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ABSTRACT OF THE THESIS

FPGA-Optimized Neural Network for Cloud Detection from Satellite Images

by

Sehwan Hong

Master of Science in Computer Science

University of California, Irvine, 2022

Professor Sang-Woo Jun, Chair

This thesis presents a highly compact neural network model optimized for FPGA

implementations, targeting real-time cloud detection from RGB satellite images. Our model

uses an encoder and decoder structure without skip connections, and uses piecewise linear

activation functions for low-resource hardware implementations. Detecting Clouds from

images using deep learning has made a lot of progress with image recognition and

computer vision, at the cost of intensive computation requirements. Due to the challenge of

the complexity of state-of-the art neural networks, these networks often cannot be used to

perform real-time processing on edge nodes. Hardware accelerators such as FPGAs can be

helpful, but naively porting neural network models without considering hardware

characteristics can result in inefficient use of hardware resources and high power

consumption. In this thesis, I modify a highly compact neural network for detecting clouds,
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C-Unet++, for efficient hardware implementation on low-power FPGAs. The modified model

has a slightly different model structure, is quantized for integer operations, and also uses

piecewise linear activation functions to reduce eventual FPGA resource requirements. The

model is trained using the Cloud-38 dataset of RGB satellite images. The accuracy of 32-bit

floating point is  93.767%. The 16-bit quantized model achieved an accuracy of 89.856%
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Chapter 1. Introduction

Cloud detection is an important topic for geospatial applications, as ephemeral cloud

movement needs to be separated from the actual target data such as crop state or shoreline

movement. Cloud detection in real time processing has a variety of challenges because

there are many types of clouds in satellite images. Cloud thickness and distribution are

uneven, which brings a lot of problems to detection. Also the background contains many

ground objects such as snow, ice, trees, and mountains, which makes cloud detection even

harder.

Major cloud detection approaches include the threshold method, cloud texture and spatial

information based method, and deep learning based method.

Threshold method is the simplest traditional method for detecting clouds. Various

researchers have studied to improve the accuracy of cloud detection using threshold

methods. Limited by the spectrum of early remote sensing images, the physical threshold

based cloud detection algorithms inherently have low detection accuracy [1, 2, 3, 4, 5].

However, using a physical threshold for cloud detection has acceptable accuracy when a

background is a single tone image such as sea or desert images.

Texture information based detection methods[6,7] use the disparity between cloud texture

and surface object texture. Cloud texture and spatial information based detection depends

on fixed features and has low robustness.

With the improved deep learning technology, neural network models such as decision trees

and support vector machines are used for cloud detection. The Fmask (Function of mask)

method [8–10] and the automated cloud cover assessment method [11] uses a decision tree
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threshold to classify each pixel. The Fmask method is widely used for cloud detection and

evaluation. Latry et al. [12] use support vector machines to make a decision boundary for

cloud detection. The detection accuracy of heavy and complex cloud areas is low. M. Hughes

et al. [13] were firstly to use a neural network-based method for cloud segmentation in

Landsat-8 images.

Recently, a lot of study has been adopted on cloud segmentation using convolutional neural

networks(CNN) [14, 15, 16, 17, 18]. However, many of these papers use heavy neural

networks with computational complexity that are not compatible with real time processing

uses, especially on resource-constrained environments such as cansats. S. Ghassemi et al.

[19] have proposed a small strided U-Net architecture for onboard cloud segmentation.

Reconfigurable hardware accelerators such as FPGAs may be helpful in reducing the

performance overhead of these models, but heavy use of floating-point operators and

nonlinear activation functions have high resource requirements for low-power FPGAs such

as the Lattice ECP5.

This paper proposes a highly compact deep neural network model called HC-Unet,

which modifies the highly compact, but still accurate U-Net architecture [16] for real time

processing. HC-Unet is based on an improved version called C-Unet++ [32], which

improved on U-Net by using the same encoder-decoder structure, but eliminates two stages

on both encoder and decoder, but employing only three stage encoders and three stage

decoders with reduced convolutional layers. In exploiting light weight encoders, C-Unet++

has also substituted conventional convolutional layers with depth-wise convolutional layers

[20]. Through these modifications, C-Unet++ is a lightweight network, which contains a
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much smaller number of parameters, 9017 parameters compared to 3000 times less

parameters than traditional U-net architecture [16]. HC-Unet optimizes C-Unet++ for FPGA

implementation by quantizing the network for integer operations, and replacing the

nonlinear sigmoid activations with the simplest piecewise linear activation, the Rectified

Linear Unit (ReLU). To maintain accuracy despite these changes, HC-UNet also makes small

changes to the convolution layer architecture.

Experimental results present HC-Unet has good cloud detection performance

relative to the number of parameters. I use Tensorflow 2.5.0 with Python 3.6.9 on Intel

I7-9700K with Nvidia GPS GTX 1080 Ti. The experimental results show that the model has

achieved good detection results in cloud detection tasks. I demonstrate the potential of the

solutions in the case of cloud detection of remote sensing images, in particular for

extracting clouds from RGB satellite images. Before integer quantization, but ReLU

activations, HC-Unet reaches 93.767% accuracy in cloud detection on 38-Cloud Data set.

With integer quantization, the accuracy of 32-bit floating point is 93.767%. The 16-bit

quantized model achieved an accuracy of 89.856%.

The other parts of the paper are organized as follows. In Section 2, I introduce the

related works of the model in this paper. In Section 3, I introduce an overview of the

proposed neural network model. In Section 4, I visualize the experimental results of cloud

detection.  In Section 5, I describe a conclusion.
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Chapter 2. Background and Related works

In this section, I introduce three different background information. Neural network

architecture for image segmentation is the backbone of the presented neural networks.

Computationally efficient convolution portrays the details of the presented neural network.

Finally, quantizing the Neural Networks extends the thought to the future works.

2.1. Neural network architecture for image segmentation

One of the famous neural network structures for image segmentation is using

encoder-decoder structures. Using encoder-decoder structures, many researchers have

developed state of the art image segmentation neural networks such as U-Net [16], SegNet

[21], or DeepLabv3+ [22]. Based on Unet, segNet, and Deep Labv3+, the encoder of the

neural network consists of multiple layers of convolutional neural networks. In each

convolutional neural network stage of the encoder composed of single or multiple

convolutional layers followed by the Pooling layers that allows networks to extract features

at different scales. In each convolutional stage, various convolutional neural networks

structures such as ResNet[23], VGG16[24], or MobileNet[25] could be used to extract the

features of the images. Decoder in image segmentation network is responsible for creating

the final result, a labeled masked image that includes the boundary of the images. Decoder

decypher the features extracted through encoders by up-sampling the results until the

dimensions of output equals the original images. To up-sample the images from smaller

images, decoder implements deconvolution introduced by H. Noh et al. [26]. Transposed

convolution expands the pixels by training the parameters to predict neighborhood pixels.
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2.2. Computationally efficient convolution

Increasing the number of uses in edge devices such as smartphones, IoT devices and many

other smart devices have required researchers to develop artificial intelligence that is

applicable in edge devices. Various low-complexity deep neural networks have emerged to

have computationally simple networks but have high performances similar to state of the

art neural networks, such as Inception [27], Xception [28], ShuffleNet [29], or ESPnet [30].

These networks are based on the principle of multiple simpler convolution operations. In

contrast, I use depth-wise separable convolutions [25, 28]. The famous neural networks

that use depth-wise separable convolutions is MobileNets [25]. Compared with the

conventional convolution operation, depth-wise separable convolution splits calculations

into two parts: depthwise convolution and pointwise convolution. Depthwise convolution

calculates the features within a single channel. After each feature is extracted out,

point-wise convolution merges features in every channel and generates a larger feature

map using less computation time.

2.3. Quantizing Neural Network

Another way to simplify the computation is to use integer computation rather than floating

point computation. This process is called quantization [31]. The paper [31] has introduced

two different types of quantization: affine quantization and scale quantization. Affine

quantization defines lower and upper bound and quantizes the values in between specific

ranges defined by carefully selected lower and upper bound. Scale quantization only
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defines a floating point range and quantizes the values around the zero. I have used Scale

quantization in this paper since scale quantization has less parameters to calibrate. The

author of [31] includes different methods to quantize tensors. For simplicity, I chose to use

a single parameter to quantize weights and input tensors.
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Chapter 3. The Neural Network Model

I modify a highly compact cloud detection neural network model, C-Unet++, for efficient

FPGA implementation. C-Unet++ is based on an encoder and decoder structure with

depth-wise separable convolutions. The encoder and decoder structure has roughly 3 stage

structures. The size of the networks does not depend on the size of input images. I use

192x192 images as training data and 384x384 images as testing data. The size of the

images can differ in training data and the testing data.

3.1. Highly compact neural network, HC-Unet

Figure 1: The details of Highly Compact Unet(HC-Unet) model

The design of HC-Unet is a revised version of C-Unet++ model [32], which has three

components: a 3-layer extraction stage, a 3-layer expansion stage, and a 3-layer convolution

stage(Figure 1). The extraction stage consists of one standard 3x3 convolution with the relu

and two depthwise separable convolution in the encoder structure. This extraction part has
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three fewer convolution layers compared with the original Unet architecture that has heavy

computation time. The expanding section has three 2x2 deconvolution operations. The final

3-layer convolution contains two 3x3 standard convolutions with the relu and one 1x1

convolution with the relu. When the input image is 384x384 pixels, the output of the

encoder is 32 channels of 48x48 pixels. C-Unet++, and as a result, HC-Unet, reaches cloud

detection accuracy as high as that of Unet despite having only 9,017 parameters, over

3,000x lower compared to U-Net.

Figure 2: U-Net [16] compared to C-UNet and C-UNet++[32]. Gray: input, white: conv3x3 +

ReLU, yellow: depthwise separable conv3x3 + ReLU, green: 2x2 max pool, orange: conv1x1

sigmoid, blue: 2x2 deconvolution, red: output, arrows: skip connections. Numbers indicate

the number of feature maps at each stage, as introduced in [32].
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HC-UNet modifies the C-UNet++ for efficient FPGA implementation without much accuracy

loss. Instead of the non-linear sigmoid activation functions, HC-UNet uses the Rectified

Linear function. In order to maintain accuracy despite the activation function change and

eventual quantization, HC-UNet also changes the number of 3x3 convolutional layers. As

shown in Figure 2, C-Unet++ upsampling step has three deconvolution layers and two

convolution layers; the last two convolution layers have a 3X3 convolution layer and a 1X1

standard convolution layer with sigmoid activation. While for HC-Unet, the decoder has

three transposed convolution operations and three convolution layers.

Table 1: Proposed Neural Network model with the number of parameters
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Table 2: The Comparison of Network parameters and storage size. HC-Unet model has

9,017 parameters taking 0.193 MB in storage. Storage size is the size of the Keras h5 file for

each model in MegaBytes. C-Unet, C-Unet++[32], mobUnet[33], StridedUNet[19], ESPNet

A[30], and U-Net[16]

As for the number of parameters, in the Unet family, HC-Unet has the least number of

parameters. HC-Unet has 112 less parameters than C-Unet++. HC-Unet has 5.67 times less

number of parameters than C-Unet [32], and 3448 times less number of parameters than

U-Net [16].
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Chapter 4. Experiments on cloud detection

4.1. Data Selection and Evaluation Environment

4.1.1. Dataset

I use a public cloud image dataset, the 38-Cloud dataset [18], to train and test the models. I

use RGB bands. In the dataset, approximately half of the satellite images do not have cloud

information. However, I did not exclude such images because those contain the features of

clear ground. Therefore, training and validation sets have 8,400 patches of 384x384 pixel

images. The testing set includes 9,200 patches. This dataset contains 38 Landsat 8 scene

images and their manually extracted pixel-level ground truths for cloud detection. The

images of these scenes are cropped into multiple 384*384 patches to be proper for neural

network algorithms

4.1.2. Training procedure

The model is implemented using the Keras framework using Tensorflow 2.5.0 as a backend

in Python 3.6.9. Training and validation sets are shuffled and divided to have 80% of

training data and 20% of validation data. Before feeding the inputs into the model, images

are randomly flipped, rotated or cropped for data augmentation. The model is trained using

a batch-size of 12. The neural network uses Adam optimizer with a learning rate of 0.0001.

Learning rate is decreased by the factor of 0.7 when the training loss is on a plateau with

patients of 15. Early stopping is implemented when the learning rate becomes less than

1e-8. The loss function of the network is Jaccard Coefficient.
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4.1.3. Quantized Model

4.1.3.1 Quantization method

Inspired by the paper [31], I use scale quantization instead of affine quantiation. Compared

to affine quantization which requires two variables, the upper and lower limits, scale

quantization uses a single floating point to define a representable real value range around

zero. Since the range of output values of the hidden layers are unknown, defining two

parameters is more difficult to calibrate than selecting a single variable that would define

range. Another reason behind using a scale quantization is that the model contains the

rectified linear units that would eliminate the values that would convert all negative values

to 0 while positive values remain unchanged. Since some of the kernels contain negative

values, selecting an equal size positive and negative range would be a better selection than

one sided floating point range.

4.1.3.2 Weight and Input Quantization

Using scale quantization, defined in the related works section, I quantized both the weights

and the input values. There are different methods of quantizing the tensors across the

values as presented in [31]. Out of these various methods, I selected a single parameter to

quantize all values across the weights and the inputs. The reason behind using a single

parameter is to eliminate the process of quantization and dequantization in every layer to

match quantization levels.
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4.1.3.3 Calibration

Calibration is fine-tuning of parameters to achieve highest accuracy from the model. For

calibrating the quantization, there are two parameters that I adjusted to obtain minimum

accuracy loss in quantization. The first and the most important parameter is the level of

quantization. The quantization level I experimented with is 32-bit integer, 16-bit integer

and finally the 8-bit integer. Another parameter is a floating point value which is used to

define a range of representable real numbers for scale quantization  [31].

4.2. Experimental Results

Evaluation matrix, experimental details, and experimental results and its analysis are

explained in this section

4.2.1. Evaluation Metrics

Evaluation Metrics are Accuracy, Recall, Precision, Specificity, Jaccard Index, and F1-Score as

evaluation indicators. The Precision indicator is used to obtain the precision of the neural

network model, and the Recall indicator is used to get the precision of the model. The

Specificity index is used to measure the completeness of the error prediction, and the

Accuracy index is used to measure the accuracy of the two classifications. The Jaccard Index

indicator is used to judge the similarity between the predicted mask and the real mask.

Jaccard Index = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  
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In the above equation representation, TP represents true positive, where ground truth is

true and prediction is positive. TN is true negative, where ground truth is true but the

prediction value is false. Similarly, FP is false positive and FN is false negative. False positive

is when the ground truth is false and predicts true. False Negative is when the ground truth

is false and prediction value is false.

To make a simple comparison, I use accuracy to describe the performance of cloud

detection algorithms in the model and Jaccard index to get the loss function for neural

network training.

4.2.2. Experimental Details

In this study, all experiments are implemented using the Keras framework using Tensorflow

2.5.0 as a backend with NVIDIA GTX 1080 Ti GPU. The experiment uses python 3.6.9 as the

software environment. In the experiment, I use the 384×384 pixel RGB 3-channel patch

images in 38-cloud[18] as input to the neural network. As of training, the network until the

early stop took approximately 48 hours in the environment. The training prematurely

ceased at 664 epochs as the learning rate dropped under the value of 1e-8. The quantitative

result of the HC-Unet shows that the accuracy of 32-bit floating point is 93.767% and

Jaccard index of 85.8%.
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4.2.3. Experimental Result Analysis

4.2.3.1 Qualitative Results

Evaluating the performance of HC-Unet for cloud extraction in RGB remote sensing images

is a difficult task. Accurate detection of clouds is not an easy task, especially when a limited

number of spectral bands is available, objects with similar radiometric properties are

categorized into similar objects. For instance, since both clouds and snow are pure white

color, it is hard to differentiate cloud and snow using only RGB images.

Figure 3: Qualitative experimental results of cloud detection. Numbers indicate that they

are the same images. Following alphabet represents (a) red channel (b) green channel (c)

blue channel (d) ground truth (e) HC-Unet  on 38-Cloud dataset [18].

Figure 3 represents the good results of cloud detection in HC-Unet. Comparing the ground

truth data and the predicted data of Figure 3 1-(d) and Figure 3 1-(e), HC-Unet has

predicted and created accurate cloud masks. Similarly, Figure 3 2-(d) and Figure 3 2-(e)
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represent decent results predicting locations of large chunks of clouds correctly. However,

there are some parts of the predictions that are imprecise. This inaccuracy is due to an

image part with thin clouds so that the network detects them as ground.

Figure 4: Predicting snow as clouds. Numbers indicate that they are the same images.

Following alphabet represents (a) red channel (b) green channel (c) blue channel (d)

ground truth (e) HC-Unet  on 38-Cloud dataset [18].

Figure 4 visualizes the prediction of snow as clouds. In Figure 4, the red circled area and

blue rectangle area both represent what HC-Unet have predicted as clouds. In the colored

images, Figure 4 1-(a,b,c), both the red circle and blue rectangle area is highlighted in all

spectrum of images. This represents that red circled area is a bright white colored pixel.

Investigating deeper, these areas are covered with snow. Instead of predicting highlighted

areas as snow, HC-Unet predicts that those are cloud images. Similarly, the green rectangle
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area of Figure 4 2-(e) is also covered with snow. Through these images, HC-Unet generally

predicts clouds well. Since only using the RGB images, HC-Unet has a hard time

differentiating snow and clouds.

Figure 5: Miscellaneous errors in HC-Unet. Numbers indicate that they are the same images.

Following alphabet represents (a) red channel (b) green channel (c) blue channel (d)

ground truth (e) CUnet++  on 38-Cloud dataset [18].

Figure 5 represents various errors in using HC-Unet in 38-Cloud dataset. The first set of

images is an error occurred by humans or error in the ground truth. As seen in the color

images, Figure 5 1-(a, b, c), there is no cloud present in the red circled area of the image set.

I found out that the red circled part of the Figure 5 1-(d) was human drawn to highlight a

small cloud that was present in the red circled area. Another error is that even though there

17



is no cloud present, HC-Unet sometimes predicts that the clouds exist. The blue circle area

of Figure 5 2-(e) represents that HC-Unet has predicted that there is a cloud in this area.

4.2.3.2 Quantization Results

Figure 6 : Accuracy to level of quantization. As the level of quantization increases, Accuracy

rate drops significantly.

The model allows fast processing of cloud detection with a Python 32-bit floating point

implementation. This processing could be even faster by using quantized weights.

Using the HC-Unet model in 38-Cloud data, the accuracy of 32 bit floating point is 93.767%

in python 3.6.9. I have tried various levels of quantization to find the sweet spot for

quantization versus accuracy. As the level of quantization increases, the accuracy decreases

significantly between 32-bit integer and 16-bit integer. Compared to the decrease in

accuracy for other neural networks [34], I suppose that the drop of accuracy happens

because the floating point range I used to calibrate the values are large numbers. From
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16-bits to 8 bits, there is another drop of accuracy. However, this drop happens because all

values are predicting a single value 0. Since training data includes images that predict the

image does not contain any clouds, this tendency happens toward the test data and

predicting that image has no cloud would get certain accuracy.
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Chapter 5. Future Work : FPGA implementation

Figure 7. Structure of the FPGA for HC-Unet. They have four main modules which processes

information given from DRAM and writes back to DRAM. These modules are calculated in

parallel.

The planned structure of the FPGA for HC-Unet is described in Figure 7. As shown in the

figure, FPGA contains the main controller, DRAM, and four main modules : Convolution,

Separable Convolution, MaxPooling, and Convolutional Transpose. To process the images,

DRAM is needed to store the values between each layer because there is not enough space

in the FPGA on-chip memory to store the intermediate values.  As shown in Table 1, the

maximum values to store during the process are . Using 16384 × 384 ×  8 =  1179648

bit quantization, a single value is 2 Bytes. The total memory usage for the maximum layer is

2.25MB. There is no possible way to store 2 MB of values in the FPGA. Therefore, FPGA

needs a DRAM which temporarily stores intermediate values between the layers.
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According to the [32], for real time performance, the FPGA must process seven frames per

second. The total data read calculated using the input shape given in Table 1 is 14.2 MB. The

total data write calculated similarly using the output shape is 13.6 MB. The total data read

and write is 27.8MB for a single frame. Thus, calculating the required memory bandwidth

to support HC-Unet is 27.8MB/f 7fps 195MB/s. There is no low-power FPGA× =

development board in the current market that supports the required memory bandwidth.

We discovered that in order to support HC-Unet,  I need to design a new platform hardware

with faster memory to support the necessary I/O speed.
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Chapter 6. Conclusion

I have created a Highly Compact U-net, called HC-Unet for detecting clouds using RGB

satellite images using an encoder and decoder structure. The model consists of three main

stages: the extracting operations, the expanding operations and convolution operations.

HC-UNet is optimized for eventual FPGA implementation, using piecewise linear ReLU

activations instead of sigmoid, and supporting high accuracy even with quantization. I use

the Cloud-38 data set publicly provided by the Landsat 8 satellite for the experiments. In

the experiments, the qualitative results of HC-Unet shows excellent results of extracting

clouds. The quantitative results of the HC-Unet shows that the accuracy of 32 bit floating

point is 93.767% and Jaccard index of 85.8%. In the future, I will implement HC-Unet on an

FPGA. Every convolutional layer could be built based on [35] and slight modification in

multiplication structures could generate depth-wise convolutional layers.
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