstrated that statistical emulation

can be used to reliably predict the temporal output curves of the simulator with high

accuracy. We have also shown that, given an input, we can predict the time-to-failure

for a high-dimensional adaptive flight control simulator. As a byproduct of this predic-

tion, the behavior of the simulator becomes quantified, and can be compared against

experimental data for validation. We have extended statistical emulation to explicitly

handle functional outputs of varying lengths. Our framework can be extended easily to
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explicitly handle time series inputs, as well.

The detection and analysis of safety regions, i.e., regions in the input space

where the aircraft is controllable and exhibits a stable flight, and the characterization

of operational safety boundaries are important tasks during aircraft design, validation,

and certification. Complex aircraft control systems like the IFCS cannot be studied

fully analytically and have non-linear boundaries. In this work, we have developed a se-

quential algorithm for finding and describing boundaries, using an approach based upon

design of computer experiments. In many cases, shapes of boundaries are dictated by

physical laws and design information, but unknown parameters and other effects makes

it important to automatically find a suitable functional shape. A dictionary of suitable

linear or non-linear parameterized boundary shapes, which capture underlying physi-

cal and design knowledge can be provided by the domain expert. We incorporate this

knowledge into our modeling and determine the most likely shapes and its parameters.

Since each iteration requires a costly run of the system simulator, we developed a can-

didate selection function, which is specifically tailored toward boundary detection in

order to reduce the number of required simulation runs.

The work presented in this thesis can be extended into various directions. More

efficient criteria for locating the boundary in a high dimensional space are needed. The

use of adaptive sampling for locating and the boundary and incorporating the shape

selection mechanism into the sampling can improve the ability to locate and characterize

boundaries with fewer runs of the system simulator.

Finally, the analysis of model sensitivity with mixed-integer inputs is of inter-
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est. Sensitivity analysis is concerned with quantifying and describing the sensitivity of

a simulator output to variation in its inputs. Usually based on formulating uncertainty

in the model inputs by a joint probability distribution, and then analyzing the induced

uncertainty in the output. We will incorporate sensitivity analysis into our model.

In the current setting, the analysis is performed during design and validation.

The benefit of our method using statistical emulation and sequential algorithms for

boundary analysis is its high efficiency, which can make it possible to perform such

analysis during the actual operation of the aircraft. Future work can bring statistical

emulation to a state, where its applications are closer to real life scenarios, for example,

unexpected conditions of the aircraft while it is in the air, e.g. sudden change of weather

or aircraft being damaged while flying. These data need to be incorporated in time to

update the model and safety, dangerous boundary conditions, to give effective guidance

to the plane and information to the pilot to control the plane to safety regions.
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