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Abstract

Various semiparametric regression models have recently been proposed for the analysis of gap 

times between consecutive recurrent events. Among them, the semiparametric accelerated failure 

time (AFT) model is especially appealing owing to its direct interpretation of covariate effects on 

the gap times. In general, estimation of the semiparametric AFT model is challenging because the 

rank-based estimating function is a non-smooth step function. As a result, solutions to the 

estimating equations do not necessarily exist. Moreover, the popular resampling-based variance 

estimation for the AFT model requires solving rank-based estimating equations repeatedly and 

hence can be computationally cumbersome and unstable. In this paper, we extend the induced 

smoothing approach to the AFT model for recurrent gap time data. Our proposed smooth 

estimating function permits the application of standard numerical methods for both the regression 

coefficients estimation and the standard error estimation. Large-sample properties and an 

asymptotic variance estimator are provided for the proposed method. Simulation studies show that 

the proposed method outperforms the existing non-smooth rank-based estimating function 

methods in both point estimation and variance estimation. The proposed method is applied to the 

data analysis of repeated hospitalizations for patients in the Danish Psychiatric Center Register.

Keywords

accelerated failure time model; gap times; Gehan-type weight; induced smoothing; recurrent 
events

1. Introduction

Recurrent event data are frequently encountered in clinical and epidemiological studies, 

where each subject can experience an event of interest repeatedly. Examples of recurrent 
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events include rehospitalizations experienced by patients with psychiatric disorders [1], 

recurrent infections after hematopoietic cell transplantations [2], and many others. 

Depending on the nature of recurrent events and the research interest, the focus of statistical 

analysis can be placed on the time-to-event data by modeling the intensity or rate function of 

the counting process or on the gap times between consecutive events. For the former, various 

nonparametric and semiparametric methods have been developed in the literature. Some 

ponparametric methods include the estimation of the cumulative rate function [3, 4] and 

techniques for estimating the rate function [5]. Several authors [6, 7, 8, 9] considered Cox-

type models which assume that the effects of covariates are multiplicative on the intensity or 

rate functions of the underlying counting process, whereas others considered additive 

intensity or rate models [10, 11].

Alternatively, the focus can be placed on the gap times between recurrent events. As 

discussed in [12], the unique sequential ordering structure of recurrent gap time data 

generates difficulty in model estimation. First, due to the correlation among gap times of the 

same subject, the recurrent gap times beyond the first gap are subject to induced informative 

censoring even when the total censoring time is completely random. Second, the last 

censored gap time is expected to be longer than the previous uncensored gap times. Lastly, 

unlike the clustered survival data where the cluster size is typically assumed to be non-

informative, the number of recurrent gap times of a subject is usually informative since 

subjects who are at a higher risk tend to have more gap times. Therefore, it is not appropriate 

to naively treat recurrent gap time data as independently censored clustered survival data and 

apply methods for clustered survival data to recurrent gap time data. Several authors [12, 13] 

have developed nonparametric methods to estimate the distribution of recurrent gap times, 

while others [14, 15] studied nonparametric estimation of the gap time hazard function in the 

presence of covariates. Semiparametric regression models for recurrent gap time data 

include proportional hazards (PH) models [16], accelerated failure time (AFT) models [17, 

18], linear transformation models [19], additive hazards models [20], and more recently, 

quantile regression models [21] and transformed hazards models [22].

Among the various recurrent gap time models, the AFT model is particularly appealing as it 

provides a direct interpretation of the covariate effects on the (transformed) length of gap 

times. Nevertheless, similar to the AFT models for univariate survival data [23, 24, 25, and 

reference therein], the estimation of the AFT model for recurrent gap time data [17] usually 

relies on rank-based estimating functions which are non-smooth step functions of regression 

parameters. It is well known that solving non-smooth, rank-based estimating equations could 

be computationally challenging since the solution to a non-smooth estimating equation 

typically does not exist. In addition to the difficulties in point estimation, variance estimation 

for the semiparametric AFT models has also been found challenging. This is because the 

asymptotic variance depends on the slope of the estimating function which can not be 

evaluated directly when the estimating function is non-smooth. Popular alternatives for 

variance estimation include the bootstrap method [26] and the perturbation method [27, 17]. 

However, both methods require solving rank-based estimating equations for numerous times, 

and hence can be computationally inefficient and unstable since they depend heavily on the 

point estimation from the non-smooth estimating functions, which is not guaranteed to 

succeed, for each resampling.
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To tackle the difficulties in variance estimation for the AFT models with univariate survival 

data, Zeng and Lin [28] proposed new resampling methods which only require evaluating 

the estimating functions repeatedly rather than solving them. These methods [28] can greatly 

improve the efficiency in computing for the variance estimation; however, the challenge in 

the point estimation remains unresolved. Alternatively, efforts have been made on improving 

the point and variance estimation simultaneously by approximating the rank-based 

estimation function by a continuously differentiable estimating function so that the standard 

numerical methods can be applied in the inference procedure. In particular, Brown and 

Wang [29] proposed the so-called induced smoothing technique for the rank-based 

estimating function for univariate survival data with Gehan’s weight. Later, it was extended 

to general weights [30]. Similar smoothing techniques have been extended to clustered 

survival data [31, 32]. To our knowledge, no efforts have been made on improving the 

estimation of the AFT model with recurrent gap time data in literature. In this paper we 

propose to extend the induced smoothing technique to the AFT model for recurrent gap time 

data.

The rest of the paper is organized as follows. In Section 2, we first introduce the notation 

and setting of the AFT model for recurrent gap time data. We then briefly introduce the non-

smooth rank-based estimating functions. In Section 3, we present the proposed induced 

smoothing method for the recurrent-gap-time AFT model followed by its large-sample 

properties and an asymptotic variance estimator. In Section 4, we conduct simulation studies 

to compare the proposed induced smoothing method with the existing rank-based estimating 

function method with various variance estimation methods. A real data analysis using the 

patient contact data from the Danish Psychiatric Central Register is presented in Section 5. 

Some concluding remarks are provided in Section 6.

2. The AFT model and rank-based estimating functions

2.1. The AFT model for recurrent gap time data

Consider a study with n subjects being recruited after each experienced an initial event and 

being followed on the recurrence of the event. Let i = 1, …, n index the subjects and j = 0, 1, 
… index the recurrent events of the ith subject, with j = 0 indicating the initial event. Let Tij 

denote the gap time between the (j − 1)th event and the jth event for subject i. Among the 

various regression models for recurrent gap times, the AFT model is of particular interest 

because of its direct interpretation of covariate effects on the (transformed) gap time 

variable. Let Zi be the p × 1 vector of baseline covariates. We impose the usual linear model 

for the logarithm-transformed gap times:

(1)

where β0 is the true p × 1 vector of regression parameters and has the usual interpretation of 

covariate effects as in linear models. The error terms within each subject, εij, j = 1, 2, …, are 

assumed to have an unknown common marginal distribution, and the correlation structure 

among the error terms is left unspecified. In this way, the correlation between two gap times 
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εij and εij′ is allowed to depend on j and j′. Finally, we assume that the error vectors εi = 

(εi1, εi2, …)⊤, i = 1, …, n, are independently and identically distributed (i.i.d.) across 

subjects.

Note that the identical marginal distribution condition assumed for Model (1) is weaker than 

the shared frailty model which assumes that the error terms of the same subject are i.i.d. 

given a subject-specific frailty variable. Under the shared frailty model, each pair of gap 

times in the set {log(Tij), j = 1, …} are required to have the same correlation. The identical 

marginal distribution condition for Model (1) leaves the within-subject correlation structure 

fully unspecified, hence Model (1) allows more sophisticated correlation structure in real 

data, such as the autoregressive (AR) and the unstructured correlation.

In most applications, the observation of recurrent events is subject to right censoring due to 

loss of follow-up or end of study. Let Ci be the censoring time of the recurrent event process 

for the ith subject, which is assumed to be independent of {Tij; j ≥ 1} conditional on Zi. Let 

mi denote the number of observed events so that mi satisfies  and 

, where . We further define the censoring indicator for the jth event 

, where I(·) is an indicator function. Let Xij denote the observed gap 

time such that Xij = Tij for j = 1, …, mi and . Define the transformed 

observed gap time Yij = log(Xij). The observed data of subject i consist of {(Xij, δij); j = 1, 
…, mi + 1, Zi, Ci}.

2.2. Rank-based estimating function

We begin by considering the simple yet inefficient method that only uses times to first event 

in model estimation; that is, ignoring gap times of higher orders. Define the residuals eij(β) = 

log(Xij) − β⊤Zi. Let Nij(β, t) = δijI{eij(β) ≤ t} and Rij(β, t) = I{eij(β) ≥ t} be the counting 

process and at-risk process on the time scale of the residual, corresponding to subject i’s jth 

gap time. An unbiased weighted rank-based estimating function for β based on the time-to-

first event data takes the form [24, 34, 35]:

or, equivalently,

(2)

where , and w(β, t) is the 

weight function. Common choices of w(β, t) include w(β, t) ≡ 1 for log-rank (LR) weight 
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[23] and w(β, t) ≡ S0(β, t) for Gehan’s weight [36]. Note that the estimating function in (2) 

is constructed based on the linear rank statistic and can be viewed as the sum of the 

weighted difference between the covariate of a subject with an event (subject i) and the 

expected covariate among those who are in the “risk set” at the transformed event time of 

this subject, {l: el1(β) ≥ ei1(β)}.

To improve the efficiency of estimation, one can make use of information beyond the first 

gap time. However, as discussed earlier, methods for clustered survival data cannot be 

directly applied to the recurrent gap time data due to the unique sequential structure of 

recurrent events. It was demonstrated in [37] that, when the underlying recurrent gap times 

of a subject are exchangeable, the weighted-risk set (WRS) technique can be applied to a 

reduced dataset to avoid biases in estimation caused by induced informative censoring and 

the biased sampling of the last censored gap time. Specifically the last censored gap time is 

not used in the construction of the estimating functions if the number of uncensored gap 

times of a subject is at least one. For the ease of discussion, we define , 

then  if subject i has no observed recurrent events and  equals the number of 

observed recurrent events mi if mi ≥ 1. Note that Xi1 = Ci if mi = 0 and Xij = Tij for 

 if mi ≥ 1. Thus, the reduced data used in the WRS estimations are {(Xij, δij); 

, Zi, Ci} from each subject. The WRS method assigns a weight  to each of 

the remaining  gap times of a subject to ensure that overall contribution of each subject to 

the estimation to be the same to avoid the possible bias caused by informative cluster sizes.

In the same spirit as the WRS method in [37], we first define the averaged counting process 
and the averaged at-risk process for the AFT model:

Note that these two averaged processes are based on the individual counting processes Nij 

and Rij defined earlier, which are all on the scale of the residual of the log-transformed gap 

times. Hence, the two averaged processes  and  defined here are different 

than those in [37]. Let  and . 

Then, we can replace , S0(β, t), and S1(β, t) in (2) 

with their respective multivariate counterparts 

, and  and construct a new 

estimating equation:

(3)
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where the weight function w*(β, t) is required to converge to the same limit as w(β, t) as n 
→ ∞. It can be shown that (3) is equivalent to

(4)

It is easy to show that the empirical processes 

, and  converge to the same limits 

as their respective univariate counterparts and that the mapping defined by U in (3) is 

compactly differentiable with respect to the supremum norm. As a result, we can prove that 

U(β) and its univariate counterpart in (2) converge weakly to the same limiting distribution 

and converge uniformly to the same limit. The latter ensures the consistency of the solution, 

denoted by β̂, to the estimating equation U(β) = 0.

Note that, while Chang [17] was the first to consider the AFT model for recurrent event data, 

it is worthwhile to point out that the estimating function proposed in [17] is a special case of 

(4) with the unit or log-rank weight function, w*(β, t) = 1:

(5)

The existence of a strongly consistent and asymptotically normal sequence of solutions to 

ULR(β) = 0 was established in [17]; however, the involvement of the unknown parameter β 
in the indicator function renders the estimating function in (5) a non-smooth step function of 

β. Hence, a solution β̂LR such that ULR(β̂LR) = 0 may not exist for a finite sample. An 

alternative approach is to estimate β by minimizing the norm of ULR(β), that is ||ULR(β)|| = 

ULR(β)⊤ULR(β). However, because monotonicity in ULR(β) with respect to β is not 

guaranteed, there may exist multiple solutions to the minimization problem. Therefore, the 

point estimation based on the non-smooth estimating function in (5) could be 

computationally challenging in applications.

Because the asymptotic variance of the point estimator depends on the slope of the 

estimating function in (5), it is difficult to estimate the variance directly when the estimating 

function is non-smooth. In the literature, resampling-based methods are commonly used for 

variance estimation. Among them, the bootstrap method is popular due to the ease of 

implementation. As an alternative, Chang [17] adopted the perturbation technique proposed 

by Parzen et al. [27] to estimate the variance of β̂LR. Briefly, since it has been proved that n
−1/2ULR(β) converges in distribution to a multivariate normal distribution with mean 0 and 

covariance VLR(β), one can first generate a large number of random vectors R’s from a 

multivariate normal distribution with mean 0 and covariance V̂
LR(β), where V̂

LR(β) is a 

consistent estimator of VLR(β). Then, one can solve the equation ULR(β) = R to obtain 
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βL̂R(R) for each R. The variance of β̂LR can be approximated by the sample variance of 

βL̂R(R)’s.

Note that both the bootstrap and the perturbation method require solving the estimating 

equation for a large number of times, which causes the computational burden to increase in a 

great amount, especially when the estimating function is non-smooth. In addition, the two 

variance estimation methods rely on the success of each resampling’s point estimation 

whose challenges have been discussed previously.

3. The proposed induced smooth estimating function

Since the rank-based estimating functions discussed in Section 2.2 are non-smooth, causing 

difficulties in parameter estimation, we propose a monotonic, smooth estimating function in 

this section. We want to reemphasize that although Johnson and Strawderman [31] have 

proposed a smooth estimating function for the clustered survival data AFT model, their 

method cannot be directly applied to the recurrent gap time data because of the unique 

structure of this type of data.

For univariate survival data, it has been proved that, when using Gehan’s weight, the 

estimating function in (2) is monotonic and corresponds to a convex objective function [38]. 

If the parameter is estimated by minimizing the objective function, then the set of 

minimizers would be convex although the minimizer may not be unique. Later, it was 

showed that applying an induced smoothing technique on the rank-based estimating function 

with Gehan’s weight leads to an estimating function which is both smooth and monotonic, 

essential for improving the computation for both the point and variance estimation [29]. We 

now consider extending the induced smoothing technique to the setting of recurrent gap time 

data. We start with the rank-based estimating function for the recurrent gap time data in (4) 

by using a Gehan-type weight, defined as , which converges to the same 

limit as Gehan’s weight for univariate survival data w(β, t) = S0(β, t). The estimating 

function then becomes

(6)

Then, we can apply the induced smoothing technique to the estimating function with the 

Gehan-type weight in (6) as follows. Let W be a p × 1 independent standard normal vector, 

then a smoothed estimating function can be proposed by replacing UG(β) with EW[UG(β̃)], 
where β̃ = β + n−1/2W, and EW denotes the expectation with respect to W. This leads to a 

smooth, monotonic estimating function:
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It is easy to show that

where Φ(·) is the cumulative distribution function of a standard normal random variable and 

. Let hlk,ij(β) = {Ylk − Yij −β⊤ (Zl − Zi)}/ril, then we have

Thus, the resulting smooth estimating function can be expressed as

(7)

Let , then

where ϕ(·) is the probability density function of a standard normal random variable. It can be 

easily shown that the smooth estimating function in (7) is the derivative of the convex 

objective function

(8)
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The estimator  is obtained by minimizing the objective function . The consistency 

and asymptotic normality of  are stated in the following theorem and proved in 

Appendix.

Theorem 1—Under the regularity conditions in the Appendix,  is a strongly consistent 

estimator of β0 and  converges in distribution to N(0, Σ), where Σ = A−1V (A
−1)⊤, and V = limn→∞ Var{n−1/2UG(β0)}, A = ∂/∂β{limn→∞ n−1UG(β0)}.

Note that the smooth estimator  has the same asymptotic properties as the estimator βĜ 

(defined in the Appendix) based on the non-smooth estimating function with the Gehan-type 

weight.

Since the proposed estimating function in (7) is smooth and thus differentiable, one can use 

 to estimate AG(β0) [29, 31]. Hence, we propose to use 

 to estimate the asymptotic variance of , 

where V̂
G is the sample variance of { , b = 1, …, NB} and  is the 

smooth estimating function based on the bth bootstrap sample at .

4. Simulation

Simulation studies were conducted to assess the performance of the proposed smooth 

estimating function as compared to the non-smooth rank-based estimating function with 

various variance estimation methods. For each simulation scenario, 1000 datasets were 

generated, each with a sample size of n = 100 or n = 200. All resampling sizes (number of 

bootstraps or perturbations) were set to be 200.

We began by generating the log gap times log(Tij), i = 1, …, n, j = 1, 2, …, from the AFT 

model:

(9)

where β1 = β2 = 0.5, and . The covariate Z1 had a Bernoulli distribution with 

success probability equal to 0.5 and Z2 followed a uniform distribution on the interval [0, 1]. 

The frailties αi followed a normal distribution with mean −1 and variance ρ. Two types of 

distributions of the random errors  were examined: normal distribution and logistic 

distribution, and the parameters of the distributions were determined so that  had mean 

zero and variance 1 − ρ. Two values of the variance parameter, ρ = 0.2, 0.4, were considered 

to achieve different levels of within-subject correlations. Note that Model (9) implies a 

uniform correlation structure and the within subject correlation is ρ. It is easy to prove that 
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the above shared frailty model satisfies the identical marginal distribution condition assumed 

in Model (1). The censoring times Ci were generated from uniform distributions to yield 

desirable censoring rates (i.e., percent of subjects without any observed events), cp = 25% 

and 50%.

To show that the proposed method is valid when the data have more complicated correlation 

structure, we considered scenarios where log(Tij) follow a first-order autoregression or AR 

(1) model:

where α = −1, ωij = ρωij−1 + vij and vij followed a normal distribution with mean zero and 

variance 1 − ρ2 for j = 2, …. We started by generating ωi1 from a normal distribution with 

mean zero and variance 1. Two levels of ρ, 0.2 and 0.4, were considered. It can easily be 

proved that the above AR(1) model also satisfies the identical marginal distribution 

condition in Model (1).

With the simulated data, we first compared the performance of the non-smooth estimating 

equation with either the log-rank weight in (5) [17] or Gehan’s weight in (6) to the 

performance of the proposed smooth estimating equation in (7). The simulation results for 

data with an uniform correlation structure in normal or logistic random errors, and data with 

the AR(1) correlation structure are presented in Tables 1, 2 and 3, respectively. For the point 

estimates, we report the relative bias (Bias) and the Monte-Carlo empirical standard 

deviation of the point estimates (SD). For each variance estimation method, we report the 

average standard errors (ASE) and the coverage percentage (CP) of the 95% confidence 

intervals (CIs).

The simulation results show that the average point estimates based on the non-smooth and 

smooth estimating functions are all virtually unbiased. We noticed that under the simulation 

scenarios that we used, the non-smooth method with the log-rank weight failed to converge 

for about half a percent of the simulated datasets (the results in the tables are based on the 

simulated datasets with converged point estimates).

As for the variance estimation, the asymptotic variance estimator of the proposed smooth 

estimating function gives satisfactory variance estimation with the ASE being close to the 

Monte-Carlo empirical SD and the bootstrap ASE and the CP being close to its nominal 

level (95%). The Monte-Carlo SD of the estimates from the proposed smooth estimating 

function method and the non-smooth method with Gehan’s weight are close; and both are 

smaller than that of the non-smooth method with log-rank weight [17] for the simulated 

data. It should be noted that since the bootstrap method and the perturbation method [27] for 

the non-smooth method with log-rank weight need solving the non-smooth estimating 

equations for numerous times, the variance estimation suffers from the same non-

convergence problem as in the point estimation (the ASE and CP in the tables are based on 

the converged bootstrap samples or perturbed samples only). The computing time of the 

asymptotic variance estimator based on the proposed smooth estimating function method 
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was substantially shorter than that of the bootstrap or perturbation method of the non-smooth 

methods as expected.

For comparison, we also applied two existing methods to recurrent gap time data: (1) 

analyzing the time to first event only data with the induced smoothing method for univariate 

survival data [29], and (2) applying the induced smoothing method for clustered survival 

data [31] to the recurrent gap time data, by ignoring their sequential structure. The results 

are shown in the lower-right panel of Tables 1–3. Whereas the point estimates of the 

univariate method are satisfactory, this method is obviously less efficient (i.e., larger SDs) 

than the proposed method. As expected, the point estimates of the clustered survival data 

method are biased, and the biases increase with the within-subject correlation, which 

demonstrates that naively applying methods for clustered survival data in the analysis of 

recurrent gap times can yield substantial bias.

5. Data analysis

We applied the proposed method to the hospitalization data from the Danish Psychiatric 

Central Register [39] which computerized all admissions to psychiatric hospitals and 

psychiatric wards in general hospitals in Denmark since 1969. In this paper, we only 

considered a subset of the published data, which was composed of a cohort of 286 

individuals who were first admitted to or contacted with Danish psychiatric services between 

April 1 and December 31, 1970. The maximum follow-up time was set to be 3 years to avoid 

any potential change in the distributional pattern of recurrent gap times. The details about 

this cohort have been described elsewhere [37, 21]. Briefly, among the 286 subjects, 106 

(37%) were females, 230 (80%) had schizophrenia onset after 20 years old, 115 (40%) were 

censored after the initial hospitalization or contact with no records of rehospitalization, 56 

(20%) had one rehospitalization, and 115 (40%) had two or more rehospitalization records. 

The average number of rehospitalization was 1.7. The median disease onset age was 26 with 

a range of 14 to 88 years old. Note that 9 of the 286 patients died before the end of the 

follow-up time, hence, the independent censoring assumption was not expected to be 

seriously violated.

Our main interest was to estimate the effect of the disease onset age on the gap time between 

two successive hospitalizations. We fitted the AFT model to the data with two covariates, the 

logarithm-transformed onset age and gender. We applied both the proposed smooth method 

and non-smooth methods with log-rank or Gehan’s weight. The variance for the non-smooth 

and smooth methods was estimated by the bootstrap and the asymptotic methods, 

respectively.

As shown in Table 4, the point estimates of the effects of log onset age and gender from the 

non-smooth and smooth estimating functions are similar, while the CIs from the proposed 

method and the non-smooth method with Gehan’s weight are narrower than the non-smooth 

method with log-rank weight [17], similar to the findings from the simulation study. All 

methods show that the effect of onset age was significantly associated with gap times 

between recurrent hospitalization while gender did not have a significant effect, which is in 

line with the previous findings in literature [37, 21].
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6. Discussion

Despite its appealing direct interpretation, the AFT model [17] has not been widely used in 

recurrent event data analysis possibly due to the lack of reliable and efficient computing 

programs. In this paper, we have introduced an induced smoothing technique to improve the 

performance of the rank-based AFT model for recurrent gap time data. With simulations and 

a real data analysis, we have shown that the proposed smooth estimating function method 

provides similar but more computational stable point and variance estimates as compared to 

the existing non-smooth estimating function method in [17]. The proposed induced 

smoothing method also has been shown to be more computationally efficient than the non-

smooth methods. Hence we recommend to use the proposed induced smoothing method with 

the asymptotic variance estimator for data analysis.

In this paper, we adopted a Gehan-type weight for the induced smoothing method in order to 

achieve a more tractable objective function. However, the induced smoothing method is 

applicable to other weight functions such as the log-rank weight or a general weight 

function. Note that estimating functions with general weights may not be monotonic. In that 

case, by following similar techniques in [30], one can use an iterative procedure and within 

each iteration, reweight a monotonic estimating function in the same form as (6) to 

approximate the estimating function with a general weight. We note that, like many 

correlated-data methods, the proposed induced smoothing method for the recurrent gap time 

AFT model is robust in the sense that its validity does not depend on the correct 

specification of the correlation structure. A possible future research direction is to improve 

the efficiency of estimation by incorporating the correlation structure in the estimating 

function, such as using the generalized method of moments estimation studied by [33] for 

clustered survival data.
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Appendix

We provide a brief proof of consistency and asymptotic normality of  by following the 

proofs for Theorem 1 and 2 in [31]. We assume the following regularity conditions:

Condition A1. The parameter space  containing β0 is a compact subset of ℝp.

Condition A2.  is uniformly bounded almost surely by a nonrandom 

constant (i = 1, …, n).

Condition A3. Var(ε11) < ∞.

Condition A4. The matrix A and V defined in Theorem 1 exist and A is not singular.

Condition A5. Let f0(·) denote the marginal density associated with model error term 

ε11. Assume f0(·) and  are bounded functions on ℝ with

Condition A6. The marginal distribution of Ci is absolutely continuous and has a 

uniformly bounded density gi(·) on ℝ for i = 1, …, n.

Among the above conditions, A1, A2, A4, A5, A6 are standard conditions to ensure 

consistency and the asymptotic normality of the estimator from Equation (6) according to 
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[31]. Since |Cov(εij, εik)| ≤ Var(ε11), i = 1, …, n, j, , Condition A3 ensures that 

the covariances between the error terms of recurrent events of the same person are bounded.

Proof of consistency

We know that the estimating function in Equation (6) is the gradient of convex objective 

function 

 which 

is continuous almost everywhere. Using a similar approach as the proofs for Lemmas 1 and 

2 in [31], we can prove that  almost surely where L0(β) is 

convex for β ∈  and  almost surely. Condition A4 implies 

that L0(β) is strictly convex at β0 and thus β0 is a unique minimizer of L0(β). Let βĜ be the 

minimizer of LG(β) and  be the minimizer of . According to Theorem II.1 and 

Corollary II.2 in [6], we can conclude that both βĜ and  converge almost surely to β0.

Proof of asymptotic normality

First we prove the asymptotic normality of n1/2(β̂G – β0). Using similar arguments as in 

Theorem 2 in [40], we can show that

We define

where λ0(·) is the common hazard function of εij, i = 1, …, n, . Let s0(β, x) = 

E{S0(β, x)} and s1(β, x) = E{S1(β, x)}. Following similar argument as in [37], we can show 

that  and 

, and hence we prove that z̄(β, t) = 

s1(β, t)/s0(β, t). Then, following [41], we have
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where

According to central limit theorem, we have  converge in distribution to 

N(0, V), thus,  converges in distribution to N(0, A−1V (A−1)⊤).

Next we prove the asymptotic normality of  and show that  and 

 converge to the same limiting distribution. First, following a similar approach 

as in [31], Lemma 3, we can prove that . Second, since we know that A
−1 {n−1/2UG(β0)} is asymptotically normal with mean zero and variance A−1V A−1, then if 

we can prove

(A.1)

in probability, it will imply that  converge in distribution to N(0, A−1V A−1).

Following [42], let , ηn = n−1/2UG(β0), Mn = n1/2Ip, Vn = (1/2)A. Then (A.1) 

can be written as

(A.2)

in probability. According to Theorem 3 in [42], (A.2) holds if the following conditions are 

met:

Condition B1. Gn(β) is convex and  is a sequence satisfying 

.

Condition B2. ηn = Op(1), lim infn → ∞ inf|β|=1 β′Vnβ > 0 and lim supn → ∞ sup|

β|=1 β′Vnβ < ∞.

Condition B3. For each β ∈ ℝP, .

It is easy to show that Conditions B1 and B2 hold when Conditions A1–A6 hold. We need to 

prove that Condition B3 holds. By Taylor expansion, we have
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then

(A.3)

where . Since { } is a sequence of bounded, continuously 

differentiable functions and  in (A.3) can be replaced by A. 

Thus we have

(A.4)

Then Condition B3 holds if we can prove

(A.5)

in probability.

By the definition of , we have

(A.6)

where ϕ(u) is the pdf of W. Define 

where Θ is a fixed matrix that satisfies ||Θ|| ≤ M and M < ∞. We know that E(W) = ∫ℝP 

uϕ(u) = 0, so we can derive

where I1 = ∫||u||≤εnKn(u;β0, Θ)ϕ(u)du and I2 = ∫||u||>εn Kn(u;β0, Θ)ϕ(u)du for any εn > 0. 

Following a similar approach as in Theorem 2 in [40], we have
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(A.7)

for any positive sequence dn → 0. Let b = β0 + n−1/2u, dn = n−1/2εn, Θ = A and suppose that 

, then it follows Equation (A.7) that

which implies I1 → 0 in probability.

Let Θ = A. Because of the triangle inequality, we have

(A.8)

Since there is a constant Q < ∞ such that n−1UG(β) < Q based on Condition A2, we can 

derive that the first component in (A.8) is . It is easy to show that a 

sequence of εn can be selected so that , εn → ∞ as n → ∞ and 

, ∫||u||>εn ||u||ϕ(u)du → 0 as n → ∞. Thus, we have shown that (A.

8) → 0 in probability, which implies I2 → 0 in probability, then (A.5) holds. Therefore, the 

asymptotic normality of  is proved.
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