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ABSTRACT OF THE DISSERTATION

Combined Estimation and Forecasting for Panel Data Models: Parametric and
Semi-Parametric

by

Bai Huang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2017

Professor Aman Ullah, Co-Chairperson
Professor Tae-Hwy Lee, Co-Chairperson

This dissertation covers several topics in estimation and forecasting in panel data

models.

Chapter one considers the panel data model with correlated individual effects and

regressors. We form a combined estimator from combining the fixed effects (FE)

and random effects (RE) estimators. We derive the asymptotic distribution and the

asymptotic risk of our estimator using a local asymptotic framework. We show that

if the regressor dimension exceeds two, the asymptotic risk of the combined estimator

is strictly less than that of FE estimator. Our simulation result shows that the

combined estimator can reduce finite sample MSE relative to the FE estimator for

all degrees of endogeneity and heterogeneity, as well as relative to the RE estimator

for moderate to large degrees of endogeneity and heterogeneity. We also apply the

combined estimator to revisit the relationship between public capital infrastructure

and private economic performance.

Chapter two extends chapter one into the semi-parametric (SP) framework, and

proposes a combined SP-FE and SP-RE estimator.
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Chapter three considers the panel data model with correlated residuals and regres-

sors. In the presence of such correlation, both FE and RE estimators yield biased and

inconsistent estimates of the parameter. We propose a combined FE and FE-2SLS

estimator, and a combined RE and RE-2SLS estimator.

Chapter four considers regression models for panel data that exhibit cross-section

dependence due to common shocks. Model with factor structures for errors and

regressors are considered. In this case, the FE estimator is inconsistent. To solve this

problem, Pesaran (2006) introduced the common correlated effects pooled (CCEP)

estimator. We propose a combined FE and CCEP estimator, and show that under

certain conditions, the combined estimator has strictly smaller risk than the CCEP

estimator. Finally, we use Holly et al. (2010) state-level housing data to show the

applicability of the combined estimator.

Chapter five proposes a combined approach to econometric forecasting. Monte-

Carlo simulations are conducted to evaluate the performance of the combined forecast

in finite samples. We contrast the out-of-sample forecast performance of the FE, RE

and the combined approaches using the electricity and natural gas data sets.
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Chapter 1

Introduction

The endogeneity problem in the panel data model has received a great deal of

attention in the literature. Hausman (1978) takes the difference between an efficient

estimator and a robust estimator and derive the Hausman test. We show that it is

possible to make a uniform improvement on the consistent estimator in terms of risk

when there exhibits weak endogeneity. Consider a panel data model, let

yit = xitβ + αi + uit

where xit is the ith observation on q explanatory variables, β is a q × 1 unknown

parameter, αi are known as the individual effects and uit is the random error.

Chapter one examines the case of potential correlation of αi with the columns of

X within the parametric panel data framework. In the presence of such correlations,

the random effects (RE) estimator yields biased and inconsistent estimates of the

parameters. The traditional technique to overcome this problem is to eliminate the

individual effects in the sample by transforming the data into deviations from indi-

vidual means, which is known as fixed effects (FE) estimator. Researchers commonly

approach the panel data using FE estimator to avoid endogeneity problem. Unfortu-

nately, in some applications, primary interest is attached to the unknown coefficients
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of time-invariant variables which can not be estimated by the FE estimator. On the

other hand, if αi are not correlated with the other regressors in the model, both RE

and FE estimators are consistent and RE estimator is efficient. In this chapter, we

propose a combined estimator, which is a weighted combination of FE and RE esti-

mators with weights depending on Hausman test statistic. We derive the asymptotic

distribution of the combined estimator using a local-to-exogeneity condition and cal-

culate the asymptotic risk of the estimator and find that the asymptotic risk of the

combined estimator is strictly less than that of FE estimator, when the number of

regressors exceeds two. Our simulation result shows that the combined estimator can

reduce finite sample MSE relative to the FE estimator for all degrees of endogene-

ity and heterogeneity, as well as relative to the RE estimator for moderate to large

degrees of endogeneity and heterogeneity. Finally, we use a panel data for the 48

contiguous U.S. states in each year between 1970 and 1986 to revisit the relationship

between public infrastructure and private economic performance.

Chapter two extends chapter one into the semi-parametric framework. We propose

a combined estimator, which is a weighted combination of the semi-parametric fixed

effects and semi-parametric random effects estimators. We show that the combined

estimator uniformly dominates the semi-parametric fixed effects estimator for all de-

grees of endogeneity and heterogeneity. It also has smaller asymptotic risk compared

to the semi-parametric random effects estimator unless the endogeneity is very weak.

Based on simulations, we find that the above results also hold for small samples. The

magnitude of efficiency of the combined estimator varies with respect to the degree

of endogeneity and heterogeneity.

Chapter three (joint with Aman Ullah) and chapter four (joint with Tae-Hwy Lee

and Aman Ullah) examine the case of potential correlation of uit with the columns of

2



X. In the presence of such correlations, both FE and RE estimators yield biased and

inconsistent estimates of the parameter. The traditional technique to overcome this

problem is to find instruments for those explanatory variables which are potentially

correlated with idiosyncratic errors. However, the finite sample properties of the 2SLS

estimator are often problematic. In this chapter, we propose two combined estimators,

which are weighted average of FE and FE-2SLS estimators, and weighted average

of RE and RE-2SLS estimators with the weights depending on Hausman statistic.

The asymptotic distribution and risk of the combined estimators are derived using a

local asymptotic framework. In the Monte Carlo study, we show that the combined

estimators uniformly dominate the individual effects estimators for all degrees of

endogeneity and heterogeneity. The combined estimators are also better than the

individual effects estimators except when the degree of endogeneity is very small, or

when both very small sample size and very weak instruments are satisfied. Finally,

we use a panel data on 90 counties in North Carolina over the period 1981–1987 to

revisit the effect of police on crime using the FE, FE-2SLS and combined estimators.

The case examined by chapter four features the panel data that exhibits cross-

section dependence due to common shocks. A particular form that has become pop-

ular is a common factor error structure with a fixed number of unobserved common

factors and individual-specific factor loadings. One popular approach to this problem

is the common correlated effects method proposed by Pesaran (2006) which eliminates

the error cross-sectional dependence using cross-sectional averages of the data. This

approach yields consistent and asymptotically normal parameter estimates when T

is fixed as N → ∞. In this chapter, we propose a combined estimator which is a

weighted combination of the fixed effects estimator and the common correlated ef-

fects pooled estimator of Pesaran (2006). We study the asymptotic distribution of

3



the combined estimator in a local asymptotic framework where some factor loadings

in the error term are in a local neighborhood of zero. We show that under certain

conditions, the combined estimator has strictly smaller risk than the CCEP estima-

tor. Following Holly, Pesaran, and Yamagata (2010) analysis of changes in real house

prices, we examine the performance of the combined estimator using a panel of 49

states over the period 1975–2011.

Chapter 5 contributes to the literature on forecast uncertainty by investigating

the forecast model combination in the panel data model. First, we calculate the

coefficients based combination weights depending on Hausman test statistic. Second,

we show that under endogeneity, the forecast combining both fixed effects and random

effects models using the weights from step one outperforms forecast with fixed effects

in terms of mean squared forecast error. We illustrate this method with an application

to forecasting electricity and natural-gas demands for 51 U.S. states over the period

1997–2012. Overall, these results show promise for the combined forecast.

4



Chapter 2

A Combined Estimator for the

Panel Data Model

2.1 Introduction

In a panel data model, the individual effect terms can be modeled as either ran-

dom or fixed effects. Historically, econometricians have argued whether we should

use fixed effects or random effects estimator when estimating a panel data model.

Some econometricians, and most statisticians, have been in favor of using random

effects estimator. Balestra and Nerlove (1966) and Maddala (1971) were advocates

of the random error component model. They believe that the heterogeneity param-

eters appearing in the panel data models should be treated as random like we treat

equational errors (see, for example, Hyslop 1999, Olsen and Schafer 2001, Scheike

et al. 2010). However, the random effects estimator becomes inconsistent since the

individual effect terms are often correlated with regressors, which are endogenous.

In view of this, large number of econometricians, especially practitioners, use fixed

5



effects estimator. Mundlak (1961) and Wallace and Hussain (1969) were advocates of

the fixed effects model. The fixed effects estimator is a consistent estimator under the

endogeneity of regressors (see, for example, Rockoff 2004, Rivkin et al. 2005, Pedroni

2007). Since the fixed effects model de-means all variables in the model and thereby

eliminates the correlated individual effects, it is widely used to control for individual

heterogeneity in the data. In fact, this practice goes on ignoring the use of Hausman

test (Hausman, 1978) of endogeneity which is based upon a contrast between fixed

effects and random effects estimators. Mundlak (1978) argued that the random effects

model assumes exogeneity of all the regressors with the random individual effects. In

contrast, the fixed effects model allows for endogeneity of all the regressors and the

individual effects. Hausman and Taylor (1981) allowed for some of the regressors to

be correlated with the individual effects, as opposed to this all or nothing choice.

Under this scenario, we provide a fixed effects and random effects combined es-

timator which can improve the estimation efficiency. Motivated by Hansen (2014),

we derive the asymptotic distribution of the combined estimator using a local-to-

exogeneity condition and calculate the asymptotic risk of the estimator. We find that

the combined estimator has strictly smaller asymptotic risk that the fixed effect esti-

mator, when the number of regressors exceeds two. The properties of the combined

fixed effects and random effects estimator for the parametric panel data model are

discussed in Huang (2015) and Wang et al. (2016). Our simulation result shows that

the combined estimator can reduce finite sample MSE relative to the fixed effects

estimator for all degrees of endogeneity and heterogeneity, as well as relative to the

random effects estimator for moderate to large degrees of endogeneity and heterogene-

ity. We also discuss four combined estimators from combining the fixed effects and

random effects estimators in the panel data model, including leave-one-out estima-

6



tor, inverse-variance weighted combined estimator, the proposed combined estimator

and the combined estimator using optimal weights. We compare the performance

of these estimators using a series of Monte Carlo experiments that vary the sample

sizes, degrees of endogeneity and degrees of hererogeniety. Finally, to examine the

applicablity of the combined estimator, we use a panel data for the 48 contiguous

U.S. states in each year between 1970 and 1986 to revisit the relationship between

public infrastructure and private economic performance.

The rest of this chapter is organized as follows. Section 2 presents the model and

estimators. Section 3 presents the asymptotic distribution of the combined estima-

tor. Section 4 derives the asymptotic risk of the combined estimator. Monte Carlo

simulation is provided in Section 5. Empirical example is given in Section 6. Section

7 concludes.

2.2 The Model and Estimators

2.2.1 The Fixed Effects Estimator

Consider a panel data regression model

yit = xitβ + αi + uit (2.1)

where i = 1, 2, . . . n and t = 1, 2, . . . T . β is q × 1 and xit is the ith observation on q

explanatory variables, β is a q× 1 unknown parameter, αi is known as the individual

effect and uit is the random error.

For the fixed effects (FE) case, the αi are assumed to be fixed parameters to be

estimated and remainder disturbances stochastic with uit independent and identically

distributed (0, σ2
u) . The xit are assumed independent of the uit for all i and t. Write

7



(2.1) in matrix form

y = Xβ +Dα + u (2.2)

where y = (y11, . . . , y1T , y21, . . . , ynT )′ is nT × 1, X = (x11, . . . , x1T , . . . , xn1, . . . , xnT )

is nT × q and u ∼ (0, σ2
uInT ) . Let ιT be a vector of ones, D = In⊗ ιT is nT ×n. Note

that DD′ = In ⊗ JT where JT = ιT ι
′
T , D

′D = TIn. P = In ⊗ J̄T where J̄T = JT/T.

P is a matrix which averages the observation across time for each individual, and

Q = InT − P is a matrix which obtains the deviations from individual means.

One can premultiply (2.2) by Q and perform OLS on the resulting transformed

model:

Qy = QXβ +QW

The β̂FE is

β̂FE = (X ′QX)
−1
X ′Qy (2.3)

The asymptotic distribution of β̂FE follows

√
n
(
β̂FE − β

)
d→ N (0, V2)

where V2 = σ2
u

(
plimX′QX

n

)−1

.

2.2.2 The Random Effects Estimator

The random effects (RE) model assumes αi ∼i.i.d.(0, σ2
α) , uit ∼i.i.d.(0, σ2

u) and

αi are independent of the uit. In addition, the xit are independent of the αi and uit

for all i and t. Under this assumption, we can write

yit = xitβ + vit, E (vit|xi) = 0 (2.4)

where vit = αi + uit. Write (2.4) in matrix form

y = Xβ + v, v = Dα + u (2.5)

8



The variance-covariance matrix of Ω is given by

Ω = σ2
α (In ⊗ JT ) + σ2

u (In ⊗ IT ) = σ2
1P + σ2

uQ

where σ2
1 = Tσ2

α + σ2
u. The feasible estimator of Ω̂ of Ω can be obtained by running

the OLS regression y on X, define

σ̂2
1 =

T

n

n∑
i=1

v̂
2

i , σ̂2
u =

1

n (T − 1)

n∑
i=1

T∑
t=1

(
v̂it − v̂i

)2

where v̂it = yit − xitβ̂OLS is the OLS residual and β̂OLS = (X ′X)−1X ′y. Noting

that σ̂2
1 and σ̂2

u estimate σ̂2
α = 1

T
(σ̂2

1 − σ̂2
u) . With these estimates, one can obtain the

generalized least squares (GLS) of β based on (2.5) is

β̂RE =
(
X ′Ω−1X

)−1
X ′Ω−1y (2.6)

and β̂RE has an asymptotic distribution as

√
n
(
β̂RE − β

)
d→ N (0, V1)

where V1 =
(

plimX′Ω−1X
n

)−1

.

2.2.3 The Combined Estimator

See Hausman (1978), under the random effects specification, β̂RE is the asymp-

totically efficient estimator while β̂FE is unbiased and consistent but not efficient. If

E(αixit) 6= 0, β̂RE is biased and inconsistent while β̂FE is not affected. Motivated by

this observation, we would like to see if combination of β̂RE and β̂FE can result in an

improved estimation. We propose the following combined estimator of β:

β̂c = wβ̂RE + (1− w)β̂FE (2.7)

9



where

w =


τ
Hn

if Hn ≥ τ

1 if Hn < τ

Hn = (β̂FE − β̂RE)′(V̂FE − V̂RE)−1(β̂FE − β̂RE)

and τ is a shrinkage parameter. We suggest set τ = q − 2 when q > 2. The degree of

shrinkage depends on the ratio τ/Hn. When Hn < τ then ŵ = β̂RE, When Hn ≥ τ

then β̂c is a weighted average of β̂RE and β̂FE, with more weight on β̂RE when τ/Hn

is large. Alternatively, it can be written as a positive-part James-Stein Estimator

β̂c = β̂RE +

(
1− τ

Hn

)+

(β̂FE − β̂RE)

where (b)+ = b if b > 0, and 0 if b ≤ 0.

2.2.4 Asymptotic Distribution

We use the local asymptotic approach. Write αi as a linear function of x̄i =∑
t xit/T

αi = x̄iρ+ εi, (2.8)

E (xitεi) = 0

The variable xit are exogenous if αi and xit are uncorrelated, or equivalently that the

coefficient ρ is zero. For fixed T , ρ is local to zero

ρ =
1√
n
δ (2.9)

where the q×1 parameter δ is a localizing parameter, which is the degree of correlation

between xit and αi. If δ 6= 0, then xi are endogeneity and FE estimator is chosen. If

δ = 0, xit are exogenous and RE estimator is preferred.
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Now, we make the following assumptions:

Assumption 2.1. (xi, αi, ui) are i.i.d over i, uit is i.i.d over t, E (uit | xit, αi) = 0,

E (u4
it | xit, αi) <∞.

Assumption 2.2. E ‖ xit ‖2+k<∞ and E|uit|2+k <∞ for some k > 0.

Assumption 2.3: σ̂2
u = σ2

u + op (1), σ̂2
α = σ2

α + op (1) .

Assumption 2.1 and 2.2 specify that the variables have finite fourth moments (so

that conventional central limit theory applies) and that the error is conditionally ho-

moskedastic given the regressors, which is used to simplify the asymptotic covariance

expressions.

Theorem 1 Under Assumption 2.1-2.3,

√
n

(
β̂RE − β
β̂FE − β

)
d→ h+ ξ (2.10)

where

h =

 σ2
1V1X̄

′X̄δ

0


and ξ ∼ N(0, V ) where

V =

 V1 V1

V1 V2


with

V1 =

(
X ′Ω−1X

n

)−1

V2 = σ2
u

(
X ′QX

n

)−1

Furthermore,

Hn → (h+ ξ)′B(h+ ξ) (2.11)
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and
√
n
(
β̂c − β

)
d→ Ψ = G′2ξ −

(
τ

(h+ ξ)′B(h+ ξ)

)
1

G′ (h+ ξ) (2.12)

where X̄ = (x̄1, . . . , x̄q) is n × q, B = G (V2 − V1)−1G′, G =

(
−I I

)′
, G2 =(

0 I

)′
, and (a)1 =min[1, a].

Theorem 1 presents the joint asymptotic distribution of β̂RE and β̂FE, the Hausman

statistic, and β̂c under the local exogeneity assumption. The joint asymptotic dis-

tribution of β̂RE and β̂FE is normal with a classic covariance matrix. β̂RE has an

asymptotic bias when δ 6= 0 but not β̂FE. The Hausman statistic has an asymptotic

non-central chi-square distribution, with non-centrality parameter h depending on

the local endogeneity parameter δ. The asymptotic distribution of β̂c is a nonlinear

function of the normal random vector and a function of the noncentrality parameter

h.

2.3 Asymptotic Risk

The asymptotic risk of any sequence of estimators βn of β is defined as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)′W (βn − β)

]
= R (βn)

so long as the estimator has an asymptotic distribution

√
n (βn − β)

d→ ψ

for some random variable ψ, the asymptotic risk can be calculated using

R (β) = E (ψ′Wψ) = tr (WE (ψψ′)) (2.13)
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Define the largest eigenvalue of the matrix W (V2 − V1)

λ1 = λmax (W (V2 − V1)) ,

and the ratio

d =
tr (W (V2 − V1))

λ1

. (2.14)

Notice that (2.14) satisfies 1 ≤ d ≤ q. In the case W = (V2 − V1)−1, λ1 = 1 and we

have the simplification d = q.

Theorem 2 Under Assumption 2.1-2.3, if

d > 2

and

0 < τ ≤ 2 (d− 2) (2.15)

then

R
(
β̂FE

)
= tr (WV2)

R
(
β̂c

)
< R

(
β̂FE

)
− τλ1 [2 (d− 2)− τ ]

σ−4
1 δ′X̄ ′X̄V1 (V2 − V1)−1 V1X̄ ′X̄δ + q

. (2.16)

Equation (2.16) shows that the asymptotic risk of β̂c is strictly less than that of β̂FE,

so long as τ satisfies the condition (2.15).

The assumption d > 2 is the critical condition needed to ensure that β̂c can have

smaller asymptotic risk than that of β̂FE. It is necessary in order for the right-hand-

side of (2.15) to be positive, which is necessary for the existence of τ .

τ appears in the risk bound (2.16) as a quadratic expression, so there is a unique

choice τ ∗ = d − 2 which minimizes this bound. For practical implementation we

recommend replacing the maximum eigenvalue λ1 with the average tr(W (V2−V1))
q

. Sub-

stituting into the expression for τ ∗ we obtain τ = q − 2.
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In the general weight matrix case, let λ1 ≥ λ2 ≥ · · · ≥ λq denote the ordered

eigenvalues of W (V2 − V1) . d > 2 is equivalent to λ2 + · · ·+ λq > λ1. This is violated

only if λ1 is much larger than the other eigenvalues. (2.15) is equivalent to 0 < τ ≤

2
(∑q

i=1
λi
λ1
− 2
)
.

Corollary 3 R
(
β̂c

)
− R

(
β̂FE

)
< 0, for d > 2 and 0 < τ ≤ 2 (d− 2) . When

W = (V2 − V1)−1 , the condition simplify to 0 < τ ≤ 2 (q − 2) and q > 2, which is

Stein’s (1956) classic condition for shrinkage.

As shown in Stein’s (1956), q > 2 is necessary in order for the Stein estimator to

achieve global reductions in risk relative to the usual estimator. d > 2 is the gener-

alization to allow for general weight matrices.

Corollary 4 R
(
β̂RE

)
=tr(WV1) + σ−4

1 δ′X̄ ′X̄V1WV1X̄
′X̄δ; R

(
β̂RE

)
≤ R

(
β̂FE

)
when σ−4

1 δ′X̄ ′X̄V1WV1X̄
′X̄δ ≤ q and R

(
β̂RE

)
> R

(
β̂FE

)
when otherwise.

The result in Corollary 4 indicates that when endogeneity is weak (ρ and hence δ is

close to zero) the random effects estimator may perform better than the fixed effects

estimator.

Corollary 5 R
(
β̂c

)
− R

(
β̂RE

)
< 0, for q < σ−4

1 δ′X̄ ′X̄V1WV1X̄
′X̄δ, d > 2, and

0 < τ ≤ 2 (d− 2).

The result in Corollary 5 indicates that when endogeneity is strong, d > 2, 0 < τ ≤

2 (d− 2) , the combined estimator performs best among these three estimators.

Remark 6 As in Wang et al. (2016), if the weight w is non-stochastic, we can obtain

the asymptotic optimal w by minimizing

w2R
(
β̂RE

)
+ (1− w)2R

(
β̂FE

)
+ 2w (1− w)E

((
β̂RE − β

)′
W
(
β̂FE − β

))
14



w∗ is given by

w∗ = tr (V2 − V1) /
(
tr (V2 − V1) + σ−4

1 δ′X̄ ′X̄V1V1X̄
′X̄δ

)
which depends on the localizing parameter δ.

To understand the magnitude of the risk improvement, define

aq =
tr (WV2)

tr (W (V2 − V1))

and

cq =
σ−4

1 δ′X̄ ′X̄V1 (V2 − V1)−1 V1X̄
′X̄δ

tr (W (V2 − V1))

In the special case when W = (V2 − V1)−1

aq =
tr
(
(V2 − V1)−1 V2

)
q

,

cq =
σ−4

1 δ′X̄ ′X̄V1 (V2 − V1)−1 V1X̄
′X̄δ

q
.

The aq is a nonlinear function of the ratio σα
σu

= θ or ρ∗ = θ/ (1 + θ) (0 ≤ ρ∗ ≤ 1)

which controls the strength of heterogeneity. cq is a scalar measure of the strength

of endogeneity δ (or ρ). cq is increasing as the degree of endogeneity increases. From

(2.16) we can calculate

r =
R
(
β̂c

)
R
(
β̂FE

)
≤ 1− tr (W (V2 − V1))− 2λ1

tr (WV2)
× tr (W (V2 − V1))− 2λ1

σ−4
1 δ′X̄ ′X̄V1 (V2 − V1)−1 V1X̄ ′X̄δ + q

' 1− 1

aq (cq + 1)

The percentage reduction in asymptotic risk achieved by the combined estimator

relative to the fixed effects estimator is approximately 0 ≤ 1/aqcq ≤ 1. Note that

dr/dδ > 0, thus we expect the combined estimator to achieve large risk reductions

when the degree of endogeneity is small.
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2.4 Monte Carlo Study

The observations are generated by the progress

yit = xitβ + αi + uit

αi = ρ
√
T x̄i

ι

q
+
√

1− ρ2 εi

{xit, uit} are i.i.d N (0, Iq+1) across i, t. εi are i.i.d N (0, 1) independent of {xit, uit}.

Var(αi) = 1. The distribution are invariant to β so we set it to zero, β = 0.

We vary n = {20, 100} , T = 3, q = {4, 8} , and ρ on a 40-point grid on [0, 0.975] .

ρ controls the degree of endogeneity, ranging in (0, 1) (ρ = 0 is the case of exogenous

regressors; large ρ is the case of strong endogeneity). We also set
√
θ = σα

σu
∈
{

1
4
, 1, 4

}
so ρ∗ = θ

1+θ
= {.06, .05, .94} . ρ∗ controls the degree of heterogeneity which is the

temporal correlation between αi + uit and αi + uit′ .

Generated 100,000 samples on each calculated β̂RE, β̂FE, β̂c. To compare the

estimators, calculate the median squared error (MSE) of each estimator and plot the

relative median square error, that is

median

[(
β̂ − β

)′ (
β̂ − β

)]
median

[(
β̂FE − β

)′ (
β̂FE − β

)]
Thus value less than one indicate improved precision relative to FE estimator, and

values greater than one indicate worse performance, larger MSE than FE estimator.

The MSE is symmetric with respect to ρ, so we only report the results with ρ between

0 and 1.

Figure 2.1 is the case q = 8, and Figure 2.2 is the case q = 4. The 6 plots in figure

2.2 look similar to the plots in Figure 2.1. By contrasting Figure 2.1 and 2.2, we can

see that the improvement in the combined estimator over FE estimator with different

values of ρ∗ are greater in the cases of larger number of regressors.
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Figure 2.1(a), 2.1(c), 2.1(e) are the cases n = 20, and Figure 2.1(b), 2.1(d), 2.1(f)

are the cases n = 100. The region of dominance for the combined estimator over FE

estimator is greater for small n.

Consider the case of eight endogenous regressors. Figure 2.1(a) and Figure 2.1(b)

are the cases ρ∗ = 0.5. For small ρ the RE estimator has lower MSE than the combined

estimator, but the ranking is reversed for larger values of ρ. Figure 2.1(c) and Figure

2.1(d) are the cases ρ∗ = 0.06. The MSE of the RE estimator is smaller than that

of the combined estimator for all the values of ρ when n = 20 in Figure 2.1(c). The

combined estimator has smaller MSE than that of the RE estimator when n = 100 in

Figure 2.1(d). The MSE of the RE and combined estimators are uniformly smaller

than that of the FE estimator. Figure 2.1(e) and Figure 2.1(f) are the cases ρ∗ = 0.94.

The FE and the combined estimators are near equivalents. RE has similar MSE to

FE and combined estimators for small ρ, but the MSE of RE estimator increases

dramatically after intermediate values of ρ.

Figure 2.3 is a 3D graph of the case n = 20, T = 3, q = 8. The improvements in

combined estimator over FE estimator are greater for smaller heterogeneity ρ∗. For

very small ρ∗, RE estimator tends to be better than both FE and combined estimators.

For moderate ρ∗ and higher ρ, or moderate ρ and higher ρ∗, the combined estimator is

better than RE estimator. For very large ρ∗ and very low ρ, the combined estimator

is close to RE estimator.

In summary, the simulation results provide strong finite sample confirmation of

Theorem 2.

Next, we would like to compare the performance of following combined estimators:

1. The proposed combined estimator (Stein Estimator):

β̂c = wβ̂RE + (1− w)β̂FE
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2. The proposed combined estimator with optimal weights:

β̂Opt = wOptβ̂RE + (1− wOpt) β̂FE

where

wOpt = tr (VFE − VRE) /
(
tr (VFE − VRE) + σ−4

1 δ′X̄ ′X̄VREVREX̄
′X̄δ

)
3. The combined estimator by inverse-variance weighting method:

β̂V ar = wREβ̂RE + wFEβ̂FE

where

wRE =
V̂ −1
RE

V̂ −1
FE + V̂ −1

RE

,

wFE =
V̂ −1
FE

V̂ −1
FE + V̂ −1

RE

.

Observations with larger disturbance variance contain less information than

observations with smaller disturbance variance. The inverse-variance weighted

combination method obtains weights inversely proportional to the respective

variance. Therefore, the smaller variance estimates gets the larger weight.

4. The combined estimator by Leave one out (LOO) method:

β̂LOO = ŵLOOβ̂RE + (1− ŵLOO) β̂FE

We use the above DGP, and generate 100,000 samples for each configuration, and on

each calculated β̂RE, β̂FE, β̂LOO, β̂V ar, β̂Stein and β̂Opt. To compare the estimators,

we calculated the MSE of each estimator and plot the relative MSE.

Figure 2.4 is the case q = 8, and Figure 2.5 is the case q = 4. The 6 plots in

figure 2.4 look similar to the plots in Figure 2.5. Figure 2.4(a), 2.4(c), 2.4(e), 2.5(a),
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2.5(c), 2.5(e) are the cases n = 20, and Figure 2.4(b), 2.4(d), 2.4(f), 2.5(b), 2.5(d),

2.5(f) are the cases n = 100. Consider the case of eight endogenous regressors. The

LOO estimator and the FE estimator are near equivalent. The combined estimator

dominates the FE estimator for all the values of ρ and ρ∗. For small n, the optimal

weights combined (Opt) estimator has quite close MSE to that of the RE estimator

regardless of the degree of heterogeneity. Figure 2.4(a) and Figure 2.4(b) are the cases

ρ∗ = 0.5. For small ρ the Opt estimators has the smallest MSE, but for larger values

of ρ, the combined estimator performs the best. Figure 2.4(c) and Figure 2.4(d) are

the cases ρ∗ = 0.06. The MSE of the RE and Opt estimators are uniformly smaller

than the other estimators, except when both n and ρ∗ are large (the inverse-variance

weighted combined (IVW) estimator has the smallest MSE for this situation). Figure

2.4(e) and Figure 2.4(f) are the cases ρ∗ = 0.94. All the estimators have similar

MSE for small values of ρ. But the MSE of RE, Opt and IVW estimators increase

dramatically after intermediate values of ρ.

In summary, for small ρ, the optimal weights combined estimator performs the

best. It is also recommended to use for moderate ρ, small and moderate ρ∗, or large

ρ, small ρ∗, small n. For large ρ, small ρ∗ and large n, the inverse-variance weighted

combined estimator performs the best. The combined estimator is recommended for

moderate and large values of ρ and ρ∗.
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2.5 Empirical Results

In this section, we use a panel data for the 48 contiguous U.S. states in each

year between 1970 and 1986. To these data, we fit Cobb-Douglas and translog pro-

duction function to revisit the relationship between public infrastructure and private

economic performance. Details on this data set can be found in Munnell (1990). A

large body of research has explored the public-sector capital and private economic

performance relationship. Some theories support a positive and significant impact of

public capital stock on private sector output [see, e.g., Munnell (1990)]. However,

many studies believe that the public capital had negative and significant effects on

private productivity [see, e.g., Evans and Karras (1994)]. In addition, another type of

findings is that the contribution of the public infrastructure does not have quantita-

tively significant spillover effects on private sector across states [see, e.g., Holtz-Eakin

(1994), Baltagi and Pinnoi (1995)].

The following panel data model is estimated:

log(Yit) = β0 + β1log(KGi,t−2) + β2log(KPRi,t−2)

+β3log(Li,t−2) + β4UNEMi,t−2 + αi + uit

where i = 1, . . . , 48, t = 1, . . . , 17, Yit denotes the gross private nonagricultural prod-

uct of state i in period t, KG denotes public capital which includes highways and

streets, water and sewer facilities and other public buildings and structures, KPR

is the private capital stock estimated from the Bureau of Economics Analysis, L is

labor input measured as employment in nonagricultural payrolls, and UNEM stands

for the states unemployment rate, included to control for business cycle effects as in

the previous literature. Xi,t−2 is used in the regression to take into account the time

delay effects, since it takes time for the investments to be fully utilized. Fixed effects
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for each state will pick up state specific factors such as natural resources, the quality

of public infrastructure, physical characteristics of a state. Furthermore, the spillover

effects of infrastructure improvement from other states could also be included in the

state-specific effects.

In order to obtain the mean square errors (MSE) and the standard errors for these

estimates, we bootstrap the data 10000 times by resampling across individuals and

keep the time series structure for each individual unchanged. We obtain estimates

of the average elasticities and coefficients for each bootstrap data, based on which

we can calculate the bootstrap MSE and the standard errors for the above estimates.

The MSE for FE, RE and combined estimators are 4.9935e-04, 0.0141 and 3.6275e-04,

respectively.

Table 2.1 suggests that the estimated coefficients of gross private nonagricultural

product for FE estimator with respect to KG, KPR, L and UNEMP are -0.0261,

0.2920, 0.7682 and -0.0053, respectively; The estimated coefficients for RE estimator

with respect to KG, KPR, L and UNEMP are 0.0044, 0.3105, 0.7297 and -0.0062,

respectively; The estimated coefficients for the combined estimator with respect to

KG, KPR, L and UNEMP are -0.0167, 0.2977 and 0.7563, and -0.0056, respectively.

Both FE and combined estimators report that the public capital is counter productive

and insignificantly in the state private production. In contrast, the RE estimator finds

that the public capital is productive and insignificantly. Note that the Hausman

statistic is 11.7181. Thus, the null hypothesis is easily rejected at the one percent

level of significance. This indicates that there exists a huge problem of endogeneity.

In this circumstance, the FE estimator solves the problem. Thus, it would be more

appropriate to treat α as fixed. And the RE estimator seems overwhelming that

public capital has a positive impact on private sector output. The combined estimator
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β̂KG β̂KPR β̂L β̂UNEMP

FE -0.0261 0.2920 0.7682 -0.0053
(0.0210) (0.0227) (0.0239) (0.0008)

RE 0.0044 0.3105 0.7297 -0.0062
(0.0392) (0.0314) (0.0407) (0.0016)

Combined -0.0167 0.2977 0.7563 -0.0056
(0.0219) (0.0185) (0.0196) (0.0007)

Table 2.1: Economics of Private Sector Output Estimates for 48 U.S. states, 1970-
1986 (standard errors in parentheses)

result is consistent with FE estimator. Our empirical analysis is in agreement with

the findings of Holtz-Eakin (1994) and Baltagi and Pinnoi (1995) that there is no

quantitatively important spillover effects across states. The estimated ρ∗ = 0.8193,

which may also explain why the combined estimator result is closer to FE estimator

result. A careful weighting of the evidence available from state-level data indicates

that the best estimate of the elasticity of private output or productivity with respect

to state government capital is essentially zero. As a result, the combined estimator is

more reliable under this scenario. However, one should not disregard the importance

of public infrastructure based on exclusively on this evidence. More insight can be

gained by examining the results of disaggregating the model.

2.6 Conclusion

This chapter provides a combined fixed effects and random effects estimator, with

the weights depending on the Hausman statistic. We show that the combined estima-

tor has strictly smaller asymptotic risk than the fixed effects estimator. The combined

estimator also has smaller asymptotic risk compared to the random effetcs estimator

unless the endogeneity is very weak. Our simulation experiment finds that the results
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also hold for small samples. The magnitude of efficiency of the combined estimator

over random effects and fixed effects estimators varies with respect to the degree of

endogeneity and heterogeneity. In the simulation, we also discuss four combined es-

timators from combining the fixed effects and random effects estimators in the panel

data model. The results offer a typology of data set characteristics to help researchers

choose a preferred combined estimator. We use the combined estimator over fixed

effetcs and random effects to revisit the relationship between the public capital stock

and the private sector output. We confirm findings of Holtz-Eakin (1994) and Baltagi

and Pinnoi (1995) that the contribution of the public infrastructure does not have

quantitatively significant spillover effects on private sector across states. In this case,

the combined estimator gives smaller MSE and is a more reliable estimator.
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(a) n = 20, T = 3, q = 8, ρ∗ = .5
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(b) n = 100, T = 3, q = 8, ρ∗ = .5
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(c) n = 20, T = 3, q = 8, ρ∗ = .06
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(d) n = 100, T = 3, q = 8, ρ∗ = .06
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(e) n = 20, T = 3, q = 8, ρ∗ = .94
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(f) n = 100, T = 3, q = 8, ρ∗ = .94

Figure 2.1: Relative MSE of FE, RE and Combined Estimators, n = {20, 100} ,
T = 3, q = 8, ρ∗ = {.5, .06, .94}.
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(a) n = 20, T = 3, q = 4, ρ∗ = .5
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(b) n = 100, T = 3, q = 4, ρ∗ = .5
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(c) n = 20, T = 3, q = 4, ρ∗ = .06
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(d) n = 100, T = 3, q = 4, ρ∗ = .06
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(e) n = 20, T = 3, q = 4, ρ∗ = .94
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(f) n = 100, T = 3, q = 4, ρ∗ = .94

Figure 2.2: Relative MSE of FE, RE and Combined Estimators, n = {20, 100} ,
T = 3, q = 4, ρ∗ = {.5, .06, .94}.
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Figure 2.3: Relative MSE of FE, RE and Combined Estimators 3D Graph, n = 20,
T = 3, q = 8
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(b) n = 100, T = 3, q = 8, ρ∗ = .5
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(c) n = 20, T = 3, q = 8, ρ∗ = .06
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(d) n = 100, T = 3, q = 8, ρ∗ = .06

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

1.6

1.8

Degree of Endogeneity (rho)

R
e

la
ti
v
e

 M
e

d
ia

n
 S

q
u

a
re

 E
rr

o
r

 

 

(e) n = 20, T = 3, q = 8, ρ∗ = .94
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(f) n = 100, T = 3, q = 8, ρ∗ = .94

Figure 2.4: Relative MSE of Four Combined Estimators, n = {20, 100} , T = 3, q = 8,
ρ∗ = {.5, .06, .94}
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(b) n = 100, T = 3, q = 4, ρ∗ = .5
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(c) n = 20, T = 3, q = 4, ρ∗ = .06
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(d) n = 100, T = 3, q = 4, ρ∗ = .06
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(e) n = 20, T = 3, q = 4, ρ∗ = .94
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(f) n = 100, T = 3, q = 4, ρ∗ = .94

Figure 2.5: Relative MSE of Four Combined Estimators, n = {20, 100} , T = 3, q = 4,
ρ∗ = {.5, .06, .94}.
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Chapter 3

A Combined Semi-parametric

Estimator for Panel Data Model

3.1 Introduction

Semi-parametric modelling (SP) is, as its name suggests, a hybrid of the para-

metric and nonparametric approaches. The flexibility of semi-parametric modelling

has made it a widely accepted statistical technique. In this chapter, we adopt a

semi-parametric approach to modelling a general partially linear panel data model.

There is a rich literature on semi-parametric estimation of panel data, see Horowitz

and Markatou (1996), Ullah and Roy (1998) and Li and Hisao (1998), to mention

only a few. Li and Ullah(1998) discusses the partially linear panel data model with

random effects. Balagi and Li (2002), Su and Ullah (2006) consider the estimation of

the partially linear panel data models with fixed effects. If the individual effects are

correlated with the other regressors in the model, the fixed effect model is consistent

and the random effects model is inconsistent. A random effects approach involves an
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assumption that is rarely palatable, that the individual effects are uncorrelated with

the regressors. When this assumption fails, the random effects estimator is biased.

On the other hand, if the individual effects are not correlated with the other regressors

in the model, both random and fixed effects estimators are consistent and random

effects estimator is efficient. Therefore, there is a trade-off between inefficient fixed

effects estimation and biased random effects estimation.

Under this scenario, we propose a combined estimator, which is a weighted com-

bination of the SP fixed effects, and SP random effects estimators with weights de-

pending on Hausman test (1978) statistic. The parametric combined estimator can be

viewed as a special case of the semi-parametric combined estimator. The asymptotic

distribution and risk of the combined estimator are derived using a local asymp-

totic framework. We show that under certain conditions, the combined estimator

has strictly smaller risk than SP fixed effects estimator. Further, in the Monte Carlo

study we show that the combined estimator performs better than the fixed effects es-

timator, as well as compared to the random effects estimator except when the degree

of endogeneity or heterogeneity is very small. Finally, We examine the role for public

sector in affecting private sector economic performance using a panel data for the 48

contiguous U.S. states over the period 1970–1986.

The rest of this chapter is organized as follows. Section 2 presents the model and

estimators. Section 3 presents the asymptotic distribution of the combined estima-

tor. Section 4 derives the asymptotic risk of the combined estimator. Monte Carlo

simulation is provided in Section 5. Empirical example is given in Section 6. Section

7 concludes.
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3.2 The Model and Estimators

3.2.1 The Fixed Effects Estimator

Consider the following semi-parametric regression model with fixed effects (FE):

yit = xitβ +m(zit) + αi + uit, i = 1, 2, . . . , n, t = 1, 2, . . . , T (3.1)

where xit and zit are of dimensions 1 × q and 1 × p, respectively, and β is a q × 1

vector of unknown parameters, m (·) is an unknown smooth function. α′is are fixed

effects and u′its are the random disturbances. We consider the usual panel data case

of large n and small T. Hence all the asymptotics are for n → ∞ for a fixed T . In

matrix notation, (3.1) can be written as

y = Xβ +m(Z) +Dα + u

D = In ⊗ ιT is nT × n, α is n× 1, and u ∼i.i.d.(0, σ2
uInT ) .

A local linear approximation of the model (3.1) can be written as

yit ≈ xitβ +m (z) + (zit − z) ṁ (z) + αi + uit (3.2)

= xitβ + Zit (z) δ (z) + αi + uit

where Zit (z) = (1, (zit − z)) , δ (z) =
(
m (z) , (ṁ (z))′

)′
, ṁ (·) is the first derivative

of m (·) . In a vector form, we can write

y = Xβ + Z (z) δ (z) +Dα + u

where y = (y11, . . . , y1T , y21, . . . , ynT )′ , X = (x11, . . . , x1T , . . . , xn1, . . . , xnT ) and Z (z) =

(Z ′11 (z) , . . . , Z ′1T (z) , Z ′21 (z) , . . . , ZnT (z))′ .

Let K denote a kernel function on Rp and H =diag(h1, . . . , hp), a matrix of band-

width sequences. Set KH (z) = |H|−1K (H−1z) , where |H| is the determinant of H.

Further denote that
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K (H−1z) =diag(K (H−1 (z11 − z)) , . . . , K (H−1 (z1T − z)) , . . . , K (H−1 (znT − z))) .

Su and Ullah (2006) estimate δ by minimizing the following criterion function

(y −Xβ −Dα− Z (z) δ)′KH (z) (y −Xβ −Dα− Z (z) δ)

Define the smoothing operator by S (z) =
[
Z (z)′KH (z)Z (z)

]−1
Z (z)′KH (z) , then

δ (z) = S (z) (y −Dα−Xβ)

m (Z) = S (y −Xβ −Dα) (3.3)

where S = (s11, . . . , s1T , s21, . . . , snT ), and sit = s (zit) . In particular, m (z) is given

by

m (z) = s (z)′ (y −Xβ −Dα)

where s (z)′ = eS (z) , and e = (1, 0, . . . , 0) is a 1 × (p+ 1) vector. The parameter β

is then estimated by the profile likelihood method by minimizing

(y −Xβ −Dα−m (Z))′ (y −Xβ −Dα−m (Z)) (3.4)

where m (Z) = (m (z11) , . . . ,m (z1T ) , . . . ,m (znT ))′ . Plugging (3.3) into (3.4) and

using the formula for partitioned regression, we can obtain

β̂SP,FE = (X∗′Q∗X∗)
−1
X∗′Q∗y∗, (3.5)

α̂SP,FE = (D∗′D∗)
−1
D∗′y∗

where D∗ = (InT − S)D, y∗ = (InT − S) y, X∗ = (InT − S)X and Q∗ = InT −

D∗ (D∗′D∗)−1D∗′. The profile likelihood estimator for m (Z) is given by

m̂ (Z) = S
(
y −Xβ̂SP,FE −Dα̂SP,FE

)
In particular, the profile likelihood estimator for m (z) is

m̂ (z) = s (z)′
(
y −Xβ̂SP,FE −Dα̂SP,FE

)
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The asymptotic distribution of β̂SP,FE follows

√
n
(
β̂SP,FE − β

)
d→ N (0, VSP,FE)

where VSP,FE = σ2
u

(
plimX∗′Q∗X∗

n

)−1

.

3.2.2 The Random Effects Estimator

Now, we present the semi-parametric regression model with random effects (RE):

yit = xitβ +m(zit) + αi + uit, i = 1, 2, . . . , n, t = 1, 2, . . . , T (3.6)

in matrix notation, (3.6) can be written as

y = Xβ +m(Z) + v (3.7)

the error v in (3.7) follows an one-way error components structure:

v = Dα + u

where α ∼ (0, σ2
αIn) , u ∼ (0, σ2

uInT ) , v ∼ (0, Ω). The variance-covariance matrix of

v is given by Ω = σ2
uInT+σ2

αDD
′ = σ2

1P+σ2
uQ, whereQ = InT−P, P = D (D′D)−1D′,

σ2
1 = Tσ2

α + σ2
u. The inverse matrix of Ω is given by Ω−1 = 1

σ2
1
P + 1

σ2
u
Q. By taking

expectation of (3.6) conditional on zit, obtain

E (yit | zit) = E (xit | zit) β +m(zit) (3.8)

Then one can eliminate the unknown function m (·) by subtracting (3.8) from (3.6)

to get

yit − E (yit | zit) = (xit − E (xit | zit)) β + vit

In vector notation,

y − E (y | Z) = (X − E (X | Z)) β + v

y∗ = X∗β + v (3.9)
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where the conditional expectations E (y | Z) and E (X | Z) can be estimated by local

linear least squares estimators (LLLS). Therefore, y∗ and X∗ in (3.9) are

y∗ = (InT − S) y,

X∗ = (InT − S)X.

The feasible estimator of Ω̂ of Ω can be obtained by running the OLS regression y∗

on X∗. Define

σ̂2
1 =

T

n

n∑
i=1

v̂
2

i , σ̂2
u =

1

n (T − 1)

n∑
i=1

T∑
t=1

(
v̂it − v̂i

)2

where v̂ = y∗ − X∗β̂OLS is the OLS residual and β̂OLS = (X∗′X∗)−1X∗′y∗. Noting

that σ̂2
1 and σ̂2

u estimate σ̂2
α = 1

T
(σ̂2

1 − σ̂2
u) . With these estimates, one can obtain the

generalized least squares (GLS) of β based on (3.9) is

β̂SP,RE =
(
X∗′Ω̂−1X∗

)−1

X∗′Ω̂−1y∗ (3.10)

and β̂SP,RE has an asymptotic distribution as

√
n
(
β̂SP,RE − β

)
d→ N (0, VSP,RE)

where VSP,RE =
(

plimX∗′Ω−1X∗

n

)−1

.

3.2.3 The Combined Estimator

See Hausman (1978), under the RE specification, the RE estimator is the asymp-

totically efficient estimator while the FE estimator is unbiased and consistent but

not efficient. If E(αixit) 6= 0, the RE estimator is biased and inconsistent while the

FE estimator is not affected. Motivated by this observation, we would like to see if

combination of β̂SP,RE and β̂SP,FE can result in an improved estimation. We propose
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the following combined estimator of β, which is a weighted combination of β̂SP,FE

and β̂SP,RE with weights depending on Hausman statistic:

β̂SP,c = wβ̂SP,RE + (1− w)β̂SP,FE (3.11)

where

w =


τ
Hn

if Hn ≥ τ

1 if Hn < τ

Hn = (β̂SP,FE − β̂SP,RE)′V̂ (β̂SP,FE − β̂SP,RE)−1(β̂SP,FE − β̂SP,RE)

where τ is a shrinkage parameter. The degree of shrinkage depends on the ratio τ/Hn.

When Hn < τ then β̂SP,c = β̂SP,RE, When Hn ≥ τ then β̂SP,c is a weighted average of

β̂SP,RE and β̂SP,FE, with more weight on β̂SP,RE when τ/Hn is large. Alternatively, it

can be written as a positive-part James-Stein Estimator

β̂SP,c = β̂SP,RE +

(
1− τ

Hn

)+

(β̂SP,FE − β̂SP,RE)

where (b)+ = b if b > 0, and 0 if b ≤ 0.

3.3 Asymptotic Distribution

Write αi as a linear function of x̄i =
∑

t xit/T

αi = x̄iρ+ εi, (3.12)

E (x̄iεi) = 0

The variable xit is exogenous if αi and xit are uncorrelated, or equivalently that the

coefficient ρ is zero. We use the local asymptotic approach. For fixed T , ρ is local to

zero

ρ =
1√
n
δ (3.13)
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δ is a q×1 localizing parameter, which is the degree of correlation between x̄i and αi.

When δ = 0, xit are exogenous. When δ 6= 0, xit are endogenous. ρ (or δ) controls

the degree of endogeneity.

Now, we make the following assumptions:

Assumption 3.1. (αi, ui, xi, zi) , i = 1, . . . , n, are i.i.d. over i, uit is i.i.d over t,

where ui = (ui1, . . . , uiT )′ and xi and zi are similarly defined. E (uit | xit, αi) = 0 and

E (u4
it | xit, αi) <∞.

Assumption 3.2. E ‖ xit ‖2+k<∞ and E|uit|2+k <∞ for some k > 0.

Assumption 3.3. Let x∗it ≡ xit−E (xit | zit) ,
∑

t E
{
x∗it [x∗it −

∑
s x
∗
is/T ]′

}
is positive

definite.

Assumption 3.4. The kernel function K (·) is a continuous density with compact

support on Rq. All odd order moments of K vanish.

Assumption 3.5. As n → ∞, ‖ H ‖→ 0, n|H|2 → ∞, ‖ H ‖4 |H|−1 → 0 and

n|H| ‖ H ‖4→ c ∈ [0,∞), where |H| is the determinant of H.

Assumption 3.6. E ‖ xit ‖4<∞; σ2
u

(
plimX∗′Q∗X∗

n

)−1

= V2, plim
(
X∗′Ω−1X∗

n

)−1

= V1

and σ2
u

(
plim

(X∗′Q∗X∗)−1X∗′Q∗Ω−1X∗(X∗′Ω−1X∗)
−1

n

)
= V21 as n→∞.

Assumption 3.7. σ̂2
u = σ2

u + op (1), σ̂2
α = σ2

α + op (1) .

Assumption 3.1 and 3.2 are standard in the literature. Assumption 3.3 rules

out time-invariant terms xit. Assumption 3.4 are requirements that K is compactly

supported. Assumption 3.5 is easily satisfied by considering H = diag(h1, . . . , hp)

with hi ∝ n−1/(4+p), for p < 4. When p ≥ 4, higher order local polynomial can be

used to achieve bias reduction. Nevertheless, due to the ”the curse of dimensionality”,

we do not expect large p in practice.

Theorem 7 Under Assumptions 3.1-3.7,

36



√
n

(
β̂SP,RE − β
β̂SP,FE − β

)
→d h+ ξ (3.14)

where

h =

(
σ−2

1 V1X̄
∗′X̄δ

0

)
and ξ ∼ N(0, V ) with

V =

 V1 V ′21

V21 V2


Furthermore,

Hn → (h+ ξ)′B(h+ ξ) (3.15)

and

√
n
(
β̂SP,c − β

)
d→ Ψ = G′2ξ −

(
τ

(h+ ξ)′B(h+ ξ)

)
1

G′ (h+ ξ) (3.16)

where X̄ = (x̄1, . . . , x̄q) , X̄
∗ =

(
x̄∗1, . . . , x̄

∗
q

)
. B = G (V1 + V2 − (V21 + V ′21))−1G′,

G =

(
−I I

)′
, G2 =

(
0 I

)′
, and (a)1 = min[1, a] .

Theorem 7 presents the joint asymptotic distribution of β̂SP,RE and β̂SP,FE, the Haus-

man statistic, and β̂SP,c under the local exogeneity assumption. The joint asymptotic

distribution of β̂SP,RE and β̂SP,FE is normal. β̂SP,RE has an asymptotic bias when

δ 6= 0 but not β̂SP,FE. The Hausman statistic has an asymptotic non-central chi-

square distribution, with non-centrality parameter h depending on the local endo-

geneity parameter δ. The asymptotic distribution of β̂SP,c is a nonlinear function of

the normal random vector and a function of the noncentrality parameter h.
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3.4 Asymptotic Risk

The asymptotic risk of any sequence of estimators βn of β is defined as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)′W (βn − β)

]
= R (βn)

so long as the estimator has an asymptotic distribution

√
n (βn − β)

d→ ψ

for some random variable ψ. The asymptotic risk can be calculated using

R (βn) = E (ψ′Wψ) = tr (WE (ψψ′)) (3.17)

Define the largest eigenvalue of the matrix A+A′

2
and A∗+A∗′

2

λ1 = λmax

(
A+ A′

2

)
λ∗1 = λmax

(
A∗ + A∗′

2

)
where

A = (V1 + V2 − (V21 + V ′21))
1
2 W (V2 − V21) (V1 + V2 − (V21 + V ′21))

− 1
2 ,

A∗ = (V1 + V2 − (V21 + V ′21))
1
2 W (V1 + V2 − (V21 + V ′21))

1
2 .

Let

d =
tr (W (V2 − V21))

λ1

.

Theorem 8 Under Assumptions 3.1-3.7, if

d > 2 (3.18)

and

0 < τ ≤ 2λ1 (d− 2)

λ∗1
, (3.19)
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then R
(
β̂SP,c

)
=tr[WE (ΨΨ′)] ,

R
(
β̂SP,FE

)
= tr (WV2) ,

and

R
(
β̂SP,c

)
< R

(
β̂SP,FE

)
− τ (2λ1 (d− 2)− λ∗1τ)

σ−4
1 δ′X̄ ′X̄∗V1 (V1 + V2 − (V21 + V ′21))−1 V1X̄∗′X̄δ + q

.

(3.20)

Equation (3.20) shows that the asymptotic risk of β̂SP,c is strictly less than that of

β̂SP,FE, so long as τ satisfies the condition (3.19). The assumption d > 2 is the critical

condition needed to ensure that β̂SP,c can have smaller asymptotic risk than that of

β̂SP,FE. It is necessary in order for the right-hand-side of (3.19) to be positive, which

is necessary for the existence of τ satisfying (3.19). τ appears in the risk bound (3.20)

as a quadratic expression, so there is an optimal choice τ ∗ = tr(W (V2−V21))−2λ1
λ∗1

which

minimizes this bound.

Corollary 9 R
(
β̂SP,c

)
− R

(
β̂SP,FE

)
< 0, for d > 2 and 0 < τ ≤ 2λ1(d−2)

λ∗1
. When

W = (V2 − V21)−1 , 0 < τ ≤ 2
(
q−2
λ∗1

)
and q > 2, which is Stein’s (1956) classic

condition for shrinkage.

Corollary 10 R
(
β̂SP,RE

)
=tr(WV1) + σ−4

1 δ′X̄ ′X̄∗V1WV1X̄
∗′X̄δ;

R
(
β̂SP,RE

)
≤ R

(
β̂SP,FE

)
when σ−4

1 δ′X̄ ′X̄∗V1WV1X̄
∗′X̄δ ≤ q, and R

(
β̂SP,RE

)
>

R
(
β̂SP,FE

)
otherwise.

The result in Corollary 10 indicates that when endogeneity is weak (ρ and hence δ is

close to zero), β̂SP,RE may perform better than β̂SP,FE.

Corollary 11 R
(
β̂SP,c

)
−R

(
β̂SP,RE

)
< 0, for q < σ−4

1 δ′X̄ ′X̄∗V1WV1X̄
∗′X̄δ, d > 2,

and 0 < τ ≤ 2λ1(d−2)
λ∗1

.
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The result in Corollary 11 indicates that when endogeneity is strong, d > 2, 0 < τ ≤
2λ1(d−2)

λ∗1
, β̂SP,c performs best among these three estimators.

Remark 12 If the weight w is non-stochastic, we can obtain the asymptotic optimal

w by minimizing

w2R
(
β̂SP,RE

)
+ (1− w)2R

(
β̂SP,FE

)
+ 2w (1− w)E

((
β̂SP,RE − β

)′
W
(
β̂FE − β

))
w∗ is given by

w∗ = tr (V2 − V21) /
(
tr (V1 + V2 − (V21 + V ′21)) + σ−4

1 δ′X̄ ′X̄∗V1WV1X̄
∗′X̄δ

)
which depends on the localizing parameter δ.

Remark 13 A parametric combined estimator can be viewed as a special case of the

semi-parametric combined estimator.

Write (3.2) as

yit ≈ xitβ + α (z) + zitṁ (z) + αi + uit

= xitβ + Zδ (z) + αi + uit

where α (z) = m (z) − zṁ (z) , Z = (1, zit) , δ (z) =
(
α (z) , (ṁ (z))′

)′
. As h →

∞, the weighted function KH (z) → K (0) and local minimization becomes global

minimization:

(y −Xβ −Dα− Zδ)′ (y −Xβ −Dα− Zδ)

In this case, dropping Z or assuming it is in X, one can obtain the combined estimator

for the parametric model as

β̂SP,c = wβ̂SP,RE + (1− w)β̂SP,FE
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where β̂FE = (X ′QX)−1X ′Qy, β̂RE =
(
X ′Ω̂−1X

)−1

X ′Ω̂−1y. Noting that if Z is

included in regression, the only difference is that X will be replaced by MX and y

will be replaced by My where M is the same as Q but based on Z.

The properties of the combined FE and RE estimator for the parametric panel

data model were discussed in Huang (2015) and Wang et al. (2016).

3.5 Monte Carlo Simulation

The observations are generated by the progress

yit = xitβ +m (zit) + αi + uit

αi = ρ
√
T x̄i

ι
√
q

+
√

1− ρ2 εi

{xit, uit} are i.i.d N (0, Iq+1) across i, t. εi are i.i.d N (0, 1) independent of {xit, uit}.

Var(αi) = 1. The distribution are invariant to β so we set it to zero, β = 0. And set

m (z) = 2z + e−4(z−0.5)2 − 1.

Vary n = {20, 100} , T = 3, q = {4, 8} , and ρ on a 40-point grid on [0, 0.975] . ρ

controls the degree of endogeneity, ranging in (0, 1) (ρ = 0 is the case of exogenous

regressors; large ρ is the case of strong endogeneity). We also set
√
θ = σα

σu
∈
{

1
4
, 1, 4

}
so ρ∗ = θ

1+θ
= {.06, .05, .94} . ρ∗ (0 ≤ ρ∗ ≤ 1) controls the degree of heterogeneity

which is the temporal correlation between αi + uit and αi + uit′ .

Generated 100,000 samples on each calculated β̂SP,RE, β̂SP,FE, β̂SP,c. To compare

the estimators, calculate the median squared error (MSE) of each estimator and plot

the relative median square error, that is

median

[(
β̂ − β

)′ (
β̂ − β

)]
median

[(
β̂SP,FE − β

)′ (
β̂SP,FE − β

)]
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Thus value less than one indicate improved precision relative to FE estimator, and

values greater than one indicate worse performance, larger MSE than FE estimator.

The MSE is symmetric with respect to ρ, so we only report the results with ρ between

0 and 1.

Figure 3.1 is the case q = 8, and Figure 3.2 is the case q = 4. The 6 plots in figure

3.2 look similar to the plots in Figure 1. By contrasting Figure 3.1 and 3.2, we can

see that the improvement in the combined estimator over FE estimator with different

values of ρ∗ are greater in the cases of larger number of regressors.

Figure 3.1(a), 3.1(c), 3.1(e) are the cases n = 20, and Figure 3.1(b), 3.1(d), 3.1(f)

are the cases n = 100. The region of dominance for the combined estimator over FE

estimator is greater for small n.

Consider the case of eight endogenous regressors. Figure 3.1(a) and Figure 3.1(b)

are the cases ρ∗ = 0.5. For small ρ the RE estimator has lower MSE than the combined

estimator, but the ranking is reversed for larger values of ρ. Figure 3.1(c) and Figure

3.1(d) are the cases ρ∗ = 0.06. The MSE of the RE estimator is smaller than that

of the combined estimator for all the values of ρ when n = 20 in Figure 3.1(c). The

combined estimator has smaller MSE than that of the RE estimator when n = 100 in

Figure 3.1(d). The MSE of the RE and combined estimators are uniformly smaller

than that of the FE estimator. Figure 3.1(e) and Figure 3.1(f) are the cases ρ∗ = 0.94.

The FE and the combined estimators are near equivalents. RE has similar MSE to

FE and combined estimators for small ρ, but the MSE of RE estimator increases

dramatically after intermediate values of ρ.

Generally, the dominance for combined estimator over FE estimator is greater for

small sample size. For very small ρ∗, RE estimator performs better than both FE and

combined estimators except when n and ρ are large. For moderate ρ∗ and larger ρ, the
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combined estimator performs better than RE estimator, but for very small ρ it can be

beaten by RE estimator. For very large ρ∗ and very small ρ, the combined estimator

is close to both RE and FE estimators, while both combined and FE estimators have

smaller risk than RE estimator for larger values of ρ. In summary, the simulation

results provide strong finite sample confirmation of Theorem 8.

3.6 Empirical Results

In this section, we employ the same data set as chapter one to reexamine the rela-

tionship between public-sector capital accumulation and private sector productivity.

We consider the following semi-parametric panel data model:

log(Yit) = β0 + β1log(KGi,t−2) + β2log(KPRi,t−2)

+β3log(Li,t−2) +m (UNEMi,t−2) + αi + uit

where i = 1, . . . , 48, t = 1, . . . , 17.

As before, in order to obtain the mean square errors (MSE) and the standard

errors for these estimates, we bootstrap the data 10000 times by resampling across

individuals and keep the time series structure for each individual unchanged. We

obtain estimates of the average elasticities and coefficients for each bootstrap data,

based on which we can calculate the bootstrap MSE and the standard errors for the

above estimates. The MSE for FE, RE and combined estimators are 0.0148, 0.0133

and 0.0122, respectively. In order to obtain these results, we use the Gaussian kernel

and choose the bandwidth ofm (UNEM) according to leave-one-out Cross-validation.

Table 3.1 suggests that the elasticities of gross private nonagricultural product

for FE estimator with respect to KG, KPR, and L are -0.0207, 0.3501 and 0.5237,
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β̂KG β̂KPR β̂L
FE -0.0207 0.3501 0.5237

(0.0379) (0.0308) (0.0317)
RE 0.0773 0.2440 0.5798

(0.0435) (0.0290) (0.0383)
Combined -0.0166 0.3480 0.5249

(0.0378) (0.0305) (0.0313)

Table 3.1: Economics of Private Sector Output SP Estimates for 48 U.S. states,
1970-1986 (standard errors in parentheses)

respectively; The elasticities for RE estimator with respect to KG, KPR, and L are

0.0773, 0.2440 and 0.5798, respectively; The elasticities for the combined estimator

with respect to KG, KPR, and L are -0.0166, 0.3480 and 0.5249, respectively. Both

FE and combined estimators report that the public capital is counter productive and

insignificantly in the state private production. In contrast, the RE estimator finds

that the public capital is productive and insignificantly. Note that the Hausman

statistic is 48.9985. Thus, the null hypothesis is easily rejected at the one percent

level of significance. This indicates that there exists a huge problem of endogeneity.

In this circumstance, the FE estimator solves the problem. Thus, it would be more

appropriate to treat α as fixed. And the RE estimator seems overwhelming that

public capital has a positive impact on private sector output. The combined estimator

result is consistent with FE estimator. Our empirical analysis is in agreement with

the findings of Holtz-Eakin (1994) and Baltagi and Pinnoi (1995) that there is no

quantitatively important spillover effects across states. The estimated ρ∗ = 0.6486,

which may also explain why the combined estimator result is closer to FE estimator.

As a result, the combined estimator is more reliable under this scenario. Thus we

conclude that the public sector output has an insignificant effect on the private sector
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productivity.

3.7 Conclusion

This chapter provides a combined fixed effects and random effects estimator, with

the weights depending on the Hausman statistic for the semi-parametric panel data

model. We show that the combined estimator has strictly smaller asymptotic risk than

the fixed effects estimator. The combined estimator also has smaller asymptotic risk

compared to the random effetcs estimator unless the endogeneity is very weak. Our

simulation result shows that the combined estimator can reduce finite sample MSE

relative to the fixed effects estimator for all degrees of endogeneity and heterogeneity,

as well as relative to the random effects estimator for moderate to large degrees of

endogeneity and heterogeneity. We use the combined estimator to reexamine the

role of public capital stock in the private sector output. We confirm the findings of

Holtz-Eakin (1994) and Baltagi and Pinnoi (1995) that the public infrastructure has

insignificant effects on private sector across states. Based on the empirical results,

the combined estimator gives smaller MSE than both fixed effects and random effetcs

estimators.
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(a) n = 20, T = 3, q = 8, ρ∗ = .5
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(b) n = 100, T = 3, q = 8, ρ∗ = .5
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(c) n = 20, T = 3, q = 8, ρ∗ = .06
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(d) n = 100, T = 3, q = 8, ρ∗ = .06
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(e) n = 20, T = 3, q = 8, ρ∗ = .94
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(f) n = 100, T = 3, q = 8, ρ∗ = .94

Figure 3.1: Relative MSE of SPFE, SPRE and SP Combined Estimators, n =
{20, 100} , T = 3, q = 8, ρ∗ = {.5, .06, .94}
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(a) n = 20, T = 3, q = 4, ρ∗ = .5
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(b) n = 100, T = 3, q = 4, ρ∗ = .5
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(c) n = 20, T = 3, q = 4, ρ∗ = .06

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

Degree of Endogeneity (rho)

R
e

la
ti
v
e

 M
e

d
ia

n
 S

q
u

a
re

 E
rr

o
r

 

 

(d) n = 100, T = 3, q = 4, ρ∗ = .06
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(e) n = 20, T = 3, q = 4, ρ∗ = .94
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(f) n = 100, T = 3, q = 4, ρ∗ = .94

Figure 3.2: Relative MSE of SPFE, SPRE and SP Combined Estimators, n =
{20, 100} , T = 3, q = 4, ρ∗ = {.5, .06, .94}
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Chapter 4

Combined Estimators for Structral

Panel Data Model

4.1 Introduction

In a panel data model, the fixed effects estimator helps us to resolve the en-

dogeneity issues that arise because of the correlated unobserved effects. However,

endogeneity issues may also arise due to a nonzero correlation between explanatory

variables and idiosyncratic errors. In the presence of such correlations, both fixed ef-

fects (FE) and random effects (RE) estimators yield biased and inconsistent estimates

of the parameter. The resulting biases can not be removed via differencing estimation.

The traditional technique to overcome this problem is to find instruments for those

explanatory variables which are potentially correlated with idiosyncratic errors. For

example see Hausman and Taylor (1981), Amemiya and MaCurdy (1986) and Breusch

et al. (1989). These papers consider the application of instrumental-variable proce-

dures to estimate the parameters of the model with endogenous regressors, with the
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error structure implied by random effects. And see Baltagi (2008) for the commonly

used fixed effects 2SLS estimator.

It is well known that the finite sample properties of the 2SLS estimator are often

problematic. Thus, most of the justification for the use of 2SLS estimator is asymp-

totic. Its performance in small samples may be poor. The precision of 2SLS estimates

is lower than that of individual effects estimates. In the presence of weak instruments,

the loss of precision will be severe, and 2SLS estimates may be no improvement over

the individual effects estimators.

In this chapter we propose two combined estimators, which are weighted average

of FE and FE-2SLS estimators, and weighted average of RE and RE-2SLS estimators

with the weights depending on Hausman (1978) statistic. The asymptotic distribution

and risk of the combined estimators are derived using a local asymptotic framework.

We show that under certain conditions, the combined FE and FE-2SLS estimator has

strictly smaller risk than the FE-2SLS estimator, and the combined RE and RE-2SLS

estimator has strictly smaller risk than the RE-2SLS estimator. Further, in the Monte

Carlo study we show that the combined estimators uniformly dominate the individual

effects estimators for all degrees of endogeneity. The combined estimators are also

better than the individual effects estimators except when the degree of endogeneity

is very small, or when both very small sample size and very weak instruments are

satisfied. Finally, to show the applicability of the combined estimator, we use a panel

data on 90 counties in North Carolina over the period 1981–1987 to revisit the effect

of police on crime.

The remainder of this chapter is organized as follows. Section 2 presents the

model and estimators. Section 3 presents the asymptotic distribution of the combined

estimators. Section 4 derives the asymptotic risk of the combined estimator. Monte
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Carlo simulation is provided in Section 5. Section 6 is an empirical study. Section 7

concludes.

4.2 The Model and Estimators

4.2.1 The Fixed Effects and Random Effects Estimators

Consider the following panel regression model with fixed effects:

yit = xitβ + αi + uit, i = 1, 2, . . . , n, t = 1, 2, . . . , T

where xit is 1× q, and β is a q×1 vector of unknown parameters. α′is are fixed effects

and u′its are the random disturbances. In matrix notation, eq(1) can be written as

y = Xβ +Dα + u (4.1)

D = In⊗ιT is nT×n where ιT is a vector of ones, α is n×1, and u ∼ (0, σ2
uInT ) . Pre-

multiplying the model (4.1) by Q and performing OLS on the resulting transformed

model:

Qy = QXβ +QDα +Qu (4.2)

The β̂FE can be obtained as

β̂FE = (X ′QX)
−1
X ′Qy

where Q = InT −D (D′D)−1D′, and β̂FE has an asymptotic distribution as

√
n
(
β̂FE − β

)
d→ N (0, V1)

where V1 = σ2
u

(
plimX′QX

n

)−1

.
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The alternative specification for the panel data model is known as the random

effects model, which assumes that αi is drawn from an i.i.d. distribution (0, σ2
α) , and

is uncorrelated both with uit and with the xit. Then

yit = xitβ + vit, vit = αi + uit (4.3)

In matrix notation, (4.3) can be written as

y = Xβ + v, v = Dα + u (4.4)

and the variance-covariance matrix is given by Ω = σ2
uInT + σ2

αDD
′ = σ2

1P + σ2
uQ,

where σ2
1 = Tσ2

α + σ2
u, P = D (D′D)−1D′. The inverse matrix of Ω is given by

Ω−1 = 1
σ2
1
P + 1

σ2
u
Q. The β̂RE based on (4.4) is

β̂RE =
(
X ′Ω−1X

)−1
X ′Ω−1y,

and β̂RE has an asymptotic distribution as

√
n
(
β̂RE − β

)
d→ N (0, V3)

where V3 =
(

plimX′Ω−1X
n

)−1

.

4.2.2 The Fixed Effects 2SLS and Random Effects 2SLS Es-

timators

Now, allow for the possible correlation between uit and xit. The vector xit is treated

as endogenous. Performing 2SLS on (4.2) with QZ as the set of instruments

Z ′QQy = Z ′QQXβ + Z ′QQu,

one gets the FE-2SLS estimator

β̂FE,2SLS = (X ′HZX)
−1
X ′HZy (4.5)
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where HZ = QZ (Z ′QZ)−1 Z ′Q. The asymptotic distribution of β̂FE,2SLS follows

√
n
(
β̂FE,2SLS − β

)
d→ N (0, V2)

where V2 = σ2
u

(
lim X′HZX

n

)−1

.

One can also perform 2SLS on (4.4) with Ω−
1
2Z as the set of instruments for

Ω−
1
2X,

Z ′Ω−
1
2 Ω−

1
2y = Z ′Ω−

1
2 Ω−

1
2Xβ + Z ′Ω−

1
2 Ω−

1
2u,

and obtain the RE-2SLS estimator

β̂RE,2SLS = (X ′RZX)
−1
X ′RZy (4.6)

whereRZ = Ω−1Z (Z ′Ω−1Z)
−1
Z ′Ω−1. The asymptotic distribution of β̂RE,2SLS follows

√
n
(
β̂RE,2SLS − β

)
d→ N (0, V4)

where V4 =
(

lim X′RZX
n

)−1

.

The FE-2SLS estimator is preferred to the FE estimator as it is consistent under

endogeneity, while the FE estimator is inconsistent. However in small samples, the

FE-2SLS estimator can have much larger variance so the FE estimator have better

precision. Motivated by this observation, we propose the following combined estima-

tors of β, which is weighted average of FE and FE-2SLS estimators with the weights

depending on Hausman statistic

β̂c,FE = wβ̂FE + (1− w)β̂FE,2SLS (4.7)

where

w =


τ
Hn

if Hn ≥ τ

1 if Hn < τ

Hn = (β̂FE,2SLS − β̂FE)′
(
V̂FE,2SLS − V̂FE

)−1

(β̂FE,2SLS − β̂FE)
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Similarly, the RE-2SLS estimator is consistent under endogeneity, while the RE es-

timator is inconsistent. However in the presence of weak instruments, the loss of

precision will be severe, and the RE-2SLS estimates may be no improvement over the

RE estimator. In view of this, we also propose the following weighted average of RE

and RE-2SLS estimators:

β̂c,RE = w∗β̂RE + (1− w∗)β̂RE,2SLS (4.8)

where

w∗ =


τ∗

H∗n
if H∗n ≥ τ ∗

1 if H∗n < τ ∗

H∗n = (β̂RE,2SLS − β̂RE)′
(
V̂RE,2SLS − V̂RE

)−1

(β̂RE,2SLS − β̂RE)

where τ is a shrinkage parameter. The degree of shrinkage depends on the ratio τ/Hn.

4.3 Asymptotic Distribution

First, write the reduced form equation for the endogenous variable xit as

xit = Π′zit + eit (4.9)

E (eitzit) = 0

Second, write the structural equation error as a linear function of the reduced form

error and an orthogonal error

uit = eitρ+ εit (4.10)

E (eitεit) = 0
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The variable xit is exogenous if uit and eit are uncorrelated, or equivalently that the

coefficient ρ is zero. We use the local asymptotic approach. For fixed T , ρ is local to

zero

ρ =
1√
n
δ (4.11)

δ is a q × 1 localizing parameter, which indexes the degree of correlation between uit

and eit. When δ = 0, xit are exogenous. When δ 6= 0. xit are endogenous. ρ (or δ)

controls the degree of endogeneity.

Now, we make the following assumptions:

Assumption 4.1. (xi, αi, ui) are i.i.d over i, uit is i.i.d over t, E (uit | xit, αi) = 0

and E (u4
it | xit, αi) <∞, E (εit | eit)4 <∞.

Assumption 4.2. E ‖ xit ‖2+k<∞ and E|uit|2+k <∞ for some k > 0.

Assumption 4.3. E ‖ xit ‖4<∞, E ‖ zit ‖4<∞, E ‖ eit ‖4<∞; σ2
u

(
p lim X′QX

n

)−1

=

V1, σ
2
u

(
p lim X′HZX

n

)−1

= V2,
(
p lim X′Ω−1X

n

)−1

= V3, and
(

lim X′RZX
n

)−1

= V4, as

n→∞.

Assumption 4.4. σ̂2
u = σ2

u + op (1), σ̂2
α = σ2

α + op (1) .

Assumption 4.5. rank(Π) = q.

Assumption 4.1-4.3 specify that the variables have finite fourth moments, so that

central limit theory applies. Assumption 5 is the rank condition on Π to ensure that

the coefficient β is identified.

Set Σ = E (eite
′
it) .

Theorem 14 Under Assumptions 4.1-4.5,

√
n

(
β̂FE − β

β̂FE,2SLS − β

)
d→ h+ ξ (4.12)
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where

h =

(
σ−2
u V1tr (QΣ) δ

0

)
ξ ∼ N(0, V ) with

V =

 V1 V1

V1 V2


Furthermore,

Hn → (h+ ξ)′B(h+ ξ) (4.13)

√
n
(
β̂c − β

)
d→ Ψ = G′2ξ −

(
τ

(h+ ξ)′B(h+ ξ)

)
1

G′ (h+ ξ) (4.14)

where B = G (V2 − V1)−1G′. And

√
n

(
β̂RE − β

β̂RE,2SLS − β

)
d→ h∗ + ξ∗ (4.15)

where

h∗ =

(
V3tr (Ω−1Σ) δ

0

)
ξ∗ ∼ N(0, V ∗) with

V ∗ =

 V3 V3

V3 V4


Furthermore,

H∗n → (h∗ + ξ∗)′B∗(h∗ + ξ∗) (4.16)

√
n
(
β̂∗c − β

)
d→ Ψ∗ = G′2ξ

∗ −
(

τ

(h∗ + ξ∗)′B∗(h∗ + ξ∗)

)
1

G′ (h∗ + ξ∗) (4.17)

where B∗ = G (V4 − V3)−1G′, G =

(
−I I

)′
, G2 =

(
0 I

)′
, and (a)1 = min

[1, a] .

Theorem 14 gives expression for the joint asymptotic distribution of β̂FE and β̂FE,2SLS

estimators, the joint asymptotic distribution of β̂RE and β̂FE,2SLS estimators, the
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Hausman statistic, and the two combined estimators under the local exogeneity as-

sumption. The joint asymptotic distributions are normal. β̂FE and β̂RE have asymp-

totic bias when δ 6= 0 but not the β̂FE,2SLS and β̂RE,2SLS estimators. The Hausman

statistic controls the weight and thus the degree of shrinkage. It is an asymptotic

non-central chi-square random variable with non-centrality parameter depending on

the local endogeneity parameter δ. The asymptotic distributions of the combined

estimators are nonlinear functions of the normal random vector and functions of the

noncentrality parameter. β̂c is written as random weight average of the asymptotic

distributions of β̂FE and β̂FE,2SLS, and β̂∗c is random weight average of the asymptotic

distributions of β̂RE and β̂RE,2SLS.

4.4 Asymptotic Risk

The asymptotic risk of any sequence of estimators βn of β is defined as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)′W (βn − β)

]
= R (βn)

so long as the estimator has an asymptotic distribution

√
n (βn − β)

d→ ψ

for some random variable ψ. The asymptotic risk can be calculated using

R (βn) = E (ψ′Wψ) = tr (WE (ψψ′)) (4.18)

This shows that for such estimators and loss function only the local properties of the

loss function affect the asymptotic risk.

Define the largest eigenvalue of the matrix W (V2 − V1) and W (V4 − V3)

λ1 = λmax (W (V2 − V1))

λ∗1 = λmax (W (V4 − V3))
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and the ratio

d =
tr (W (V2 − V1))

λ1

d∗ =
tr (W (V4 − V3))

λ∗1
.

Theorem 15 Under Assumptions 4.1-4.5, if

d > 2 and 0 < τ ≤ 2 (d− 2) , (4.19)

then

R
(
β̂FE,2SLS

)
= tr (WV2) ,

R
(
β̂c

)
< R

(
β̂FE,2SLS

)
− τλ1 (2 (d− 2)− τ)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

.(4.20)

and if

d∗ > 2 and 0 < τ ∗ ≤ 2 (d∗ − 2) , (4.21)

then

R
(
β̂RE,2SLS

)
= tr (WV4) ,

R
(
β̂∗c

)
< R

(
β̂RE,2SLS

)
− τ ∗λ∗1 (2 (d∗ − 2)− τ ∗)
δ′tr (Ω−1Σ)V3 (V4 − V3)−1 V3tr (Ω−1Σ) δ + q

.(4.22)

Equation (4.20) shows that the asymptotic risk of the combined FE and FE-2SLS

estimator is strictly less than that of the FE-2SLS estimator, so long as the shrinkage

parameter τ satisfies the condition (4.19). The assumption d > 2 is necessary in order

for the right-hand-side of the inequality equation in (4.19) to be positive, which is

necessary for the existence of τ . Similarly equation (4.22) shows that the combined

RE and RE-2SLS estimator has strictly smaller risk than the RE-2SLS estimator, so

long as τ ∗ satisfies the condition (4.21).
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τ appears in the risk bound (4.20) as a quadratic expression, so there is an optimal

choice τopt = tr(W (V2−V1))
λ1

−2 which minimizes this bound. Similarly, an optimal choice

τ ∗opt = tr(W (V4−V3))
λ∗1

− 2 will minimize the risk bound (4.22).

In the special case W = (V2 − V1)−1 , we find that condition (4.19) simplifies to

q > 2 and 0 < τ ≤ 2 (q − 2). Similarly, in the case W = (V4 − V3)−1 , condition (4.21)

simplifies to q > 2 and 0 < τ ∗ ≤ 2 (q − 2) . The assumption q > 2 is Stein’s (1956)

classic condition for shrinkage. Stein (1956) shows that the shrinkage dimension

must exceed 2 in order for shrinkage to achieve global reductions in risk relative to

unrestricted estimation.

Corollary 16 If d > 2 and 0 < τ ≤ 2 (d− 2) , R
(
β̂c

)
−R

(
β̂FE,2SLS

)
< 0; If d∗ > 2

and 0 < τ ∗ ≤ 2 (d∗ − 2) , R
(
β̂∗c

)
−R

(
β̂RE,2SLS

)
< 0.

Corollary 17 Under the local exogeneity assumption,

R
(
β̂FE

)
= tr (WV1) + σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ

R
(
β̂RE

)
= tr (WV3) + δ′tr

(
Ω−1Σ

)
V3 (V4 − V3)−1 V3tr

(
Ω−1Σ

)
δ,

and 
R
(
β̂FE

)
≤ R

(
β̂FE,2SLS

)
if σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ ≤ q

R
(
β̂FE

)
> R

(
β̂FE,2SLS

)
if otherwise.

R
(
β̂RE

)
≤ R

(
β̂RE,2SLS

)
if δ′tr (Ω−1Σ)V3 (V4 − V3)−1 V3tr (Ω−1Σ) δ ≤ q

R
(
β̂RE

)
> R

(
β̂RE,2SLS

)
if otherwise.

Corollary 17 indicates that when endogeneity is weak (ρ and hence δ is close to zero)

the FE estimator may perform better than the FE-2SLS estimator, the RE estimator

may perform better than the RE-2SLS estimator as well.
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Corollary 18 If q < σ−4
u δ′tr (QΣ)V1WV1tr (QΣ) δ, d > 2, 0 < τ ≤ 2 (d− 2) ,

R
(
β̂c

)
− R

(
β̂FE

)
< 0; If q < δ′tr (Ω−1Σ)V3 (V4 − V3)−1 V3tr (Ω−1Σ) δ, d∗ > 2,

0 < τ ∗ ≤ 2 (d∗ − 2), R
(
β̂∗c

)
−R

(
β̂RE

)
< 0.

Corollary 18 indicates that when endogeneity is strong, d > 2, 0 < τ ≤ 2 (d− 2) ,

the combined FE and FE-2SLS estimator performs better than both the FE and

FE-2SLS estimators. Similarly, the combined RE and RE-2SLS estimator performs

better than both the RE and RE-2SLS estimators when endogeneity is strong, d∗ > 2,

0 < τ ∗ ≤ 2 (d∗ − 2) .

Remark 19 If the weight w in FE case is non-stochastic, we can obtain the asymp-

totic optimal w by minimizing

w2R
(
β̂FE

)
+(1− w)2R

(
β̂FE,2SLS

)
+w (1− w)E

((
β̂FE − β

)′
W
(
β̂FE,2SLS − β

))
w is given by

w = tr (V2 − V1) /
(
tr (V2 − V1) + σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ
)

which depends on the localizing parameter δ.

Similarly, if the weight w∗ in RE case is non-stochastic, the asymptotic optimal

w∗ is

w∗ = tr (V4 − V3) /
(
tr (V4 − V3) + δ′tr

(
Ω−1Σ

)
V3 (V4 − V3)−1 V3tr

(
Ω−1Σ

)
δ
)

Remark 20 If part of regressors are treated as endogenous, consider the following

structural equation of a panel data model:

y = Zδ +Dα + u (4.23)

where Z = [Y1, X1] and δ = [γ, β] . Y1 is the set of m right-hand side endogenous

variables, and X1 is the set of q1 included exogenous variables. Let X = (X1, X2)
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be the set of all exogenous variables. This equation is identified with q2 the number of

excluded exogenous variables from the equation (X2) being larger than or equal to m.

In this case, one can use QX as the set of instruments to get the FE-2SLS estimator

as

β̂FE−2SLS = (Z ′HZZ)
−1
Z ′HZy

with HZ = QX (X ′QX)−1X ′Q. Alternatively, one can use Ω−
1
2X as the set of in-

struments to get the RE-2SLS estimator in this case as

β̂RE−2SLS = (Z ′RZZ)
−1
Z ′RZy

with RZ = Ω−1X (X ′Ω−1X)
−1
X ′Ω−1.

4.5 Monte Carlo Simulation

Our simulation experiment uses a design similar to Hansen (2014). The observa-

tions are generated by the progress

yit = xitβ + αi + uit

xit = Πzit + eit

uit = ρeit
ι
√
q

+
√

1− ρ2 εit

The zit, uit, and reduced form errors eit are all i.i.d N (0, 1) across i, t, with the error

uit and eit having correlation ρ√
q
, but all other correlation zero. αi are i.i.d N (0, 1)

independent of {xit, uit}.

The results are not quantitatively sensitive to the value of β, so we set it to

zero. We also set the q × q reduced form matrix as Π = Iqd and the scale d set as

d =
√
R2/ (1−R2), so that R2 is the reduced form population R2. Note that we set

the dimension of zit equal to that of xit.
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We vary n = {20, 100} , T = 3, q = {3, 6} , R2 = {0.1, 0.4} and ρ on a 40-point

grid on [0, 0.975] . The parameter R2 controls the strength of the instruments (small

R2 is the case of weak instruments; large R2 is the case of strong instruments) and

the parameter ρ controls the degree of endogeneity, ranging in (0, 1) (ρ = 0 is the

case of exogenous regressors; large ρ is the case of strong endogeneity).

We generated 50,000 samples on each calculated β̂FE, β̂FE,2SLS, β̂c,FE, β̂RE, β̂RE,2SLS,

β̂c,RE. To compare the estimators we calculate the median squared error of each es-

timator, that is

R
(
β̂
)

= median

((
β̂ − β

)′ (
β̂ − β

))
We present the results graphically. Figure 4.1 and 4.2 is the FE case, and Figure

4.3 and 4.4 is the RE case. The Figure 4.1 and 4.3, Figure 4.2 and 4.4 are remark-

ably similar across the choices {n, q, R2} . All the plots show that the MSE of the

combined estimators are uniformly smaller than that of the 2SLS estimator.

Consider the case of FE. Figure 4.1 are the cases q = 3, and Figure 4.2 are the

cases q = 6. By contrasting the four plots in Figure 4.1 and the plots in Figure 4.2,

we can see that they look similar, and the improvement in the combined estimator

over FE-2SLS estimator with different values of ρ are greater in the cases of larger q.

Figure 4.1(a), 4.1(c), 4.2(a), 4.2(c) are the cases n = 20, and Figure 4.1(b), 4.1(d),

4.2(b), 4.2(d) the cases n = 100. The reductions in MSE are much greater for the

smaller values of n. Figure 4.1(a), 4.1(b), 4.2(a), 4.2(b) are the cases R2 = 0.4, and

Figure 4.1(c), 4.1(d), 4.2(c), 4.2(d) are the cases R2 = 0.1. The region of dominance

for the combined estimator over FE-2SLS estimator is greater for weak instruments.

Figure 4.2(b) plots the MSE for n = 20, q = 6, R2 = 0.4. The figure shows that

the combined estimator has much lower MSE than FE-2SLS estimator, regardless of

the degree of the endogeneity. For small ρ the FE estimator has lower MSE than the
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combined estimator, but the ranking is reversed for larger value of ρ. Figure 4.2(d)

plots the MSE for n = 100, q = 6, R2 = 0.1. This is the case of a large sample and

with weak identification. In this picture we again see that the combined estimator has

uniformly smaller MSE than FE-2SLS estimator, with the MSE converging to that of

FE-2SLS as ρ increases towards 1. The FE estimator achieves some reduction in MSE

relative to FE-2SLS and combined estimators for small values of ρ, but has higher

MSE for moderate values of ρ. Figure 1-6 plots the MSE for n = 100, q = 6, R2 = 0.4.

The general nature of the plot is the same, except that the gain from the combined

estimator is not as strong as in the weak instruments case. Figure 4.2(c) plots the

MSE for n = 20, q = 6, R2 = 0.1. This is the case of a small sample and with weak

identification. The reduction in risk achieved by shrinkage is dramatic. However, the

MSE of the combined estimator is higher than that of the FE estimator.

Overall, the improvement in the combined estimators over individual effects es-

timators are greatest in the cases of small sample sizes, small degree of endogeneity

and weak instruments. The plots for the RE case look similar to that in the FE

cases. For very small ρ, individual effects estimators perform better than both 2SLS

and combined estimators except when n and ρ are large. The combined estimators

uniformly dominate 2SLS estimators. But for very small n and weak instruments, the

combined estimators can be beaten by the individual effects estimator. In summary,

the simulation results provide strong finite sample confirmation of Theorem 15.
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4.6 Empirical Results

In this section, we use a panel data on 90 counties in North Carolina over the

period 1981–1987 to revisit the effect of police on crime. Cornwell and Trumbull

(1994), hereafter CT, analyze empirical evidence that the ability of the criminal justice

system to deter crime. Baltagi (2006) replicates the CT estimation and confirms their

conclusion. A large body of research has explored the police–crime relationship. Some

theories support a negative impact of police on crime (e.g., Ehrlich, 1972; Marvell

and Moody 1996; Levitt, 2002). Additional police presence deters crime by making

criminals believe arrests and subsequent sanctions are more likely. However, many

studies of police behavior believe that police have little or no impact on crime, see

Bayley (1996). Another type of finding argues that some criminals, facing greater

arrest risks, switch to less risky crime types and methods, resulting in a positive

impact of police on crime, see Cook (1979).

The empirical model follows Cornwell and Trumbull (1994), and relates the crime

rate to a set of explanatory variables. The explanatory variables consist of the prob-

ability of arrest (PA), probability of conviction given arrest (PC), probability of a

prison sentence given a conviction (PP ); average prison sentence in days (S); the

number of police per capita (Police); the population density (Density); a dummy

variable (Urban) indicating whether the county is in the SMSA with population

larger than 50000; the proportion of county population that is male and between

the ages of 15 and 24 (Percent Y oung Male); the proportion that is minority or

nonwhite (Percent Minority); regional dummies for western and central counties

(West and Central). Opportunities in the legal sector are captured by the average

weekly wage in the county by industry. The industry categories are: construction

(WCON); transportation, utilities and communications (WTUC); wholesale and re-
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tail trade (WTRD); finance, insurance and real estate (WEIR); services (WSER);

manufacturing (WMFG); and federal, state and local government (WFED, WSTA

and WLOC). All variables are in logs except for the dummies. Details in this dataset

can be found in CT.

CT worried about the endogeneity of police per capita and the probability of

arrest. They used per capita tax revenue and offence mix as two instruments. Offence

mix is the ratio of crimes involving ”face-to-face” contact to those that do not. We

also use the first lag of the regressors as instrumental variables.

The economic model of crime predicts that the estimated coefficients of PA, PC ,

PP , and S will be negative since an increase in the probability or severity of pun-

ishment increases the expected cost, or decreases the expected utility, of crime. Fur-

thermore, it is well known that under certain assumptions the economic model of

crime implies an ordering of deterrent effects: the greatest impact on crime coming

from PA, followed by Pc and PP . The estimated elasticities reported in table 4.1 are

generally consistent with the predictions of the theoretical model. In all cases the

estimated elasticities are negative.

FE results show that the probability of arrest, the probability of conviction given

arrest and the probability of a prison sentence given a conviction all have a negative

and significant effect on the crime rate with estimated elasticities of -0.3670, -0.3027,

-0.1782. The sentence severity has a negative and insignificant effect on the crime

rate crime. In both FE 2SLS and combined results, the estimated elasticities of the

probability of arrest and the probability of conviction given arrest are statistically

insignificant. The sentence severity has a positive and significant effect in the FE-

2SLS results, and it is insignificant in the combined estimates. The MSE for FE,

FE-2SLS and combined estimators are 0.7359, 0.3308 and 0.2957, respectively. The
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β̂FE β̂FE,2SLS β̂c,FE
PA -0.3670 -1.0323 -0.9914

(0.0426) (0.8850) (0.7623)
PC -0.3027 -0.8674 -0.8086

(0.0263) (0.5905) (0.4558)
PP -0.1782 -1.9985 -1.2357

(0.0313) (0.2660) (0.2437)
S -0.0255 0.4599 0.1565

(0.0341) (0.0688) (0.0878)
Police 0.3998 1.1023 1.0382

(0.0202) (0.7039) (0.6730)

Table 4.1: Economics of Crime Estimates for North Carolina, 1981–1987 (standard
errors in parentheses)

FE estimations on the elasticity of the crime rate with respect to the number of police

are positive. However, accounting for the endogeneity, the respective FE-2SLS and

the combined estimations are insignificant. Thus we conclude that police presence

has an insignificant effect on the crime rate.

4.7 Conclusions

This chapter proposes two combined estimators which are weighted average of FE

and FE-2SLS estimators, and weighted average of RE and RE-2SLS estimators, using

the weights inversely proportional to the Hausman statistic. We show that under

certain conditions, the combined FE and FE-2SLS estimator has strictly smaller

asymptotic risk than the FE-2SLS estimator, and the combined RE and RE-2SLS

estimator has strictly smaller asymptotic risk than the RE-2SLS estimator. Further,

in the Monte Carlo study we show that the results also hold for small samples. The

magnitude of efficiency of the combined estimator over FE and FE-2SLS estimators

65



varies with respect to the degree of endogeneity and the strength of instruments. The

combined estimator over RE and RE-2SLS estimators shares similar asymptotic and

finite sample properties. We use the combined estimator over FE and FE-2SLS to

revisit the effect of police on crime. We confirm the findings of Bayley (1996) that

the police level has insignificant effect on crime. Based on the empirical results, the

combined estimator gives smaller MSE than both FE and FE-2SLS estimators.
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(b) n = 100, T = 3, q = 3, R2 = .4
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(c) n = 20, T = 3, q = 3, R2 = .1
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(d) n = 100, T = 3, q = 3, R2 = .1

Figure 4.1: Relative MSE of FE, FE-2SLS and Combined Estimators, n = {20, 100} ,
T = 3, q = 3, R2 = {.4, .1}
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(b) n = 100, T = 3, q = 6, R2 = .4
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(c) n = 20, T = 3, q = 6, R2 = .1
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(d) n = 100, T = 3, q = 6, R2 = .1

Figure 4.2: Relative MSE of FE, FE-2SLS and Combined Estimators, n = {20, 100} ,
T = 3, q = 6, R2 = {.4, .1}
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(b) n = 100, T = 3, q = 3, R2 = .4
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(c) n = 20, T = 3, q = 3, R2 = .1
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(d) n = 100, T = 3, q = 3, R2 = .1

Figure 4.3: Relative MSE of RE, RE-2SLS and Combined Estimators, n = {20, 100} ,
T = 3, q = 3, R2 = {.4, .1}
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(b) n = 100, T = 3, q = 6, R2 = .4
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(c) n = 20, T = 3, q = 6, R2 = .1
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(d) n = 100, T = 3, q = 6, R2 = .1

Figure 4.4: Relative MSE of RE, RE-2SLS and Combined Estimators, n = {20, 100} ,
T = 3, q = 6, R2 = {.4, .1}

70



Chapter 5

A Combined Estimator for Large

Heterogeneous Panels with

Multifactor Error Structure

5.1 Introduction

Recently, there has been increased interest in the estimation of models with er-

ror cross-sectional dependence. A particular form that has become popular is a

common factor error structure with a fixed number of unobserved common factors

and individual-specific factor loadings. The most obvious implication of error cross-

sectional dependence is that standard panel data estimators are inefficient and es-

timated standard errors are biased and inconsistent. One popular approach to this

problem is the common correlated effects (CCE) method proposed by Pesaran (2006).

The virtue of the CCE estimation is that it can be easily computed by the least

squares regression augmented using the cross-sectional averages of the dependent and
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explanatory variables as proxies for the factors. The pooled version is also provided,

when the individual slope coefficients are homogenous.

There is a large body of literature on large panels with a multifactor error struc-

ture. The correlated common effects estimator based on cross-sectional averages has

been developed by Pesaran (2006), Kapetanios, Pesaran, and Yamagata (2011), Pe-

saran and Tosetti (2011), Chudik, Pesaran, and Tosetti (2011), Pesaran, Smith, and

Yamagata (2013), and Chudik and Pesaran (2015).

If error cross-sectional dependence exists in the model, the common correlated

effects pooled (CCEP) model is consistent and the fixed effects (FE) model is in-

consistent. On the other hand, if there is no error cross-sectional dependence, both

CCEP and FE estimators are consistent and CCEP estimator is efficient. In this

chapter, we propose a combined estimator which is a weighted combination of the

standard fixed effects estimator and the common correlated effects pooled estimator

of Pesaran (2006). We study the asymptotic distribution of the combined estimator

in a local asymptotic framework where some factor loadings in the error term are in

a local neighborhood of zero. We show that under certain conditions, the combined

estimator has strictly smaller risk than the CCEP estimator. The combined estimator

also has smaller asymptotic risk compared to the FE estimator unless the endogeneity

is very weak. Our simulation result shows that the combined estimator can reduce

finite sample MSE relative to CCEP estimator for all degrees of endogeneity, as well

as relative to FE estimator for moderate to large degrees of endogeneity.

Holly, Pesaran, and Yamagata (2010), hereafter HPY, provide an empirical anal-

ysis of changes in real house prices in U.S. using state level data. They use a panel

of 49 states over the period 1975-2003 to show that state level real housing prices are

driven by economic fundamentals, such as real per capita disposable income, as well
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as by common shocks, such as changes in interest rates, oil prices and technological

change. Baltagi and Li (2014) replicate their results using a panel of 381 metropoli-

tan statistical areas observed over the period 1975–2011. Their replication shows that

HPY results are fairly robust. Our empirical analysis relies upon a panel of 49 states

over the period 1975–2011 to examine the performance of the combined estimator.

The rest of this chapter is organized as follows. Section 2 presents the FE, CCEP

and combined estimators. Section 3 presents the asymptotic distribution of the com-

bined estimator. Section 4 derives the asymptotic risk of the combined estimator.

Monte Carlo simulation is provided in Section 5. Empirical example is given in Sec-

tion 6. Section 7 concludes.

5.2 The Model and Estimators

Consider a panel data regression model

yit = x′itβ + αi + eit (5.1)

where i = 1, 2, . . . n and t = 1, 2, . . . T . xit is the ith observation on q explanatory vari-

ables, β is a q× 1 unknown coefficients, αi denotes the individual specific effects and

is assumed to be fixed. The remainder disturbances stochastic eit has a multifactor

structure

eit = γ′ift + εit (5.2)

in which ft is the r×1 vector of individual-invariant time-specific unobserved common

effects, γi is a 1 × r stochastic individual-specific factor loading vector, and εit are

the idiosyncratic errors assumed to be independently distributed of xit. To model the

correlation between the individual specific regressor xit, and the errors eit, xit can be
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written as

xit = Γ′ift + vit (5.3)

where Γi is an r × q stochastic factor loading matrix and vit is the q × 1 vector of

idiosyncratic errors of xit distributed independently of the common effects ft. In the

vector notation,

yi = Xiβ + αiιT + ei (5.4)

ei = Fγi + εi

Xi = FΓi + vi

where yi = (yi1, . . . , yiT )′ is T × 1, Xi = (x′i1, . . . , x
′
iT )′ is T × q, ei = (ei1, . . . , eiT )′ is

T × 1, ιT is the T × 1 vector of ones, F = (f ′1, . . . , f
′
T )′ is T × r, vi = (vi1, . . . , viT )′ is

T × q.

Make the following assumptions on the common factors, their loadings and the

individual or unit specific errors:

Assumption 5.1: εit is independently and identically distributed (iid) across both i

and t with E (εit) = 0, V ar (εit) = σ2
i = σ2 > 0 and E (‖ εit ‖4) <∞;

Assumption 5.2: vit is iid across both i and t with E (vit) = 0, V ar (vit) = Σi

positive definite and E (‖ vit ‖4) <∞;

Assumption 5.3: ft is covariance stationary with absolute summable autocovari-

ances, such that E (‖ ft ‖4) <∞;

Assumption 5.4: γi and Γi are iid across i and of εjt and vjt, ft for all i and t with

fixed means γ and Γ, and finite variances. In particular,

γi = γ + ηi, ηi ∼ iid (0,Ωη)

where Ωη is a r× r symmetric nonnegative definite matrix, and ‖ γ ‖< K, ‖ Γ ‖< K

and ‖ Ωη ‖< K for some positive constant K <∞;
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Assumption 5.5: εit, vit and ft are mutually independent.

5.2.1 The Fixed Effects Estimator

Define QT ≡ IT − ιT (ι′T ιT )−1 ι′T , which is a T × T symmetric, idempotent matrix.

Further, QT ιT = 0, and so for ith unit, premultiplying (5.4) by QT gives

QTyi = QTXiβ +QT ei

The β̂FE can be expressed as

β̂FE =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQTyi

)

and

Avar
(
β̂FE

)
= Ψ∗−1R∗Ψ∗−1

whereR∗ =plim(σ2
∑n

i=1X
′
iQTXi +

∑n
i=1X

′
iQTFΩηF

′QTXi) ,Ψ
∗−1 =plim(

∑n
i=1X

′
iQTXi) .

If error cross-sectional dependence exists in the model (γi 6= 0), FE estimator is in-

consistent. If γi = 0, β̂FE is consistent and has the following asymptotic distribution,

as n→∞
√
n
(
β̂FE − β

)
d→ N (0, ΣFE)

where ΣFE = σ2
(

plim
∑n

i=1
X′iQTXi

n

)−1

, under the assumption:

Assumption 5.6:
∑n

i=1

(
X′iQTXi

n

)
is bounded and nonsingular.

5.2.2 The Common Correlated Effects Pooled Estimator

The idea underlying the common correlated effects approach is that the unob-

servable common factors ft can be well approximated by a linear combination of the

cross-section averages of the dependent variable, and those of the regressors.
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As a way to illustrate this result, write (5.1) and (5.3) more compactly as

zit =

 yit

xit

 = Bi + C ′ift + uit (5.5)

where

uit =

 β′vit + εit

vit


Bi =

 αi

0

 , Ci =

(
γi Γi

) 1 0

β Iq


zit is (q + 1)× 1, Bi is 1× (q + 1) , 0 is a. q × 1 vector of zeros, Ci is r× (q + 1) and

Iq is an identity matrix of order q. The covariance matrix of uit is given by

E (uitu
′
it) = Σu,i =

 β′Σiβ + σ2
i β′Σi

Σiβ Σi


Then the cross section average

z̄t = B̄ + C̄ ′ft + ūt

where

z̄t =
1

n

n∑
i=1

zit, B̄ =
1

n

n∑
i=1

Bi, C̄ =
1

n

n∑
i=1

Ci, ūt =
1

n

n∑
i=1

uit.

Although not considered here, generally one can consider z̄t = z̄wt =
∑n

i=1wizit,

where wi = σ−2
i /

∑n
j=1 σ

−2
j .

If assume

Rank
(
C̄
)

= r ≤ q + 1, for all n (5.6)

it follows that

ft =
(
C̄C̄ ′

)−1
C̄
(
z̄t − B̄ − ūt

)
.
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Therefore, ft can be approximated by a linear combination of {z̄t, 1} , if ūt
q.m.→ 0, as

n→∞, see Lemma 1 in Pesaran (2006). In such a case, we obtain

ft − (CC ′)
−1
C
(
z̄t − B̄

) p→ 0, as n→∞

where

C̄
p→ C = Γ̃

 1 0

β Ik

 , as n→∞

Γ̃ =

(
E (γi) E (Γi)

)
= (γ, Γ).

From (5.1) and (5.2), yit is generated as

yit = x′itβ + αi + γ′ift + εit (5.7)

Next, substitute ft = (CC ′)−1C
(
z̄t − B̄

)
into eq(5.7),

yit = x′itβ + αi + γ′i (CC
′)
−1
C
(
z̄t − B̄

)
+ εit (5.8)

= x′itβ +
(
αi − γ′i (CC ′)

−1
CB̄
)

+ γ′i (CC
′)
−1
Cz̄t + εit

= x′itβ + h̄′tci + εit

where ci =

(
αi − γ′i (CC ′)

−1CB̄ γ′i (CC
′)−1C

)′
is (q + 2) × 1, h̄t = (1, z̄′t)

′ is

(q + 2) × 1. This suggest using h̄ = (1, z̄′t)
′ as observable proxies for ft. In vector

notation,

yi = Xiβ + H̄ci + εi (5.9)

where H̄ =
(
ιT , Z̄

)
is T × (q + 2), Z̄ = (z̄1, . . . , z̄T ) is T × (q + 1).

Let

M̄ = IT − H̄
(
H̄ ′H̄

)−1
H̄ ′

where H̄ =
(
ιT , Z̄

)
, Z̄ = (z̄1, . . . , z̄T ) is T × (q + 1). M̄H̄ = 0. Then

M̄yi = M̄Xiβ + M̄εi
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Now we make the following assumption:

Assumption 5.7:
∑n

i=1

(
X′iM̄Xi

n

)
is bounded and nonsingular.

The CCE estimator can be obtained by performing OLS on the resulting trans-

formed model

β̂CCEP =

(
n∑
i=1

X ′iM̄Xi

)−1( n∑
i=1

X ′iM̄yi

)
Following Pesaran (2006), for fixed T , and n→∞, the asymptotic for CCEP estima-

tor still holds. Under Assumptions 1-5 and 7, and the rank condition (5.6) satisfied

√
n
(
β̂CCEP − β

)
d→ N (0, Σp)

where Σp = Ψ−1RΨ−1, R =plim
(
σ2 1

n

∑n
i=1X

′
iMgXi + 1

n

∑n
i=1X

′
iMgFΩηF

′MgXi

)
,

Ψ−1 =plim
(

1
n

∑n
i=1 X

′
iMgXi

)
, Mg = I −G (G′G)−1G′, G = (ιT , F ) .

Remark 21 The above DGP has many similarities with the DGP considered by Pe-

saran (2006); however, they are not the same. The idea is to have a simple and

transparent DGP that is consistent with the typical assumptions of the literature.

5.2.3 The Combined Estimator

In the panel data models, when the standard assumption of cross-sectionally un-

correlated errors is violated, the usual FE model does not produce consistent esti-

mates of the coefficients of interest. Pesaran (2006) suggests the CCEP approach that

yields consistent estimates in the presence of correlated unobserved common effects.

We propose the following combined estimator of β, which is a weighted combined FE

and CCEP estimator with weights depending on Hausman statistic:

β̂c = wβ̂FE + (1− w)β̂CCEP (5.10)
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where

w =


τ
Hn

if Hn ≥ τ

1 if Hn < τ

Hn = (β̂CCEP − β̂FE)′V̂ (β̂CCEP − β̂FE)−1(β̂CCEP − β̂FE)

where τ is a shrinkage parameter. The degree of shrinkage depends on the ratio τ/Hn.

When Hn < τ then ŵ = β̂FE, When Hn ≥ τ then β̂c is a weighted average of β̂FE

and β̂CCEP , with more weight on β̂FE when τ/Hn is large.

5.3 Asymptotic Distribution

The variable xit is exogenous if γi = 0. We use the local asymptotic approach.

For fixed T , γi is local to zero

γi =
1√
n
δi (5.11)

where δi is a r× 1 localizing parameter, which is the degree of correlation between xi

and ei. When δi = 0, xit are exogenous. When δi 6= 0, xit are endogenous. δi controls

the degree of endogeneity.

Set S = E (X ′iQTFδi) and further assume,

Assumption 5.8. Xi, i = 1, . . . , n, are iid. over i. E ‖ xit ‖2+K<∞ for some K > 0.

E ‖ xit ‖4<∞; σ2
(

plim
∑n

i=1
X′iQTXi

n

)−1

= V1,
(

plimΨ−1RΨ−1

n

)−1

= V2, as n→∞.

Theorem 22 Under Assumptions 5.1-5.8,

√
n

(
β̂FE − β
β̂CCEP − β

)
→ h+ ξ (5.12)

where

h =

(
σ−2V1S

0

)
(5.13)
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and ξ ∼ N(0, V ) with

V =

 V1 V ′21

V21 V2


Furthermore,

Hn → (h+ ξ)′B(h+ ξ) (5.14)

and
√
n
(
β̂c − β

)
d→ Ψ̃ = G′2ξ −

(
τ

(h+ ξ)′B(h+ ξ)

)
1

G′ (h+ ξ) (5.15)

where B = G (V1 + V2 − (V21 + V ′21))−1G′, G =

(
−I I

)′
, G2 =

(
0 I

)′
, and

(a)1 = min[1, a] .

Theorem 22 gives expressions for the joint asymptotic distribution of the FE and

CCEP estimator, the Hausman statistic, and the combined estimator as a transfor-

mation of the normal random vector ξ and the noncentrality parameter h under the

local exogeneity assumption. The asymptotic distribution of β̂c is written as a random

weighted average of the asymptotic distribution of β̂FE and β̂CCEP .

5.4 Asymptotic Risk

The asymptotic risk of any sequence of estimators βn of β can be defined as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)′W (βn − β)

]
= R (βn)

Define the largest eigenvalue of the matrix A+A′

2
and A∗+A∗′

2

λ1 = λmax

(
A+ A′

2

)
λ∗1 = λmax

(
A∗ + A∗′

2

)
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where

A = (V1 + V2 − (V21 + V ′21))
1
2 W (V2 − V21) (V1 + V2 − (V21 + V ′21))

− 1
2 ,

A∗ = (V1 + V2 − (V21 + V ′21))
1
2 W (V1 + V2 − (V21 + V ′21))

1
2 .

Let

d =
tr (W (V2 − V21))

λ1

.

Theorem 23 Under Assumptions 5.1-5.8, if

d > 2 (5.16)

and

0 < τ ≤ 2λ1 (d− 2)

λ∗1
, (5.17)

then R
(
β̂c

)
= tr

[
WE

(
Ψ̃Ψ̃′

)]
,

R
(
β̂CCEP

)
= tr (WV2) ,

and

R
(
β̂c

)
< R

(
β̂CCEP

)
− τ (2λ1 (d− 2)− λ∗1τ)

σ−4S ′V1 (V1 + V2 − (V21 + V ′21))−1 V1S + q
. (5.18)

Equation (5.18) shows that the asymptotic risk of the combined estimator is strictly

less than that of the CCEP estimator, so long as τ satisfies the condition (5.17). τ

appears in the risk bound (5.18) as a quadratic expression, so there is an optimal

choice τ ∗ = λ1(d−2)
λ∗1

which minimizes this bound. The assumption d > 2 is the critical

condition needed in order for the right-hand-side of (5.17) to be positive, which is

necessary for the existence of τ satisfying (5.17).

Corollary 24 R
(
β̂c

)
− R

(
β̂CCEP

)
< 0, for d > 2 and 0 < τ ≤ 2λ1(d−2)

λ∗1
. In the

case W = (V2 − V21)−1 , 0 < τ ≤ 2
(
q−2
λ∗1

)
and q > 2 which is Stein’s (1956) classic

condition for shrinkage.
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Corollary 25 R
(
β̂FE

)
=tr(WV1) + σ−4S ′V1WV1S; R

(
β̂FE

)
≤ R

(
β̂CCEP

)
when

σ−4S ′V1WV1S ≤ q, and R
(
β̂RE

)
> R

(
β̂FE

)
otherwise.

The result in Corollary 25 indicates that when endogeneity is weak (γi and hence δi

is close to zero) the FE estimator may perform better than the CCEP estimator.

Corollary 26 R
(
β̂c

)
− R

(
β̂FE

)
< 0, for q < σ−4S ′V1WV1S, d > 2, and 0 < τ ≤

2λ1(d−2)
λ∗1

.

The result in Corollary 26 indicates that when endogeneity is strong, d > 2, 0 < τ ≤
2λ1(d−2)

λ∗1
, the combined estimator performs best among these three estimators.

5.5 Monte Carlo Simulation

We now investigate the finite sample MSE of our combined estimator in the fol-

lowing simulation design,

yit = αi + β′xit + γ′ift + εit

xit = Γ′ift + vit

where αi is drawn from N (0, 1) , εit ∼IIDN (0, 1) , vit ∼IIDN (0, 1).

We vary n = {20, 100} , T = 8, β = 0. Set r = 1 and q = 3. γ̃i ∼IIDN (1, 0.2) .

Γi =

(
Γi11 Γi21 Γi31

)
∼IID

(
N (0.5, 0.5) N (0, 0.5) N (0, 0.5)

)
.

We consider ρ on a 40-point grid on [0, 0.975] . ρ controls the degree of endogeneity,

ranging in (0, 1) (ρ = 0 is the case of exogenous regressors; large ρ is the case of strong

endogeneity). γi = γ̃iρ.

We compare the estimator by MSE

MSE
(
β̂
)

= E
(
β̂ − β

)′ (
β̂ − β

)
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We normalize the MSE of the estimators by that of the CCEP estimator. Thus value

less than one indicate improved precision relative to CCEP estimator, and values

greater than one indicate worse performance, larger MSE than the CCEP estimator.

We generated 100,000 samples on each calculated β̂CCEP , β̂FE, β̂c.

We do a bootstrap pairs procedure that resample with replacement over i and uses

all observed time periods for a given individual. For data {(yi, Xi) , i = 1, . . . , n} this

yields B pseduo-samples and for each pseudo-sample we perform regression, yielding

B estimates, b = 1, . . . , B. The panel bootstrap estimate of the variance matrix is

then given by

V̂Boot

(
β̂CCEP − β̂FE

)
=

1

B − 1

B∑
b=1

(
θ̂b − θ̂

)(
θ̂b − θ̂

)′
.

b denotes the bth of B bootstrap replications, and θ̂ = β̂CCEP − β̂FE, θ̂ = B−1
∑

b θ̂b.

Figure 5.1(a) is the case n = 20, and Figure 5.1(b) is the case n = 100. The

solid line is the normalized MSE of the CCEP estimator, the short dashed line is the

normalized MSE of the combined estimator, the longer dashed line is the normalized

MSE of the FE estimator.

By contrasting Figure 5.1(a) and 5.1(b), we can see that the region of dominance

for the combined estimator over CCEP estimator is greater for small n. The MSE of

the combined estimator is uniformly smaller than that of the CCEP estimator for all

factor loading values. For small ρ, the FE estimator has lower MSE than the combined

estimator, but the ranking is reversed for moderate values of ρ. The FE estimator

is very sensitive, which has quite low MSE for very small ρ, but very large MSE for

large ρ. Generally, the dominance for combined estimator over CCEP estimator is

greater for small sample size. For very small ρ, the combined estimator can be beaten

by CCEP estimator. In summary, the simulation results provide strong finite sample
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Figure 5.1: (a) Relative MSE of CCEP, FE and Combined Estimators, n = 100, T =
8, q = 3, r = 1. (b) Relative MSE of CCEP, FE and Combined Estimators, n =
100, T = 8, q = 3, r = 1.
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confirmation of Theorem 23.

5.6 Empirical Results

Real house prices can vary between States because real incomes differ, they can

also differ because of scarcity of land or other idiosyncratic factors. The effects of

common shocks on house prices such as changes in interest rates, oil prices and techno-

logical change, could also differ across States. Holly, Pesaran, and Yamagata (2010),

here after HPY, examine the extent to which real house prices at the State level

are driven by fundamentals such as real per capita disposable income, as well as by

common shocks. Baltagi and Li (2002) replicate the results of HPY, using a slightly

different dataset. They extend the period of study to 2011, incorporating the infor-

mation reflected by the housing market crash in 2007. Using housing price indexes

for 381 metropolitan statistical areas and over the period 1975–2011, they find that

the HPY results are fairly robust. In this section, we use the panel of 49 states over

the period 1975–2011, and following HPY, consider the following panel data model

for US states

pi,t = β0 + βyyi,t + βggi,t−1 + βcci,t−1 + αi + eit

where i = 1, . . . , 48, t = 1, . . . , 17, pi,t is the logarithm of the real price of housing in

the ith State during year t, and yi,t is the logarithm of the real per capita personal

disposable income. The net cost of borrowing defined by ci,t−1 = rit−∆pit, where rit

represents the long-term real interest rate and gi,t represents the population growth

rate. The state-specific effects can be treated as the endowment of climate, location

and culture. A more detailed description can be found in HPY. We would expect a

rise in ci,t to be associated with a fall in the price income ratio, and hence a negative
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FE CCEP Combined
Log(real per capita income) 0.5804 1.2705 1.2151

(0.3013) (0.2990) (0.2986)
Population growth rate 1.3286 1.6367 1.6120

(1.8132) (1.5217) (1.4237)
Real cost of borrowing -0.5088 -0.1781 -0.2047

(0.1546) (0.1541) (0.1530)

Table 5.1: Economics of Real House Prices Estimates for 49 U.S. states, 1975–2011
(standard errors in parentheses)

coefficient for ci,t−1. The effect of population growth on real house prices is expected

to be positive.

Table 5.1 suggests that the income elasticity of real house prices for the combined

estimator is 1.2151, and the estimate of the coefficients on the rate of change of

population, and the net cost of borrowing are 1.6120 and -0.2047, respectively for

the combined estimator. We find a significant positive effect for population growth

and a significant negative effect associated with net cost of borrowing, which are in

agreement with the results of HPY. The other two columns report the FE and CCEP

estimates. The estimates of the combined estimator lies quite close to that of the

CCEP estimator.

We bootstrap the data 5000 times by resampling across individuals and keep

the time series structure for each individual unchanged. The bootstrap MSE and

the standard errors for the above estimates, then, can be calculated based on the

estimates of the coefficients for each bootstrap data. The MSE for FE, CCEP and

combined estimators are 3.4250, 2.4288 and 2.1425, respectively. Among these three

estimators, the combined estimator has the smallest MSE. The Hausman statistic

is 24.9018. Thus, the exogeneity assumption is rejected at the one percent level of

significance, which also indicates that the CCEP estimator is more reliable.
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5.7 Conclusion

This chapter proposes a combined estimator from combining the fixed effects

estimator (FE) and the common correlated effects pooled (CCEP)estimator, using

weights inversely proportional to the Hausman statistic. We show that the com-

bined estimator has strictly smaller asymptotic risk than the CCEP estimator. The

combined estimator also has smaller asymptotic risk compared to the FE estimator

unless the endogeneity is very weak. Our simulation result shows that the combined

estimator can reduce finite sample MSE relative to CCEP estimator for all degrees

of endogeneity, as well as relative to FE estimator for moderate to large degrees of

endogeneity. The use of the combined estimator allows researchers to implement ro-

bust inference in the error cross-sectional dependence framework. Following Holly,

Pesaran, and Yamagata (2010), we use the combined estimator to analyze US real

house prices. We find a significant positive effect for population growth and a signif-

icant negative effect associated with net cost of borrowing, which are in agreement

with the results of theirs. Based on the empirical results, the combined estimator

gives smaller MSE than both FE and CCEP estimators.
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Chapter 6

A Combined Forecasting Approach

with Some Empirical Evidence

from US Electricity and

Natural-gas Consumption

6.1 Introduction

Over the past few years, considerable progress has been made in the area of econo-

metric forecasting. The assessment of forecasts and their uncertainty is of particular

interest for policy makers confronted with the task of exploiting all the available

information and evaluating the relative accuracy and relevance of forecasts from dif-

ferent sources. This chapter contributes to the literature on forecast uncertainty by

investigating the forecast model combination in the panel data model.

Bates and Granger (1969) made the econometric profession aware of the benefits
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of forecast combination when a limited number of forecasts is considered. Despite the

scarcity of panel data studies on the combined forecasts, there has been panel data

research on forecast focusing on the pooling of information; see Stock and Watson

(1999, 2002a,b) and Forni et al. (2000, 2005). Pooling forecasts is related to forecast

combination and operates a reduction on the space of forecasts.

In this chapter, we propose a combined approach to econometric forecast within a

panel data framework. First, we calculate the coefficients based combination weights

depending on Hausman test statistic. Second, we show that under endogenity, the

forecast combining both fixed effects and random effects models using the weights

from step one outperforms forecast with fixed effects in terms of mean squared forecast

error. Our simulation experiment shows that the combined forecast can uniformly

dominate the FE forecast for all degrees of endogeneity. It also can reduce finite

sample MSFE relative to the random effects forecast for moderate to large degrees of

endogeneity and heterogeneity.

We illustrate this method with an application to forecasting electricity and natural-

gas demands for 51 US states. Since electricity and gasoline demand has been studied

extensively, strong priors exist as to the plausibility of price and income effects, pro-

viding a useful plausibility check to the results of this study. Maddala et al. (1997)

obtained short-run and long-run elasticities of energy demand for each of 49 US states

over the period 1970–1990. They showed that heterogeneous time series estimates for

each state yield inaccurate signs for the coefficients, while panel data estimates are not

valid because the hypothesis of homogeneity of the coefficients was rejected. Baltagi

et al. (2002) compared the out-of-sample forecast performance of ten homogeneous

and nine heterogeneous estimators including the shrinkage estimators applying them

to the same data set. They showed that the homogeneous panel data estimates give
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the best out-of-sample forecasts. Our objective here is to compare the out-of-sample

forecast performance of the fixed effects, random effects and the proposed combined

forecasting procedures applying them to the updated electricity and natural-gas panel

data across 51 states (including Washington DC) over the period 1997–2012. We find

that the combined forecast outperforms.

The rest of this chapter is organized as follows. Section 2 presents the model and

estimators. Monte Carlo simulation is provided in Section 3. Empirical example is

given in Section 4. Section 5 concludes.

6.2 Models and Estimators

6.2.1 Forecasting with Random Effects

Consider a panel data regression model

yit = xitβ + αi + uit (6.1)

where i = 1, 2, . . . n and t = 1, 2, . . . T . xit is the ith observation on q explanatory

variables, β is a q × 1 unknown parameter, αi is known as the individual effect and

uit is the random error.

The random effects (RE) model assumes αi ∼i.i.d.(0, σ2
α) , uit ∼i.i.d.(0, σ2

u) and

αi are independent of the uit. In addition, the xit are independent of the αi and uit

for all i and t. Under this assumption, we can write

yit = xitβ + vit, E (vit|xi) = 0 (6.2)

where vit = αi + uit. Write the model (6.2) in matrix form

y = Xβ + v (6.3)
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where y = (y11, . . . , y1T , y21, . . . , ynT )′ is nT × 1, X = (x11, . . . , x1T , . . . , xn1, . . . , xnT )

is nT × q, v = Dα + u with D = In ⊗ ιT . Let ι be a vector of ones. JT = ιT ι
′
T .

P = In ⊗ J̄T where J̄T = JT/T. and Q = InT − P is a matrix which obtains the

deviations from individual means. The variance-covariance matrix of v is given by

Ω = σ2
α (In ⊗ JT ) + σ2

u (In ⊗ IT ) = σ2
1P + σ2

uQ

where σ2
1 = Tσ2

α + σ2
u. The feasible estimator of Ω̂ of Ω can be obtained by first

running the OLS regression y on X to get v̂it = yit−xitβ̂OLS as the OLS residual and

β̂OLS = (X ′X)−1X ′y. This gives

σ̂2
u =

1

n (T − 1)

n∑
i=1

T∑
t=1

(
v̂it − v̂i

)2

.

Similarly, doing the OLS regression of ȳi = x̄iβ + v̄i, where V (v̄i) = Tσ2
α + σ2

u/T =

σ2
1/T and ȳi =

∑T
t=1 yit/T, we get

σ̂2
1 =

T

n

n∑
i=1

v̂
2

i .

Noting that σ̂2
1 and σ̂2

u estimate σ̂2
α = 1

T
(σ̂2

1 − σ̂2
u) . With these estimates, one can

obtain the generalized least squares (GLS) of β based on (6.3) is

β̂RE =
(
X ′Ω̂−1X

)−1

X ′Ω̂−1y

and β̂RE has an asymptotic distribution as

√
n
(
β̂RE − β

)
d→ N (0, VRE)

where VRE =
(

plimX′Ω−1X
n

)−1

.

Suppose we want to predict S periods ahead for the ith individual. First, by

minimizing ∑
i

∑
t (yit − xitβ − αi)2

σ2
u

+

∑
i α

2
i

σ2
α
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we can obtain

α̂i =
σ̂2
α

σ̂2
1

T ûi(RE)

where ûi(RE) = 1
T

∑
t ûit(RE). Then the S period ahead forecast for the ith individual

is

ŷi,T+S,RE = xi,T+Sβ̂RE +
σ̂2
α

σ̂2
1

T ûi(RE) (6.4)

where σ̂2
α

σ̂2
1

∑
t ûit(RE) can be treated as α̂i,RE. Goldberger (1962) showed that the best

linear unbiased predictor of yi,T+S is

ŷi,T+S,RE = xi,T+Sβ̂RE + w′Ω−1v̂RE

where v̂RE = y −Xβ̂RE and w = E (vi,T+1v) . Note that for period T + S

vi,T+S = αi + ui,T+S

and w = σ2
α (li ⊗ ιT ) where li is the ith column of IN . In this case

w′Ω−1 = σ2
α (l′i ⊗ ι′T )

[
1

σ2
1

P +
1

σ2
u

Q

]
=
σ2
α

σ2
1

l′i ⊗ ι′T

since (l′i ⊗ ι′T )P = (l′i ⊗ ι′T ) and (l′i ⊗ ι′T )Q = 0. The typical element of w′Ω−1v̂RE

becomes
(
T σ̂2

α

σ̂2
1
ûi(RE)

)
which is ûi(RE).

6.2.2 Forecasting with Fixed Effects

For the fixed effects (FE) case, the αi are assumed to be fixed parameters to

be estimated and remainder disturbances stochastic with uit ∼i.i.d.(0, σ2
u) . One can

premultiply the model by Q and perform OLS on the resulting transformed model:

Qy = QXβ +Qu
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The resulting OLS estimators are

β̂FE = (X ′QX)
−1
X ′Qy,

α̂FE = (D′D)
−1
D′
(
y −Xβ̂FE

)
. (6.5)

The asymptotic distribution of β̂FE follows

√
n
(
β̂FE − β

)
d→ N (0, VFE)

where VFE = σ2
u

(
plimX′QX

n

)−1

. From (6.5), we know that for the ith individual,

α̂i,FE = ȳi − x̄iβ̂FE. Thus, the S period ahead forecast for the ith individual is

ŷi,T+S,FE = ȳi + (xi,T+S − x̄i) β̂FE (6.6)

Alternatively,

ŷi,T+S,FE = xi,T+Sβ̂FE + ûi(FE)

6.2.3 The Combined Forecast

We have showed that the combined estimator from combining the fixed and ran-

dom effects estimators with weights depending on Hausman test statistic, performs

better than the fixed effects estimator, as well as compared to the random effects esti-

mator under certain conditions. Motivated by this observation, we would like to see if

the use of both procedures can result in an improved forecast. We combine ŷi,T+S,RE

and ŷi,T+S,FE using the weight inversely proportional to the Hausman statistic for

exogeneity.

ŷi,T+S,c = wcŷi,T+S,RE + (1− wc) ŷi,T+S,FE (6.7)
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where

wc =


τ
Hn

if Hn ≥ τ

1 if Hn < τ

Hn = n
(
β̂FE − β̂RE

)′ (
V̂FE − V̂RE

)−1 (
β̂FE − β̂RE

)
τ is a shrinkage parameter which controls the degree of shrinkage. Set τ = q−2 when

q > 2.

6.3 Monte Carlo Simulation

In this section, we summarize the main results from a small Monte Carlo ex-

periment designed to illustrate the finite sample properties of the combined forecast

defined in section 2. To compare the prediction procedures, we calculate the 1-step

ahead out of sample mean squared forecast error (MSFE) of each approach. The

T + 1 forecast error is defined as

eT+1 = YT+1 − ŶT+1

and

MSFE (eT+1) = E
(
e′T+1eT+1

)
We consider the following data generating process

yit = xitβ + αi + uit

αi = ρ
√
T x̄i

ι

q
+
√

1− ρ2 εi

where {xit, uit} are i.i.d N (0, Iq+1) across i, t. εi are i.i.d N (0, 1) independent of

{xit, uit}.
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We use a portion of the available data for testing, and use the rest of the data for

estimating (or ”training”) the model. Then the testing data can be used to measure

how well the model is likely to forecast on new data. The process works as follows:

First, use the observations at times 1, 2, . . . , T − 1 to estimate the forecasting model.

Compute the 1-step error on the forecast for time T . Second, compute the forecast

accuracy measures based on the errors obtained.

We set β = 0, T = 5 and q = 4. We also vary n = {20, 100} and ρ on a 40-point

grid on [0, 0.975] . ρ controls the degree of endogeneity, ranging in (0, 1). We also

set
√
θ = σα

σu
∈
{

1
4
, 1, 4

}
so ρ∗ = θ

1+θ
= {.06, .05, .94} . ρ∗ controls the degree of

heterogeneity.

We generated 10,000 samples on each calculated ŶT+1,FE, ŶT+1,RE, ŶT+1,C and

plot the relative MSFE, that is

E
[(
ŶT+1 − Y

)′ (
ŶT+1 − Y

)]
E
[(
ŶT+1,FE − Y

)′ (
ŶT+1,FE − Y

)]
Thus value less than one indicate improved precision relative to FE forecast, and val-

ues greater than one indicate worse performance, larger MSFE than the FE forecast.

Figure 6.1(a), 6.1(c), 6.1(e) are the cases n = 20, and Figure 6.1(b), 6.1(d), 6.1(f)

are the cases n = 100. The region of dominance for the combined forecast over FE

forecast is greater for small n.

Figure 6.1(a) and Figure 6.1(b) are the cases ρ∗ = 0.5. For small ρ the RE forecast

has lower MSFE than the combined forecast, but the ranking is reversed for larger

values of ρ. Figure 6.1(c) and Figure 6.1(d) are the cases ρ∗ = 0.06. The MSFE of

the RE forecast is smaller than that of the combined forecast for all the values of

ρ. The MSFE of the RE and combined forecasts are uniformly smaller than that

of the FE forecast. Figure 6.1(e) and Figure 6.1(f) are the cases ρ∗ = 0.94. The
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FE and combined forecasts are near equivalents. RE forecast has similar MSFE

to FE and combined forecasts for small ρ, but the MSFE of RE forecast increases

dramatically after intermediate values of ρ. In all the cases, the combined forecast

uniformly dominates the FE forecast.

In summary, The improvements in combined forecast over FE forecast are greater

for smaller heterogeneity ρ∗. For very small ρ∗, RE forecast tends to be better than

both FE and combined forecasts. For moderate to large ρ∗ and higher ρ, or moderate

to large ρ and higher ρ∗, the combined forecast is better than RE forecast. For very

large ρ∗ and low ρ, the combined forecast is close to RE forecast.

6.4 Empirical Results

There have been numerous studies on the price and income elasticities of resi-

dential natural-gas and electricity demand. Maddala et al. (1997) applied classical,

empirical Bayes and Bayesian procedures to the problem of estimating short-run and

long-run elasticities of residential demand for electricity and natural gas in the US

for each of 49 states over the period 1970–1990. Using the Maddala et al. (1997)

specification and data sets, Baltagi et al. (2002) compare the out-of-sample forecast

performance of homogeneous and heterogeneous estimators applying them to electric-

ity and natural-gas. In this section, we compare the performances of the residential

gas and electricity demand forecast using a panel data across 51 states (including

Washington DC) over the period 1997–2012. The annual state residential electricity

and gas price data used in this study were obtained from The State Energy Price

and Expenditure System of the U.S. Energy Information Administration. Annual

per capital personal income by state were drawn from the Bureau of Business and
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Economic Research, and the annual Consumer Price Index for the United States was

from CITIBASE. Following Baltagi et al. (2002), we consider the following panel

data model:

ŷi,T+1 = β0 + β̂i,1x1i,T+1 + β̂i,2x2i,T+1 + β̂i,3x3i,T+1 + α̂i

where i = 1, . . . , 51, t = 1, . . . , 14.

The variables for the electricity regression are yi,t = log(residential electricity per

capita consumption), x1i,t = log(real per capita personal income), x2i,t = log(real

residential electricity price), x3i,t = log(real residential natural-gas price). For the

natural-gas regression, we have yi,t = log(residential natural gas per capita consump-

tion), x1i,t = log(real per capita personal income), x2i,t = log(real residential natural

gas price), x3i,t = log(real residential electricity price).

We use the prediction performance criteria to help us choose among alternative

estimators. Given the large data set of N = 51 states over T = 14 years, we estimate

our model using a truncated data set (i.e. without the last 3 years of data) and

then apply each estimator to an out-of-sample forecast period. Table 6.1 gives a

comparison of forecasts using the root mean square errors criterion criterion (RMSE)

for residential electricity demand while Table 6.2 does the same for residential natural-

gas demand. Because of the ability of an estimator to characterize long-run as well

as short-run responses is at issue, the RMSE is calculated across the 51 states at

different forecast horizons. The relative forecast rankings are reported in Tables 6.1

and 6.2 after 1 and 3 years.

For electricity demand (Table 6.1), the relatively weak performance of RE estima-

tor arises because of the endogeneity problem of regression. Similarly, the weak fore-

cast performance of the FE estimator relative to the RE estimator can be attributed

to the weak endogeneity issue. Thus, it seems an advantage to use the combined
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Ranking 1st year 3th year
Approach RMSE Approach RMSE

1 Combined 5.2837 Combined 6.1467
2 FE 5.5261 FE 6.4135
3 RE 6.6025 RE 7.9441

Table 6.1: Comparison of Forecast Performance for US Electricity Demand (standard
errors in parentheses)

Ranking 1st year 3th year
Approach RMSE Approach RMSE

1 Combined 5.7310 Combined 7.4145
2 FE 6.1593 FE 8.1922
3 RE 7.1044 RE 9.0036

Table 6.2: Comparison of Forecast Performance for US Natural-gas Demand (stan-
dard errors in parentheses)

forecast. The overall RMSE forecast rankings offer a strong endorsement for the

combined forecast. For natural-gas demand (Table 6.2), the top ranked estimators is

the combined estimator whether it is for the 1 year or 3 year forecast performance.

The combined estimator ranks first, followed by the FE and RE estimator.

Both residential electricity and natural gas demand RMSE forecast rankings of-

fer an endorsement for the combined forecast based on their out-of-sample forecast

performance.

6.5 Conclusion

This chapter provides a combined forecasting approach from combining fixed ef-

fects and random effects forecasts, with the weights depending inversely on the Haus-

man statistic. We show that forecasting can benefit from the use of both procedures.
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Our simulation experiment shows that the combined forecast can uniformly dominate

the fixed effects forecast for all degrees of endogeneity. It also can reduce finite sample

MSFE relative to the random effecys forecast for moderate to large degrees of endo-

geneity and heterogeneity. We examine the applicability of the combined forecasting

approach using US panel data sets on residential electricity and natural-gas demand

across 51 states (include DC) over the period 1997–2012. Our results show that the

combined forecast offers the best out-of-sample forecasts.
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(c) n = 20, T = 5, q = 4, ρ∗ = .06
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(d) n = 100, T = 5, q = 4, ρ∗ = .06
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(e) n = 20, T = 5, q = 4, ρ∗ = .94
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(f) n = 100, T = 5, q = 4, ρ∗ = .94

Figure 6.1: Relative One-Step MSFE of FE, RE and Combined Estimators
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Appendix A

Appendix for Chapter 1

Proof of Theorem 2: The proof technique is based on the arguments in Theorem

2 of Hansen (2014).

Noting that
√
n
(
β̂FE − β

)
d→ G′2ξ ∼ N (0, V2) , then

R
(
β̂FE

)
= E (ξ′G′2WG′2ξ) = tr (WV2)

Define Ψ∗ as a random variable without positive part trimming in (2.12)

Ψ∗ = G′2ξ −
(

τ

(h+ ξ)′B(h+ ξ)

)
G′ (h+ ξ)

Then using (2.13) and the fact that the pointwise quadric risk of Ψ is strictly smaller

than that of Ψ∗, then we have

R
(
β̂c

)
= E (Ψ′WΨ) < E (Ψ∗′WΨ∗) .

We can calculate that

E (Ψ∗′WΨ∗) = R
(
β̂FE

)
+ τ 2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)
− 2τE

(
(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)

106



By Stein’s Lemma: If Z ∼ N(0, V ) is q×1, K is q×q, and η (x):Rq→ Rq is absolutely

continuous, then

E
(
η (Z + h)′KZ

)
= Etr

(
∂

∂x
η (Z + h)′KV

)
η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I − 2

(x′Bx)2Bxx
′

Therefore,

E
(

(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
= Etr

(
GWG′2V

(h+ ξ)′B(h+ ξ)
− 2GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)

= E
(

tr (GWG′2V )

(h+ ξ)′B(h+ ξ)

)
− 2Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
Since

GWG′2V = WG′2V G = W (V2 − V1)

and

GWG′2V B = GWG′2V G (V2 − V1)−1G′ = GWG′

Then

Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
= Etr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)
Thus

E (ψ∗′Wψ∗) = R
(
β̂FE

)
+ τ 2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)

+4τEtr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)

−2τEtr

(
(W (V2 − V1))

(h+ ξ)′B(h+ ξ)

)
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Define

B1 = (V2 − V1)−
1
2 G′

A∗ = (V2 − V1)
1
2 W (V2 − V1)

1
2

Note that GWG′2V P = GWG′ = B′1A
∗B1, B

′
1B1 = B.

Using the inequality b′ab ≤ (b′b)λmax (a) for symmetric a, and let

λmax (a) = λmax (W (V2 − V1)) = λ1

Then

tr (B(h+ ξ)(h+ ξ)′GWG′2V ) = (h+ ξ)′B′1A
∗B1(h+ ξ) (A.1)

≤ (h+ ξ)′B(h+ ξ)λ1

Using equation (A.1) and Jensen’s inequality, we have

E (ψ∗′Wψ∗) ≤ R
(
β̂FE

)
+
(
τ 2 + 4τ

)
E
(

λ1

(h+ ξ)′B(h+ ξ)

)
−2τEtr

(
(W (V2 − V1))

(h+ ξ)′B(h+ ξ)

)
(A.2)

= R
(
β̂FE

)
− E

(
τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

(h+ ξ)′B(h+ ξ)

)
≤ R

(
β̂FE

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

E
(
(h+ ξ)′B(h+ ξ)

) (A.3)

Since tr(BV ) =tr
(
G (V2 − V1)−1G′V

)
= q. We have

E
(
(h+ ξ)′B(h+ ξ)

)
= h′Bh+ tr (BV )

= σ−4
1 δ′X̄ ′X̄V1 (V2 − V1)−1 V1X̄

′X̄δ + q

Substituted into (A.3) we have

R
(
β̂c

)
< R

(
β̂FE

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

σ−4
1 δ′X̄ ′X̄V1 (V2 − V1)−1 V1X̄ ′X̄δ + q

with 0 < τ ≤ 2
(

tr(W (V2−V1))
λ1

− 2
)
.
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Appendix B

Appendix for Chapter 2

Proof of Theorem 7:

The randome effects estimator is given as:

β̂SP,RE =
(
X∗′Ω−1X∗

)−1
X∗′Ω−1y∗

Since

Ω−1 = σ−2
u (λP +Q) =

P

σ2
1

+
Q

σ2
u

, with λ =
σ2
u

σ2
1

we can write β̂SP,RE as

β̂SP,RE = (X∗′ (λP +Q)X∗)
−1
X∗′ (λP +Q) y∗ = Ay∗

where A ≡ (X∗′ (λP +Q)X∗)−1X∗′ (λP +Q) , then

β̂SP,RE = A (X∗β +Dα + u)

= β + A (Dα + u)

From (3.13),

α = X̄
δ√
n

+ ε
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Then

β̂SP,RE − β = A

(
DX̄

δ√
n

+Dε+ u

)
√
n
(
β̂SP,RE − β

)
= ADX̄δ +

(
X∗′ (λP +Q)X∗

n

)−1
1√
n
X∗′ (λP +Q) (Dε+ u)

→ ξ =

(
plim

X∗′ (λP +Q)X∗

n

)−1(
plim

X∗′ (λP +Q)DX̄

n

)
δ

+

(
plim

X∗′ (λP +Q)X∗

n

)−1

z

where

z =
1√
n
X∗′ (λP +Q) (Dε+ u) ∼ N

(
0, σ2

u

(
plim

X∗′ (λP +Q)X∗

n

))
And

ξ →

(
C, σ2

uplim

(
X∗′ (λP +Q)X∗

n

)−1
)

with C ≡
(

plim
X∗′ (λP +Q)X∗

n

)−1(
plim

X∗′ (λP +Q)DX̄

n

)
δ

Therefore,

plim
√
nE
(
β̂SP,RE − β

)
→

(
plim

X∗′ (λP +Q)X∗

n

)−1(
plim

λX̄∗′X̄

n

)
δ

= σ−2
1 V1X̄

∗′X̄δ

AV
(√

n
(
β̂SP,RE

))
= σ2

uplim

(
X∗′ (λP +Q)X∗

n

)−1

=

(
plim

X∗′Ω−1X∗

n

)−1

Finally, we get

√
n
(
β̂SP,RE − β

)
→ N

(
σ−2

1 V1X̄
∗′X̄δ,

(
plim

X∗′Ω−1X∗

n

)−1
)

Next, the FE estimator is given as:

β̂SP,FE = (X∗′Q∗X∗)
−1
X∗′Q∗ (X∗β +D∗α + u)
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From (3.13), we can obtain

β̂SP,FE − β = (X∗′Q∗X∗)
−1
X∗′Q∗

(
D∗X̄

δ√
n

+ u

)
= (X∗′Q∗X∗)

−1
X∗′Q∗u

and therefore

√
n
(
β̂SP,FE − β

)
→ N

(
0, σ2

u

(
plim

X∗′Q∗X∗

n

)−1
)

Also

n
(
β̂SP,RE − β

)′ (
β̂SP,FE − β

)
=

(
X∗′ (λP +Q)X∗

n

)−1
1

n
X∗′ (λP +Q)uu′Q∗X∗

(
X∗′Q∗X∗

n

)−1

→ σ2
u

(
plim

(X∗′Ω−1X∗)
−1
X∗′Ω−1Q∗X∗ (X∗′Q∗X∗)−1

n

)

(3.15) and (3.16) follow by the continuous mapping theorem.

Proof of Theorem 8: The proof technique is based on the arguments in Theorem 2

of Hansen (2014) with the main difference that we relax that RE estimator may not

be fully efficient.

Noting that
√
n
(
β̂SP,FE − β

)
d→ G′2ξ ∼ N (0, V2) , then

R
(
β̂SP,FE

)
= E (ξ′G′2WG′2ξ) = tr (WV2)

Define Ψ∗ as a random variable without positive part trimming in (3.16)

Ψ∗ = G′2ξ −
(

τ

(h+ ξ)′B(h+ ξ)

)
G′ (h+ ξ)

Then using (3.16) and the fact that the pointwise quadric risk of Ψ is strictly smaller

than that of Ψ∗

R
(
β̂SP,c

)
= E (Ψ′WΨ) < E (Ψ∗′WΨ∗)
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we can calculate that

E (Ψ∗′WΨ∗) = R
(
β̂SP,FE

)
+τ 2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)
−2τE

(
(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
By Stein’s Lemma: If Z ∼ N(0, V ) is q×1, K is q×q, and η (x): Rq→ Rq is absolutely

continuous, then

E
(
η (Z + h)′KZ

)
= Etr

(
∂

∂x
η (Z + h)′KV

)
η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I − 2

(x′Bx)2Bxx
′

Therefore

E
(

(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
= Etr

(
GWG′2V

(h+ ξ)′B(h+ ξ)
− 2GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)

= E
(

tr (GWG′2V )

(h+ ξ)′B(h+ ξ)

)
− 2Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
Since

GWG′2V = WG′2V G = W (V2 − V21)

and

GWG′2V B = GWG′2V G (V1 + V2 − (V21 + V ′21))
−1
G′

= GW (V2 − V21) (V1 + V2 − (V21 + V ′21))
−1
G′

set

C ≡ W (V2 − V21) (V1 + V2 − (V21 + V ′21))
−1

then

Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
= Etr

(
(h+ ξ)′GCG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)
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Thus

E (Ψ∗′WΨ∗) = R
(
β̂FE

)
+ τ 2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)

+4τEtr

(
(h+ ξ)′GCG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2

)

−2τEtr

(
(W (V2 − V21))

(h+ ξ)′B(h+ ξ)

)
(B.1)

Define

B1 = (V1 + V2 − (V21 + V ′21))
− 1

2 G′

and

A = (V1 + V2 − (V21 + V ′21))
1
2 C (V1 + V2 − (V21 + V ′21))

1
2

Note that GWG′2V B = GCG′ = B′1AB1, B
′
1B1 = B.

Using the inequality b′ab ≤ (b′b)λmax (a) for symmetric a, and let

λmax (a) = λmax

(
A+ A′

2

)
= λ1

Then

tr (B(h+ ξ)(h+ ξ)′GWG′2V ) =
(h+ ξ)′B′1 (A+ A′)B1(h+ ξ)

2

≤ (h+ ξ)′B(h+ ξ)λ1 (B.2)

Define

A∗ = (V1 + V2 − (V21 + V ′21))
1
2 W (V1 + V2 − (V21 + V ′21))

1
2 .

Note that GWG′ = B′1A
∗B1, B

′
1B1 = B, and let

λmax (a) = λmax

(
A∗ + A∗′

2

)
= λ∗1

then we have

tr ((h+ ξ)′GWG′(h+ ξ)) =
(h+ ξ)′B′1 (A∗ + A∗′)B1(h+ ξ)

2

≤ (h+ ξ)′B(h+ ξ)λ∗1 (B.3)
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Plug (B.2) and (B.3) into (B.1) and use Jensen’s inequality, then we have

E (Ψ∗′WΨ∗) ≤ R
(
β̂SP,FE

)
+ τ 2E

(
λ∗1

(h+ ξ)′B(h+ ξ)

)
+ 4τE

(
λ1

(h+ ξ)′B(h+ ξ)

)
−2τEtr

(
(W (V2 − V12))

(h+ ξ)′B(h+ ξ)

)
= R

(
β̂SP,FE

)
− E

(
τ (2 (trW (V2 − V21)− 2λ1)− λ∗1τ)

(h+ ξ)′B(h+ ξ)

)
≤ R

(
β̂SP,FE

)
− τ (2 (trW (V2 − V21)− 2λ1)− λ∗1τ)

E
(
(h+ ξ)′B(h+ ξ)

) (B.4)

Since tr(BV ) =tr
(
G (V1 + V2 − (V21 + V ′21))−1G′V

)
= q. We have

E
(
(h+ ξ)′B(h+ ξ)

)
= h′Bh+ tr (BV )

= σ−4
1 δ′X̄ ′X̄∗V1 (V1 + V2 − (V21 + V ′21))

−1
V1X̄

∗′X̄δ + q

Substitute into (B.4), finally we obtain

R
(
β̂SP,c

)
≤ R

(
β̂SP,FE

)
− τ (2 (trW (V2 − V21)− 2λ1)− λ∗1τ)

σ−4
1 δ′X̄ ′X̄∗V1 (V1 + V2 − (V21 + V ′21))−1 V1X̄∗′X̄δ + q
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Appendix C

Appendix for Chapter 5

Proof of equation (5.13)

Fixed effects estimator is given as

β̂FE =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQTyi

)

β̂FE − β =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQT ei

)

Given that

ei = Fγi + εi

Then

β̂FE − β ==

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

(X ′iQTFγi +X ′iQT εi)

)
From (5.11) that

γi =
1√
n
δi
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Then we have

β̂FE − β =

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

(
X ′iQTF

δi√
n

+X ′iQT εi

))
√
n
(
β̂FE − β

)
=

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

X ′iQTFδi

)

+

(
n∑
i=1

X ′iQTXi

)−1( n∑
i=1

1√
n
X ′iQT εi

)

→ ξ =

(
plim

∑n
i=1X

′
iQTXi

n

)−1
(

plim
n∑
i=1

X ′iQTFδi
n

)

+

(
plim

∑n
i=1X

′
iQTXi

n

)−1

z

where

z =
n∑
i=1

X ′iQT εi√
n
∼ N

(
0, σ2

(
plim

n∑
i=1

X ′iQTXi

n

))
And

ξ →

((
plim

∑n
i=1X

′
iQTXi

n

)−1
(

plim
n∑
i=1

X ′iQTFδi
n

)
, σ2

(
plim

n∑
i=1

X ′iQTXi

n

))

Set S = E (X ′iQTFδi) , so

plim
√
nE
(
β̂FE − β

)
→
(

plim

∑n
i=1X

′
iQTXi

n

)−1
(

plim
n∑
i=1

X ′iQTFδi
n

)
= σ−2V1S

Finally, we obtain
√
n
(
β̂FE − β

)
→ N

(
σ−2V1S, V1

)
where V1 = σ2

(
plim

∑n
i=1

X′iQTXi
n

)
Proof of equation (5.18), eq (5.18) can be obtained similar to the Semiparametric

case.
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