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Induced smoothing for rank-based regression with recurrent gap
time data

Tianmeng Lyu?, Xianghua Luo®P*t Gongjun Xu¢, and Chiung-Yu Huang®
aDivision of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN,
US.A

bBjostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
®Department of Statistics, University of Michigan, Ann Arbor, MI, U.S.A
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Abstract

Various semiparametric regression models have recently been proposed for the analysis of gap
times between consecutive recurrent events. Among them, the semiparametric accelerated failure
time (AFT) model is especially appealing owing to its direct interpretation of covariate effects on
the gap times. In general, estimation of the semiparametric AFT model is challenging because the
rank-based estimating function is a non-smooth step function. As a result, solutions to the
estimating equations do not necessarily exist. Moreover, the popular resampling-based variance
estimation for the AFT model requires solving rank-based estimating equations repeatedly and
hence can be computationally cumbersome and unstable. In this paper, we extend the induced
smoothing approach to the AFT model for recurrent gap time data. Our proposed smooth
estimating function permits the application of standard numerical methods for both the regression
coefficients estimation and the standard error estimation. Large-sample properties and an
asymptotic variance estimator are provided for the proposed method. Simulation studies show that
the proposed method outperforms the existing non-smooth rank-based estimating function
methods in both point estimation and variance estimation. The proposed method is applied to the
data analysis of repeated hospitalizations for patients in the Danish Psychiatric Center Register.

Keywords

accelerated failure time model; gap times; Gehan-type weight; induced smoothing; recurrent
events

1. Introduction

Recurrent event data are frequently encountered in clinical and epidemiological studies,
where each subject can experience an event of interest repeatedly. Examples of recurrent
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events include rehospitalizations experienced by patients with psychiatric disorders [1],
recurrent infections after hematopoietic cell transplantations [2], and many others.
Depending on the nature of recurrent events and the research interest, the focus of statistical
analysis can be placed on the time-to-event data by modeling the intensity or rate function of
the counting process or on the gap times between consecutive events. For the former, various
nonparametric and semiparametric methods have been developed in the literature. Some
ponparametric methods include the estimation of the cumulative rate function [3, 4] and
techniques for estimating the rate function [5]. Several authors [6, 7, 8, 9] considered Cox-
type models which assume that the effects of covariates are multiplicative on the intensity or
rate functions of the underlying counting process, whereas others considered additive
intensity or rate models [10, 11].

Alternatively, the focus can be placed on the gap times between recurrent events. As
discussed in [12], the unique sequential ordering structure of recurrent gap time data
generates difficulty in model estimation. First, due to the correlation among gap times of the
same subject, the recurrent gap times beyond the first gap are subject to induced informative
censoring even when the total censoring time is completely random. Second, the last
censored gap time is expected to be longer than the previous uncensored gap times. Lastly,
unlike the clustered survival data where the cluster size is typically assumed to be non-
informative, the number of recurrent gap times of a subject is usually informative since
subjects who are at a higher risk tend to have more gap times. Therefore, it is not appropriate
to naively treat recurrent gap time data as independently censored clustered survival data and
apply methods for clustered survival data to recurrent gap time data. Several authors [12, 13]
have developed nonparametric methods to estimate the distribution of recurrent gap times,
while others [14, 15] studied nonparametric estimation of the gap time hazard function in the
presence of covariates. Semiparametric regression models for recurrent gap time data
include proportional hazards (PH) models [16], accelerated failure time (AFT) models [17,
18], linear transformation models [19], additive hazards models [20], and more recently,
quantile regression models [21] and transformed hazards models [22].

Among the various recurrent gap time models, the AFT model is particularly appealing as it
provides a direct interpretation of the covariate effects on the (transformed) length of gap
times. Nevertheless, similar to the AFT models for univariate survival data [23, 24, 25, and
reference therein], the estimation of the AFT model for recurrent gap time data [17] usually
relies on rank-based estimating functions which are non-smooth step functions of regression
parameters. It is well known that solving non-smooth, rank-based estimating equations could
be computationally challenging since the solution to a non-smooth estimating equation
typically does not exist. In addition to the difficulties in point estimation, variance estimation
for the semiparametric AFT models has also been found challenging. This is because the
asymptotic variance depends on the slope of the estimating function which can not be
evaluated directly when the estimating function is non-smooth. Popular alternatives for
variance estimation include the bootstrap method [26] and the perturbation method [27, 17].
However, both methods require solving rank-based estimating equations for numerous times,
and hence can be computationally inefficient and unstable since they depend heavily on the
point estimation from the non-smooth estimating functions, which is not guaranteed to
succeed, for each resampling.
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To tackle the difficulties in variance estimation for the AFT models with univariate survival
data, Zeng and Lin [28] proposed new resampling methods which only require evaluating
the estimating functions repeatedly rather than solving them. These methods [28] can greatly
improve the efficiency in computing for the variance estimation; however, the challenge in
the point estimation remains unresolved. Alternatively, efforts have been made on improving
the point and variance estimation simultaneously by approximating the rank-based
estimation function by a continuously differentiable estimating function so that the standard
numerical methods can be applied in the inference procedure. In particular, Brown and
Wang [29] proposed the so-called induced smoothing technique for the rank-based
estimating function for univariate survival data with Gehan’s weight. Later, it was extended
to general weights [30]. Similar smoothing techniques have been extended to clustered
survival data [31, 32]. To our knowledge, no efforts have been made on improving the
estimation of the AFT model with recurrent gap time data in literature. In this paper we
propose to extend the induced smoothing technique to the AFT model for recurrent gap time
data.

The rest of the paper is organized as follows. In Section 2, we first introduce the notation
and setting of the AFT model for recurrent gap time data. We then briefly introduce the non-
smooth rank-based estimating functions. In Section 3, we present the proposed induced
smoothing method for the recurrent-gap-time AFT model followed by its large-sample
properties and an asymptotic variance estimator. In Section 4, we conduct simulation studies
to compare the proposed induced smoothing method with the existing rank-based estimating
function method with various variance estimation methods. A real data analysis using the
patient contact data from the Danish Psychiatric Central Register is presented in Section 5.
Some concluding remarks are provided in Section 6.

2. The AFT model and rank-based estimating functions

2.1. The AFT model for recurrent gap time data

Consider a study with 77 subjects being recruited after each experienced an initial event and
being followed on the recurrence of the event. Let /=1, ..., nindex the subjects and j=0, 1,
... index the recurrent events of the th subject, with /= 0 indicating the initial event. Let 7
denote the gap time between the (f— 1)th event and the jh event for subject /. Among the
various regression models for recurrent gap times, the AFT model is of particular interest
because of its direct interpretation of covariate effects on the (transformed) gap time
variable. Let Z,;be the p x 1 vector of baseline covariates. We impose the usual linear model
for the logarithm-transformed gap times:

log(Ti;)=PBg Zi+eij, @)

where f is the true p x 1 vector of regression parameters and has the usual interpretation of
covariate effects as in linear models. The error terms within each subject, ey, /=1, 2, ..., are
assumed to have an unknown common marginal distribution, and the correlation structure

among the error terms is left unspecified. In this way, the correlation between two gap times
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ejand e is allowed to depend on jand /. Finally, we assume that the error vectors &, =
(eq, ep, ...)T, i=1, ..., n, are independently and identically distributed (i.i.d.) across
subjects.

Note that the identical marginal distribution condition assumed for Model (1) is weaker than
the shared frailty model which assumes that the error terms of the same subject are i.i.d.
given a subject-specific frailty variable. Under the shared frailty model, each pair of gap
times in the set {log(7j), /=1, ...} are required to have the same correlation. The identical
marginal distribution condition for Model (1) leaves the within-subject correlation structure
fully unspecified, hence Model (1) allows more sophisticated correlation structure in real
data, such as the autoregressive (AR) and the unstructured correlation.

In most applications, the observation of recurrent events is subject to right censoring due to
loss of follow-up or end of study. Let C;be the censoring time of the recurrent event process
for the th subject, which is assumed to be independent of { 7;; /= 1} conditional on Z;. Let

m;
m;denote the number of observed events so that m; satisfies ijlTij < Ciand

m;+1 0
Zj:l 13 >Ci, where 21:0. We further define the censoring indicator for the jth event

J

di5=L(p_,_, Ta < Ci), where 1(-) is an indicator function. Let Xj;denote the observed gap

time such that Xj;= 7;for j=1, ..., m;and Xi,miJrl:Ci—Z;iilXil. Define the transformed
observed gap time Yj;=log(.Xj). The observed data of subject /consist of {(Xj;, 6;); /=1,
omi+ 1,7, C}.

2.2. Rank-based estimating function

We begin by considering the simple yet inefficient method that only uses times to first event
in model estimation; that is, ignoring gap times of higher orders. Define the residuals ¢;{8) =
log(Xj) - BTZ; Let NiB, ) = &;ei(p) < & and Ri{B, §) = Kej{B) = £} be the counting
process and at-risk process on the time scale of the residual, corresponding to subject 7’s jh
gap time. An unbiased weighted rank-based estimating function for g based on the time-to-
first event data takes the form [24, 34, 35]:

LS Zi{en(B) > eil(ﬂ)}:|

;w(ﬁ e () [Z" S H{en(B) > en(B)}

or, equivalently,

LR S1(B,t

where So(B,t)=n""Y_" Ru(B.t), Si(B,)=n"">_" ZiRu(B,t), and w8, § is the
weight function. Common choices of m(g, #) include w(g, #) = 1 for log-rank (LR) weight
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[23] and w(B, ) = Sy(B, §) for Gehan’s weight [36]. Note that the estimating function in (2)
is constructed based on the linear rank statistic and can be viewed as the sum of the
weighted difference between the covariate of a subject with an event (subject /) and the
expected covariate among those who are in the “risk set” at the transformed event time of

this subject, {/: en(B) = ex(H)}-

To improve the efficiency of estimation, one can make use of information beyond the first
gap time. However, as discussed earlier, methods for clustered survival data cannot be
directly applied to the recurrent gap time data due to the unique sequential structure of
recurrent events. It was demonstrated in [37] that, when the underlying recurrent gap times
of a subject are exchangeable, the weighted-risk set (WRS) technique can be applied to a
reduced dataset to avoid biases in estimation caused by induced informative censoring and
the biased sampling of the last censored gap time. Specifically the last censored gap time is
not used in the construction of the estimating functions if the number of uncensored gap
times of a subject is at least one. For the ease of discussion, we define = max{m;,1},
then ;=1 if subject /has no observed recurrent events and , equals the number of
observed recurrent events /m;if m;= 1. Note that Xj = C;if m;=0and Xj;= T7j;for
j=1,..,m} if mj=1. Thus, the reduced data used in the WRS estimations are {(Xj;, &;);
j=1,...,m}, Zj Cj} from each subject. The WRS method assigns a weight 1/, to each of
the remaining ;" gap times of a subject to ensure that overall contribution of each subject to
the estimation to be the same to avoid the possible bias caused by informative cluster sizes.

In the same spirit as the WRS method in [37], we first define the averaged counting process
and the averaged at-risk process for the AFT model:

N ZNU B.1),

’le

Ri(B,t)= ZR”ﬁt

LJ1

Note that these two averaged processes are based on the individual counting processes
and ;jdefined earlier, which are all on the scale of the residual of the log-transformed gap

times. Hence, the two averaged processes N/ (B, t)and R} (B3, t) defined here are different
than those in [37]. Let S0 (8.t)= 12 LRI (B,t)and S1(B,t)=n 12 Z,R;(B,1).

Then, we can replace 7 Z Vi (B, 1), 712 ZiNi(B,1), S(B, 9, and Si(B, H in (2)
with their respective multivarlate counterparts

712 N;(B,1), 712 ZiN; (B.1),50(B,1), and S7(B, ) and construct a new
estlmatlng equation:

. CSiBY
V=310 (8:0) |2y | VI8 o
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where the weight function w/ (8, #) is required to converge to the same limit as w(B, ) as n
— 00, It can be shown that (3) is equivalent to

3

Sf{ﬂ,emﬁ)}} .
S8, Cij B)} (4)

ﬂaelj(ﬁ)) [Zi

It is easy to show that the empirical processes

712 N/ (B,t), 712 Z;N; (B,1), S5(B,1), and 57 (B, t) converge to the same limits
as their respectlve univariate counterparts and that the mapping defined by Uin (3) is
compactly differentiable with respect to the supremum norm. As a result, we can prove that
U(p) and its univariate counterpart in (2) converge weakly to the same limiting distribution
and converge uniformly to the same limit. The latter ensures the consistency of the solution,
denoted by ,B to the estimating equation B) = 0.

Note that, while Chang [17] was the first to consider the AFT model for recurrent event data,
it is worthwhile to point out that the estimating function proposed in [17] is a special case of
(4) with the unit or log-rank weight function, w'(8, # = 1:

_SitB.ey(B)}
(8= Z ,,25”[ i sa‘{ﬂ,ez’j(ﬂ)}} (5)

The existence of a strongly consistent and asymptotically normal sequence of solutions to
UL r(B) = 0 was established in [17]; however, the involvement of the unknown parameter 8
in the indicator function renders the estimating function in (5) a non-smooth step function of
B. Hence, a solution ﬁ]_R such that U._R(,B’LR) = 0 may not exist for a finite sample. An
alternative approach is to estimate 8 by minimizing the norm of U r(f), thatis || U r(B)|| =
U r(B) T U r(B). However, because monotonicity in U gr(B) with respect to Bis not
guaranteed, there may exist multiple solutions to the minimization problem. Therefore, the
point estimation based on the non-smooth estimating function in (5) could be
computationally challenging in applications.

Because the asymptotic variance of the point estimator depends on the slope of the
estimating function in (5), it is difficult to estimate the variance directly when the estimating
function is non-smooth. In the literature, resampling-based methods are commonly used for
variance estimation. Among them, the bootstrap method is popular due to the ease of
implementation. As an alternative, Chang [17] adopted the perturbation technique proposed
by Parzen et al. [27] to estimate the variance of BLR. Briefly, since it has been proved that n
~12 4 r(B) converges in distribution to a multivariate normal distribution with mean 0 and
covariance W r(f), one can first generate a large number of random vectors /s from a
multivariate normal distribution with mean 0 and covariance VLR(,[J’), where VLR(,H) isa
consistent estimator of 1| gr(B). Then, one can solve the equation U r(B) = Rto obtain

Stat Med. Author manuscript; available in PMC 2019 March 30.
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[S’LR(R) for each R. The variance of [3._R can be approximated by the sample variance of

AR(R)’s.

Note that both the bootstrap and the perturbation method require solving the estimating
equation for a large number of times, which causes the computational burden to increase in a
great amount, especially when the estimating function is non-smooth. In addition, the two
variance estimation methods rely on the success of each resampling’s point estimation
whose challenges have been discussed previously.

3. The proposed induced smooth estimating function

Since the rank-based estimating functions discussed in Section 2.2 are non-smooth, causing
difficulties in parameter estimation, we propose a monotonic, smooth estimating function in
this section. We want to reemphasize that although Johnson and Strawderman [31] have
proposed a smooth estimating function for the clustered survival data AFT model, their
method cannot be directly applied to the recurrent gap time data because of the unique
structure of this type of data.

For univariate survival data, it has been proved that, when using Gehan’s weight, the
estimating function in (2) is monotonic and corresponds to a convex objective function [38].
If the parameter is estimated by minimizing the objective function, then the set of
minimizers would be convex although the minimizer may not be unique. Later, it was
showed that applying an /nduced smoothing technique on the rank-based estimating function
with Gehan’s weight leads to an estimating function which is both smooth and monotonic,
essential for improving the computation for both the point and variance estimation [29]. We
now consider extending the induced smoothing technique to the setting of recurrent gap time
data. We start with the rank-based estimating function for the recurrent gap time data in (4)
by using a Gehan-type weight, defined as «* (3, t)=S; (8, t ), Which converges to the same
limit as Gehan’s weight for univariate survival data w(8, §) = Sy(B, ). The estimating
function then becomes

N CSHBO e

_ .. Si{B,ei(B)}
S St }5”{ Sz;{ﬂ,eij(ﬂ)}}

Z]l

n ml n 7711

Z—ZZZZ —(Zi—Z)ew(B) > ei;(B)}

niz 1j=1l=1k= 1 (6)

Then, we can apply the induced smoothing technique to the estimating function with the
Gehan-type weight in (6) as follows. Let Wbe a p x 1 independent standard normal vector,
then a smoothed estimating function can be proposed by replacing Ug(8) with E [ Ug(H)],
where f= g+ Y2/, and E 4 denotes the expectation with respect to W/ This leads to a
smooth, monotonic estimating function;

Stat Med. Author manuscript; available in PMC 2019 March 30.
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)] = ZEZZ (Zi-Z)E,, [Hew(®) = es(B)}] .

N —=1k=1""

"Qx

UL (B)=E, [Usl

It is easy to show that

By [I {ew(®) 2 ey(B)}] =Ew |1 {Vi(Bn2W) 202 Yy Bn W) 2.
-5, [1{(+n2w) (2-2) < Vi Yy ]
_3 {Ylk_yij_ﬂ—r(zl_zi)}’
1

T

where @(-) is the cumulative distribution function of a standard normal random variable and
T?l:nil(zl—zi)T(Zl—Zi)- Let Ay il B ={ Y~ Y,'j—ﬁT (Z,- Z)}/rj, then we have

By [Hew(B) = e(B)}Y] =0 (hur;(B)).
Thus, the resulting smooth estimating function can be expressed as

n m; on m

)@ (i (B))-

N j=ti=1k=1"" (7

Let ;7" (8)=0 {1U() (8)} /. then

n m; n mf

Ug nQZZZZ & Ui (B)(Zi~Z)(Zi~20)

i=1j=1l=1k=1

where ¢(-) is the probability density function of a standard normal random variable. It can be
easily shown that the smooth estimating function in (7) is the derivative of the convex
objective function

nmznm

L(S)

)} (I)( ij, lk(ﬁ))+rzl¢(hm lk(ﬂ))]

z 1j=1li=1k= 1 (8)
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The estimator BS) is obtained by minimizing the objective function LS)(ﬂ). The consistency

and asymptotic normality of ﬁf) are stated in the following theorem and proved in
Appendix.

Theorem 1—Under the regularity conditions in the Appendix, BS) is a strongly consistent

estimator of 5, and \/E(BS) —B,) converges in distribution to M0, T), where = = A1 V/(A
1T and V= lim, 0 Var{m Y2 Ug(Bo)}, A= 0A8{lim, o 1 Ug(Bo)}-

Note that the smooth estimator Bis ) has the same asymptotic properties as the estimator ,BG
(defined in the Appendix) based on the non-smooth estimating function with the Gehan-type
weight.

Since the proposed estimating function in (7) is smooth and thus differentiable, one can use
US)(BS)) to estimate Ag(fp) [29, 31]. Hence, we propose to use

_ N T
US)(BS)) IVG {US)(BS>) 1} to estimate the asymptotic variance of v (ﬂs) *ﬁ0>,
where Vg is the sample variance of { /2 U((;Z (,3(;)), b=1, ..., Ng}and Uésg (,3(;)) is the

smooth estimating function based on the &th bootstrap sample at ﬂ:ﬁg).

4. Simulation

Simulation studies were conducted to assess the performance of the proposed smooth
estimating function as compared to the non-smooth rank-based estimating function with
various variance estimation methods. For each simulation scenario, 1000 datasets were
generated, each with a sample size of 7= 100 or n=200. All resampling sizes (number of
bootstraps or perturbations) were set to be 200.

We began by generating the log gap times log(7), /=1, ..., n,j=1, 2, ..., from the AFT
model:

log(Tij)=p1Za+P2Zia+eij,  (9)

where g1 = , = 0.5, and ¢;;=a;+<;;. The covariate Z; had a Bernoulli distribution with
success probability equal to 0.5 and 2, followed a uniform distribution on the interval [0, 1].
The frailties a;followed a normal distribution with mean —1 and variance p. Two types of

distributions of the random errors <;; were examined: normal distribution and logistic

distribution, and the parameters of the distributions were determined so that <;; had mean
zero and variance 1 — p. Two values of the variance parameter, p = 0.2, 0.4, were considered
to achieve different levels of within-subject correlations. Note that Model (9) implies a
uniform correlation structure and the within subject correlation is p. It is easy to prove that

Stat Med. Author manuscript; available in PMC 2019 March 30.
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the above shared frailty model satisfies the identical marginal distribution condition assumed
in Model (1). The censoring times C;were generated from uniform distributions to yield
desirable censoring rates (i.e., percent of subjects without any observed events), ¢, = 25%
and 50%.

To show that the proposed method is valid when the data have more complicated correlation
structure, we considered scenarios where log( 7;) follow a first-order autoregression or AR
(1) model:

log(T3)=p51Zn+ P2 Zip+ 04w,

where a = -1, wj;= pwji-1 + vjjand vy followed a normal distribution with mean zero and
variance 1 - g2 for j= 2, .... We started by generating w; from a normal distribution with
mean zero and variance 1. Two levels of p, 0.2 and 0.4, were considered. It can easily be
proved that the above AR(1) model also satisfies the identical marginal distribution
condition in Model ().

With the simulated data, we first compared the performance of the non-smooth estimating
equation with either the log-rank weight in (5) [17] or Gehan’s weight in (6) to the
performance of the proposed smooth estimating equation in (7). The simulation results for
data with an uniform correlation structure in normal or logistic random errors, and data with
the AR(1) correlation structure are presented in Tables 1, 2 and 3, respectively. For the point
estimates, we report the relative bias (Bias) and the Monte-Carlo empirical standard
deviation of the point estimates (SD). For each variance estimation method, we report the
average standard errors (ASE) and the coverage percentage (CP) of the 95% confidence
intervals (Cls).

The simulation results show that the average point estimates based on the non-smooth and
smooth estimating functions are all virtually unbiased. We noticed that under the simulation
scenarios that we used, the non-smooth method with the log-rank weight failed to converge
for about half a percent of the simulated datasets (the results in the tables are based on the
simulated datasets with converged point estimates).

As for the variance estimation, the asymptotic variance estimator of the proposed smooth
estimating function gives satisfactory variance estimation with the ASE being close to the
Monte-Carlo empirical SD and the bootstrap ASE and the CP being close to its nominal
level (95%). The Monte-Carlo SD of the estimates from the proposed smooth estimating
function method and the non-smooth method with Gehan’s weight are close; and both are
smaller than that of the non-smooth method with log-rank weight [17] for the simulated
data. It should be noted that since the bootstrap method and the perturbation method [27] for
the non-smooth method with log-rank weight need solving the non-smooth estimating
equations for numerous times, the variance estimation suffers from the same non-
convergence problem as in the point estimation (the ASE and CP in the tables are based on
the converged bootstrap samples or perturbed samples only). The computing time of the
asymptotic variance estimator based on the proposed smooth estimating function method

Stat Med. Author manuscript; available in PMC 2019 March 30.
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was substantially shorter than that of the bootstrap or perturbation method of the non-smooth
methods as expected.

For comparison, we also applied two existing methods to recurrent gap time data: (1)
analyzing the time to first event only data with the induced smoothing method for univariate
survival data [29], and (2) applying the induced smoothing method for clustered survival
data [31] to the recurrent gap time data, by ignoring their sequential structure. The results
are shown in the lower-right panel of Tables 1-3. Whereas the point estimates of the
univariate method are satisfactory, this method is obviously less efficient (i.e., larger SDs)
than the proposed method. As expected, the point estimates of the clustered survival data
method are biased, and the biases increase with the within-subject correlation, which
demonstrates that naively applying methods for clustered survival data in the analysis of
recurrent gap times can yield substantial bias.

5. Data analysis

We applied the proposed method to the hospitalization data from the Danish Psychiatric
Central Register [39] which computerized all admissions to psychiatric hospitals and
psychiatric wards in general hospitals in Denmark since 1969. In this paper, we only
considered a subset of the published data, which was composed of a cohort of 286
individuals who were first admitted to or contacted with Danish psychiatric services between
April 1 and December 31, 1970. The maximum follow-up time was set to be 3 years to avoid
any potential change in the distributional pattern of recurrent gap times. The details about
this cohort have been described elsewhere [37, 21]. Briefly, among the 286 subjects, 106
(37%) were females, 230 (80%) had schizophrenia onset after 20 years old, 115 (40%) were
censored after the initial hospitalization or contact with no records of rehospitalization, 56
(20%) had one rehospitalization, and 115 (40%) had two or more rehospitalization records.
The average number of rehospitalization was 1.7. The median disease onset age was 26 with
a range of 14 to 88 years old. Note that 9 of the 286 patients died before the end of the
follow-up time, hence, the independent censoring assumption was not expected to be
seriously violated.

Our main interest was to estimate the effect of the disease onset age on the gap time between
two successive hospitalizations. We fitted the AFT model to the data with two covariates, the
logarithm-transformed onset age and gender. We applied both the proposed smooth method
and non-smooth methods with log-rank or Gehan’s weight. The variance for the non-smooth
and smooth methods was estimated by the bootstrap and the asymptotic methods,
respectively.

As shown in Table 4, the point estimates of the effects of log onset age and gender from the
non-smooth and smooth estimating functions are similar, while the Cls from the proposed
method and the non-smooth method with Gehan’s weight are narrower than the non-smooth
method with log-rank weight [17], similar to the findings from the simulation study. All
methods show that the effect of onset age was significantly associated with gap times
between recurrent hospitalization while gender did not have a significant effect, which is in
line with the previous findings in literature [37, 21].

Stat Med. Author manuscript; available in PMC 2019 March 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Page 12

6. Discussion

Despite its appealing direct interpretation, the AFT model [17] has not been widely used in
recurrent event data analysis possibly due to the lack of reliable and efficient computing
programs. In this paper, we have introduced an induced smoothing technique to improve the
performance of the rank-based AFT model for recurrent gap time data. With simulations and
a real data analysis, we have shown that the proposed smooth estimating function method
provides similar but more computational stable point and variance estimates as compared to
the existing non-smooth estimating function method in [17]. The proposed induced
smoothing method also has been shown to be more computationally efficient than the non-
smooth methods. Hence we recommend to use the proposed induced smoothing method with
the asymptotic variance estimator for data analysis.

In this paper, we adopted a Gehan-type weight for the induced smoothing method in order to
achieve a more tractable objective function. However, the induced smoothing method is
applicable to other weight functions such as the log-rank weight or a general weight
function. Note that estimating functions with general weights may not be monotonic. In that
case, by following similar techniques in [30], one can use an iterative procedure and within
each iteration, reweight a monotonic estimating function in the same form as (6) to
approximate the estimating function with a general weight. We note that, like many
correlated-data methods, the proposed induced smoothing method for the recurrent gap time
AFT model is robust in the sense that its validity does not depend on the correct
specification of the correlation structure. A possible future research direction is to improve
the efficiency of estimation by incorporating the correlation structure in the estimating
function, such as using the generalized method of moments estimation studied by [33] for
clustered survival data.
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We provide a brief proof of consistency and asymptotic normality of ,BS) by following the
proofs for Theorem 1 and 2 in [31]. We assume the following regularity conditions:

Condition Al. The parameter space B containing S is a compact subset of R”.

Condition A2. || Z;||+m is uniformly bounded almost surely by a nonrandom
constant (/=1, ..., ).

Condition A3. Var(eq7) < 0.
Condition A4. The matrix A and V defined in Theorem 1 exist and A is not singular.

Condition A5. Let f(-) denote the marginal density associated with model error term
e11- Assume f(-) and f(;(.) are bounded functions on R with
folt)

1 EOY e

Condition A6. The marginal distribution of C;is absolutely continuous and has a
uniformly bounded density g{:) onR for /=1, ..., n.

Among the above conditions, Al, A2, A4, A5, A6 are standard conditions to ensure
consistency and the asymptotic normality of the estimator from Equation (6) according to
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[31]. Since |Cov(ej; i) < Var(er), /=1, ..., n, j, k=1,...,m}, Condition A3 ensures that
the covariances between the error terms of recurrent events of the same person are bounded.

Proof of consistency

We know that the estimating function in Equation (6) is the gradient of convex objective
function

LoB)=23 0 S S ST mimi) o {en(8)—ei; (B) {ew(B) = ei;(8)} which

is continuous almost everywhere. Using a similar approach as the proofs for Lemmas 1 and

2 in [31], we can prove that supﬂEB|iL (B)—Lo(B)| — 0almost surely where Loy(B) is

convex for SEB and sup |LL(B)~Lo(B)| — 0 almost surely. Condition A4 implies
that Lo() is strictly convex at By and thus f is a unique minimizer of Lo(8). Let g be the

minimizer of Lg(pB) and ﬁ be the minimizer of L (ﬂ) According to Theorem 11.1 and

Corollary 11.2 in [6], we can conclude that both ,BG and ﬂ; converge almost surely to &.

Proof of asymptotic normality

First we prove the asymptotic normality of 77/2(Bg — fy). Using similar arguments as in
Theorem 2 in [40], we can show that

n!%(B,—Bo)=—A"'n" 12U (By)+op (14 VB, —Boll)-

We define

M} (B, t)= ZM” B,t),

2] 1
M;;(B,t)=Ni;(B.t)— [*  Rij(B,u)Xo(u)du, and
o E{SiB.0)

A= Bis B0y

where Aq(-) is the common hazard function of ey, /=1, ..., 1, j=1,... m]. Let (B X) =
E{S(B X} and s1(8, X) = E{S1(B, X)}. Following similar argument as in [37], we can show

that E{S5(B,t)}=E [r Z Heu(B) = t}]=s0(B,t)and

E{S7(8,t)}=E| ﬂ_lz;;lzll{en(ﬂ) > t}]=s1(B,1), and hence we prove that 28, § =
s1(B, §/5(B, 9. Then, following [41], we have

1 - —1/2
RUalBo=3 3 uitop(n%),
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where

Ui:fzoo'SO(ﬁm t){Zi_E(ﬂa t)}d]\ff(ﬂ, t)'

According to central limit theorem, we have \/n{n~'U, (B,)} converge in distribution to

MO, W), thus, v/n(B_,—B,) converges in distribution to M0, A™1V/(4™)T).

Next we prove the asymptotic normality of \/E(BS) —B,) and show that \/E(Bif)—ﬁo) and

\/H(Bcfﬂo) converge to the same limiting distribution. First, following a similar approach

as in [31], Lemma 3, we can prove that HUS) (By)—A| — 0. Second, since we know that A
1L Y2 (o)} is asymptotically normal with mean zero and variance A~V A7L, then if
We can prove

Vi(BY ~Bo)+AT U (B) — 0 (A1)

in probability, it will imply that \/E(BS)—,BO) converge in distribution to M0, A1V A1),

Following [42], let G..(8)=L%) (B), np= mY2Ug(Bo), M= 21, V= (1/2)A. Then (A.1)
can be written as

~(s) 1.
M (B 0) Vim0

in probability. According to Theorem 3 in [42], (A.2) holds if the following conditions are
met:

Condition B1. G,(p) is convex and BS) is a sequence satisfying
NONES

Gn(ﬂc ) S lnfﬁe};Gn<ﬂ)+0p(1)-

Condition B2. 77,= Oy(1), lim inf,, -, o infig=1 8'V;;8> 0 and lim sup,, - oo SUP|

A=1B V< oo

Condition B3. For each B€ R, G, (By+M,, ' B)—Gn(By)—B nu—B ViB=0,(1).
It is easy to show that Conditions B1 and B2 hold when Conditions A1-A6 hold. We need to
prove that Condition B3 holds. By Taylor expansion, we have
82 —1
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then

_ / — s 1 - (s) *
G (BN B)-GuBu) B (™ PUL 1)} 58 {0 800 | B,

where ||3% —B,|| < ||M,,*B] Since { nflU((j)(ﬂ)} is a sequence of bounded, continuously

differentiable functions and HUS) (Bo)—A4| — 0, US) (B;,) in (A.3) can be replaced by A.
Thus we have

Gn(BotM, ' B)~Cu(Bo) =B {n™ UL (Bo) } B VaB=0,(1)-  (p 4
Then Condition B3 holds if we can prove
n VU (Bo)-Us Bo)l =0 (as)

in probability.

By the definition of U (8,,), we have

UL (Bo)~Us Bo)=J , {Ua(Botn™"*u)~Us (Bo)Yo(w)du, (.6

where #(u) is the pdf of W. Define i, (u;, ©)=||L{Us (By+n ™/ *uw)~Us (By)} O]
where © is a fixed matrix that satisfies ||©|| < Mand M < co. We know that E(W) = [gP
ug(1) = 0, so we can derive

w20 Bo) U Bo)|=I1, | SV Bt 10—, (Bo)}=Ou] olu)dur |, Oudtu)du]

<, |2 (U Brtn ™ 20)=Us(Bo)}=0u] s(wdul-+11, Oudtu)du]

:fRP Ky (u;By,0)p(u)du
=IL+1Is,

where 4 = [|jj<e,KltiBo, ®)g(W)duand b = [y, Kikt,Bo, ©) (1) dufor any e,> 0.
Following a similar approach as in Theorem 2 in [40], we have
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1O Ve B A VOB
Ib—Boll<dx L+n'/2[[b—B | A

for any positive sequence d, — 0. Let 6= By + Y2y, d,= rY2¢,, ® = Aand suppose that
en=o0(/n), then it follows Equation (A.7) that

S —
lull<en 1l

which implies /; — 0 in probability.

Let ® = A. Because of the triangle inequality, we have

L={ e H% {Us (Botn™"2u) Uy (Bo) } —Aul| 6/(u)du

< Vil e 7= (Ve (Botn™%u) U (B0)} | )t e, | Auotu)d
< sup I (U Bortn™/20)~Uq (Bo) VS, SN HLAI . )t

(A.8)

Since there is a constant Q< oo such that /771 Ug(8) < Qbased on Condition A2, we can
derive that the first component in (A.8) is < 2Q \/nP(|W | >¢,). It is easy to show that a
sequence of e, can be selected so that ¢, =o( /n), &, — 00 as 71— oo and

2Q VP (|W || >en) — 0, Sujse, Idl¢(4) du— 0 as n— oo, Thus, we have shown that (A.
8) — 0 in probability, which implies £ — 0 in probability, then (A.5) holds. Therefore, the

asymptotic normality of BS) is proved.
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